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ABSTRACT

Recent advances in guidance technologies have enabled Unmanned Aerial
Vehicles (UAVs) to execute the missions autonomously without the human interaction.
A typical guidance problem is path-following, which is concerned with the design
of control laws that force a vehicle to reach and follow a geometric path defined
in 3-D space. A subset of 3-D path-following problem is the 2-D lateral track
following; the objective is to ensure accurate ground track following of the vehicle.
Path-following with bounded control input in the presence of uncertainties (e.g.
in velocity) and input disturbances like wind is a challenging task. Another
challenging task is good performance of guidance algorithm for both large and
small track deviations without using gain scheduling. Addressing these challenges,
this thesis presents novel nonlinear guidance schemes for 2-D and 3-D path-following
of aerial vehicles.

This dissertation considers the development and application of sliding mode theory
in the area of guidance law design for UAVs. For lateral path-following problem,
the limitations of a linear sliding surface are indicated here and it has been
shown that traditional linear sliding surface based design is not a viable solution.
Nonlinear sliding surfaces for lateral and longitudinal planes are thereafter presented
here which overcomes these limitations, and its stability is guaranteed using the
Lyapunov theory. For the selection of optimum sliding parameters, work and
energy principle based criterion is defined here considering the UAV maneuvering
capabilities. The presented criterion for optimized sliding coefficients is related to
the minimization of work done and hence it also minimize the reaching time to
the desired path. Using numerical techniques, the sliding surface coefficients that
corresponds to an optimal path can be selected; this working is demonstrated for
a research UAV.

Based on nonlinear lateral sliding surface (that meets the criterion of a ‘good
helmsman’), a novel lateral guidance scheme is thereafter presented here for straight
and circular path following cases. The proposed guidance logic is derived from the
sliding mode control technique, and is particularly suited for unmanned aerial
vehicle (UAV) applications. Control boundedness is also proved to ensure that
the controls are not saturated even for large track errors. To demonstrate the
effectiveness of this algorithm, a test platform (scaled YAK-54 UAV) is developed
that have a generic MPC-565 processor based flight control computer for programming
of different guidance and control algorithms. The proposed guidance law is programmed
in the flight control computer of the test vehicle and different scenarios of large and
small cross track errors are generated in the flight. Flight results are presented here
that confirm the effectiveness and robustness of the proposed guidance scheme.
Moreover, the effect of wind is also analyzed and flight results in the presence of
wind is presented to show the robustness of proposed algorithm. The flight test
results are also compared with that of 6-dof simulation.
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The work is then further extended for generalized 3-D path-following problem.
Generalized 3-D kinematic equations are considered here during the design process
to cater far the coupling between longitudinal and lateral motions. Using the
presented optimized nonlinear manifolds, guidance scheme is then derived for the
multiple-input multiple-output (MIMO) system considering the coupling between
longitudinal and lateral planes. The Proposed scheme is implemented on a 6-degrees-of-freedom
(6-dof) simulation of a UAV and simulation results are presented here for different
3D trajectories with and without disturbances.

Keywords: Sliding Mode Control (SMC), Unmanned Aerial Vehicles (UAVs),
Guidance & Control, Sliding Manifolds, Nonlinear Sliding Surface, Path-Following,
Trajectory Tracking, Cross Track Error, Lateral Guidance, 3-D Guidance, Scaled
YAK-54.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

Unmanned Aerial Vehicles (UAVs) are typically known as powered vehicles that

do not carry human operators, can be operated autonomously or remotely, and

can carry a variety of payloads depending on their type, functionality, operational

characteristics, and mission objectives. UAVs have many extraordinary abilities,

like ultra-long endurance, high-risk mission acceptance and accurate trajectory

following, which cannot be easily performed by manned aircraft. This is mainly

made possible due to the advancement in technology in the last two decades;

nowadays UAVs are the back bone of high-tech military arsenals. Besides military,

their use is also in the rise in commercial and civilian applications. These include

search and rescue, surveillance and law enforcement, environmental studies, gas/water/oil

pipeline and power line monitoring, field spraying/crop dusting and agriculture

growth patterns monitoring, mapping and surveying, media and traffic reporting,

forest fire monitoring and control, radio/communications relays and disaster surveying

and management operations.

In the last two decades, the usage of unmanned systems has seen its most rapid

growth. This is primarily due to improvements in computing and sensing technologies

that are becoming more powerful, while being smaller, requiring less power, and

costing less. This has led, not only to the development of highly complex and

capable unmanned systems for military applications, but has also opened the

door to commercial and private applications. In recent years, the work on UAV

autonomy has added a new dimension to the utility of these vehicles. Autonomy

is the ability to perform a task (mission) without being directly or remotely

controlled by a human operator (Wise, 2006). Autonomy technology that will
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become important to future UAV development falls under the following categories:

Sensor fusion (combining information from different sensors for use on board

the vehicle), communications (handling communication and coordination between

multiple UAVs/ground stations in the presence of incomplete and imperfect information),

path/motion planning (determining an optimal path for the UAV while meeting

certain objectives and constraints), trajectory generation or path following (determining

an optimal control maneuver to follow a given path or to go from one location to

another), task allocation and scheduling (determining the optimal distribution

of tasks amongst a group of agents, with time and equipment constraints) and

cooperative tactics (formulating an optimal sequence and spatial distribution of

activities between agents in order to maximize chance of success in any given

mission scenario).

When focusing on unmanned system autonomy, improved system autonomy requires,

and will require new and innovative guidance and control techniques to fulfill

mission requirements and to take decisions autonomously. A fundamental capability

required to enable high-level command of autonomous systems is the ability for

the system to be able translate high-level specifications into low-level descriptions

of how the vehicle must move. The autonomous system must then plan a path

which passes through the desired goal states, ideally in some optimal manner,

and then follow that path. In both of these implementation approaches, the

vehicle is required to follow a specified path. Autonomous vehicles must have

sufficiently advanced path planning algorithms, combined with effective and robust

guidance and automatic control systems. Successful control system design for

high performance UAVs requires efficient and effective techniques for the design of

guidance and control algorithms that ensure satisfactory operation in the face of

system uncertainties and environmental disturbances. A key performance criterion

for the guidance and control system is to have the ability of precise path following

control in the presence of disturbing forces. A criterion for assessing the lateral
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performance and handling qualities for such vehicles is presented in (Capello et al.,

2012).

In guiding UAVs, motion control problems for UAVs can be classified into two

categories: path following and trajectory (reference) tracking. It is of primary

importance to steer the UAV along a desired path. The speed or dynamic behavior

along the path may be of secondary interest. Path-following problems are primarily

concerned with the design of control laws that drive an object (UAV, mobile robot,

ship, aircraft, etc.) to reach and follow a geometric path. On the other hand, the

trajectory-tracking problem is concerned with the design of control laws that force

a vehicle to reach and follow a time parameterized reference (i.e., a geometric path

with an associated timing law). Typically, in path-following, smoother convergence

to the path is achieved and the control signals are less likely to be pushed into

saturation, as compared to trajectory-tracking. An example is to automatically

drive a car along a road. This can be achieved by making the car track a point

that moves along the road with a certain speed. However, by instead emphasizing

that the main task is to make the car stay on and follow the road, one can let the

desired speed be of secondary interest and sacrificed if necessary. In case of air

vehicles, the primary objective is to maintain sufficient relative airspeed for lift

requirement, and hence ground speed variation is obvious due to unpredictable

nature of winds. Trajectory-tracking problem becomes more complicated in case

of UAVs due to the varying ground speed, and hence path-following is a simple,

efficient and secure way for motion control problems.

Motivated by these considerations, we propose a solution to the path following

problem for unmanned vehicles in this thesis for both 2- and 3-D spaces. We are

especially interested in situations for which there is parametric uncertainty in the

model of the vehicle or there are external disturbances like winds. Inspired from

the inherent nature of sliding mode theory to cater for parametric uncertainties
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and input disturbances, the proposed guidance schemes for path following are

based on the sliding mode approach.

1.2 Literature Review

Two approaches are usually employed for ground track control of unmanned aerial

vehicles. In the first approach, the ‘guidance’ and ‘control’ design problems are

separated into an outer-loop guidance, and an inner-loop control design problem

(Samar et al., 2008; Ratnoo, 2015; Rysdyk, 2006; Niculescu, 2001; Dadkhah and

Mettler, 2012). In the second approach, the guidance and control problems are

addressed together in an integrated and unified framework (Dadkhah and Mettler,

2012; Park, 2004; Yamasaki1 and Balakrishnan, 2010; Yu et al., 2011; Yamasaki

et al., 2012). A good background to the integrated approach and associated

challenges is presented in (Kaminer et al., 1998; Yamasakia et al., 2012). This

approach is more complicated due to the coupling of the different guidance and

control variables, and has not been as popular amongst the practising aerospace

community. In most applications, the first approach is employed owing to its

simplicity and intuitive appeal. The guidance law resides in the outer loop, uses

position information (ground track and altitude measurements), and generates

appropriate commands for the inner loop to follow. These commands can be in

the form of required/reference roll angle (or reference lateral acceleration) and

required/reference lift (or reference longitudinal acceleration) commands. The

inner loop consists of a tracking controller that accepts the reference commands

generated by the guidance loop, and performs control and stability augmentation

tasks. Design of the outer loop guidance logic has been inspired by techniques as

diverse as proportional navigation, cognitive and intelligent methods, vision based

techniques, and others (Yamasaki1 and Balakrishnan, 2010; Cesetti et al., 2009;

Siouris, 2004; Ren and Beard, 2004; Zhang et al., 2013; Oland and Kristiansen,

2014). The objective remains to drive the off-track track deviation of the vehicle
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to a minimum. The inner loop control design problem is beyond the scope

of this thesis, numerous well established techniques exist for the (inner loop)

control design problem, such as linear, nonlinear, robust and intelligent techniques

(Skogestad and Postlethwaite, 2005). The reader may refer to any text on advanced

control for further reading.

The computed path by mission planning is essentially defined in terms of a sequence

of waypoints connected by straight lines or arcs through which the vehicle must

traverse. Three dimensional (3-D) guidance refers to following the mission path

in both the lateral (horizontal) and longitudinal (vertical) planes (Breivik and

Fossen, 2005). It covers both 2-D ground track following, as well as altitude

profile following of the desired mission. In the 3-D case, guidance commands

are generated for the lateral/directional control system in terms of reference roll

or heading angles, and for the longitudinal control system in terms of pitch or

altitude commands. A subset of the general 3-D problem is the 2-D lateral

guidance problem in which the guidance objective is to ensure accurate ground

track following of the vehicle. This is to say that the vehicle must exactly fly

over lines and arcs joining mission waypoints as projected on plane ground, with

minimum cross-track or lateral deviation. It is relevant to point out that most

of the results in literature only solve the problem in the horizontal plane. Only

a few authors have tackled this problem in 3-D space. The existing algorithms

on path-following can be broadly classified into two categories: geometrical, and

classical control theory based. In this section, we will discuss the existing work in

literature related to 2-D lateral and 3-D guidance problems. In recent years, a few

survey papers have been published that cover the work done in this area in detail,

the reader is referred to references (Sujit et al., 2014; Dadkhah and Mettler, 2012;

Goerzen et al., 2009; Sujit et al., 2013).

Linear controllers based on classical control theory are commonly used for the

guidance logic design of unmanned systems. Typically, the cross-track error as
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Figure 1.1: Traditional linear controller based guidance for Cross-track
minimization.

shown in Figure 1.1 is used for feedback to generate the guidance commands,

i.e., required lateral acceleration or bank angle. Linear proportional-derivative

(PD) control for the outer guidance loop has been used in some UAV applications

(Pappoullis, 1994; Siouris, 2004; Valavanis and Vachtsevanos, 2015). In the presence

of a persistent disturbance (e.g., constant winds) however, the path following

performance of the PD control degrades. Another difficulty associated with these

linear controllers is switching decision logic when following a series of way-points

for a smooth transition from one waypoint to the next. A conventional proportional-derivative

lateral control scheme with some modifications for performance enhancement is

discussed in (Samar et al., 2008, 2007); stability is however not formally proved.

Mixed integer linear programming (MILP) based guidance for UAVs has also been

considered (Mettler et al., 2003; Schouwenaars et al., 2005); however here the

optimization program generates a sequence of waypoints (positions) and velocities

for the vehicle to follow. In other words a mission plan is generated and deviations

from this plan need to be corrected through a lower level guidance algorithm.

Waypoint guidance schemes for marine vessels are suggested in (Kurowski, 2015;

Pettersen and Lefeber, 2001; Brhaug et al., 2011); the qualities of a ‘good helmsman’

are discussed along with conditions for convergence in (Pettersen and Lefeber,

2001). In case of marine vehicles, the control problem is that of following the

position and heading, using only the rudder input (Rysdyk, 2003). Guidance laws
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for UAVs following the ‘good helmsman’ concept are discussed in (Rysdyk, 2006,

2003), along with simulations of different scenarios.

Figure 1.2: Nonlinear guidance law proposed by (Park et al., 2004).

A lateral track control law for small UAVs has been discussed in (Niculescu, 2001);

this is based on a pure geometrical concept. The idea is to make the ratio of

lateral deviation to lateral velocity equal to the ratio of longitudinal distance

to longitudinal velocity. Simulation results indicate that the yaw-rate command

generated by the guidance law exhibits oscillations in the vehicle roll channel, this

could be a problem for implementation on a real vehicle. In reference (Park et al.,

2004), a nonlinear guidance algorithm (see Figure 1.2) is suggested for the path

following problem and its stability is discussed in detail in (Deyst et al., 2005).

For curved as well as straight path following, the performance of the proposed

algorithm is better than traditional PD logic. However, control input saturates in

case of large track errors and therefore stability is not guaranteed in this case. A
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‘reference point’ (ahead of the current position) on the desired path is also required

for computation as shown in Figure 1.2; a discontinuity may arise if the desired

mission gets changed online.

With reference to UAV formation flying, a guidance algorithm is presented in

(Regina and Zanzi, 2011) for a follower UAV. For moving target following, the

algorithm generates lateral acceleration commands as a reference for the control

system to follow. A path following algorithm is proposed in (Sasongko et al.,

2011) for a small UAV; the guidance output is in the form of heading angle

corrections that is achieved by using bank-to-turn maneuvers. The inner roll

control loop is designed by LQR (linear quadratic regulator) method. Effectiveness

of the algorithm is demonstrated by simulation of different scenarios. Pythagorean

Hodograph (PH) curve based generated trajectory generation and its tracking

using back-stepping law is discussed in (Zhang Yi and Weiwei, 2015); effectiveness

is shown using simulation results.

Crosswinds are a major source of disturbance for accurate lateral track control.

The wind effect is ignored by most authors in design of guidance logic. UAV

dynamics in the presence of winds is discussed in references (Sarras and Siguerdidjane,

2014; Osborne and Rysdyk, 2005; McGee and Hedrick, 2006; Ceccarelli et al.,

2007); however the emphasis here is not on guidance but how to modify the planned

mission to best cater for wind conditions. A composite controller that is able to

compensate the effect of winds is discussed in (Liu et al., 2012); wind information

is estimated first by a nonlinear observer and this is then incorporated in the

path following controller. Robustness of these algorithms depends on the correct

estimation of wind speed and direction, this is not straightforward specially in

the presence of gusts. (Beard and McLain, 2012) discusses the effect of wind on

guidance performance of UAVs and aircraft. In (Brezoescu et al., 2013) an adaptive

backstepping based guidance law (considering the effect of winds) for UAVs is

presented using a skid-to-turn concept. Waypoint Fuzzy Guidance Scheme (FGS)
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Figure 1.3: Vector field approach for path following problems.

is discussed in (Baralli et al., 2002), it is based on the three standard Takagi-Sugeno

fuzzy controllers. The three controllers generate velocity, heading and flight path

angle references for the autopilots; simulation results are presented to show the

efficacy of the scheme. A sliding mode based guidance law for soft landing is

discussed in (Zexu and etc., 2012), and working of the algorithm is demonstrated

via numerical simulations. In (Shtessel et al., 2003) and (Shtessel et al., 2007),

application of sliding mode control in the outer guidance loop is discussed.

A conceptually different guidance scheme employing vector fields as shown in

Figure 1.3 for curved path following has also been pursued, see for example

(Griffiths, 2006; Pisano et al., 2007; Lim et al., 2014; D. R. Nelson and Beard,

2007). In this case, a vector field indicating directions for course commands is

computed as a function of vehicle deviation from the desired path. The difference

between the computed and actual course angle is fed to the control algorithm for

regulation. The computed course commands using the VF approach may give rise

to sudden and large commands in some cases, that may be difficult for the control

system to follow.

In recent years there has been a lot of interest in guidance laws based on model

predictive control (MPC) and nonlinear model predictive control (NMPC) methods
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(Rohan C. Shekhar and Shames, 2015). The computational and implementation

complexity makes use of MPC based techniques quite challenging on-board UAVs,

particulary low cost systems. A trajectory tracking algorithm for UAVs based on

the nonlinear model predictive control (NMPC) approach is discussed in (De Filippis

et al., 2012). The proposed algorithm tracks the path by solving an optimal

control problem online using a genetic algorithm. A high level controller for

small fixed-wing UAVs is designed in (Kang and Hedrick, 2006) using NMPC,

minimization of the proposed cost function results in minimization of the cross

track error. To avoid overshoot, knowledge of the entire mission is assumed

beforehand, and the error is minimized N steps ahead. An adaptive NMPC based

path tracking control for UAVs with a variable control horizon is discussed in

(Yang et al., 2009), the objective here is to minimize the mean and maximum

cross track error. High level control for UAVs with a non-quadratic cost function is

discussed in (Poh et al., 2010); the solution is shown to approach the Dublins path

under certain conditions. In (Garcia and Keshmiri, 2011), the authors discuss an

integrated navigation, guidance and control algorithm using NMPC and suggest

that ‘MPC and NMPC applications to unmanned vehicles are more recent and

there are still promissory advances to be made’. Model Predictive Control (MPC)

laws to solve the trajectory-tracking problem and the path-following problem for

constrained underactuated vehicles is discussed in (Alessandretti et al., 2013).

Most of these works provide computer simulation results, real time implementation

on actual hardware remains a challenging task.

The subject of guidance related to motion behaviour in 2-D plane and 3-D space

is discussed in detail in (Breivik and Fossen, 2005). Path generation and tracking

algorithm for UAVs in 3-D space is discussed in (Ambrosino et al., 2009). The

nonlinear path tracking algorithm resembles the line-of-sight guidance algorithm

and lacks robustness in the presence of parametric uncertainties. In (Kaminer

et al., 2006), the authors address the problem of coordinated control of multiple
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UAVs in 3-D space under tight spatial and temporal constraints. The path-following

problem of steering an autonomous vehicle along a desired path while tracking

a predefined velocity profile is discussed in (Cunha and Silvestre, 2005). Both

these algorithms rely on accurate measurement of the velocity vector and any

uncertainty in velocity is not addressed in the derivation. A backstepping based

nonlinear guidance algorithm is proposed in (Ahmed and Subbarao, 2010) for 3-D

path tracking of UAVs. The proposed guidance law assumes a very simple first

order dynamics for heading and elevation angles, and the coupling between the

two planes is ignored. A 3-D guidance law based on robust feedback linearization

(RFL) concept for UAVs is discussed in (Chen et al., 2014), simulation results are

shown for demonstration.

1.3 Contributions of the Dissertation

The contributions of this dissertation are summarized as follows:

• Sliding mode based guidance law design starts with the selection of sliding

surfaces. A linear sliding surface (linear combination of states) is a natural

choice for most applications. One contribution of this thesis is evaluation of

linear sliding surfaces for sliding mode based lateral guidance for UAVs. It is

shown in this work that linear sliding surfaces are not a viable option in this

case, their stability issues are highlighted. As an adhoc solution, piece-wise

linear sliding surfaces are proposed for the lateral guidance scheme for UAVs.

These proposed sliding surfaces overcome the stability problems of linear

sliding surfaces for the entire phase portrait.

• High performance non-linear sliding surfaces are proposed for lateral and

longitudinal guidance of UAVs, and their stability is proved using Lyapunov

theory. Nonlinear lateral sliding surfaces have two tunable parameters, it is

shown that performance for small and large cross track errors can be achieved
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by adjustment of these parameters. Moreover, the proposed nonlinear sliding

manifold fulfills the criterion of a good helmsman. An initial concept of these

sliding surfaces is presented in the ‘IFAC World Congress’ and the ‘UKACC

Control Conference’, and later published in detail in Journals.

• Another contribution of this thesis is the nonlinear sliding surface based

lateral guidance law, and its validation through flight tests. The effect

of winds is also analyzed and flight results in the presence of winds are

presented to show the robustness of the proposed algorithms. The guidance

scheme caters for measurement uncertainty in speed due to winds / sensor

accuracy. To demonstrate its effectiveness, a test-platform (scaled YAK-54)

is developed that employs a generic MPC-565 processor based flight control

computer for programming of different guidance and control algorithms. The

proposed algorithm is successfully demonstrated in various flights, results

are published in ‘IEEE Transactions on Control Systems Technology’ and

‘Transactions of the Institute of Measurement and Control’.

• For the 3-D path following problem, a generalized 3-D guidance scheme

based on sliding mode theory is introduced taking into consideration lateral

and vertical plane coupling effects. In this case, we have a multi-input

multi-output (MIMO) system with two control variables. We therefore use

two nonlinear sliding manifolds for guidance logic design. A paper on this

topic is published in the ‘International Journal of Mechanical, Aerospace,

Industrial and Mechatronics Engineering’.

• Another important contribution of this thesis is the optimization of non-linear

sliding surfaces. The proposed sliding surfaces have tunable parameters that

define how the UAV will come back onto the desired path. For selection

of these sliding coefficients, work and energy principle based criterion is

used, while taking into account the UAV maneuverability constraints. Using
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numerical techniques, the sliding coefficients can be optimized so that they

yield the shortest path without violating the constraints.

1.4 Dissertation Structure

This dissertation is organized as follows. Chapter 2 sets the foundation for the work

by providing basic information about navigation, guidance & control structure for

UAVs including basic software flow, important definitions and formulae. Additionally,

basics about sliding mode theory is also discussed here and control design based

on SMC is elaborated with the help of an example. For any control law design, the

first step is the derivation of state equations and this is done in Chapter 3. Basic

notations and guidance variables are introduced first, and kinematic models are

derived for 2-D and 3-D guidance logic design. The chapter ends with an explicit

definition of the guidance problem.

In Chapter 4, a lateral guidance law based on a linear sliding surface is derived, and

its limitations are highlighted. Later, a piece-wise linear surface is introduced that

overcomes the linear surface stability limitations; its effectiveness is demonstrated

via simulation results. High performance nonlinear sliding surfaces for lateral

and longitudinal planes are proposed in Chapter 5. Stability of these manifolds

is proved using Lyapunov theory, followed by the criterion for optimized sliding

parameters for both straight and circular paths. Chapter 6 describes the design of

a nonlinear lateral guidance law based on nonlinear sliding manifold for straight

and circular path following. Stability and control boundedness proofs for the

proposed law are also discussed. The guidance law is implemented on a test

aircraft and various flight tests carried out. Flight results show efficacy of the

proposed law, these are also presented in this chapter. The generalized 3-D

guidance law is derived in Chapter 7 and its effectiveness is shown using 6-dof

nonlinear simulations.
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Finally, in Chapter 8 we conclude our work and propose future work that can

extend the usefulness of the techniques presented here.
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Chapter 2

PRELIMINARIES

2.1 Introduction

As the basic theme of this dissertation is the application of sliding mode theory

in the guidance of aerospace vehicles, there are some terms and mathematical

tools of these two areas (SMC and guidance) that are used extensively within this

context. Before proceeding to the problem formulation, fundamental knowledge of

these areas is required. This chapter describes the basic concepts and background

material related to the guidance & control of aerospace vehicles and sliding mode

theory.

2.2 Guidance and Control of UAVs

The basic system architecture for unmanned aerial systems is shown in Figure 2.1.

The first block in this architecture is the ‘path planner’ (also known as mission

planner) that has input of maps, obstacles and destinations from the user. On the

basis of this information the ‘path planner’ computes the mission plan in terms

of way-points connected by straight lines or circular arcs, and this mission plan is

forwarded to the ‘path manager’ for following. The basic responsibility of ‘path

manager’ is switching between way-points and generation of an active straight

/ circular path that the vehicle should follow. Based on active path definition,

the role of ‘path following’ (also known as guidance block) is to generate suitable

commands (e.g., reference heading/roll angle, speed, altitude etc.) for following

the desired mission. The autopilot (or control block) actuates the control surfaces

/ engine throttle to follow the reference commands generated by the guidance

block. In simulation, the ‘UAV’ block is the mathematical model of the UAV. In

15



actual implementation, the same procedure is followed, however the UAV means

the actual flying vehicle. The role of sensors is to feedback the system states for

generating the mentioned commands. However, if some state variables are not

measurable then they may be estimated using observers.

Autopilot 

(control logic) 

UAV 

servo  commands 

On-board sensors / 

state estimator 

Disturbances  

like wind 

altitude, speed,  roll / heading 

commands 

Path-following 

(guidance logic) 

 

Path manager 

path  definition 

Path planner 

way-points 

errors 

path tracking errors 

status 

map destinations 

obstacles 

Figure 2.1: Software architecture for UAVs.

In aerospace systems, three terms ‘Navigation’, ‘Guidance’ and ‘Control’ are commonly

used; these are defined below.

2.2.1 Navigation system

It is a sensor system that measures and outputs the vehicle’s full state vector

estimate, or its subset. The full state vector comprises of UAV position in space

(3-components), velocity (3-components), attitude angles (φ, θ, ψ), airspeed (Va),

angle of attack, sideslip angle, and rotation rates (p, q, r). The objective of a
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navigation system is to find out the UAV position, velocity and attitude at any

time; this is known as the navigation state (Gleason and Gebre-Egziabher, 2009;

Valavanis and Vachtsevanos, 2015). Attitude determination is an integral part of

the navigation system so that the specific measured force by the accelerometers

can be transformed to the navigation frame in which the velocity and position are

calculated. The sensors (inertial measurement unit (IMU) and global positioning

system (GPS) receiver) used to estimate these variables are called navigation

sensors. In the IMU, orthogonally-mounted gyroscopes and accelerometers are

used for rotation rate and force measurement along the sensitive axes.

Inertial sensors exhibit biases and noise that lead to positional drift/errors over

time (Mohamed and Mamatas, 2012). For better position accuracy, it is necessary

for most applications using medium-grade and low-grade IMUs to employ aiding

systems like the Global Navigation Satellite System (GNSS). By incorporating

aiding systems, a dynamic model is used to predict error states in the navigation

parameters, which are rendered observable through external measurements of

position and velocity. The goal of the aiding system is therefore to help estimate

the drifts and correct them. The simplest way to achieve this, of course, is to simply

use the calculated positions and velocities from the GNSS directly in place of the

results from the mechanization. This is the so-called reset filter, although from the

standpoint of optimal filtering, it has many undesirable effects such as introducing

sudden jumps in the navigation states. Moreover, the complementary filter places

all the weight on the GNSS-derived values, which themselves are subject to error.

Alternatively, Kalman filtering is used to optimally estimate the error states of

the INS, with updates coming from the GNSS in one of several architectures:

loosely-coupled integration, tightly-coupled integration or deeply-coupled integration.

In the last decade, inertial navigation systems using MEMS sensors have been

a subject of great interest. Automotive-grade Micro-Electro-Mechanical System

(MEMS) based navigation system is a six-degree of freedom inertial measurement
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unit consisting of three orthogonally aligned accelerometers and three orthogonally

aligned gyroscopes confined in a very small chip. Due to its small size, low cost,

light weight, low power consumption and ruggedness, MEMS based navigation

systems are commonly used in small unmanned aerial vehicles (UAVs). The INS

provides high relative accuracy but the absolute accuracy deteriorates with time

if the system runs in stand-alone mode and if no external measurement aids

are available. The large errors in position, velocity, and attitude come about

mainly due to sensor bias and noise. GPS serves as an aiding device to tune the

MEMS inertial sensor’s measurements through a Kalman filter, while extra sensory

feedbacks from magnetometers are employed to improve the system performance.

Such an integrated system is known as the GPS aided MEMS Inertial Navigation

System. Although there are specialized GPS receivers that can generate data up

to 100 Hz, most low-cost GPS receivers provide output data at 1-10 Hz update.

2.2.2 Guidance

According to Wikipedia definition,“A guidance system is a virtual or physical

device, or a group of devices implementing a guidance process used for controlling

the movement of a ship, aircraft, missile, rocket, satellite, or any other moving

object”. One other definition is: “Guidance is the process of calculating the

changes in position, velocity, attitude, and/or rotation rates of a moving object

required to follow a certain trajectory and/or attitude profile based on information

about the object’s state of motion”. Guidance is the “driver” of a vehicle. It

takes input from the navigation system (position, speed, direction, etc) and uses

targeting/path information (where do I want to go) to send signals to the flight

control system that will allow the vehicle to reach its destination (within the

operating constraints of the vehicle).

In general, the output of the navigation system, the navigation solution, is an

input for the guidance system, and the guidance system computes the instructions
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for the control system. Some environmental conditions (gravity, density, etc)

and the vehicle’s characteristics (mass, inertia, etc) are known and available to

the guidance system. However, variation in these parameters and other inputs

like winds act as disturbances for the guidance system. A guidance system has

three major parts: Inputs, Processing, and Outputs. The input section includes

sensors, course data, radio and satellite links, and other information sources. The

processing section integrates this data and determines what actions, if any, are

necessary to maintain or achieve a proper heading. This is then fed to the outputs

which can directly affect the system’s course. The outputs may control speed by

interacting with devices such as engine, or they may more directly alter course by

actuating ailerons, rudders, or other devices.

In manned aircraft (flying in manual mode), the pilot does the job of the ‘Guidance

system’. Using visual and sensor displayed information, the pilot issues reference

commands to keep the aircraft on the desired path. For example, he may issue

pitch and roll reference commands by moving the stick to keep the aircraft on the

desired altitude and ground path. Similarly, he may generate reference commands

for the engine by moving the stick to achieve the desired speed. In unmanned

systems, all these functions are performed by ‘guidance system’; it generates

suitable reference commands for the inner control loop.

2.2.3 Flight control

Aerospace vehicle control is defined as “the methods and/or equipment used for

correlating the command signals received from the guidance system with the

signals received from its attitude stabilization sensors to compute and command

actuation of the servos (aerodynamic surfaces, engine throttle etc)”. A flight

control system is required to ensure that the UAV exhibits stable behavior and

delivers desired performance, such as following a desired trajectory with sufficient

accuracy in the presence of external disturbances. Thus, a UAV flight control
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system is typically safety/mission critical, as an incorrect design, lack of robustness

to model variations, or a component failure could result in poor performance

(e.g., payload pointing capability), or even loss of the vehicle. Using guidance

commands and measured vehicle states, the flight control system performs speed

control, height and height rate control, bank angle control, heading control, turn

compensation and elevation control.

The goal of the control system is to track the desired reference command in

presence of external disturbances. The control system achieves this by attempting

to eliminate the tracking error between the reference commands and the measured

response of the UAV. The control is typically achieved by using estimates of the

UAV states, which include position, velocity, angular rate, and attitude of the

UAV. These estimates are obtained by the navigation system that fuses noisy

measurements from several sensors. A control system attempts to minimize the

tracking error between the desired and estimated states in the presence of disturbances.

Sometimes the control loops are nested in an inner-loop outer-loop configuration;

this leads to some challenges. The general rule of thumb is to ensure that the

inner control loops has “fast” dynamics than the outer loop, and each successive

loop added is “slower than the previous one”. The primary difficulties here are

to define what is meant by fast and slow, and how to determine if there is too

much interaction between the loops being closed (e.g., closing the outer loop might

reduce the performance of the inner loop, requiring a redesign). The flight control

generates servomotor signals for the rudder, elevator, aileron and engine throttle.

A servomotor is a compact electromechanical device consisting of a DC motor

with a built-in feedback circuit. These servomotors accept pulse-width modulated

(PWM) signals as inputs.
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2.2.4 The mission plan

The desired mission generated by the ‘path planner’ consists of a number of

waypoints connected in series which define the path to be followed. A typical

mission profile includes series interconnection of two consecutive waypoints via

straight lines or arcs, and there are circles (for loiter). The desired mission is

generally planned off-line and can be modified on-line anytime. Path planning is

not in the scope of this thesis and it is assumed here that the desired waypoint

information is available for the path following algorithm; the main objective of this

section is to discuss practical aspects related to guidance and control to follow a

given mission.
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Figure 2.2: Waypoints for straight and turning flight.

Figure 2.2 describes two scenarios of a typical mission: a straight line segment,

and waypoints with a turn. On the left hand side of the figure the three waypoints

lie on a straight line, the UAV has to fly over the central waypoint WP2. A

scenario of a turn is shown on the right side of Figure 2.2. In this case a sharp

turn at the central waypoint (WP2) is beyond the capability of the vehicle, and

hence a circular arc AB (close to WP2) is introduced. The turn starts at point A

and ends at point B. Similarly loitering around a given waypoint is also possible
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Figure 2.3: Mission with loiter about WP2.

as shown in Figure 2.3. Two additional arcs AB and CD are introduced here

for smooth transitioning between the straight segments and the circular loiter.

Waypoint generation is beyond the scope of this study and we assume here that

the desired mission plan in terms of waypoints is available for the path following

algorithm.

We now formulate the problem in more specific terms. The task of the path

manager (for the lateral guidance and control system) is defined as to:

• Compute the down-range covered from one waypoint to the next, and the

cross-track deviation from the designated track/trajectory,

• Compute the error in heading angle (or the course angle) of the vehicle,

• Determine if a waypoint is achieved,

• Compute ‘turn start’ and ‘turn stop’ decision flags for the autopilot,

22



• Solve the guidance equations to calculate the roll reference command for

steering the vehicle back onto the desired path, and

• Stabilize and control the lateral-directional dynamics of the vehicle across

the flight envelope in the presence of disturbances.

All the above computations have to be done in real time. The control inputs

available to the vehicle for lateral control are the ailerons and the rudder. Note

that the cross-track deviation and heading error (or the course angle error) are

used in the guidance equations.

2.2.5 Flight path computations

Figure 2.4: Earth fixed reference frames (Valavanis and Vachtsevanos, 2015).

After availability of the mission plan, the next step is to navigate the UAV through

the desired waypoints. In order to accomplish this task, some basic computations

are performed in real time which are discussed here. The lateral waypoints are
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generally defined in terms of latitude ϕ and longitude λ. The first step is to

identify turning waypoints and this is done be checking the azimuth difference of

WP1−WP2 and WP2−WP3 for any three consecutive waypoints. If the turn

angle (difference between azimuths of WP1 −WP2 and WP2 −WP3) is small,

then WP2 is referred to as a straight waypoint and the segment from WP1 to

WP2 is called a straight line. In case the turn angle is significant (say > 5◦), the

central waypoint WP2 is marked as a turning waypoint; in this case the complete

path from WP1 to WP3 includes two straight segments and a curved part as

shown in Figure 2.2. This process is then repeated for the next three consecutive

waypoints WP2, WP3 and WP4, and so on. The other flight path computations

are worked out separately for straight and turning parts of the flight.

The algorithm described here computes the lateral deviation (cross-track error)

from the desired path as well as the heading error (or the course angle error)

for straight and circular paths. The lateral cross-track and course (or heading)

errors are fed to the lateral guidance scheme to generate suitable roll commands

for accurate path following. Some additional decision flags like ‘turn start’, ‘turn

stop’ and ‘waypoint achieved’ are also computed here for the mission manager and

the autopilot.

Let WP1(ϕ1, λ1), WP2(ϕ2, λ2) and WP3(ϕ3, λ3) be three consecutive waypoints

(ϕ and λ denote the latitude and longitude, respectively), and let M(ϕM , λM)

be the current position of the vehicle. We define an Earth-Centred Earth-Fixed

(ECEF) frame (see Figure 2.4) with its origin at the centre of mass of the earth,

the z-axis directed northward along the polar axis, the x-axis in the equatorial

plane and passing through the Greenwich Meridian, and the y-axis also in the

equatorial plane and passing through 90◦ east longitude. The position vector of

a point on the earth’s surface with latitude ϕ and longitude λ in ECEF frame is

24



given by:

rx = a cosϕr cos λ, ry = a cosϕr sinλ, rz = b sinϕr (2.1)

where a is the earth’s equatorial radius, b is the polar radius, and ϕr = tan−1
(

b
a
tanϕ

)

is the reduced latitude of the point under consideration.

2.2.5.1 Straight path formulae

Distance covered:

Here we consider the straight path from WP1 to WP2 (Figure 2.5). Let −→r1 and

−→r2 be the position vectors of WP1 and WP2 in ECEF frame, respectively. The

distance between WP1 and WP2 can be calculated as:

r12 =
1

2
(|−→r1 |+ |−→r2 |) cos−1(r̂1 · r̂2),

where r̂ is a unit vector along −→r .

Cross-track deviation:

Cross-track error is the instantaneous normal displacement of the vehicle from the

desired track. To compute the cross-track error we first define a vector −→rN normal

to the trajectory plane (plane containing WP1, WP2 and the centre of the earth)

as:

−→rN = r̂1 × r̂2.

If −→rM is the position vector of the vehicle in ECEF frame, then the cross-track

error is:

Cross-track = −−→rM · r̂N

.

Course error:

Let VE denote the east velocity and VN the north velocity of the vehicle, then the
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Figure 2.5: Straight flight path definitions.

velocity heading of the vehicle is given by χ = tan−1( VE
VN

). The course error is the

difference between the actual course angle χ and the desired course angle χr, i.e.,

χe = χ− χr.

If P is the projection of the vehicle’s current position on the trajectory plane

(Figure 2.5), then the desired course angle (χr) is defined as the angle between

the trajectory plane and the meridian plane passing through the projected point

P . The position vector −→rP of P in ECEF frame is given by:

−→rP = −→rM − (−→rM · r̂N)r̂N .

The desired course angle χr works out to be:

χr = tan−1





∣

∣

∣
(r̂P × k̂)× r̂N

∣

∣

∣

(r̂P × k̂) · r̂N



 , (2.2)
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where k̂ is a unit vector along the earth’s spin axis. The course error χe can now

be readily computed.

Waypoint achieved criterion:

The straight waypoint WP2 is achieved, when the straight path distance covered

exceeds r12. The straight distance covered from WP1 to the current position of

the vehicle is 1
2
(|−→r1 |+ |−→rP |) cos−1(r̂1 · r̂P ).

2.2.5.2 Curved path formulae

For turning paths (Figure 2.6), we define another coordinate system (the East-North-Up

or ENU frame) at the central waypoint WP2. The origin of the ENU frame is

at WP2, the positive x-axis points towards east, the y-axis points towards north,

and the z-axis points up along the local vertical. The position vector of a point on

the earth’s surface with latitude ϕ and longitude λ can be expressed in the ENU

frame as:

x = RN(λ− λ2) cosϕ2, y = RM (ϕ− ϕ2), z = 0

where RN and RM are the normal and meridian radii of curvature (of the earth’s

ellipsoidal model), respectively. These are given by:

RN =
a

(1− e2 sinϕ2)
1

2

RM =
a(1− e2)

(1− e2 sinϕ2)
3

2

(2.3)

where e denotes the eccentricity of the ellipsoidal earth:

e =

√
a2 − b2

a
.
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Let −→q1 and −→q2 be the position vectors of WP1 and WP3 in the ENU frame, i.e.,

−→q1 =
[

RN (λ1 − λ2) cosϕ2 RM (ϕ1 − ϕ2) 0
]

−→q2 =
[

RN (λ3 − λ2) cosϕ2 RM (ϕ3 − ϕ2) 0
]

(2.4)

The turn angle β (≤ 180◦) is given by:

β = cos−1(q̂1 · q̂2).
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Figure 2.6: Flight path with turn.

Turn centre

The turn centre will be at a distance of R/ sin(β/2) fromWP2 on the line bisecting

the turn angle β, R being the turn radius. The vector −→q along this line in the

ENU frame is given by −→q = q̂1+ q̂2. Thus the position of the turn centre C in the

ENU frame is:
−→
C = R/ sin(β/2)q̂.
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The projection of the vehicle on the earth’s surface (ϕM , λM) in the ENU frame

is given as:
−→
M =

[

RN(λM − λ2) cosϕ2 RM (ϕM − ϕ2) 0
]

,

and the position vector of the vehicle’s projection w.r.t. the turn centre C is
−→
SM =

−→
M −−→

C .

Turn start criterion

The turn start point is at a distance of R/ tan(β/2) from WP2 on the line joining

WP1 and WP2. Its position vector
−→
A in the ENU frame is

−→
A = R/ tan(β/2)q̂1,

and its position w.r.t. the turn centre C is
−→
SA =

−→
A − −→

C . Turning is started

when the cross-product
−→
SM × −→

SA changes sign. During turn the total distance

(down-track) from WP1 to the current position is computed as:

Distance from WP1 = r12 − R/ tan(β/2) +R cos−1(ŜA · ŜM).

Cross-track deviation

While turning the cross-track deviation is given by R− |−→SM |.

Course error

During turn the desired course angle (χr) is given by χr = χs + χT , where χs is

the desired heading at the turn start point (computed using equation (2.2) at the

turn start point), and χT is the angular displacement from the turn start point to

the current position:

χT = cos−1(ŜA · ŜM)

.

Waypoint achieved criterion

The waypoint WP2 is said to be achieved when the vehicle crosses the bisector

line, i.e., when the vector cross-product
−→
SM ×−→

C changes sign.
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Turn stop criterion

The turn stop point is at a distance of R/ tan(β/2) from WP2 on the line joining

WP2 and WP3. Its position vector
−→
B in the ENU frame is

−→
B = R/ tan(β/2)q̂2,

and its position w.r.t. the turn centre C is
−→
SB =

−→
B − −→

C . Turning is stopped

when
−→
SM ×−→

SB changes sign.

2.3 Sliding Mode Control

Sliding mode control (SMC), a technique derived from variable structure systems

(VSS), was originated in the former USSR in the 1950’s, and gained appreciation

in the wider analytical controls community after the historic paper by Utkin in

English (Utkin, 1977). SMC has gathered great popularity amongst the nonlinear

control community in recent times and has played a remarkable role not only in

theoretical developments but also in practical applications (Edwards and Spurgeon,

1998; Utkin, 1977; Slotine and Li, 1991; Durmaz et al., 2012). This increased

interest in SMC is mainly due to the fact that robustness has become a major

requirement in modern control applications; and due to its inherent robustness

property, SMC provides desired performance even in the presence of parametric

uncertainties and external disturbances. The major advantage of sliding mode

control is low sensitivity to plant parameter variations and disturbances which

eliminates the necessity of exact modeling.

In this section, we cover the basic terminologies of SMC, the procedure of SMC

design, and finally an illustrative example.

2.3.1 Basics of sliding mode control

In the formulation of any practical control problem, there will always be a discrepancy

between the actual plant and its mathematical model used for controller design.

Imprecision in the mathematical model of a system may come from simplified

representation of the system dynamics (known as unstructured/unmodeled uncertainties),
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or from actual uncertainty about plant parameters (structured or parametric

uncertainties) (Slotine and Li, 1991). Designing control laws that provide desired

performance to the closed-loop system in the presence of disturbances and uncertainties

is in general a very challenging task. Modeling inaccuracies can have strong and

adverse effects on nonlinear control systems and may even lead to instability.

One nice approach to dealing with model uncertainty is robust control. The

typical structure of a robust controller is composed of a nominal part, similar

to a feedback control law, and additional terms aimed at dealing with model

uncertainty. The sliding mode control technique is one approach to robust control

design. For a particular class of systems, sliding mode control provides a systematic

approach to the problem of maintaining stability and consistent performance in

the face of modeling imprecision. Also by allowing tradeoffs between modeling

and performance to be quantified in a straightforward fashion, it can illuminate

the whole design process.

Sliding mode control is a high-speed switching control in which the gains switch

between two values according to some rule. A high speed switching control law

is employed to drive the nonlinear plant’s state trajectory onto a specified and

user-chosen surface in the state space (called the switching or sliding surface),

and to maintain the trajectory on this surface for all subsequent time. In order

to maintain the trajectory on the surface (sliding motion), the control input is

switched at very high frequency between a positive high magnitude and a negative

high magnitude (a phenomenon known as chattering) (Young et al., 1999; Boiko,

2013; Burton and Zinober, 1986). While sliding, the plant dynamics is restricted

(or forced) to lie on the sliding surface; the performance of the controller depends

on the design of the surface (Slotine and Li, 1991). The idea is to force the

trajectory of the system towards the sliding surface in the reaching phase, and

once achieved, the system states must be constrained to remain on the surface.

Sliding mode systems operate in two main phases during runtime:
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• Reaching phase: the phase during which the system state trajectory is driven

from any initial condition to the sliding surface (in a finite time).

• Sliding phase: the phase during which the system is forced to slide along the

sliding manifold and reach the origin, i.e., the switching surface becomes an

attractor.

These two phases in turn give rise to a two-step design strategy:

• Sliding surface selection: a switching (or sliding) manifold is selected with

prescribed dynamical characteristics. Common candidates are linear hyperplanes.

• Discontinuous control design: a discontinuous control strategy is formulated

to ensure finite time reachability and sliding on the switching manifold.

2.3.2 Sliding surface design

Sliding mode or sliding motion may be defined as “the evolution of the state

trajectory of a system confined to a specified non-trivial sub-manifold of the state

space with stable dynamics”. According to another definition, “Selection of stable

hyperplane(s) in the state/error space on which motion should be restricted, is

called the switching function (or sliding surface)”. From a geometrical point of

view, the equation s = 0 defines a surface in the error space, that is called the

“sliding surface” (also known as the sliding manifold, switching surface, discontinuous

surface). Once sliding occurs, robustness to a certain type of uncertainty is

guaranteed and the system behaves as a reduced order system independent of the

control. The sliding surface decides the dynamics, therefore it should be designed

such that it addresses all requirements. In general, the design of a sliding mode

controller (SMC) involves the determination of a sliding surface that represents

desired stable dynamics for the closed-loop system.
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The trajectories of the controlled system are forced onto the sliding surface; the

sliding surface dynamics should meet the design specifications. The trajectories

starting from a given initial condition should be guided onto the sliding surface.

This is known as the reaching or hitting phase and the system is sensitive to

parametric variations in this part of the phase trajectory. When convergence to

the sliding surface occurs, the sliding phase starts. The trajectories in this phase

are insensitive to parametric variations and disturbances (Utkin and Shi, 1999;

Young et al., 1999). Various methods have been suggested to eliminate or reduce

the system sensitivity by minimizing or removing the reaching phase (C. and Y.,

2000; Choi S.-B. and S., 1994; M.L. and G., 2007). Conclusively with SMC we

can say that:

• The system behaves as a reduced order system which (apparently) does not

depend on the control signal u(t). Suppose we have a SISO second order

system with two state variables x1 and x2, if we choose a linear sliding

surface s = x2 + λx1 = 0 then the system dynamics during sliding is given

by the (reduced) first order differential equation s = 0.

• The equation of motion of the sliding mode can be designed linear and

homogenous, even if the original system is governed by non-linear equations.

• Once the sliding motion starts, the system has invariant properties which

makes the motion independent of certain system parametric variations and

disturbances. Thus the system performance can be completely determined

by the dynamics of the sliding manifold.

• The closed-loop sliding motion depends only on the choice of the sliding

surface. The sliding mode does not depend on the process dynamics, but is

determined by parameters selected by the designer.
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After switching surface design, the next important aspect of sliding mode control

is guaranteeing the existence of a sliding mode. A sliding mode exists, if in the

vicinity of the switching surface, s = 0, the velocity vectors of the state trajectory

are always directed towards the switching surface, this is discussed in the following

subsection.

2.3.3 Control law design

The objective of the sliding mode is to ensure sliding motion in finite time, starting

from any point in the phase portrait. The second important step is design of a

switching control that will drive the system’s state trajectory towards the sliding

surface, and upon interception maintain sliding motion on it for all subsequent

time. During this phase, if the plant’s state trajectory is just above the surface,

the feedback path has one gain, and if the state trajectory drops below the surface,

a different gain is chosen. The following reaching laws have been proposed in the

literature (Gao and Hung, 1993):

• The constant rate reaching law:

ṡ = −K sgn(s)

• The constant plus proportional rate reaching law:

ṡ = −K1s−K2 sgn(s)

• The power rate reaching law:

ṡ = −K|s|α sgn(s)

Equivalent Control

From a geometrical point of view, equivalent control means replacement of the

discontinuous control term by a continuous control in the intersection of the
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Figure 2.7: Filippov’s construction of the equivalent dynamics.

switching surface such that the state velocity lies tangential to the sliding manifold,

as shown in Figure 2.7. Using discontinuous control u+ and u−, the state trajectory

is not tangential to the sliding surface. The system’s motion on the sliding surface

is basically an ‘average’ of the system dynamics on both sides of the surface. The

equation ṡ = 0 represents the dynamics when in sliding. By solving the equation

ṡ = 0 for the control input, we obtain an expression for u called the equivalent

control (uequivalent).

In sliding mode literature, u(t) is said to be designed in order to satisfy the

reachability condition. The reachability condition specifies that the system state

trajectory must always point towards the sliding surface. For the case of a single

input system, this can be expressed as:

lim
s→0+

ṡ < 0, lim
s→0−

ṡ > 0, (2.5)

35



or more compactly as:

sṡ < 0. (2.6)

This is often referred to as the reachability condition (Utkin and Shi, 1999). A

more strict reachability condition to ensure that the control law u(t) is designed

so that the sliding surface is reached despite the presence of uncertainties, and in

finite time is given by:

sṡ < −η|s|, (2.7)

where η is a positive scalar. Equation (2.7) is called the ‘η reachability condition’.

In order to guarantee desired behavior of the closed-loop system, the sliding

mode controller requires an infinitely fast switching mechanism. However, due

to physical limitations in real-world systems, directly applying such a control

is not possible, hence approximation to the infinitely fast switching will lead to

oscillations in vicinity of the sliding surface: the so called chattering problem. The

main limitations come from implementation of controllers in digital computers

which work on discrete sample times and cannot allow infinitely fast switching,

and from physical actuators. Different approaches have been proposed to avoid

chattering, such as boundary layer approximation (Young et al., 1999; Edwards

and Spurgeon, 1998), higher order sliding modes (Levant, 1993) and adaptive

sliding mode control (Shtessel et al., 2003). Saturation and sigmoid functions

are also used as ‘filters’ to smoothen the discontinuous control signal so that it is

realizable by mechanical hardware, interested readers are referred to (Young et al.,

1999) for a detailed discussion.
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Motor

Figure 2.8: A simple pendulum system.

2.3.4 An illustrative example

The motion control of the simple pendulum system has been used by many researchers

to demonstrate their ideas. To give some insight into the above mentioned sliding

mode based principles, here we will apply them to the simple pendulum problem.

A schematic of the system is shown in Figure 2.8 consisting of a (weightless) shaft

and a mass which is driven by a motor (torque) at the point of suspension. A

simple pendulum system is a mechanical system that exhibits periodic motion in

the absence of any control action. The objective of control law design is to bring

the pendulum to its vertically downwards equilibrium point when released from

any initial position.

The equation of motion is given by:

mL2θ̈ = −mg sin(θ)L+ u, (2.8)
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where m is mass of the bob, g is the gravitational acceleration and L is length of

the rod. In this second order differential equation, the control variable is denoted

by u and the state variables are θ and it its rate of change. Denoting the two

state variables θ (angular displacement) and θ̇ (angular velocity) by x1 and x2,

respectively, we have the following state equations:

ẋ1 = x2

ẋ2 =
1

mL2
(−mg sin(x1)L+ u) .











(2.9)

In sliding mode based control law design, the first step is selection of a stable

sliding manifold. A common choice is the linear combination of state variables as

discussed earlier. In this case, we select the following linear sliding surface:

s = x2 + c1x1 = 0, (2.10)

where c1 is a real positive constant. To prove stability of the sliding surface,

substituting x2 = −c1x1 from equation (2.10) in state equations (2.9) we get:

ẋ1 = −c1x1. (2.11)

Analytical solution x1 = x10e
−c1t of the above equation indicates that magnitude of

x1 will decrease exponentially as time t increase. Ultimately x1 → 0 as t→ ∞, and

the second state variable x2 = −c1x1 will also approach zero once x1 approaches

the origin. From the analytical solution, it is clear that both state variables will

converge to the origin while following the sliding surface s = x2 + c1x1, and hence

we have a stable sliding surface for c1 > 0.

The second step in SMC is the selection of a reaching law to reach the sliding

surface and then subsequently maintain sliding motion. A common choice is the

discontinuous control law u = −k sgn(s) that is used here. For simulation we
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Figure 2.9: Simulation results for a pendulum system with u = −k sgn(s)
control law.

choose m = 0.5kg, L = 1.5m, g = 9.78m/s2 and k = 8. In Figure 2.9, simulation

results are shown for initial state values θ = 60deg and θ̇ = 50deg/s. It take

approximately 0.2sec for the state trajectory to reach the sliding surface, and

then it slides to the origin in approximately 3.5seconds. The control input (u)

has visible chattering in this case, as expected. To reduce the chattering, a more

practical control law is required that is next derived.

A practical sliding mode based control law will have two terms: a continuous

control term known as equivalent control, and a discontinuous term−k sgn(s). The
equivalent control is derived from ṡ = 0:

ṡ = ẋ2 + c1ẋ1 = 0. (2.12)
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Substituting the states variables from equation (2.9), we have:

1

mL2
(−mg sin(x1)L+ uequivalent) + c1x2 = 0, (2.13)

and hence we have the following expressing for the control law:

uequivalent = −c1mL2x2 +mg sin(x1)L, (2.14)

The total control is the sum of the two terms:

u = uequivalent + udisc

= −c1mL2x2 +mg sin(x1)L− k sgn(s).
(2.15)

To reduce chattering in control signal, the discontinuous term can be approximated

by boundary layer approximation sgn(s) ≈ s
|s|+ǫ , where ǫ is a small positive

number. Hence we have the following final expression for the total control law:

u = −c1mL2x2 +mg sin(x1)L− k
s

|s|+ ǫ
. (2.16)

Simulation results with control law (2.16) is shown in Figure 2.10 for ǫ = 0.1. In

this case, it takes a slightly longer time for the state trajectory to reach the sliding

surface, and then slides along the surface to reach the origin in approximately

4.0seconds. The prominent difference is observed in the control signal u. We

have a smooth control signal that is physically realizable by actuator hardware if

implemented in an actual system.
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Figure 2.10: Simulation results for a pendulum system with a practical SMC
law.
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Chapter 3

KINEMATIC MODELS FOR UAV GUIDANCE

3.1 Introduction

In this chapter, mathematical models for bank-to-turn aerospace vehicles are

formulated as a basis for guidance logic design and analysis. This thesis deals

with the problem of UAV path following in a ground coordinate frame attached

to the earth. When the equations of motion for a system become complex, it is

often necessary to develop design models that have significantly less mathematical

complexity, but still capture the essential behavior of the system. It is important

to mention that it is not a goal of this dissertation to present detailed mathematical

models for flight vehicles, but we present simplified kinematic models that capture

most of the features of flight vehicles that are essential for guidance logic design.

In deriving reduced-order guidance models, the main simplification we make is

to eliminate the force- and moment-balance equations of motion (those involving

u̇b, v̇b, ẇb, ṗ, q̇, ṙ), thus eliminating the need to calculate the complex aerodynamic

forces acting on the airframe. These general equations are replaced with simpler

kinematic equations derived for the specific flight conditions of a coordinated turn

and an accelerating climb.

A path planning algorithm generates a desired 3-D curved path that the UAV

should follow. Desired path information is passed on to the guidance algorithm

in the form of sequence of 3-D waypoints along with connectivity information.

Two consecutive waypoints are either joined by a straight line or circular arc with

defined radius and center. The guidance algorithm generates suitable commands

for the vehicle control system so that the desired path is followed even in the

presence of uncertainties and disturbances.
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Three dimensional (3-D) guidance refers to following the mission path in both the

lateral (horizontal) and longitudinal (vertical) planes (Breivik and Fossen, 2005).

It covers both 2-D ground track following, as well as altitude profile following of

the desired trajectory. In the 3-D case, guidance commands are generated for the

lateral/directional control system in terms of reference roll or heading angles, and

for the longitudinal control system in terms of pitch or angle of attack commands,

taking into consideration the coupling between these two planes. A subset of the

general 3-D problem is the 2-D lateral guidance problem in which the guidance

objective is to ensure accurate ground track following of the vehicle. This is to say

that the vehicle must exactly fly over lines and arcs joining mission waypoints

as projected on plane ground, with minimum cross-track or lateral deviation.

Another subset is the longitudinal guidance scheme that ensures accurate altitude

following of the vehicle. Wind is an important disturbance parameter for the

guidance system that should be properly taken into account during the design

process. However, generally the wind vector lies in the horizontal plane and has

negligible vertical component, so here the effect of wind is also analyzed for the

lateral plane only. In the following sections, kinematic models are derived for all

these cases. In section 3.2, kinematic equations are derived for the lateral guidance

logic design to ensure ground tracking. Similarly a mathematical model for the

design of longitudinal guidance scheme is derived in section 3.3. More generalized

3-D kinematic equations considering the coupling between longitudinal and lateral

motions are discussed in the section 3.4.

3.2 Lateral Guidance Model

Before the derivation of kinematics model for guidance logic design, it is important

to understand the sense of different variables and coordinate systems. We need to

understand how the UAV is oriented with respect to the earth. The subsequent

subsection describes the various variables, the coordinate systems used to describe
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the position and orientation of the aircraft and the transformation between these

coordinate systems.

3.2.1 Reference frames and variables definition

Figure 3.1: Definition of various angles for 2-D lateral plane.

In order to set up the guidance problem, description of three important lateral

plane angles (see Figure 3.1) is required. The body heading angle (ψ) describes

the direction of nose of the UAV relative to North and is defined as “the angle

between body x-axis and the true North in the horizontal plane”. The airspeed

vector (Va) provides the motion of the UAV relative to the incoming air in 3-D

space, and the sideslip angle β is defined as the angle between the UAV nose and

the relative airspeed vector Va in the horizontal plane. In steady level flight with

zero rudder deflection and no body asymmetries, the nose of the UAV is aligned

with the airspeed vector Va and hence there is zero sideslip angle in this case.
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The rate of change of the vehicle’s position in 3-D space is defined as the ground

velocity vector Vg and is not necessarily equal to Va. The ground velocity (Vg)

is the vector sum of the wind velocity vector (Vw) and the airspeed vector (Va),

as shown in Figure 3.1. Obviously, the vector Vg is equal to Va in the absence

of wind. Another important angle is the course angle (χ) defined as “the angle of

the ground velocity vector (Vg) with respect to north in the horizontal plane”. As

discussed earlier in Chapter 2, the outer loop is much slower than the inner loop

in a multi-loop configuration. Dynamic variables such as β respond much more

quickly in time scale and hence are considered in inner control loop design. On

the other hand, kinematic variables like χ respond slowly and are considered in

the outer guidance loop design.

 
 

e

Figure 3.2: The 2-D lateral guidance problem definition for a straight path.

Definition and sign convention of different lateral guidance variables for straight

and curved paths are shown in Figures 3.2 and 3.3, respectively. In these figures,

all the guidance variables are indicated in the positive sense. In case of straight

path (Figure 3.2), the angle χp of the line joining two successive ground waypoints

WP [i] and WP [i+1] with respect to north defines the desired or reference course
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Figure 3.3: The 2-D lateral guidance problem definition for a circular path.

angle. In case of a circular trajectory of radius R centered at O (Figure 3.3), the

desired course angle χp is defined as the angle of the tangent line at point C (the

closest point on the desired trajectory to the UAV). In both figures, ye (cross-track

error) denotes the lateral deviation of the UAV from the desired path. Another

important guidance parameter χe = χ−χp is defined in literature as the intercept

course. In case of any deviation from the reference path, the objective of lateral

guidance scheme is to bring ye to zero through manipulation of χe (by generating

suitable roll angle commands).

3.2.2 Wind effect

As discussed above, the ground velocity Vg is the vector sum of the airspeed vector

Va and the wind velocity vector Vw = (Vwn
, Vwe

, Vwd
)T , i.e., Vg = Va + Vw.
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Considering a fixed and level North-East-Down inertial coordinate system, the

wind triangle can be expressed as (Beard and McLain, 2012):

Vg











cosχ cos γ

sinχ cos γ

− sin γ











=











Vwn

Vwe

Vwd











+ Va











cosψ cos γa

sinψ cos γa

− sin γa











, (3.1)

where Vg and Va are the magnitudes of the ground and airspeed vectors, respectively.

Variables γ and γa denote the inertial referenced and air-mass-referenced flight-path

angles respectively, in the longitudinal (vertical) plane. For level flight (γ = 0) the

projection of the these vectors on the North-East (2-D ground) plane is written

as:

Vg





cosχ

sinχ



 =





Vwn

Vwe



+ Va





cosψ

sinψ



 , (3.2)

or alternatively

Vg





cosχ

sinχ



−





Vwn

Vwe



 = Va





cosψ

sinψ



 . (3.3)

Taking the square of equation (3.3), we have:

V 2
g − 2Vg(Vwn

cosχ + Vwe
sinχ) + V 2

w − V 2
a = 0. (3.4)

Using this equation, the relation between Vg and Va can be worked out for selected

values of the course angle (χ) and wind vector Vw = (Vwn
, Vwe

. The aerodynamic

lift and drag forces of an aerospace vehicle mainly depend on the airspeed (Va),

this is usually maintained either through a feedback controller, or a preset lookup

table of throttle settings. Va can be maintained approximately constant even in

the presence of wind, variation of Vg can be derived using the expression (3.4). As
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Figure 3.4: Variation of Vg for constant Va in the presence of wind.

an example, variation of Vg is shown in Figure 3.4 for Va = 30 m/s, depending on

χ and wind. Here Vg is plotted versus χ for two different cases of wind: a north

wind of 5 m/s (Vw = (5, 0)T ), and an east wind of 5 m/s (Vw = (0, 5)T ).

The relation between ψ and χ can also be derived using the expression (3.3),

multiplying both sides of the equation on the left hand side by the row vector

(− sinχ, cosχ) yields:

Vwn
sinχ− Vwe

cosχ = Va (− sinχ cosψ + cosχ sinψ) , (3.5)

which can be written in simplified form as:

ψ − χ = sin−1

(

1

Va
(Vwn

sinχ− Vwe
cosχ)

)

. (3.6)

Variation of ψ − χ for a constant airspeed of 30 m/s is shown in Figure 3.5 for

48



0 50 100 150 200 250 300 350 400
−10

−8

−6

−4

−2

0

2

4

6

8

10

χ [deg]

ψ
 −

 χ
 [d

eg
]

 

 

North wind (5m/s)
East wind (5m/s)

Figure 3.5: Variation of ψ − χ for constant Va in the presence of wind.

north and east wind. Difference of upto ∼ 10 deg in ψ and χ is possible depending

on wind speed and course angle χ.

3.2.3 Kinematic equations

The concept of coordinated turn in the presence of winds is discussed in detail in

(Beard and McLain, 2012). The term ‘coordinated turn’ is used in the sense that

there is no side force in the body frame of the vehicle, thus implying zero sideslip

angle. Aerial vehicles use a component of the aerodynamic lift to generate lateral

accelerations to correct the lateral (cross-track) errors during flight (Siouris, 2004);

these are balanced by centrifugal accelerations in a coordinated turn. Lateral

acceleration is produced by rolling or banking the vehicle so that a component of

the lift vector is tilted in the required direction (the bank-to-turn maneuver). The

guidance loop generates appropriate bank (or roll) commands φreq for the inner
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control loop to follow. Reference bank angle command (φreq) therefore serves as

the control input in our case.

Consider a coordinated turn (β = 0) in the presence of wind, the aerodynamic

lift vector L can be resolved into two components as shown in Figure 3.6. The

component (L cosφ) balances the weight of the vehicle, and a part of the other

component balances the centrifugal force during a turn (Beard and McLain, 2012).

Summing the forces in the vertical and radial directions:

L cosφ = mg, L sinφ cos(χ− ψ) =
mV 2

g

R
. (3.7)

Here m denotes the mass, g is the gravitational acceleration and R is the radius

of turn of the vehicle. From above equation (3.7), we get:

tanφ cos(χ− ψ) =
V 2
g

Rg
(3.8)

During a steady turn Vg = Rχ̇, so the equation (3.8) becomes:

tanφ cos(χ− ψ) =
Vgχ̇

g
. (3.9)

We assume that the inner loop dynamics from φreq to φ are significantly faster (e.g.,

5 ∼ 10 times faster) than the outer (guidance) loop dynamics. This assumption

implies that φreq ≈ φ, and so the expression (3.9) can be approximated as:

tanφreq cos(χ− ψ) =
Vgχ̇

g
. (3.10)

Now since χe = χ− χp, therefore we have:

tanφreq cos(χ− ψ) =
Vg(χ̇e + χ̇p)

g
. (3.11)
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Figure 3.6: Components of the lift vector L during a steady turn of radius R.
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Rearranging equation (3.11), we get

χ̇e =
g tanφreq

Vg
cos(χ− ψ)− χ̇p, (3.12)

Using equation (3.6), the above state equation becomes:

χ̇e =
g tanφreq

Vg
cos

(

sin−1

(

1

Va
(−Vwn

sinχ+ Vwe
cosχ)

))

− χ̇p, (3.13)

where χe is a state variable and χ̇p is the rate of change of the desired course/path

– this information is available from mission data. During straight flight, χ̇p is

equal to zero, but it can become appreciable during sharp turns.

The inertial horizontal position (Pn, Pe)
T of the UAV in the fixed North-East-Down

frame can be derived using:





Ṗn

Ṗe



 = Vg





cosχ

sinχ



 (3.14)

To compute the cross-track deviation (ye) at any point (see Figures 3.2 and 3.3),

we can use the relation:

ẏe = Vg sinχe. (3.15)

Equations (3.15) and (3.13) represent the overall dynamics for the outer loop

guidance design problem. For simplicity, we may define u = tanφreq as the control

input, in state space form we can then write:





ẏe

χ̇e



 =





Vg sinχe

−χ̇p



+





0

g

Vg
cos
(

sin−1
(

1
Va

(−Vwn
sinχ + Vwe

cosχ)
))



u (3.16)

Here ye and χe are the state variables, and u = tanφreq is the control signal that

the guidance loop has to generate for track following. The gravity g is a known
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constant. Measurement of the ground speed Vg will be required for our proposed

guidance law. Most sensors onboard UAVs measure the airspeed of the vehicle.

This will differ from the ground speed by an amount equal to the wind speed.

Also in most cases a GPS1 receiver will be available on board the aircraft which

gives position measurements, usually with an update rate of 1 Hz. These can be

used to estimate the ground speed of the vehicle, with some estimation error. In

either case, we shall assume an upper bound on the error in the measurement of

Vg, and use it to derive bounds on guidance parameters.

Simplified state equations (neglecting wind)

Generally wind speed and direction measurements are not available in low cost

UAVs, and these are estimated in real time. A simplified kinematic model can

be utilized for guidance logic design neglecting the wind in above state equations

(3.16). Effect of wind can be compensated through parametric uncertainty in

ground speed Vg. In the absence of wind (Vwn
= Vwe

= 0), state equations for

lateral guidance logic take the following form:





ẏe

χ̇e



 =





Vg sinχe

−χ̇p



+





0

g

Vg



 u (3.17)

3.3 Longitudinal Guidance Model

The objective of this section is to derive the kinematic equations required for

longitudinal guidance logic design of UAVs. To derive the desired equations, we

will consider a UAV pull-up maneuver along an arc in the vertical plane. The

different longitudinal variables, their convention and reference frames are discussed

in detail in subsection 3.3.1 followed by derivation of kinematics equations in

subsection 3.3.2.

1The Global Positioning System.
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3.3.1 Reference frames and variables definition

In derivation of the kinematics equations, it is assumed that the earth is flat,

non-rotating, and an approximate inertial reference frame. Standard convention

of coordinate systems and their orientations is assumed here (Hull, 2007). The

body axes system Oxbybzb is fixed to the UAV as shown in Figure 3.7. The local

horizontal system Oxhyhzh moves with the UAV (O is the UAV center of gravity),

but its axes remain parallel to the ground axes. The ground axes system Exyz is

fixed to the surface of the earth at mean sea level, and the xz plane is the vertical

plane. Let WP [i] and WP [i + 1] be the two successive waypoints in vertical

plane, and γp be the angle of the line WP [i]-WP [i+ 1] with respect to the local

horizontal (called the reference or desired flight path angle). Flight path angle (γ)

denotes the angle of ground velocity vector Vg of the UAV with respect to the

local horizontal as shown in Figure 3.7. Generally, deviation from the desired line

(WP [i]-WP [i+ 1]) is either measured in vertical direction (he) or normal to the

desired line (ze) as shown in Figure 3.7. It is to mention here that sign convention

of he and ze is different. If UAV position is above the desired lineWP [i]-WP [i+1]

then he will be positive in this case, however ze will be negative. The main theme

of the guidance logic is to generate suitable commands for the inner loop to follow

the line WP [i]-WP [i+ 1] as closely as possible by either controlling the variable

he or ze. In case of any deviation the guidance logic must bring the UAV back

gracefully to the desired path without violating constraints.

3.3.2 Kinematic equations

During accelerating climb/decent (pull-up/down maneuvers along an arc in vertical

plane), the forces acting on an aerospace vehicles are summarized in Figure 3.8.

During pull up maneuver along an arc, the vehicle lift force has to be balanced

by the weight component and the centripetal acceleration. Summing up all the

forces, we have:
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Figure 3.7: Coordinate systems and their conventions (vertical plane).

L = mg cos γ +mVgγ̇, (3.18)

where m is the mass, g is the gravitational acceleration and Vg is the velocity of

the vehicle relative to ground. Equation (3.18) can be written as:

γ̇ =
g

Vg

(

L

mg
− cos γ

)

. (3.19)
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Figure 3.8: Forces acting on UAV during accelerating climb in vertical plane.

where the dimensionless term L
mg

is known as the load factor, i.e. the number of

normal g′s that an aerospace vehicle experiences during flight.

Assuming an inner loop faster than the outer guidance loop, we have Lreq ≈ L

and this implies that equation (3.19) can be approximated as:

γ̇ =
g

Vg

(

Lreq
mg

− cos γ

)

. (3.20)
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To derive the other state equation, the ground velocity Vg has two components in

the ground axes system Exyz (vertical plane):

ẋ = Vg cos γ, ḣ = Vg sin γ. (3.21)

Using equation (3.21), we can derive an expression for the rate of change of

deviation from the desired path. As discussed in the above subsection 3.3.1, the

deviation from the desired path can be either measured in terms of vertical error

(he) or deviation normal to the desired path (ze) as shown in Figure 3.7. Here we

have mentioned equations for both errors and any one can be used depending on

the application:

że = −Vg sin γe , ḣe = Vg cos γp sin γe + Vg sin γp cos γe − ḣref . (3.22)

where γe = γ − γp denotes the error in flight path angle.

Above equation (3.22) can be simplified by assuming that ḣref ≈ Vg sin γp cos γe,

implying the following simplified equations for rate of change of deviation:

że = −Vg sin γe , ḣe = Vg cos γp sin γe. (3.23)

Combining equations (3.20, 3.23), we have the following state equations for guidance

law design:

że = −Vg sin γe or ḣe = Vg cos γp sin γe,

γ̇e =
g

Vg

(

Lreq
mg

− cos γ

)

− γ̇p











(3.24)

Here deviation from path (he or ze) and flight path angle error γe are the two state

variables, and Lreq is the control variable that the guidance loop generates for
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inner control loop to follow. It may be mentioned here that the term γ̇p is basically

related with the rate of change of commanded RoC/RoD (rate of climb/decent)

and it is zero during level cruising as well as during climb/decent with constant

RoC/RoD. However, it is non-zero during variable RoC/RoD but its value is very

small. Hence the term γ̇p can be taken as zero for simplicity during derivation

of the guidance logic implying the following simplified kinematic equations for

longitudinal guidance logic design:





że

γ̇e



 =





−Vg sin γe
−g cos γ

Vg



+





0

1
mVg



Lreq (3.25)

Equation (3.25) represents the state space form of the kinematics equations for

longitudinal guidance logic design. Here Lreq is the output of guidance loop for

inner control loop to follow, and the two state variables are ze and γe.

3.4 Guidance Model for 3-D Flight

Many flight mechanics books and papers (Beard and McLain, 2012; Hull, 2007;

Miele, 1962) discuss the equations of motion for guidance and control design of

aerospace vehicles in detail. In this section, we discuss the kinematic equations

for 3-D flight briefly; interested readers are referred to (Beard and McLain, 2012)

for a detailed discussion. Extending the concept of 2-D equations in the last two

sections (3.2, 3.3), the convention and definitions of different variables is discussed

in subsection 3.4.1, followed by kinematic equations for 3-D flight in subsection

3.4.2.

3.4.1 Reference frames and variables definition

In order to set up the guidance problem, we first define the reference frames and

important parameters. Consider a UAV modeled as rigid-body, define {I} as the

inertial frame attached to the earth at mean sea level and {B} as the body frame
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Figure 3.9: Coordinate systems and their conventions for 3-D space.

attached to the vehicle’s center of mass. Inertial frame {I} components xI , yI

and zI are pointed towards north, east and downward directions, respectively. Let

IpB = [x, y, z]T ∈ R
3 and V = [ẋ, ẏ, ż]T = [Vx, Vy, Vz]

T ∈ R
3 denote the inertial

position and velocity vectors of {B} relative to {I}, respectively. Flight path angle

(elevation angle) γ denotes the orientation of ground velocity vector (V) relative

to the local horizontal, and the course angle χ is the angle between the ground

velocity vector’s component projected on the ground relative to North. These two

angular variables can be computed as:

χ = arctan

(

ẏ

ẋ

)

, γ = arctan

(

−ż
√

ẋ2 + ẏ2

)

. (3.26)
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In order to define the error space, let Γ denote the desired/reference 3-D geometric

path that UAV should follow and the point C on the reference path is the closest

point to the current position of the UAV at any instant t as shown in Figure 3.9.

The tangent frame {T} at point C can be defined as a coordinate frame that

moves along Γ, whose x-component (xT ) is tangent to the path, y-component (yT )

is pointed towards right (parallel to the local horizontal) and the third z-component

(zT ) is perpendicular to both xT and yT following the right-hand rule. Let the

position of {T} relative to {I} be denoted by vector IpT , and hence the vector

d = IpB− IpT represents the off-track error vector in the inertial frame. It follows

that the off-track error vector d has no x−component when expressed in {T}, i.e.,

RTI d = [0, ye, ze]
T , (3.27)

where ye, ze ∈ R and RTI is the transformation matrix from {I} to {T}. The main

task of the guidance algorithm is to keep the errors (ye and ze) as small as possible

by generating suitable commands for the vehicle control system.

3.4.2 3-D Kinematic equations

Here we present a simplified 3-D kinematic model that capture most of the features

of flight vehicles that are essential for guidance logic design. During bank to

turn while climb/decent maneuvers, forces acting on an aerospace vehicle are

summarized in Figure 3.10. Summing up all the forces in the vertical and radial

directions, we have:

L cosφ = mVgγ̇ +mg cos γ, L sinφ = m(Vg cos γ)χ̇, (3.28)

where L is the lift force, φ is the body roll angle,m is the mass, g is the gravitational

acceleration and Vg is the velocity of the vehicle relative to ground. Rearranging
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(a) side view during coordinated turn while climb/decent
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(b) Top view during coordinated turn while climb/decent
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Figure 3.10: Forces acting on a UAV during accelerating climb while
coordinated turn.
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the terms, equation (3.28) can be written as:

γ̇ =
g

Vg

(

L cosφ

mg
− cos γ

)

χ̇ =
L sin φ

mVg cos γ
,















(3.29)

As the main theme of this paper is outer guidance loop design, so we assume

here that the inner control loop is already designed and is fast enough (at least

5 ∼ 10 times faster than outer loop). Based on this assumption (ignoring inner

loop dynamics), we can approximate Lreq ≈ L and φreq ≈ φ for guidance design,

this implies that the equation (3.29) can be approximated as:

γ̇ =
g

Vg

(

Lreq cosφreq
mg

− cos γ

)

χ̇ =
Lreq sin φreq
mVg cos γ

.















(3.30)

In these two equations, γ (flight path angle) and χ (course angle) are the state

variables. Two control variables are Lreq (the required or reference Lift force) and

φreq (the required/reference roll angle). The task of the outer guidance loop is

to generate these two control variables for the inner control loop to follow the

desired 3-D path. Other two state equations can be derived from the components

of ground velocity (V ) in vertical and radial directions. As discussed earlier in

section 3.4.1, IpB = [x, y, z]T denotes the 3-D position of an aerospace vehicle in

inertial ground axes system {I} that can be determined as:

ẋ = (Vg cos γ) cosχ, ẏ = (Vg cos γ) sinχ, ż = −Vg sin γ. (3.31)

Let Γ be the desired path in 3-D space as shown in Figure 3.9, χp and γp are

the desired course and flight path angles (from mission plan) respectively, at any

instance. With χe = χ−χp and γe = γ−γp, we have the following state equations
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in error form:

że = −Vg sin γe

ẏe = Vg cos γ sinχe

γ̇e =
g

Vg

(

Lreq cosφreq
mg

− cos γ

)

− γ̇p

χ̇e =
Lreq sin φreq
mVg cos γ

− χ̇p,











































(3.32)

where ze (error in vertical plane, normal to the reference path), ye (cross-track

error), γe (error in flight path angle) and χe (error in course angle) are the four

state variables. Control inputs are Lreq (required Lift force) and φreq (required roll

angle), that the guidance loop has to generate for following the desired mission

and correcting any deviations.

3.5 Problem Formulation

After definition of state space variables, we now define the guidance problem for

UAV path following. The UAV path following problem can be solved using two

approaches. In the first simplified approach, the 3-D path following problem

is separated into two 2-D problems (Lateral and Longitudinal) and guidance

algorithms are designed to cater for the deviations in the two planes independently

(ignoring the coupling between these two planes). In the second approach, the 3-D

path following problem is considered in a single framework and a single guidance

algorithm is designed to keep the vehicle on track. In the subsequent subsections

problem formulation is discussed for both these cases.

3.5.1 Decoupled 2-D guidance problem

In this approach, the desired mission information is split into lateral and longitudinal

waypoints as shown in Figure 3.11. Based on separated waypoints, two independent

guidance and control schemes for lateral and longitudinal planes are designed
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a)  Lateral guidance and control scheme

b)  Longitudinal guidance and control scheme

Figure 3.11: Decoupled simplified guidance and control structure for UAVs.

ignoring the coupling between these two planes. Decoupled kinematic equations

for lateral and longitudinal planes are described by equations (3.16 and 3.25),

respectively. Lateral guidance scheme is responsible to keep the lateral cross track

deviation as minimum as possible by generating required roll angle (φreq) command

for the inner control loop to follow. Inputs of lateral guidance scheme are ground

waypoints from mission plan and the ground position information from sensors,

i.e., Latitude & Longitude of the UAV along with its rate of change. Inner lateral

control loop actuates aileron (δa) to follow the required roll angle (φreq), and also

issues commands to the vertical rudder (δr) to improve the dutch roll damping.

The main task of the lateral guidance algorithm is to keep the cross-track error ye
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as small as possible, and also to keep χe ≈ 0 when y ≈ 0. In case of a non-zero

y, the guidance algorithm will manipulate χe by banking the vehicle to bring y

to zero. Generally for very large track errors, a constant χe (≤ π
2
) is desired, and

when the track error reduces, χe is adjusted accordingly (a criterion known as the

‘good helmsman’ in literature (Rysdyk, 2006; Pettersen and Lefeber, 2001)).

Longitudinal guidance logic is separately designed to follow the altitude waypoints.

Figure 3.11 shows the basic structure of the longitudinal guidance and control

scheme. The outer guidance block gets current altitude (h) and its rate of change

(to compute flight path angle (γ)) inputs from sensors, and the desired/reference

altitude information from the mission path (mission can be modified during flight).

On the basis of this information, the guidance block generates the required lift

(Lreq) command for the inner control loop to follow. The control loop generates

commands to control surfaces (elevators) to meet the lift force required. Outer

guidance logic should ensure tracking of the reference altitude during level flight,

climb and decent phases.

3.5.2 3-D Guidance problem

req

Figure 3.12: 3-D guidance and control structure for UAVs.

In 3-D path following case, complete mission information is sent to the 3-D

guidance algorithm and the problem is solved in a single framework by considering

the whole mission. In this case, generalized kinematics equations (3.32) are considered
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to design a single 3-D guidance scheme considering the coupling between longitudinal

and lateral planes. Structure of the overall guidance and control scheme for 3-D

path following is shown in Figure 3.12. The outer guidance block gets current

inertial position (IpB) and its rate of change (ground velocity vector) v inputs

from sensors and the desired 3-D path information from the mission plan. On the

basis of this information, the guidance block computes the required longitudinal

and lateral forces to keep the vehicle on the desired 3-D path. Output of the

guidance block i.e., required lateral & longitudinal forces can be expressed in the

form of required roll angle (φreq) and required lift force (Lreq), respectively. In

this case inner control loop generates commands to the Aileron (δa), elevator (δe)

and vertical rudder (δr) to follow the reference commands generated by the outer

loop. Outer guidance loop is responsible to keep the UAV on the desired path and

minimize any deviations.
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Chapter 4

LINEAR SLIDING SURFACES FOR UAV

GUIDANCE

4.1 Introduction

As discussed in detail in Chapter 2, sliding mode based design can be divided

into two parts; the design of a stable sliding surface (also known as switching

surface) followed by the design of a control law to force the system states trajectory

onto the chosen sliding surface in finite time. System states trajectory starting

from any point in the phase portrait is first attracted towards the sliding surface

(reaching phase) and once achieved is subsequently forced to remain on the sliding

surface (sliding phase). As it has already been mentioned, the sliding surface (or

in general the switching hypersurface) completely determines the plant dynamics

in the sliding phase. Therefore, the selection of this surface is one of the two

major tasks in the process of sliding mode based design. The number of sliding

surfaces should be equal to the number of control variables of the plant. Generally

the sliding surface is a linear combination of the system state variables (known as

linear sliding surface).

For UAV guidance problem, linear combination of state variables is not a feasible

solution due to its poor performance and may lead to instability in some cases.

Here in this chapter selection of a linear surface for the UAV guidance problem

is discussed in detail. For decoupled lateral and longitudinal plane guidance, one

sliding surface is required for each plane. In case of a 3-D guidance problem, we

have two control variables implying the requirement of two sliding surfaces. Linear

sliding surface design for this particular guidance problem is discussed in section

4.2. After the design of sliding surface, its performance limitations and stability
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is discussed. To address the instability problem in linear switching surface, an

adhoc solution in terms of piece-wise linear sliding surface is proposed in section

4.3. Finally, the chapter is summarized in section 4.4.

4.2 Linear Sliding Surfaces and its Limitations
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Figure 4.1: Linear sliding sufaces for lateral and vertical planes.

First let us choose two linear sliding surface functions s1 = χe + λ1ye and s2 =

γe + λ2he (or s2 = γe − λ2ze) for some positive scalars λ1 and λ2 as shown in

Figure 4.1. For the lateral sliding surface (s1), the state variables ye (cross-track

error) and χe (error in course angle) are taken along the horizontal and vertical

axes, respectively. Similarly for longitudinal sliding surface, the states variables

ze (vertical normal error to the path) and γe (error in flight path angle) are taken

along the horizontal and vertical axes, respectively. In case of decoupled SMC

guidance logic design for lateral and vertical planes, the first sliding surface s1 can

be utilized for the lateral plane and the second (s2) for vertical plane guidance
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design. Both sliding surfaces will be required for the SMC based 3-D guidance

design.

In the subsequent subsections (4.2.1 & 4.2.2), performance analysis, stability and

control effort issues are discussed in detail for the lateral sliding surface (s1).

Similar arguments hold for the longitudinal (vertical) sliding surface (s2) too and

it is discussed in the subsection 4.2.3 briefly to avoid the duplication.

4.2.1 Performance with lateral SS: Simulation results
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Figure 4.2: Linear SS: Actual path of UAV for different values of λ1.

First to discuss the performance of lateral sliding surface analytically, motion on

the sliding surface is described by the equation: s1 = χe+λ1ye = 0 (or χe = −λ1ye).
After substitution of lateral state equations (3.17) into the sliding motion we get:

ẏe = −Vg sin (λ1ye). (4.1)

69



0 200 400 600 800 1000

−120

−100

−80

−60

−40

−20

0

20

y
e
 [m]

χ e [d
eg

]
Start here

s
1
 = χ

e
 + 0.002 y

e

s
1
 = χ

e
 + 0.003 y

e

Figure 4.3: Linear SS: states trajectory for different values of λ1.

In case of small cross-track error ye, equation (4.1) can be approximated by ẏe =

−Vgλ1ye, which has an analytical solution:

ye = yeie
−Vgλ1t, (4.2)

where yei denotes the initial value of ye. This shows that the cross-track error

decreases exponentially with time, also the larger the value of the parameter λ1,

the more quickly the error magnitude decreases.

We now derive the control law that can achieve the sliding motion given above.

First we find the equivalent control, i.e., the continuous control which can maintain

ṡ1 = 0 provided the dynamics are perfectly known (Slotine and Li, 1991). In this
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case the equivalent control is:

ueqv = −
λ1V

2
g

g
sinχe + χ̇p

Vg
g
. (4.3)

The total control u is generated by adding the term −k1 sgn(s1) to the equivalent

control, where ‘sgn’ represents the sign or signum function and k1 is a positive

constant. To avoid chattering in the control signal, k1 sgn(s1) can be approximated

by s1
|s1|+ǫ (ǫ is a small positive number). The total control can be written as:

u = −
λ1V

2
g

g
sinχe + χ̇p

Vg
g

− k1 sgn(s1), φreq = arctan(u). (4.4)
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Figure 4.4: Linear SS: Cross track error versus time for different values of λ1.

Simulations are performed using this guidance law (k1 = 0.7) for an initial track

error of 1000 meters with different values of λ1 and results are shown in Figures
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Figure 4.5: Linear SS: Roll required generated for different values of λ1.

4.2 - 4.5. The proposed guidance law is implemented in 6-dof nonlinear simulation

and the basic structure of blocks/sub-blocks is shown in Annex-1. Results for λ1 =

0.003 and λ1 = 0.002 are shown with BLUE and RED colors, respectively. Figure

4.3 shows the trajectory of the state variables in phase portrait form for different

values of λ1. The actual path of UAV on ground (top view) is shown in Figure

4.2. It is evident from these figures that larger λ1(0.003) gives faster convergence

towards the desired path. The cross track error versus time is shown in Figure

4.4. The error decreases to about 10 meters in 65 seconds in the case of larger λ1

(=0.003), but takes 85 seconds for the same reduction for the smaller λ1 (=0.002)

case. A bigger λ1 therefore gives better performance, i.e., faster convergence to

zero. The corresponding roll angle generated by the lateral guidance scheme is

shown in Figure 4.5. Greater control effort is required in case of larger λ1.

Conclusively, a bigger value of λ1 is desired for good performance i.e., faster
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convergence towards the desired path. However a value of λ1 selected for good

performance for a particular cross track error ye may not give good performance

for all scenarios, as shown in the next subsection. For a smaller ye the performance

may be degraded, and for a larger ye control saturation and instability may result.

4.2.2 Stability & control effort issues with lateral SS

Figure 4.6: Linear SS: Physical interpretation of λ1ye.

The above approach does not work if the initial error is large enough, in fact the

error may not even converge. This is seen from the equation of motion on the

sliding surface (4.1): ẏe = −Vg sin (λ1ye) = −Vg sin (−χe). Suppose we start with

a positive cross-track error ye, then:

ẏe =

{−ve, for 0 < λ1ye < π (4.5a)

+ve, for π < λ1ye < 2π (4.5b)
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Table 4.1: Region of applicability of the linear sliding surface for different
values of λ1.

S. no. λ1 Region of applicability (km)

1 0.0002 −7.854 < ye < 7.854
2 0.0004 −3.927 < ye < 3.927
3 0.0007 −2.243 < ye < 2.243
4 0.001 −1.571 < ye < 1.571

The physical interpretation of λ1ye (= −χe) for a positive initial cross-track error

is explained in Figure 4.6; for π < λ1ye < 2π, the error diverges. In case π
2
<

λ1ye < π, the cross-track error converges, but not along the desired direction of

motion WP [i] →WP [i+1]. So the general limitation of the linear sliding surface

is its region of applicability, which is: −π
2
≤ λ1ye ≤ π

2
or − π

2λ1
≤ ye ≤ π

2λ1
(see

Table 4.1).

Thus we see that in the design of the linear sliding surface, there has to be a

compromise between the ‘region of applicability’ and the ‘rate of convergence’, and

there exists a trade-off between the two. If we strive for higher performance (bigger

λ1), the region of applicability gets limited, and if on the other hand we increase the

region of applicability by reducing λ1, the performance gets degraded. Therefore

it is not possible to control large cross-track deviations with good performance

(fast convergence) and guaranteed stability.

Simulations are performed using linear lateral sliding surface (λ1 = 0.0035) for

different cases of cross track error (ye) as shown in Figures 4.7 - 4.10. The desired

mission in north-east coordinate system is shown in Figure 4.7, the mission is to

follow a straight line at east position of 800m heading towards north. In this case,

the cross track error (ye) is the eastward distance from the line East = 800m.

Three scenarios of ye (= -800 m, -1250 m & -1500 m) are generated in simulation

and results are shown here with BLUE, RED and GREEN colors, respectively.

Figure 4.7 shows the actual path of the UAV on ground (top view) for the three
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Figure 4.7: Linear SS: actual path of UAV for different values of ye.

cases, and the corresponding trajectories of state variables are shown in Figure

4.8. The three cases are selected in such a way that state trajectory hits the

sliding surface in three different regions i.e., (0 < χe <
π
2
), (π

2
< χe < π) and

(π < χe < 2π). Figure 4.9 shows the cross track error versus time for the three

cases; the corresponding roll angle generated by the guidance loop is shown in

Figure 4.10.

In case of ye= -800m (BLUE), it takes ≈ 15seconds to reach the sliding surface

and sliding starts from the position (ye ≈ −450m,χe ≈ 89◦) towards the origin.

Cross track error converges to zero exponentially after start of the sliding motion

as is evident from Figure 4.9. In the second case of ye= -1250m (RED), although

the cross track error (ye) reduces to zero ultimately but not as efficiently as evident

from the actual path followed by the UAV in Figure 4.7. In this case, the state
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Figure 4.8: Linear SS: State variables trajectory for different values of ye.

trajectory (Figure 4.8) takes ≈ 21seconds to reach the sliding surface and starts

sliding towards the origin from the position (ye ≈ −750m,χe ≈ 146◦). The

direction of motion is opposite to the desired direction WP [i] → WP [i+ 1] until

χe reaches 90◦. As expected, the degraded performance of linear sliding surface

is observed in this case. In third case of ye= -1500m (GREEN), unacceptable

performance of the linear sliding surface is evident from the UAV’s actual path

(Figure 4.7) and also from ye versus time (Figure 4.9). Trajectory of states is

attracted towards the sliding surface in this case too and reaches the sliding

surface at the position (ye ≈ −1065m,χe ≈ 209◦), and thereafter unstable sliding

started (in the opposite direction). If we reduce the sliding surface parameter

(λ1) magnitude so that the states trajectory hits the sliding surface at χe < 90◦

then definitely good performance in this case is possible, but performance will

be degraded (slow convergence) for |ye| < 1500m and unstable behavior will be
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Figure 4.9: Linear SS: cross track error verus time for different values of ye.
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Figure 4.10: Linear SS: roll required verus time for different values of ye.
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Table 4.2: Control effort φreq (in degrees) for different values of λ1 and χe.

λ1 = 0.001 λ1 = 0.002 λ1 = 0.003 λ1 = 0.004

χe = π/12 -3.7750 -7.5175 -11.1966 -14.7847
χe = π/6 -7.2641 -14.3019 -20.9268 -27.0155
χe = π/4 -10.2187 -19.8257 -28.4043 -35.7938
χe = π/3 -12.4500 -23.8242 -33.5179 -41.4482
χe = 5π/12 -13.8336 -26.2199 -36.4547 -44.5666
χe = π/2 -14.3019 -27.0155 -37.4087 -45.5597

seen for some |ye| > 1500m. So conclusively a single linear sliding surface cannot

guarantee performance and stability in all scenarios for the UAV guidance problem.

Another problem with the linear sliding surface is that of control saturation. This

happens when the magnitude of λ1ye (or χe) is close to
π
2
radians, as is evident from

expression (4.3). Table 4.2 shows values of φreq for different values of λ1 and χe, for

V = 50m/s and g = 9.8065 m/s2. For higher values of λ1, i.e., better performance,

the control φreq = arctan(ueq) exceeds the maximum limit (φmax = 35◦) for larger

cross-track errors (larger χe).

4.2.3 Performance and stability of vertical SS

Similarly, the performance and stability of vertical sliding surface is described by

the equation s2 = γe+λ2he = 0 (or γe = −λ2he). After substitution of γe = −λ2he
in the state equations (3.25), we get:

ḣe = −Vg cos γp sin (λ2he). (4.6)

For stable sliding motion, the sign of ḣe should be negative for positive he, and

vice-versa. However, negative ḣe is not guaranteed for positive he as is evident

from equation (4.6). As Vg and cos γp are positive parameters, so the sign of ḣe

depends on the sign of sin (λ2he). For positive he, negative ḣe is guaranteed if
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−π
2
≤ λ2he ≤ π

2
. Hence the linear sliding surface is stable for the limited region of

− π
2λ2

≤ he ≤ π
2λ2

only.

Another important conclusion regarding rate of convergence can also be drawn

directly from equation (4.6). For stable region of − π
2λ2

≤ he ≤ π
2λ2

, the rate of

convergence (magnitude of ḣe) is directly related with the selection of λ2. Bigger

value of λ2 implies bigger value of ḣe, and hence fast convergence of he towards

zero. So for high performance we have to choose bigger value of λ2, however

bigger value of it will reduce the region of stability (or region of applicability)

− π
2λ2

≤ he ≤ π
2λ2

. Conclusively, performance and stability is not possible at the

same time with a single linear sliding surface.

Remarks: If we choose s2 = γe−λ2ze = 0 (or γe = λ2ze) then że = −Vg sin (λ2ze)
and all above comments are also valid for this too.

4.3 Adhoc Solution: Piece-wise Linear SS for

Lateral Guidance

If we choose a linear sliding surface for lateral guidance problem of UAVs as shown

in Figure 4.1 then the slope of linear sliding surface is directly related with the

performance during cross track errors. Large slope of linear sliding surface implies

big χe even for small track errors, and hence the track error decrease at faster

rate. On the other hand, this linear sliding surface implies a large χe(>
π
2
) for a

large track error (unstable sliding surface in this case). So good performance in

both cases (large and small track errors) is not possible with a single linear sliding

surface. The performance in sliding mode control depends on design of the sliding

surface, in our case objective is stability and performance in case of both small and

large track errors. To avoid instability in case of large track errors, a piece-wise

linear sliding surface for lateral plane guidance is proposed here to meet the small

& large cross track requirements.
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4.3.1 Proposed sliding surface

The instability and degraded performance problems in linear sliding surface arise

due to the magnitude of χe greater than π
2
for large values of ye. The idea is

to propose a sliding surface that has |χe| < π
2
for entire range of ye. Instead of

extending the line linearly for large values of ye, the sliding surface is extended

horizontally after reaching χelim ( < π
2
) as shown in Figure 4.11. Equation of the

proposed sliding surface for lateral plane is:
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Figure 4.11: Proposed piece-wise linear sliding surface for lateral plane.

s1 =















χe − χelim , for ye < −yelim (4.7a)

χe + λye, for −yelim ≤ ye ≤ yelim (4.7b)

χe + χelim , for ye > yelim (4.7c)
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Here yelim and χelim ( < π
2
) are positive numbers to be selected. Basically this

piece-wise linear sliding surface has three parts: the two horizontal lines ensure the

performance as well as the stability during large track errors by keeping |χe| < π
2
,

while the performance in case of small track errors (−yelim ≤ ye ≤ yelim) is related

with the central linear part of the sliding surface.

4.3.2 Stability of sliding surface

Stability of the sliding surface can be ensured by finding the analytical solution of

the proposed sliding surface. Overall phase portrait is divided into three parts for

stability analysis: (ye < −yelim) , (−yelim ≤ ye ≤ yelim) and (ye > yelim).

In case-1 (ye < −yelim), motion on the proposed sliding surface is described by

s1 = 0 implying:

χe = χelim . (4.8)

Substituting this value of χe in state equations (3.17), we have following equation

for sliding motion:

ẏe = Vg sinχelim, (4.9)

where Vg and χelim ( < π
2
) are positive constants. Analytical solution of above

equation (4.9) is:

ye = Vg sinχelimt + yeinitial
. (4.10)

Equation (4.10) shows that ye will increase from initial value (yeinitial
) as time (t)

increase, and will reach ‘−yelim ’ in finite time. So in this case (y < −y
lim

), it is

guaranteed that (ye, χe) will reach the point (−yelim, χelim) while sliding.
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Similarly in case-3 (y > y
lim

), motion on sliding surface is described by:

ẏe = −Vg sinχelim . (4.11)

Analytical solution of equation (4.11) is:

ye = −Vg sinχelimt+ yeinitial
. (4.12)

Equation (4.12) shows ye will decrease from initial yinitial as time increase and

eventually will arrive at the point (yelim,−χelim) in finite time.

In case-2 (−y
lim

≤ ye ≤ y
lim

), motion on the sliding surface is described by:

s1 = χe + λ1ye = 0, (4.13)

where λ1 is a positive number. After substitution of equation (4.13) in state

equations (3.17), we have

ẏe = −Vg sin(λ1ye). (4.14)

As −y
lim

≤ ye ≤ y
lim

in this case and −π
2
≤ λ1ye ≤ π

2
, and hence sin(λ1ye) will

have same sign as ye. Conclusively, ẏe is a negative number for a positive ye, and

vice-versa. So the cross track error ye will converge towards origin in either case.

In summary, the state trajectory will first slide along the horizontal part of the

surface to reach the sliding surface s1 = χe+λ1ye and afterward start sliding along

that to reach the origin. In case of a small initial ye, the state trajectory will get

attracted towards the central part of the surface directly.
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4.3.3 Lateral guidance law

Sliding mode based guidance law for cross track control is the sum of equivalent

control (continuous control law that would maintain ṡ = 0 if the dynamics were

exactly known) and the discontinuous control ‘−k sgn(s)’ to cater for parametric

uncertainties and disturbances. In case of piece-wise linear sliding surface, we have

different equivalent controls for three different regions. Using equation (4.7), we

have

ṡ1 =















χ̇e, for ye < −yelim (4.15a)

χ̇e + λ1ẏe, for −yelim ≤ ye ≤ yelim (4.15b)

χ̇e, for ye > yelim (4.15c)

and hence the expression for equivalent control is:

ueqv =







































V̂g
ĝ
χ̇p, for ye < −yelim (4.16a)

−
λ1V̂

2
g

ĝ
sinχe +

V̂g
ĝ
χ̇p, for −yelim ≤ ye ≤ yelim (4.16b)

V̂g
ĝ
χ̇p, for ye > yelim (4.16c)

where ĝ and V̂g are the measured (or estimated) values of gravity and ground

velocity, respectively.

The total control u is generated by adding the term ‘−k sgn(s)’ to the equivalent

control, where ‘sgn’ represents the sign or signum function and k is a positive
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constant. The total control now becomes

u =







































V̂g
ĝ
χ̇p − k sgn(s1), for ye < −yelim (4.17a)

−
λ1V̂

2
g

ĝ
sinχe +

V̂g
ĝ
χ̇p − k sgn(s1), for −yelim ≤ ye ≤ yelim (4.17b)

V̂g
ĝ
χ̇p − k sgn(s1), for ye > yelim (4.17c)

and

φreq = arctan(u). (4.18)

To see the reachability condition (s1ṡ1 < 0), the Lyapunov candidate function

W = 1
2
s21 is selected. The derivative of Lyapunov function W is

Ẇ = s1ṡ1 = s1



































(

g

Vg
u− χ̇p

)

, ye < −yelim (4.19a)

(

g

Vg
u+ λ1Vg sinχe − χ̇p

)

, −yelim ≤ ye ≤ yelim (4.19b)

(

g

Vg
u− χ̇p

)

, ye > yelim (4.19c)

Replacing the value of u in equation (4.19) from equation (4.17) and neglecting

the measurement error in the gravity term (g ≈ ĝ), we have

Ẇ =

−s1















































(

χ̇p

(

1− V̂g
Vg

)

+
gk

Vg
sgn(s1)

)

, for ye < −yelim
(

χ̇p

(

1− V̂g
Vg

)

+ λ1Vg sinχe

(

V̂ 2
g

V 2
g

− 1

)

+
gk

Vg
sgn(s1)

)

, for −yelim ≤ ye ≤ yelim

(

χ̇p

(

1− V̂g
Vg

)

+
gk

Vg
sgn(s1)

)

, for ye > yelim
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Assume a worst case error of 10% in the measurement of velocity (i.e., 0.9V ≤
V̂ ≤ 1.1V ), we have

Ẇ =

−s1



































(

0.1χ̇p +
gk

Vg
sgn(s1)

)

, for ye < −yelim (4.21a)

(

0.1χ̇p + 0.21λ1Vg sinχe +
gk

Vg
sgn(s1)

)

, for −yelim ≤ ye ≤ yelim , , , , , , , ,(4.21b)

(

0.1χ̇p +
gk

Vg
sgn(s1)

)

, for ye > yelim (4.21c)

In case of (4.21a) and (4.21c), Ẇ will be negative definite if
∣

∣

∣

gk

Vg

∣

∣

∣
> |0.1χ̇p|.

However, in worst case of (4.21b),
∣

∣

∣

gk

Vg

∣

∣

∣
should be greater than |0.1χ̇p + 0.21λ1Vg sinχe|

for Ẇ to be negative definite. Hence the gain k selected to make Ẇ < 0 in case of

(4.21b) will also ensure negative definiteness of Ẇ for the other two cases. Taking

the maximum value of |sin(χe)| = 1, existence of sliding mode is guaranteed if

k >
0.21λ1V

2
g

g
+

0.1Vg
g

|χ̇p| . (4.22)

In order to bound the roll angle (φ), it is necessary to bound the reference roll

angle (φreq) which is the output of the guidance loop and depends on the gain k.

As is evident from equation (4.22), the control gain k is directly proportional to

the sliding surface coefficient λ1 for −yelim ≤ ye ≤ yelim . Hence any arbitrarily

large value of λ1 cannot be chosen. Now we will derive a condition on λ1 to

keep |φreq| < φmax (or u < tan(φmax)). In order to bound the control effort, its

maximum value should be bounded, i.e.,

∣

∣

∣

∣

∣

λ1V̂
2
g

ĝ
sinχe

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

V̂g
ĝ
χ̇p

∣

∣

∣

∣

∣

+ k ≤ tan(φmax), (4.23)
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or in extreme case (|sin(χe)| = 1)

λ1V̂
2
g

ĝ
+
V̂g
ĝ

|χ̇p|+ k ≤ tan(φmax). (4.24)

After simplification, we have

λ1 ≤
(

tanφmax − k − V̂g
ĝ

|χ̇p|
)

ĝ

V̂ 2
g

. (4.25)

Therefore, the values of λ1 and k should be selected such that both equations (4.22)

and (4.25) are satisfied to ensure reachability and to avoid control saturation.

4.3.4 Simulation results
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Figure 4.12: Piece-wise linear SS: Actual path of UAV for different values of
ye.
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Simulations are conducted with the proposed piece-wise linear sliding surface to

show the guidance logic performance for different initial cross track errors. The

desired path is a straight line directed towards North in all these cases. The sliding

surface used in simulation is:

s1 =















χe − 1.4, for ye < −400 (4.26a)

χe + 0.0035ye, for −400 ≤ ye ≤ 400 (4.26b)

χe + 1.4, for ye > 400 (4.26c)
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Figure 4.13: Piece-wise linear SS: States trajectory for different values of ye.

The selected value of gain ‘k’ is 0.6 that satisfies both reachability and control

boundedness conditions for −400 ≤ ye ≤ 400. A boundary layer approximation

sgn(s1) ≈ s1
|s1|+ǫ is used to avoid chattering in the computation of φreq, and hence
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the total guidance law used for simulations is:

u =































−0.75
s1

|s1|+ 0.3
, for ye < −400 (4.27a)

−
0.0035V̂ 2

g

ĝ
sinχe − 0.6

s1
|s1|+ 0.3

, for −400 ≤ ye ≤ 400 (4.27b)

−0.75
s1

|s1|+ 0.3
, for ye > 400 (4.27c)

and

φreq = arctan(u). (4.28)
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Figure 4.14: Piece-wise linear SS: Cross track error versus time for different
values of ye.

Three scenarios with initial cross track errors ye = -500 m, -1000 m & -1500 m are

generated in the 6-dof nonlinear simulation (see Annex-1 for simulation structure)
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and results are shown here with BLUE, RED and GREEN colors, respectively.

Figure 4.12 shows the actual ground track of the UAV (top view) for the three

cases, and the corresponding state trajectories along-with the sliding surface are

shown in Figure 4.13. Cross track error and corresponding roll angle generated by

the guidance loop versus time for the three cases are shown in Figures 4.14 and

4.15, respectively.
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Figure 4.15: Piece-wise linear SS: Roll required generated for different values
of ye.

In case of ye= -500m (BLUE), the state trajectory is attracted towards the central

linear part of the sliding surface and the sliding motion is similar to that of section

4.2. On the other hand, the state trajectories behave differently in case of ye=

-1000m (RED) and ye= -1500m (GREEN). In both cases, the trajectory is first

attracted towards the horizontal part of the sliding surface and slides along that

to arrive at the point (ye, χe) = (−400m, 80.2◦) as shown in Figure 4.13. In all
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scenarios, χe remains less than π
2
and thus there are no issues of stability as is

evident from Figure 4.12. However, there is a discontinuity from horizontal part

of the sliding surface to the central linear part which is hard to follow in practice.

4.4 Summary of the Chapter

Design of a stable sliding surface is an essential requirement for sliding mode based

control design. Linear combination of states is a natural and commonly used option

for sliding surface design. Here in this chapter, it is first shown that linear sliding

surface is not a feasible solution for the UAV guidance problem because of stability

and performance issues (for large initial errors). An ad-hoc solution in terms of

a combination of different linear sliding surfaces (piece-wise linear) is proposed

to cater for these problems. However, good performance for all scenarios is still

not possible with the proposed discontinuous and piece-wise linear sliding surface.

A high performance stable sliding surface is therefore required that ensures good

performance in all scenarios.

90



Chapter 5

HIGH PERFORMANCE SLIDING

MANIFOLDS

5.1 Introduction

As discussed earlier in Chapter 2, sliding mode based control law design can be

divided into two parts, i.e., the design of stable sliding manifolds (number of

sliding manifolds equal to the number of control inputs) followed by the design

of a control law to force the system states onto the chosen manifolds in finite

time despite the presence of model imprecision and disturbances (Edwards and

Spurgeon, 1998; Utkin, 1977). The design of manifolds (sliding surfaces/switching

surfaces) should address all constraints and required specifications, therefore they

should be designed optimally to meet all the requirements. Design of the switching

surface is vital because the closed loop dynamics is governed by the parameters of

the switching surface. Therefore, the sliding surface should be designed to meet

the closed loop specifications. Linear combinations of the states are commonly

used as sliding manifolds (known as linear sliding surfaces), but it is not feasible

in every case as shown in Chapter 4. Many systems demand high performance

with robustness and stability in all scenarios. To achieve high performance in all

scenarios, we propose nonlinear manifolds in this chapter for the outer guidance

loop design for UAVs. In the subsequent sections, nonlinear sliding manifolds are

presented for lateral and longitudinal planes, followed by the derivation of criterion

for optimum sliding surface coefficients for the proposed nonlinear manifolds.
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5.2 Nonlinear Sliding Surface for the Lateral Plane

For good performance in case of both small and large cross track errors, and to keep

the magnitude of χe less than π
2
, we now propose a high performance nonlinear

sliding manifold for the lateral plane. The proposed sliding surface is:

s1 = χe + c1 arctan(c2ye) = 0, (5.1)
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Figure 5.1: The proposed nonlinear sliding surface for lateral plane.

where the constants c1, c2 ∈ ℜ (the set of real numbers); later it will be shown

that for sliding surface stability we need c1c2 > 0. Figure 5.1 shows a plot of

the nonlinear surface for particular values of c1 and c2. It is clear from equation

(5.1) that we need |c1| ≤ 1 while sliding (s1 = 0) in order to ensure |χe| ≤ π
2
.

Compared to the linear sliding surface where we had a single tunable parameter

λ1, we now have two adjustable parameters c1 and c2 for performance tuning for
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large and small track errors, respectively. Both these parameters can be adjusted

independently to give acceptable performance for large and small ye. Also the

constraint |χe| ≤ π
2
can be met if |c1| ≤ 1. The proposed nonlinear sliding surface

therefore overcomes the limitations of the linear sliding surface presented earlier.
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Figure 5.2: The nonlinear sliding surface for different values of c1 and c2.

Motion on the sliding surface is represented by the expression (5.1), i.e., s1 =

χe + c1 arctan(c2ye) = 0, or χe = −c1 arctan(c2ye). For large cross-track errors,

± arctan(c2ye) ≈ ±π
2
, and hence χe ≈ ∓|c1|π2 for ±ye, whenever the magnitude
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of ye is large. Thus we can say that χe is directly proportional to |c1| for large

track errors, and a large χe implies fast convergence of the error to zero. The

parameter c1 can therefore be adjusted to provide good performance during large

track errors. Figure 5.2 shows plots of the nonlinear manifold for different values of

c1 and c2. In Figure 5.2(a) the effect of varying c1 is shown with c2 held constant;

it is clear that χe ≈ −c1 π2 for large track errors (|y| > 1500 m). In Figure 5.2(b),

the effect of varying c2 is shown for constant c1. The parameter c2 defines the

curvature of the curve and determines how quickly the vehicle would turn and

reduce the track error to zero (reach the origin). Small values of c2 indicate that

an appreciable χe and hence turning would only come about for a relatively large

ye, thus the system dynamics would be sluggish. Large c2 means an appreciable χe

for a relatively small ye, and hence fast dynamics so that the system zeros the error

quickly. Performance in case of small cross track errors (small ye) is thus directly

related to c2; a large c2 however implies a bigger control effort, and hence the value

of c2 cannot be kept arbitrarily large. The issue of control effort boundedness is

discussed in more detail later.

5.2.1 Stability of sliding surface

Stability of the (nonlinear) sliding motion can be proved with the help of Lyapunov

theory. A candidate Lyapunov function W for proving stability of the sliding

motion (s1 = 0) is given by:

W =
1

2
(y2e + χ2

e) =
1

2

(

y2e + c21 arctan
2(c2ye)

)

. (5.2)

Taking the time derivative and substituting state equations (3.17), we get:

Ẇ = −Vgye sin (c1 arctan(c2ye))−
c1c2Vg
1 + c22y

2
e

c1 arctan(c2ye) sin(c1 arctan(c2ye)).

(5.3)
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Here Vg and c1c2Vg
1+c2

2
y2e

are positive definite, and for the negative definiteness of Ẇ

we have to show that ye sin (c1 arctan(c2ye)) and c1 arctan(c2ye) sin(c1 arctan(c2ye))

are also positive definite. In other words, we have to show that ye, c1 arctan(c2ye)

and sin(c1 arctan(c2ye)) have the same sign. Since ‘arctan’ is an odd function so the

sign of arctan(c2ye) will be the same as that of c2ye, and the sign of c1 arctan(c2ye)

will be the same as that of ye provided c1c2 > 0. Also since |c1| ≤ 1, the range of

the function c1 arctan(c2ye) is
(

−π
2
, π
2

)

; and sin(c1 arctan(c2ye)) has the same sign

as c1 arctan(c2ye). Hence the sign of sin(c1 arctan(c2ye)) will be the same as that

of ye, provided c1c2 > 0 and |c1| ≤ 1.

The first term on the right hand side in (5.3) is negative definite since Vg (the

magnitude of the velocity) is always positive, and the sign of sin(c1 arctan(c2ye))

is the same as that of ye. For the second term on the right hand side, c1c2Vg
1+c2

2
y2e

is

positive definite and c1 arctan(c2ye) and sin(c1 arctan(c2ye)) have the same signs.

The second term is therefore also negative definite, and so Ẇ is negative definite.

Thus we see that the proposed positive definite Lyapunov function has a negative

definite time derivative and hence the proposed sliding surface is stable, provided

c1c2 > 0 and |c1| ≤ 1.

Alternatively, stability of the sliding surface can also be guaranteed by analyzing

the sliding motion. Motion on the sliding surface is described by s1 = 0, implying

χe = −c1 arctan(c2ye). Using state equations (3.17), equation for sliding motion

becomes:

ẏe = −Vg sin (c1 arctan (c2ye)) . (5.4)

Here we have two cases for positive and negative values of ye, with c1c2 > 0 and

|c1| ≤ 1:

1. Case-1 (ye positive): As c1 ≤ 1 and both c1 & c2 are either positive or

negative, hence for any positive value of ye,
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c1 arctan (c2ye) ∈
(

0, π
2

)

⇒ sin (c1 arctan (c2ye)) is a positive number

⇒ ẏe < 0

⇒ ye will decrease.

2. Case-2 (ye negative): In this case,

c1 arctan (c2ye) ∈
(

−π
2
, 0
)

⇒ ẏe > 0

⇒ ye will increase.

So in either of the two cases, ye will converge to zero and therefore χe = −c1 arctan(c2ye)
will also converge to zero. Hence we have a stable sliding surface and both state

variables will converge to zero by sliding on the proposed nonlinear surface.

5.3 Nonlinear Sliding Surface for Vertical Plane

For good performance in all scenarios and to avoid instability during sliding

motion, we now propose a nonlinear sliding surface for vertical plane guidance

(see Figure 5.3):

s2 = γe + c3 arctan(c4he) = 0 or s2 = γe − c3 arctan(c4ze) = 0, (5.5)

where the constants c3 and c4 are real numbers. For stability, both coefficients

should have the same sign (let both be positive real numbers) and c3 ≤ 1. Although

the longitudinal (vertical) sliding surface is similar to the lateral one, the difference

is in the selection of coefficients. In the vertical plane, gravity plays an important

role in the design of guidance logic; more thrust is required to balance gravity as

the flight path angle is increased. Maximum flight path angle demand is generally

linked to the magnitude of c3 which is kept well below 1 due to limited thrust in

UAVs. Compared to the traditional linear sliding surface function shown in section

4.2.3, here we have two tunable sliding surface parameters. Performance for small
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Figure 5.3: The proposed nonlinear sliding surface for vetical plane.

errors in altitude can be adjusted using c4, as in the lateral sliding surface shown

in Figure 5.2. The parameter c3 can be used to adjust performance for large errors

in altitude as well as to limit the maximum flight path angle (keeping in view the

vehicle’s maneuvering capabilities, such as flight loads and climb/decent rate).

Stability of the sliding surface can be proved as follows: sliding motion is represented

by s2 = 0 or γe = −c3 arctan(c4he). After substitution in the state equations

(3.25), motion on the sliding surface becomes:

ḣe = −Vg cos γp sin (c3 arctan (c4he)) . (5.6)

To prove stability of the sliding surface, we have to show that he converges to zero

for both positive and negative initial he. Assuming both c3 and c4 are positive real

numbers, and c3 ≤ 1, we have c3 arctan (c4he) ∈
(

0, π
2

)

for positive he, implying

a positive value of the term sin (c3 arctan (c4he)). As Vg and cos γp are positive,
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we have negative ḣe for a positive he, this implies convergence of he towards zero.

Similarly in case of negative he, the term c3 arctan (c4he) ∈
(

−π
2
, 0
)

, and hence a

positive ḣe, which again implies convergence of he towards zero.

Conclusively he will converge to zero for both positive and negative errors while

sliding on the proposed nonlinear surface, and γe will also converge to zero once he

converges to zero. Hence we have a stable sliding surface and both state variables

converge to zero while sliding on this surface.

Remarks: If we choose s2 = γe− c3 arctan(c4ze) = 0 (or γe = c3 arctan(c4ze) = 0)

then że = −Vg sin (c3 arctan (c4ze)) and all above comments are also valid for this

too.

5.4 Optimized Sliding Surface Coefficients

After proposing nonlinear sliding surfaces for lateral and longitudinal planes, a

natural question arises about selection of coefficients for these surfaces. Path

planning is not the topic of this thesis, the objective here is to see how to reach and

maintain the planned mission (which may be changed online anytime). To reach

the planned mission through sliding, the coefficients of the sliding surfaces should

be optimized for high performance and minimum use of energy. The principle of

work and energy is used here to find optimal coefficients. This allows us to find

the change in energy (work done) due to an external force (the thrust force here)

to reach the desired path, and hence a minimum energy path can be selected by a

suitable choice of sliding coefficients. During sliding motion, the state variables are

linked to each other by the equation s = 0, i.e., it relates the variables through a

state trajectory (independent of time), and hence the principle of work and energy

is applicable here. The objective is to reach the planned mission by sliding with

minimum work done, and also not exceeding the UAV maneuverability capabilities.

In this section optimization of these variables is discussed in detail for both lateral

(straight and circular paths) and longitudinal planes.
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5.4.1 Lateral plane coefficients

To find optimum values of lateral sliding surface coefficients, the shape of the

desired path (straight or circular) also needs to be considered. In case of straight

path, the problem is relatively simple as the cross-track error in this case is

computed with respect to a fixed straight line and depends only on the position

of the UAV. However, the problem becomes more complicated for circular paths

as the cross track error is measured from the closest point on the desired path

which changes at every instant. In subsequent sections, selection of coefficients is

discussed for both straight and circular paths.

5.4.1.1 Straight path following

^

^j

V

thrust

lateral

e

Figure 5.4: Conventions for lateral sliding coefficients optimization (straight
path).

In order to find optimal sliding coefficients for straight path following, we have to

find the coefficients that correspond to minimum work done. LetWP [i]-WP [i+1]
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be the desired straight path; initially the UAV is y0 meters away from the desired

path as shown in Figure 5.4. A local reference frame is introduced on the desired

path at the closest point to the initial position of the UAV such that the initial

position of the UAV is (x, y) = (0, y0). The y-component in this frame represents

the cross track error (ye). Different curved paths are possible to bring back the

UAV to the desired path as shown in Figure 5.4; the objective is to choose a path

(C) that is possible to follow (within the UAV maneuvering capability) and also

corresponds to minimum work done (or minimum change in energy). Let F(x, y)

be a continuous force field and C be a curve defined by the position vector P(x, y),

then the work done by F(x, y) on the UAV moving along C is given by:

WD =

∫

C

F(x, y) · dP. (5.7)

The force field F(x, y) is the sum of the thrust force in the lateral plane (Fthrust)

and the lift vector component in the lateral plane (Flateral), therefore we get:

WD =

∫

C

Flateral · dP+

∫

C

Fthrust · dP. (5.8)

As the lateral force (Flateral) is perpendicular to the path, so the first term in the

above equation is zero, hence the total work done is:

WD =

∫

C

Fthrust · dP. (5.9)

Resolving the above vectors in the fixed Cartesian-coordinates as shown in Figure

5.4, Fthrust = Fthrust cosχêi+ Fthrust sinχêj and dP = dx̂i + dyĵ, we get:

WD =

∫

C

(Fthrust cosχedx+ Fthrust sinχedy) . (5.10)

In the lateral plane, the position of the UAV in xy-coordinate system can be

computed using ẋ = V cosχe and ẏ = V sinχe. Dividing these equations, we have
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the relation dx = cotχedy, and the expression for work done becomes:

WD =

0
∫

y=y0

Fthrust (cosχe cotχe + sinχe) dy (5.11)

As the objective is to bring the UAV back to the desired path using the proposed

sliding surface (equation 5.1), during sliding s1 = 0 which implies χe = −c1 arctan(c2y)
(as mentioned earlier ye = y). Assuming constant thrust and using the expression

χe = −c1 arctan(c2y), we have the following expression after simplification:

WD = −Fthrust
0
∫

y=y0

1

sin (c1 arctan(c2y))
dy. (5.12)

Alternatively, the expression (5.12) can be derived by finding the arc-length

using calculus theory and then multiplying it by the force. According to calculus

theory, the arc length of a curve in Cartesian coordinates x− y is defined as:

Arc Length =

b
∫

a

√

1 +

(

dx

dy

)2

dy, where a < b. (5.13)

In our case, ẋ = V cosχe and ẏ = V sinχe implies dx
dy

= cotχe. Using this

expression and integrating from y = y0 to zero, we have:

Arc Length =

0
∫

y=y0

√

1 + (cotχe)
2dy =

0
∫

y=y0

1

sin (−c1 arctan(c2y))
dy. (5.14)

After multiplication with Force, the expression for work done becomes:

WD = −Fthrust
0
∫

y=y0

1

sin (c1 arctan(c2y))
dy. (5.15)

This expression for work done is same as (5.12). This integral has no analytic
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solution but can easily be integrated using numerical techniques to find the work

done for specific values of c1 and c2. While sliding y → 0 as t → ∞, so there

should be a lower limit on the magnitude of y (say 1 m) to stop the integration

instead of integrating to y = 0. For a boundary width of 1 m and a positive y0,

the work done expression takes the form:

WD = −Fthrust
1
∫

y=y0

1

sin (c1 arctan(c2y))
dy. (5.16)

The negative sign here is due to the reference frame convention for y; for positive

Minimum work done path

y
e
 [m]

e

Figure 5.5: Unconstraint optimized sliding surface and path for lateral plane
(straight path).

y0 we have to move in the negative y-direction and hence the work done is negative,

and vice-versa. Without imposing any constraint, this integral can be analyzed

to find values of c1 and c2 that correspond to minimum work done. For positive

values of c1 (≤ 1) and c2, the integrand 1
sin(c1 arctan(c2y))

is positive at every instant

of integration from y = y0 to y = 1, so minimizing the integrand at every point will

result in minimum work done. Minimizing the integrand means maximizing the

term sin (c1 arctan(c2y)) at every instant, this is possible if we choose c1 = 1 and

a large value of c2. The resulting lateral sliding surface and UAV trajectory for

optimum sliding coefficients are shown in Figure 5.5. Practically it is impossible
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to follow that trajectory with a limited lateral force Flateral, hence the availability

of lateral force at every instant should also be considered while minimizing the

above integral. The criterion therefore should be:

minimize WD =



































−Fthrust
−1
∫

y=y0

1

sin (c1 arctan(c2y))
dy for -ve y0

−Fthrust
1
∫

y=y0

1

sin (c1 arctan(c2y))
dy for +ve y0

subject to Flateral ≤ Flateralmax
at every point of integration



















































(5.17)

In order to find optimum values of the coefficients c1 and c2 for a specific y0, the

following procedure may be followed:

1. Choose a positive y0.

2. Select an acceptable range of the coefficients 0 ≤ c1 ≤ 1 and 0 ≤ c2. Initially

a wide range with a large step size may be selected, this may be refined to a

narrow range with finer resolution in the next iteration. c1 is usually given

a range from 0.0001 to 1 and c2 from 0.0001 to 5 with a step size of 0.01 for

both.

3. Run a nested loop for c1=0.0001:0.01:1 and c2=0.0001:0.01:5.

4. In each run first check the Flateral ≤ Flateralmax
constraint by varying y from

1 to y0 with a reasonable step size (say 1m). If the constraint fails at any

point, that combination of c1 and c2 is dropped. Calculate the work done

for each successful combination of c1 and c2, and store it.

5. Generate a grid of all work done values and choose the combination of c1

and c2 which corresponds to the least work done.
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6. Repeat the process for a different value of y0.

7. Analyze the computed values of work done, and either choose the best single

combination of c1 and c2 that works well for various value of y0, or make

these sliding parameters adaptive.

5.4.1.2 Circular path following

^

^

0

Figure 5.6: Conventions for lateral sliding coefficients optimization (circular
path).

In this section we derive an expression for work done in case of circular path

following to find optimum values of lateral sliding coefficients c1 and c2. LetWP [i]

and WP [i + 1] be two consecutive way-points in the lateral plane connected by

a circular arc of radius R centered at (Ixc,
Iyc) in an inertial frame as shown in

Figure 5.6. In this case, if we choose a fixed Cartesian coordinate system on the
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desired path nearest to the position of the UAV (like in the straight path case)

then this reference frame will rotate and translate on the desired path as the UAV

moves. For a rotating and translating coordinate system, the change in position

dP 6= dx̂i+dyĵ, and hence the calculation of work done is not straightforward. To

handle this complexity, we introduce a new polar coordinate reference frame (r̂, η̂)

centered at (Ixc,
Iyc) to describe the position of the UAV at any time t. Let the

initial deviation of the UAV from the desired circular path be y0 (= R− r0), then

the guidance objective is to make y = 0 (or r = R) by choosing an optimal path

from the many available paths as shown in Figure 5.6. Let F(r, η) be a continuous

force field and C be a curve (path) defined by the position vector P(r, η), then the

work done by F(r, η) on the UAV moving along C is given by:

WD =

∫

C

F(r, η) · dP, (5.18)

where F(r, η) is the sum of the thrust force in the lateral plane (Fthrust) and the

lift vector component in the lateral plane (Flateral). The part (Flateral · dP) is zero

as both vectors are perpendicular to each other, and hence the expression for work

done becomes:

WD =

∫

C

Fthrust · dP. (5.19)

Position of the UAV in polar coordinates (r̂, η̂) is represented by P = rr̂, and its

rate of change by:

Ṗ = ṙr̂+ rη̇η̂, (5.20)

or in alternative form:

dP = drr̂+ rdηη̂. (5.21)
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Similarly Fthrust can be expressed in polar coordinates as (see Figure 5.7):

^

e

F
th
r
u
s
t
c
o
s
e

F
thrust sin

e

Figure 5.7: Thrust force in polar coordinates (circular path).

Fthrust = −Fthrust sinχer̂+ Fthrust cosχeη̂. (5.22)

Using equations (5.21) and (5.22) in the expression for work done (5.19), and

assuming a constant thrust force, we get:

WD = Fthrust

∫

C

(− sinχedr + r cosχedη) . (5.23)

While sliding (s1 = 0), χe = −c1 arctan(c2ye), which can be expressed in polar

coordinates as χe = −c1 arctan(c2(R− r)); this implies:

WD = Fthrust

∫

C

(sin(c1 arctan(c2(R− r)))dr + r cos(c1 arctan(c2(R− r)))dη) .

(5.24)

This expression has two terms; the first term corresponds to work done due to

change in r while the second term corresponds to the work done due to change in

angle η. Also we get positive work done for a positive y0 from equation (5.24) as

we have to move in the direction of r̂ to bring the cross track error to zero.
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Let us have an initial cross track error r = r0(= R − y0) expressed in polar

coordinates, the guidance aim is to make r = R. The optimal path (minimum

work done) in this case is to change only r from ‘R − y0’ to R, without change

in angle η (similar to the straight path case as shown in Figure 5.5). This is

possible if we choose the sliding coefficients c1 = 1 and a large c2. However

this trajectory is not possible with a limited lateral force, therefore selection of

the sliding coefficients should be done by checking for the maximum lateral force

available at each instant. Hence, the criterion should be:

minimize

WD =Fthrust

∫

C

(sin(c1 arctan(c2(R− r)))dr + r cos(c1 arctan(c2(R− r)))dη)

subject to Flateral ≤ Flateralmax



























(5.25)

To find optimum values of coefficients c1 and c2 for a specific y0 and R, a procedure

similar to the straight path case can be followed. First a range of the two

coefficients should be selected and then work done can be calculated for each

combination that does not violate the Flateral ≤ Flateralmax
condition.

5.4.2 Vertical plane coefficients

The maximum available thrust and gravity are the two important factors to be

considered for selection of longitudinal sliding coefficients. The combination of

these two factors dictates the climb/decent rate and the achievable flight path

angle capabilities of the UAV, which is important for guidance logic design. Unlike

the lateral plane, here the coefficient selection is different for positive and negative

altitude errors as gravity supports in one case and opposes in the other. Generally

way-points in the vertical plane are connected by a straight line to maintain

constant rates of climb or decent, and only local treatment at the corners is applied
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Altitude

Figure 5.8: A sample mission plan for Longitudinal plane.

for smoothing. A sample longitudinal mission plan is shown in Figure 5.8 with

corner treatments for a UAV to follow. Generally the longitudinal guidance scheme

is designed to follow straight connected way-points, and the same is considered

here.

x

z

e
g
V

i^

^
k

Z0

a

Figure 5.9: Conventions for longitudinal sliding coefficients optimization.

For the longitudinal sliding coefficients, the convention and definition of different
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variables is shown in Figure 5.9. Let WP [i]-WP [i+1] be the desired straight path

(making an angle γp with the local horizontal) in the vertical plane and let initially

the UAV be z0 meters away from the desired path as shown. A fixed Cartesian

coordinated system (x− z) is introduced on the desired path at the closest point.

The thrust force acts along the body central line and the difference between the

angles of body central line and the velocity vector is the angle of attack (α). Here

the variable z denotes deviation from the desired path and is our main variable

of interest. Different geometric paths are possible to bring the deviation to zero

by using different sliding coefficients c3 and c4, here the objective is to find the

combination that corresponds to minimum work done (or minimum change in

energy) and does not exceed the flying capability of the UAV. By definition of

work done for a continuous force field F(x, z) over a curved path C, we have:

WD =

∫

C

F(x, z) · dP. (5.26)

Here the force field of interest is the applied external force Fthrust to bring the

UAV back on the desired path. Gravity is a conservative force and is not of our

interest for work done calculation, it will however be taken as a constraint. The

work done due to thrust force over C is:

WD =

∫

C

Fthrust(x, z) · dP. (5.27)

Resolving the above vectors in the fixed Cartesian-coordinates as shown in Figure

5.9: Fthrust = Fthrust cos(α + γe)̂i − Fthrust sin(α + γe)k̂ and dP = dx̂i + dzk̂, we

get:

WD =

∫

C

Fthrust cos(α + γe)dx− Fthrust sin(α+ γe)dz. (5.28)

Position of the UAV in the x-z coordinate system can be computed using the

expressions ẋ = V cos γe and ż = −V sin γe, dividing these we have the geometric
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relation dx = − cot γedz. Assuming thrust of a constant magnitude, and using

dx = − cot γedz, we have the following expression for work done:

WD = −Fthrust
0
∫

z=z0

(cos(α + γe) cot γe + sin(α+ γe)) dz, (5.29)

which after simplification becomes:

WD = −Fthrust
0
∫

z=z0

(cosα cos γe cot γe + cosα sin γe) dz. (5.30)

To reduce the height error to zero by sliding along the surface s2 = 0 (or γe =

c3 arctan(c4z)), we have the following simplified expression for work done (assuming

constant α):

WD = −Fthrust cosα
0
∫

z=z0

1

sin (c3 arctan(c4z))
dz. (5.31)

For work done computation, the required vertical force and the maximum available

vertical force along the sliding trajectory need to be considered at each point for

different values of c3 and c4. Hence the final criterion for minimization of work

done to bring the height error close to zero (say within 1 m) may be written as:

Minimize WD =



































−Fthrust cosα
−1
∫

z=z0

1

sin (c3 arctan(c4z))
dz for -ve z0

−Fthrust cosα
1
∫

z=z0

1

sin (c3 arctan(c4z))
dz for +ve z0

Subject to Flongitudinal ≤ Flongitudinalmax
at each point of integration















































(5.32)
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This expression appears similar to that in the lateral case, the main difference is

that Flongitudinal force also includes a component of gravity (discussed in detail in

the example in section 7.3.1). This gravity term enhances Flongitudinal for negative

z0 and reduces it for positive z0, implying different values of work done and hence

sliding coefficients for positive and negative height errors. In order to find the

optimum values of c3 and c4 for a specific z0, first a range of both coefficients

should be selected, followed by computation of work done for each combination

to select the best (minimum work done or minimum change in energy) sliding

coefficients. A complete case study is discussed in Chapter 7.

5.5 Summary of the Chapter

Performance of sliding mode based control law depends on the selection of sliding

surface and its coefficients. For guaranteed stability and high performance in all

scenarios, two nonlinear sliding surfaces are proposed for the lateral and longitudinal

planes. The idea is inspired from the good Helmsman criterion in the literature

used to guide ships onto the desired paths. After proposing new nonlinear sliding

manifolds, selection of optimum sliding coefficients is discussed in detail. The

selection is based on the work and energy principle to use minimum energy to

bring the UAV onto the desired path. The problem now is to design the guidance

logic based on these surfaces and its practical implementation. In the next chapter

a sliding mode based lateral guidance scheme is derived for UAVs based on the

sliding surface proposed here. The generalized 3-D path following guidance algorithm

is discussed in Chapter 7.
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Chapter 6

LATERAL GUIDANCE OF UAVS

6.1 Introduction

The main objective of the lateral guidance scheme is to keep the UAV on the

desired ground track by controlling its lateral deviations in the presence of disturbances

and uncertainties. If a ground cross-track error develops due to any reason (for

example when guidance is activated the first time after takeoff, or if an error

develops in the navigation solution due to a long GPS outage), the role of the

guidance algorithm is to reduce it to zero in a smooth and stable manner without

saturating the control input to the vehicle. The lateral guidance problem is about

driving the cross-track error and the course angle error to zero – the two degrees

of freedom of interest in this case. The guidance law will usually generate roll

reference commands for the inner roll control loop to follow; the logic must perform

well both for small and large track errors, without saturating the roll angle control

input, and guarantee closed-loop stability.

As discussed earlier, sliding mode based design can be divided into two parts; the

design of a stable sliding surface followed by the design of a control law to force the

system states trajectory onto the chosen sliding surface in finite time, and maintain

motion on it for subsequent time. In this chapter, we discuss a novel nonlinear

guidance law based on sliding mode control theory using the high performance

nonlinear sliding manifold proposed in section 5.2. A nonlinear guidance law is

derived for reaching and maintaining the sliding motion. It is shown that no

control saturation occurs during the sliding motion for either small or large track

errors. The proposed scheme is implemented in the flight control computer of a

small research UAV, and flight results for different scenarios are presented.
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6.2 Lateral Guidance Law Design

Sliding mode control design is essentially a two step process: sliding surface design,

and derivation of a control law to ensure that the phase trajectory is attracted

towards the sliding surface. For sliding mode lateral guidance law design, a high

performance nonlinear stable sliding surface is presented in the section 5.2, i.e.,

s1 = χe + c1 arctan(c2ye) = 0. (6.1)

Here in this section, we use this sliding surface and derive a sliding mode based

guidance law; conditions to ensure sliding and control boundedness are also derived

and discussed in detail. Sliding mode control (Utkin, 1977) is fundamentally

discontinuous control containing terms like ‘−k sgn(s)’ to slide system state trajectories

on a sliding surface. Later developments in the area of sliding mode theory

gave birth to new ideas like the equivalent control method in addition to the

discontinuous control term (Utkin and Shi, 1999). Discontinuous control changes

at high (theoretically infinite) frequency such that the state vector moves precisely

along the sliding surface, however various imperfections make the state oscillate

in the vicinity of the sliding surface. These oscillations have a high frequency

component and a low frequency component; the plant motion during sliding is

determined by the low frequency component. The low frequency component is

approximately equal to the equivalent control that can be found by using the

equation ṡ = 0 (Utkin, 1977; Edwards and Spurgeon, 1998). From a geometrical

point of view the equivalent control method means replacement of discontinuous

control in the intersection of switching surfaces by a continuous control such that

the state vector lies tangential to the sliding surface.

The lateral guidance law based on sliding mode theory is the sum of two terms:

the equivalent control term (ṡ1 = 0) and a discontinuous term ‘−k sgn(s1)’ to
cater for parametric uncertainties and disturbances. In subsequent subsections,
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first the guidance law is derived, followed by derivation of reachability and control

boundedness conditions.

6.2.1 Equivalent lateral control

Equivalent control is the control input which when applied to the system, enables

the system to continue sliding, once it is on the sliding surface (Bandyopadhyay

and Janardhanan, 2006). The equivalent control that maintains the sliding mode

is therefore the input ueqv satisfying ṡ1 = 0. In our case:

ṡ1 = χ̇e +
c1c2

1 + c22y
2
e

ẏe. (6.2)

Using state equations (3.16), ṡ1 = 0 can be written as:

0 =
ĝueqv

V̂g
cos

(

sin−1

(

1

V̂a

(

−V̂wn
sinχ+ V̂we

cosχ
)

))

+
c1c2

1 + c22y
2
e

V̂g sinχe− χ̇p,

(6.3)

where ĝ and V̂ are the measured values of gravity and velocity, respectively. After

simplification, the expression for equivalent control ueqv becomes:

ueqv =
1

cos
(

sin−1
(

1

V̂a

(

−V̂wn
sinχ+ V̂we

cosχ
)))

(

V̂g
ĝ
χ̇p −

c1c2
1 + c22y

2
e

V̂ 2
g

ĝ
sinχe

)

.

(6.4)

This control expression has two terms: a feedback term and an anticipatory

feed-forward term ( V̂g
ĝ
χ̇p) which is dependent on the rate of change of the desired

course angle. During a steady turn, the feed-forward control component generates

acceleration in the lateral plane to balance the centripetal acceleration (equal but

opposite in direction), provided Vg is exactly known. As discussed in detail in

Chapter 2, sliding motion can be maintained with this equivalent control in the

absence of uncertainties and disturbances (if the vehicle dynamics are exactly
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known). But generally this is not the case and a formal control law (for example

variable structure based) has to be formulated to maintain the sliding motion even

in the presence of parametric uncertainties and un-modeled dynamics.

6.2.2 The complete guidance law

The guidance logic must be robust and able to achieve and maintain the sliding

motion from any arbitrary initial condition in the presence of input disturbances

and parametric uncertainties, in finite time. Different reaching laws are discussed

in Chapter 2 to ensure sliding motion in the presence of uncertainties, traditionally

the discontinuous control term (−k sgn(s)) is added to the equivalent control term

to cater for uncertainties. The control gain k mainly depends on the magnitude of

uncertainties and is selected using Lyapunov theory. The expression for the lateral

guidance law is:

u =
1

cos
(

sin−1
(

1
V̂a

(

−V̂wn
sinχ+ V̂we

cosχ
)))

(

V̂g
ĝ
χ̇p −

c1c2
1 + c22y

2
e

V̂ 2
g

ĝ
sinχe

)

− k sgn(s1),

φreq = tan−1(u),

(6.5)

where c1c2 > 0 and |c1| ≤ 1. The term 1

cos
(

sin−1
(

1

V̂a
(−V̂wn sinχ+V̂we cosχ)

)) is for

compensation of wind; in the absence of wind it is equal to 1. Generally wind

measurement is not available onboard UAVs, and hence this term has to be

estimated. The above guidance law (6.5) can be written in the form:

u = Γ

(

V̂g
ĝ
χ̇p −

c1c2
1 + c22y

2
e

V̂ 2
g

ĝ
sinχe

)

− k sgn(s1),

φreq = tan−1(u),

(6.6)
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where Γ = 1

cos
(

sin−1
(

1

V̂a
(−V̂wn sinχ+V̂we cosχ)

)) . Here we assume accurate measurements

of the state variables: the cross-track error (ye) and the intercept course (χe).

To cater for parametric uncertainties in other variables including Γ, the gain k

required is worked out in the following sections.

Wind disturbances can be handled in one of two ways. In the first approach, wind

is considered as a disturbance and its maximum value is analyzed during guidance

logic design and the gain k is adjusted accordingly. In the second approach, the

wind speed and direction is estimated online using an observer and Γ is computed

in real time for use in the guidance equation (6.6). In this case the estimation error

should be taken care of during the design and selection of gain k. For simplicity,

here we opt for the first approach and take Γ equal to 1. The resultant simplified

lateral guidance law is:

u =
V̂g
ĝ
χ̇p −

c1c2
1 + c22y

2
e

V̂ 2
g

ĝ
sinχe − k sgn(s1),

φreq = tan−1(u).

(6.7)

6.2.3 Reachability condition

In sliding mode control, one must ensure that the sliding motion starts in finite

time from any arbitrary initial condition (Perruquetti and Barbot, 2002; Bandyopadhyay

et al., 2009). The control must be designed such that it drives the state trajectories

towards the sliding surface, and once achieved, maintains that sliding motion. The

attractivity of the sliding surface can be expressed by the condition:

lim
s→0+

ṡ < 0, lim
s→0−

ṡ > 0. (6.8)

The above conditions ensure that s and ṡ have opposite signs, i.e.,

sṡ < 0. (6.9)
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The above condition is referred to as the reachability condition. To check for

the reachability condition here, let us take W = 1
2
s21 as the Lyapunov candidate

function. The derivative of W is:

Ẇ = s1ṡ1

= s1

(

gu

Vg
cos

(

sin−1

(

1

Va
(−Vwn

sinχ + Vwe
cosχ)

))

− χ̇p +
c1c2

1 + c22y
2
e

Vg sinχe

)

.

(6.10)

Substituting for the control input u from equation (6.7), we get:

Ẇ = s1
g

Vg
cos

(

sin−1

(

1

Va
(−Vwn

sinχ + Vwe
cosχ)

))

[

V̂g
ĝ
χ̇p

− c1c2
1 + c22y

2
e

V̂ 2
g

ĝ
sinχe − k sgn(s1)

]

+ s1

(

−χ̇p +
c1c2

1 + c22y
2
e

Vg sinχe

)

,

(6.11)

or

Ẇ = s1
g

Vg
τ

[

V̂g
ĝ
χ̇p −

c1c2
1 + c22y

2
e

V̂ 2
g

ĝ
sinχe − k sgn(s1)

]

+ s1

(

−χ̇p +
c1c2

1 + c22y
2
e

Vg sinχe

)

,

(6.12)

where τ = cos
(

sin−1
(

1
Va

(−Vwn
sinχ+ Vwe

cosχ)
))

. The uncertain variables V̂g

and ĝ (with some measurement error) appear from substitution of the control

input u above. Neglecting the error in the gravity term (g ≈ ĝ), we have:

Ẇ = − s1
Vg

(

c1c2
1 + c22y

2
e

sinχe

(

τ V̂ 2
g − V 2

g

)

− χ̇p
(

τ V̂g − Vg
)

+ gkτ sgn(s1)

)

. (6.13)

Ẇ will be negative definite if

|gkτ | >
∣

∣

∣

∣

c1c2
1 + c22y

2
e

sinχe

(

τ V̂ 2
g − V 2

g

)

∣

∣

∣

∣

+
∣

∣

∣
χ̇p
(

τ V̂g − Vg
)

∣

∣

∣
, (6.14)
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or

k >
1

gτ

c1c2
1 + c22y

2
e

|sinχe|
∣

∣

∣
τ V̂ 2

g − V 2
g

∣

∣

∣
+

1

gτ
|χ̇p|

∣

∣

∣
τ V̂g − Vg

∣

∣

∣
. (6.15)

To find the value of ‘k’ which satisfies the above for the entire flight envelope,

i.e., to ensure reachability from any initial condition, we find the maximum of the

right hand side in the above inequality. The maximum value of c1c2
1+c2

2
y2e

is c1c2 at

ye = 0, and the maximum value of |sinχe| is 1 at χe = ±π
2
. Hence, the maximum

value in the entire phase portrait occurs at the point: (χe, ye) = (±π
2
, 0). Let us

also assume a worst case error of 10% in the measurement of ground velocity (i.e.,

V̂g ≈ 1.1Vg); now Ẇ will be negative definite, if

k >
V 2
g c1c2

g

(

1.21− 1

τ

)

+
Vg
g

|χ̇p|
(

1.1− 1

τ

)

. (6.16)

Using the minimum value of 1
τ
= 1 and the relation Vg = χ̇pR, we have:

k > 0.21
V 2
g c1c2

g
+

0.1

g

V 2
g

R
. (6.17)

With this selection of gain k, the state trajectory will reach the sliding surface

from any point in the phase portrait. The value of k mainly depends on velocity,

sliding surface parameters and the radius of turn. Selection of a large value of the

product c1c2 gives quick convergence of cross-track error vis-à-vis the requirement

of a larger value of gain k (and larger control input u). Similarly more control

is required for smaller values of turn radius (R). In the above derivation, it

is assumed that a maximum error of 10% is expected in velocity measurement,

however expression (6.17) may be modified accordingly in case of a different error

magnitude for a specific application.
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6.2.4 Control boundedness

A typical guidance and control system will have an outer guidance loop which

generates roll reference commands for the inner control loop to follow. The inner

loop will in practice have limiter and saturation blocks to avoid excessive bank

maneuvers. For example, there could be a saturation check on the roll reference

command being generated by the guidance logic, and also similar checks on the

actuators driving the (aileron) control surfaces. Stability of the two interconnected

loops in the presence of nonlinearities such as these is usually not formally proved;

most practitioners rely on extensive numerical simulations to generate confidence

before going to flight. Our objective here is for the outer loop to generate commands

that do not cause saturation of signals in the inner loop, thus resulting in graceful

maneuvers with guaranteed stability margins.

As discussed earlier, larger values of c1 and c2 are desirable for good performance

and quick response in terms of driving the cross-track error to zero. We have

also derived the reachability condition above and shown that the control gain k

is related to the product c1c2. If an arbitrarily large k satisfying condition (6.17)

is chosen, it may result in saturation of some signals in the inner loop, and thus

the chosen gain k will not get actually applied to the system. In other words,

saturation may result in a lower effective gain being applied to the system, which

in an extreme case may even violate the reachability condition (6.17). In such a

case, sliding motion will not be guaranteed. In order to avoid saturation therefore,

it is necessary to bound the roll command (6.7) away from the maximum allowed

value φmax.

The output of the guidance block (φreq = arctanu) is to be bounded by φmax

during both the reaching and sliding phases. Here we derive conditions on the

sliding surface parameters c1 and c2 so that |φreq| ≤ φmax throughout the reaching

and sliding phases. During reaching phase, the objective is to attract the state
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trajectory towards the sliding surface, any effective gain satisfying the reachability

condition (6.17) can accomplish this. If the maximum allowed value of control

input (φmax) satisfies the condition (6.17), then the state trajectory will be attracted

towards the sliding surface even in case of saturation |φreq| = φmax. However,

control boundedness (|φreq| ≤ φmax) is important during sliding motion to slide

the states along the desired trajectory (sliding surface) with limited control input.

Motion on the sliding surface is described by the equation (6.1) and the corresponding

equivalent control is derived in section 6.2.1. In order to avoid control saturation,

the total control magnitude should be bounded by φmax, i.e.,

∣

∣

∣

∣

∣

−
V̂ 2
g

ĝ

c1c2
1 + c22y

2
e

sinχe +
V̂g
ĝ
χ̇p − k sgn(s1)

∣

∣

∣

∣

∣

≤ tanφmax,

or in the worst case:

∣

∣

∣

∣

∣

V̂ 2
g

ĝ

c1c2
1 + c22y

2
e

sinχe

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

V̂g
ĝ
χ̇p

∣

∣

∣

∣

∣

+ |k sgn(s1)| ≤ tanφmax. (6.18)

After simplification, we have:

c1c2
1 + c22y

2
e

|sinχe| ≤
ĝ

V̂ 2
g

(

tanφmax − k − V̂g
ĝ

|χ̇p|
)

. (6.19)

Substituting χe = −c1 arctan(c2ye) from equation (6.1) into the above equation,

we have:

c1c2
1 + c22y

2
e

|sin (−c1 arctan(c2ye))| ≤
ĝ

V̂ 2
g

(

tanφmax − k − V̂g
ĝ

|χ̇p|
)

. (6.20)

The parameters c1 and c2 and hence the control gain k should be chosen so that the

above inequality is satisfied, and thus control saturation is avoided during motion

on the sliding surface for all values of the track error ye. Different approaches are

possible to check the control boundedness condition (6.20).
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Approach-1: One way to check for control boundedness is to first fix the parameters

c1, c2 and k and then plot c1c2
1+c2

2
y2e
|sin (−c1 arctan(c2ye))| versus ye, and to check if

this is less than ĝ

V̂ 2
g

(

tanφmax − k − V̂g
ĝ
|χ̇p|
)

. If the check fails, c1 and c2 have to

be readjusted and the check repeated again.

Approach-2: Another approach is to find the maximum point yemax
for the

function c1c2
1+c2

2
y2e
sin (−c1 arctan(c2ye)) using calculus theory as explained below. Let

us define the function h(ye) as follows:

h(ye) =
c1c2

1 + c22y
2
e

sin (−c1 arctan(c2ye)) .

In order to find the maximum, we first find the critical points by solving dh
dye

= 0,

i.e.,
d

dye

{

c1c2
1 + c22y

2
e

sin (−c1 arctan(c2ye))
}

= 0,

which becomes:

−2c1c
3
2ye

(1 + c22y
2
e)

2
sin (−c1 arctan c2ye)−

c21c
2
2

(1 + c22y
2
e)

2
cos (−c1 arctan c2ye) = 0. (6.21)

After simplification, we get:

−(c1c2)c
2
2

(1 + c22y
2
e)

2
sin

{

−c1 arctan c2ye + arctan

(

c1
2c2ye

)}

= 0. (6.22)

Since
−(c1c2)c22
(1+c2

2
y2e)

2 6= 0 for any value of ye, hence the critical points are the solutions

to the equation:

sin

{

−c1 arctan c2ye + arctan

(

c1
2c2ye

)}

= 0, (6.23)

which may be written as:

c1 arctan c2ye = arctan

(

c1
2c2ye

)

. (6.24)
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The above equation may be solved either analytically or numerically to get the

critical points. For example, if we take c1 = 1 (maximum performance for large

cross-track errors), we can write the above equation as:

c2ye =
1

2c2ye
, (6.25)

which yields the two critical points ± 1
c2
√
2
for the function h(ye). The point

yemax
= 1

c2
√
2
gives the maximum of the function, whereas ymin = − 1

c2
√
2
yields

the minimum. Substituting in equation (6.20), we get:

0.3849c2 ≤
ĝ

V̂ 2
g

(

tanφmax − k − V̂g
ĝ

|χ̇p|
)

⇒ c2 ≤
1

0.3849

ĝ

V̂ 2
g

(

tanφmax − k − V̂g
ĝ

|χ̇p|
)

⇔ k ≤ tanφmax −
V̂g
ĝ

|χ̇p| − 0.3849
V̂ 2c2
ĝ

(6.26)

Neglecting the error in the gravity term (g ≈ ĝ) and using the assumption of

maximum 10% uncertainty in velocity measurement (V̂g ≈ 1.1Vg), we may write

the above as:

k ≤ tanφmax −
Vg
g

|χ̇p| − 0.4657
V 2
g c2

g
(6.27)

The above inequality along with the reachability condition (6.17) should be satisfied

to ensure both control boundedness and reachability for the c1 = 1 case.

Approach-3: A simple approach to check the control boundedness (6.20) is to

write this inequality for the worst case scenario. This approach is conservative

but simple. The maximum value of the term c1c2
1+c2

2
y2e
|sin (−c1 arctan(c2ye))| cannot

exceed c1c2 in the entire phase plane (for all values of ye and χe). So in order to
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bound the control input for all conditions, we must have:

c1c2 ≤
ĝ

V̂ 2
g

(

tanφmax − k − V̂g
ĝ

|χ̇p|
)

, (6.28)

or

k ≤ tanφmax −
V̂g
ĝ

|χ̇p| −
V̂ 2
g

ĝ
c1c2. (6.29)

The gain k and the sliding surface parameters c1 and c2 should be selected considering

the UAV flight conditions (Vg, g), the maximum allowable roll angle (φmax), and

the mission requirement (R). First the sliding parameters c1 and c2 may be chosen,

followed by the selection of the gain k that satisfies equations (6.17) and (6.29).

If no feasible value of k is found, the above procedure may be reiterated with

comparatively smaller values of the sliding parameters c1 and c2.

6.2.5 Implementation issues

To implement the SMC based scheme in real systems, different methods are

suggested in the literature to avoid chattering in the control variable because of the

signum function. One commonly used approach is the ‘boundary layer approach’:

a continuous sigmoid approximation s1
|s1|+ǫ of the discontinuous function sgn(s1)

(Burton and Zinober, 1986; Boiko, 2013). Due to this approximation, the control

magnitude decreases as the system trajectory approaches the sliding surface. As

a result the sliding surface is not exactly zero (ideal sliding mode) and the system

state trajectories are restricted to a small vicinity of the sliding surface (real sliding

mode).

The sigmoid approximation ( s1
|s1|+ǫ) of sgn(s1) is plotted versus s1 for different ǫ

in Figure 6.1. In the horizontal axis as s1 approaches zero, magnitude of the

effective gain (vertical axis) also reduces, hence resulting in reduced chattering in
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Figure 6.1: Approximation of sgn(s1) function.

the control signal. As the gain reduces due to this approximation, hence control

boundedness (6.20) is not a problem here.

Figure 6.2: Gain k required for reachability over the phase plane.

As the effective gain reduces in the vicinity of the sliding surface due to this
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sigmoid approximation, hence its effect on the reachability condition (6.17) should

also be analyzed. This condition (6.17) gives the gain required to attract the states

towards the sliding surface from the worst point in the phase plane (the required

worst maximum gain), the gain requirement from other points in the phase plane

is relatively lower. The worst point in the phase plane is (χe, y) = (±π
2
, 0). To

analyze the gain requirement at other points of the phase portrait, the first term in

the generalized reachability condition (6.15) is dominant, and this has a variable

factor 1
g

c1c2
1+c2

2
y2e
| sinχe| depending on the states. This factor is shown by a colored

mesh in Figure 6.2 for the entire phase plane (from this figure it is also clear that

the worst point is (±π
2
, 0)). Gain requirement at other points of the phase portrait

can also be worked out using this plot in terms of its ratio to the maximum required

gain. The sliding surface is also shown in black solid line for c1 = 0.7, c2 = 0.002

to see the gain requirement in its neighborhood. It is clear from the figure that the

requirement of gain in locality of the sliding surface is not as much as compared

to the maximum, the requirement reduces to one fifteenth of the maximum near

the origin.

The effect of sigmoid approximation in terms of gain reduction and the resultant

corresponding boundary in the vicinity of the sliding surface can be analyzed for

each specific case. As an example let us assume that we want a sliding accuracy

of 0.1 (|s1| < 0.1), this implies a boundary layer width of 0.2. For ǫ = 0.3 we

have s1
|s1|+ǫ = ±0.25 at s1 = ±0.1, which indicates that one fourth of the selected

gain will effectively be applied to the system at the edges of the boundary layer.

Figure 6.2 shows the boundary layer with black dashed lines, it is clear that the

gain requirement is approximately one fourth of the maximum on the edges of this

boundary layer, implying we can achieve an accuracy of |s1| < 0.1 with ǫ = 0.3.
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Figure 6.3: A photograph of the test vehicle during landing.

6.3 Case Study: Application on actual UAV

The proposed guidance law is programmed in the flight control computer of a

scaled YAK-54 UAV (Figure 6.3) to demonstrate its effectiveness; comparisons are

also made with other guidance laws. The UAV under consideration is a research

vehicle (a scaled version of the YAK-54) already used by many researchers to

demonstrate their work (Jager, 2008; Shahriar keshmiri and Hale, 2008). It is

propeller driven in a tractor configuration. Pitch control is provided by a set of

elevators located on the horizontal tail, roll control is provided by ailerons on the

main wing, and the vertical tail employs a rudder. The cruising speed is in the

range of 30–40 m/sec. Basic data of the said vehicle is listed in Table 6.1.

Before presenting flight test results, first the complete cycle of design process is

explained here in this section. The design process is explained for both cases

of straight and circular path following. A complete cycle includes: selection of

optimized sliding surface parameters (c1 and c2), finding the gain k satisfying both

reachability and control boundedness conditions, and finally a complete guidance
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Table 6.1: Geometrical and mass properties of the scaled YAK-54 UAV.

# Parameter Value

1 Take-off mass 11 kg
2 Length 2080 mm
3 Wing span 2235 mm
4 Wing area 943869 mm2

5 Wing root/tip airfoil NACA 0016 / 0017
6 Vertical tail root/tip airfoil NACA 0009 / 0010
7 Horizontal tail root/tip airfoil NACA 0015 / 0012
8 Moments of inertia: Ixx, Iyy, Izz 1.36, 2.848, 4.07 kg-m2

law expression for implementation in the flight control computer. All these steps

are covered in the subsequent subsections.

6.3.1 Optimized sliding surface parameters

As discussed in detail in Chapter 5, the selection criterion for sliding surface

parameters is different for straight and circular path following. Here the optimum

sliding parameters are worked out for both cases.

6.3.1.1 Straight path case

A criterion is derived in section 5.4.1 for the selection of sliding parameters using

the work and energy principle. For constant force, the work done expression mainly

depends on the travel distance of UAV. Hence minimizing the travel path/distance

will minimize the work done value. It may also be mentioned here that path length

is the same for both positive and negative value of y0 (for the straight path case),

and hence only positive y0 can be considered for selection of sliding parameters.

From equation (5.17), we have the following expression for path length calculation:

Path Length =

1
∫

y=y0

1

sin (c1 arctan(c2y))
dy subject to Flateral ≤ Flateralmax

.

(6.30)
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Figure 6.4: Path length for different values of sliding parameters (cases of
small initial cross track error).

During sliding, the constraint equation Flateral ≤ Flateralmax
can be derived from

the equivalent control expression (6.4). Assuming a maximum bank/roll angle of

27 degrees (with some margins for uncertainty), velocity of 35 m/s, gravitational

acceleration equal to 9.8m/s2 and neglecting the wind, the above equation (6.30)

becomes:

Path Length =

1
∫

y=y0

1

sin (c1 arctan(c2y))
dy

subject to
c1c2

1 + c22y
2

352

9.8
sin (c1 arctan(c2y)) < 0.5



























(6.31)
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The path length can be calculated for specific y0 by numerical integration of the

above expression from y = y0 to y = 1 for different values of c1 and c2. During

integration, the constraint ( c1c2
1+c2

2
y2

352

9.8
sin (c1 arctan(c2y)) < 0.5) should be checked

at every point of integration and if violated then that combination of c1 and c2

should be dropped out.
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Figure 6.5: Path length for different values of sliding parameters (cases of
large initial cross track error).

In Figure 6.4, the resultant values of traveled path are shown for initial small

cross track error (y0) of 200 and 500 meters. The path length is worked out for

different values of c1 (0.5 to 1.0) and c2 (0.005 to 0.04), and some combinations are

naturally dropped out because of the constraint violation. In case of y0 = 200, the
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Table 6.2: Summary of travel path length for different y0 (straight path case).

y0[m] Path length [m] Best combination
(c1, c2)

Near optimum range
(c1, c2)

200 470 - 2300 (0.53, 0.0350) (0.5-0.7, 0.035-0.020)
500 800 - 2800 (0.70, 0.0200) (0.6-0.9, 0.027-0.013)
1000 1390 - 3700 (0.90, 0.0125) (0.7-1.0, 0.020-0.011)
2500 2900 - 5900 (0.97, 0.0110) (0.8-1.0, 0.015-0.011)

length of traveled path varies from 470m to 2300m depending on the combination

of c1 and c2. Similarly, the path length varies between 800 − 2800m in case of

y0 = 500m. The traveled path length for large initial cross track errors (1000

and 2500m) are shown in Figure 6.5. All these results are summarized in table

6.2. To avoid complexity, a single combination of c1 and c2 can be chosen that

gives near to optimum performance for all cases of y0. For flight tests, we have

chosen c1 = 0.9 and c2 = 0.012 for straight path following. The expected UAV

ground trajectory with the selected sliding surface (s1 = χe + 0.9 arctan(0.012ye))

for different initial cross track errors is shown in Figure 6.6. First the trajectory is

directed towards the desired path almost straight, and once in the neighborhood

of the desired path, it turns along the path utilizing the bank angle within the

allowable limit.

6.3.1.2 Circular path case

Following a similar procedure, optimized sliding coefficients can be found for the

circular path following case using equation (5.25). However, path lengths would

be different for positive and negative values of initial cross track error of same

magnitude, and both cases would be considered here. Similarly, the constraint

Flateral ≤ Flateralmax
can be derived from the equivalent control expression (6.4) in

this case too. This constraint in the worst case can be written as (neglecting the
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Figure 6.6: Straight path case: UAV trajectory on ground with selected sliding
surface for different cross-track errors.
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In case of circular path, this constraint also depends on the rate of change of

reference course angle (χ̇p), and a more strict constraint in case of circular arc

of small radius. So keeping in view the worst case scenario, here we have derived

sliding parameters for the smallest turn radius case (R=400m), the sliding parameters

for any other turn radius can be derived using the same procedure. For turn

radius of 400m, approximately 20deg roll angle is required to follow the curved

path and hence we have a very small budget for any cross track error correction

after keeping some budget for uncertainties. However, we have sufficient lateral

force (or roll angle) for relatively large turn radii and the straight path (which can

be considered as an infinity turn radius case with more room to correct errors).

Using the equivalent control expression (6.32) and work done equation (5.25), we

131



0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

 

X: 0.8
Y: 0.0019
Z: 1973

C
1

X: 0.6
Y: 0.0033
Z: 1715

 

C
2

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

1

2

3

4

5
x 10

−3

 

X: 0.8
Y: 0.0019
Z: 1738

X: 0.7
Y: 0.0023
Z: 1682

C
1

X: 0.6
Y: 0.0033
Z: 1475

 

C
2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

2000

4000

6000

8000

10000

12000

14000

16000

18000

Path length for y
0
 = −700m

Path length for y
0
 = −550m

Figure 6.7: Circular path case: Path length for different values of sliding
parameters (cases of large negative initial cross track error).

have the following expression for path length calculation in case of desired circular

paths:

Path Length =

∫ ∆

r=r0

(sin(c1 arctan(c2(R − r)))dr + r cos(c1 arctan(c2(R − r)))dη)

subject to
c1c2

1 + c22(R − r)2
352

9.8
|sin (c1 arctan(c2(R− r)))| < 0.1



















(6.33)

As the objective here is to find the sliding parameters by comparing the path length

for different combinations of c1 and c2, hence ∆ can be chosen to be any number
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Figure 6.8: Circular path case: Path length for different values of sliding
parameters (cases of small initial cross track error).

that defines the acceptable error to stop the integration. In case of a circular path,

it takes a long time for the error to reduce, so we stop the integration when the cross

track error reduces to 20m. In Figure 6.7, path length calculations are shown for

initial cross track error (y0) of −700 and −550m. Similarly, the worked out travel

path values for the cases of y0 of −200m and 200m are shown in Figure 6.8. In all

these four cases, the path length for different combinations of c1 and c2 is calculated

and any combination violating the constraint is dropped out. By analyzing these

graphs similar to the previous straight path following case, we select c1 = 0.7 and

c2 = 0.002 for implementation in the flight control computer. With these selected

133



sliding parameters, the trajectory converges towards the desired path for different

cases of initial cross track error as shown in Figure 6.9. In all cases, the error

converges smoothly towards the desired path without any overshoot.
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Figure 6.9: Circular path case: UAV trajectory on ground with selected sliding
surface for different cross-track errors.

6.3.2 Reachability and control boundedness

After the selection of sliding surface parameters, the next step is to derive the

reachability condition (6.17) and hence find the feasible value of control gain ‘k’

and also to check the control boundedness with the selected gain. The selection

of gain is different for the straight and circular path cases.

For straight path following case, the reachability condition (6.17) with selected

sliding parameters (c1 = 0.9 and c2 = 0.012) is ensured for k > 0.238. Finally, a

control gain (k) value of 0.24 is selected for flight. To ensure control boundedness
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(6.20), we used the approach-1 as explained in detail above. After fixing the values

of parameters c1, c2 and k; the right hand side of inequality (6.20) is a constant

number and left hand side depends on ye. Both sides of the inequality are plotted

against the track error ye in Figure 6.10. It is clearly seen that the condition (6.20)

is satisfied, thus ensuring |φreq| ≤ φmax (we choose φmax = 35◦ for our application).

The figure also shows that the maximum control effort during sliding occurs for a

track error of ∼ 55 m; this is confirmed from flight results.
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Figure 6.10: Verification of the control effort boundedness for straight path
case (Condition 6.20).

For circular path following case, the sliding parameters (c1 and c2) and turn

radius (R) dictates the minimum requirement of gain k, and can be workout using

the reachability condition (6.17). To check the control boundedness, the easiest

way is to follow the approach-3 (conservative approach) mentioned above. In this
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case, the reachability condition (6.17) and control boundedness (6.29) will impose

minimum and maximum control gain requirements, respectively. With the selected

sliding parameter values (c1 = 0.7 and c2 = 0.002) and χ̇p = 0.0875, conditions

for reachability and control boundedness become: 0.06 < k < 0.212. We choose a

larger gain of 0.21 for flight implementation.

6.3.3 Final lateral guidance law

A boundary layer approximation sgn(s) ≈ s
|s|+ǫ is used (section 6.2.5) to avoid

chattering in the computation of φreq. For flight we want to achieve a sliding

accuracy of 0.1 (i.e., |s| < 0.1) and this can be achieved with ǫ = 0.3 for k = 0.06 as

discussed in section 6.2.5. Lot of simulations are performed for different scenarios

by varying different parameters, and simulation runs suggest that 0.5 ∼ 0.7 is a

good range of ǫ for implementation.

In case of circular path following, we can still achieve accuracy of |s| < 0.1 with

ǫ = 0.7 as we have already chosen a larger gain of 0.21 for implementation. With

ǫ = 0.7, the effective gain reduced to one eighth of the selected gain of 0.21 near

the boundary layer limits, but this effective gain (0.21∗0.125) is sufficient to meet

the reachability condition around the limits of boundary layer (|s| < 0.1). With

this larger gain we will have greater disturbance rejection outside the boundary

layer, and can achieve |s| < 0.1 even with ǫ = 0.7, which gives a much smoother

control signal. In case of straight path following with ǫ = 0.7, the sliding accuracy

of |s| < 0.1 is not possible throughout the sliding phase. However, as the control

gain requirement reduces significantly near the origin (see Figure 6.2) so |s| < 0.1

accuracy near the origin is achievable with ǫ = 0.7 (and this is our region of

interest). Maximum deviation of 0.2 from the sliding surface is expected near the

turning region of sliding surface.
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Finally, the implemented lateral guidance law for straight path following is:

u = − 0.0108

1 + 0.000144y2e

V̂ 2
g

ĝ
sinχe − 0.24

(χe + 0.9 arctan(0.012ye))

|χe + 0.9 arctan(0.012ye)|+ 0.7
,

φreq = tan−1(u).

(6.34)

Similarly, the lateral guidance scheme for circular path following is:

u =
V̂g
ĝ
χ̇p −

0.0014

1 + 0.000004y2e

V̂ 2
g

ĝ
sinχe − 0.21

(χe + 0.7 arctan(0.002ye))

|χe + 0.7 arctan(0.002ye)|+ 0.7
,

φreq = tan−1(u).

(6.35)

As compared to expression (6.34), here we also have a feed-forward term V̂g
ĝ
χ̇p to

keep the UAV on a circular track. To show the effectiveness of this feed-forward

term, we test this algorithm (6.35) with and without the feed-forward term. It

may be noted that V̂g is available from GPS, ĝ is a known function of measured

altitude, state variable (ye and χe) measurement is also available and χ̇p is available

from the pre-planned mission.

6.4 Experimental Results

Before implementation in the flight control computer, the proposed guidance

law is simulated in the 6-dof nonlinear simulation to see the performance (see

Annex-A for complete structure of the nonlinear simulation). After extensive

testing in simulation, the proposed guidance law is programmed in the flight

control computer of the test vehicle to demonstrate its effectiveness. The 30%

scaled YAK-54 model is available ARF (almost ready to fly), manufactured by

EG-Aircraft for remote controlled flying and is powered by a DLE-55 engine.

The structure of the UAV is modified to house sensors and a flight computer for

autopilot controlled flight; the layout of the flight control computer is shown in
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Figure 6.11: Main interfaces of the flight control computer.

Figure 6.11. Normally take-off and landing are performed manually, and the rest

of the flight is conducted in autopilot mode. The heart of the flight computer is a

generic MPC-565 microcontroller based board with 6 serial ports for communication

with different on-board sensors and the ground terminal. RC (remote control)

receiver channel-7 is used for switching between manual and autopilot modes.

For attitude measurement and navigation, a MEMS based AHRS (attitude and

heading reference system) with an integrated 4Hz GPS is employed. It outputs

attitude and velocity information at an update rate of 100 Hz, whereas the position

information is updated at 4 Hz.

138



200 400 600 800 1000 1200 1400 1600

0

50

100

150

200

250

300

350

 Time [s]

 A
lti

tu
de

 [m
]

 

 

 GPS  (AGL)
 Alt−pro 3  (AGL)
 Commanded

Autopilot mode

A small dip in altitude after engine start

More error in GPS on ground (known altitude)

Figure 6.12: Altitude Tracking of the YAK-54.

For altitude control, a low-cost pressure altitude sensor RC-AltPro-3 (www.rc-electronics.org)

is used that outputs mean sea level altitude, along with the rate of climb/descent at

an update rate of 10 Hz. The altimeter gives acceptable performance; comparison

with GPS altitude measurements is shown in Figure 6.12. Detailed flight results

of altitude control are discussed in Annex-C. Communication with the ground

terminal is through a 19.2 kbps RF modem which talks to the flight computer

through a serial port. Layout of the ground station is shown in Annex-C. Telemetry

of important flight parameters is made via the RFmodem at 4 Hz, however detailed

flight data is stored in a data recorder at 115.2 kbps. With the available fuel

capacity, the UAV can fly autonomously for about one hour but most flights are

of approximately 30 minutes duration. Since we are focusing here on the design of

the guidance loop, therefore an existing PID-based roll control law is used for the

inner loop as discussed in detailed in Annex-A. Two flights are conducted with
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the proposed lateral guidance scheme and results are shown in the subsequent

subsections.

6.4.1 Straight path cases

Different scenarios of small, large and sharp turns are generated in the flight and

results are shown here. A complete mission is also demonstrated here.

6.4.1.1 Small cross-track error case
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Figure 6.13: Flight test results for a small initial cross-track error (ye and χe
versus time).

Figures 6.13–6.15 show flight results for an initial cross-track error of 108 m during

a straight leg between two waypoints. An initial track error may be generated in

several ways: the guidance algorithm may be enabled some time after take-off,

or the GPS may become available after a period of outage, or there may be a

change in the mission during flight. Figure 6.13 shows the cross-track error ye, and

intercept course χe versus time, the track error reduces to within 10 m in ∼ 6.5
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Figure 6.14: Phase portrait for the small track error case(χe versus ye).

sec. In Figure 6.14, the UAV state trajectory (χe vs ye) is shown in phase portrait

form along with the sliding surface. Starting from the initial point, the state

trajectory is first attracted towards the sliding surface, and thereafter remains on

it. The commanded (reference) roll angle, actual roll angle and aileron deflection

are shown in Figure 6.15. The maximum control effort (roll reference) is 25◦ at

∼ 497 sec when the track error is approximately 55 m, this proves our earlier claim

from Figure 6.10.

6.4.1.2 Large track error case

Flight results for a 500 m initial cross-track error are shown in Figures 6.16–6.18.

The track error ye and χe versus time are shown in Figure 6.16; it takes ∼ 19 sec

to reduce the error from 500 m to 10 m. The track error reduces to zero smoothly

with no overshoot. The phase portrait is shown in Figure 6.17 along with the

sliding surface. The state trajectory converges to the origin on the sliding surface,

the trajectory follows the sliding surface quite closely. In the initial few seconds,

χe is big and almost constant, and reduces the cross-track error quickly, achieving

good performance. In Figure 6.18, the reference (commanded) roll angle along
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Figure 6.15: Roll angle and aileron deflection for the small cross-track error
scenario.
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Figure 6.16: Flight test results for a large initial cross-track error (ye and χe
versus time).
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Figure 6.17: Phase portrait for the large track error case(χe versus ye).

with the actual roll angle and aileron deflection are shown. As expected, the

maximum commanded roll angle is ∼ 35◦ at 1214 sec, when the track error is

approximately 55 m. The control surface (aileron) deflection is well behaved and

generally less than 3◦.

6.4.1.3 Loiter pattern

Flight results for a loiter pattern are shown in Figures 6.19–6.20. Figure 6.19

shows the desired mission and the actual path flown by the vehicle. The take-off

point is taken as the origin, northward distance travelled is denoted by ‘x’ (or

Posx), while eastward distance travelled is denoted by ‘y’ (or Posy). For smooth

transition at the corners, distance to the next leg is continuously monitored, and

when it reduces to 300 m, the ‘leg shift’ command is issued. The cross-track error

is thereafter computed with reference to the next leg, and so a smooth curved

path is traced out inside of the corner point. Good performance of the proposed

algorithm is observed in this case also. The commanded roll angle, actual roll
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Figure 6.18: Roll angle and aileron deflection for the large cross-track error
scenario.
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Figure 6.19: Flight test results for the loiter pattern (desired and actual flight
paths).
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angle and aileron deflection are shown in Figure 6.20. The maximum commanded

(reference) roll angle generated by the algorithm is approximately 35◦.
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Figure 6.20: Roll angle and aileron deflection for the loiter pattern.

6.4.1.4 Sharp heading change

Flight results of the proposed algorithm for a straight path followed by a sharp

heading change of approximately 135 degrees are shown in Figures 6.21–6.23.

Figure 6.21 shows the desired mission plan along with the actual trajectory flown

by the UAV. The mission consists of three parts: a straight path WP1-WP2, a

sharp turn (heading change of ∼ 135 deg), followed by another straight segment

WP2-WP3. To see robustness of the proposed algorithm, the speed of the UAV

is varied during the mission and ascend/descend commands are also given, as

shown in Figure 6.22. For flight safety at such a low altitude, the roll reference

command is saturated at 30 deg for this maneuver. Figure 6.23 shows the reference

roll angle, the actual roll angle, and the aileron deflections. With the proposed

guidance algorithm, the aircraft follows the entire mission successfully. In the last
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Figure 6.21: Trajectory following for a straight path followed by a sharp turn.

segment of the mission (straight path WP2-WP3), the following remains very

good despite ascend/descend maneuvers and variations in speed.

6.4.2 Circular path cases

Flight results for two different circular loiters are discussed here. The takeoff point

is taken as the origin, northward distance travelled is denoted by x (or Posx), while

eastward distance is denoted by y (or Posy). The UAV has an open loop speed

control which is adjustable from ground. Initially a circular loiter is performed with

a fixed throttle setting; ground speed Vg versus course angle χ is plotted in Figure

6.24. A nearly constant airspeed is maintained with the fixed throttle, variation

in ground speed is seen due to wind. From Figure 6.24 it is estimated that there

was a wind of ∼ 5 m/s during the flight; all subsequent flight results show the

performance of the guidance algorithm in the presence of wind of approximately

5 m/s.
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Figure 6.22: Altitude and speed for straight path and sharp turn.

Flight results with different lateral guidance schemes are presented in Figures

6.25–6.27 for a loiter mission of 800 m radius (clockwise direction). In Figure

6.25, the desired mission and the actual trajectory flown by the UAV are shown

with dashed and solid lines, respectively. Initially the proposed algorithm without

the feed-forward term (6.34) is activated, path following is not accurate in this

case. After some time (transition point marked in the figure), the guidance logic is

switched to the proposed algorithm (6.35) and thereafter substantial improvement

in tracking accuracy can be seen in Figure 6.25. The last segment of this flight

is executed with Park’s algorithm (Park et al., 2004). The corresponding lateral

cross track error (ye) and the intercept course (χe) versus time are shown in Figure

6.26. In the initial part of the flight (1340–1412.5 seconds), the cross-track error

is ∼ 55 m with the guidance law (6.34). Later (1412.5–1494 seconds), this error

improves to ∼ 2 m when the proposed guidance law (6.35) is brought online. In

the last segment (1494–1527 seconds), the cross-track error remains within a 3 m
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Figure 6.23: Roll angle and aileron deflection for straight path and sharp
turn.

band with Park’s algorithm. The commanded roll angle generated by these three

guidance schemes along with the actual roll angle and aileron deflection are shown

in Figure 6.27. There is no control saturation and the aileron deflection is normal.

Figures 6.28–6.30 describe flight results for a circular mission of radius 400 m

(close to the UAV’s maximum capability). Initially (337–413 seconds), the desired

mission is executed with our algorithm without the feed-forward term (6.34),

followed by Park’s algorithm from 413–461.5 seconds. Finally the algorithm proposed

in expression (6.35) is activated to follow the desired mission from 461.5–495

seconds. The tracking performance of the algorithm (6.34) further degrades in

this case and a cross-track error of ∼ 80 m is seen in Figure 6.29. This accuracy

is improved to ∼ 20 m by Park’s algorithm. With the proposed lateral guidance
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Figure 6.24: Estimated wind on flight day.

scheme (6.35), the path following accuracy improves to ∼ 5 m. Figure 6.30 shows

the commanded and actual roll angles along with aileron deflections.
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6.5 Comparison of Experimental Results with

Simulation

A natural progression from design to flight testing for any algorithm development

includes an intermediate step of computer simulation. A number of simulations are

carried out before flight testing to see robustness and performance of the proposed

algorithm in the presence of disturbances (like wind, gusts etc), delays and noise in

sensor data, and parametric uncertainties in aerodynamic and structural coefficients

of the UAV. To simulate different scenarios, a detailed 6-dof nonlinear simulation is

developed including UAV dynamics, sensors modeling, actuators dynamics and the

flight control computer. Details of the non-linear simulation are given in Annex-B.
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Figure 6.31: Comparison of Flight & Simulation results: UAV position on
ground for straight path case.

After a flight test, validation/calibration of the simulation is necessary for further

algorithm testing. In the presence of a good simulation which matches the flight

results, the development and validation time for algorithm design reduces significantly.

156



1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065
31

31.5

32

32.5

33

33.5

34

34.5

35

Time [sec]

G
ro

un
d 

sp
ee

d 
[m

/s
]

Figure 6.32: Comparison of Flight & Simulation results: Ground speed for
straight path case.

The purpose of this section is to compare flight test results with simulated results

to develop confidence on the simulation environment. As discussed earlier, two

flight tests are conducted with the proposed algorithm and different scenarios are

generated in flight to see effectiveness of the proposed algorithm. It is difficult

to cover every scenario in a single chapter and hence some important results are

discussed here. For comparison with simulation, two flight scenarios (straight

and circular path) are selected and the comparison is shown. It is worthwhile

to mention here that we change an aerodynamic coefficient Cy0 in simulation

from zero to −0.013 to match the results. Generally, propeller driven tractor

configurations have a down-wash effect on the vertical tail due to flow from the

propeller that generates a side force in flight. This down-wash effect in terms of

Cy0 is generally modeled in the simulation and then vertical rudder is engaged by

a few degrees to counter this effect thus resulting in zero Cy0. In our case, we

have not modeled this down wash effect in our simulation and as result some side

force is observed in our flights. As an approximation of this down wash effect, the

flight results match with the simulation when Cy0 = −0.013 is used in simulation.

In Figures 6.31 - 6.34, comparison is shown for a straight path following case.
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Figure 6.33: Comparison of Flight & Simulation results: cross track & course
angle errors vs time for straight path case.
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roll angle vs time for straight path case.
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These flight results are not covered in the above section. In Figure 6.31, the

desired ground path along with the UAV trajectory in flight and simulation are

shown. The UAV is initially going away from the desired path when the guidance

algorithm is activated. The flight and simulation ground trajectories match well in

this case. The UAV ground speed is in the range of 31−35 m/s and the comparison

is shown in Figure 6.32. The ground trajectory comparison is further elaborated

in Figure 6.33; the state variables, i.e., ye and χe from both flight and simulation

are plotted versus time. The difference of simulation and flight is negligible. The

guidance logic generated the signal (φreq), the actual roll angle (φ) comparison

is shown in Figure 6.34. The matching in these variables is good, however more

noise/disturbance in the flight roll angle is evident. There is approximately a 5◦

difference in the flight and simulation guidance loop control variable φreq.
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Figure 6.35: Comparison of Flight & Simulation results: UAV position on
ground for circular path case.
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Figure 6.36: Comparison of Flight & Simulation results: cross track & course
angle errors vs time for circular path case.

Flight results for the circular path following case are compared with simulation

results in Figures 6.35 - 6.38. The UAV trajectory comparison is shown in Figure

6.35 along with the desired path. As discussed earlier in section 6.4.2, initially

the results are without the feed-forward term and later the feed-forward term

is activated at 1412.5 sec. Figure 6.36 shows the state variables (ye and χe)

comparison versus time for this case. The simulation results are in good agreement

with the flight results in this case also, the maximum difference in ye and χe is

5m and 3◦, respectively. Another important parameter is the sliding surface in

SMC based guidance scheme and its comparison versus time is shown in Figure

6.37. Good matching of this variable is seen and no significant departure in its

magnitude and trend is observed. Comparison of reference and actual roll angle

is shown in Figure 6.38, these variables are also in good agreement, except for a

small shift in time due to difference in ground velocity and noise/disturbance in
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flight roll angle.
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Figure 6.37: Comparison of Flight & Simulation results: Sliding surface (s1)
vs time for circular path case.
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Figure 6.38: Comparison of Flight & Simulation results: Reference & actual
roll angle vs time for circular path case.

Conclusively, simulation results are in good agreement with flight results, the

simulation platform is suitable for demonstration of new ideas related to guidance

and control of UAVs. One extension of the work presented in this chapter is its
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generalization for 3-D path following, and the simulation environment is good

enough to show its effectiveness.

6.6 Summary of the Chapter

Sliding mode lateral guidance logic for UAVs is derived in this chapter for both

cases of straight and circular path following. High performance non-linear sliding

surface (proposed in the last chapter) is used in the SMC based guidance logic

design. To see effectiveness of the proposed scheme, the logic is programmed

in the flight control computer of a scaled YAK-54 research UAV and different

scenarios are generated during various flights. Flight test results prove robustness

and performance of the proposed scheme. Flight results are also compared with

computer simulation results, and both are in good agreement. Natural extension

of this SMC based lateral guidance scheme is its generalization to 3-D trajectory

following. In the next chapter, sliding mode based 3-D guidance logic is derived

for UAVs.
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Chapter 7

3-D GUIDANCE OF UAVS

7.1 Introduction

As discussed in detail in Chapter 3, the desired path is generally expressed in the

form of lines and arcs in 3-D space and then this path following problem is solved

by two independent lateral and longitudinal guidance logics. The lateral and

longitudinal dynamics are decoupled during guidance design, and the coupling

between these two planes is usually ignored for simplicity. In the last chapter,

a decoupled lateral guidance scheme based on sliding mode theory is proposed.

Generalizing our previous work, here we propose a sliding mode based guidance

logic for 3-D path following in a single framework, considering both the coupling

effects and the parametric/input disturbances. In this case, the vehicle dynamics

become more complex and the degrees of freedom that are not directly actuated

increase, thus making the control design more involved.

In case of 3-D path following, the problem is formulated in Section 3.5.2 with two

control variables, i.e., required longitudinal and lateral forces to keep the vehicle

on the desired 3-D path. As the proposed 3-D guidance scheme presented here is

based on the sliding mode theory, so naturally two sliding surfaces are required in

this case, these have been proposed in Chapter 5. Based on the proposed nonlinear

sliding manifolds, a nonlinear guidance scheme is derived for the MIMO system

under consideration here. In order to reduce chattering in the control signal, the

bang-bang control terms are accompanied by proportional terms in the reaching

phase. The proposed guidance is implemented on a 6-dof nonlinear simulation

and different flight scenarios are simulated. Simulation results in the absence and
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presence of disturbances are presented here to show robustness of the proposed

guidance scheme.

7.2 3-D Guidance Logic Design

For 3-D guidance logic design, we have derived the generalized kinematics equations

in section 3.4, considering coupling between the lateral and longitudinal planes.

The equations are:

że = −Vg sin γe

ẏe = Vg cos γ sinχe

γ̇e =
g

Vg

(

Lreq cosφreq
mg

− cos γ

)

− γ̇p

χ̇e =
Lreq sin φreq
mVg cos γ

− χ̇p,











































(7.1)

where ze and ye are the position errors in the vertical (normal to the reference

path) and lateral planes, respectively. The other two state variables γe and χe are

the errors in flight path angle and course angle, respectively. The two control

variables are Freqvert = Lreq cosφreq (required force in the vertical plane) and

Freqlat = Lreq sinφreq (required lateral force), that the guidance loop has to generate

for 3-D mission following. Based on these control variables, we can compute Lreq

and φreq as reference signals for the inner control loops.

Sliding mode theory based control law design is a two step process, i.e., first the

selection of sliding manifolds (number of manifolds equal to number of control

inputs), followed by the derivation of a control law for reaching and maintaining

the sliding motion. In the 3-D path-following case (a MIMO system), we require

two sliding manifolds. We have proposed two independent sliding manifolds for

164



longitudinal and lateral planes in Chapter 5, the sliding surfaces are:

s1 = χe + c1 arctan(c2ye) = 0

s2 = γe − c3 arctan(c4ze) = 0,







(7.2)

where the constants c1, c2, c3 and c4 are real positive numbers and c1, c3 ≤ 1.

Stability of these sliding manifolds is already proved in Chapter 5. Based on these

sliding manifolds, we can now proceed for derivation of the 3-D guidance law.

7.2.1 3-D Guidance logic

After the selection of stable sliding manifolds, the next step is the derivation of

control law to reach and maintain motion on these manifolds. Generally the control

law is derived using the Lyapunov function W = 1
2
s2. A sliding phase control

is derived from ṡ = 0 and then ‘−k sgn(s)’ is added to cater for uncertainties

and unmodeled dynamics. In Chapter 2, different reaching laws to ensure sliding

motion are discussed in detail. To reduce chattering in the control signal, here we

derive control law using the ‘constant plus proportional rate reaching law’, i.e.,

using ṡ = −k△ sgn(s)− ks. This yields:

χ̇e +
c1c2

1 + c22y
2
e

ẏ = −k△1
sgn(s1)− k1s1

γ̇e −
c3c4

1 + c24z
2
e

że = −k△2
sgn(s2)− k2s2,















(7.3)

or

Lreq sinφreq

mV̂ cos γ
− χ̇p +

c1c2
1 + c22y

2
e

V̂ cos γ sinχe = −k△1
sgn(s1)− k1s1

Lreq cosφreq

mV̂
− g cos γ

V̂
+

c3c4
1 + c24z

2
e

V̂ sin γe − γ̇p = −k△2
sgn(s2)− k2s2,















(7.4)

where V̂ is the measured/estimated value of ground velocity V ; it is assumed

here that all other parameters have negligible uncertainty (so they are accurately
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measurable or known beforehand). After rearranging the terms, we have the

following expression for control variables Freqlat = Lreq sinφreq and Freqvert =

Lreq cosφreq:

Lreq sin φreq = mV̂ cos γ
( −c1c2
1 + c22y

2
e

V̂ cos γ sinχe + χ̇p − k△1
sgn(s1)− k1s1

)

Lreq cosφreq = mV̂
(g cos γ

V̂
− c3c4

1 + c24z
2
e

V̂ sin γe + γ̇p − k△2
sgn(s2)− k2s2

)

.















(7.5)

These give the required control force in the lateral and longitudinal inertial planes

to keep the vehicle on track in 3-D space. These can easily be converted to Lreq

(required lift force) and φreq (required roll angle) to follow the desired mission.

Also, Lreq can be written in the form of αreq or θreq as per the structure of the

inner control loop.

7.2.2 Reachability condition

Using the global positive definite Lyapunov function W = 1
2
s2, condition on

control variables (k∆1
, k1, k∆2

, k2) can be derived to ensure reachability despite

parametric uncertainties and disturbances. These feedback gains can be chosen so

that Ẇ = sṡ < 0 in the domain of attraction (Edwards and Spurgeon, 1998). As

we have decoupled sliding surfaces here for our MIMO system, so the reachability

conditions are:

s1ṡ1 < 0 and s2ṡ2 < 0. (7.6)

These inequalities imply

s1

[

Lreq sinφreq
mV cos γ

− χ̇p +
c1c2

1 + c22y
2
e

V cos γ sinχe

]

< 0

s2

[

Lreq cosφreq
mV

− g cos γ

V
+

c3c4
1 + c24z

2
e

V sin γe − γ̇p

]

< 0.















(7.7)
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Substituting values of control variables Lreq sinφreq and Lreq cosφreq from (7.5),

we have:

s1

[

V̂

V

( −c1c2
1 + c22y

2
e

V̂ cos γ sinχe + χ̇p

)

− χ̇p +
c1c2

1 + c22y
2
e

V cos γ sinχe

− V̂
V
k△1

sgn(s1)−
V̂

V
k1s1

]

< 0

s2

[

V̂

V

( −c3c4
1 + c24z

2
e

V̂ sin γe + γ̇p

)

− γ̇p +
c3c4

1 + c24z
2
e

V sin γe

− V̂
V
k△2

sgn(s2)−
V̂

V
k2s2

]

< 0.



























































(7.8)

Assuming a maximum measurement uncertainty in V̂ of Ṽ = V̂ − V , i.e. V̂ =

V + Ṽ , (7.8) becomes:

s1

[

(2V + Ṽ )

( −c1c2
1 + c22y

2
e

Ṽ cos γ sinχe

)

+ Ṽ χ̇p − V̂ k△1
sgn(s1)− V̂ k1s1

]

< 0

s2

[

(2V + Ṽ )

( −c3c4
1 + c24z

2
e

Ṽ sin γe

)

+ Ṽ γ̇p − V̂ k△2
sgn(s2)− V̂ k2s2

]

< 0.















(7.9)

The control gains k△1
and k△2

are designed to cater for parametric uncertainties

and keep the state trajectory on the sliding surface. The other two control gains

k1 and k2 play their role during the reaching phase, values of these gains can be

adjusted to reduce the reaching time. Now the left hand sides of (7.9) are negative

definite, if

V̂ k△1
> (2V + Ṽ )

c1c2
1 + c22y

2
e

Ṽ cos γ| sinχe|+ Ṽ |χ̇p|

V̂ k△2
> (2V + Ṽ )

c3c4
1 + c24z

2
e

Ṽ | sin γe|+ Ṽ |γ̇p|.















(7.10)

Now two options are possible: the simpler option is to find the maximum value

of these control gains for the extreme case and use these maximum control values

in the guidance logic. The other option is to keep the control gains adaptive and
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select their values depending on the states at every step. Here we use the first

strategy and in the extreme case, we have:

k△1
>0.707

(2Vmax + Ṽ )Ṽ

Vmin
c1c2 +

Ṽ

Vmin
|χ̇p|

k△2
>0.707

(2Vmax + Ṽ )Ṽ

Vmin
c3c4 +

Ṽ

Vmin
|γ̇p|.















(7.11)

From (7.11) it is clear that the control gains k△1
and k△2

are directly proportional

to the uncertainty Ṽ in velocity. The other control variables k1, k2 > 0 can be used

for fast convergence towards the sliding surface, and a smoother control signal with

less chattering.

7.3 Optimized Sliding Parameters

As discussed in detail in Chapter 5, the selection criterion for sliding surface

parameters is derived for longitudinal and lateral sliding manifolds. In case of

3-D path following, we need two sliding surfaces as proposed in (7.2). Now we

have to optimize the coefficients of both the lateral sliding surface (s1) and the

longitudinal (vertical) sliding surface (s2).

7.3.1 Longitudinal surface parameters

For selection of optimized longitudinal surface parameters, a criterion is derived in

Section 5.4.2 using work and energy principle. The work done expression mainly

depends on the distance traversed to bring the UAV back on the desired path, and

hence minimizing the distance will minimize the work done. From (5.32), we have

the following expression for the path length (distance traversed to come back to
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the reference path) calculation:

Path length =



































−1
∫

z=z0

1

sin (c3 arctan(c4z))
dz for -ve z0

1
∫

z=z0

1

sin (c3 arctan(c4z))
dz for +ve z0

Subject to Flongitudinal ≤ Flongitudinalmax
at each point of integration















































(7.12)

As compared to the lateral sliding coefficient optimization, here gravity plays an

important role in selection of the sliding parameters. Structural loading ( L
mg

)

imposes restrictions on the maximum lift force. Another restriction arises from

maximum and minimum flight path angles (or rate of climb/decent) to maintain

the desired speed.

 

Figure 7.1: Longitudinal forces acting on a UAV during non-accelerating
climb/decent.
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Before proceeding to the derivation, understanding of some basic flight mechanics

terms is necessary. In steady (non-accelerating) level cruising flight, the drag is

balanced by the engine thrust and the UAV weight is balanced by the lift force.

However, the force balance equations change during the climb/decent phases as

shown in Figure 7.1. In this case, the forces are approximately balanced as follows:

Fthrust −Drag −mg sin γ = 0, Lift−mg cos γ = 0. (7.13)

From this it can be concluded that the lift force is approximately equal to the

weight for a small flight path angle γ. Now looking at the first equation above,

the lift to drag ratio for UAVs generally varies between 10-20, and hence even the

minimum ratio (Lift = 10Drag or mg = 10Drag) can disturb the balance in the

first equation in (7.13) for even small values of γ. For positive γ (during climb),

additional thrust will be required to balance the term mg sin γ. Generally UAVs

have limited extra power and hence accordingly the flight path angle γ should

be restricted to γmax (see Figure 7.2). During decent (negative γ), the situation

reverses and the term mg sin γ supports engine thrust. In this case, if we decrease

γ then we should also decrease engine thrust to maintain balance in the equation

(non-accelerating), otherwise the speed of UAV will increase. Hence the flight

path angle can be decreased to the point where the engine reaches its idle RPM

(minimum), this defines γmin. Conclusively, we have a constraint γmin ≤ γ ≤ γmax

in the longitudinal plane.

Another constraint in the longitudinal plane is to keep the structural loading ( L
mg

)

within limits. As shown above, the lift force (L) is approximately equal to the

weight during level and climb/decent phases. However, additional lift force is

required to turn the flight path angle γ (or ground velocity vector Vg) as shown in

Figure 7.2. To increase the flight path angle, we need additional lift (this should

not exceed the maximum allowable limit). To reduce the flight path angle, we

decrease the lift force, and this is usually not a problem. The maximum lift force
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Figure 7.2: UAV trajectory in longitudinal plane and associated constraints.

constraint can be derived directly from the (nominal) equivalent control expression

in (7.5), i.e.,

Lreq cos φreq = mV̂
(g cos γ

V̂
− c3c4

1 + c24z
2
e

V̂ sin γe + γ̇p

)

. (7.14)

Assuming γ̇p = 0 (as discussed in section 5.4.2), and a maximum allowable

structural loading of 2g (maximum lift force equal to twice the weight), we have

the following constraint on the sliding coefficient (here z = ze):

∣

∣

∣

∣

∣

cos γ − V̂ 2

g

c3c4
1 + c24z

2
sin γe

∣

∣

∣

∣

∣

≤ 1.6 (7.15)
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Conclusively, we have the following problem to find the optimum values of the

sliding coefficients c3 and c4:

Minimize Path length =



































−1
∫

z=z0

1

sin (c3 arctan(c4z))
dz for -ve z0

1
∫

z=z0

1

sin (c3 arctan(c4z))
dz for +ve z0

Subject to γmin ≤ γ ≤ γmax and

∣

∣

∣

∣

∣

cos γ − V̂ 2

g

c3c4
1 + c24z

2
sin γe

∣

∣

∣

∣

∣

≤ 1.6

at each point of integration.







































































(7.16)

For the case study of the scaled YAK-54 UAV (Figure 6.3), we have chosen

γmin = −20◦ and γmax = 30◦ to find optimum sliding coefficients for different

scenarios of level and climb/decent flight. Using the relation γe = γ − γp and the

sliding equation γe = c3 arctan(c4z), we have the following final form of (7.16) for

optimization of the sliding coefficients:

Minimize Path length =



































−1
∫

z=z0

1

sin (c3 arctan(c4z))
dz for -ve z0

1
∫

z=z0

1

sin (c3 arctan(c4z))
dz for +ve z0

Subject to − 20
π

180
+ γp ≤ c3 arctan(c4z) ≤ 30

π

180
+ γp

and

∣

∣

∣

∣

∣

cos(c3 arctan(c4z) + γp)−
V̂ 2

g

c3c4
1 + c24z

2
sin(c3 arctan(c4z))

∣

∣

∣

∣

∣

≤ 1.6

at each point of integration.























































































(7.17)
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Generally the position of the UAV in the vertical plane is measured by GNSS and

pressure altimeter. In case of GNSS outage, the altimeter continuously outputs

altitude information with reasonable accuracy. Typically, the accuracy of the

altimeter is < 100m and it can sustain flight in the vertical plane even in the

absence of GNSS. However, a sudden change in mission plan can generate position

errors in the longitudinal plane, generally this is of the order of a few hundred

meters. Conclusively, we consider small errors of few hundreds meters in the

vertical plane for optimization of the longitudinal sliding coefficients.

Z0 = -200m
Z0 = -200m

Z0 = -200m

Figure 7.3: Trajectories for z0 = −200m and different γp (+ve, 0 and -ve
values).

The negative z0 means that the UAV is above the desired path in the longitudinal

plane. In this case, the desired path may be horizontal or at some angle as shown

in Figure 7.3. In the three cases, the traveled path calculations for z0 = −200m

are shown in Figure 7.4 for γp = 10, 0 and −5 degrees. In case of γp = 10deg,

the UAV has to cover approximately 445m distance to return back to the desired

path. In other cases of γp, the traversed distance increases, it is 608m and 789m

for γp = 0deg and γp = −5deg, respectively. Similarly, the path calculations for

z0 = −100m are shown in Figure 7.5 for the three different values of γp. In this

case the travel distance is reduces to 240m for γp = 10deg, 313m for γp = 0deg and

399m for γp = −5deg. The corresponding optimal values of the sliding coefficients

are summarized in Table 7.1.

The positive z0 is a different case as we have to climb against gravity to achieve

the desired path. Similar to Figure 7.3, here we also have three cases of +ve, 0 and
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Table 7.1: Summary of travel path length for different z0 (longitudinal plane).

z0[m] γp[deg] Best (c3, c4)
combination

Path length with
best (c3, c4)
combination [m]

Path length
with (c3, c4) =
(0.17,0.69)

ratio (col-4 ÷
col-5)

-200 10 (0.34, 0.17) 445 789 0.56
-200 0 (0.22, 0.39) 608 789 0.77
-200 -5 (0.17, 0.69) 789 789 1.00
-100 10 (0.35, 0.16) 240 398 0.60
-100 0 (0.23, 0.37) 313 398 0.79
-100 -5 (0.17, 0.69) 398 398 1.00
200 10 (0.22, 0.75) 594 789 0.75
200 0 (0.37, 0.34) 418 789 0.53
200 -10 (0.45, 0.19) 338 789 0.43
100 10 (0.22, 0.75) 300 398 0.75
100 0 (0.34, 0.32) 216 398 0.54
100 -10 (0.46, 0.18) 181 398 0.45

AVERAGE 0.73

−ve values of γp, but in all cases we have to climb to reach the desired path. The

traversed path calculations for z0 = 200m and z = 100m are shown in Figures

7.6 and 7.7, respectively, for different values of γp. In case of γp = 10deg, the

constraints become more stringent resulting in an increased path length. In case

of z0 = 200m, we have to travel at least 338 − 594m depending on γp to achieve

the desired path. This distance in case of z0 = 100m is 181− 300m depending on

γp. The optimized sliding coefficient values for all these cases are summarized in

Table 7.1.

Another way to deal with selection of sliding parameters is to make them adaptive

for high performance in different situations, this is the topic of future research.

Another simple way is to choose a single combination of sliding coefficients that

gives near optimum performance for all scenarios. This is a simple and quick

solution, and is opted here for implementation. Here, c3 = 0.17 and c4 = 0.69

are near optimum for implementation. The corresponding path lengths with this

178



combination of c3 and c4 are shown in Table 7.1. In the last column of this table

the ratio of ‘Path length with c3 = 0.17 and c4 = 0.69’ and the ‘optimum path

lengths with the best combination of c3 and c4’ are shown. On average the chosen

combination of c3 and c4 gives ∼ 73% optimum performance for all scenarios.

7.3.2 Lateral surface parameters

Optimized lateral sliding surface parameter selection is deliberated in detail in

Section 6.3.1. However the problem addressed there was the lateral path following

ignoring the longitudinal dynamics. Here we have to optimize the lateral sliding

parameters to follow the 3-D path without neglecting the longitudinal dynamics.

In this case the main difference arises in the constraints during optimization.

The maximum lateral force constraint can be derived directly from the (nominal)

equivalent control expression in (7.5):

Lreq sin φreq = mV̂ cos γ
( −c1c2
1 + c22y

2
e

V̂ cos γ sinχe + χ̇p

)

. (7.18)

For simplicity of sliding parameter optimization, we assume non-accelerating longitudinal

dynamics implying L cosφ = mg cos γ or Lreq cosφreq = mg cos γ. Using this

assumption, we have the following constraint in the lateral plane:

∣

∣

∣

∣

mV̂ cos γ
( −c1c2
1 + c22y

2
e

V̂ cos γ sinχe + χ̇p

)

∣

∣

∣

∣

≤ mg cos γ tanφreqmax
(7.19)

After simplification we have:

∣

∣

∣

∣

∣

V̂

g

( −c1c2
1 + c22y

2
e

V̂ cos γ sinχe + χ̇p

)

∣

∣

∣

∣

∣

≤ tanφreqmax
, (7.20)

As compared to the optimization problem in section 6.3.1, this constraint depends

on the value of flight path angle γ. In fact V̂ is replaced by the velocity component

V̂ cos γ here. So the velocity is reduced by the factor cos γ during climb/decent.
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γ = 0 yields the lateral guidance optimization problem as discussed in section

6.3.1. For optimization of lateral sliding surface parameters for the 3-D guidance

problem, the previous process of section 6.3.1 should be repeated for γ = γmax.

It may be mentioned here that as the term V̂ cos γ reduces in case of γ = γmax,

hence we expect larger values of the sliding parameters (c1 and c2). However, the

conservative case is γ = 0. For simplicity we do not repeat the process here and

use the same values of c1 and c2 as derived in section 6.3.1.

7.4 Limitations in Implementation

To implement the proposed 3-D guidance law in the flight control computer of

the test UAV, accurate measurement/estimation of state variables (ye, ze, χe,

γe) is required. In the case of the scaled YAK-54 UAV, the difficulty arises

in the measurement of the flight path angle γ, and hence to compute γe. For

the measurement of flight path angle γ = arctan

(

−ż√
ẋ2+ẏ2

)

, rate of change of

position (ground velocity components) is required. As this is a low-cost research

platform, a MEMS based AHRS with an integrated GPS is used for navigation

state measurement. Generally the 3-D position available from GPS has some

inaccuracy and fluctuation, this is more prominent in altitude. MEMS based

AHRS outputs vertical velocity by integrating the measured acceleration and

augmenting this with GPS information. The piston engine in our YAK-54 UAV

produces significant vibrations in the vertical plane due to the movement of the

piston and spark ignition in this plane. The vibrations are enhanced by the light

weight of the UAV, resulting in poor measurement of vertical velocity in this case.

In Figure 7.8 altitude measurement and the corresponding vertical velocity output

from the AHRS is shown for a sample flight. Due to vibrations from the engine

and noisy measurement of rate of change of altitude from GPS, correct information

of vertical velocity is not available from this sensor. Due to this limitation direct
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Figure 7.8: Vertical velocity measurement during a flight.

application of 3-D guidance is not possible on our test platform. However, this

problem can be solved by a better navigation sensor, or by the use of an observer,

but this is beyond the scope of this thesis. The 6-dof nonlinear simulation already

validated through flights will be used for demonstration of the proposed 3-D

guidance scheme.

7.5 Simulation Results

The proposed 3-D guidance law is implemented in the 6-dof nonlinear simulation

of the scaled YAK-54 UAV to show its effectiveness. The structure and details

of the nonlinear simulation are covered in Annexure-A. In section 6.5, the results

of this 6-dof simulation are compared with that of actual flights, and both are

found to be in good agreement. The nonlinear 6-dof simulation has a complete

nonlinear model of the UAV (Stevens and Lewis, 2003) with options of different

input disturbances like winds. Different scenarios of 3-D mission following are

simulated and results presented in this section.
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The proposed guidance law (7.5) generates Lreq sin φreq and Lreq cosφreq as control

inputs. The required roll angle (φreq) and the required lift force (Lreq) can be

computed from these terms. As per structure of the inner control loop, θr command

is generated in our case for the inner pitch control loop using the relation θ = α+γ

where L = CLα
α.

7.5.1 Parameter selection for the scaled YAK-54 UAV

The proposed 3-D guidance algorithm (7.5) has four gains (k∆1
, k1, k∆2

, k2) to be

selected for its implementation. Here the two gains k∆1
and k1 are to be selected

to keep the lateral deviation as small as possible, and the other two gains for

controlling the longitudinal track error. The two gains k∆1
and k∆2

can be selected

directly from the reachability condition (7.11) to ensure sliding motion even in the

presence of disturbances. In our case Vmin = 30m/s, Vmax = 40m/s, maximum

χ̇p = 0.0875 (for a minimum turn radius of 400m), γ̇p = 0, uncertainty in velocity

Ṽ = 5m/s and sliding parameters (c1 = 0.7, c2 = 0.002, c3 = 0.17, c4 = 0.69). We

have:

k△1
> 0.0286, k△2

> 1.1749. (7.21)

We choose k△1
= 0.05 and k△2

= 1.2 in our case for implementation. The other

two gains k1 and k2 can be selected for reducing the reaching time to the sliding

surface. In fact the effective gains passing to the system due to these control terms

are k1s1 and k2s2 that depends on the value of sliding surfaces too. The objective

is to increase the system control input in case of large deviation from the sliding

surface. We have targeted atleast 10% contribution from this factor when the

deviation from from sliding surface is 0.25 and more contribution in case of large

deviations, so selected k1 = 0.02 and k2 = 0.5. The value of k1 is chosen such that

the system effective gain increases ∼ 10% for s1 = 0.25. Here k1s1 = 0.005 for

s1 = 0.25, that is ∼ 10% of k△1
= 0.05. Similarly, the selection of other gain k2 is
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done. A boundary layer approximation sgn(s) ≈ s
|s|+ǫ is used to avoid chattering

in the control signal. The value of ǫ is selected 0.7 for first expression and 0.4 for

the other expression in equation (7.5).

7.5.2 Nominal case

Simulation results for a nominal (without disturbance) pre-planned trajectory are

shown in Figures 7.9 - 7.12. In Figure 7.9, the desired 3-D path and the actual

path flown by the UAV are shown. The desired path has all type of maneuvers

including ascend/descend and turning at the same time. Initially the UAV is

slightly away from the desired path, and is then guided towards the desired path

to follow the mission. The mission following is good in this case as is evident

from the lateral and longitudinal errors in Figure 7.10. Since the desired mission

is changing continuously every few seconds, hence errors of ∼ 5m are generated

during the start of a maneuver. The overall steady state errors in this case are

generally less than 1m. Similarly errors in the direction of the velocity vector in

the lateral and longitudinal planes (χe and γe) are also shown. Small errors of

a few degrees are seen during the start of a new maneuver, but the steady state

errors are less than 0.5 degree.

The corresponding sliding surfaces (s1 and s2) versus time are shown in Figure

7.11, their steady state magnitude is less than 0.01. The required pitch angle and

the required roll angle generated by the 3-D guidance scheme are shown in Figure

7.12 along with actual angles tracked by the inner control loop. Both control

signals are smooth enough and no significant chattering is seen. The pitch angle

rises up to 12 degrees during climb, and drops to -4 degrees during descent. The

required roll angle is in the range of -20 to 25 degrees. A zoomed view of 318-352

seconds is also shown to indicate the smoothness of the control signal.
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Figure 7.9: Desired and actual 3-D paths

7.5.3 With disturbance

In this case, performance of the proposed guidance logic is evaluated in the

presence of wind and GPS outage. As an external disturbance, an east wind

of 4m/s is applied throughout in this case. Also the outage of GPS is simulated,

and error in the position of the UAV is fed in to the simulation after few seconds

of GPS outage. The position error due to GPS outage is simulated at 200s, and

the 3-D guidance algorithm is required to bring the UAV on to the desired path.

In Figure 7.13, the desired 3-D path and the actual UAV position are shown in

3-D space. The sudden jump in the position of the UAV is due to loss of GPS,

and shows the UAV in positional error when the GPS becomes available again.

The 3-D guidance algorithm brings the vehicle gracefully back on to the desired

path even in the presence of wind. The lateral and longitudinal errors in position

are shown in Figure 7.14. In this case the steady state error in position is less
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Figure 7.12: Nominal control

than 3m. The 80m vertical error in position is reduced to zero in approximately

12 seconds, however it takes approximately 40 seconds to bring the lateral error

of 500m to zero. The velocity direction is also aligned with the desired direction

in this case as is evident from the trends of χe and γe versus time.

The sliding surfaces s1 and s2 versus time are shown in Figure 7.15. The steady

state magnitude of s1 and s2 is less than 0.03 in this case, however some disturbing

peaks are visible due to external disturbances. The reference control signals (θreq

and φreq) generated by the 3-D guidance scheme are shown in the 7.16. In this case,

more control effort is required to cancel the effect of disturbances as seen from this

figure. The maximum magnitude of θreq and φreq in this case is approximately 14

and 35 degrees, respectively. Overall the desired mission is successfully followed

even in the presence of disturbances.
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Figure 7.13: With disturbance trajectory
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Figure 7.14: With disturbance errors

187



0 50 100 150 200 250 300 350
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time [sec]

 

 

s
1

s
2

Figure 7.15: With disturbance ss

50 100 150 200 250 300 350

−10

−5

0

5

[d
eg

]

 

 

θ
req

θ

50 100 150 200 250 300 350

−10

−5

0

5

10

15

20

25

30

35

Time [sec]

[d
eg

]

 

 

φ
req

φ

Figure 7.16: With disturbance control

188



7.6 Summary of the Chapter

A generalized 3-D guidance scheme for UAVs based on the sliding mode theory is

derived here. The proposed scheme considers the coupling between longitudinal

and lateral planes. The scheme utilizes two nonlinear sliding manifolds for high

performance in different scenarios. The optimum values of the sliding parameters

are computed here for the scaled YAK-54 UAV, and finally a set of parameters

is proposed. Based on these manifolds, the guidance logic is derived, ensuring

reachability. The proposed 3-D guidance scheme is implemented on a 6-degrees-of-freedom

(6-dof) nonlinear simulation of the scaled YAK-54, simulation results are presented

for different 3-D trajectories with and without disturbances. It is observed that

the accuracy and smoothness requirements are fulfilled satisfactorily.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

This thesis presents guidance scheme design for UAVs using sliding mode theory.

The main aim of the research is to develop robust 2-D (lateral) and 3-D guidance

logic for UAVs so that the desired path can be followed despite the presence of

uncertainties and external disturbances.

8.1 Summary

Sliding mode based control law design is a two step process: selection of a stable

sliding surface, followed by the design of a discontinuous control law to reach and

maintain sliding motion. Most works in sliding mode control applications consider

linear sliding surfaces for control law design. In the UAV guidance perspective,

we evaluate linear sliding surfaces and show these are not a viable choice here.

Linear sliding surfaces and associated stability issues are highlighted in Chapter

4. In this Chapter, we also propose piece-wise linear sliding surfaces for lateral

guidance, these overcome the stability issues associated with linear surfaces.

For high performance in all scenarios, nonlinear sliding surfaces for lateral and

longitudinal planes are proposed in Chapter 5. Stability of these manifolds is

proved using Lyapunov theory. After proposing stable nonlinear sliding surfaces,

the selection of sliding coefficients is deliberated in detail. To choose optimum

sliding coefficients, work and energy principle is used to derive a criterion for the

best selection of these coefficients. The resultant coefficients yield the minimum

travel path to return to the desired track in case of any deviation.

Based on the nonlinear sliding surface, lateral guidance logic is derived in Chapter

6 for straight and circular path following. Stability and control boundedness is
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guaranteed during derivation of the guidance law. To demonstrate effectiveness

of the proposed algorithm, a case study of a scaled YAK-54 UAV is undertaken,

from design to flight testing. Optimal sliding surface coefficients and guidance

law is derived for the said UAV. The proposed algorithm is programmed in the

flight control computer of the test UAV and flight results for different scenarios are

presented. The flight results are also compared with non-linear 6-dof simulation

results, and both are seen to be in good agreement.

Generalized 3-D path following algorithm based on sliding mode theory is derived

in Chapter 7. This guidance law is derived based on the generalized kinematic

equations that consider coupling between the longitudinal and lateral planes.

Two optimized sliding surfaces are used to derive the guidance scheme for this

MIMO system. Effectiveness of the proposed algorithm is demonstrated via 6-dof

nonlinear simulations under different scenarios.

8.2 Directions for Future Research

There are a number of prospective topics that may extend from this research.

Guidelines for future work in this area are provided below.

• Boundary layer approximation is used here to reduce chattering in the control

signal. Higher order sliding mode based guidance laws for UAVs is an

immediate extension of this work to reduce chattering.

• In the derivation of lateral guidance logic, it is assumed here that the inner

loop dynamics are fast enough, i.e., φreq ≈ φ. This assumption may be

relaxed and a suitable first or second order dynamical model can be considered

for the inner loop. However, this will increase the relative degree of the

system and an appropriate guidance law will be required in this case.

• Nonlinear sliding surfaces using the ‘arctan’ function are proposed here.

Other nonlinear sliding surfaces are also possible which may be explored.
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• Adaptive sliding surface based guidance law design for high performance and

reduced reaching time is another extension of this work.
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APPENDICES

Appendix-A:
6-DoF Nonlinear Simulation

Figure 1: Overall simulation structure

UAV Dynamics Block
This block has 12 state equations

• Force Equations

m (u̇− vr + wq) = mgx + FAx
+ FTx

m (v̇ + ur − wp) = mgy + FAy
+ FTy

m (ẇ − uq + vp) = mgz + FAz
+ FTz

• Moment Equations

Ixxṗ− Ixzṙ − Ixzpq + (Izz − Iyy) rq = LA + LT

Iyyq̇ + (Ixx − Izz) pr + Ixz
(

p2 − r2
)

= MA +MT

Izzṙ − Ixzṗ− Ixzqr + (Iyy − Ixx) pq = NA +NT

• Euler Rotation Angles (Sequence ψ, θ, φ)





φ̇

θ̇

ψ̇



 =





1 sinφ tan θ cos φ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ









p
q
r




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• Position in Earth Fixed Frame




ẋI
ẏI
żI



 =





CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ
CθSψ SφSθSψ + CφCψ CφSθSψ − SφCψ
−Sψ SφCθ CφCθ









u
v
w





In above state equations





Fxa
Fya
Fza



 = Tstab2body





CD
CY
CL



 q∞Sref

CD = CD0
+ CDα

α + CDu

u

V∞
+ CDδe

δe +
C2
L

πeAR

CY = CYββ + CYu
u

V∞
+ CYδaδa + CYδrδr + (CYpp+ CYrr)

b

2V∞

CL = CL0
+ CLα

α + CLu

u

V∞
+ CLδe

δe+ (CLq
q + CLα̇

α̇)
c̄

2V∞

q∞ is the dynamic pressure defined as 1
2
ρV 2. Reference area Sref = 1.0126m2.

Table 1: Longitudinal Stability Derivatives (rad−1)

CTxu -0.1546 CDu
0.0011 CDa

0.0863
CLu

0.0017 CLa
4.5465 CLα̇

1.8918
CLq

5.5046 Cmu
0.0002 Cmα

-0.3937
Cmα̇

-4.3787 CmTU
0 CmT

0.0009

Cmq
-16.1064 CmTα

0.0275 CDδe
0

CLδe
0.3792 Cmδe

-0.8778 CL0
0.1470

CD0
0.0422 Cm0

0.0001 CTx 0.0515





LA
MA

NA



 =





Clb
Cmc̄
Cnb



 q∞Sref

Cl = Clββ + Clδaδa + Clδr δr + (Clpp+ Clrr)
b

2V∞

Cm = Cm0
+ Cmα

α + Cmu

u

V∞
+ Cmδe

δe + (Cmq
q + Cmα̇

α̇)
c̄

2V∞

Cn = Cnβ
β + Cnδa

δa + Cnδr
δr + (Cnp

p+ Cnr
r)

b

2V∞
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Wing span b = 2.4162m and chord length c̄ = 0.4408m.

Table 2: Lateral and Directional Stability Derivatives (rad−1)

CYβ -0.2707 CYp 0.0194 CYr 0.2531
Clβ -0.0220 Clp -0.5858 Clr 0.0743
Cnβ

0.1052 Cnp
-0.0387 Cnr

-0.2890
CYδa 0.0 CYδr 0.2228 Clδa 0.3707
Clδr 0.0219 Cnδa

-0.0088 Cnδr
-0.1003

CnTβ
-0.0045





FTx
FTy
FTz



 = Engine Thrust Force Components





gx
gy
gz



 = Gravity Force Components

Servo Dynamics Block
For Guidance and Control logic design, servo (actuator) dynamics is very important.

Figure 2: HS-5645MG servo with feedback mechanism

In our case, we used HITEC HS-5645MG servo in our UAV as shown in Figure
2. The mathematical model of servo is found experimentally under different load

195



conditions in a ground testing mechanism for actuator testing.
HITEC HS-5645MG is an electro-mechanical, low cost, commercial standard PWM
driven actuator. The specification are as follows:

Table 3: HITEC HS-5645MG Servo Specification

Sr. Parameter Description
1. Speed 0.18sec/60◦ at 6.0V (333◦/sec)
2. Stall Torque 164.2 oz-in at 6.0V (1.16Nm)
3. Length 1.59 inches (40.6mm)
4. Width 0.77 inches (19.8mm)
5. Height 1.48 inches (37.8mm)
6. Weight 2.11 oz (60g)

• External Feedback Mechanism: A special fixture was designed
and fabricated with provision of external POT for feedback acquisition mechanism.
External POT of given parameters was used
Resistance: 2±0.4KΩ
Power up voltage: ±15V
Total Span: 340◦±4◦

The fixture along with provision of external POT feedback is shown in the
Figure 2.

• Transfer Function Estimation:
For the estimation of T/F, various tests were conducted under no load and
load conditions. The said actuator accepts PWM signal as input, however
for frequency and time domain analysis it was required that command and
feedback are recorded in analog form at one place. For this purpose, an
analog to PWM conversion board is used. The Table 4 describes the relation
between PWM signals, analog voltage command and the corresponding deflection
of actuator.

Table 4: HS-5645MG PWM signal v/s analog voltage

Sr. Voltage Pulse Width [ms] Actuator deflection [deg]
1. 0 1.5 0
2. +10 2 +50
3. -10 1 -50

Proposed Mathematical Model: The results of extensive
testing (no load 15 times, load tests 26 times) were analyzed thoroughly. It
was concluded that the system’s response best fits the experimental data
at 1V (5◦) under load and no load conditions using average values of ξ and
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Table 5: Test Conditions for Transfer Function Estimation

Sr. Amplitude
(V)

Deflection
(◦)

Static
Load (Kg)

Actual
Applied
Load (Nm)

% of
Maximum
Load

1. 0.5 2.5 1 0.19 16.4
2. 0.5 2.5 2 0.38 32.8
3. 1 5 1 0.19 16.4
4. 1 5 2 0.38 32.8
5. 1.5 7.5 1 0.19 16.4
6. 1.5 7.5 2 0.38 32.8

Figure 3: HS-5645MG servo SIMULINK model

wn. After thorough testing and analysis following mathematical model of
HS-5645MG was finalized and implemented in Simulation:
Voltage 2 Deg: 5◦/V (5◦/0.048ms)
Saturation: ±50◦

Delay at 1V & 0.19 Nm (1Kg): 23msec
Dead Zone: ±0.1◦

Rate Limit: 500◦/sec

T/F =
729

s2 + 48s+ 729

Time domain and frequency domain responses of the actuator system with
the proposed transfer function are shown in Figure 4 and Figure 5, respectively.
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Figure 4: Time domain response of actuator with proposed mathematical
model.

Figure 5: Frequency domain response of actuator with proposed mathematical
model.
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Sensors Block
Two sensors modeled are altimeter (RC-ALTPro3) and AHRS with built in GPS
module.

• Altimeter: The alt-pro3 outputs data at 10Hz. A sample output is

$RCALT,+00531,+023, 490,+0351,+04907 ∗ CS

where altitude above ground is 53.1m, ROC 2.3 m/sec, battery voltage is
4.9volts, temperature is 35.1 deg and MSL altitude is 490.7m.

• AHRS: The AHRS data is a 36 bytes packet sent every 10msec as shown
below in Table below:

Table 6: AHRS Packet Data

Parameters Size (each) Update Rate
Roll, Pitch, Yaw angles 2 Bytes 100Hz
Roll, Pitch, Yaw angular rates 2 Bytes 100Hz
North, East, Down Velocity 2 Bytes 100Hz
Latitude, Longitude 4 Bytes 4Hz
Altitude 2 Bytes 4Hz
Header and Checksum 8 Bytes 100Hz

Mission Computer
This block is C++ based s-function, same as programmed in actual flight control
computer. The main calling functions are tabulated in Table 7.
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Table 7: Mission computer calling functions

Function Description
void INITIALIZE(); To initialize some parameters.
void GETSENSORDATA(); Check sensor FIFO and get data if available
void MISSION(); Get mission current waypoints
void LATCONT(); Lateral Guidance function, output φref at

every 0.25sec
void LONGCONT(); Longitudinal Guidance function, output θref

at every 0.1sec
void CONTROL(); Inner loop control, output δa, δe, δr at every

20msec
void PWM(); PWM for actuators
void TELMS(); Send data to data logger at 50Hz and a small

packet to ground control station at 4 Hz
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Appendix-B:
Inner Control Loop Design

Longitudinal Dynamics

u̇ = −gθ cosΘ +Xuu+XTuu+Xαα +Xδeδe

U1α̇− U1θ̇ = −gθ sin Θ + Zuu+ Zαα + Zα̇α̇ + Zqθ̇ + Zδeδe

θ̈ = Muu+MTuu+Mαα +Mα̇α̇+Mq θ̇ +Mδeδe

For straigh and level flight condition, q = θ̇ and q̇ = θ̈.

u̇ = −gθ cosΘ +Xuu+XTuu+Xαα +Xδeδe

U1α̇− Zα̇α̇ = −gθ sin Θ + Zuu+ Zαα + U1q + Zqq + Zδeδe

q̇ = Muu+MTuu+Mαα +Mα̇α̇+Mqq +Mδeδe

θ̇ = q

In Matrix form:








1 0 0 0
0 (U1 − Zα̇) 0 0
0 −Mα̇ 1 0
0 0 0 1

















u̇
α̇
q̇

θ̇









=









Xu +XTu Xα 0 −g cosΘ
Zu Zα U1 + Zq −g sinΘ

Mu +MTu Mα +MTα Mq 0
0 0 1 0

















u
α
q
θ









+









Xδe

Zδe
Mδe

0









[

δe
]

Two more states are introduced to design the outer altitude control i.e., h and
ḣ = Vh.

V̇h = −Zuu− Zαα− Zqq + g sin Θθ

ḣ = Vh
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















1 0 0 0 0 0
0 (U1 − Zα̇) 0 0 0 0
0 −Mα̇ 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

































u̇
α̇
q̇

θ̇

V̇h
ḣ

















=

















Xu +XTu Xα 0 −g cosΘ 0 0
Zu Zα U1 + Zq −g sin Θ 0 0

Mu +MTu Mα +MTα Mq 0 0 0
0 0 1 0 0 0

−Zu −Zα −Zq g sin Θ 0 0
0 0 0 0 1 0

































u
α
q
θ
Vh
h

















+

















Xδe

Zδe
Mδe

0
Zδe
0

















[

δe
]

For YAK-54 (Table 8):

















u̇
α̇
q̇

θ̇

V̇h
ḣ

















=

















−0.2384 12.45 0 −32.13 0 0
−0.004271 −7.821 0.9228 −0.009321 0 0
0.01634 −19.18 −15.14 0.03067 0 0

0 0 1 0 0 0
0.5142 941.5 6.921 1.122 0 0

0 0 0 0 1 0

































u
α
q
θ
Vh
h

















+

















0
−0.01128
−1.842

0
1.358
0

















[

δe
]

Transfer function from input δe [deg] to output θ [deg]:

θ

δe
=

−105.5s2 − 838.2s− 199.6

s4 + 23.2s3 + 141.6s2 + 33.17s+ 6.639

Actuator Transfer Function:

δe
δec

=
729

s2 + 48s+ 729

A filter was designed to remove noise from measured θ:

Filterθ =
1002

s2 + 120s+ 1002

Designed lead and lag:

Kleadθ =
2.236s+ 15

s+ 33.54
, Klagθ =

1.5s+ 1.5

s+ 0.05
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Table 8: Longitudinal Dimensional Stability Derivatives

Xu −qS(CDu
+ 2CD0

/mU -0.1487 (ft/sec2rad)
XTu qS(CTxu + 2CTx)/mU -0.0897 (ft/secrad)
Xa −qS(CDα

− CL0
)/m 12.4544 (ft/secrad)

Xδe −qSCDδe
/m 0 (ft/sec2rad)

Zu −qS(CLu
+ 2CL0

/mU -0.5142 1/sec2

Zα −qS(CLu
+ 2CL0

/m -941.5051 1/sec
Zα̇ qSb2Clr/(2IxxU) -2.3785 1/sec
Zq qSbClδa/Ixx -6.9206 1/sec2

Zδe qSbClδr/Ixx -77.8039 1/sec2

Mu qSbCnβ
/Izz 4.15e−4 1/sec2

MTu qSbCnδa
/Izz 0.0019 1/sec2

Mα qSb2Cnr
/(2IzzU) -48.2893 1/sec

MTα qSbCnTβ
/Izz -3.3730 1/sec2

Mα̇ qSbCnTβ
/Izz -3.2909 1/sec2

Mq qSbCnTβ
/Izz -12.1051 1/sec2

Mδe qSbCnTβ
/Izz -107.6665 1/sec2

Table 9: Eigenvalues of θ
δe

Eigenvalue Damping Freq.
(rad/s)

−0.118 + 0.187i 0.533 0.221
−0.118− 0.187i 0.533 0.221
−11.5 + 2.08i 0.984 11.7
−11.5− 2.08i 0.984 11.7

Basic structure of implementation is shown in Figure 6, Filterθ and Kleadθ are
placed in measured θ path.

K1 = Kleadθ × Filterθ =
2.236e004s+ 150000

s3 + 153.5s2 + 1.402e004s+ 3.354e005

K1z =
0.2675z3 + 0.2848z2 − 0.2327z − 0.2501

z3 − 1.524z2 + 0.9293z − 0.2504

Klagz =
1.507z − 1.492

z − 0.9995

Outer height Controller to generate θref is just a lag controller and filter as:

Klagalt =
0.6s+ 0.06

s+ 0.01
Filteralt =

8

s+ 8
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Figure 6: Simulink block diagram for longitudinal control.

204



−200

−150

−100

−50

0

50

100

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

10
3

−540

−360

−180

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (rad/sec)

Figure 7: Bode response of θ
δe

with designed Lead-Lag controller with and
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Figure 8: Step response of closed inner loop longitudinal system
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Lateral Dynamics

U1β̇ + U1ψ̇ = gφ cosΘ + Yββ + Ypφ̇+ Yrψ̇ + Yδaδa + Yδrδr

φ̈− Ā1ψ̈ = Lββ + Lpφ̇+ Lrψ̇ + Lδaδa + Lδrδr

ψ̈ − B̄1φ̈ = Nββ +NTββ +Npφ̇+Nrψ̇ +Nδaδa +Nδrδr

Where

Ā1 =
Ixz
Ixx

, B̄1 =
Ixz
Izz

Let us take:

p = φ̇, ṗ = φ̈, r = ψ̇, ṙ = ψ̈

U1β̇ + U1r = g cosΘ + Yββ + Ypp + Yrr + Yδaδa + Yδrδr

ṗ− Ā1ṙ = Lββ + Lpp+ Lrr + Lδaδa + Lδrδr

ṙ − B̄1ṗ = Nββ +NTββ +Npp+Nrr +Nδaδa +Nδrδr

Rearranging for state space

ṗ− Ā1ṙ = Lββ + Lpp+ Lrr + Lδaδa + Lδrδr

φ̇ = p

U1β̇ + U1r = g cosΘ + Yββ + Ypp + Yrr + Yδaδa + Yδrδr

ṙ − B̄1ṗ = Nββ +NTββ +Npp+Nrr +Nδaδa +Nδrδr

In Matrices for it can be written as








1 0 0 −Ā1

0 1 0 0
0 0 U1 0

−B̄1 0 0 1

















ṗ

φ̇

β̇
ṙ









=









Lp 0 Lβ Lr
1 0 0 0
Yp g cosΘ Yβ (Yr − U1)
Np 0 (Nβ +NTβ) Nr

















p
φ
β
r









+









Lδa Lδr
0 0
Yδa Yδr
Nδa Nδr









[

δa
δr

]

Since cross inertial terms are 0 i.e., Ixz = 0, therefore Ā1 = 0 and B̄1 = 0,

ẋ = Ax+Bu

y = Cx+Du
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Table 10: Lateral-Directional Dimensional Stability Derivatives

Yβ qSCYβ/m 354.8161 (ft/sec2rad)
Yp qSbCYp/2mU 0.1337 (ft/secrad)
Yr qSbCYp/2mU 1.7443 (ft/secrad)
Yδa qSCYδa/m 0 (ft/sec2rad)
Yδr qSCYδa/m 45.7139 (ft/sec2rad)
Lβ qSbClβ/Ixx -28.6271 1/sec2

Lp qSb2Clp/(2IxxU) -25.6039 1/sec
Lr qSb2Clr/(2IxxU) 3.2475 1/sec
Lδa qSbClδa/Ixx 482.3681 1/sec2

Lδr qSbClδr/Ixx 28.4971 1/sec2

Nβ qSbCnβ
/Izz 49.0483 1/sec2

Np qSb2Cnp
/(2IzzU) -0.6061 1/sec

Nr qSb2Cnr
/(2IzzU) -4.5259 1/sec

Nδa qSbCnδa
/Izz -4.1029 1/sec2

Nδr qSbCnδr
/Izz -46.7637 1/sec2

NTβ qSbCnTβ
/Izz -2.0981 1/sec2

where x = [p, φ, β, r]t defines the states and u = [δa, δr]
t defines the inputs

A =









−25.6040 0 −28.6271 3.2475
1 0 0 0

0.0011 0.2718 3.0069 −0.9852
−0.6061 0 46.9502 −4.5259









, B =









482.3682 28.4971
0 0
0 0.3874

−4.1029 −46.7637









C =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, D =









0 0
0 0
0 0
0 0









φ

δa
=

482.4s2 + 719.4s+ 1.567e004

s4 + 27.12s3 + 73.54s2 + 854.8s− 6.226

A filter was designed to remove noise from measured φ:

Filterφ =
4900

s2 + 70s+ 4900

Designed Lead and Lag Control:

Kleadφ =
2.646s+ 20

s + 52.92
, Klagφ =

s + 1

s + 0.1
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Figure 12: Simulink block diagram for inner roll control
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Appendix-C:
Flight Results for Altitude
Controller

Figure 17: Ground control Station
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Figures 18-25 show the longitudinal flight test results for the two flight tests.
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Figure 18: Flight-1: Altitude tracking for different commands.

200 400 600 800 1000 1200 1400 1600 1800
−20

−15

−10

−5

0

5

10

15

20

25

Time [s]

A
lti

tu
de

 e
rr

or
 [m

]

Figure 19: Flight-1: Altitude error during flight.
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Figure 20: Flight-1: Actual and reference pitch angle versus time.
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Figure 21: Flight-2: Altitude tracking for different commands.
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Figure 22: Flight-2: Altitude error during flight.
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Figure 23: Flight-2: Actual and reference and pitch angle versus time.
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Figure 24: Flight-2: Rate of climb/decent during flight versus time.
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