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ABSTRACT

Video coding is an integral part of numerous real-time multimedia applications such as
video telephony, telemedicine, video conferencing and video streaming. In real-time mul-
timedia systems or power constrained systems, the coding performance of modern video
coding standards such as High Efficiency Video Coding (HEVC) and H.264/MPEG-4
Advanced Video Coding (AVC), is limited by computational complexity. This thesis
presents research work to develop techniques to reduce the computational complexity
of video encoders and to exploit their data and task level parallelism. These techniques
aim to provide significant complexity saving as well as improving coding efficiency.

A computationally efficient framework for macroblock prediction is developed to re-
duce the computational complexity and overheads related to the macroblock prediction
process in video encoding. The framework consists of several innovative techniques to
exclude as many intra and inter prediction modes as possible prior to the RDO (rate
distortion optimization) process. In the best case, the proposed framework selects one
MB type either intra or inter and one corresponding near-optimal prediction mode, so
that the complete RDO process is neglected. Simulation results show that the proposed
framework achieves significant complexity savings without any significant degradation
in video quality.

In addition, a complexity reduction technique for motion compensation is developed to
perform inter prediction. This addresses the computational complexity issues related to
both interpolation and data manipulation modules of the motion compensation process.
The end results of the experiments display that this method prominently decreases the
computational complexity without loss in rate-distortion performance.

Finally, an end-to-end hybrid hardware-software implementation scheme based on pipelin-
ing and multitasking for advanced video coding is presented. This scheme exploits the
task and data level parallelism in video encoders to improve their coding efficiency. The
parallelism is exploited at both coarse-grain level and fine-grain level. The coarse-grain
level parallelism exploitation is done by concurrently executing multiple tasks on differ-
ent processing cores while fine-grain level parallelism is achieved by using SIMD (single
instruction multiple data) instructions. Such exploitation of parallelism also helps to
better utilize the computational power offered by advanced media processors. The out-
comes of the experiments reveal that suggested scheme has resulted in enhancing the
encoding rate and reducing power consumption.

In the field of video coding the main achievement of this research can be given in a nut
shell as: (a) Development of computationally efficient techniques for macroblock predic-
tion type and partition selection. (b) Development of complexity reduction algorithm
based on intra and inter prediction mode selection. (c) Development of a computation-
ally efficient scheme for motion compensation. Finally, (d) development of end-to-end
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hybrid implementation scheme for H.264/AVC encoder that exploits its data and task
level parallelism to improve coding efficiency.

These innovative techniques may prove handy in real-time implementation of H.264/AVC
and HEVC video encoders in computationally constrained environments as is the case
in general purpose computers and low-power mobile devices.

viii



LIST OF PUBLICATIONS

Muhammad Asif, Imtiaz A. Taj, S. M. Ziauddin, Maaz Bin Ahmad and M. Tahir “ A
hybrid scheme based on pipelining and multitasking in mobile application processors for
advanced video coding ”, Scientific Programming Journal, vol. 2015, Article ID 197843,
2015. doi:10.1155/2015/197843 (I.F 0.559)

Muhammad Asif, Imtiaz A. Taj, S. M. Ziauddin, Maaz Bin Ahmad and Atif Raza “
An efficient inter prediction mode selection scheme for advanced video coding based on
motion homogeneity and residual complexity ”, IEEJ Transactions on Electrical and
Electronic Engineering, (Article in Press) (I.F 0.213)

Muhammad Asif, Imtiaz A. Taj, S. M. Ziauddin, Maaz Bin Ahmad and M. Tahir “
An efficient framework for prediction parameters selection in advanced video coding ”,
Elsevier Journal of Measurement, (Article Under Review) (I.F 1.484)

Muhammad Asif, Imtiaz A. Taj, S. M. Ziauddin, Maaz Bin Ahmad and M. Tahir “ An
Efficient scheme for intra prediction block size and mode selection in advanced video cod-
ing ”, 13th International Conference on Frontiers in Information Technology (FIT2015),
2015

Muhammad Asif, Saqib Majeed, Imtiaz A. Taj, S. M. Ziauddin and Maaz Bin Ahmad
“ Exploiting MB Level Parallelism in H.264/AVC Encoder for Multi-Core Platform ”,
2014 IEEE/ACS 11th International Conference on Computer Systems and Applications
(AICCSA), pp. 125-130, ISSBN/ISSN: DOI: 10.1109/AICCSA.2014.7073188, 2014

Muhammad Asif, Masood Farooq and Imtiaz A. Taj, “ Optimized Implementation of
Motion Compensation for H.264Decoder ”, 5th International Conference on Computer
Sciences and Convergence Information Technology (ICCIT2010), Pages: 216-221, ISSB-
N/ISSN: ISBN: 978-1-4244-8567-3, 2010

ix



TABLE OF CONTENTS

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xviii

Chapter 1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2
H.264/AVC Video Coding Standard . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The H.264 Codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1.1 Forward Path . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1.2 Reconstruction Path . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Intra Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1.1 Intra 4×4 Prediction for Luma Samples . . . . . . . . . 16
2.3.1.2 Intra 16×16 Prediction for Luma Samples . . . . . . . . 18
2.3.1.3 Intra 8×8 Prediction for Chroma Samples . . . . . . . . 19
2.3.1.4 I PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Inter Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2.1 Variable Block Size Motion Compensation . . . . . . . 20
2.3.2.2 Motion Vectors . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2.3 Generating Interpolated Samples . . . . . . . . . . . . . 22

2.3.3 Skipped Macroblocks . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.5 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.6 Reordering/Scanning . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.7 Entropy Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.8 De-blocking Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

x



2.3.9 Rate Distortion Optimization . . . . . . . . . . . . . . . . . . . . 29
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 3
Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1 Macroblock Prediction Parameters Selection . . . . . . . . . . . . . . . . 32

3.1.1 Inter Prediction Mode Selection Techniques . . . . . . . . . . . . 33
3.1.2 Intra Prediction Mode Selection Techniques . . . . . . . . . . . . 36

3.2 Motion Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Reasons Behind the Computational Complexity of Motion Com-

pensation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Existing Complexity Reduction Techniques . . . . . . . . . . . . . 40

3.3 Exploiting Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 4
An Efficient Framework for Macroblock Prediction . . . . . . . . . . . . . . . . 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Observation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Features Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Prediction Type Decision . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Early Mode Exclusion . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.3.1 SKIP Mode Early Detection Algorithm . . . . . . . . . 56
4.3.3.2 Intra Prediction Block Size Selection Schemes . . . . . 57

4.3.4 Rapid Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.4.1 Inter Prediction Mode Selection Algorithm . . . . . . . 60
4.3.4.2 Intra Prediction Mode Selection Algorithm . . . . . . . 70

4.3.5 RDO Mode Elimination . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.6 Overall Framework Description . . . . . . . . . . . . . . . . . . . 77

4.4 Experimental Analysis and Discussion . . . . . . . . . . . . . . . . . . . . 78
4.4.1 Prediction Type Decision . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.2 Early Mode Exclusion . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.2.1 SKIP Mode Early Detection Algorithm . . . . . . . . . 81
4.4.2.2 Intra Prediction Block Size Detection Schemes . . . . . 84

4.4.3 Rapid Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.3.1 Inter Prediction Mode Selection Scheme . . . . . . . . . 87
4.4.3.2 Intra Prediction Mode Selection Scheme . . . . . . . . . 92

4.4.4 Overall Performance Evaluation of the Proposed Framework . . . 95
4.4.4.1 Experiments on IPPPPP Sequences . . . . . . . . . . . 95
4.4.4.2 Experiments on All Intra Frames Sequences . . . . . . . 99

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xi



Chapter 5
Complexity Reduction of Motion Compensation . . . . . . . . . . . . . . . . .104
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.1 Edge Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.2 Blocks Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.3 Generation of Predicted Sample Values . . . . . . . . . . . . . . . 111

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Chapter 6
Parallel Task Assignments in Hybrid Hardware-Software Video Coding . . . . .117
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 JZ4770 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.1 H.264/AVC Porting to JZ4770 . . . . . . . . . . . . . . . . . . . . 120
6.3.2 H.264/AVC Encoder Data Dependencies and Profiling Analysis . 121
6.3.3 Optimization Techniques for Memory Management and Data Trans-

fer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.3.1 Memory Efficient Design for DBLK Module . . . . . . . 123
6.3.3.2 Efficient Data Transfer . . . . . . . . . . . . . . . . . . 125
6.3.3.3 Algorithmic Optimization using SIMD Instructions . . 126

6.3.4 Encoder Pipeline Design . . . . . . . . . . . . . . . . . . . . . . . 128
Intra MBs: . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Inter MBs: . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3.5 Encoder Partitioning between CPU and VPU Cores . . . . . . . 133
6.3.6 Scheduling Strategy and Encoder Flow . . . . . . . . . . . . . . . 134

6.4 Performance Evaluation and Discussion . . . . . . . . . . . . . . . . . . . 136
6.4.1 Encoder Performance at Different Implementation Stages . . . . . 136
6.4.2 Performance Comparison with Sequential (CPU only) Implemen-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.4.3 Performance Comparison with State-of-the-Art Implementation

Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.4.4 Energy Saved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.4.5 Scalability of the Proposed Scheme for High Efficiency Video

Coding (HEVC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Chapter 7
Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . .144
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2 Contributions to Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2.1 Efficient Framework for Macroblock Prediction . . . . . . . . . . 144
7.2.2 Motion Compensation Complexity Reduction . . . . . . . . . . . 148
7.2.3 Parallel Task Assignment in Advanced Video Coding . . . . . . . 148

xii



7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.4 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

xiii



LIST OF FIGURES

1.1 Complexity Analysis of H.264/AVC Decoder . . . . . . . . . . . . . . . . 5
1.2 Improvement of Video Coding Performance vs Research Contributions . . 10

2.1 H.264/AVC Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 H.264/AVC Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 4×4 Luma Intra Prediction Modes . . . . . . . . . . . . . . . . . . . . . . 17
2.4 4×4 Luma Intra Predicted Samples Generation . . . . . . . . . . . . . . . 17
2.5 16×16 Luma Intra Prediction Modes . . . . . . . . . . . . . . . . . . . . 18
2.6 Macroblock Partitions for Luma Component . . . . . . . . . . . . . . . . 20
2.7 Sub-Macroblock Partitions for Luma Component . . . . . . . . . . . . . . 21
2.8 Example of Integer and Sub-Sample Prediction . . . . . . . . . . . . . . . 22
2.9 Interpolation of Luma Half-Pel Positions . . . . . . . . . . . . . . . . . . 23
2.10 Interpolation of Luma Quarter-Pel Positions . . . . . . . . . . . . . . . . 24
2.11 Interpolation of Chroma Eighth-Sample Positions . . . . . . . . . . . . . 24

4.1 Framework for Macroblock Prediction . . . . . . . . . . . . . . . . . . . . 51
4.2 Spatial and Temporal neighboring Macroblocks of Current MB . . . . . . 54
4.3 τ1 and τ2 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Selected Block Sizes using Full Inter Prediction Mode Selection. (a)

Coastguard (b) Paris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 MB Partitions used to Calculate Motion Homogeneity and Residual Com-

plexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 W1 and W2 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7 Flowchart of the Proposed Inter Prediction Mode Selection Scheme . . . 69
4.8 Intra 4x4 Prediction Directions . . . . . . . . . . . . . . . . . . . . . . . . 72
4.9 Intra 16×16 Prediction Directions . . . . . . . . . . . . . . . . . . . . . . 73
4.10 Flowchart for the Proposed Intra Prediction Mode Selection Scheme . . . 76
4.11 RD Curves of Proposed Prediction Type Decision Scheme and Reference

Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.12 RD Curves of SKIP Mode Early Detection Scheme and Reference Software 84
4.13 RD Curves of Intra Block Size Detection Schemes and Reference Software 86
4.14 RD Curves of Proposed Inter Prediction Mode Selection Scheme and

Reference Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.15 RD Curves of Proposed Intra Mode Selection Scheme and Reference Soft-

ware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.16 RD Curves of Proposed Framework and Reference Software for IPPPPP

Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.17 RD curves of Proposed Framework and Reference Software for All Intra

Frame Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Block Diagram of the Proposed Scheme . . . . . . . . . . . . . . . . . . . 106
5.2 Macroblock and Sub-Macroblock Partitioning . . . . . . . . . . . . . . . . 108

xiv



5.3 Blocks Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4 Generation of Predicted Sample Values . . . . . . . . . . . . . . . . . . . 112
5.5 JM Reference Implementation of Half-Pel Case for Horizontal Motion

Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.6 Proposed Implementation of Half-Pel Case for Horizontal Motion Com-

pensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.7 Comparison of the Proposed Scheme with JM Reference Implementation 115

6.1 Hardware Software Co-Design for H.264/AVC Encoder . . . . . . . . . . 120
6.2 MB Level Processing Flow of Hybrid Encoder . . . . . . . . . . . . . . . 121
6.3 Time Breakdown of Hybrid Encoder . . . . . . . . . . . . . . . . . . . . 122
6.4 Input and Output Data Placement of DBLK Module . . . . . . . . . . . 124
6.5 Design for DBLK Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.6 (a) SIMD Implementation of Zig-Zag Scanning (b) SIMD Implementation

of Edge Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.7 Four Staged Pipeline for Intra MB’s . . . . . . . . . . . . . . . . . . . . . 130
6.8 Five Staged Pipeline for Inter MB’s . . . . . . . . . . . . . . . . . . . . . 130
6.9 Pseudo-Code of Proposed Encoder Pipelined Design . . . . . . . . . . . . 131
6.10 Time Breakdown before Pipelined Design . . . . . . . . . . . . . . . . . 132
6.11 Time Breakdown after Pipelined Design . . . . . . . . . . . . . . . . . . . 132
6.12 Proposed Encoder Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.13 Time-Line for Multi-Core Pipelined Encoder . . . . . . . . . . . . . . . . 135

xv



LIST OF TABLES

2.1 Intra 4×4 Luma Prediction Modes . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Intra 16×16 Luma Prediction Modes . . . . . . . . . . . . . . . . . . . . 19
2.3 Intra 8×8 Chroma Prediction Modes . . . . . . . . . . . . . . . . . . . . . 19

4.1 Probability (%) of Intra and Inter Prediction Modes Selection . . . . . . 48
4.2 Probability (%) of Intra Prediction Block Size Selection . . . . . . . . . . 50
4.3 Thresholds for Qps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Probability (%) of Inter Prediction Modes Selection . . . . . . . . . . . . 62
4.5 Weights for Qps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6 Candidate Inter Prediction Modes . . . . . . . . . . . . . . . . . . . . . . 68
4.7 Luma 4×4 Prediction Modes . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.8 Luma 16×16 Prediction Modes . . . . . . . . . . . . . . . . . . . . . . . 74
4.9 Chroma 8×8 Prediction Modes . . . . . . . . . . . . . . . . . . . . . . . 74
4.10 Candidate Intra Prediction Modes . . . . . . . . . . . . . . . . . . . . . . 76
4.11 Experimental Results of Prediction Type Decision Algorithm . . . . . . . 80
4.12 Frequency Distribution of Each Class (%) for Prediction Type Decision

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.13 Experimental Results of SKIP Mode Early Detection Algorithm . . . . . 83
4.14 Experimental Results of Intra Prediction Block Size Detection Schemes . 85
4.15 Frequency Distribution of Each Class (%) for Intra Block Size Detection

Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.16 Performance Comparison of Inter Prediction Mode Selection Scheme in

Terms of TS (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.17 Performance Comparison of Inter Prediction Mode Selection Scheme in

Terms of BDPSNR (dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.18 Performance Comparison of Inter Prediction Mode Selection Scheme in

Terms of BDBR (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.19 Frequency of Each MB Class (%) for Inter Prediction Mode Selection

Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.20 Experimental Results of Inter Prediction Mode Selection Scheme . . . . . 91
4.21 Performance Comparison of Intra Prediction Mode Selection Scheme in

Terms of TS (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.22 Performance Comparison of Intra Prediction Mode Selection Scheme in

Terms of BDPSNR (dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.23 Performance Comparison of Intra Prediction Mode Selection Scheme in

Terms of BDBR (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.24 Experimental Results of Intra Prediction Mode Selection Scheme . . . . . 94
4.25 Experimental Results on IPPPPP Sequences . . . . . . . . . . . . . . . . 96
4.26 Performance Comparison on IPPP Sequences in Terms of TS (%) . . . . 97
4.27 Performance Comparison on IPPP Sequences in Terms of BDPSNR (dB) 97
4.28 Performance Comparison on IPPP Sequences in Terms of BDBR (%) . . 98

xvi



4.29 Performance Comparison of All Intra Frame Sequences in Terms of TS
(%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.30 Performance Comparison of All Intra Frame Sequences in Terms of BDP-
SNR (dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.31 Performance Comparison of All Intra Frame Sequences in Terms of BDBR
(%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.32 Experimental Results of All Intra Frame Sequences . . . . . . . . . . . . 101

5.1 Mode Information of Macroblock . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Memory Reading Saved Per MB . . . . . . . . . . . . . . . . . . . . . . . 109
5.3 Comparison of the Proposed Scheme with Other Schemes . . . . . . . . . 116

6.1 % Gain Through Optimization Techniques . . . . . . . . . . . . . . . . . 128
6.2 % of Total Processing Time Taken by HW Processing Units Before

Pipelined Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3 % of Total Processing Time Taken by HW Processing Units After Pipelined

Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4 Experimental Results at Different Implementation Stages for NTSC Se-

quences (Qp= 24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.5 Experimental Results at Different Implementation Stages for 720p Se-

quences (Qp= 26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.6 Optimization Method vs Contribution to Encoding Speedup . . . . . . . 138
6.7 Performance Comparison for NTSC Sequences . . . . . . . . . . . . . . . 139
6.8 Performance Comparison for 720p Sequences . . . . . . . . . . . . . . . . 139
6.9 Performance Comparison with State-of-the-Art Implementation Schemes 140
6.10 Power Consumption Comparison . . . . . . . . . . . . . . . . . . . . . . . 141
6.11 Energy Consumption Comparison for NTSC Sequences . . . . . . . . . . 141
6.12 Energy Consumption Comparison for 720p Sequences . . . . . . . . . . . 141

xvii



LIST OF ACRONYMS

AVC Advanced Video Coding
CABAC Context-Adaptive Binary Arithmetic Coding
CAVLC Context Adaptive Variable Length Coding
DCT Discrete Cosine Transform
DVD Digital Versatile Disc
DED Dominant Edge Direction
DES Dominant Edge Strength
DSP Digital Signal Processor
GOP Group-Of-Picture
GRC Global Residual Complexity
IDCT Inverse Discrete Cosine Transform
ISO/IEC International Standards Organization
ITU-T International Telecommunications Union
JVT Joint Video Team
LRC Local Residual Complexity
MAD Mean Absolute Difference
MB Macroblock
MPEG Motion Picture Experts Group
MSAD Minimum Sum Absolute Difference
MSE Mean Squared Error
MV Motion Vector
MBRP Macroblock Region Partition
MC Motion Compensation
ME Motion Estimation
MPM Most probable Mode
NAL Network Abstraction Layer
PSNR Peak Signal Noise Ratio
PDA Personal Digital Assistant
PC Personal Computer
PPE Power Processor Element
QCIF Quarter Common Intermediate Format
QP Quantization Parameter
RD Rate-Distortion
RDO Rate-Distortion Optimization
SAD Sum of Absolute Differences
SATD Sum of Absolute Transform Differences
SPE Synergistic Processors Elements
SIMD Single Instruction Multiple Data
TPC Tagged Procedure Calls
VCEG Video Coding Experts Group
VLSI Very-Large-Scale Integration
VLIW Very-Long-Instruction-Word
CPU Central Processing Unit

xviii



VPU Video Processing Unit
DMA Direct Memory Access Units
AMS Asynchronous Multiprocessor
VMAU Vector Matrix Arithmetic Unit
MCE Motion Compensation and Estimation Engine
DBLK De-Block
MIPS Microprocessor without Interlocked Pipeline Stages

xix



Chapter 1

INTRODUCTION

This is the 21st century, an era that heralds latest advancements in the field of

computers and electronics. Notable among the new and hugely popular gadgets

are the smart devices such as smart phones and tablet PCs with enhanced media

processing capabilities including digital video encoding and decoding [1]. Increase

in storage capacities and the availability of broadband technologies has made it

possible to share videos with others in real-time. Despite the availability of higher

processing power and larger storage disk capacity, there is still a need to represent

video contents in a compact form in order to make video storage and transmission

more efficient [2]. The emerging video coding standards address this problem,

making it feasible to store high quality video on a limited-storage disc or transmit

it within the limited-bandwidth that todays network can provide [3]. It also drives

the development of many widely used storage and real-time video processing ap-

plications like Digital Versatile Disc (DVD), video conferencing, video on demand,

video surveillance, video streaming and so on [4].

The compression and decompression functions for video image data are performed

by the video codec (encoder/decoder) in order to store and transmit it in a suit-

able format [5]. The encoder part of the codec compresses the video signal and

the decoder part reconstructs the original video on the receiver side [6]. In the

past, a dedicated hardware was required to perform compression and decompres-

sion functions as these functions are computationally intensive [7]. However, with

the advancement in technology, powerful embedded processors and DSPs are now

available that have made software implementations feasible for video codecs [8].

These solutions offer more flexibility to the application designers and their perfor-

mance has greatly improved [9].
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The video encoding and decoding are highly demanding tasks that consume max-

imum processing power and also need efficient memory management and data

handling. With the advent of high-definition (HD) video coding the processing

requirements of codecs have increased tremendously [10],[11]. For example, the

processor has to process 88.99 mega pixels per second for real-time encoding of

full HD 1080p (1920 × 1080) video content. The performance of video encoders

running on general purpose desktop or smart devices is therefore limited by their

computational complexity [12]. This problem is significantly higher in case of real-

time multimedia applications running on hand-held mobile devices [13], [14]. In a

desktop system, the video encoder has to share resources with other applications,

while in hand-held smart devices power consumption is closely related to processor

utilization and it may be desirable to restrict computations in order to maximize

battery life [15],[16]. Computational complexity of modern video encoders there-

fore becomes a major hurdle in achieving high coding efficiency on multimedia

systems [17],[18].

Video coding standards have evolved primarily through the development of the

well-known ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video

Coding Experts Group (VCEG) standards. The ISO/IEC produced MPEG-1 [19]

and MPEG-4 Visual [20], ITU-T developed H.261 [21] and H.263 [22], and these

two organizations jointly developed the H.262/MPEG-2 Video [23], H.264/MPEG-

4 Advanced Video Coding (AVC) [24] and High Efficiency Video Coding (HEVC)

[25] standards. The jointly developed standards particularly H.262/MPEG-2 and

H.264/MPEG-4 have a strong impact on the industry and are used in wide ranging

of products that are common in our daily lives.

H.264/AVC supersedes the previous coding standards due to its better perfor-

mance in terms of compression, enhanced peak signal-to-noise ratio (PSNR) and

visual quality. It provides 50% compression gain for equivalent perceptual quality
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as compared to the prior video standards [26]. In order to achieve better perfor-

mance, this coding standard adopts several new techniques like directional predic-

tion of intra coded blocks, variable block size motion estimation (ME), rate dis-

tortion optimization (RDO), multi-reference frame ME, integer transform (DCT),

de-block filtering and context-based adaptive binary arithmetic coding (CABAC)

[26]. The latest video coding standard HEVC provides 50% coding efficiency

as compared to H.264/AVC for same video quality [27]. HEVC originates from

H.264/AVC and retains its basic hybrid coding architecture. Moreover, the basic

tool set of video encoding in HEVC standard is quiet similar to H.264/ AVC coding

standard. However, HEVC uses additional tool set to improve compression per-

formance and throughput speed (particularly for parallel processing architectures)

[27] [28], [29].

This research work primarily focuses on H.264/AVC video coding standard be-

cause of its wide acceptance in many applications, including real-time conversa-

tional applications such as video conferencing and video chat, security applica-

tions, camcorders, video content acquisition and editing systems, Internet and

mobile network video and broadcast of HD TV signals over different transmission

media including cable, terrestrial transmission systems and satellite.

1.1 Motivation

The video encoders comprise a number of specified tools and techniques to en-

hance the compression efficiency by removing spatial, temporal and statistical re-

dundancy of video data [30]. The prediction of each Macroblock (basic coding unit

of 16× 16 block pixels) is used to remove temporal and spatial redundancy. The

prediction of each Macroblock(MB) is performed from regions of previous frames

or the current frame that have already been encoded. Moreover, the standards

support a numerous prediction options such as prediction type (intra or inter), pre-

diction modes and suitable prediction block sizes etc. to perform the prediction
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process [31]. This flexible choice of MB prediction increases compression efficiency

at the cost of computational complexity. To determine the prediction parame-

ters that produce maximum coding efficiency, the encoder evaluates a numerous

prediction options and tries to select the best.

H.264/AVC provides various MB modes for intra and inter prediction in order to

better represent the spatial and temporal details of an MB [32], [33]. For intra

prediction, the standard offers nine prediction modes of 4 × 4 luminance blocks

(N4), four of entire 16× 16 luminance components (N16) and four of chrominance

component 8× 8 (N8) of MB. For inter prediction, different prediction block sizes

such as 16 × 16, 16 × 8, 8 × 16, 8 × 8, 8 × 4, 4 × 8 and 4 × 4 are supported. A

technique called Lagrangian rate-distortion optimization (RDO) [34] is used for

optimum mode selection by H.264 encoder in order to improve coding efficiency.

To choose the best MB prediction mode, RDO examines a combination of all

possible modes by calculating the Rate Distortion (RD) cost and then selects

the mode with the minimum RD cost. Therefore, for each MB, the number of

possible intra prediction mode combinations are N8×(16×N4 + N16) = 4 × (16×9

+ 4) = 592, and for inter prediction there are 20 different possible block size

combinations. Thus, to select the best intra and inter prediction mode for one MB,

the H.264/AVC encoder carries out 592 and 20 RDO calculations, respectively. As

a result of this brute-force searching, the computational complexity of the encoder

increases tremendously [32], [34], [35]. Most of the existing techniques related

to complexity reduction of macroblock prediction process target either intra or

inter mode selection. In order to reduce the computational complexity of the

encoder, there is a need to develop an efficient framework for macroblock prediction

that should not only target selection of optimum intra and inter prediction mode

(variable block size) but also incorporate optimum prediction type (intra prediction

or inter prediction) and macroblock partitions suitable for better intra prediction.

Such a framework is a missing link in the existing research work.
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The H.264/AVC standard supports motion estimation and compensation for inter

prediction up to quarter pixel accuracy with multiple block sizes and multiple

reference frames. According to the complexity analysis of Horowitz et al [36],

motion compensation module takes about 25% of the decoding time. Moreover, it

also takes a significant amount of encoding time. Hence, it is desirable to minimize

the computational complexity of motion compensation algorithm to improve the

speed of encoding and decoding process. Complexity analysis made by Horowitz

et al. [36] is shown in Fig. 1.1.

Figure 1.1: Complexity Analysis of H.264/AVC Decoder

Motion compensation comprises two sub-modules i.e. data manipulation and in-

terpolation. Both of these modules contribute significantly to the overall com-

putational complexity of motion compensation and may be optimized to improve

the efficiency of H.264/AVC video codec. Most of the literature available in this

area comprises techniques which either address data manipulation bottlenecks or

interpolation issues. Only a few techniques cover both aspects but even these need

further improvement.

Based on the above discussion it is evident that, development of a computationally

efficient framework for macroblock prediction with negligible loss in coding effi-

ciency is indispensable for high quality real-time video encoding. This constitutes

one of the primary motivating factors for our research work.
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The latest generation of mobile application processors is equipped with multiple-

cores, dedicated hardware processing units, direct memory access (DMA) units

and SIMD (Single Instructions Multiple Data) instruction set to handle the large

amount of processing involved in signal processing algorithms and multimedia

applications. H.264/AVC encoder involves an integrated framework where task

and data dependency is very high [37]. There is a need to exploit its task and

data level parallelism in order to improve the coding efficiency. Such exploitation

of parallelism may also help to better utilize the computational power offered by

advanced media processors [38].

Moreover, some processing architectures used in ultra-low powered devices offer a

hybrid (hardware-software) encoding framework where a sub-set of encoding tools

are available as hardware modules and the rest of the tools have to be imple-

mented in software. The implementation of H.264/AVC encoder for these pro-

cessors is a challenging task because H.264 encoder has an integrated framework

where task dependency is large and the encoder tasks distribution, scheduling and

synchronization among hardware and software modules is needed. Furthermore, it

demands efficient memory management and simultaneous exploitation of all pro-

cessing units for achieving real-time encoding. Most of the existing schemes fail

to describe the hybrid implementation of H.264/AVC encoder. Hence, there is

a need to work in this direction to highlight the issues involved in such kind of

implementation.

1.2 Problem Statement

The aim of this research is to develop a computationally efficient framework for

macroblock prediction in order to reduce the computational complexity of video

encoders. This framework should greatly reduce the encoder’s processing time

with negligible loss in quality and increase in bit-rate. Moreover, the work aims to

develop novel schemes which effectively exploit the data and task level parallelism
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in video encoders in order to improve their coding efficiency. These schemes should

enable the encoders to make efficient use of the processing resources offered by lat-

est generation of the mobile application processors to maximize the encoding rate,

resulting in high quality video processing for real-time multimedia applications on

general purpose desktop and smart devices.

The purpose of this research is to reduce the computational complexity of video

encoders through efficient framework for macroblock prediction and to improve

their coding efficiency by exploiting their data and task level parallelism

1.3 Research Objectives

In order to fulfill the aim of this research work the following are the research

objectives:

• Develop a computationally efficient framework for macroblock prediction

method that should reduce the computational complexity and overheads

related to prediction process with the following features.

– Select appropriate prediction type (intra or inter)

– Decide appropriate partitioning size for intra prediction(4×4 or 16×16)

– Select better intra prediction mode

– Choose appropriate inter prediction mode for motion estimation (SKIP,

16× 16, 16× 8, 8× 16, 8× 8, 8× 4, 4× 8 or 4× 4)

• Develop a computationally efficient technique for Motion Compensation (MC)

to perform inter prediction that should speedup the video encoding and de-

coding process.
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• Develop an end-to-end hybrid hardware-software implementation scheme

that should exploit data and task level parallelism of video encoders to im-

prove their coding efficiency. This scheme should enable the encoder to en-

sure efficient use of the computational power offered by the latest generation

of mobile applications processors to increase the encoding rate.

• To ensure that all of these schemes are suitable for deployment on general

purpose desktop and smart/mobile devices with limited processing power.

1.4 Research Contributions

The objectives of this work are achieved by developing several innovative ap-

proaches and schemes that reduce the computational complexity of video encoders

and exploit their data and task level parallelism. Key contributions of this research

work can be summarized as follows:

• Efficient Framework for Macroblock Prediction

To reduce the computational complexity of the prediction process, an ef-

ficient framework for macroblock prediction is developed which comprises

several new algorithms. The proposed framework is structured into several

stages to exclude as many intra and inter prediction modes as possible prior

to the RDO process without any significant degradation in video quality. It

uses Adaboost classifier, spatial and temporal features and adaptive thresh-

olds to achieve this goal. The proposed framework not only selects optimum

intra and inter prediction mode but also incorporates optimum prediction

type (intra or inter) and macroblock partitions to improve the prediction

process and reduce its computational complexity. The development of these

new algorithms led to a conference paper [39] and a journal publication [40].
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• Motion Compensation Complexity Reduction

To perform inter prediction a technique for motion compensation is devel-

oped that significantly reduces the complexity of data manipulation and

interpolation modules to achieve real-time implementation of video encoder

and decoder. The development of this new technique led to a conference

paper [41].

• Parallel Task Assignment in Hybrid Hardware-Software Video Cod-

ing

An end-to-end hybrid hardware-software implementation scheme based on

pipelining and multitasking in mobile application processors for advanced

video coding is proposed in this work. This scheme exploits the task and data

level parallelism in video encoders to improve their coding efficiency. The

parallelism is exploited at both coarse-grain level and fine-grain level. The

coarse-grain level parallelism exploitation is done by concurrently executing

multiple tasks on different processing cores while fine-grain level parallelism

is achieved by using SIMD instructions. Such exploitation of parallelism also

helps to better utilize the computational power offered by advanced media

processors. The development of these new schemes led to a conference paper

[42] and a journal publication [43].

There are two main areas that lead to the improvement of video coding efficiency.

The first one belongs to complexity reduction of computationally intensive modules

of video codecs and the second covers the exploitation of their parallelism. The

proposed work targeted both of these areas. The first two contributions are related

to complexity reduction of macroblock prediction process to increase the coding

rate. These contributions optimize the prediction parameters selection technique

RDO and motion compensation (MC) algorithm to perform the inter prediction
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for an MB. The third contribution exploits the task and data level parallelism in

video encoders to improve their coding efficiency.

Video

 Coding

Performance

Improvement

Complexity

Reduction

Exploitation

     of 

Parallelism

Optimization

        of

       MC

Optimization

       of

      RDO  

 Task

Level
Data
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Figure 1.2: Improvement of Video Coding Performance vs Research Contri-
butions

The Fig. 1.2 shows the areas that lead to the improvement of video coding efficiency

and also highlights the research contributions made in this research thesis.

1.5 Thesis Organization

The organization of the thesis is made as follows:

Chapter 1 – (This one) Presents introduction to the thesis and gives an overview

about the importance of the research problem. It address in detail the video

coding, importance and applications of video coding, why latest video coding

standard demands large amount of computational resources to perform real-time

encoding. This chapter also explains the macroblock prediction and parallel task

assignment problem of video coding and the motivation behind this research work.

Chapter 2 – Gives an overview of the H.264/AVC video coding standard. The

tools and techniques used in this standard to enhance the compression efficiency
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are briefly discussed. This chapter also highlights the reasons why high com-

putational resources are required for the implementation of H.264/AVC coding

standard.

Chapter 3 – Describes the previous work done in the area of macroblock predic-

tion and parallel task assignment in H.264/AVC. It also categorizes the work done

in this area into different categories and addresses advantages and disadvantages

of the available literature.

The development of innovative approaches and algorithms to curtail the compu-

tational complexity of the macroblock prediction process and parallel task assign-

ment in hybrid video coding are presented in Chapter 4 - Chapter 6.

Chapter 4 – This chapter briefly describes the proposed computationally efficient

framework for macroblock prediction which uses Adaboost classifier, spatial and

temporal features and adaptive thresholds. Computational saving is achieved by

reducing candidate predication modes prior to RDO calculation. This constitutes

the low-complexity framework developed in this work for H.264/AVC. Experimen-

tal analysis of the suggested framework is also covered in this chapter.

Chapter 5 – Presents the proposed scheme for Motion Compensation (MC) to

perform inter prediction that minimizes its computational complexity for real-time

implementations of H.264/AVC video encoder and decoder. Experimental analysis

of the proposed motion compensation scheme is also presented in this chapter.

Chapter 6 – This chapter describes the proposed hybrid software-hardware im-

plementation scheme for advanced video coding. This scheme exploits data and

task level parallelism of video encoders to improve coding efficiency. The perfor-

mance evaluation of the recommended scheme is also made in this chapter.
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Chapter 7 – This last chapter presents conclusion and future directions of this

research work. A summary of the main contributions made in the field of video

processing also describe in this chapter.
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Chapter 2

H.264/AVC VIDEO CODING STANDARD

2.1 Introduction

The H.264/AVC video coding standard is jointly developed by the ITU-T Video

Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group

(MPEG). This coding standard evolve with the aim to give enhanced compression

efficiency as compared to predecessors. This chapter describes an overview of

H.264/AVC standard. The rest of the chapter is organized as follows. Section

2.2 describes the H.264/AVC encoding and decoding flow. Section 2.3 focuses on

some of the specific coding tools available in the video coding layer. Section 2.4

summarizes the H.264/AVC codec.

2.2 The H.264 Codec

H.264 defines syntax and methods of encoding /decoding video bit-stream rather

than explicitly defining a CODEC (enCOder / DECoder pair). H.264 compliant

encoder/decoder consists of several functional elements. Most of these elements

are also the part of previous coding standards (H.263, H.261, MPEG-4, MPEG-2,

MPEG-1) [44]. The de-blocking filter functional block is the only exception. Also

the details and working of these functional blocks differ from previous standards.

As shown in the Fig. 2.1. the encoder part of the codec comprises of two data flow

paths. First path is from left-to-right called forward path and the other is from

right-to-left called reconstruction path. The Fig. 2.2. of decoder shows data flow

path from right-to-left in decoder representing the similarities between decoder

and encoder. Here, first we present the main process of encoding/decoding a

frame of video stepwise before going in details of H.264/AVC.
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2.2.1 Encoder

2.2.1.1 Forward Path

In H.264/AVC coding standard, macroblock (16× 16) is the fundamental process-

ing unit of a video frame/picture. It may be encoded using intra or inter prediction

mode. The pixel values belonging to the macroblocks of the current, previous and

future frames (that have already been encoded, decoded and reconstructed) are

used to generate a prediction signal. To predict the macroblock in intra mode,

the neighboring samples in the current frame/slice are used. On the other hand,

to predict the macroblock in inter mode, motion compensation is performed that

makes use of sets of list 0 and/or list 1 reference frames.

Figure 2.1: H.264/AVC Encoder

As illustrated in Fig. 2.1 the previous encoded frame is used to represent the refer-

ence frame. Each macroblock partition can be predicted either from past or from

future reference frame. These frames previously have been encoded, reconstructed

and filtered. In order to obtain a residual block Dn, from the current block, the

prediction is subtracted. After that, residual block under goes the process of trans-

formation and quantization. The resultant set of quantized transform coefficients
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is denoted by X. The X is first reordered and then entropy encoding is done with

it. Along with side information, the coefficients of entropy encoded are required in

order to decode each block within the macroblock. Then a compressed bit-stream

is formed to pass it to a Network Abstraction Layer for storage or transmission.

2.2.1.2 Reconstruction Path

Along with the encoding and transmission of each block in a macroblock, the en-

coder also provides a reference for more predictions. It reconstructs (decodes) each

block in a macroblock to achieve this goal. The difference block D’n is obtained

by inverse scaling (IQ) the coefficients X and inverse transforming (IDCT). The

reconstructed block uF’n is created by adding together the prediction block and

difference block. The reconstructed block is unfiltered thus to minimize the effects

of blocking distortion, a filter is applied. A series of blocks uF’n is used to create

the reconstructed reference picture.

Figure 2.2: H.264/AVC Decoder

2.2.2 Decoder

The decoder produces a decoded frame from compressed bit-stream. Initially

entropy decoding is performed on compressed bit-stream to obtain quantized coef-

ficients X. After this, decoder performs inverse quantization and inverse transform

using X in order to produce residual block D’n. Then it produces a prediction
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block by making use of the decoded header information of the bit-stream. The

prediction block and residual block are added together to produce reconstructed

block uF’n which after filtering results in each decoded block. A series of blocks

uF’n is used to create the reconstructed decoded frame. The Fig. 2.2 shows the

block diagram of H.264/AVC decoder.

2.3 Functional Blocks

The H.264/AVC standard provides a high level of compression efficiency by incor-

porating wide range of coding tools. The important functional blocks and coding

tools of this standard have been described in the following sections.

2.3.1 Intra Prediction

In H.264/AVC intra prediction makes use of spatial correlation between adja-

cent macroblocks/blocks. In intra prediction, the prediction signal for current

macroblock is formed with the help of adjacent pixels of previously encoded and

reconstructed top and left macroblocks. For the luminance (luma) component Y

the prediction signal can be generated for 16×16 macroblock or for each 4×4 sub-

block of macroblock. Nine predictions modes are used to predict 4×4 luma blocks.

To predict the luma 16×16 and 8×8 chrominance (chroma) components (U and

V) four prediction modes are used.

2.3.1.1 Intra 4×4 Prediction for Luma Samples

In intra 4×4 prediction modes, the prediction block is formed by the adjacent

pixels of top and left 4×4 blocks. The 4×4 prediction blocks sizes are useful to

encode high detail areas of frames. The intra prediction modes for luma 4×4 block

are illustrated in Fig. 2.3. The arrows show the prediction directions while shaded

squares represent the already decoded neighboring pixels.
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Figure 2.3: 4×4 Luma Intra Prediction Modes

The Fig. 2.4 shows a 4×4 luma block to be predicted. The prediction block

comprises of the samples a,b,c...p. These samples can be generated using A-M

samples as follows. For example Mode 2 (DC prediction) is varied according to

the availability of samples A-M which have previously been coded. Based on the

availability of all required prediction samples, all other modes can be used.

Figure 2.4: 4×4 Luma Intra Predicted Samples Generation

Weighted average of the prediction samples A-M are used to form the predicted

samples for modes 3-8. e.g. if selected mode is 4, the following (2.1) is used to

generate top-right sample ’d’.

d = round(
B

4
+
C

2
+
D

4
) (2.1)
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The detail of nine intra prediction modes for 4×4 luma blocks is presented in

Table 2.1.

Table 2.1: Intra 4×4 Luma Prediction Modes

Mode Name Description
0 I-Pred-4×4-Vertical The vertical extrapolation of A,B,C,D sam-

ples.
1 I-Pred-4×4-

Horizontal
The Horizontal extrapolation of I,J,K,L sam-
ples.

2 I-Pred-4×4-DC The mean of A...D and I...L. samples.
3 I-Pred-4×4-Diagonal

Down-Left
The interpolation of samples between upper
right and lower-left at a 45 angle.

4 I-Pred-4×4-Diagonal
Down-Right

The extrapolation of samples down and to
the right at a 45 angle.

5 I-Pred-4×4-Vertical-
Right

The interpolation of samples to the left of
vertical at an angle of approximately 26.6 .

6 I-Pred-4×4-
Horizontal-Down

The interpolation of samples below horizon-
tal at an angle of approximately 26.6.

7 I-Pred-4×4-Vertical-
Left

The interpolation of samples to the right of
vertical at an angle of approximately 26.6 .

8 I-Pred-4×4-
Horizontal-Up

The extrapolation of samples above horizon-
tal at an angle of approximately 26.6 .

2.3.1.2 Intra 16×16 Prediction for Luma Samples

A single operation may be used to predict the entire 16×16 luma component of

a macroblock. There are four prediction modes available for it as shown in the

Fig. 2.5.

Figure 2.5: 16×16 Luma Intra Prediction Modes
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These are suitable for homogeneous areas not containing much of the details.

Table 2.2 illustrated the prediction modes for intra 16×16 .

Table 2.2: Intra 16×16 Luma Prediction Modes

Mode Name Description
0 I-Pred-16×16-Vertical The upper samples (H) are extrapo-

lated.
1 I-Pred-16×16-

Horizontal
The left samples (V) are extrapolated.

2 I-Pred-16×16-DC Mean of left hand and upper samples
(H+V).

3 I-Pred-16×16-Plane A linear Plan function is fitted to the
left-hand samples V and upper H.

2.3.1.3 Intra 8×8 Prediction for Chroma Samples

The 8×8 chroma component is predicted without partitioning because the chroma

samples are more homogeneous than luma samples. Both chroma components (U

and V) are predicted using same prediction mode. The four prediction modes of

chroma are same as that of luma 16×16 illustrated in Fig. 2.5. having only the

difference in their numbering. The detail of these modes is presented in Table 2.3.

Table 2.3: Intra 8×8 Chroma Prediction Modes

Mode Name Description
0 I-Pred-Chroma-DC Mean of left hand and upper samples

(H+V).
1 I-Pred-Chroma-

Horizontal
The left samples (V) are extrapolated.

2 I-Pred-Chroma-
Vertical

The upper samples (H) are extrapo-
lated.

3 I-Pred-Chroma-Plane A linear ’Plane’ function is fitted to the
left-hand samples V and upper H .
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2.3.1.4 I PCM

A different kind of intra coding mode called I PCM which does not use prediction,

transformation and quantization. The sample values are transmitted directly. This

mode is useful in scenarios where information loss may not be tolerable.

2.3.2 Inter Prediction

The inter prediction is performed to remove the temporal redundancy between the

frames. This tool contributes a lot to improve the compression rate of H.264/AVC

as compare to predecessors. Block based motion estimation and compensation is

used to create the inter prediction signal from one or more reference frames or

fields.

2.3.2.1 Variable Block Size Motion Compensation

The macroblocks are divided into macroblocks and sub-macroblocks partitions to

perform motion compensation. The partitions of luma component of macroblocks

for motion compensation are shown in Fig. 2.6. Each macroblock can be motion

compensated as four 8×8 partitions, two 8×16 partitions, two 16×8 partitions or

one 16×16 macroblock partition.

Figure 2.6: Macroblock Partitions for Luma Component

There are four ways to further divide the every 8×8 partition of macroblock as

shown in Fig. 2.7 for the case if the 8×8 mode is selected. For each partition of
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macroblock or sub-macroblock separate motion vector is required. The choice of

partition(s) along with each motion vector has to be coded.

Figure 2.7: Sub-Macroblock Partitions for Luma Component

Selection of large partition size (8×16, 16×8 and 16×16) implies that choice of

motion vector(s) and partition type may be signaled by using fewer bits. On

the other hand, sufficient energy may be carried by motion compensated residual.

Selection of small partition size (4×4, 4×8, 8×4 and 8×8) implies that choice of

partition type and motion vector(s) must be signaled by using large number of

bits. On the other hand, lower energy in frame areas may be carried by motion

compensated residual.

In a macroblock, every chroma component (Cb and Cr) has half of the horizontal

and vertical resolution of the luma component. Both chroma block and luma block

are partitioned in the same way. The only difference is the partition sizes which

have exactly half the horizontal and vertical resolution (an 8×16 partition in luma

corresponds to a 4×8 partition in chroma; an 8×4 partition in luma corresponds

to 4×2 in chroma and so on). Every motion vectors components are halved when

applied to the chroma blocks.

2.3.2.2 Motion Vectors

Motion estimation and compensation is performed to generate the inter prediction

signal of same size from one or more reference frames for each macroblock or sub

macroblock partition. The offset of reference frames matching area is indicated
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by motion vectors. The H.264/AVC support motion vectors up to quarter and

1/8th pixel for luma and chroma components, respectively. The reference frame

does not have luma and chroma pixel values corresponding to sub-pixel position.

Therefore, interpolation from neighboring pixels values is performed to generate

them.

In Fig. 2.8. in order to predict a block of size 4×4 in the current frame (a) an area

of the reference frame in the neighborhood of the current block position is used.

The motion vector for which both of its components (horizontal and vertical) are

integers (b), the prediction samples actually exist in reference frame as shown

by gray dots. For fractional values of vector component(s) (c), interpolation is

performed in reference frame among adjacent samples (as shown by white dots)

to generate prediction samples.

Figure 2.8: Example of Integer and Sub-Sample Prediction

2.3.2.3 Generating Interpolated Samples

For luma sample interpolation, first the half-pel samples between full-pel sam-

ple positions in the reference frame are generated, indicated by gray markers in

Fig. 2.9. To obtain a half-pel sample values, a 6-tap (1/32,-5/32, 5/8, 5/8,- 5/32,

1/32) FIR filter is used. For example, the six horizontal integer samples K, L, M,

N, P and Q are used to calculate the the half-pel sample ‘s’ (2.2) .

s = round((K − 5L+ 20M + 20N − 5P +Q)/32) (2.2)

22



Figure 2.9: Interpolation of Luma Half-Pel Positions

Similarly, filtering of B, D, H, N, S and U interpolates the half-pel sample ‘m’.

After the calculation of all half-pel samples values vertically and horizontally adja-

cent to full-pel samples, interpolation is performed among 6 vertical or horizontal

half-pel samples in order to calculate remaining half-pel positions. For example,

filtering ff, ee, m, h, dd and cc generates ‘j’.

The quarter pixel (e.g. k, i, c, a and q, n, f, d in Fig. 2.10) values are achieved

through linear interpolation of full pixel and/ or half pixel values for example (2.3)

:

a = round((G+ b)/2) (2.3)
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Figure 2.10: Interpolation of Luma Quarter-Pel Positions

The interpolation between a pair of diagonally opposite half-pel samples gives the

the rest of quarter-pel positions (r, p, g and e in the Fig. 2.10). For example,

interpolation between ‘b’ and ‘h’ gives ‘e’.

For 4:2:0 sampling for luma component the motion vectors of quarter-pel resolution

needs vectors of eighth-sample resolution in the chroma components. For each

chroma component linear interpolation is used to generate interpolated samples

at eighth-sample intervals between integer samples as shown in Fig. 2.11.

Figure 2.11: Interpolation of Chroma Eighth-Sample Positions

24



The linear combination A, B, C and D neighboring integer sample positions gives

the sub-sample ‘a’ (2.4) :

a = round([(8−dx)·(8−dy)A+dx ·(8−dy)B+(8−dx)·dyC+dx ·dyD]/64) (2.4)

2.3.3 Skipped Macroblocks

Skipped macroblocks are specialized type of macroblocks specified by H.264/AVC.

For it no coded information is sent to the decoder. The skipped macroblocks are

indicated to the decoder with the help of a syntax element in slice data. These

macroblocks are named as P-Skip if present in P slices and in B-Slices are called

B-Skip. While using P-Skip mode for encoding a particular MB, the decoder

assumed the several conditions:

• 16x16 macroblock partition (i.e., macroblock have a single motion vector).

• Actual Motion vector is same as that of predicted motion vector. The X, Y

component of motion vector difference (MVD) is zero.

• The previous frame in display order is the chosen prediction reference (list0

reference index is 0).

• After transform and quantization, all coefficients are zero.

For a B-Skip coded macroblock, the decoder perceives that the macroblock has

zero quantized transform coefficients. No motion information or residual data is

used by the decoder for the skipped macroblock. The predicted motion vector is

used to generate the predicted macroblock because it is equivalent to actual motion

vector(s) and the motion vector differences are zero. So, the predicted macroblock

become the reconstructed macroblock. The predicted MB is very similar to the

original MB because skipped macroblocks happen in regions with low movements.
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If CAVLC is used as entropy encoding scheme then “mb skip run” parameter is

used to inform the decoder about number of consecutive skipped macroblock since

the last coded macroblock.

2.3.4 Transformation

The subtraction of predicted macroblock from original macroblock results in resid-

ual macroblock. In order to remove spatial correlation, the residual macroblock

is transformed. Some profiles (Baseline, Main and Extended) use 4x4 integer

transform based on DCT [44, 45]. In these profiles, in order to transform the

macroblock residual data, it is divided into 4×4 blocks. On the other hand, ‘High’

profiles adaptively make use of 8×8 integer transform [27] along with 4×4 in-

teger transform for the inter macroblock partitions ( 8×8, 8×16, 16×8,16×16).

If intra 8×8 mode is used to predict the macroblocks, 8×8 transform is used in

‘High’ profiles. ‘Hadamard transform’ (4×4) [46] is used only in intra 16×16 pre-

diction mode to further transform DC coefficients of the 4×4 transform blocks.

‘Hadamard transform’ (2×2) is used to further transform DC coefficients of each

chroma component.

2.3.5 Quantization

The transformed residual data is quantized in order to achieve lossy compression.

Quantization Parameter (QP) is used to describe the quantization step size. The

QP lies in the range -(Offset) to 51, where, Offset = 6×(Bit depth-8). The sample

accuracy is reflected by Bit depth. So, QP ranges from 0 to 51 for 8-bit samples.

Every additional bit in bit depth causes increment by 6 in the range. Every 6

increments of the QP results in doubling the quantization step size. It may allow

the wide range of image quality and bit-rates. The chroma quantization value

is extracted from the specified luma quantization value. Different quantization

parameters values may be used to encode every macroblock. Qp is coded differ-

entially so only change in QP is transmitted to decoder. The encoder may select
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different QP values in order to independently encode both chroma components.

In order to enhance quality of image, the encoder uses perceptual-based quanti-

zation scaling matrices and may modify quantization scaling factors for transform

coefficients.

2.3.6 Reordering/Scanning

Before performing entropy coding quantized transform coefficients are arranged

in linear fashion. The scanning process projected all the non zeros coefficients

together. The block may be a progressive or interlaced frame block which deter-

mines its order of scanning. For progressive frame blocks the gathering of non zero

coefficients tends to occur around top left DC coefficient. On the other hand, for

interlaced frame blocks the probable gathering of non zeros coefficients occur at

top left of the block. If an intra 16×16 mode is used for coding a MB, same pattern

is used for scanning the DC coefficients of 4×4 luma blocks. In the luma blocks the

remaining coefficients are scanned starting from the first AC coefficient. Raster

scan order is used to scan DC coefficients of the chroma components. Scanning of

AC coefficients is performed in the Zig-Zag order.

2.3.7 Entropy Coding

In order to reduce the size of coded data, entropy encoding incorporates loss-less

coding techniques. The encoded data may be picture/sequence parameter sets,

slice data, slice headers, macroblock modes, motion vectors and macroblock resid-

ual coefficients. The type of data determines different entropy coding to be used

with it. e.g. in order to encode syntax elements of higher layer and slice headers

universal variable length codes or fixed length codes are used. Context Adaptive

Binary Arithmetic Coding (CABAC) or Context Adaptive Variable Length Cod-

ing (CAVLC) are used to encode slice data and other macroblock layer syntax

depending on the chosen entropy coding mode.
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The probability of occurrence determines the assignment of CAVLC variable length

codes to data elements. To more frequently occurring data element shorter codes

are allocated while longer codes are allocated to less frequently occurring data

elements. According to local sequence statistics, different code tables are used.

It results in more efficient coding. CABAC coding is done only to residual coef-

ficients. Though it achieves higher compression efficiency but at a cost of more

computational complexity. Following stages are involve to encode data element

through CABAC:

• Binarisation - Syntax elements e.g. motion vectors or a transform coefficient

contain non-binary values. Before arithmetic coding these elements are bin-

narized i.e. translated to a string of binary code. These binary strings are

individually decodable code words. A bin is a notation used to represent

each position in the binary string.

• Context Modeling - The context determines the assigned probability model

to each bit. It means that the probability estimate of each bin relies on

the context such as the syntax element type and previous syntax elements

values. Actual bin values are feed backed after encoding each bin in order

to update these context models.

• Binary Arithmetic Coding - Current bin probability estimates and bin values

help in selecting the sub range, thus helping the arithmetic coding.

The compression efficiency of CABAC is 9% - 14% higher than CAVLC [47].

2.3.8 De-blocking Filter

Blockiness in the reconstructed picture may resulted from the quantization of

block transform coefficients. The de-blocking filter is specified by the H.264/AVC

standard to minimize blocking artifacts. The reconstructed and filtered frames
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serve as reference frame to perform inter prediction. Both the encoder and the

decoder use the same filter parameters to avoid any prediction errors. Rather

than unfiltered reconstruction, a filtered frame yields a closer match to the actual

frame. So, in order to obtain a higher objective and subjective quality, better inter

prediction might be achieved using the filtered reference frame [48]. The de-block

filtering is performed to smooth the horizontal or vertical edges of 4×4 block in

macroblocks. The filtering is not performed for edges on slice boundaries. The

filter strength ( amount of filtering ) is the function of neighboring blocks coding

modes, quantization parameters and the gradient of frame pixel values across the

edges. Also, the encoder can explicitly change filter strength or may completely

turn o the filter.

2.3.9 Rate Distortion Optimization

Rate Distortion Optimization (RDO) is a technique used by H.264/AVC encoder

for optimum coding parameters selection. It combines the distortion (D) and bit-

rate (R) into a single cost function (J) known as rate-distortion cost (RDcost)

(2.5) .

J = D + λR (2.5)

The ultimate objective of RDO mode selection technique is to search for a mode

to minimizes the RDcost. The Lagrange multiplier λ in the above equation is

used to control the trade-off between rate and distortion. A smaller value of λ

help in minimizing the distortion at the cost of higher bit-rate. A larger value of

λ minimizes the bit-rate with the increase in distortion. So, to find out the best λ

value for a video sequences is not an easy task [49]. The empirical approximations

techniques helps in deciding an effective choice for the value of λ in any practical

scenario of mode selection [34]. By calculating λ as a function of QP may result

29



in good value selection (2.6) [50].

λ = 0.852
QP−12

3 (2.6)

Sum of Squared Distortion (SSD) is used to calculate the distortion (D) (2.7) :

DSSD =
∑
x,y

(b(x, y)− b′(x, y))2 (2.7)

Where x, y are the sample positions in block, b(x,y) indicate the actual pixel

values and decoded pixel values are denoted by b’(x,y). There are some other

distortion metrics helpful for the selection of best motion vector for a block e.g.

Sum of Absolute Transformed Differences (SATD) or Sum of Absolute Differences

(SAD). A different λ calculation is required for a different distortion metric. To

find the most appropriate mode for a MB, the steps of RDO algorithm are:

For each macroblock

• For every possible coding mode n.

– Encode the macroblock using mode n and calculate R, the number of

bits required to encode the macroblock.

– Reconstruct the macroblock and calculate the distortion D between the

actual and decoded macroblocks.

– Calculate the RDcost Jn for mode n with the help of equation (2.5)

using appropriate value of λ.

• Select the mode that minimizes the RDcost Jn.

Integer DCT, Q, IQ, and IDCT have been used to calculate the distortion. On the

other hand, entropy encoding of motion vector, prediction mode, quantized trans-

form coefficients and quantization parameter contribute in the rate calculation.
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This is an exhaustive search algorithm so it is highly computational intensive.

The reason is that there may be hundreds of possible mode combinations to de-

termine the best encoding mode MB needs to coded hundreds of times.

2.4 Summary

The H.264/AVC coding standard provides better compression efficiency as com-

pared to former coding standards. This compression efficiency is achieved by

adding a number of new compression techniques including spatial intra-prediction,

(4 × 4) integer transform, variable block sizes for inter frame coding, quarter

pixel motion estimation, multiple reference frame, de-block filtering and content-

adaptive arithmetic coding. Additionally, this coding standard provides a large

encoding options such as prediction type (intra or inter), prediction modes and

suitable prediction block sizes. Moreover, this standard indicates only the encod-

ing syntax and the decoding mechanism of the encoded bit-stream. This empowers

a flexible encoder implementation. However, the encoder evaluates all the possi-

ble coding modes and block sizes during encoding process in order to obtain the

best possible rate-distortion performance that significantly increased the compu-

tational complexity. Therefore, encoder implementation should effectively exploit

the available encoding tools and parameters to acquire the desired compression

efficiency with possible processing capabilities.
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Chapter 3

LITERATURE REVIEW

H.264/AVC video encoding requires significant computing power, especially when

dealing with real-time high definition (HD) content. There are two research areas

that lead to the improvement of its video coding efficiency. The first one belongs to

complexity reduction of computationally intensive blocks of H.264/AVC encoder

and the second covers the exploitation of its parallelism. This chapter presents the

existing work related to complexity reduction of macroblock prediction parameters

selection process and motion compensation module of H.264/AVC video coding.

It also describes the existing schemes for implementing H.264/AVC encoder that

exploit its parallelism to improve coding efficiency.

The arrangement of the remaining chapter is made as follows. Section 3.1 de-

scribes the existing techniques for complexity reduction of macroblock prediction

parameters selection process. Section 3.2 describes the reasons of computational

complexity of JM reference software implementation of motion compensation tech-

nique and existing techniques for its complexity reduction. Section 3.3 presents the

literature review of parallelism exploitation schemes for implementing H.264/AVC

video encoder. Finally, Section 3.4 summarizes this chapter.

3.1 Macroblock Prediction Parameters Selection

In H.264/AVC video coding standard, macroblock prediction is used to remove

temporal and spatial redundancy. This standard supports a large number of pre-

diction options such as prediction type (intra or inter), prediction modes and

suitable prediction block sizes etc. to perform prediction process. In H.264/AVC,

RDO technique is employed to evaluate the all possible prediction options and se-

lects the better one. The RDO calculates the RDcost for all possible coding modes
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and then selects the mode with minimum RDcost as the optimal mode. The RD-

cost calculation increases the computational complexity because it involves both

encoding and decoding processes. To achieve real-time encoding, this computa-

tional complexity becomes a bottleneck. So, it is highly desirable to implement

computationally efficient techniques for macroblock prediction parameters selec-

tion to reduce the encoder complexity without any significant coding loss.

In literature several techniques for macroblocks predictions mode selection have

been reported. Some targeted inter prediction mode selection while others ad-

dressed intra prediction mode selection.

3.1.1 Inter Prediction Mode Selection Techniques

The existing techniques for inter prediction mode selection can be generally divided

into four different approaches. The first approach is based on sum of absolute

difference (SAD) in which current macroblock (MB) SAD is compared with certain

threshold to shortlist the candidate inter prediction modes for RDO process. Jing

and Chau [51], presented inter prediction mode decision algorithm in which sum of

absolute differences (SADs) are compared with predefine threshold to decide best

inter prediction mode. Kim et al. [52] exploited the coefficient thresholding and

all zero quantized coefficients block detection to eliminate the unnecessary modes.

However, to make fast mode decision this method needed transform coefficients

along with several predefined thresholds.

Bu et al. [53] used current MB SAD and adaptive thresholds to select inter pre-

diction mode. If SAD is less than the threshold then then large block sizes are

selected otherwise small block sizes. The threshold is an adaptive function of the

surrounding MBs mode information. Kuo et al. [54] tried to speedup the inter

mode selection process. In their work, they used an adaptive rate-distortion model

and multi-resolution motion estimation technique to achieve the desired task. Feng
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et al. [55] minimized the candidate modes for inter prediction using the character-

istics of the motion compensation of residual image. Two most probable candidate

modes are then selected from the shortlisted set of candidate modes, on the basis

of the modes of top and left MB. Martinez-Enriquez et al. [56] presented a content

adaptive scheme based on RDcost statistics. The main aim of this technique is to

curtailed total number of evaluated inter prediction modes using adaptive thresh-

olds. These thresholds are functions of differences between the RDcost for each

mode. Lee et al.[32] exploited MB activity to shortlist the inter prediction modes.

The MB activity is a function of global and local residual complexities (GRC,

LRC). Although SAD based techniques are generally efficient and promising, the

main challenge is to define accurate thresholds as their inaccuracy may degrade

the quality significantly.

In the second approach, the algorithms exploit the spatial homogeneity measures

including texture, edge information or variance of an MB to shortlist the candidate

modes for RDO calculation. The basic assumption of these techniques is that

homogeneous texture regions exhibit similar motion while the complex textured

regions tend to have disordered motion. Zhu et al. [57] applied Soble operator

to obtain the edge information of an MB in a down sampled image. The edge

information is exploited to select the inter prediction modes for RDO process.

Though these schemes give satisfactory results in some cases but may not work in

case of textured objects with smooth motion.

The third approach is based on exploiting the temporal homogeneity. The main

idea is to find out mean absolute frame difference (MAFD), i.e. difference between

current and previous frame, or mean absolute difference (MAD) of current MB,

i.e. difference between current MB and its collocated MB in former frame. Both

of these differences are used to calculate the temporal homogeneity. This temporal

homogeneity serves as a base to shortlist the candidate modes for RDO calculation.

Jing et al. [58] skipped unnecessary modes for homogeneous MBs. In order to
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investigate whether the current MB is a part of homogeneous areas of the frame

or not, MAD and MAFD are used. Such kind of techniques are suitable for video

sequences with static background, while it cannot make sure that non-essential

prediction modes could be neglected for background regions with smooth motion

in the video frames caught by a moving camera.

Many techniques exploit both temporal and spatial homogeneity of MB for inter

prediction mode selection, i.e. merging the above mentioned second and third

approaches. Zhou [59] and Wu et al. [60] presented inter prediction mode selection

technique based on temporal stationary and spatial homogeneity. The spatial

homogeneity is calculated using Sobel operator while the MAD of current gives

the temporal stationary. Wu et al. [61] used the spatial homogeneity based on

edge information and temporal stationary based on MB differencing to shortlist

prediction modes for RDO calculation. Bharanitharan et al. [62] exploited spatial

and temporal homogeneity to present a classified region method. The candidate

modes for inter prediction are reduced by exploiting the block homogeneity in

both temporal and spatial domain. The 16×16 and 8×8 block patterns are used

to calculate MB homogeneity.

The fourth approach is based on motion homogeneity of an MB or motion activity

in temporally and spatially adjacent MBs. According to this category, if an MB

is motion homogeneous or its motion activity is low then large block sizes are

selected otherwise small block sizes. Zeng et al.[63] presented inter mode selection

technique based on motion activity. The algorithm selects the candidate modes

by analyzing the status of motion activity in temporally and spatially adjacent

MBs. Liu et al.[64] made use of motion homogeneity to decide inter prediction

mode. In this technique, motion homogeneity is analyzed on a normalized motion

vector field. This field is obtained by the motion vectors resulting from motion

estimation of 4×4 blocks. To choose the candidate inter prediction modes, three
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directional motion homogeneity is exploited. These schemes may be more effective

if residual complexity is also incorporated along with motion homogeneity.

3.1.2 Intra Prediction Mode Selection Techniques

The existing techniques for intra prediction mode selection can be generally divided

into two different approaches.

The first approach made use of local edge direction of the block to shortlist the

candidate modes that go for RDO calculation. The basic difference between such

kinds of techniques is the method adopted to calculate the local edge direction

of block. Pan et al. [65] proposed a dominant edge direction (DED) based intra

mode decision technique. This technique used the approximation of discrete cosine

transform to measure the DED of a given block that helped to shortlist the candi-

date modes. Kim et al. [66] presented an efficient intra prediction mode decision

technique based on local edge direction and neighboring MBs mode information.

In this technique, directional masks are used to calculate local edge direction. Pan

et al. [67] made use of local edge direction to select intra prediction mode. The

edge direction and its amplitude against each pixel are found with the help of

Soble operator. Based on the distribution of the edge direction histogram most

probable modes are selected for RDO process. This algorithm may be unsuitable

for embedded systems applications because calculation of edge direction involves

float addition and number of division operations that increase its computational

complexity.

Wang et al. [68] presented a technique in which dominant edge strength (DES)

for each block is calculated then based on it a subset of modes are determined for

RDO calculation. Su et al. [69] presented a scheme based on integer transform and

adaptive threshold for intra mode decision. In this technique, integer transform

is performed on original image to find out the local edge direction and adaptive

threshold balance the compression and computational complexity. Initially, based
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on edge direction, RDO is performed for curtail intra prediction modes. The

RDO calculation is terminated if the minimum mean absolute error (MMAE) of

the reconstructed block belonging to the most suitable prediction mode is lesser

than an adaptive threshold which is a function of quantization parameter (QP).

Otherwise, more possible modes needed to be tested. Wei et al. [70] and Li et al.

[71] applied non-normalized Haar transform (NHT) to extract the sub-block edges.

The sub-block edge direction is used to shortlist the candidates modes that goes

for RDO calculation. However, this approach increased the complexity because of

pre calculations needed edge calculation.

Wang J.C. et al. [72] suggested a strategy to decide intra mode using edge his-

togram descriptors. The edge histogram descriptor is used to determine the DES,

and only a few modes are chosen for RDO process. Elyousfi et al. [73] exploited the

directional information and similarity between dominating direction of a smaller

and bigger block. For luma component, RDost is computed for four modes. After

this RDcost along with similarity with adjacent block mode, selection of best 4×4

modes is done. For 16×16 and 8×8 luma component the most probable modes are

shortlisted by exploiting the fact of similar dominating direction of both smaller

and bigger block. For chroma component only DC mode is used. Byeongdu et

al. [74] presented a dominant edge direction (DED) based intra mode decision

method. The DED is computed through pixel value subtraction and summation

in the vertical and horizontal directions. Based on DED, RDO is performed for

three most likely modes only. Li et al. [75] used the directional difference of

each mode for intra prediction mode selection. For each directional mode, the

average SAD between two adjacent actual pixels is defined as the direction differ-

ence. Based on the directional difference several most probable modes evaluated

instead of using the full search. Elyousfi [35] used vector of the blocks gravity

center to decide intra mode selection. The direction of the blocks gravity center

vector is used to shortlist the candidate intra prediction modes. These selected
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candidate modes undergo RDO calculation. Bharanitharan et al. [76] exploited

the directional difference between two neighboring pixels, which correspond to

four major texture directions including vertical, horizontal, diagonal-down-right

and diagonal-down-left to skip the unlikely intra prediction modes. However, per-

formance of such kind of techniques is highly correlated with local edge direction

calculation methods. However, performance of such kind of techniques is highly

correlated with local edge direction calculation methods. These techniques may

reduce the computational complexity at the cost of decrease in PSNR and increase

in bit-rate.

In the second approach, the algorithms define certain criteria to shortlist the most

probable intra prediction modes for RDO process. Meng and Au [77] presented

a simplified cost function for mode selection. In this technique, a down-sampled

pixels instead of a 4×4 blocks are used for partial cost calculation (to simplify

the cost function). The mode selection process is performed using simplified cost

function. Chen et al. [78] proposed three conditions for selecting candidate pre-

diction modes for 4×4 luma blocks through skipping the fewer probable modes.

These three conditions are based on the correlation of neighboring blocks predic-

tion modes. Kim et al. [79] presented intra prediction mode selection scheme based

on transform domain and spatial features. The sum of absolute differences (SAD)

and Sum of absolute transform difference (SATD) have been used to shortlist the

most of the candidate modes. For optimum mode selection 2-3 candidate modes

undergoes for RDO calculation. Yu et al.[80] used the knowledge of the frequency

spectrum to acquire the most likely modes for 4×4 luma component. The RDO

is performed for these selected candidate modes. The fast inter mode selection

technique identify low detailed macroblocks based on complexity measure that re-

quired less processing power. However, performance of such kind of techniques is

depending upon the accuracy of pre-defined criteria. These techniques may reduce

the computational complexity at the cost of degradation in visual quality.
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Most of the existing techniques related to macroblock prediction targets either

intra or inter mode selection. These techniques either simplify the prediction cost

function or curtail the set of candidate modes of intra and inter prediction using

local features (DED, DES, SAD, residual complexity, motion homogeneity and

etc.). Some of these techniques required an additional computation to determine

the block features used to shortlist the candidate prediction modes, while others

minimize the computational complexity at the cost of quality degradation. The

quality degradation is mainly due to the application of the subset of candidate

modes. Unfortunately, a comprehensive framework for macroblock prediction that

not only targets selection of optimum intra and inter prediction mode but also

incorporates optimum prediction type (intra or inter) and macroblock partitions

suitable for better intra prediction is missing in the existing literature.

3.2 Motion Compensation

In predictive coding, motion compensation (MC) is performed to temporally pre-

dict a macroblock. In H.264/AVC, MC module consumes about one-fourth of the

decoding time and also takes significant part of encoding time [36]. It comprises

two sub-modules i.e. data manipulation and interpolation. Both of these mod-

ules contribute significantly in increasing the overall computational complexity of

motion compensation, and therefore need to be optimized.

3.2.1 Reasons Behind the Computational Complexity of

Motion Compensation Algorithm

The reasons of higher computational cost of the JM reference implementation [81]

of motion compensation algorithm are:

• To avoid illegal memory access in case of unrestricted motion vectors, clip-

ping operation is performed that increases computational complexity of MC
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algorithm [82].

• The MC algorithm performs inter prediction on 4 × 4 blocks for each mac-

roblock (16×16) without taking into account a macroblock and sub-macroblock

partitioning. This adversely affects the performance due to looping overhead,

repeated reading of motion vectors, reference frame indices and prediction

list utilization flags.

• In reference algorithm, same pixel data is repeatedly accessed from memory

in order to perform linear interpolation. Six pixel values are needed to

compute the half pixel values. For the calculation of two adjacent pixel

values, five out of six pixels are the same and can be reused. However, the

reference algorithm instead of reusing these pixel values repeatedly read them

from memory. Such repeated access of memory increases computational load

on the processors.

• The algorithm sequentially computes the predicted samples without exploit-

ing parallelism. This causes repeated memory access and delay in pixel value

calculation.

The first two reasons belong to data manipulation sub module and rest of two falls

in the area of data interpolation.

3.2.2 Existing Complexity Reduction Techniques

In the current available literature, several studies target the computational com-

plexity of motion compensation algorithm. We may divide these techniques into

two categories. The first one encompasses the techniques based on hardware im-

plementations while the second category consists of implementations which are

software based.
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Wang et al. [83] proposed VLSI design of motion compensation to reduce the

time taken by motion vector prediction module. This reduction is done by ap-

plying context switch buffers and 4×4 block based parallelism. Feng et al. [84]

suggested a motion compensation technique for MPEG-4 video coding. In this

work a local memory storage scheme implemented on CMOS technology is used to

avoid storage of differential data of motion information in the video packet layer.

It results in a reduction of 33% of total memory access bandwidth. A design for

building a prototype for motion compensation algorithm is presented by Azevedo

et al. [85]. Luma and chroma components processing is done in parallel traversing

independent data paths. A prototype has been synthesized in FPGA and standard

cell technologies.

The second category belongs to software based implementations. It may be further

categorized into two sub categories.

The techniques belong to first sub category only target complexity reduction of

the data interpolation module of motion compensation and make use of SIMD

instructions to achieve this goal. Lee et al. [86] implemented H.264/AVC de-

coder using Intel Pentium 4 processor with MMX extensions. H.264/AVC high

profile decoder implementation was done on Intel Pentium 4 processor by Bhatia

[87]. It used optimization techniques based on SIMD and Windows based multi-

threading. Sheshadri [88] proposed a method to implement H.264/AVC decoder

for ARM9TDMI processor. In these implementations, SIMD instructions are ex-

ploited in order to calculate half and quarter pixel values for linear interpolation.

The use of SIMD instructions for interpolation speedup the motion compensation

process. However, these techniques does not take any step toward complexity

reduction of the data manipulation module of motion compensation.

The techniques fall in second sub category target computational complexity of

both data manipulation and interpolation modules. Khan et al. [82] proposed an

optimized algorithm for motion compensation and evaluated on Trimedia TM-1300
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DSP processor. In this algorithm, motion compensation process is performed in

three steps. In first step the edge creation around the image is performed. In the

second step the half pixel values for the entire image are calculated. Then, in the

last step the SIMD instructions are used to calculate the predicted sample values.

In this technique, edge creation step reduced the clipping overhead which is part

of the data manipulation module and rest of two steps simplified interpolation

process. However, this technique calculate half pixel values for the entire image

with out noticing either these pixel values are required or not. As in case of full

pel, there is no need to calculate half pixel values. Moreover, data manipulation

module can be further optimized by reducing loop overhead and repeated access

of memory.

In short, the literature available in this area consists of techniques which either

address the computational complexity issues related to data manipulation mod-

ule or data interpolation module. Only a few techniques cover both the aspects

simultaneously and even these need further improvement.

3.3 Exploiting Parallelism

In the literature, numerous schemes for implementing H.264/AVC encoders on

different platforms are proposed. These techniques exploit the encoder parallelism

at different levels like Group-Of-Picture (GOP)-level, frame-level, slice-level and

macroblock-level to improve the encoder efficiency.

Sankaraiah et al. [89] proposed parallelization method based on GOP for H.264

encoder. In this scheme, each GOP is encoded independently in separate thread

and the frames being referenced are included in the GOP. However, this method

required a large storage memory for all frames and therefore this technique maps

well to multi-core architectures that fall into generalpurpose processors (GPP)

categories. In addition, GOP-level parallelism causes a very high latency that

cannot be affordable in real-time applications. Therefore, this technique is not
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a best choice for multi-core platforms in which the memory is shared by all the

processors because of cache pollution. Rodriguez et al. [90] exploited the frame-

level parallelism along with a group of frames for H.264 encoding in a clustered

workstations using Message Passing Interface (MPI). Although real-time encoding

may be achieved with this technique, but the latency is very high.

Chen et al. [91] targeted Intel Pentium 4 processors H.264 codec in order to opti-

mize its performance. It used SIMD instructions and multi-threading technology

to exploit parallelism. It facilitated to run different multimedia applications on

personal computers with good performance. It worked well when encoded sequence

carries more non referenced B frames. Shuwei et al. [92] proposed macroblock re-

gion partition (MBRP) based parallel scheme. In this scheme, several macroblock

regions of video frames are constructed, where each region comprises many adjoin-

ing columns of macroblocks. The encoding of these regions can be performed by

using either single processor or a multi-processor system. However, this scheme

is not a scalable when number of available processors exceeded more than half

of the MB columns of frame. The results showed that real-time encoding was

not achieved. Y. K. Chen et al. [93] suggested the parallel algorithms based on

Intel Hyper-Threading architecture in which video frame is divided into several

slices and multiple threads are used to process these slices. However, the draw-

back of this technique is the additional overheads on bit-rates due to additional

information for each slice. The scalability of this scheme is dependent on number

of slices.

Z. Zhao and P. Liang [94] used wave-front technique to achieve parallelism in

H.264 baseline encoder. The different frames or MB rows are mapped on to dif-

ferent processors which speed it up around 3 times on software simulator with 4

processors. Zrida et al. [95] used task and data level parallelism of H.264 encoder

for embedded SoCs. The Kahn process network (KPN) model and the run time

YAPI programming C++ library serve as a base to accomplish this task. Wen et
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al. [96] proposed macroblock and block level parallelism for inter-frame and intra-

frame prediction, respectively along with generation of parallel bit-stream method

at macroblock level for CAVLC. It improved the performance of these modules of

H.264 encoder to 30KB. For Cell processor, Alvanos et al. [97] divides the MB

encoding process in three phases including analyzes and encode, entropy encoding

and de-blocking. After that each phase is executed as a separate task. In order to

resolve the dependency, they made use of 2D-wavefront parallelism technique [98]

in which all macroblocks are issued in an anti diagonal based manner and wait

before issuing the next anti-diagonal. However, the most of the time consuming

tasks analyze and encode are assigned to the main Synergistic Processing Element

(SPE). Therefore, the scheme cannot be implemented for real-time processing on

low-power CPUs.

Park and Ha [99] macroblock level parallelization scheme for the cell processor.

They offloaded the macroblock analysis module which is the first phase of the

encoder to Synergistic Processors Elements (SPEs). However, all other parts of

encoder remain on the Power Processor Element (PPE). They estimated the ex-

pected performance and discovered the over head factors. Di Wu et al. [100]

targeted on the kernal optimization instead of parallelization for the efficient im-

plementation of H.264 encoder. However, they did not consider other auxiliary

parts of the encoder including entropy encoding, rate control and frame initializa-

tion. For real-time HD video coding, Xun et al. [101] exploited a decentralized

pipelined parallel coding scheme using eight SPEs. The decentralized task creation

decreased the task management overhead in this implementation. They used on-

chip communication and multi-buffering to transfer data among different encoder

modules for efficient communication. Lu and Hang [102] and Schwab et al. [103]

presented an adaptive motion estimation (ME) techniques for GPUs. The main

objective of these techniques is the reduction of computational complexity of ME.

However, these techniques mostly exploited data-level parallelism and only target
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prediction-loop of the H.264/AVC encoder.

For scalable H.264 video coding, Cheung et al. [104] and Azevedo et al. [105] pro-

posed the application of scheduling techniques at the MB level for embedded multi-

core devices. In these techniques a dedicated hardware is used for task scheduling.

However, the MB level implementation of the scheduling control makes this model

rather expensive for CPU+GPU platforms. Chen and Hang [106] presented par-

allel implementations of the H.264/AVC encoder on CPU + GPU systems. This

approach completely offloaded the ME task (including the interpolation and sub-

pixel ME) to the GPU, keeping the rest of the encoder modules to be executed on

the CPU. However, this approach did not consider the possibility of concurrent

and asynchronous implementation of the video coding algorithm on both the CPU

and the GPU devices, which could potentially decrease the overall processing time.

Momcilovic et al. [107] proposed parallel dynamic model for hybrid GPU+CPU

systems. In this model entire inter prediction loop of the encoder is parallelized on

both the CPU and the GPU. To dynamically distribute the computational load

among CPU and GPU, a computationally efficient model is also described. The

suggested model consist of load balancing and dependency aware task scheduling

algorithms. Momcilovic et al. [37] in contrast to [107] presented a complete paral-

lelization strategy comprising all inter frame processing modules of the H.264/AVC

encoder along with an improved dynamic dependency aware scheduling algorithm

for collaborative video encoding on hybrid GPU +CPU platforms.

In short, most of these schemes lack in describing the hybrid implementation of

H.264/AVC encoder in which some blocks of encoder are implemented in hard-

ware and the rest in software. As such implementations require efficient encoder

tasks distribution, scheduling and synchronization among hardware and software

blocks. It also demands exploitation of encoder parallelism to efficiently utilize

the processing cores. So, there is a need to work in this direction to highlight the

issues involved in such an implementation.
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3.4 Summary

The problem of complexity reduction of macroblock prediction parameters selec-

tion process in H.264/AVC coding standard is not trivial. Different researchers

have worked in this domain from different prospective. Some target intra mode

selection while others present techniques for inter mode selection. Unfortunately,

there is not a single methodology available that optimized the entire prediction

parameters selection process. There is a need to develop a comprehensive method

to select prediction parameters such as prediction type (intra or inter), prediction

modes and suitable prediction block sizes etc. to perform better prediction.

The techniques available related to complexity reduction of motion compensation

algorithm either address the computational complexity issue related to the data

manipulation module or the data interpolation module. Only a few techniques

cover both the aspects and can be further improved by reducing looping overhead,

repeated access of memory and refining interpolation process.

Most of the existing implementation schemes for H.264/AVC encoder are software

based and exploit the encoder parallelism at different levels like macroblock-level,

slice-level, frame-level and GOP-level. These schemes lack in describing the hybrid

hardware-software implementation of encoder in which some blocks of encoder

are implemented in hardware and the rest in software. Hybrid implementation

demands exploitation of parallelism at both coarse as well as fine-grain level to

efficiently utilize the available processing resources. So, there is a need to work in

this direction to improve the coding efficiency of hybrid encoders.
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Chapter 4

AN EFFICIENT FRAMEWORK FOR

MACROBLOCK PREDICTION

4.1 Introduction

This chapter presented an efficient framework for macroblcok (MB) prediction

to reduce the computational complexity of H.264/AVC encoder. It incorporates

several innovative techniques to decide macroblock prediction type (intra or in-

ter), skip macroblock early detection, appropriate block size selection for intra

prediction, directional mode selection for intra prediction and inter mode (block

sizes) selection. This framework exploits temporal and spatial statistics of video

sequence, coding modes information of previously encoded spatial and temporal

neighboring MBs, motion-field statistics and QP-based thresholds to exclude as

many intra and inter prediction modes as possible prior to the RDO process. The

results based on experiments indicate that the suggested framework can signifi-

cantly reduces the computational complexity of prediction process with marginal

loss in visual quality.

The rest of the chapter is arranged as described in the forth coming lines. Ob-

servation and analysis is made in Section 4.2. Section 4.3 presents the proposed

framework. Section 4.4 describes the experimental analysis and discussion. Fi-

nally, the summary is presented in Section 4.5.

4.2 Observation and Analysis

Generally, based on the spatial and temporal statistics, the regions of the natural

video sequences can be categorized as darker, brighter, smooth, rigid or textured,
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motionless, slow-motion, high-motion, homogeneous-motion, complex-motion and

many combination of prior mentioned categories. Extensive experiments are per-

formed on different video sequences using exhaustive parameters selection tech-

nique of the H.264/AVC reference software to obtain data for statistical analysis of

prediction parameters (modes and block sizes). The test conditions are set as fol-

lows: MV search range is 32 pels, entropy coding is set to CABAC, RDO and fast

motion estimation are enabled in encoder main profile, MV resolution is 1/4-pel,

number of reference frame is set to 1, and 300 frames are encoded. To compute the

probability of coding parameters, encoding results at five different QPs including

24, 28, 32, 36 and 40 are used. Table 4.1 lists the averaged probability of selecting

each prediction type and mode when each test video sequence is encoded with

IPPPPP structure.

Table 4.1: Probability (%) of Intra and Inter Prediction Modes Selection

Sequences Format SKIP 16×16 16×8 8×16 8×8p I4×4 I16×16
Coastguard 36.52 29.48 7.24 7.25 19.26 0.06 0.19

Claire 84.18 6.98 2.36 2.17 4.23 0.01 0.07
Container QCIF 83.34 7.32 2.75 1.82 4.6 0.04 0.13
Foreman (176×144) 39.62 25.23 8.73 9.75 15.96 0.4 0.13
Highway 67.77 15.84 5.78 3.61 6.87 0.03 0.1

Akiyo 88.46 5.12 1.8 2.09 2.53 0 0
Mobile 28.75 25.34 7.08 7.15 31.58 0.04 0.06
MaD CIF 77 12.39 3.6 3.92 2.86 0.14 0.09
Silent (352×288) 75.56 9.78 3.37 4.28 5.8 0.91 0.3

Tempete 32.44 25.4 8.79 7.64 23.74 1.37 0.62
Flower 35.94 23.84 11.32 6.94 21.32 0.38 0.26

Football 39.75 20.34 8.53 9.91 11.54 6.39 3.54
Intros NTSC 75.25 11.27 4.03 3.85 2.56 1.78 1.26
Mobile (720×480) 27.28 23.67 9.98 10.01 28.64 0.15 0.27
Vtc1nw 94.54 3.05 0.91 0.79 0.7 0 0.01
Parkrun 34 23.06 7.04 7.59 28.06 0.11 0.14
Shield 720p 60.85 19.14 4.98 4.94 9.1 0.34 0.65

Stockholm (1280×720) 62.43 16.94 5.64 5.12 9.14 0.22 0.51
Average 57.98 16.9 5.77 5.49 12.69 0.69 0.48
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Table 4.1 illustrates that for 98.83% MBs inter prediction type is selected and in-

tra prediction type is selected for the remaining 1.17% of MBs. Moreover, 86.14%

MBs select larger block sizes i.e. 16×16, 16×8 and 8×16 for inter prediction.

Furthermore, the percentage of selecting inter 16×16 mode is about 74.88%. The

SKIP mode in fact strongly prevails (57.98%) among all the possible modes, par-

ticularly for those sequences comprising slow-motion content or motionless i.e.

Claire, Akiyo, Vtc1nw and etc. It is also observed that for inter prediction larger

block sizes are selected within the objects either having low texture or high tex-

ture. On the other hand, smaller block sizes including 8×8, 8×4, 4×8 and 4×4

are mostly selected at objects boundaries or in case of irregular motion. It is also

observed that percentage of selecting larger block sizes for both intra and inter

prediction is increased with increase in QP and vice versa.

Table 4.2 enlists the averaged probability of selecting macroblock partition for

intra prediction when all the frames in test video sequences are encoded as intra.

It depicts that 65.56% MBs are encoded as intra 4×4 and rest of 34.44% MBs

are encoded as intra 16×16. The probability of selecting intra 4×4 is high for

video sequences having high textured scene including Foreman, Mobile, Tempet

and Parkrun. The probability of selecting intra 16×16 is high for video sequences

having homogeneous regions i.e. Intros, Vtc1nw, Akiyo and Claire.

This statistical analysis clearly indicates that the optimum selection of prediction

parameters is highly correlated with spatial and temporal statistics of the video

contents. In case of motionless or slow-motion scenes the SKIP mode is expected to

be the optimal choice. On the other hand, probability of selecting intra prediction

type is high for MBs belong to low motion regions with low texture. For inter

prediction, larger block sizes i.e 16×16, 16×8, 8×16 are selected within the objects

having homogenous motion. On the contrary, smaller block sizes including 8×8,

8×4, 4×8 and 4×4, are mostly selected at objects boundaries or in case of irregular

motion. For intra prediction, intra 4×4 is highly suitable for detailed regions MB
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Table 4.2: Probability (%) of Intra Prediction Block Size Selection

Sequences Format I4×4 I16×16
Coastguard 76.83 23.17

Claire 46.32 53.68
Container QCIF 60.79 39.21
Foreman (176×144) 83.43 16.57
Highway 66.04 33.96

Akiyo 45.87 54.13
Mobile 93.95 6.05
MaD CIF 54.36 45.64
Silent (352×288) 73.42 26.58

Tempete 84.49 15.51
Flower 74.39 25.61

Football 60.16 39.84
Intros NTSC 34.86 65.14
Mobile (720×480) 83.89 16.11
Vtc1nw 31.11 68.89
Parkrun 80.3 19.7
Shield 720p 68.26 31.74

Stockholm (1280×720) 61.55 38.45
Average 65.56 34.44

and intra 16×16 is appropriate for an MB belonging to smooth regions of image.

Moreover, the coding modes of a macroblock are also highly correlated with the

prediction parameters of its spatial and temporal neighboring macroblocks.

From the above analysis, it can be concluded that most of the prediction parame-

ters of a video frame can in fact be anticipated using temporal and spatial statistics

of the present and former video frames.

4.3 Proposed Framework

The proposed framework consists of four stages: (1) Prediction type decision, (2)

Early mode exclusion, (3) Rapid mode selection, and (4) RDO mode elimination as

shown in Fig. 4.1. These stages comprise several algorithms to decide macroblock

prediction type (I-MB or P-MB), SKIP mode early detection, appropriate intra-

prediction block size selection, directional mode selection for intra-prediction and
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inter-prediction mode (block sizes) selection. These algorithms exploit spatial and

temporal features of video frames to accomplish the desired tasks. The following

sections describe the spatial and temporal features used in this work and each

stage of the proposed framework.

Computing Spatial

and

Temporal Features

Stage 1 :

Prediction Type

Decision

Stage 2 : Early Mode

Exlcusion

Stage 3 : Rapid

Mode Selection

Stage 4 : RDO Mode

Elimination

Figure 4.1: Framework for Macroblock Prediction

4.3.1 Features Selection

The analytical study made in section 4.2 indicates that the spatial and temporal

features of the video sequences are adequate to differentiate an MB thus to foretell

a probable prediction type and mode. The selection of particular features can be

made taking into consideration the tradeoff between computational cost and the

given accuracy in the early mode prediction. In this work, following features are

selected to predict the macroblock prediction type and mode.
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Average Brightness gives the information about the brightness of an MB and is

utilized to classify an MB as bright or dark. It is the mean of luminance component

values X (i,j) of an MB.

µm,n =
1

MN

M∑
i=1

N∑
j=1

X(i, j) (4.1)

Variance provides the information about statistical dispersion, thus it is used

as measurement of texture or descriptor of smoothness. For MBs belong to

smooth/flat areas all the samples have same brightness and their variance is zero.

The variance of each MB is roughly estimated as

σm,n =
M∑
i=1

N∑
j=1

|X(i, j)− µm,n| (4.2)

Zero SAD (Z SAD) is the sum of absolute difference between current MB and

its collocated MB in the previous frame in display order. It gives the information

about degree of motion or stillness or change between two frames/MBs. The Zero

SAD is calculated as

Z SAD =
M∑
i=1

N∑
j=1

|X(i, j)− Y (i, j)| (4.3)

Where X(i,j) indicates the current MB and Y(i,j) is its collocated MB in previous

frame.

MB residual complexity (MB RC) is the SAD of the current MB calculated

through light weight recursive motion estimator in which the vector field tends

towards true object motion. The motion estimation on 8×8 block size is performed
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in order to calculate MB RC of an MB. For performing motion estimation, 3-D

Recursive Search (3-D RS) motion estimator [108] is used. If an MB is located at

the mth row and nth column of the video frame and SADi,j be the SAD of its

corresponding 8×8 blocks then its MB RCm,n is calculated as

MB RCm,n =
1

4

∑
SADi,j, i ∈ [8m, 8m+ 1], j ∈ [8n, 8n+ 1] (4.4)

Motion-Field Statistics are acquired through motion characteristics (SAD) of

the spatial (in the current frame Ft) and temporal (in the previous frame Ft-1)

neighboring MBs as follows:

SADSpatial =
1

4
(SADTL + SADT + SADTR + SADL) (4.5)

SADTemporal =
1

9
(SADTL + SADT + SADTR + SADL

+SADCollocated + SADR + SADDL

+SADD + SADDR) (4.6)

Coding-Mode-Field Statistics are attained by the use of coding mode infor-

mation of the temporal and spatial neighboring MBs encoded as an intra MB i.e

I-MB.

I MBSpatial = isI(MBTL) + isI(MBT ) + isI(MBTR) + isI(MBL) (4.7)
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I MBTemporal = isI(MBTL) + isI(MBT ) + isI(MBTR)

+isI(MBL) + isI(MBCollocated) + isI(MBR)

+isI(MBDL) + isI(MBD)

+isI(MBDR) (4.8)

Fig.4.2 gives the conception of temporal and spatial neighboring macroblocks of

current MB. In this work, a down size image is used in order to calculate average

brightness, variance and Zero SAD of an MB. The downsizing factor of an image

is selected as four. In scaled down image, 4×4 block size of an actual image is

represented by one pixel and 16×16 block size is mapped to 4×4 block size. The

use of scaled down image for feature extraction helps to reduce the computational

complexity.

Previous Frame Ft-1 Current Frame Ft

TL               T                 TR

L             Colloc-

ated

R

DRDDL

TL               T                 TR

L             Current          R

DL              D               DR

Temporal Neighbors                              Spatial Neighbors

Figure 4.2: Spatial and Temporal neighboring Macroblocks of Current MB

4.3.2 Prediction Type Decision

At this stage, decision of macroblock prediction type (intra predicted macroblock

(I MB) or inter predicted macroblock (P MB)) is performed with the help of spa-

tial and temporal features of the video sequence. The analysis made in section

4.2, clearly indicates that the P MB prediction type indeed dominates in inter

frame encoding particularly for those sequences encompassing slow motion or ho-

mogeneous motion or motionless content. On the other hand, the probability of

selecting I MB prediction type is high in case of random motion. This observation
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implies that the prediction type (I MB or P MB) decision should be performed

at the start of the prediction parameter selection process for each MB so that an

early prediction type decision effectively decreases the computational complexity.

We formulate macroblock prediction type decision problem into classification prob-

lem and propose a learning-based solution in which each MB is classified into one

of the three below listed classes:

• Class 1: MB is encoded as intra I MB.

• Class 2: MB is encoded as inter P MB

• Class 3: MB can be encoded as intra I MB or inter P MB. The decision of

MB prediction type for this class is made at the later stages of the framework.

The consideration of Class 3 helps to reduced the margin of the error. To decide

the prediction type, Adaboost classifier is trained using spatial and temporal fea-

tures including Average Brightness, Variance, Z SAD, SADSpatial, SADTemporal,

I MBSpatial and I MBTemporal. The training data is obtained from variety of video

sequences. Then, the aforementioned features and the appropriate prediction type

determined by the RDO are taken as the training set for Adaboost classifier.

The class of each MBm,n with feature vector F Vm,n = {µ, σ, Z SAD,MB RC,

SADSpatial, SADTemporal, I MBSpatial, I MBTemporal} based on class conditional

probabilities is decided as

• If P1 <P2 and P1 >τ , then Class 1 is assigned

• If P2 >P1 and P2 >τ , then Class 2 is selected

• Otherwise, Class 3 is assigned.
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Where P1 and P2 are the probabilities of each macroblock MBm,n which belongs to

Class 1 and Class 2, respectively. The value of τ is set to 0.6 through experiments.

As a result of this classification, for most of the MBs probable prediction type can

be selected that significantly reduced the computational cost of RDO process.

4.3.3 Early Mode Exclusion

At this stage of the framework, early detection of SKIP mode of a macroblock

is performed for inter prediction when certain conditions are satisfied. Moreover,

appropriate block size selection for intra prediction of an MB is made based on

spatial features. These two decisions exclude the highly unlikely modes for both

I MB and P MB prediction types. The statistical analysis shows that for P MB

type, SKIP mode in fact strongly prevails among all the available modes, particu-

larly for slow-motion or motionless content carrying sequences. This observation

indicates that the early detection of SKIP mode should be made at the start of the

inter mode decision process for each MB to effectively decrease the computational

complexity. Similarly, for I MB type, intra 4×4 is highly suitable for detailed re-

gions MB and intra 16×16 is appropriate for an MB belonging to smooth regions

of the image. In H.264/AVC, RDO is performed for both intra 4×4 and 16×16.

However, the MB is either encoded as intra 4×4 or intra 16×16. This results in

increasing the encoder computational complexity and overall encoding time. If it

is possible to detect appropriate block size to predict an MB prior to RDO process

then the computations for the other block size can be avoided.

4.3.3.1 SKIP Mode Early Detection Algorithm

In H.264/AVC JM reference encoder [81] the skip mode is assessed along with

other possible coding modes by encoding the macroblock using each mode and

selecting the mode which minimizes the RDcost. The objective of this research

work is to minimize the computational cost through early identification of skip

macroblock. The early detection of skip mode avoids the RD calculations for rest
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of the prediction modes. The procedure to perform skip mode early detection for

each MB is given below.

• Perform motion estimation for 16×16 MB partition size keeping previous

frame in display order as a reference frame for prediction.

• Compute the motion vector difference (MVD) relative to the predicted mo-

tion vector for skip mode.

• Calculate quantized coefficients after transformation of residual data.

• If MVD and all the quantized coefficients are zero then skip mode is selected

for an MB.

The conditions used in this work for skip early detection are same as that of used

in reference JM encoder contributed by Jeon et al.[109].

4.3.3.2 Intra Prediction Block Size Selection Schemes

Generally, if an MB is a part of smooth regions, including low textured areas or

objects then intra 16×16 is appropriate to select. In these cases the selection of

intra 16×16 causes significant decrease in prediction error. On the other hand,

intra 16×16 results in large residual error for an MB belonging to the regions with

high textures. In such cases intra 4×4 is the appropriate mode as it can predict an

MB more accurately. Therefore, it can be concluded that if low textured MBs can

be identified, then time consuming RD cost calculation can be avoided for most

of the MBs, as 4×4 intra prediction modes can be skipped. Similarly, detection

of high textured MBs can help to skip RDO calculations for intra 16×16 modes.

In this work two schemes are proposed to select appropriate block size for intra

prediction.
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Scheme 1:

This scheme exploits the variance of an MB to select appropriate block size from

4×4 and 16×16 for intra prediction. For each MBm,n with variance σm,n, the

selection of block sizes for intra prediction is done as follows:

• If σm,n <τ1, Only intra 16×16 is selected for prediction.

• If σm,n >τ2, Only intra 4×4 is selected for prediction.

• Otherwise, Select both 16×16 and 4×4 block sizes for intra prediction.

In order to model thresholds τ1 and τ2 as a function of QP, a lot of experiments

are performed. For this purpose, ten QPs 12, 16, 20, 24, 28, 32, 36, 40, 44, and

48 are used. After plotting the thresholds τ1 and τ2 against each QP listed in

Table 4.3 onto Fig.4.3, it is concluded that these thresholds are estimated as the

exponential function f(QP ) = p × e(q×QP ). Accordingly, the τ1 and τ2 values in

Table 4.3 are determined as follows:

Table 4.3: Thresholds for Qps

Qp τ1 τ2
12 26.6 141.0
16 27.5 140.25
20 28.5 139.5
24 29.5 138.0
28 30.5 137.25
32 31.5 136.50
36 32.5 135.50
40 33.75 134.75
44 34.5 134.0
48 36.0 133.0

τ1 = 22× e0.005×QP (4.9)
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τ2 = 157× e−0.003×QP (4.10)
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Figure 4.3: τ1 and τ2 Approximation

Scheme 2:

In this approach, selection of suitable block size for intra prediction is taken as a

classification problem. To solve this problem AdaBoost classifier is trained using

brightness and variance of an MB as features. The following are the three defined

classes

• Class 1: Intra 4×4

• Class 2: Intra 16×16

• Class 3: Both 4×4 and 16×16 are candidate for intra prediction. The deci-

sion of block size for intra prediction is made at later stages

Each MBm,n with feature vector F VC = {µ, σ} is classified as follows:

• If P1 <P2 and P1 >τ , then Class 1 is assigned.
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• If P2 >P1 and P2 >τ , then Class 2 is selected.

• Otherwise, Class 3 is assigned.

Where P1 and P2 is the probability of each macroblock MBm,n to belong to Class

1 and Class 2, respectively. The value of τ is set to 0.6 through experiments. The

aforementioned features and the appropriate block size determined by the RDO

are taken as the input training data for Adaboost classifier. The training samples

are acquired from different video sequences.

4.3.4 Rapid Mode Selection

At this stage of the framework, further analysis is performed which provides a

reduced set of candidate intra and inter prediction modes for RDO process. The

following sections explain the schemes used to shortlist inter and intra prediction

modes for RDO process.

4.3.4.1 Inter Prediction Mode Selection Algorithm

1. Hypothesis

In motion estimation, inter prediction modes (block sizes) can decrease the

residual or prediction error efficiently. Generally, if an MB is a part of regions

with homogeneous motion, including zero motion of a static background,

uniform motion of rigid objects and smooth motion of a moving background

and then large block sizes (16×16, 16×8, 8×16) are appropriate to select.

In these cases the selection of large block sizes causes significant decrease in

prediction error. On the other hand, large block sizes result in large residual

error for an MB belonging to the regions with high textures or complex

motion. In such cases the smaller block sizes (8×8, 8×4, 4×8, and 4×4) are

appropriate modes as they can capture complex motion accurately.
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(a) (b)

Figure 4.4: Selected Block Sizes using Full Inter Prediction Mode Selection.
(a) Coastguard (b) Paris

Fig.4.4 shows two example frames of CIF resolution in which the optimal

inter prediction modes are represented by different sized boxes overlaid on

the corresponding MB. These modes are selected using full search algorithm

RDO. The 29th frame of Coastguard sequence is shown in Fig.4.4(a) in which

camera panning activity results in causing illusion of background motion.

The background region reflects a homogenous translation motion. So, most

of the MBs in this region are coded as 16×16 e.g. shore and still water

region. On the other hand, smaller block sizes are likely to be selected in

the boundary regions between boats and water and the ripple regions etc.

Fig.4.4(b) shows the 40th frame from the test video sequence Paris with

static back ground. It clearly demonstrates that most of the MBs belonging

to static background are coded using large block sizes. In the Fig.4.4(b) the

smaller block sizes belong to the regions at the boundary between objects

with different motion, such as the face, head and hand and clothes, in order

to achieve smaller residual error. One observation in the above cases is that

smaller block sizes are mostly selected at object boundaries or in case of

irregular motion regions and larger block sizes are selected within objects

both for low as well as high textures.

In order to perform statistical analysis on the probability of different in-

ter prediction modes selected using full inter mode decision, a variety of

CIF video sequences, with different motion activities, are encoded including
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Akiyo, Coastguard, Container, Foreman, Mother and Daughter (MaD), Mo-

bile, News, Paris, Silent and Tempete. The test conditions are set as follows:

MV search range is 32 pels, CABAC, RDO and fast motion estimation are

enabled in encoder Main profile, MV resolution is 1/4-pel, number of ref-

erence is 1, and 300 frames are encoded with IPPP structure for each test

video sequence. Table 4.4 lists the averaged probability of selecting each

inter prediction mode. To compute each probability, encoding results at five

QPs, including 24, 28, 32, 36 and 40, are used. Table 4.4 illustrates that the

86.8% MBs select larger block sizes i.e. 16×16, 16×8 and 8×16 for inter pre-

diction. Moreover, the percentage of selecting inter 16×16 is about 76.3%.

It is also observed that percentage of selecting larger block sizes is increased

with increase in QP and vice versa.

Table 4.4: Probability (%) of Inter Prediction Modes Selection

Sequences 16x16 16x8 8x16 8x8p
Akiyo 93 2 2 3

Coastguard 64 10.3 9.4 16.3
Container 90.8 2.5 2.5 4.2
Foreman 72.1 8.5 8.5 10.9

Mother and Daughter 89 3.7 4.3 3
Mobile 54 7 7.3 31.7
News 86.5 2.9 3.5 7.1
Paris 81.2 3.2 3.4 12.2
Silent 84.7 3.7 4.6 7

Tempete 47.3 8.5 7.2 37
Average 76.3 5.2 5.3 13.2

Therefore, it can be concluded that if motion homogeneous MBs with low

residual complexity can be identified, then time consuming RDcost calcula-

tion can be avoided for most of the MBs, as smaller inter prediction modes

can be skipped. Optimal inter prediction mode for an MB is highly corre-

lated with its motion homogeneity and residual complexity. If the MB is

homogeneous with small residual complexity, it results in selection of large

block size as the optimal mode. However, if the MB is non-homogeneous or
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its residual complexity is not small enough then the smaller block sizes are

appropriate to be used as the optimal block size mode. This work exploits

motion homogeneity and residual complexity together for an MB to shortlist

the candidate inter modes for RDO calculation, a merger which is missing

in the existing literature.

2. MB Classification based on Motion Homogeneity and Residual

Complexity

According to the above observations, optimal inter prediction mode is highly

correlated with the motion homogeneity exhibited in MB and residual com-

plexity or prediction error. This work exploits motion homogeneity and

residual complexity for MB classification. The motion estimation on 8×8

block size is performed in order to calculate the motion homogeneity and

residual complexity of an MB. For performing motion estimation, 3-D Re-

cursive Search (3-D RS) motion estimator [108] is used because it is light

weight and tends towards actual or true motion of objects. One disadvantage

of 3-D RS motion estimator is its convergence time. Generally, it converges

after one or two frames. So, the results of 3-D RS are used in this work after

convergence has been achieved.

The MB residual complexity (MB RC) and motion homogeneity (MH) using

corresponding blocks in an MB are calculated as follows. If an MB is located

at the mth row and nth column, it is denoted as MBm,n. The motion

vectors MVs and SAD of its corresponding 8×8 blocks are represented as

MVi,j = {mvxi,j,mvyi,j}, SADi,j, i ∈ [8m, 8m+ 1], j ∈ [8n, 8n+ 1]. For each

partition Pk which may be row Rk in Fig.4.5 (a) or column Ck in Fig.4.5(b),

the mean deviation of MVs is defined as
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Figure 4.5: MB Partitions used to Calculate Motion Homogeneity and Resid-
ual Complexity

MD(Pk) =
1

2

∑
Pk

{|mvxi,j −
1

2

∑
Pk

mvxi,j|

+|mvyi,j −
1

2

∑
Pk

mvyi,j|} (4.11)

The vertical and horizontal motion homogeneity and residual complexity of

an MBm,n can be calculated using Eq.4.12, Eq.4.13 and Eq.4.14, respec-

tively:

H MHm,n =
1

2

2∑
k=1

MD(Rk) (4.12)

V MHm,n =
1

2

2∑
k=1

MD(Ck) (4.13)

MB RCm,n =
1

4

∑
SADi,j (4.14)

Based on the above MB directional motion homogeneity and residual com-

plexity measures, each MBm,n is classified into one of the following five

64



classes when the specified conditions hold true.

Class 1: Homogeneous motion with low residual complexity

MB RCm,n<τ1 &H MHm,n<ν1 & V MHm,n<ν1 (4.15)

Class 2: Complex motion (exhibits no obvious homogeneity) with high

residual complexity

MB RCm,n>τ2 &H MHm,n>ν2 & V MHm,n>ν2 (4.16)

If an MBm,n does not belong to above two classes then it is further classified

into one of the following three classes:

Class 3: Motion likely to be homogenous in vertical direction

H MHm,n>V MHm,n (4.17)

Class 4: Motion likely to be homogenous in horizontal direction

H MHm,n<V MHm,n (4.18)

Class 5: Motion likely to be homogenous in horizontal or/and vertical di-

rection

H MHm,n = V MHm,n (4.19)

The thresholds ν1 and ν2 for directional motion homogeneity are set to 0.5

and 1.0, respectively. The threshold ν1 is set to 0.5 in order to cater for one

out-lier MV in the motion homogeneous MB. On the other hand, threshold ν2
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was selected to 1.0 after extensive experiments.The thresholds τ1 and τ2 for

residual complexity are selected based on frame residual complexity (FRC)

and average MB residual complexity (AMB RC) according to the Eq.4.20

and Eq.4.21, respectively.

τ1 =
1

FRC
×W1× AMB RC (4.20)

τ2 =
1

FRC
×W2× AMB RC (4.21)

where AMB RC and FRC are defined as

AMB RC =
1

K

K∑
i=1

SADi (4.22)

FRC =
1

MN

K∑
i=1

SADi (4.23)

Where K indicates the number of MBs in frame and M, N are the horizontal

and vertical dimensions of the frame.

In order to obtain weights W 1 and W 2 for each QP, a lot of experiments

are performed. Then these values are modeled as a function of QP. For this

purpose, ten QPs, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 are used. After

plotting the weights W 1 and W 2 against each QP listed in Table 4.5 onto

Fig.4.6, it is concluded that these weights are estimated as the exponential

function, f(QP ) = p × e(q×QP ). Accordingly, the W 1 and W 2 values in

Table 4.5 are determined as follows:
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Table 4.5: Weights for Qps

Qp 12 16 20 24 28 32 36 40 44 48
Weights

W1 1.12 1.16 1.20 1.24 1.28 1.32 1.36 1.40 1.44 1.48
W2 1.28 1.38 1.50 1.60 1.75 1.90 2.05 2.25 2.40 2.60

W1 = e0.0085×QP (4.24)

W2 = e0.02×QP (4.25)
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Figure 4.6: W1 and W2 Approximation

3. Candidate Inter prediction mode selection

Based on the above classification, Table 4.6 summarizes the candidate inter

prediction modes that goes for RDO. For example, if class 3 is selected, RDO

process is performed only for 16×16 and 8×16.
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Table 4.6: Candidate Inter Prediction Modes

MB Class Candidate inter prediction modes
1 16×16
2 16×16, 16×8, 8×16, 8×8p
3 16×16, 8×16
4 16×16, 16×8
5 16×16, 16×8, 8×16

Except for class 2, for which each 8×8 block in an MB will be further exam-

ined to decide whether three smaller inter prediction modes, i.e. 8×4, 4×8

and 4×4 are selected as its candidate modes or not. For each 8×8 block Bk

in MBm,n with SADk the selection of candidate inter prediction modes is

done as follows:

• If SADk <τ3, none of the smaller inter prediction modes is selected.

• If SADk >τ4 , select all smaller inter prediction modes.

• Otherwise , select 8×4 and 4×8 modes only

Where

τ3 =
1

4
×W1× AMB RC (4.26)

τ4 =
1

4
×W2× AMB RC (4.27)

4. Algorithmic flow

Fig.4.7 shows the algorithmic flow of the proposed inter prediction mode

selection algorithm. The algorithm is described as follows:

• Perform ME on 8×8 block sizes for current frame and then calculate

AMB RC and FRC using Eq.4.22 and Eq.4.23, respectively.
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Figure 4.7: Flowchart of the Proposed Inter Prediction Mode Selection Scheme

• Calculate MB directional motion homogeneity and residual complexity

using Eq.4.12, Eq.4.13 and Eq.4.14, respectively.

• Determine W1 and W2 based on QP using Eq.4.24 and Eq.4.25, re-

spectively.
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• Decide the class of the current MB according to its residual complexity

and motion homogeneity measures based on conditions listed in Table

4.6.

• Based on the class of current MB determine candidate inter prediction

modes.

• Perform RDO process for candidate inter prediction modes.

• Select the mode with minimum RDcost as the optimal mode.

• If current MB is the last MB in current frame, go to the step 9. Oth-

erwise, go to the step 2 for the next MB mode decision belonging to

current frame.

• Finalize the encoding process, if current frame is the last frame. Oth-

erwise, go to the step 1 for the next frame

4.3.4.2 Intra Prediction Mode Selection Algorithm

It is observed that the intra prediction modes that provide the least prediction

or residual error will also result in minimum rate R and hence minimize the RD-

cost. Moreover, the pixels along the local edge direction of the block normally

have similar values. Therefore, a good prediction could be obtained if predicted

pixels are generated using their neighboring pixels that are in the same directional

correlation of the block. In this work local edge direction of the block is used to

determine the intra prediction modes. The rest of the parts of this section describe

the suggested technique.

1. Calculation of local edge direction

In this work, Soble edge operator is used to acquire the local edge information

of the block. The Sobel operator is applied on down sized image to create

edge map which is used to calculate edge information i.e. edge direction
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and magnitude. It consists of two convolution operators that give the degree

of difference in horizontal and vertical direction. The main advantage of

this filter is that it provides both differencing and smoothing effect. Each

element in edge map is an edge vector and is associated with 4×4 block of

actual image. The edge vector for each block located at the ith row and j th

column, in luma and chroma component of image can be define as

V xi,j = Xi−1,j+1 + 2×Xi,j+1 +Xi+1,j+1

−Xi−1,j−1 − 2×Xi,j−1 −Xi+1,j−1 (4.28)

V yi,j = Xi+1,j−1 + 2×Xi+1,j +Xi+1,j+1

−Xi−1,j−1 − 2×Xi−1,j −Xi−1,j+1 (4.29)

Where V xi,j and V yi,j denote the degree of difference in horizontal and

vertical directions, respectively. Therefore, block edge magnitude roughly

calculated as

Magi,j = |V xi,j|+ |V yi,j| (4.30)

The block edge direction can be calculated as

θi,j =
180

π
× arctan(V yi,j/V xi,j), θi,j ∈ [0, 2π] (4.31)

In this work, a down size image is used in order to calculate local edge

direction of the block. The downsizing factor of an image is selected as four.

In scaled down image, 4×4 block size of an actual image is represented by

one pixel and 16×16 block size is mapped to 4×4 block size. The use of
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scaled down image for feature extraction helps to reduce the computational

complexity.

2. Luma 4×4 prediction modes

As mentioned in section 2.3.1.1, there are 8 directional prediction modes

and one DC prediction mode for 4×4 luma. Fig.4.8 shows that the border

between any two adjacent directional prediction modes is the bisectrix of

the two corresponding directions. For example, the border of Mode 1 (0)

and Mode 8 (26.6) is the direction at 13.3, this is because that for Mode

8, prediction is done at an angle of approximately 26.6 above horizontal

direction. It is important to note that Mode 3 and Mode 8 are adjacent due

to circular symmetry of the prediction modes.

Figure 4.8: Intra 4x4 Prediction Directions

The edge direction of each 4×4 luma block is used to determine the prediction

mode. The most probable intra prediction modes of 4×4 blocks based on

local edge direction are calculated as follows.

Let θ1 be the edge direction of each 4×4 block, and let α1 =θ1 + π/2 be its

prediction direction, then Table 4.7 lists the prediction mode corresponding

to its edge direction.

As the DC mode has no direction and is used for smooth areas, it is always

a candidate mode for intra 4×4. Furthermore, the two neighbors of the

primary prediction mode in terms of directions are also taken as candidate
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Table 4.7: Luma 4×4 Prediction Modes

Mode Condition
1 α1 ∈ [0.0, 11.25] U ]168.75, 191.25] U ]348.75, 360.0]
8 α1 ∈ ] 11.25, 33.75] U] 191.25, 213.75]
3 α1 ∈ ] 33.75, 56.25] U] 213.75, 236.25]
7 α1 ∈ ] 56.25, 78.75] U] 236.25, 258.75]
0 α1 ∈ ] 78.75, 101.25] U] 258.75, 281.25]
5 α1 ∈ ] 101.25, 123.75] U] 281.25, 303.75]
4 α1 ∈ ] 123.75, 146.25] U] 303.75, 326.25]
6 α1 ∈ ] 146.25, 168.75] U] 326.25, 348.75]

modes. For example, if the primary prediction mode is Mode 1 then two

additional candidate prediction modes will be Mode 8 and Mode 6. In short,

for each 4×4 intra block, RDO calculation is performed only for 4 modes

instead of 9.

3. Luma 16×16 and chroma 8×8 prediction modes

In the case of 16×16 luma and 8×8 chroma blocks, there are only two direc-

tional prediction modes, plus a plane prediction and a DC prediction mode as

mentioned in section 2.3.1.2 and section 2.3.1.3, respectively. Therefore, the

edge direction histogram for this case is based on three directions, i.e., hor-

izontal, vertical and diagonal (plane) directions, as shown in Fig.4.9. Note

that both diagonal down right and diagonal down left prediction modes are

associated with the plane prediction.

Figure 4.9: Intra 16×16 Prediction Directions
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For 16×16 luma and 8×8 chroma blocks, the edge direction is calculated

through edge direction histogram of their corresponding 4×4 blocks. The

edge direction histogram for 16×16 luma block is calculated as Table 4.8

lists. Let θ2 be the edge direction of its each constituent 4×4 block and

let α2 =θ2 + π/2 be the prediction direction, then each bin in the edge

direction histogram sums up the edge magnitude of all the 4×4 blocks having

same edge direction. The histogram bin with maximum magnitude indicates

the dominant block edge direction and is thus considered as most probable

prediction direction. The primary prediction mode is selected based on this

dominant block edge direction. It is important to note that only those bins

are considered for selection of prediction direction which represents at least

five similar directions 4×4 blocks.

Table 4.8: Luma 16×16 Prediction Modes

Mode Condition Edge Magnitude Count
0 α2 ∈ ]67.5, 112.5] U ]247.5, 292.5] M0+=Mag(Vi,j) C0++
1 α2 ∈ [0.0, 22.5] U ]157.5, 202.5] U ]337.5, 360.0] M1+=Mag(Vi,j) C1++
3 else M3+=Mag(Vi,j) C3++

In order to select primary prediction mode for 8×8 chroma blocks, the same

procedure is applied, except that the order of mode numbers is different and

no limit is applied on similar direction blocks in histogram bin. Table 4.9 lists

the edge direction histogram calculation method for 8×8 chroma component.

Therefore, one primary prediction mode for a 16×16 luma block and 8×8

chroma block is selected through above described algorithm .

Table 4.9: Chroma 8×8 Prediction Modes

Mode Condition Edge Magnitude
1 α2 ∈ [0.0, 22.5] U ]157.5, 202.5] U ]337.5, 360.0] M1+=Mag(Vi,j)
2 α2 ∈ ]67.5, 112.5] U ]247.5, 292.5] M2+=Mag(Vi,j)
3 else M3+=Mag(Vi,j)
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Generally, 16×16 intra prediction mode is more suitable for MBs belong-

ing to low textured or very smooth areas of a picture and mostly chroma

components are very smooth. Therefore, DC prediction mode is always a

candidate mode for luma 16×16 and chroma 8×8 blocks. The prediction

candidate modes of luma 16×16 and chroma 8×8 are the DC mode and the

primary prediction mode selected by dominant block edge direction. The

RDO is performed for these candidate modes only.

4. Algorithmic flow

Fig.4.10 shows the algorithmic flow of the proposed intra prediction mode

selection algorithm.

• Down size the input image by a factor 4. In scaled down image, 4×4

block size of an actual image is represented by one pixel and 16×16

block size is mapped to 4×4 block size.

• Calculate local edge information of the 4×4 blocks in down sized image

using Sobel edge operator.

• Determine primary prediction mode for luma 4×4, luma 16×16 and

chroma 8×8 based on local edge direction.

• Choose candidate prediction modes for luma 4×4, luma 16×16 and

chroma 8×8 (a). For each luma 4×4 block, the candidate prediction

modes are: the primary prediction mode selected based on the local

edge direction, two neighbors of the primary prediction mode in terms

of directions and DC mode. (b) For each luma 16×16 and chroma 8×8

block, the primary prediction mode selected based on the local edge

direction and DC mode are the candidate prediction modes.

• Perform RDO process only for candidate intra prediction modes.

• Decide the mode with minimum RDcost as an optimal mode.
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Figure 4.10: Flowchart for the Proposed Intra Prediction Mode Selection
Scheme

Table 4.10 lists the number of candidate intra prediction modes selected for

RDO calculation by the proposed scheme.

Table 4.10: Candidate Intra Prediction Modes

MB Component Block Size Total Modes Candidate Modes
Luma (Y) 4×4 9 4
Luma (Y) 16×16 4 2

Chroma (U,V) 8×8 4 2

4.3.5 RDO Mode Elimination

At this stage of the framework, reference RDO algorithm is used to calculate

RDcost for shortlisted prediction modes of an MB. The prediction mode with

minimum RDcost is selected as coding mode of an MB. In the proposed framework
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RDO calculation is performed only for shortlisted candidate modes. This helps to

significantly reduce the computational complexity of the encoding process.

4.3.6 Overall Framework Description

In the proposed framework, all training process of Adaboost classifiers is accom-

plished offline. The trained models of classifier are loaded at the beginning of

encoding process. The encoding flow of the proposed framework is described as

follows.

1. Down size the current frame for features calculation.

2. Perform 8×8 ME using 3-D RS motion estimator with one reference frame.

3. Calculate the features for prediction type decision.

4. Determine the most probable prediction type.

5. Go to Step 6, if prediction type is intra. Otherwise go to step 8.

6. Calculate features for the selection of suitable intra prediction block size.

7. Select a most probable block size to perform intra prediction.

8. Go to Step 9 if prediction type is inter. Otherwise go to step 12.

9. Perform skip early detection.

10. Calculate features for inter prediction mode selection.

11. Obtain candidate inter prediction modes.

12. Calculate features for intra prediction mode selection.

13. Obtain candidate intra prediction modes.

14. Perform RDO for shortlisted modes only.
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15. Select the prediction type and mode with minimum RDcost as an optimal

coding parameters for an MB.

16. Go to Step 4 to process next MB.

4.4 Experimental Analysis and Discussion

The proposed framework is incorporated into the H.264/AVC JVT Reference Soft-

ware (Version JM 12.2) [81]. To evaluate the performance of proposed schemes,

experiments are conducted on a PC with intel core i3-2100 CPU @ 3.1 GHz x

and 2 GB RAM by using the video sequences covering a wide range of motion

activities. The test conditions are set as follows:

• The used quantization parameters are 28, 32, 36 and 40.

• Encoder Main profile is used.

• Entropy encoding is set to CABAC.

• RDO are enabled.

• Fast motion estimation is enabled.

• MV resolution is set to 1/4 pel.

• MV search range is set to 32.

• Number of reference frames is set to 1 or 5.

• Five different frame formats, QCIF (144×176), CIF (352×288), NTSC (720×480),

720p (1280×720) and 1080p (1920×1080) are used.

• All test sequences are in 4:2:0 formats.

• Group of picture (GOP) structure is full I or IPPPPP.
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• Frame rate is set to 30 fps.

• Number of frames encoded per sequences are 100 or 300.

• To calculate the mean results each test sequence is encoded three times

independently for each quantizer.

Bjontegaard delta bit-rate (BDBR) [110], Bjontegaard delta peak signal-to-noise

ratio (BDPSNR) and time saving (TS) are the three metrics used to evaluate the

performance of proposed schemes. TS can be defined as follows.

TS =
Tp − Tr
Tr

× 100% (4.32)

Where Tr and Tp are the encoding times of the reference software and the proposed

algorithm, respectively. The positive values of BDPSNR, BDBR and TS indicate

an increase whereas negative values represent a decrease.

4.4.1 Prediction Type Decision

In order to evaluate the performance of the proposed prediction type decision al-

gorithm, three different frame formats, QCIF, CIF and NTSC are considered. For

each test sequences, 100 frames are encoded in IPPPP structure with 5 reference

frames. The period of I-frame is set to 100 i.e. all frames are encoded as P-frames

except the first one which is encoded as I.

Table 4.11 lists the experimental results for variety of test sequences. It indicates

that the proposed technique is about 25.61% faster than the full search method

with negligible coding loss in terms of BDPSNR and BDBR i.e by the amount

of 0.006 dB and 0.169%, respectively. The presented scheme shows a consistent

gain in encoding time savings for all sequences ranging from 19.77% in Akiyo to
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32.51% in Washdc. This is achieved with a maximum BDPSNR loss of 0.045 dB

or a maximum increase in BDBR of 1.072%, and is thus negligible.

Table 4.11: Experimental Results of Prediction Type Decision Algorithm

Sequences Format TS (%) BDBR (%) BDPSNR (dB)
Foreman -31.53 0.167 -0.009

Claire -20.56 -0.576 0.037
Coastguard QCIF -30.9 -0.249 0.008
Container -22.36 -0.021 0

Hall -23.73 -0.011 0
Highway -28.34 -0.508 0.019

Akiyo -19.77 0.001 0
Mobile -29.02 0.069 -0.003
MaD CIF -19.93 0.548 -0.025
Paris -30.78 0.072 -0.004
Silent -27.11 0.638 -0.027

Tempet -30.15 0.429 -0.018
Flower -22.19 0.023 -0.002

Football -25.76 1.072 -0.045
Mobile NTSC -21.87 -0.062 0.003
Vtc1nw -21.48 0.34 -0.011
Washdc -32.51 0.419 -0.018
Galleon -22.93 0.699 -0.022
Average -25.61 0.169 -0.006

Table 4.12 shows the frequency of each class for all test sequences that is averaged

using the results under four different QPs including 28, 32, 36 and 40. It can be

inferred from the percentage of MBs belonging to particular class, that the reduc-

tion in encoding time is maximum for the sequences for which most of the MBs

are classified into Class 1 and Class 2. For instance, in case of Washdc sequence,

only 6.6% of MBs are classified to Class 3 and therefore, for the remaining 93.94%

MBs, RDcost calculation is performed for either intra or inters prediction type

only. This results in reduction of around 32.51% in encoding time. On the other

hand, in case of Akiyo sequence, 31.94% of MBs are classified to Class 3 and for

these MBs time consuming RDcost calculation is performed for both intra and

inter prediction types resulting in comparatively lower time saving i.e., 19.77%.
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Table 4.12: Frequency Distribution of Each Class (%) for Prediction Type
Decision Algorithm

Sequences Format Class 1 Class 2 Class 3
Foreman 0.02 92.59 7.39

Claire 0.01 66.83 33.16
Coastguard QCIF 0.03 90.56 9.41
Container 0 72.21 27.79

Hall 0 79.89 20.11
Highway 0.03 81.04 18.93

Akiyo 0.06 68 31.94
Mobile 0.2 89.7 10.1
MaD CIF 0.18 66.04 33.78
Paris 0.01 92.21 7.78
Silent 0.46 87.09 12.45

Tempet 0.27 89.57 10.16
Flower 0.05 65.58 34.37

Football 1.35 78.71 19.94
Mobile NTSC 0.04 69.28 30.68
Vtc1nw 0 67.24 32.76
Washdc 0.01 93.93 6.06
Galleon 0.64 71.44 27.92
Average 0.19 78.99 20.82

The Rate Distortion (RD) curves of the prediction type decision scheme and

the JM reference exhaustive mode decision algorithm RDO are demonstrated in

Fig.4.11. It shows that the suggested prediction type decision scheme achieves a

similar RD performance as that of the JM reference software full search algorithm.

4.4.2 Early Mode Exclusion

4.4.2.1 SKIP Mode Early Detection Algorithm

In order to evaluate the skip mode early detection algorithm, three different frame

resolutions, QCIF, CIF and NTSC are considered. For all test sequences 100

frames are encoded with 5 reference frames. GOP structure is set to IPPPPP and

period of I-frame is set to 100.
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Figure 4.11: RD Curves of Proposed Prediction Type Decision Scheme and
Reference Software

Table 4.13 enlists the experimental results for variety of test sequences in terms of

Ts, BDPSNR and BDBR. It also gives the distribution of macroblocks for which

SKIP mode is early detected. Experimental results show that on the average SKIP

mode early detection algorithm is about 23.97% faster than the full exhaustive

method with 0.019% decrease in BDBR and 0.002 dB increase in BDPSNR. It is

important to note that SKIP early detection not only reduces the encoding time

but also improves the rate-distortion performance.

Table 4.13 also shows that the percentage distribution of SKIP mode early de-

tection is greatly dependent on motion activities exhibited in the sequence. The

frequency of SKIP mode early detection is high for those sequences containing mo-

tionless or slow-motion content i.e. Claire, Hall, Container, Akiyo, Vtc1nw and

etc that results in reduction of encoding time. For instance, in case of Container

sequence, SKIP mode is detected for 65.6% of MBs and RDO process is performed
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Table 4.13: Experimental Results of SKIP Mode Early Detection Algorithm

Sequences Format TS BDBR BDPSNR SKIP Mode
(%) (%) (dB) (%)

Foreman -9.78 -0.107 0.006 17.59
Carphone -13.83 -0.505 0.026 25.73

Claire -35.52 -0.743 0.048 59.16
Coastguard QCIF -12.76 -0.339 0.01 19.61
Container -39.51 -0.094 0.003 65.6

Hall -37.32 0.255 -0.015 56.66
Highway -17.52 0.228 -0.009 39.77

Akiyo -37.73 -0.072 0.004 65.5
MaD -32.6 0.136 -0.007 54.71
Paris CIF -14.59 0.04 -0.002 36.45
Silent -32.33 0.017 0 53.52

Tempete -7.17 -0.053 0.002 12.76
Football -13.2 0.196 -0.008 20.44
Intros -29.66 -0.025 0 52.6
Mobile NTSC -4.88 -0.062 0.002 7.82
Vtc1nw -38.66 0.191 -0.006 64.63
Washdc -28.59 -0.047 0.009 52.59
Galleon -25.88 0.643 -0.02 47.78
Average -23.97 -0.019 0.002 41.83

for the remaining 34.4% MBs. This has resulted in reduction of about 39.51% in

encoding time. On the other hand, for high motion activity sequences such as

Mobile, Tempet, Foreman and Coastguard, frequency of SKIP mode detection is

small that results in comparatively lower time saving. For example, in case of

Mobile sequence, SKIP mode early detection is performed for 7.82% of MBs only

and for these MBs time consuming RDcost calculation is avoided that results in

comparatively lower time saving i.e 4.88%.

The Rate Distortion (RD) curves of the SKIP mode early detection scheme and

JM reference exhaustive mode decision algorithm are demonstrated in Fig.4.12.

It shows that the the SKIP mode early detection algorithm achieves a similar RD

performance as that of the JM reference software full search algorithm.
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Figure 4.12: RD Curves of SKIP Mode Early Detection Scheme and Reference
Software

4.4.2.2 Intra Prediction Block Size Detection Schemes

In order to evaluate the intra prediction block size detection schemes, three dif-

ferent frame resolutions QCIF, CIF and NTSC are used. All test sequences are

having 100 frames. GOP structure is set to all intra i.e., all frames are encoded as

I-frames. Table 4.14 shows the experimental results in terms of Ts, BDPSNR and

BDBR. It demonstrates that on the average proposed adaptive threshold (scheme

1) and Adaboost classifier (scheme 2) based schemes have saved about 13.75%

and 18.34% encoding time, respectively. In case of adaptive threshold based algo-

rithm, time saving is achieved with marginal loss in prediction quality i.e. 0.379%

increase in BDBR and 0.0318 dB decrease in BDPSNR. On the other hand, for

Adaboost classifier based approach, the increased in BDBR is 0.548% and decrease

in BDPSNR is about 0.045 dB on average. It can be noted that Adaboost classi-

fier based scheme saved about 4.59% more encoding time as compared to adaptive
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threshold based scheme with 0.169% increase in BDBR and 0.013dB decrease in

BDPSNR.

Table 4.14: Experimental Results of Intra Prediction Block Size Detection
Schemes

Method Scheme 1 Scheme 2
Sequences Format TS BDBR BDPSNR TS BDBR BDPSNR

(%) (%) (dB) (%) (%) (dB)
Foreman -17.94 0.847 -0.058 -22.17 0.913 -0.065

Coastguard QCIF -7.52 0.653 -0.034 -13.53 0.698 -0.068
Container -9.53 0.182 -0.013 -12.08 0.82 -0.027

Hall -10.98 0.642 -0.054 -14.4 0.739 -0.065
Mobile -18.47 0.065 -0.006 -26.18 0.099 -0.009
Paris CIF -13.76 0.428 -0.034 -15.13 0.563 -0.044
Silent -7.8 0.366 -0.042 -15.6 0.504 -0.069

Tempete -18.1 0.273 -0.02 -24.27 0.408 -0.029
Flower -14.42 0.107 -0.009 -18.33 0.304 -0.024
Mobile NTSC -18.98 0.226 -0.019 -24.95 0.268 -0.023
Washdc -14.3 0.586 -0.079 -18.71 0.637 -0.094
Galleon -13.25 0.177 -0.013 -14.78 0.626 -0.025
Average -13.75 0.379 -0.0318 -18.34 0.548 -0.045

Table 4.15 illustrates the frequency of each class for both proposed schemes. The

results under four different QPs including 28, 32, 36 and 40 are taken for all test

sequences and are averaged to calculate class frequency. It can be seen that for

both schemes, the reduction in encoding time is maximum for the sequences for

which most of the MBs classified into Class 1 and Class 2.

For instance, in case of Adaboost scheme, 15.80% of MBs are classified to Class 3

and therefore, for the remaining 84.20% MBs, RDcost calculation is performed for

either intra 4×4 or intra 16×16 only. This resulted in reduction of around 18.34%

in encoding time. On the other hand, in case of adaptive threshold scheme, 25.62%

of MBs are classified to Class 3 and for these MBs time consuming RDcost calcu-

lation is performed for both intra 4×4 and intra 16×16 resulting in comparatively

lower time saving i.e 13.75%.
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Table 4.15: Frequency Distribution of Each Class (%) for Intra Block Size
Detection Schemes

Method Scheme 1 Scheme 2
Sequences Format Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
Foreman 81.76 3.19 15.05 88.04 3.56 8.44

Coastguard QCIF 58.3 0.28 41.41 73.54 0.42 26.04
Container 49.65 12.6 37.75 55.66 12.64 31.7

Hall 58.5 6.09 35.4 69.48 6.86 23.65
Mobile 84.72 3.6 11.68 91.45 3.83 4.71
Paris CIF 68.18 3.56 28.26 76.24 4.4 19.36
Silent 55.45 3.42 41.13 78.48 3.48 18.04

Tempete 81.02 5.14 13.84 87.43 5.58 6.98
Flower 57.76 20.76 21.47 63.59 22.8 13.61
Mobile NTSC 81.32 8.7 9.97 84.88 9.41 5.7
Washdc 75.39 2.08 22.53 86.51 2.93 10.56
Galleon 55.61 15.37 29.02 61.96 17.28 20.76
Average 67.31 7.07 25.62 76.44 7.76 15.80
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Figure 4.13: RD Curves of Intra Block Size Detection Schemes and Reference
Software
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The Rate Distortion (RD) curves of the intra prediction block size detection

schemes and JM reference full search mode selection techniques are displayed in

Fig.4.13. It shows that the proposed schemes achieve a similar RD performance

as that of the JM reference software full search algorithm.

4.4.3 Rapid Mode Selection

4.4.3.1 Inter Prediction Mode Selection Scheme

In order to evaluate the performance of proposed inter prediction mode selection

scheme, 100 frames for each test sequence are encoded. All frames except the first

frame are encoded as P-frames and the number of reference frames is set to 5. The

comparison of proposed scheme is done with three preceding works, Lee et al.’s

[32], Enrquez et al’s. [56] and Jeonet al.’s [109]. The performance comparison in

terms of TS, BDPSNR and BDBR is shown in Table 4.16,Table 4.17 and Table

4.18, respectively.

Table 4.16: Performance Comparison of Inter Prediction Mode Selection
Scheme in Terms of TS (%)

Method Proposed Lee et al.’s Enrquez et al.’s Jeon et al.’s
Sequences Format [32] [56] [109]
Carphone -60 -64 -39 -9

Claire -73 -74 -65 -20
Coastguard QCIF -58 -47 -28 -7

Highway -67 -73 -53 -12
Miss-America -68 -75 -60 -20

News -65 -63 -57 -19
Akiyo -76 -76 -62 -22

Container -67 -69 -55 -23
Football CIF -56 -48 -23 -10
Foreman -59 -62 -36 -10
Mobile -58 -56 -29 -6
Paris -61 -54 -40 -15

Average -64 -63 -46 -14
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Table 4.17: Performance Comparison of Inter Prediction Mode Selection
Scheme in Terms of BDPSNR (dB)

Method Proposed Lee et al.’s Enrquez et. al’s Jeon et al.’s
Sequences Format [32] [56] [109]
Carphone -0.01 -0.09 -0.06 0.01

Claire -0.02 -0.08 0.01 0.01
Coastguard QCIF -0.01 0.00 -0.04 -0.01

Highway -0.01 0.01 -0.08 -0.02
Miss-America -0.03 -0.06 0 0

News -0.02 -0.05 -0.03 -0.02
Akiyo 0.04 -0.03 0 0

Container -0.02 -0.02 -0.01 0.01
Football CIF -0.04 -0.04 0 0
Foreman -0.06 -0.04 -0.03 0
Mobile -0.05 -0.04 -0.02 -0.01
Paris -0.01 -0.02 -0.05 0

Average -0.02 -0.04 -0.02 0

Table 4.18: Performance Comparison of Inter Prediction Mode Selection
Scheme in Terms of BDBR (%)

Method Proposed Lee et al.’s Enrquez et al.’s Jeonet al.’s
Sequences Format [32] [56] [109]
Carphone 0.12 0.10 0.84 -0.27

Claire 0.2 -0.02 -0.17 0.1
Coastguard QCIF 0.42 0.06 1.74 0.12

Highway 0.2 1.50 2.55 0.67
Miss-America 0.02 -0.36 0.01 -0.14

News 0.28 -0.14 0.65 0.24
Akiyo -0.27 -0.33 -0.14 -0.29

Container 0.15 -0.67 0.18 -034
Football CIF 0.63 0.67 0.03 0.01
Foreman 0.56 0.34 0.49 -0.05
Mobile 0.71 0.87 0.34 0.17
Paris 0.34 0.53 0.89 0.03

Average 0.28 0.21 0.61 0.02

Experimental results illustrate that the proposed scheme reduces the encoding

time by 64% on the average with negligible coding loss in terms of BDPSNR and

BDBR i.e by the amount of 0.02 dB and 0.28%, respectively. The proposed inter

prediction mode selection scheme shows a consistent gain in encoding time savings
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for all sequences ranging from 56% Football to 76% in Akiyo. This is achieved with

a maximum BDPSNR loss of 0.06 dB or a maximum increase in BDBR of 0.71%,

and is thus negligible.

The proposed inter prediction mode selection scheme also outshines Jeon et al.’s,

Enrquez et al.’s and Lee et al.’s in terms of TS by 50%, 18% and 1% on the

average, respectively. The overall gain in encoding time savings of proposed scheme

as compared to Lee et al.’s method is not very significant (only 1%) and both

algorithms perform equally well for low to medium motion sequences e.g Akiyo,

Claire, Container and News. However, in addition, for test sequences having

homogeneous motions e.g. Coastguard, Football, Mobile and Paris, the proposed

scheme is faster than Lee et al.’s method and reduces 7% encoding time without

sacrificing video quality. The reason behind this gain in encoding time saving

for such sequences is the efficient convergence of 3-D RS motion estimator for

homogeneous motion.

On the other hand, for test sequences having complex motion or haphazard motion

e.g. Carphone, Foreman and Highway, the convergence of conventional 3-D RS

motion estimator relatively slow. So for these sequences, Lee et al.’s technique is

faster than the proposed scheme and reduces 4.33% encoding time on the average

at the cost of 0.353% increase in BDBR and 0.0134 dB decrease in BDPSNR.

Hence, it can be concluded that the proposed scheme provides higher and consis-

tent gain in the encoding time saving for most of the video sequences as compared

to Jeon et al.’s, Enrquez et al.’s and Lee et al.’s techniques. Only for the sequences

having complex motion, Lee et al.’s method is slightly better than the proposed

technique in terms of speed.

Table 4.19 shows the frequency of each MB class for all test sequences, that is

averaged using the results under four different QPs including 28, 32, 36 and 40.

It can be seen that the percentage distribution is greatly dependent on motion

activities exhibited in the sequence.
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Table 4.19: Frequency of Each MB Class (%) for Inter Prediction Mode Se-
lection Scheme

Sequences Format Class 1 Class 2 Class 3 Class 4 Class 5
Carphone 51.3 25.8 4.7 4.4 13.8

Claire 82.3 9.5 0.6 0.8 6.8
Coastguard QCIF 48.3 29.5 3.2 1.8 17.2

Highway 57.5 12.8 5.3 4.9 19.5
Miss-America 68.2 10.6 4.3 5.7 11.2

News 79.4 14.0 0.3 1.4 4.9
Akiyo 84.0 8.0 0.5 1.5 6.0

Container 59.6 16.2 2.4 2.5 19.3
Football CIF 39.0 33.5 4.9 3.9 18.7
Foreman 44.2 27.3 4.2 4 20.3
Mobile 42.5 30.7 3.1 2.6 21.1
Paris 61.7 28.5 1.1 1.7 7.0

Average 59.84 20.53 2.88 2.93 13.82

It can be inferred from the percentage of MBs belonging to Class 2, that the

reduction in encoding time is maximum for the sequences with lower to medium

motion such as Akiyo, Claire, Miss-America and News. For instance, in case of

Akiyo sequence, only 8% of MBs are classified to Class 2 and therefore, for the

remaining 92% MBs, RDcost calculation is performed for large prediction block

sizes only. This resulted in reduction of around 76% in encoding time.

On the other hand, for high motion activity sequences such as Coastguard, Football,

Foreman and Mobile, higher number of MBs are classified to class 2 resulting in

comparatively lower time saving. For example, in case of Football sequence, 33.5%

of MBs are classified to Class 2 and for these MBs time consuming RDcost calcu-

lation is performed up to small prediction block sizes resulting in comparatively

lower time saving i.e 56%.

Table 4.20 enlists the simulation results for variety of test sequences in term of

BDPSNR, BDBR and TS.
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Table 4.20: Experimental Results of Inter Prediction Mode Selection Scheme

Sequences Format BDPSNR (dB) BDBR (%) TS (%)
Carphone -0.01 0.12 -60

Claire -0.03 0.2 -73
Coastguard -0.02 0.42 -58

Highway QCIF -0.01 0.2 -67
Miss-America -0.03 0.02 -68

News -0.05 0.28 -65
Mother and daughter 0 -0.12 -70

Akiyo 0.03 -0.27 -76
Container -0.03 -0.15 -67
Football -0.04 0.63 -56
Foreman CIF -0.03 0.56 -59
Mobile -0.02 0.71 -58
Paris -0.01 0.34 -61

Tempete -0.03 0.7 -55
Silent 0 -0.01 -69
Flower -0.05 0.74 -57
Galleon -0.02 -0.07 -61
Intros NTSC 0 0.01 -66

Vtc1nw 0 0.19 -69
Washdc 0.02 -0.3 -65
Mobcol 0.01 0 -57
Parkrun 720p -0.03 0.75 -56
Shields -0.01 0.23 -61

Stockholm 0 -0.07 -63
Pedestrain area 1080p 0.01 0.23 -61

Rush hour -0.02 0.63 -60
Average -0.014 0.241 -63

The Rate Distortion (RD) curves of the proposed inter prediction mode selec-

tion scheme and JM reference exhaustive mode decision algorithm are shown in

Fig.4.14. It depicts that the proposed inter prediction mode selection scheme

achieves a similar RD performance as that of the JM reference software full search

algorithm.
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Figure 4.14: RD Curves of Proposed Inter Prediction Mode Selection Scheme
and Reference Software

4.4.3.2 Intra Prediction Mode Selection Scheme

In order to perform the experimental analysis of the proposed intra prediction

mode selection scheme, three different frame resolutions, QCIF, CIF and NTSC

are considered. All test sequences having 300 frames and are encoded using all

intra GOP structure. Table 4.21, Table 4.22 and Table 4.23 compare the proposed

scheme with previous works in terms of TS, BDPSNR and BDBR, respectively.

The comparison of proposed scheme is done from two preceding works, Pan et

al.’s [65] and Wang at el.’s [83]. The simulation results indicate that the proposed

scheme reduces the encoding time by 61.27% on the average with negligible coding

loss in terms of BDPSNR and BDBR i.e by the amount of 0.232 dB and 3.195%,

respectively. The proposed scheme also outshines Pan et al.’s and Wang et al.’s

schemes in terms of TS by 3.22% and 3.1% on the average, respectively.
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Table 4.21: Performance Comparison of Intra Prediction Mode Selection
Scheme in Terms of TS (%)

Method Pan et al.’s Wang et al.’s Proposed
Sequences Format [65] [83]

News -55.34 -58.03 -63.75
Container QCIF -56.36 -57.32 -66.76

Silent -65.17 -60.66 -62.82
Coastguard -55.03 -57.78 -59.91

Mobile -59.09 -58.07 -59.83
Paris CIF -57.78 -58.78 -59.79
Stefan -57.97 -58.56 -58.9

Tempete -57.70 -56.86 -58.38
Average -58.06 -58.26 -61.27

Table 4.22: Performance Comparison of Intra Prediction Mode Selection
Scheme in Terms of BDPSNR (dB)

Method Pan et al.’s Wang et al.’s Proposed
Sequences Format [65] [83]

News -0.294 -0.348 -0.277
Container QCIF -0.234 -0.293 -0.232

Silent -0.183 -0.255 -0.218
Coastguard -0.106 -0.255 -0.108

Mobile -0.255 -0.237 -0.286
Paris CIF -0.23 -0.274 -0.238
Stefan -0.242 -0.301 -0.284

Tempete -0.229 -0.254 -0.213
Average -0.221 -0.278 -0.232

Table 4.24 illustrates the simulation results for variety of test sequences in term of

BDPSNR, BDBR and TS. It indicates that the proposed scheme shows a consistent

gain in encoding time savings for all sequences ranging from 56.67% in Washdc to

68.49% in Vtc1nw. This is achieved with a maximum BDPSNR loss of 0.286 dB or

a maximum increase in BDBR of 4.448%, and is thus negligible. The time saving

is high for those sequences that contain strong spatial homogeneity like Vtc1nw

and Akaiyo. On the other hand, the sequences Washdc and Foreman have more

non-homogeneous regions in frames. Therefore, the time saving for these sequences

is not as much compared with previous sequences.
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Table 4.23: Performance Comparison of Intra Prediction Mode Selection
Scheme in Terms of BDBR (%)

Method Pan et al.’s Wang et al.’s Proposed
Sequences Format [65] [83]

News 3.902 4.451 3.573
Container QCIF 3.695 4.44 3.42

Silent 3.54 4.58 3.982
Coastguard 2.361 4.034 1.937

Mobile 3.168 2.871 3.189
Paris CIF 3.21 3.678 3.064
Stefan 3.717 3.889 3.408

Tempete 3.514 3.735 2.988
Average 3.388 3.960 3.195

Table 4.24: Experimental Results of Intra Prediction Mode Selection Scheme

Sequences Format TS (%) BDBR (%) BDPSNR (dB)
Foreman -57.62 4.448 -0.282
Carphone -58.7 3.776 -0.258

Coastguard QCIF -59.91 1.937 -0.108
Container -66.76 3.42 -0.232

Hall -58.68 2.837 -0.217
Highway -58.81 2.731 -0.135

Akiyo -67.35 1.804 -0.121
Mobile -59.83 3.189 -0.286
MaD CIF -67.2 2.241 -0.116
Paris -59.79 3.064 -0.238
Silent -64.88 2.209 -0.103

Tempete -58.38 2.988 -0.213
Football -60.56 4.394 -0.211
Intros -63.98 2.977 -0.104
Mobile -60.02 3.294 -0.272
Vtc1nw NTSC -68.49 2.592 -0.124
Washdc -56.67 3.225 -0.233
Galleon -61.71 2.864 -0.207
Average -61.63 2.999 -0.192

The Rate Distortion (RD) curves of the proposed intra prediction mode selec-

tion scheme and JM reference exhaustive mode decision algorithm are shown in

Fig.4.15. It indicates that the proposed efficient intra prediction mode selection
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scheme achieves almost similar RD performance as that of the JM reference soft-

ware full search algorithm.
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Figure 4.15: RD Curves of Proposed Intra Mode Selection Scheme and Ref-
erence Software

4.4.4 Overall Performance Evaluation of the Proposed Frame-

work

In order to evaluate the performance of over all proposed framework, five different

frame resolutions, QCIF and CIF, NTSC, 720p and 1080p are considered. Experi-

ments are performed using two different encoding structures IPPPPPP and IIIIIII

i.e. all I-frames.

4.4.4.1 Experiments on IPPPPP Sequences

Table 4.25 explains the simulation results for variety of test sequences in term of

BDPSNR, BDBR and TS. In this experimental analysis, 100 frames for each test
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Table 4.25: Experimental Results on IPPPPP Sequences

Sequences Format BDPSNR (dB) BDBR (%) TS (%)
Carphone -0.012 0.145 -71

Claire -0.035 0.458 -85
Coastguard -0.024 0.567 -67

Highway QCIF -0.028 0.251 -79
Miss-America -0.039 0.399 -81

News -0.032 0.413 -76
Mother and daughter -0.016 0.11 -82

Akiyo -0.012 0.106 -87
Container -0.036 0.518 -75
Football -0.064 0.789 -67
Foreman CIF -0.065 0.906 -66
Mobile -0.029 0.391 -69
Paris -0.067 0.956 -65

Tempete -0.043 0.852 -66
Silent -0.013 0.123 -80
Flower -0.054 0.949 -65
Galleon -0.02 0.126 -70
Intros NTSC -0.016 0.06 -78

Vtc1nw -0.039 0.351 -81
Washdc -0.015 0.394 -74
Mobcol -0.01 0.128 -66
Parkrun 720p -0.052 0.856 -65
Shields -0.044 0.363 -70

Stockholm -0.025 0.153 -69
Pedestrain area -0.008 0.528 -84

Rush hour 1080p -0.023 0.913 -69
Riverbed -0.035 0.629 -71
Sunflower -0.029 0.467 -73
Average -0.032 0.461 -73.25

sequence are encoded and the period of I-frames is set to 100, i.e., first frame is

encoded as I-frame and rest of the frames are encoded as P-frames. The num-

ber of reference frames for motion estimation is set to 5. Table 4.25 shows that

the proposed framework achieves 73.25% encoding time saving, which means that

the proposed framework only takes about 1/4th of the time that is taken by the

exhaustive search algorithm in JM12.2. This time saving is achieved with neg-

ligible loss in BDPSNR (0.032 dB) and increments in BDBR ( 0.461%). The
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proposed framework shows a consistent gain in encoding time savings for all se-

quences ranging from 65% in Football to 87% in Akiyo. This is achieved with a

maximum BDPSNR loss of 0.067 dB or a maximum increase in BDBR of 0.956%,

and is thus negligible.

Table 4.26: Performance Comparison on IPPP Sequences in Terms of TS (%)

Method Proposed Lee et al.’s Enrquez et al.’s Jeon et al.’s
Sequences Format [32] [56] [109]
Carphone -71 -64 -39 -9

Claire -85 -74 -65 -20
Coastguard QCIF -67 -47 -28 -7

Highway -79 -73 -53 -12
Miss-America -81 -75 -60 -20

News -76 -63 -57 -19
Akiyo -87 -76 -62 -22

Container -75 -69 -55 -23
Football CIF -67 -48 -23 -10
Foreman -66 -62 -36 -10
Mobile -69 -56 -29 -6
Paris -65 -54 -40 -15

Average -74 -63 -46 -14

Table 4.27: Performance Comparison on IPPP Sequences in Terms of BDP-
SNR (dB)

Method Proposed Lee et al.’s Enrquez et al.’s Jeon et al.’s
Sequences Format [32] [56] [109]
Carphone -0.02 -0.09 -0.06 0.01

Claire -0.04 -0.08 0.01 0.01
Coastguard QCIF -0.02 0.00 -0.04 -0.01

Highway -0.03 0.01 -0.08 -0.02
Miss-America -0.04 -0.06 0 0

News -0.03 -0.05 -0.03 -0.02
Akiyo -0.01 -0.03 0 0

Container -0.04 -0.02 -0.01 0.01
Football CIF -0.07 -0.04 0 0
Foreman -0.06 -0.04 -0.03 0
Mobile -0.02 -0.04 -0.02 -0.01
Paris -0.06 -0.02 -0.05 0

Average -0.04 -0.04 -0.02 0
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Table 4.28: Performance Comparison on IPPP Sequences in Terms of BDBR
(%)

Method Proposed Lee et al.’s Enrquez et al.’s Jeon et al.’s
Sequences Format [32] [56] [109]
Carphone 0.14 0.10 0.84 -0.27

Claire 0.45 -0.02 -0.17 0.1
Coastguard QCIF 0.56 0.06 1.74 0.12

Highway 0.25 1.50 2.55 0.67
Miss-America 0.39 -0.36 0.01 -0.14

News 0.36 -0.14 0.65 0.24
Akiyo 0.11 -0.33 -0.14 -0.29

Container 0.52 -0.67 0.18 -034
Football CIF 0.78 0.67 0.03 0.01
Foreman 0.91 0.34 0.49 -0.05
Mobile 0.39 0.87 0.34 0.17
Paris 0.95 0.53 0.89 0.03

Average 0.48 0.21 0.61 0.02

Table 4.26, Table 4.27 and Table 4.28 show the performance comparison of the

proposed framework in term of TS, BDPSNR and BDBR, respectively. The com-

parison is made with Jeon et al.’s [109], Enrquez et al.’s [56], and Lee et al.’s [32]

algorithms for various sequences with IPPPP coding structure. The simulation re-

sults illustrate that the proposed framework also outshines Jeon et al.’s, Enrquez

et al.’s and Lee et al.’s in terms of time saving Ts by 60%, 28% and 11% on the

average, respectively. Jeon et al.’s, Enrquez et al.’s and Lee et al.’s algorithms

have reduced the coding time on the average 14, 46, and 63%, respectively with

the average of 0.221, 0.278, and 0.270 % increment in BDBR and 0, 0.02 and 0.04

dB losses in BDPSNR, respectively.

The Rate Distortion (RD) curves of the proposed framework and JM reference full

search algorithm RDO are demonstrated in Fig.4.16. It shows that the proposed

framework achieves a similar RD performance as that of the JM reference software

exhaustive mode decision technique.
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Figure 4.16: RD Curves of Proposed Framework and Reference Software for
IPPPPP Sequences

4.4.4.2 Experiments on All Intra Frames Sequences

In this simulation, for each sequence 300 frames are encoded. The period of I-

frames is set to 1.

Table 4.29: Performance Comparison of All Intra Frame Sequences in Terms
of TS (%)

Method Pan et al.’s Wang et al.’s Bharanitharan et al.’s Proposed
Sequences Format [65] [83] [76]

News -55.34 -58.03 -68.02 -73.06
Container QCIF -56.36 -57.32 -67.74 -79.53

Silent -65.17 -60.66 -69.46 -71.77
Coastguard -55.03 -57.78 -69.26 -76.51

Mobile -59.09 -58.07 -68.89 -75.64
Paris CIF -57.78 -58.78 -67.83 -71.44
Stefan -57.97 -58.56 -67.04 -70.12

Tempete -57.70 -56.86 -69.53 -75.95
Average -58.06 -58.26 -68.47 –74.25
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Table 4.30: Performance Comparison of All Intra Frame Sequences in Terms
of BDPSNR (dB)

Method Pan et al.’s Wang et al.’s Bharanitharan et al.’s Proposed
Sequences Format [65] [83] [76]

News -0.294 -0.348 -0.285 -0.298
Container QCIF -0.234 -0.293 -0.241 -0.256

Silent -0.183 -0.255 -0.232 -0.287
Coastguard -0.106 -0.255 -0.181 -0.149

Mobile -0.255 -0.237 -0.250 -0.286
Paris CIF -0.23 -0.274 -0.288 -0.268
Stefan -0.242 -0.301 -0.290 -0.312

Tempete -0.229 -0.254 -0.252 -0.254
Average -0.221 -0.278 -0.270 -0.264

Table 4.31: Performance Comparison of All Intra Frame Sequences in Terms
of BDBR (%)

Method Pan et al.’s Wang et al.’s Bharanitharan et al.’s Proposed
Sequences Format [65] [83] [76]

News 3.902 4.451 3.439 3.621
Container QCIF 3.695 4.44 2.976 3.685

Silent 3.54 4.58 4.013 4.992
Coastguard 2.361 4.034 2.820 2.585

Mobile 3.168 2.871 2.860 3.104
Paris CIF 3.21 3.678 2.891 3.487
Stefan 3.717 3.889 3.730 3.721

Tempete 3.514 3.735 3.601 3.482
Average 3.388 3.960 3.270 3.584

Table 4.29, Table 4.30 and Table 4.31 show the comparison of the proposed frame-

work with three previous intra prediction mode selection techniques Pan et al.’s

[65], Wang et al.’s [83] and Bharanitharan et al.’s [76] in terms of TS, BDPSNR

and BDBR, respectively.

Experimental results display that the proposed scheme reduces the encoding time

by 74.25% on the average with negligible coding loss in terms of BDPSNR and

BDBR i.e by the amount of 0.264 dB and 3.584%, respectively. The proposed

scheme also outperforms Pan et al.’s, Wang et al.’s and Bharanitharan et al.’s in

terms of TS by 11.44%, 11.24% and 4.93% on the average, respectively. Where
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Pan et al.’s, Wang et al.’s, and Bharanitharan et al’s algorithms have reduced the

coding time on the average 58.05, 58.26 and 69.32%, respectively with the average

of 0.221, 0.278, and 0.270 dB losses in BDPSNR and 3.338, 3.960, and 3.270%

increments in BDBR, respectively.

Table 4.32: Experimental Results of All Intra Frame Sequences

Sequences Format TS (%) BDBR (%) BDPSNR (dB)
Foreman -69.16 4.649 -0.312
Carphone -74.61 3.946 -0.269

Claire -82.63 2.318 -0.13
Coastguard QCIF -75.64 2.585 -0.149
Container -79.53 3.685 -0.256

News -73.06 3.621 -0.298
Silent -71.77 4.992 -0.287
Akiyo -84.07 2.107 -0.155
Mobile -75.64 3.104 -0.286
MaD CIF -76.59 2.264 -0.131
Paris -71.44 3.487 -0.268
Stefan -70.12 3.721 -0.312

Tempete -75.95 3.482 -0.254
Flower -66.35 4.814 -0.337

Football -67.47 4.528 -0.259
Intros NTSC -75.17 3.242 -0.139

Vtc1nw -80.03 2.825 -0.159
Washdc -70.53 3.326 -0.262
Galleon -74.26 2.985 -0.241
Mobcol -70.29 3.336 -0.171
Parkrun 720p -64.97 4.237 -0.294
Shields -68.01 3.743 -0.268

Stockholm -70.85 2.615 -0.179
Pedestrain area -76.36 2.679 -0.202

Rush hour 1080p -72.67 2.967 -0.18
Riverbed -73.48 3.367 -0.228
Sunflower -77.3 3.408 -0.231
Average -73.63 3.409 -0.232

Table 4.32 shows the simulation results of the proposed framework in all intra

encoding structures for variety of video sequences. It indicates that the proposed

framework achieves 73.63% encoding time saving, which means that the proposed
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framework only takes about 1/4th of the time that is taken by the exhaustive search

algorithm in JM12.2. This time saving is achieved with negligible loss in BDPSNR

(0.337 dB) and increments in BDBR ( 3.409%). The proposed framework shows

a consistent gain in encoding time savings for all sequences ranging from 64.97%

in Parkrun to 84.7% in Akiyo. This is achieved with a maximum BDPSNR loss

of 0.067 dB or a maximum increase in BDBR of 4.992%, and is thus negligible.

The Rate Distortion (RD) curves of the proposed framework and JM reference

exhaustive mode decision algorithm are demonstrated in Fig.4.17. It explains

that the proposed framework achieves almost similar RD performance as that of

the JM reference software full search algorithm.
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Figure 4.17: RD curves of Proposed Framework and Reference Software for
All Intra Frame Sequences
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4.5 Summary

This chapter presents an efficient framework for macroblock prediction to minimize

the computational complexity of the macroblock prediction process. It consists

of several innovative algorithms to decide macroblock prediction type, prediction

modes and block size (intra or inter), skip macroblock early detection, appropri-

ate block size selection for intra prediction, directional mode selection for intra

prediction and inter mode (block sizes) selection. This framework exploits spa-

tial and temporal statistics of video sequence in order to exclude as many intra

and inter prediction modes as possible prior to the RDO process. Experiments

indicate that the presented framework reduces the encoding time up to 74% with

0.032 dB decrease in BDPSNR and 0.461% increase in BDBR as compared to

exhaustive RDO method. The suggested framework is equally beneficial for desk-

top and power-critical embedded systems having constraints of processing and

computational power.
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Chapter 5

COMPLEXITY REDUCTION OF MOTION

COMPENSATION

5.1 Introduction

In predictive coding, motion compensation is performed to temporally predict a

macroblock. In H.264/AVC, motion compensation takes about one-fourth of the

decoding time and also takes significant part of encoding time [36]. It comprises

two modules i.e. data manipulation and interpolation. Both of these modules

contribute significantly to increase the computational complexity of motion com-

pensation and need to be optimized. Most of the existing techniques related to

complexity reduction of motion compensation algorithm either address the com-

putational complexity issue related to the data manipulation module or the data

interpolation module. Few techniques which cover both the aspects do not fully

optimize the looping overhead, access of memory and the interpolation process.

This chapter presents a computationally efficient scheme for motion compensation

in order to perform inter prediction of a macroblock. The proposed technique

creates margin around the reference frame to prevent the clipping of unrestricted

motion vectors. Moreover, it uses the inter prediction mode (variable block sizes)

information of a macroblock to reduce the looping overhead and repeated access

of memory. Furthermore, to speedup the interpolation process, parallelism is

exploited at both coarse-grained and fine-grained levels that enable simultaneous

calculation of multiple predicted samples with the help of SIMD instructions.

Experimental analysis indicate that the suggested technique significantly reduced

the computational complexity of the motion compensation process without loss in

video quality.
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The rest of chapter is organized as follows: Section 5.2 presents the proposed

technique for the motion compensation. Experimental results are described in

Section 5.3. Summary of this chapter is presented in Section 5.4.

5.2 Proposed Scheme

As discussed in section 3.2.1, the major factors contributing to the computational

complexity of the reference software implementation of motion compensation algo-

rithm include clipping of unrestricted motion vectors, looping overhead, repeated

access of motion vectors, reference frame indices, prediction list utilization flags

and pixel data from memory, and sequential calculation of predicted sample val-

ues. In the proposed scheme, these factors in the reference implementation of

motion compensation algorithm are handled in three different stages. The first

stage belongs to edge creation around the reference frame that helps to prevent

the clipping of unrestricted. In the second stage, macroblocks are separated on the

basis of inter prediction mode information (macroblock or sub-macroblock parti-

tioning) to reduce the looping overhead and repeated access of memory. Finally,

the SIMD optimization is performed for the simultaneous calculation of multiple

predicted samples. The first two stages of the proposed scheme reduce the perfor-

mance degradation in data manipulation module and the last one simplifies the

linear interpolation module of motion compensation. The block diagram of the

proposed scheme is shown in Fig. 5.1.
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Figure 5.1: Block Diagram of the Proposed Scheme

5.2.1 Edge Creation

In the reference implementation, the clipping process has to be performed before

reading of each pixel value from the memory. The basic purpose of clipping opera-

tion is to cater for unrestricted motion vectors that cause accessing illegal memory

location. Generally, the edge pixel values are indicated by the unrestricted mo-

tion vectors. So, the clipping operations enforce the reading of edge pixel values

corresponds to unrestricted motion vectors. Such a clipping process contributes

significantly to the computational complexity of motion compensation module.

For the motion compensation of single frame of CIF resolution (352× 288) having

only full pel cases the clipping operation on the average would have to be performed

202240 times taking into account intra macroblocks in inter frame. This clipping

count further increases if the the frame has sub pixel prediction cases.

To prevent the clipping overhead, edges are created around the reference frame

by extending the border pixels up to 16 pixels (i.e. the size of macroblock). The

left and right edges are created by extrapolating the first and last column of the

reference frame. Similarly, the upper and lower edges are created by extrapolating
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the first and last row of the reference frame. The reason behind the 16 pixel

extension is that the motion vectors do not indicate outside the reference frame

more than one macroblock. In the proposed scheme integer pointer is used to

access frame data from memory which reduces access time. For accessing memory

through integer pointer, data should be byte aligned. The edge extension up to

one macroblock also maintains the byte alignment of data.

For performing edge extension of CIF size frame (352× 288), a total of 7680 copy

operations are required. While in the case of clipping, even for full pel case, the

clipping needs to be performed 202240 times. So the edge extension operation

is about 3.8% of the clipping operation. The edge extension along with the use

of integer pointer for data accessing from memory minimizes the computationally

complexity caused by clipping operation.

5.2.2 Blocks Separation

The H.264/AVC reference implementation performs motion compensation at 4×4

block level for all maroblock and sub-macroblock partitioning. The data manipu-

lation sub-module reads the motion vectors, reference frame indices and prediction

list utilization flags for the target block. After that a block from reference frame

is copied into the interpolation sub-module. Such a processing of macoblocks at

4 × 4 block level without taking into account the macoroblock inter prediction

mode causes a repeated access of same motion vectors, reference frame indices,

prediction list utilization flags and same pixel data from memory. These repeated

accesses of same data from memory contribute a lot in the computational complex-

ity of data manipulation sub-module. Macroblock and sub-macroblock partitions

are shown in Fig. 5.2.
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Figure 5.2: Macroblock and Sub-Macroblock Partitioning

Each partition corresponds to a particular macroblock mode which is given in

Table 5.1.

Table 5.1: Mode Information of Macroblock

Mode Macroblock and sub-
macroblock Partitioning

0 16× 16
1 16× 16
2 16× 8
3 8× 16
4 8× 8
5 8× 4
6 4× 8
7 4× 4

In the proposed methodology, data manipulation over head is reduced through

separtion of macroblcokos on the basis of prediction mode. Fig. 5.3. shows the

block diagram of this stage. This separation of macroblocks leads to a significant

gain in reading of motion vectors, reference frame indices and prediction list uti-

lization flags. These gains in terms of number of readings saved per macroblock

are listed in Table 5.2 for different macroblock and sub-macroblock partitioning.
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It also helps in reducing the processing load by avoiding repeated access of same

pixel values from memory.

Table 5.2: Memory Reading Saved Per MB

Mode Reading Per MB Gain per MB
JM Ref. algo-
rithm

Proposed al-
gorithm

0 16+16+16 1+1+1 15+15+15
1 16+16+16 1+1+1 15+15+15
2 16+16+16 2+2+2 14+14+14
3 16+16+16 2+2+2 14+14+14
4 16+16+16 4+4+4 12+12+12
5 16+16+16 8+8+8 8+8+8
6 16+16+16 8+8+8 8+8+8
7 16+16+16 16+16+16 0 +0+0
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Figure 5.3: Blocks Separation
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5.2.3 Generation of Predicted Sample Values

The H.264/AVC standard allows motion estimation for luma component at half-

pixel and quarter-pixel level. The predicted macroblock against fractional-pel

motion vector is generated through interpolation of reference frame. The interpo-

lation module generates the predicted blocks for each motion vector then arranges

all the predicted blocks to form predicted macroblock. For luma component, a six

tap interpolation filter [1 -5 20 20 -5 1]/32 is employed to compute a predicted

macroblock corresponds to half-sample position motion vector. The averaging

of two half-sample position values gives the quarter-pel position value. On the

other hand, a bilinear filter is employed to predict the chrominance component of

macroblock pointing by sub sampled motion vectors.

In the reference implementation, the same pixel values are accessed repeatedly

from memory. The calculation of half-pel value required six full-pel pixel values.

For calculating two neighboring half-pixel values, five out of six values can be

reused. However, these pixels are read again from the memory. The repeated

access of memory places heavy load on the processors. Moreover, the generation

of predicted macroblock in case of half-pel and quarter-pel involves computation-

ally intensive arithmetic calculations. The interpolation process can be optimized

through exploitation of parallelism and reducing the repeated access of same mem-

ory.

At this stage of the proposed scheme, the predicted macroblock for each inter

prediction mode is generated based on motion vectors separately. This separation

of macroblocks based on the prediction mode reduces the looping overhead and

repeated memory access of same data from memory. Fig. 5.4. shows the block

diagram of this stage.
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Figure 5.4: Generation of Predicted Sample Values

In order to perform half-pel interpolation fine-grained method is applied for 6-tap
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filtering. While in quarter-pel interpolation coarse-grained methods is exploited

to process 4 × 4 block data simultaneously (parallel) with the help of SIMD in-

structions instead of computing pixel by pixel (sequential). The data reading is

also made faster through integer pointer.

For horizontal half-pel interpolation of 4 × 4 block, four pixels are loaded simul-

taneously using integer pointer. So it takes twelve load operations to read all the

48 pixels required for interpolation. This loading reduces the memory reading

overhead by one fourth. Each filter coefficient is represented in 8 bits, so four

coefficients are packed in 32 bit register. After that filtering is performed using

SIMD instructions for multiplication, packing, addition and shifting operations.

The Fig. 5.5. shows the reference implementation for half-pel horizontal interpola-

tion and Fig. 5.6. describe the calculation of half-pel horizontal case using SIMD

instructions ( dotpus4, packl4, sadd2, etc) of TMS6467 digital signal processor.

In the case of horizontal quarter-pel interpolation, first half-pel interpolation is

performed then averaging of full-pel and half-pel pixels gives quarter-pel location

pixels. The averaging can also be performed through SIMD instruction. Similarly,

vertical and diagonal half-pel and quarter-pel interpolation is performed. The

SIMD operations can also be used to optimize bilinear interpolation in case of

chroma component. Hence, the uses of SIMD instructions convert the sequential

interpolation process to parallel.

Figure 5.5: JM Reference Implementation of Half-Pel Case for Horizontal
Motion Compensation
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Figure 5.6: Proposed Implementation of Half-Pel Case for Horizontal Motion
Compensation

5.3 Experimental Results

The TM320DM6467 DaVinchi digital signal processor (DSP) is used for the evalu-

ation of the proposed motion compensation technique. This processor operates at

a clock rate of 594 MHz. Three test sequences namely, Mobile, Soccer and Foreman

are used for evaluation. The Mobile and Soccer are in CIF size while the Fore-

man is in QCIF (176× 1444) resolution. Furthermore, for impartial comparative

analysis of the proposed scheme with some other existing implementations, the

same set of inter prediction modes is allowed during generation of test sequences

as used in those studies. The test sequences are generated using baseline profile

configuration of H.264 encoder with first frame encoded as I while the remaining

as P frames. For encoding Mobile two separate schemes are presented, the first

one using all macorblock and sub-macroblock partitioning while the second one

using only 16× 16 macroblock sizes. The Soccer sequence is encoded using 4× 4,

8× 8, and 16× 16 block sizes and to encode Foreman sequence all block sizes are

used.

The experimental results depict that for all test streams in terms of consumed pro-

cessing power (mega cycles) the proposed scheme performs uniformly and equally

efficient. On the other hand, reference implementation consumes much more pro-

cessing power (mega cycles) with lots of variations for streams with different macor-

block and sub-macroblock partitioning. The Fig. 5.7 clearly depicts the stability
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and low computational complexity of the proposed technique. It can be concluded

that the proposed scheme on the average takes around 5 to 6 times lesser processing

power (mega cycles) as compared to JM reference implementation.

Figure 5.7: Comparison of the Proposed Scheme with JM Reference Imple-
mentation

The comparison of the proposed scheme with some existing techniques in terms of

percentage gain as compared to reference implementation is given in Table 5.3.

The proposed scheme achieves about 78.5% gain against reference implementation,

which is significantly greater than all the existing techniques.
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Table 5.3: Comparison of the Proposed Scheme with Other Schemes

Schemes % Gain against
Reference Imple-
mentation

Processor

Lee et al.’s [86] 41.18% Pentium 4 MMX
Bhatia [87] 44.44% Pentium 4 Processor
Sheshadri [88] 43.31% ARM9TDMI
Khan et al [82] 67.49% Trimedia PNX1300
Proposed 78.50% Texas Instruments

TMS320DM6467

5.4 Summary

The computationally efficient scheme for motion compensation is presented in this

chapter. The presented scheme significantly curtails the computational complexi-

ties of the motion compensation algorithm related to data manipulation and linear

interpolation by addressing the reasons of computational cost at different stage.

Furthermore, parallelism is introduced in the proposed scheme during calculation

of motion compensation values through SIMD instructions. The proposed scheme

decreases the time complexities by 5 to 6 times by reducing looping overhead,

repeated access of same pixel from memory, utilizing the memory resources and

processing resources. A comparative analysis with some recent optimized imple-

mentation scheme shows that the proposed scheme outperforms other competing

schemes and greatly enhances the efficiency of the motion compensation algo-

rithm. The proposed scheme can be effectively used in real-time applications of

H.264/AVC encoder and decoder.

The publish work related of this chapter :

Muhammad Asif, Masood Farooq and Imtiaz A. Taj, “ Optimized Implementation

of Motion Compensation for H.264Decoder ”, 5th International Conference on

Computer Sciences and Convergence Information Technology (ICCIT2010).
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Chapter 6

PARALLEL TASK ASSIGNMENTS IN

HYBRID HARDWARE-SOFTWARE VIDEO

CODING

6.1 Introduction

In this era, portable multimedia devices with their corresponding media technolo-

gies play an important role in our daily life. These devices perform multimedia

functionalities like video recording and playing, watching TV (mobile TV), video-

telephony, and video streaming. Highly efficient video coding at lower power con-

sumption is the fundamental requirement of these devices. The processors used in

these devices provide specific hardware resources to handle computationally inten-

sive video processing and interactive graphical applications. Moreover, processors

designed for low-power applications may introduce limitations on the availability

and usage of resources, which present additional challenges to the system design-

ers.

Owing to the specific design of the JZ47x series of mobile application proces-

sors, this chapter presents an end-to-end hybrid software-hardware implementation

scheme for H.264/AVC encoder. JZ47x is a series of low powered mobile appli-

cation processors highly suitable for battery operated portable devices. These

devices, for example, body worn video recorder, wireless video sensors, and video

streamer, require long operation time. This series of processors introduces an

innovative architecture to fulfill both high speed mobile computing and computa-

tionally intensive video coding requirements of portable multimedia devices. Par-

ticularly for H.264/AVC video coding, JZ47x processors (JZ4760, JZ4770, and

117



JZ4780) are equipped with dedicated hardware processing units of some encoder

blocks. They have two major cores, that is, a Central Processing Unit (CPU)

and a Video Processing Unit (VPU), where the VPU core controls the dedicated

hardware processing units. They also have general-purpose direct memory access

units (DMAs) for efficient data transfer and management during video coding. Al-

though JZ47x architecture has the ability to meet the computational requirements

of H.264/AVC encoder, it places certain limitations on the system designer as well.

The efficient implementation of H.264/AVC encoder for the JZ47x processors is a

challenging task because some of the encoder blocks are implemented in hardware

and others need to be implemented in software. As H.264 encoder has an inte-

grated framework, where task dependency is large, the encoder tasks distribution,

scheduling, and synchronization among hardware and software modules are a real

test of designer skills. Moreover, it demands efficient memory management and

simultaneous exploitation of all processing units for achieving real-time encoding.

In this work, JZ4770 is taken as an example to implement the proposed scheme.

The proposed scheme distributes the encoding tasks among hardware and software

modules. The small size of on-chip memories and restrictions imposed by hardware

processing units cause large data transferring among memories during the encoding

process. To reduce this data transferring, several optimization techniques are

proposed in this work. The hardware video processing units and DMAs need to be

configured before each execution and take a prescribed amount of time to perform

the assigned tasks. Because of inherent task and data dependencies in H.264/AVC

encoder, the processor remains blocked during that time. This time is named as

processing or polling time. It also causes the idling of hardware processing units.

To reduce the polling and idling time of hardware processing modules, a pipelined

design for encoder is proposed after exploiting fine grain macroblock (MB) level

parallelism in which multiple macroblocks (MBs) are processed in parallel. Finally,

a mechanism is developed to efficiently distribute the computational load among
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CPU and VPU cores to increase the encoding rate.

The rest of the chapter is organized as follows. Section 6.2 describes the JZ4770

platform architecture. The proposed scheme is described in Section 6.3. Encoder

performance is evaluated in Section 6.4. Finally, the summary is presented in

Section 6.5.

6.2 JZ4770 Architecture

The JZ4770 is an asynchronous multiprocessor (AMP) architecture. CPU and

VPU are its major cores. The CPU core contains main processor (named as J1)

which operates at a clock rate of 1000 MHz. On the other hand, VPU core has

Auxiliary Processor (AUX) which operates at a clock rate of 500 MHz. Both

J1 and AUX are MIPS (Microprocessor without Interlocked Pipeline Stages). A

master slave model exists between J1 and AUX. The operating system kernel uses

J1 while the users can program the AUX. J1 loads binary on AUX and commands

it to start execution.

The video processing units for H.264 encoding are vector matrix arithmetic unit

(VMAU), motion compensation and estimation engine (MCE), and de-block (DBLK).

There are three types of on-chip memories including two tightly coupled shared

memories TCSM0 (16 KB) and TCSM1 (48 KB) along with SRAM (scratch RAM

28 KB). Furthermore, DMA0, DMA1, and DMA2 are three general-purpose DMAs

coupled with TCSM0, TCSM1, and SRAM, respectively [111],[112]. These DMAs

support three different data transfer types, that is, byte, short, and integer.

The hardware video processing units and DMAs need to be configured before each

execution and do not support multiple instances. They take a prescribed amount

of time to perform the assigned tasks.The constraints of these hardware processing

units are that they operate at MB level and take input/output data from/to on-

chip memory. But the reference frames used by MCE module are allocated on
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Figure 6.1: Hardware Software Co-Design for H.264/AVC Encoder

main memory. The current and reference frames are allocated on main memory

because of limited size of on-chip memories.

6.3 Proposed Scheme

6.3.1 H.264/AVC Porting to JZ4770

The sequential software (C code implementation) based x264 encoder is ported

on JZ4770 platform. In this work, baseline profile of encoder is used due to its

low complexity as compared to the main and extended profiles. To distribute

the encoding tasks among software and hardware processing units, x264 encoder

is transformed into a highly modular and flexible structure. In this structured

encoder, all the functional modules are independent software modules. It allows

an easy replacement of the software modules with their corresponding hardware

processing units.

As shown in Fig.6.1, hardware processing units replace the demarcated function-

alities. MCE module replaces motion estimation and compensation. The VMAU

module replaces the software functions that perform intra prediction, residual cal-

culation, DCT/IDCT, Q/IQ, and MB reconstruction. The DBLK module is used

to remove de-blocking artifacts from reconstructed frame. The software modules
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include intra prediction mode selection, reordering, Context-Adaptive Variable-

Length Coding (CAVLC), edge extension, bit-rate control, file reading or video

capturing, and file writing. All these software modules execute main processor.

The main processor is also responsible for the configuration of hardware modules

before each execution.

6.3.2 H.264/AVC Encoder Data Dependencies and Profil-

ing Analysis

Before optimization, parallel processing, and tasks mapping to speedup the H.264/AVC

video encoder, an extensive analysis is required. This analysis encompasses com-

putational requirements of various functional elements of the encoder and data

dependencies among them.

On-Chip MemoryCurrent MB MCE

Intra

Inter

VMAU

On-Chip MemoryCAVLC

Deblock FilterOn-Chip Memory

Reconstructed MB

Top MB 4 Rows

Current MB 4 Rows

Filtered Output

Reconsructed Frame

intra mode selection

On-Chip Memory

Quantized 

Coefficients

Figure 6.2: MB Level Processing Flow of Hybrid Encoder

In H.264/AVC encoding, MB is a basic processing unit of a frame. For encoding

the frame, raw data of each MB is transferred from main memory to on-chip

memory. The encoding mode of MB is selected either intra or inter. For intra

mode, the inputs to VMAU unit are raw MB data and intra prediction mode. For

inter mode, the inputs are raw MB data and motion compensated data. In intra

encoding, the suitable intra prediction mode selection is done through software

module. The VMAU is configured for intra mode. The outputs of VMAU unit are

quantized coefficients, coded block pattern (CBP), and reconstructed MB. Entropy

coding encodes quantized coefficients and CBP, while the DBLK unit removes the
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blocking artifacts of reconstructed MB. The output of DBLK unit is transferred

from on-chip memory to reconstructed frame on main memory. In inter encoding;

the MCE processing unit performs motion estimation. The outputs of MCE are

motion vectors and motion compensated data. The VMAU is configured for inter

mode. The rest of processing is similar to intra mode encoding.

Fig.6.2 indicates the sequential dependencies between functional modules of the

encoder; that is, the output data of one module corresponds to the input data of

another subsequent module. Because of these dependencies, one hardware pro-

cessing unit is used at a time and all the remaining units are idle. To assure

the compliance of the whole set of strict dependencies imposed by the encoder, it

can be observed that the exploitation of fine-grained level parallelism may help to

minimize the idling time of hardware processing units.

Figure 6.3: Time Breakdown of Hybrid Encoder

Fig. 6.3 represents the breakdown of hybrid H.264/AVC encoder processing time

with respect to the various functional modules. In order to evaluate the computa-

tional complexity of the encoder, NTSC resolution test video sequences including

Mobile, Football, Intros, Garden, Galleon, Vtc1nw, and Washdc are encoded. The

encoding parameters are set as follows: MV search range is 32 to +32 pels and

block size is 16×16, RD optimization is disabled, one reference frame is for mo-

tion estimation and compensation, motion estimation scheme is diamond search,
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MV resolution is 1/4 pel, GOP is chosen as 25 with structure IPPP, and four

quantization parameters (QPs) are 24, 28, 32, and 36.

Fig. 6.3 shows that data copying/transferring among memories is a dominant

task taking about 30% of the total processing time. This data transferring is

necessary because of the restrictions imposed by the hardware processing units

and the limited sizes of on-chip memories. On the other hand, VMAU, MCE, and

DBLK take significant portion of the overall processing time.The time taken by

these hardware modules is their configuration and processing time. The CAVLC,

Zigzag scanning, and others take the rest of the processing time.

Considering the above analysis, there is a need to exploit the parallelism in encoder

for efficient utilization of hardware resources by reducing their idling and polling

time. Moreover, efficient memory management is required to reduce the data

transferring and copying operations during the encoding process.

6.3.3 Optimization Techniques for Memory Management

and Data Transfer

From the profiling analysis presented in section 6.3.2, it is clear that data trans-

ferring and accessing among memories is the most computationally intensive task.

This section presents numerous optimization techniques to reduce the data trans-

ferring time and to increase data reuse ratio.

6.3.3.1 Memory Efficient Design for DBLK Module

The de-blocking filtering of an MB needs pixel data from neighboring MBs, i.e.,

top MB bottom edge (last four rows (4×16)) and left MB right edge (last four

columns (16×4)). The memory constraint of the hardware DBLK unit is that the

current MB and left MB right edge data must be adjacent in on-chip memory for

both input and output as shown in Fig.6.4.
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Figure 6.4: Input and Output Data Placement of DBLK Module

The outputs of DBLK unit are reconstructed filtered pixel data of current MB

(16×16), top MB bottom edge (4×16), left MB right edge (16×4), and non filtered

current MB bottom edge (16×4). The pixels data of top MB bottom edge can

be placed anywhere in on-chip memory. The left MB right edge and top MB

bottom edge is usually copied from reconstructed frame on main memory to on-

chip memory. Similarly, the output generated by DBLK module is copied from

on-chip memory to main memory. This data transferring is necessary because

reconstructed frame is stored on the main memory due to limited size of on-chip

memory. In order to reduce these data copying operations, an efficient memory

design for DBLK module is proposed as shown in Fig.6.5.

According to this design, the output of VMAU module is taken as the input to

the DBLK module. This avoids data coping of current MB from main memory to

on-chip memory. Moreover, the output of the DBLK module is stored adjacent

to its input (current MB reconstructed pixel data from VMAU module) in such a

way that the right edge of output overlaps with the left edge of its input as shown

in Fig.6.5. This eliminates the need of copying the right edge of left MB, required

in next iteration. The non-filtered current MB bottom edge, output of DBLK is

stored in on-chip memory in such a way that the bottom edge of complete MB

row of a frame is stored in contiguous memory. In this way, it can be reused as top

MB bottom edge non-filtered input of DBLK module for next MB row processing.

Finally, only the filtered output is copied in reconstructed frame. The boundary

cases, i.e., top MB row, left MB column and bottom MB row, have been handled
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Figure 6.5: Design for DBLK Module

as per requirement. This design resulted in increasing the data re-usability and

avoiding the excessive data copying operations.

6.3.3.2 Efficient Data Transfer

As mentioned in section 6.2, hardware video processing units take input from

and store output data to on-chip memories. Because of the limited size of on-

chip memories, input and reconstructed frames are stored on main memory. For

processing a frame, each MB data is copied to the on-chip memory. Similarly, the

reconstructed MB needs to be transferred from on-chip memory to main memory.

This requires multiple data transfer operations in which memory copy routines do

involve CPU. This is a time consuming task as the CPU cannot execute any other

operation during this time. The DMA is a handy tool to carry out these transfers

without invoking the CPU.

In the proposed scheme, DMAs are used to speedup the data transferring among
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memories. Moreover, on-chip memory allocation for current and corresponding re-

constructed MB is done in such a way that all DMAs (DMA0, DMA1 and DMA2)

can be performed in parallel for transferring data among memories. The memory

for current MB is allocated on TCSM0 while its corresponding reconstructed fil-

tered pixel data and left MB right edge is stored on TCSM1. The SRAM is used

for storing reconstructed filtered pixels data of top MB bottom edge. Such memory

allocation helps in performing all DMAs in parallel to speedup the data transfer-

ring. DMA0 is responsible for transferring current MB data from main memory

to on-chip memory TCSM0 for encoding. The reconstructed MB is transferred

back from on-chip memories TCSM1 and SRAM to main memory through DMA1

and DMA2, respectively. The data transfer size of DMA0 for an MB is 384 bytes.

The DMA1 and DMA2 transfer 288 bytes and 96 bytes of data in each execu-

tion, respectively. For an MB encoding, 384 bytes of data is transferred from main

memory to on-chip memory and vice versa. The DMAs incorporation in the design

speeds up the data transferring during the encoding process.

6.3.3.3 Algorithmic Optimization using SIMD Instructions

Zig-Zag scanning and edge extension algorithms belong to the software part of hy-

brid encoder because their support is not available in hardware. These algorithms

involve multiple memory access and data copying operations that significantly

contribute in computational cost. This section describes the optimization of these

algorithms using SIMD instructions to speedup the encoding. The SIMD instruc-

tions enable multiple arithmetic or logic operations to be executed simultaneously.

Ingenic processor JZ4770 provides 60 SIMD instructions for the multimedia codec

optimization [113]. These instructions operate on 32 bits registers.

Zig-Zag scanning is performed on quantized coefficients before entropy encoding.

The 16 bits quantized coefficients are accessed from on-chip memory. In this work,

32 bits load and store operations are used to make quantized coefficients loading

and storing faster.The SIMD instructions are also used to arrange two coefficients
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(a)

// Optimized Implementation for Zig-Zag Scanning

{

/*

For Input 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

  Output  after Zig-Zag scannig is  

  1 2  5 9  6 3   4 7  10 13   14 11   8 12    15 16

*/

/* load quantized cefficents to MXU registers */

  S32LDD(xr1,dct,0x0);    // xr1 =  2 1      

  S32LDD(xr2,dct,0x4);    // xr2 = 4 3     

  S32LDD(xr3,dct,0x8);    //  xr3 = 6 5

  S32LDD(xr4,dct,0xc);    // xr4  =8  7

  S32LDD(xr5,dct,0x10);   // xr5 =10 9

  S32LDD(xr6,dct,0x14);   // xr6 =12 11

  S32LDD(xr7,dct,0x18);   // xr7 =14 13

  S32LDD(xr8,dct,0x1c);   // xr8 = 16 15

 /* adjust positions  of coefficients according to Zig-Zag order  */

  S32SFL(xr9,xr6, xr4,xr10,3);//xr6 =12 11 xr4=8 7  xr9=12 8  xr10=11 7 

  S32SFL(xr4,xr10,xr7,xr6, 3);//xr10=11 7 xr7=14 13 xr4=11 14 xr6=7 13

  S32SFL(xr7,xr6, xr2,xr10,3);// xr6=7 13  xr2=4  3  xr7=7 4 xr10=13 3

  S32SFL(xr6,xr10,xr5,xr2, 3);//xr10=13 3 xr5= 10 9 xr6= 13 10 xr2= 3 9

  S32SFL(xr5,xr2, xr3,xr10,3);//xr2=3 9  xr6= 6  5   xr5=3     6  xr10= 9 5

 /* reordered coefficients are stored to main memory from  MXU registers */

  S32STD(xr1, level,0x0);     // xr1= 2 1

  S32STD(xr10,level,0x4);    // xr10= 9 5

  S32STD(xr5, level,0x8);    //  xr5=3 6

  S32STD(xr7, level,0xc);    // xr7=7 4

  S32STD(xr6, level,0x10);  // xr6=13 10

  S32STD(xr4, level,0x14); // xr4=11 14

  S32STD(xr9, level,0x18); // xr9= 12 8

  S32STD(xr8, level,0x1c); // xr8=16 15

(b)

// Optimized Implementation for top edge extension of luma component

  for (j=0;j<(Lwidth/16);j++)

  {

      S32LDD(xr1,ExtndDataUP_Inp,0x0); // loading data

      S32LDD(xr2,ExtndDataUP_Inp,0x4);

      S32LDD(xr3,ExtndDataUP_Inp,0x8);

      S32LDD(xr4,ExtndDataUP_Inp,0xc);

      for (i=0;i<16;i++)

       {

          S32STD(xr1, ExtndDataUP_Out,0x0); // edge  extension

          S32STD(xr2, ExtndDataUP_Out,0x4);

          S32STD(xr3, ExtndDataUP_Out,0x8);

          S32STD(xr4, ExtndDataUP_Out,0xc); 

          ExtndDataUP_Out+=4;

        }        

        ExtndDataUP_Inp+=64;

  }

 

Figure 6.6: (a) SIMD Implementation of Zig-Zag Scanning (b) SIMD Imple-
mentation of Edge Extension

simultaneously instead of one. Fig.6.6(a) shows the Zig-Zag scanning algorithm

optimization using SIMD instructions (S32LDD, S32SFL and S32STD). In which

quantized coefficients are loaded from on-chip memory to dedicated MXU registers

(xr1-xr8) using S32LDD instruction. After that, S32SFL is performed on these

registers in pairs to adjust the positions of coefficients according to Zig-Zag order.

Then final reordered coefficients are stored to main memory from dedicated MXU
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registers (xr1, xr10, xr5, xr7, xr6, xr4, xr9 and xr8) using S32STD instruction.

The S32SFL(r1, r2, r3, r4, 3) is packing instruction. This instruction packs the

two most-significant halfwords (16 bits) from the arguments r2 and r3 into r1. The

halfword from r2 is packed into the most-significant halfword of r1; the halfword

from r3 is packed into the least-significant halfword of r1. Similarly, it also pack

two least-significant halfwords from the arguments r2 and r3 into r4.

For performing motion estimation, the reference frame is padded all around. This

edge extension may be several pixels wide, depending on the motion estimation

mode. The upper and lower edges are generated by copying the first and last row

of the frame into the border or edges. Similarly, left and right edges are generated

by copying the first and last column of the frame into the border. In this work,

32 bits loading and storing operations are used instead of 8 bits operations. The

use of SIMD instructions help to extend four pixels in parallel. Fig.6.6(b) shows

the top edge extension using SIMD instructions (S32LDD and S32STD).

Table 6.1 lists the achieved speedup gain through each optimization technique.

Table 6.1: % Gain Through Optimization Techniques

Encoder Modules % Gain
Data Transfer 27%
DBLK Design 32%

Edge extension and Zig-Zag 35%

6.3.4 Encoder Pipeline Design

Considering the data dependency analysis made in section 6.3.2, it is observed that

the heterogeneous structure of the H.264/AVC encoder have inherent sequential

modular data dependency i.e., output of one module becomes input of its sub-

sequent module. Because of that modular dependency one hardware processing

unit is used at a time and all of the other units remain idle. Moreover, the polling

of hardware processing units and DMAs take significant part of encoding time.
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These factors not only decreases the throughput of hardware processing unit but

also has adverse affect on encoder performance. For efficient utilization of all

hardware processing units and reducing polling time, a pipeline design for H.264

encoder has been proposed after exploiting fine-grained parallelism at MB level.

Exploiting MB level parallelism requires satisfying the data dependencies between

MBs. For a given MB, intra prediction, inter prediction, de-block filtering and

entropy encoding need data from neighboring (left, top, top left and top right)

MBs. This data include pixel data, prediction mode, motion vectors, number of

non zero coefficients and etc. The simplest way to resolve all these dependencies

is to process MBs in scan order.

In proposed design, an MB encoding process is divided into several stages and

each stage is executed on a separate processing core. After that these processing

cores are pipelined at MB level through which multiple MBs are processed simul-

taneously in scan order. For processing intra and inter MB, a pipeline design is

described below.

Intra MBs: The encoding task for intra MB is performed in four major pipeline

stages. These stages are DMA0 stage (transfers raw MB data from main memory

to on-chip memory), VMAU stage, DBLK+CAVLC stage (this stage performs

de-block filtering and entropy encoding in a same time slice) and DMA1 stage

(transfers filtered reconstructed MB data from on-chip memory to main memory).

Each intra MB goes through the final DMA1 stage after four MBs cycle time

latency. This four stage pipeline for intra mode is shown in Fig.6.7.

Inter MBs: The encoding task for inter MB is performed in five major pipeline

stages. These stages are DMA0 stage, MCE stage (perform motion estimation),

VMAU stage, DBLK+CAVLC stage and DMA1 stage. The MB0 goes through
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Figure 6.7: Four Staged Pipeline for Intra MB’s

the DMA1 stage after five MBs cycle time latency. This five stage pipeline for

inter mode is shown in Fig.6.8.
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Figure 6.8: Five Staged Pipeline for Inter MB’s

Fig.6.9 presents the pseudo-codes of proposed encoder pipelined design. In which

hardware modules for processing current MB are configured before polling them

for previous MB. The usage of hardware modules in this way reduce the polling

time.

To show the advantage of the proposed pipelined design, profiling analysis is car-

ried out before and after exploiting the MB level parallelism.The time taken by

each module in hybrid encoder before pipelined design is shown in Fig.6.10. Table

6.2 shows that the polling and configuration of hardware video processing units

take 51% and 20% of total processing time, respectively.
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while(mbno < total_mbs+n) 

{         //where n=no. of pipeline stages - 1

// DMA0 Stage

  If(mbno < total_mbs)

           Configure DAM0 ()  // for current MB

           If(mbno>0)  

                 Poll DMA0()     // for previous MB

   End If                 

          exeute DMA0()     // for current MB

          If( last MB)                

               Poll DMA0()  // for current MB 

       End If          

     End If  

// MCE Stage    

     If(slice is P_TYPE)

     mbno_mce = mbno-1;

     If(mbno_mce>=0 && mbno_mce<total_mbs)

          If(mbno_mce>0)

                       If( current MB is inter type)

                      Configure MCE () // for current MB

                        End If

              If( prvious MB is inter type)

                poll MCE()   // for previous MB

                End If

                End If                 

                 If( current MB is inter type)

                    exeute MCE()      // for current MB 

       If( last MB)

        Poll MCE() // for current MB

               End If

           End If

       End If 

    End If

// VMAU Stage

 mbno_vmau=mbno-2;

    If(mbno_vmau>=0 && mbno_vmau<total_mbs)

           Configur VMAU()      // for current MB  

         If(mbno_vmau > 0 )

         poll VMAU()              // for previous MB

      End If         

      exeute VMAU()      // for current MB

      If(last MB) 

              poll VMAU()       // for current MB

 End If         

    End If

// DBLK Stage

    mbno_dblk=mbno-3;

 If(mbno_dblk>=0 && mbno_dblk<total_mbs)

         Configur DBLK()       // for current MB

      If(mbno_dblk>0)

             Poll DBLK()              // for previous MB

      End If  

      exeute DBLK()      // for current MB

         Entropy encoding ()     // for current MB

      If(last MB)

        poll DBLK()    // for current MB

      Endif  

     End If        

// DMA12 Stage

   mbno_dma12=mbno-4;

If(mbno_dma12>=0 && mbno_dma12<total_mbs)

         Configur DMA12()    // for current MB

         If(mbno_dma12>0)

         Poll DMA12()          // for previous MB

      End If

      exeute DMA12()      // for current MB

      If(last MB)

           poll DMA12()     // for current MB

      End If

  End If

  mbno++;

}

Figure 6.9: Pseudo-Code of Proposed Encoder Pipelined Design

Table 6.2: % of Total Processing Time Taken by HW Processing Units Before
Pipelined Design

HW Processing Configuration Polling Total
Units Time Time Time

VMAU 2% 12% 14%
MCE 1% 13% 14%
DBLK 7% 12% 19%
DMA0 3% 7% 10%

DMA1,2 7% 7% 14%
Total 20% 51% 71%
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Figure 6.10: Time Breakdown before Pipelined Design

After pipelined design, the distribution of processing time among different encod-

ing blocks is shown in Fig.6.11. Table 6.3 shows that polling time reduces from

51% to 6%.

Figure 6.11: Time Breakdown after Pipelined Design

Table 6.3: % of Total Processing Time Taken by HW Processing Units After
Pipelined Design

HW Processing Configuration Polling Total
Units Time Time Time

VMAU 9% 1% 10%
MCE 3% 2% 5%
DBLK 12% 1% 13%
DMA0 3% 1% 4%

DMA1,2 7% 1% 8%
Total 34% 6% 40%
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6.3.5 Encoder Partitioning between CPU and VPU Cores

Even though the pipeline design significantly shortens the encoding time, the

encoder overall performance still heavily depends on distribution of encoding

tasks between CPU and VPU. The profiling analysis made after pipeline design

demonstrates that hardware modules configuration and processing take 40% while

CAVLC and Zig-Zag scanning consume 47% of the overall processing time. So,

the potential advantage is to distribute these computationally demanding modules

among CPU and VPU core. As in proposed pipelined design, entropy encoding

(CAVLC and Zig-Zag) and de-block filtering (DBLK) modules both are at the

same stage. There is no data dependency between them and they can be par-

allelized. In order to take the advantage of this parallelism encoder tasks are

distributed between CPU and VPU cores.

Fig.6.12 shows the distribution of encoder between CPU and VPU cores. This dis-

tribution is made by considering the parallel processing, load balancing between

the cores and scalability. The tasks of encoding performed by CPU core are the

initialization of the encoder and hardware processing units, video capturing, frame

level parameter setting and controlling, zig-zag scanning, motion vector prediction,

entropy encoding, bit-rate control, edge extension and file writing. The VPU core

is responsible for configuration and controlling of hardware modules, MB level

scheduling of hardware processing units, encoding parameters selection and data

transferring between main and on-chip memories. The encoder tasks distribu-

tion between CPU and VPU resulted in efficiently utilization of all parallelization

capabilities of this platform for high-performance video encoding.
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6.3.6 Scheduling Strategy and Encoder Flow

In the proposed design, CPU and VPU cores are working concurrently and they are

pipelined at MB level. They used on-chip memories for exchanging data and/or

messages. Ten buffers are allocated and used in a ping pong manner for sending

and receiving frame and bit-stream data between the cores. Fig.6.12 shows the

flowchart of the proposed H.264 encoder. The encoding process is described as.

1. The raw data of the frame is read and preprocessed by CPU core.

2. After CPU sets the frame level parameters, it starts the VPU and waits for

a completion signal.
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3. The VPU core processes MBs using hardware processing units as described

in section 6.3.4.

4. After completion, the VPU signals CPU and sends MB parameter structures.

This structure contains motion vectors, residual quantized coefficients, CBP

and other parameters required to encode.

5. The CPU performs entropy encoding, writes bit stream, control the rate and

receive data structure from VPU.

6. The VPU core stops after all MBs in a frame have been processed.

7. The above procedure continues until the encoding of all candidate frames.

The time-line of proposed multi-core pipelined encoder is shown in Fig.6.13. It

clearly demonstrates the exploitation of fine-grained MB level parallelism and all

processing capabilities of JZ4770 platform. When pipeline is full five MBs are

processed in parallel.
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Figure 6.13: Time-Line for Multi-Core Pipelined Encoder

It is important to note that the flexible design of the proposed scheme allows the

integration of any fast mode selection and motion estimation algorithms. The

motion estimator can be easily integrated at the place of MCE module and mode

selection algorithm can be incorporated in the parameter selection module. More-

over, in case of CABAC entropy encoding, CABAC takes the place of CAVLC.
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6.4 Performance Evaluation and Discussion

To evaluate the performance of the proposed scheme two different frame resolu-

tions, NTSC (720×480) and 720p HD (1280×720) are considered. All test se-

quences are in 4:2:0 format and having 300 frames each. The NTSC resolution

test sequences are: Mobile, Football, Intros, Garden, Galleon, Vtc1nw and Washdc.

Stockholm, Shields, Parkrun and Mobcal are considered HD 720p resolution test

sequences. The video coding parameters are set as follows: MV search range is -32

to +32 pels and block size 16×16, RD optimization is enabled with metric sum

of absolute difference (SAD), rate control method is single pass constant quan-

tizer (QP Mode), one reference frame for motion estimation and compensation,

motion estimation scheme is diamond search, MV resolution is 1/4 pel and GOP

is chosen 25 with structure IPPP. The RD Optimization technique improves the

RD performance but decreases the encoding speed. The use of computationally

intensive Psycho-Visual Optimization metric improves the RD performance and

reduces the encoding speed. On the other hand, simpler metrics like SAD and

sum of absolute transform difference (SATD) increase the encoding speed at the

cost of degradation in RD performance.

6.4.1 Encoder Performance at Different Implementation

Stages

To demonstrate the advantages of proposed scheme, results are computed at three

separate stages. The first stage is based on the x264 sequential software implemen-

tation [114] executing on CPU core. The second stage belongs to section 6.3.1 in

which video processing units are incorporated. Finally, stage three introduces the

numerous optimization methods, pipeline design and parallel processing. Table

6.4 and Table 6.5 depict the results at different implementation stages for NTSC

and 720p resolutions, respectively.
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Table 6.4: Experimental Results at Different Implementation Stages for NTSC
Sequences (Qp= 24)

Sequences Stage 1 Stage 2 Stage 3
(fps) (fps) (fps)

Garden 3.73 18.75 44.50
Football 3.65 19.74 53.86
Intros 4.02 24.90 64.62
Mobile 3.55 18.96 48.78
Galleon 4.89 24.50 65.99
Vtc1nw 6.70 28.27 69.38
Washdc 4.79 26.17 63.80
Average 4.48 23.04 58.70

Table 6.5: Experimental Results at Different Implementation Stages for 720p
Sequences (Qp= 26)

Sequences Stage 1 Stage 2 Stage 3
(fps) (fps) (fps)

Stockholm 1.53 9.30 28.73
Shields 1.47 8.85 27.68
Parkrun 1.33 7.76 18.99
Mobcal 1.52 8.32 25.91
Average 1.46 8.55 25.32

The average encoding rate for NTSC resolution at first stage is 4.48 fps. After the

second stage, the encoding rate increased to 23 fps. Finally, the average encoding

rate is increased up to 58.70 fps after the third stage. The results demonstrate

that, the addition of hardware processing units increase the encoding rate from

4.48 fps to 23 fps and the proposed optimization techniques increase the encoding

rate from 23 fps to 58.70 fps. Similarly, the encoding rate for 720p resolution is

increased from 1.46 fps to 25.32 fps. In this case, encoding rate is increased from

1.46 fps to 8.55 fps due to addition of hardware processing units and from 8.55 fps

to 25.32 fps because of the proposed optimization techniques. It can be concluded

that, although the use of hardware processing units increased the encoding rate,

major advantage is due to their efficient utilization through proposed optimization

methodologies.
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Table 6.6: Optimization Method vs Contribution to Encoding Speedup

Optimization Method Speedup
Memory Management and Data Transfer 20%

Encoder Pipeline Design 34.29%
Encoder Partitioning between CPU and VPU Cores 45.71%

Table 6.6 shows the impact of each optimization method on the total encoding

speedup. It demonstrates that the Encoder partitioning between CPU and VPU

Cores contributes the most significantly i.e 45.71%, to speedup the encoding pro-

cess. The reasons behind such significant encoding gain are parallel processing

and reduction of hardware configuration time. As in the proposed pipeline de-

sign, entropy encoding and de-block filtering (DBLK) modules both are at the

same pipeline stage. This stage takes most of the encoding time and become a

bottleneck for the rest of the pipeline stages. After encoder partitioning, these

two modules are parallelized at MB level and overall encoding load is distributed

between two processing cores. This resulted in speedup of the encoding process.

Moreover, all hardware processing units are shifted to VPU core that can configure

them using physical address of on-chip memories directly. Such configuration of

the hardware processing units reduced the overall encoding time.

6.4.2 Performance Comparison with Sequential (CPU only)

Implementation

A group of experiments is carried out on these test sequences with four quanti-

zation parameters, i.e., QP = 24, 28, 32 and 36. The performance comparison

of the implemented encoder with highly optimized sequential x264 encoder [114]

is presented in Table 6.7 for NTSC test sequences. Table 6.7 illustrates that the

proposed scheme shows a consistent gain in encoding rate for all sequences ranging

from 58.70 fps at QP = 24 to 72.10 fps at QP = 36.

For HD 720p resolution test sequences, the quantization parameters set are 26, 30
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Table 6.7: Performance Comparison for NTSC Sequences

Qp 24 28 32 36
Sequence Seq. Proposed Seq. Proposed Seq. Proposed Seq. Proposed

fps fps fps fps fps fps fps fps
Garden 3.73 44.50 4.04 58.48 4.31 61.56 4.59 70.85
Football 3.65 53.86 4.00 54.38 4.41 59.37 4.78 71.75
Intros 4.02 64.62 5.47 67.82 6.34 70.73 6.72 72.23
Mobile 3.55 48.78 3.74 58.36 3.96 63.50 4.33 70.62
Galleon 4.89 65.99 5.51 70.15 6.24 72.29 7.01 74.63
Vtc1nw 6.70 69.38 7.42 71.11 7.75 72.50 7.97 74.22
Washdc 4.79 63.80 5.75 66.57 6.72 68.07 7.38 70.40
Average 4.48 58.70 5.13 63.83 5.68 66.86 6.11 72.10

and 34. Table 6.8 shows the frame rate comparison of the proposed encoder with

sequential software implementation [114]. For most of the 720p test sequences,

real-time encoding is achieved. The average increased in encoding rate is ranging

from 25.32 fps at QP = 26 to 32.04 fps at QP = 34.

Table 6.8: Performance Comparison for 720p Sequences

Qp 26 30 34
Sequence Sequential Proposed Sequential Proposed Sequential Proposed

fps fps fps fps fps fps
Stockholm 1.53 28.73 1.87 30.42 2.32 32.41

Shields 1.47 27.68 1.80 30.17 2.17 33.77
Parkrun 1.33 18.99 1.44 23.78 1.66 28.34
Mobcal 1.52 25.91 1.79 31.65 2.17 33.67
Average 1.46 25.32 1.72 29.00 2.08 32.04

The experimental results demonstrate that for both resolutions NTSC and 720p,

the proposed scheme achieved a speedup of more than 12× when compared with

highly optimized sequential implementation on CPU core without loss in PSNR.

Although the proposed solution is based on x264 baseline profile but it can also be

used directly for main or high profile with B frames and CABAC entropy coding by

replacing CAVLC module with CABAC implemented in software and assigned to

the CPU. However, the CABAC implementation may result in increase of encoding
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time. For HD 720p and higher resolutions video sequences real-time encoding may

not be possible.

6.4.3 Performance Comparison with State-of-the-Art Im-

plementation Schemes

Table 6.9 compares the proposed scheme with previous works in terms speedup

gain. The comparison of the proposed scheme is done with three preceding works,

Momcilovic et al.’s [37] , Alvanos et al.’s [97] and Sankaraiah et al.’s [89]. It can

be seen in Table 6.9 that the proposed scheme outperformed the other techniques

in terms of speedup gain.

Table 6.9: Performance Comparison with State-of-the-Art Implementation
Schemes

Techniques Speedup gain
Momcilovic et al.’s [37] 2.5×

Alvanos et al.’s [97] 4.7× - 8.6×
Sankaraiah et al.’s [89] 5.6× - 10×

Proposed more than 12×

6.4.4 Energy Saved

Energy saving is another important metric to evaluate the performance of any

technique for mobile devices. As the energy consumption is one of the most critical

issues in case of mobile application processors, so the implementation scheme

must cater for this important issue. The energy consumption for sequential (CPU

only) and proposed implementation is computed as follows: applied voltage is

5 volt, steady state current (standby mode) is 180 mA, qp is 24 and number of

iterations are 5. Average system current in the case of sequential and the proposed

implementation is 235 mA and 242 mA, respectively.

The power consumption comparison of proposed implementation with sequential

implementation is given in Table 6.10. Although instantaneous power consumed
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Table 6.10: Power Consumption Comparison

Implementation Avgerage Instant.
Instant. current power consumed

mA W
Sequential 55 0.28
Proposed 62 0.31

by the proposed scheme is higher, the overall power consumed to encode 300 frames

is much lower than the sequential software implementation. Table 6.11 and 6.12

provide the comparison of energy consumed to encode 300 frames of NTSC and

720p resolutions, respectively. The proposed technique saves about 4.90 mWh

and 58.28 mWh energy to encode 300 frames of NTSC and 720p resolutions,

respectively.

Table 6.11: Energy Consumption Comparison for NTSC Sequences

Sequences Sequential Proposed Energy saved
mWh mWh mWh

Garden 6.14 0.58 5.56
Football 6.28 0.48 5.80
Intros 5.70 0.40 5.30
Mobile 6.45 0.53 5.92
Galleon 4.68 0.39 4.30
Vtc1nw 3.42 0.37 3.05
Washdc 4.78 0.40 4.38
Average 5.35 0.45 4.90

Table 6.12: Energy Consumption Comparison for 720p Sequences

Sequences Sequential Proposed Energy saved
mWh mWh mWh

Stockholm 61.56 3.36 58.21
Shields 62.50 3.54 58.96
Parkrun 64.45 5.67 58.78
Mobcal 60.66 4.04 56.62
Average 62.26 3.99 58.28
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6.4.5 Scalability of the Proposed Scheme for High Effi-

ciency Video Coding (HEVC)

The proposed scheme is scalable and it can be easily modified for High Efficiency

Video Coding (HEVC) standard. HEVC retains the basic hybrid coding architec-

ture of H.264/AVC. Moreover, the basic tool set of video encoding in HEVC codec

is quiet similar to H.264/ AVC coding standard e.g. intra and inter prediction, mo-

tion estimation and compensation, transformation, quantization, entropy encoding

and de-blocking filtering. However, HEVC uses more adaptive quad-tree structure

based on a coding tree unit (CTU) instead of a macroblock (MB) and several

improvements have been made in tool set to improve its compression performance

and throughput speed (particularly for parallel-processing architectures).

For HEVC, the basic encoding flow and building blocks of the proposed scheme

remain the same as shown in Fig.6.12. However, the following modifications are

required inside the building blocks.

1. In HEVC, the basic processing unit is CTU instead of MB. So, the main

encoding loop will be over CTUs.

2. Both the processing cores (CPU and VPU) and hardware processing units

will be pipelined at CTU level.

3. The DBLK stage in proposed design will perform both de-blocking and

sample-adaptive offset (SAO) filtering.

4. In HEVC, CAVLC will be replaced by CABAC.

5. Memory requirement will increase because of large size of meta-data struc-

tures in HEVC.
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6.5 Summary

This chapter presents an end-to-end software-hardware hybrid implementation

scheme of H.264/AVC encoder for JZ47x series of processors. The proposed scheme

not only distributes the encoding tasks between hardware and software modules

but also performs synchronization between different cores and the hardware ac-

celerator blocks. The idling and polling time of hardware processing units is also

reduced by exploiting the fine-grained parallelism at MB level. The possibility of

asynchronously processing on the CPU and VPU is also effectively exploited to

efficiently distribute the computational load among these processing cores. This

resulted in increasing the encoding rate and reducing power consumption. The

implemented encoder can encode NTSC and HD 720p video sequences at 72 fps

and 32 fps, respectively. This is approximately more than 12 times the encoding

rate of the highly optimized sequential encoder. The performance improvements

techniques presented in this chapter can also be used for other families of proces-

sors. It may be noted that the proposed scheme is scalable and it can be easily

modified for High Efficiency Video Coding (HEVC) standard.
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Multi-Core Platform ”, 2014 IEEE/ACS 11th International Conference on

Computer Systems and Applications (AICCSA).
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Chapter 7

CONCLUSION AND FUTURE DIRECTIONS

7.1 Introduction

This chapter concludes the research work. It presents summary of the contri-

butions of this research work. In addition to it, this chapter describes some of

the possible future directions of the proposed work which can be adopted by re-

searchers to enhance this work.

7.2 Contributions to Knowledge

Computational complexity limits the coding performance of software based video

encoders. The objective of this research is to establish a computationally efficient

framework for macroblock prediction to reduce the computational complexity of

the video encoders. Moreover, to develop novel schemes which effectively exploit

the data and task level parallelism in video encoders to improve their coding effi-

ciency. These schemes ensure that the encoders can effectively exploit the process-

ing resources offered by latest generation of the mobile application processors to

maximize the encoding rate. There are three major contributions of this research

work.

7.2.1 Efficient Framework for Macroblock Prediction

This framework comprises several new algorithms to reduce the computational

complexity of the macroblock prediction process. Complexity saving is achieved

by excluding as many intra and inter prediction modes as possible prior to the

RDO process. The objective of this framework is to decrease the computational

complexity without any significant loss in visual quality. The proposed framework
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is distributed into four stages and at each stage certain decisions are made to

shortlist the candidate prediction modes for RDO calculation. Each stage of the

proposed framework for macroblock prediction is briefly described as follows:

Stage 1: Prediction type decision

The decision of macroblock prediction type (predicted as intra or inter) is made by

using Adaboost classifier. The Adaboost classifier classify each MB in one of the

three defined classes (Intra, Inter or both) based on spatial and temporal features

of video sequence. In case of Intra or inter class, no further processing related to

prediction type decision is performed. If both intra and inter are candidates than

macroblock type decision is made at later stages of the framework. Experiments

demonstrate that this technique is about 25.61 times faster than the full search

method with marginal reduction in coding quality with respect to BDPSNR and

BDBR i.e by the amount of 0.006 dB and 0.169%, respectively.

Stage 2: Early mode exclusion

This stage of the framework consists of two algorithms, first for selecting appro-

priate block size for intra prediction and second for performing early detection of

SKIP mode of macroblock.

Intra block size selection algorithm - In this work, two schemes are proposed

to select appropriate block size for intra prediction. First one is based on adaptive

threshold and second is based on Adaboost classifier. These techniques classify

each MB in one of the three defined classes (Intra 4×4, Intra 16×16 or both) based

on spatial features of video sequence. In case of Intra 4× 4 or Intra 16× 16 class,

no further processing is carried out related to intra prediction block size decision.

If both Intra 4×4 and Intra 16×16 are candidates then block size decision is made

at later stages of the framework. Moreover, if Intra 4×4 is decided as appropriate

block size for intra prediction then predication modes for intra 16×16 are skipped

and vice versa. Experimental results evident that in case of adaptive threshold
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based algorithm, 13.75% time saving is achieved with marginal loss in prediction

quality i.e. 0.379% increase in BDBR and 0.0318 dB decrease in BDPSNR. On

the other hand, for Adaboost classifier based approach, 18.34% time saving is

acquired at the cost of 0.0.548% increase in BDBR and about 0.045 dB decrease

in BDPSNR. Adaboost classifier based scheme saved about 4.59%more encoding

time as compared to adaptive threshold based scheme with 0.169% increase in

BDBR and 0.013 dB decrease in BDPSNR.

SKIP early detection algorithm - In case of inter MB type, early detection of

SKIP macroblock is performed to exclude the rest of the prediction modes. In this

case, computational savings are ensured by recognizing SKIP mode, preceding the

mode decision and motion estimation process, the macroblocks may be skipped

and result in further saving of processing power. The SKIP macroblock prediction

is made if the conditions mentioned below are fulfilled:

• 16× 16 is the selected macroblock partition size.

• Both the components MVDx and MVDy of the motion vector difference

(MVD) are zero.

• The selected frame of reference is the former frame in display order.

• CBP (coded block pattern) is zero i.e. all quantized coefficients are zero.

Experimental results indicate that on average the SKIP mode early detection

algorithm is about 23.97% faster than the full search method with 0.019% decrease

in BDBR and increase in 0.002 BDPSNR.

Stage 3: Rapid mode selection

This stage of the framework short lists the intra and inter prediction modes for

RDO process. It consists of algorithms for inter and intra mode selection.
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Inter prediction mode selection algorithm - Performed the mode selection

based on motion homogeneity and residual complexity measures of an MB. The

motion homogeneity is calculated on the motion vector (MV) field generated by a

light weight motion estimator that converges towards the actual motion at 8 × 8

block level. The MB residual complexity is defined by SAD of its constituent

8×8 blocks. Based on the motion homogeneity and residual complexity measures,

each MB is classified into one of the five predefined classes when the specified

conditions hold true. From the class information of an MB, the candidate inter

prediction modes are determined for RDO process. Experiments show that the

proposed scheme decreases the encoding time by 64% on average with 0.02 dB loss

in BDPSNR and 0.28% increase in BDBR.

Intra prediction mode selection algorithm - Performed the mode selection

based on local edge information of the blocks. In this algorithm, a Sobel operator

is applied to create edge map which is used to calculate the local edge information

i.e. edge direction and magnitude. The local edge information of the block is used

to determine the candidate intra prediction modes for RDO process. Experiments

prove that the proposed scheme speeds up the encoder by 61.63% on average with

0.192 dB loss in BDPSNR and 2.999% increase in BDBR.

Stage 4: RDO mode elimination

At this stage of the framework, reference RDO algorithm is used to calculate

RDcost for shortlisted prediction modes of an MB. The prediction mode with

minimum RDcost is selected as coding mode of an MB. In the proposed framework

RDO calculation is performed only for shortlisted candidate modes. This helps to

significantly reduce the computational complexity of the encoding process.

The experimental results indicate that the overall proposed framework provides

encoding time saving up to 74% with an average with 0.032 dB loss in BDPSNR

and 0.461% increments in BDBR as compared to exhaustive RDO.
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7.2.2 Motion Compensation Complexity Reduction

A new complexity reduction algorithm for an H.264/AVC coding standard based

on motion compensation has been introduced here. An improved performance

is attained through addressing the reasons of computational cost related to data

manipulation and linear interpolation sub modules of motion compensation al-

gorithm. The factors of computational complexity in the reference software im-

plementation of motion compensation algorithm are handled in three different

stages. The first stage belongs to edge creation around the reference frame that

helps to prevent the clipping of unrestricted motion vectors. In the second stage,

macroblocks are separated on the basis of inter prediction mode information (mac-

roblock or sub-macroblock partitioning) and process accordingly. Finally, paral-

lelism is introduced in order tho calculate the predicted sample values for motion

compensation through SIMD instructions. Initial two stages reduce the perfor-

mance degradation in data manipulation sub-module and the last one simplifies

the linear interpolation sub-module of the motion compensation. This scheme de-

creases the time complexities by 5 to 6 times by reducing the looping overhead,

repeated access of the same pixel from memory, utilizing the memory resources

and processing resources.

7.2.3 Parallel Task Assignment in Advanced Video Coding

This is an end-to-end hybrid hardware-software implementation scheme based on

pipelining and multitasking for advanced video coding. This scheme distributes

the encoding tasks among hardware and software modules. A series of optimiza-

tion techniques are developed to speedup the memory access and data transferring

among memories. Moreover, an efficient data re-usage design is proposed for the

de-block filter video processing unit to reduce the memory accesses. Furthermore,

task and data level parallelism in video encoder is effectively exploited to improve
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their coding efficiency. The parallelism is exploited at both coarse-grain and fine-

grain level. The coarse-grain level parallelism exploitation is done by concurrently

executing multiple tasks on different processing cores while fine-grain level par-

allelism is achieved by using SIMD instructions. Such exploitation of parallelism

also helps to better utilize the computational power offered by advanced media

processors. The experimental results tell that the proposed scheme increases the

encoding rate and reduces the power consumption. The implemented encoder can

encode NTSC and HD 720p video sequences at 72 fps and 32 fps, respectively. This

is approximately more than 12 times the encoding rate of the highly optimized

sequential encoder.

7.3 Conclusion

Modern video coding standards such as High Efficiency Video Coding (HEVC) and

H.264/MPEG-4 Advanced Video Coding (AVC) supersede the previous coding

standards due to their improved coding efficiency. Due to enhanced compression

ability and coding flexibility, these coding standards have the ability to introduce

new video services like mobile multimedia streaming and video telephony. But,

the gains based on performance of these standards are achieved at a significant

higher cost of computational complexity and so the processing resources needed to

enforce these encoders in a low power mobile platform may become a major hurdle.

The objective of this research work is to reduce the computational complexity of

video encoders as well as to exploit their data and task level parallelism to improve

coding efficiency.

In this research, an efficient framework for macroblock prediction and parallel task

assignment in video coding has been presented. The proposed framework incor-

porates several innovative approaches to reduce the computational complexity of

prediction process and for exploiting data and task level parallelism in video en-

coders to improve their coding efficiency. The framework excludes as many intra
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and inter prediction modes as possible prior to the RDO process without any ma-

jor loss in video quality. In the best case, the proposed framework selects one MB

type either intra or inter and one corresponding the most suitable prediction mode,

such that the complete RDO process is skipped. Moreover, a computationally ef-

ficient technique for motion compensation is presented to perform inter prediction

process that speeds up the video encoding and decoding process. Furthermore, in

this work, parallelism in video encoder is exploited at both coarse-grain level and

fine-grain level. The coarse-grain level parallelism exploitation is done by concur-

rently executing multiple tasks on different processing cores while fine-grain level

parallelism is achieved by using SIMD instructions. Such exploitation of paral-

lelism also helps to better utilize the computational power offered by advanced

media processors.

The proposed techniques have been evaluated on different types of video sequences,

with divers motion activities by tweaking encoder parameters. The observations

based on experiments testify the effectiveness of the suggested research. The pro-

posed techniques are suitable to perform video encoding on both general purpose

desktop and smart/mobile devices having constraints of processing and computa-

tional power.

The techniques described in this thesis fulfill the aim and objectives of this re-

search task. They are practical and can be applied to video coding applications

where encoding time is an important factor, such as real-time multimedia systems,

to control computational complexity whilst maintaining acceptable video quality.

These algorithms can also benefit power-constrained systems, for example, mobile

video phones and reduction in their power consumption for encoding video, hence

potentially achieving longer battery life.
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7.4 Future Directions

Although, the results obtained by encoding multiple video sequences with different

motion activities prove the effectiveness of the proposed framework. There are

several aspects which may be considered in the future research.

• The techniques presented in this research work are assessed using fixed quan-

tization values. Experiments should be performed to evaluate the output of

the proposed framework along with established rate control techniques. This

may open further avenues for investigation.

• In the proposed framework, the Jeon et al. [109] algorithm is used for SKIP

mode early detection. It should be interesting to integrate other low com-

plexity SKIP macroblock early detection algorithms and evaluate the per-

formance of the framework.

• The structure of the proposed framework is highly flexible and it is possi-

ble to integrate other existing low complexity algorithms of intra or inter

mode selection. This may help to evaluate the effect of such replacement on

encoding time and video quality.

• The encoder pipeline design proposed in this research work is evaluated

using hardware video processing units. It is possible to evaluate this design

on multi-core platforms. This may help to improve encoding rate.

• Although, this research work primarily focuses on H.264/AVC standard, the

developed techniques are scalable and can be easily modified for other coding

standards particularly for High Efficiency Video Coding (HEVC). It should

be possible to extend this research work HEVC standard.
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