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ABSTRACT

Wigner Distribution, one of many methods to compute time frequency represen-
tation, satisfies large number of mathematical properties and gives optimal energy
concentration in time frequency plane. However, Wigner distribution suffers from
severe cross-term interference problem, which limits its scope for practical appli-
cations.

Different modified versions of Wigner distribution have been developed to over-
come its cross-term interference problem. Most of these techniques suppresses
cross-term on the expense of quality of auto-terms. Schemes that compleltely
remove cross-terms without affecting the resolution of Wigner distribution are
computationally very expensive.

This research proposes a computationally efficient solution to cross-term inter-
ference problem based on image processing and fractional filtering. Signal com-
ponents are located in time frequency plane using image processing. Fractional
filters are then applied to separate signal components. Wigner distribution of
separated signal components is computed and added up to obtain cross-term free
crisp time frequency representation. Performance of the proposed time frequency
representation is evaluated both on synthetic and real life bat signals.

One of the most significant application of Wigner distribution is instantaneous
frequency estimation of signals. However, Wigner distribution based instantaneous
frequency can only be applied to mono-component signal because of its cross-
term problem. In this study we extend Wigner distribution based instantaneous
frequency estimation scheme to multi-component signals having non-overlapping
time frequency representation.
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Chapter 1

INTRODUCTION

1.1 Background

Most of the real life signals are non-stationary as their spectral properties change

with time. Such signals cannot be analyzed well by conventional signal analy-

sis tools such as pure time domain and frequency domain representations. Both

time and frequency domain representations separately do not give any information

about time localization of frequencies.

Fortunately, joint time-frequency(t-f) representations have emerged as a powerful

tool for the analysis of such signals. Joint t-f representation can be interpreted

as a spread of signal energy in joint t-f plane. T-f representation gives informa-

tion regarding signals which is otherwise hidden from analyst; such as number of

signal components, their relative amplitude, their instantaneous frequencies and

instantaneous bandwidths.

Several t-f representations have been proposed to date. These distributions can be

broadly categorized into linear and quadratic distributions. T-f representations are

often compared in terms of their resolution performance, mathematical properties

and ability to suppress cross-terms(CT).

1.2 Objective

Wigner distribution (WD) satisfies large number of desirable mathematical prop-

erties, such as time and frequency marginal and shifts as discussed by Boashash

(2003). It has a very high resolution and gives ideal estimate of IF for mono-

component linear frequency modulated signals. WD with data driven window

length can also be used for IF estimation of non-linearly frequency modulated

signals as proposed by Katkovnik and Stankovic (1998). However, presence of

1



undesirable CT for multi-component and/or non-linearly modulated signals lim-

its its practical significance as discussed by Boashash (2003). Many techniques

have been proposed to suppress or completely remove CT of WD. Most of these

techniques are either computationally too costly or suppress CT at the expense of

energy concentration of auto-terms. The objective of this research is to propose a

time frequency distribution with following salient features:

1. It should be computationally efficient.

2. Eliminate the CT of WD.

3. Auto-terms should not get blurred as a result of CT suppression.

4. Algorithm should be fully automatic.

1.3 The Proposed Methodology

We propose a novel scheme to suppress CT of WD for a multi-component signal.

CT in WD can be categorized into two main catigories i.e outer-interference and

inner-interference. Outer-interference arising due to multi-component nature of

a signal can be eliminated by separating signal components by using some kind

of time varying filter and computing WD of separated signal components. These

separated signal components would still suffer from inner-interference terms that

arise due to non-linear frequency modulation. Therefore, post processing of WD

is necessary to suppress inner-interference terms. In this study we propose a

combination of Gabor Wigner transform(GWT) proposed by Pei and Ding (2007)

and fractional filtering to reduce CT.

In order to separate signal components we need to first locate them in t-f plane

and then apply a time varying filter to separate them. Image processing technique

of connected component segmentation is employed to locate signal components

2



in a t-f plane. Fractional Fourier transform (FrFT) is then employed as a time

varying filter for separating signal components.

WD of separated signal components is computed to obtain t-f distributions which

are free of outer-interference. However, these distribution would still suffer from

inner-interference terms. These inner-interference terms are suppressed by com-

puting GWT, defined as product of WD with short time Fourier transform, of

separated signal components. Finally, GWTs of separated signal component are

added up to obtain a t-f distribution with significantly reduced CT.

1.4 Contribution

Main contributions in this thesis are as follows

1. Mathematical Analysis of Gabor Wigner transform proposed by Pei and Ding

(2007), one of many techniques to suppress CT of WD, and its limitations.

2. Hybrid image processing and fractional Fourier Transform based technique

to compute almost interference free WD for multi-component signal.

3. IF estimation of a multi-component signal.

1.5 Thesis Organization

This thesis is organized into seven chapters whose contents are described below.

Chapter 1 presents the problem statement and contributions in this thesis. Or-

ganization of rest of thesis is also described in it. Chapter 2 covers literature

review. It starts with the review of Fourier transform and emphasizes the need for

t-f analysis. Some of the state of the art techniques to compute t-f representations

like Short time Fourier transform, Wavelet transform, WD, distributions from Co-

hen class, reassigned Cohen’s distribution and some of the latest time frequency

techniques are discussed and compared. Chapter 3 presents the mathematical
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analysis of GWT transform and discusses its limitations. Chapter 4 describes

proposed interference suppression technique. The proposed technique utilizes im-

age processing to locate signal components and fractional filtering is employed for

signal separation. WD of separated signal components is then computed and added

up to obtain almost CT free t-f representation. Chapter 5 compares the perfor-

mance of proposed technique with other similar techniques. The performance of

the proposed technique is evaluated in terms of energy concentration, CT sup-

pression and computational cost. Chapter 6 presents an interesting application

of proposed t-f representation. The proposed technique for computing suppressed

interference crisp t-f representation is applied for computation of instantaneous

frequencies of a multi-component signal. The proposed technique extends the

classical WD based mono-component IF estimator discussed by Katkovnik and

Stankovic (1998) for multi-component signals. Chapter 7 summarizes the main

conclusions of thesis. It also provides directions for future work and improvements
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Chapter 2

LITERATURE REVIEW

In this Chapter, a review of some of the most popular t-f signal analysis techniques

is presented. Chapter starts with the brief discussion of Fourier transform and its

limitations in dealing with non-stationary signals. This follows a discussion on

linear and quadratic t-f representations. Two prominent distributions from linear

class (i.e short time Fourier transform and wavelet transform) and two prominent

distributions from quadratic class (i.e WD and spectrogram) are discussed. Given

the excellent resolution performance of WD, last section of this chapter is dedicated

to interference suppression techniques in WD.

2.1 Classical Signal Analysis Technique and need

for t-f analysis

Both time and frequency domain representations of signal conveys useful informa-

tion about its nature. Fourier transform relates time and frequency domain by

following equation.

X(ω) =

∫
x(t)e−jωt Eq (2.1 )

X(ω) and x(t) are time and frequency domain representations of a signal respec-

tively. Objective of using Fourier analysis is to break the signal into stationary

frequency components and compute their relative amplitudes. X(ω) is a complex

quantity, therefore it can be represented by magnitude and phase spectra. For

many signals, frequency domain representation is more informative.

In the definition of the Fourier transform, the stationary nature of the signal is

assumed, i.e. the spectrum is assumed to be independent of time and all signal fre-

quency components are assumed to exist for the entire time duration of the signal.

The magnitude spectrum only gives information regarding number of frequency

5



components present in the signal and their respective amplitudes. It does not tell

anything about the frequency modulation laws of the components and their time

duration. Unless the components are disjoint in frequency for the entire duration

of the signal, the spectrum also gives no information about the frequency bands

signal components occupy.

Most of the real signals are non-stationary and vary with time. Such signals have

time varying spectra and cannot be analyzed separately in time and frequency

domains. Such signals are best analyzed jointly using t-f representations. Joint

t-f analysis gives the information that cannot be obtained in either time or fre-

quency domains, such as; various signal components, their relative amplitudes,

time and frequency bands in which they are defined. T-f analysis also provides

time localization of frequencies.

In order to emphasize the need for t-f analysis, a time varying signal composed of

two linear chirps is being considered. Both time domain representation shown in

Fig 2.1(a) and frequency domain representation shown in Fig 2.1(b) fail to classify

signal as multi-component or mono-component. Whereas, joint t-f representation

shown in Fig 2.1(c) clearly shows that signal is composed of two components.

Moreover, information regarding starting and ending time of respective signal

components and their frequency modulation laws can also be obtained from the

given t-f representation.

2.2 Time Frequency Techniques

This section introduces some of the basic t-f signal analysis tools like IF, short

time Fourier transform, WD and Wavelet transform.

2.2.1 Instantaneous Frequency

One way to obtain time localization of frequencies in a signal is to compute its IF,

where IF of signal is defined as derivative of the phase of a signal. Mathematically,

6



(a) (b)

(c)

Figure 2.1: (a) Signal in time domain (b) Signal in Frequency domain (c)
Signal in joint t-f domain

ω(t) =
1

2π

d

dt
arg(x(t)), Eq (2.2 )

where x(t) is analytic signal of real signal s(t). Mathematically,

x(t) = s(t) + js(t) ∗ 1

πt
. Eq (2.3 )

It gives perfect time localization of frequency. However, time localization of

frequencies, by computing derivative of phase, can only be obtained for mono-

component signals. Review of IF estimation techniques can be found in section

7



6.1.

2.2.2 Linear Time frequency representations

All those t-f representations that obey principle of superposition can be classified

as linear distributions as discussed by Hlawatsch and Boudreaux-Bartels (1992).

Mathematically,

s(t) = s1(t) + s2(t) Eq (2.4 )

TFs(t)(t, ω) = TFs1(t)(t, ω) + TFs2(t)(t, ω) Eq (2.5 )

Two popular linear t-f distributions i.e Wavelets and Short Time Fourier transform

are discussed in following two subsections.

2.2.2.1 Short time Fourier Transform

Short time Fourier transform, as given by Cohen (1989), is defined as

STFTs(t)(t, ω) =

∫
h(τ)s(τ − t)e−jωτdτ Eq (2.6 )

Signal is windowed in time by multiplying h(τ) window with s(τ − t) . The

Fourier transform of the local signal gives the local spectrum at specified time

t. Short time Fourier transform is highly dependent on the shape and size of

window. Long windows gives good frequency resolution and poor time resolution

while short windows gives good time resolution, but poor frequency resolution.

2.2.2.2 Wavelet Transform

Continuous Wavelet transform as discussed by Lang (1999) can be considered an

extension of Short time Fourier transform in which length of window is made a

frequency dependent parameter. Mathematically,

WT (t, ω) =

∫
s(τ)w((τ − t)ω)ωdτ, Eq (2.7 )
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where w(t) combines the complex exponential and Gaussian. Mathematically,

w(t) =
1

h
√

2π
ejte

−t2

2h2 Eq (2.8 )

Higher frequencies are better resolved in both time and frequency by smaller win-

dows while lower frequencies are better resolved in frequency by larger window.

Wavelet transform thus caters this need and width of window is varied accordingly.

Though wavelet may improve resolution of short Time Fourier Transform, but it

also suffers from same resolution limit as that of Short Time Fourier transform.

2.2.3 Quadratic Time Frequency Distributions

Linearity is a desired criterion for t-f representations. However, t-f representa-

tions can be interpreted as energy distributions. Therefore, t-f representations are

expected to fulfill the following marginal criteria. Mathematically,

∫
TFs(t, ω)dω = s2(t) Eq (2.9 )∫
TFs(t, ω)dt = s2(ω) Eq (2.10 )

In addition from marginal criteria, quadratic t-f representations offer better reso-

lution and are expected to fulfill large number of other mathematical properties.

Spectrogram and WD are the two most popular quadratic t-f representations.

2.2.3.1 Spectrogram

Spectrogram is defined as squared modulus of short time Fourier transform. Math-

ematically,

SPECs(t, ω) = STFTs(t, ω)STFT ∗
s (t, ω) Eq (2.11 )

9



Spectrogram reduces in to linear transformation provided that short time Fourier

transform of different components does not overlap in t-f plane. However, Spec-

trogram suffers from same window related resolution limitations as that of short

time Fourier transform. Therefore, it gives blurred t-f representation. Different

variants of Spectrogram have been developed to improve its resolution in time

and frequency. These include Reassigned spectrogram by Fulop and Fitz (2006);

Auger and Flandrin (1995), de-blurring of spectrogram using neural networks by

Shafi et al. (2007), de-blurring using Image de-convolution techniques by kai Lu

and Zhang (2009), optimal window selection by Baraniuk and Jones (1993), and

Spectrogram using windows in fractional domain by Capus and Brown (2003).

All of these techniques are either too slow or they cannot completely remove the

blurring.

2.2.3.2 Wigner Distribution

WD is defined as Fourier transform of instantaneous auto-correlation function.

Mathematically,

WDs(t, ω) =

∫
s(t− τ

2
)s∗(t+

τ

2
)e−jωτdτ Eq (2.12 )

WD fulfills large number of mathematical properties discussed by Boashash (2003),

such as

1. Reality: WD is real for all values of t and ω.

2. Time Invariance: If signal is shifted in time domain its WD will also get

shifted by the same amount along time axis. Mathematically,

sλ(t) = s(t− t0) Eq (2.13 )

WDsλ
(t, ω) = WDs(t− t0, ω) Eq (2.14 )
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3. Frequency Shift Invariance: If a signal is modulated(shifted) in frequency

domain, then the same shift will occur in frequency axis of its WD

sm(t) = s(t)ejω0t Eq (2.15 )

WDsm(t, ω) = WDs(t, ω − ω0) Eq (2.16 )

4. Time Marginal: Integration of WD along frequency axis gives signal energy

distribution. Mathematically,

|s(t)|2 =

∫
WD(t, ω)dω Eq (2.17 )

5. Frequency Marginal: Integration of WD along time axis gives energy spec-

trum.

|s(ω)|2 =

∫
WD(t, ω)dt Eq (2.18 )

6. Signal Energy: Integration of WD along both axis gives the signal energy.

7. Instantaneous Frequency: First order moment of WD along frequency axis

gives instantaneous frequency.∫
ωWD(t, ω)dω∫
WD(t, ω)dω

=
d

dω
(args(t)) Eq (2.19 )

8. Group Delay: Group delay can be computed from WD by computing its first

moment with respect to time∫
tWD(t, ω)dt∫
WD(t, ω)dt

=
d

dt
(args(ω)) Eq (2.20 )

9. Time Support: If signal does not exist outside interval [t1, t2] then its WD

will also not exist beyond this interval.

10. Frequency Support: If signal does not exist outside interval [ω1, ω2] then its

WD will also not exist beyond this interval.
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11. Convolution Invariance: If two signals get convolved in time domain then

their WD would also get convolved along time axis. Mathematically,

s(t) = s1(t)∗s2(t) Eq (2.21 )

WDs(t, ω) = WDs1(t, ω)∗tWDs2(t, ω) Eq (2.22 )

12. Modulation Invariance: Multiplication of two signals in time domain results

in convolution of respective WD along frequency axis. Mathematically,

s(t) = s1(t)s2(t) Eq (2.23 )

WDs(t, ω) = WDs1(t, ω)∗ωWDs2(t, ω) Eq (2.24 )

13. Inner Product Invariance: The WD is a unitary transformation, therefore it

preserves the inner product. Mathematically,∫ ∫
WDs1(t, ω)WDs2(t, ω)dtdω = |

∫
s1(t)s

∗
2(t)dt|2 Eq (2.25 )

In addition to these excellent mathematical properties, WD provides ideal energy

concentration (delta function along IF)for linearly frequency modulated signals as

demonstrated by Boashash (2003).

2.2.3.3 Limitations of WD

Major limitation of WD is the presence of undesired CT which have no physical

meaning. CT can be categorized in two broad categories:

• Inner interference terms: These terms arise for non-linearly frequency modu-

lated signals and can be understood by considering the example of parabolic

chirp signal shown in Fig 2.2. Peak of its WD is highly concentrated along

its IF. However, its energy concentration is poorer.
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Figure 2.2: WD of parabolic chirp suffering from inner interference

• Outer interference terms: WD is quadratic in nature therefore CT also ap-

pear for signals composed of more than one component. Interference terms

can be better understood by considering an example of signal composed of

two components s(t) = s1(t) + s2(t). WD of signal would be

WDs(t, ω) = WDs1(t, ω)+WDs2(t, ω)+2Real{
∫
s1(t+

τ

2
)s∗2(t−

τ

2
)e−jωτdτ}

Eq (2.26 )

The last term in above expression represents a CT. CT are oscillatory in

nature and are located midway between two components. The direction

of isolation is normal to straight line connecting two components. For N

component signal there would be N(N − 1)/2 CT. CT appearing for multi-

component signal can be demonstrated by considering an example of multi-

component signal, whose spectrogram is given in Fig 2.3(a) and WD in Fig

2.3(b). It is clear from these figures that Spectrogram shows two chirps while

WD shows three chirps. Third chirp appeared due to CT.
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(a) (b)

Figure 2.3: (a)GT (b) WD

Presence of CT severely limits practical applications of WD. Various modified

version of WD have been developed to overcome the problem of CT. These tech-

nique include distributions from Cohen’s class Cohen (1989), Non-linear filtering

of WD by Arce and Hasan (2000), S-Method by Stankovic (1994), Polynomial

WD by Boashash and O’Shea (1994), GWT by Pei and Ding (2007), interference

suppression using FrFT by Qazi et al. (2007).

2.3 Cross-term suppression techniques for WD

Given the mathematical properties of WD and its ability to give optimum energy

concentration in t-f plane, many techniques have been proposed to overcome its

limitation while dealing with multi-components signals or signals with non-linear

frequency modulation laws. This section reviews existing interference suppression

techniques. Objective of all these techniques are

1. To suppress/ eliminate CT

2. To preserve the quality of auto-terms

3. To be computationally efficient
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However, for most of techniques there is a trade off between criteria (1) and criteria

(2).

2.3.1 Cohen’s Distributions

Cohen (1989) showed that all distributions from this class i.e. Choi-Williams,

Gauss-Jordan, etc can be obtained from WD by convolving it with a 2D Kernel.

Mathematically,

TFs(t, ω) =

∫ ∫
WD(t− t

′
, ω − t

′
)Ψ(t

′
, ω

′
)dt

′
dω

′
Eq (2.27 )

Each member of Cohen’s class differs in choice of Kernels. CT are generally

suppressed as a result of convolution. However, auto-terms also get blurred. All

distributions of Cohen’s class generally satisfy time and frequency shifts that is, if

s(t) is delayed in time, and frequency modulated, then its t-f representation will

be shifted by the same amount in both axes. Mathematically,

s0(t) = s(t− t0)e
jω0t Eq (2.28 )

TFs0 = TFs(t− t0, ω − ω0) Eq (2.29 )

CT suppression methods based on convolution of 2D kernel function with WD can

be broadly classified into two categories

1. Fixed Kernel

2. Signal Dependent Kernels

2.3.1.1 Fixed Kernel

Fixed Kernel representations are obtained by convolving WD by a pre-determined

kernel. Performance comparison of some of these kernels is given by Hlawatsch

et al. (1995).
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2.3.1.2 Signal dependent Kernel Representations

All kernel based t-f representations compromises CT suppression over auto-term

quality. Hlawatsch et al. (1995) demonstrated that all fixed kernel based t-f rep-

resentations are suitable for only a class of signals and are not general.

In order to overcome this limitation of fixed kernel t-f representation Baraniuk and

Jones (1993) proposed an optimization method to compute a signal dependent ker-

nel. Their proposed technique performs well for relatively large number of signals.

However, major limitation of their scheme is that it computes one optimum kernel

for whole signal and do not adapt kernel with respect to changing characteristics

of signal.

Jones and Baraniuk (1995) proposed an adaptive signal dependent t-f representa-

tion which computes optimum kernel on block by block basis. Better results are

obtained with this method at the expense of increased computational cost.

2.3.2 Reassigned Time frequency distributions

Smoothing of WD by signal dependent/ independent kernel reduces CT at the

expense of quality of auto-terms. Reassignment method partially overcome this

problem by shifting back the auto-terms. Closely looking at 2.27 reveals that

t-f representation at any point (t, ω) is weighted sum of all neighboring points

in t-f plane. This averaging may suppress CT, but also disturb the location of

auto-terms. Reassignment method works on the principle that every point in t-f

representation is shifted back to the center of gravity of the local neighborhood of

t-f distribution. Co-efficients are calculated by following equation

t
′
(t, ω) = t−

∫ ∫
t0ψ(t0, ω0)WDs(t− t0, ω − ω0)dt0dω0∫ ∫
ψ(t0, ω0)WDs(t− t0, ω − ω0)dt0dω0

Eq (2.30 )

ω
′
(t, ω) = ω −

∫ ∫
ω0ψ(t0, ω0)WDs(t− t0, ω − ω0)dt0dω0∫ ∫
ψ(t0, ω0)WDs(t− t0, ω − ω0)dt0dω0

Eq (2.31 )
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A modified t-f representation given as result of reassignment is given as

MTFs(t, ω) =

∫ ∫
TFs(t0, ω0)δ(t− t

′
(t0, ω0))δ(ω − ω

′
(t0, ω0))dω0dt0 Eq (2.32 )

The readability of resultant t-f representation is highly dependent on CT suppres-

sion and auto-term preservation capability of original t-f representation. Moreover,

some desired mathematical properties of modified t-f representation may be lost

for the sake of improved resolution.

2.3.3 Non-linear Filtering

All signal dependent/ independent methods suffer from trade off between auto-

terms quality vs. CT suppression. Arce and Hasan (2000) proposed a non-linear

filtering technique to suppress the CT of WD without much affecting auto term

quality.

Their filter is based on intuition that auto-terms dominant regions have signifi-

cantly less variation as compared to CT dominant regions. Thus in regions of low

variation their proposed filter converts itself into close to identity operator while in

regions of CT it becomes a low pass filter. Non-linear filtering technique performs

significantly better than kernel based techniques but regions where auto-terms

overlap CT their technique fail to give optimum results.

2.3.4 S-Method

In order to maintain auto-term quality, as high as in WD, while reducing CT,

S-Method was proposed by Stankovic (1994).

SM(t, ω) =

∫
P (θ)STFT ∗(t, ω + θ)STFT (t, ω − θ)dθ Eq (2.33 )

STFT (t, ω) is short time Fourier transform. P (θ) controls the CT reduction. For

P (θ) = δ(θ) above transformation becomes a Spectrogram and for P (θ) = 1 it
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becomes a WD. By carefully choosing length of P (θ), CT free t-f representation

with auto-term quality close to WD can be obtained. However, this requires signal

components to be distantly placed in t-f domain.

2.3.5 Adaptive S-Method

Major limitation of S-method was selecting the size of window. Shorter window

would result in lesser resolution while longer windows may cause CT. This problem

was solved by Stankovic and Stankovic (1997). They proposed a scheme for auto-

matic window length selection. Thus, for t-f separable signals, a t-f representation

that is free of CT and has auto-term quality equal to that of WD is achieved with

the application of this method.

2.3.6 Polynomial Wigner Distribution

WD gives ideal t-f concentration for linear frequency modulated signals, however,

for non-linearly frequency modulated signals WD suffers from CT. Boashash and

O’Shea (1994) proposed Polynomial WD that extends WD for the class of signals

which have instantaneous frequency variations of higher order. Mathematically,

WDs(t, ω) =

∫
s2(t+

τ

4
)s∗2(t− τ

4
)s(t+ A

τ

2
)s∗(t+ A

τ

2
)e

−jω
2.7

τdτ . Eq (2.34 )

Polynomial WD has even more CT than simple WD for a multi-component signal.

Thus this scheme is not general and limited to mono-component signals only.

2.3.7 Gabor Wigner Transform

Recently Pei and Ding (2007) proposed a GWT to combine the advantages of both

Short time Fourier transform and Wigner transform. GWT is defined as product

of GT and WD. Mathematically,

GWTs(t, ω) = WDs(t, ω)GTs(t, ω). Eq (2.35 )
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GTs(t, ω) is a short time Fourier transform with Gaussian window. GWT elimi-

nates CT of WD while maintaining clarity of auto-terms. However, it fails to give

optimum results when CT of WD overlap auto-terms in t-f plane.

2.3.8 Cross-terms deleted Wigner Distribution using Bessel

function expansion

Pachori and Sircar (2007) showed that by using Fourier Bessel expansion a multi-

component signal can be decomposed into a number of mono-component signals.

Mono-component signals are analyzed separately using WD and finally all WD

are added to give a CT free representation. Major limitation of their technique is

that it requires signal components to be separable in frequency domain and cannot

be applied for signals whose components are separable in joint t-f domain but are

not separable in just frequency domain. Moreover, their technique requires human

intervention to locate signal components and is not automatic.

2.3.9 Matching Pursuit Algorithm

One way to compute CT free WD is to decompose a signal into a sum of of

t-f atoms and compute WD of individual signal component. Matching Pursuit

algorithm presented by Mallat and Zhang (1993) decomposes a signal into linear

sum of t-f atoms chosen from redundant dictionary. Mathematically,

s(t) =
N∑

n=1

< s(t)gλn > gλn +Rms(t). Eq (2.36 )

Rm is the residual vector. gλn is time shifted and frequency modulated t-f atom

given as

gλ(t) =
1√
s
g(
t− u

s
)ejξt Eq (2.37 )
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and λ = (s, u, ξ). WD of decomposed signals is computed and added up to give

CT free t-f representation. Mathematically,

TF (t, ω) =
N∑

n=1

< s(t)gλn > TF(gλn)(t, ω) Eq (2.38 )

Matching pursuit algorithm does not suffer from CT suppression and auto-term

quality trade off. However, performance of this technique is highly dependent on

choice of dictionary and prior knowledge of signals.

2.3.10 Fractional Fourier Based Interference suppression

in Wigner Distribution

Recently some fractional Fourier based t-f techniques have emerged, that uses re-

cently developed FrFT to compute signal dependent window. Traditionally choice

of window depends upon the shape (Gaussian, Hamming, Hanning etc) and length.

However, FrFT provides another degree of freedom i.e. rotation order.

2.3.10.1 S-Method in Fractional Fourier Domain

Capus and Brown (2003) demonstrated that resolution of short time Fourier trans-

form can be increased by computing a signal dependent window in FrFT domain.

Order of window in fractional Fourier domain is estimated from the second order

variance of FrFT of signal. Their proposed scheme could resolve closely place

chirps which ordinary Short time Fourier transform could not resolve.

Bastiaans et al. (2002) proposed a modification in S-Method to improve its reso-

lution. Their proposed scheme utilized short time FrFT for convolution operation

instead of ordinary short time Fourier transform. Experimental results demon-

strated significant improvement in terms of CT elimination and auto-term preser-

vation. However, finding an optimal fractional Fourier domain window is not

possible for signals that are composed of multiple chirps with different frequency

modulation laws.
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2.3.10.2 Cross-term suppression using signal synthesis and fractional

Fourier transform

Recently, Qazi et al. (2007) has proposed a fractional Fourier based recursive

technique to eliminate CT without effecting auto-term quality. Moreover, their

proposed technique performs well in highly challenging scenarios i.e. when auto-

terms overlap CT.

Their technique exploits variance along various fractionally rotated and aligned

back WDs to identify CT. CT are deleted by simply applying a mask containing

zeros in areas of CT and ones in all other areas. Signal is synthesized from CT

deleted WD by the signal synthesis technique given by Boudreaux-Bartels and

Parks (1986). Synthesized signal is subtracted from original signal. If there were

no CT overlapping auto-terms than subtracted signal would have zero energy

and algorithm will stop. Other wise same procedure is recursively repeated for a

subtracted signal. Finally, WDs composed of only auto-terms are added to give

high quality t-f representation.

Only limitation of this scheme is its computational cost and iterative nature which

limits its scope for parallel implementation.
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Chapter 3

CRITICAL ANALYSIS OF GABOR WIGNER

TRANSFORM

Recently Pei and Ding (2007) proposed a GWT to combine the advantages of both

GT and WD. GT is free of CT while WD offers a higher resolution. Mathemati-

cally,

GWT (t, ω) = WD(t, ω)GT (t, ω). Eq (3.1 )

It will be shown that GWT offers considerable improvement in terms of CT reduc-

tion. However, in scenario of auto-terms overlapping CT, GWT would not give

optimum results as demonstrated in our ealier work Khan et al. (2009).

3.1 Limitations of Gabor Wigner transform

In order to study the CT in GWT for a multi-component signal, we consider a

signal composed of N number of components si(t).

s(t) =
N∑

i=1

si(t). Eq (3.2 )

WD of s(t) is given by,

WDs(t, ω) =
N∑

i=1

WDsisi
(t, ω) +

N∑
j=1

N∑
k=1

j 6=k

WDsjsk(t,ω), Eq (3.3 )

where,

WDsii
(t, ω) =

∫
si(t−

τ

2
)s∗i (t+

τ

2
)e−jωτdτ Eq (3.4 )

WDsjk
(t, ω) =

∫
sj(t−

τ

2
)s∗k(t+

τ

2
)e−jωτdτ . Eq (3.5 )
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GT is just the Short time Fourier transform with Gaussian window function.

GTs(t, ω) =

∫
h(τ − t)s(τ)e−jωτdτ , Eq (3.6 )

where h(τ) is a Gaussian window. Short time Fourier Transform is a linear trans-

formation and does not suffer from CT problem. However, it blurs t-f plane.

Mathematically,

GTs(t, ω) =
N∑

i=1

GTsi
(t, ω), Eq (3.7 )

whereGTsi
(t, ω) is GT of signal component si(t). GWT is defined as multiplication

of WD and GT. Mathematically,

GWT (t, ω) = WD(t, ω)GT (t, ω). Eq (3.8 )

It is assumed that two different signals have non-overlapping t-f signature, there-

fore the product of their t-f representations will be zero. This reduces above

equation into

GWTs(t, ω) =
N∑

i=1

GTsi
(t, ω)WDsi

(t, ω) +
N∑

i=1

N∑
j=1

N∑
k=1

j 6=k

GTsi
(t, ω)WDsjsk

(t, ω).

Eq (3.9 )

If CT of WD of a signal do not overlap with support region of GT that is

N∑
i=1

N∑
j=1

N∑
k=1

j 6=k

GTsi
(t, ω)WDsjsk

(t, ω) = 0, Eq (3.10 )

then GWT becomes a linear transformation. Mathematically,

GWTs(t, ω) =
N∑

i=1

GWTsi
(t, ω). Eq (3.11 )
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GT transform is CT free blurred image of WD distributions. Multiplying GT and

WD results in an image, which is de-blurred and free of CT only if auto-terms do

not overlap CT.

3.2 Experimental Results

We consider three examples to demonstrate the effectiveness and limitation of

GWT.

3.2.1 Two Gaussian Atoms

In this example a signal composed of two Gaussian atoms is being considered. Its

t-f representations are shown in Fig 3.1. GT clearly shows two Gaussian atoms

but its t-f representation is blurred with poor concentration of energy. Whereas,

WD clearly gives good energy concentration for Gaussian atoms. However, we

wrongly see third Gaussian atom appearing in between original two components.

GWT shows signal components with same energy concentration as that of WD

with CT completely eliminated.

3.2.2 Three Gaussian Atoms

In this example a signal composed of three Gaussian atoms is being considered.

Its t-f representations are shown in Fig 3.2. GT shows blurred t-f representation of

Gaussian atoms. WD clearly gives good energy concentration for Gaussian atoms.

However, we wrongly see two extra Gaussian atoms due to CT. GWT eliminates

CT and gives crisp representation for lower most and upper most Gaussian atom,

but the Gaussian atom appearing in center still suffers from CT because of over-

lapping of CT of WD on its auto-term region.

3.2.3 Parabolic Chirp

In this example a parabolic chirp is being considered. It t-f representations are

shown in Fig 3.3. GT gives blurred representation of signal. WD suffers from
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(a) (b)

(c)

Figure 3.1: (a) GT (b) WD (c) GWT
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(a) (b)

(c)

Figure 3.2: (a) GT (b) WD (c) GWT
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(a) (b)

(c)

Figure 3.3: (a) GT (b) WD (c) GWT

inner interference. GWT suppresses inner interference terms to large extent and

gives crisp representation. This property of GWT to suppress inner interference

will be exploited in next chapter to remove the CT of mono-component filtered

signal components.
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Chapter 4

CROSS-TERM SUPPRESSION USING 2D

SIGNAL PROCESSING TECHNIQUES

An efficient method based on 2D Signal processing techniques and fractional

Fourier transform is presented to suppress interference terms of WD. A part of

this chapter has been published in Khan et al. (2011). The proposed technique

computes GT of a multi-component signal to obtain a blurred t-f image. Signal

components in GT image are segmented using connected component segmentation

and are filtered out using precise application of FrFT. A crisp t-f representation

is then obtained by computing sum of products of WD and GT of the isolated

signal components. The efficacy of the proposed technique is demonstrated using

example of synthetic signal. Proposed scheme gives satisfactory performance even

when CT of WD overlap auto-terms and computational cost analysis shows that

it is more efficient than recent interference suppression techniques of comparable

performance. Moreover, proposed technique does not require any prior informa-

tion regarding nature of signal. Block diagram of the proposed technique is given

in Fig 4.1.

Rest of the chapter is organized as follows. Section 4.1 presents the theoretical

background related to present work and the problem formulation. The proposed

hybrid approach to obtain a crisp t-f representation is illustrated in section 4.2

giving details of the algorithmic steps. Step by step demonstration of the proposed

scheme is given in section 4.3. Computational cost of the proposed scheme is

presented in 4.4. Finally section ?? discusses the mathematical properties of the

proposed scheme.
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Figure 4.1: Block Diagram representation of Proposed technique
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4.1 Problem Formulation

The technique presented in this study involves selective application of fractional

filtering to achieve the WD with significantly reduced CT. This section gives an

overview of the problem at hand and an abstract description of solution to the

problem with its mathematical justification. Following subsections discuss the

desired t-f distribution, Support Vector Machine (SVM), and describe FrFT as a

tool to perform time-varying filtering.

4.1.1 Desired time frequency representation

Applicability of WD is severely restricted by the presence of the unwanted CT.

Direct computation of WD would result in unwanted interference terms as dis-

cussed in chapter 2 and 3. However, desired t-f representation should only have

the auto-terms of the WD. Mathematically,

D(t, ω) =
N∑

i=1

WDsisi
(t, ω). Eq (4.1 )

The t-f distribution composed only of the auto-terms of WD would give ideal t-f

distribution for linearly frequency modulated signals. However, for nonlinear fre-

quency modulation of signal components, the proposed t-f representation would

still have the CT. These CT arising due to nonlinear nature of frequency modula-

tion can be suppressed by computing GWT of the signal components as demon-

strated in chapter 3. Thus for the signals composed of non-linearly frequency

modulated components, the desired t-f distribution would be as follows,

D(t, ω) =
N∑

i=1

GWTsi
(t, ω), Eq (4.2 )

D(t, ω) can be computed by separating signal components and then calculating

WD/GWT of isolated signal components and finally adding up the individual

GWT/WD.
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4.1.2 Support Vector Machines

SVM Hsu et al. (2003) is a powerful tool used for the purpose of classification

in signal processing applications. In this study, we have used SVM to draw a

separating boundary between different segments in a t-f plane. Consider a set of

points of the form.

D = ((xi, ci)|xi ∈ R2, ci ∈ −1, 1)n
i=1, Eq (4.3 )

where the ci is either 1 or -1, indicating the segment to which the point belongs.

Each xi is a 2-dimensional vector representing a pixel belonging to image segment

in t-f plane. We want to find the line which gives the maximum margin between

the points having ci = 1 and those having ci = −1. Two lines parallel to the

optimal separating line are drawn such that both the lines separate the data.

Mathematically,

w.x− b = 1 and w.x− b = −1. Eq (4.4 )

Thus the problem of finding the optimal separating line is reduced to minimizing

the objective function 1
2
|w|2 subject to the constraint ci(w.xi − b) ≥ 1. This

problem can be solved by quadratic programming techniques Hsu et al. (2003).

4.1.3 Fractional Fourier Transform

The proposed technique for computing the desired t-f representation is based on

the separating signal components and analyzing them separately using WD. The

signal components that overlap in both time and frequency domains cannot be

separated by any stationary band-pass filter. FrFT has emerged as a powerful

tool for separating the time-varying signals that are linearly separable in the joint

t-f plane. Mathematically, an α order FrFT is defined as Namias (1980),
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sα(u) =

∫
Bα(u, t)s(t)dt, Eq (4.5 )

Bα(u, t) =
e−jπ

sgn(φ)
4

+j φ
2

|sinφ| 12
ejπ(u2cotφ−2utcscφ+t2cotφ). Eq (4.6 )

Here φ = απ
2
. As shown in previous studies by Mustard (1996), the WD of sα(u)

is the rotated version of WD of original signal by angle α. Mathematically,

WDsα(t, ω) = R−α(WDs(t, ω)). Eq (4.7 )

Rα is an operator that rotates a joint t-f plane clock wise. Signal components that

are linearly separable in joint t-f plane can be separated by using the following

steps as demonstrated by Arikan and Kemal Ozdemir (2000) and Pei and Ding

(2007).

• First compute α order FrFT of signal, i.e. rotate the signal components in

t-f plane.

• Apply band pass filters to separate signal components.

• Finally, compute -ive α order FrFT, i.e. inversely rotate the signal compo-

nents in t-f plane.

In order to elaborate above mentioned procedure, consider Fig 4.2(a) showing

the joint t-f representations of a signal composed of two linear chirps. It is clear

from these representations that the signal components overlap in both time and

frequency domains. Thus they cannot be separated by any standard filtering

technique. However, if we rotate the t-f representation of the given signal by

computing its FrFT as shown in Fig 4.2(b) then these components can easily be

filtered by any standard band-pass filter. Fig 4.2(c) and Fig 4.2(d) shows the t-f

signal components separated by a band-pass filter in fractional Fourier domain.
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Finally, the -ive α order FrFT of filtered signal components is computed to obtain

the original signal components, as shown in Fig 4.2(e) and Fig 4.2(f).

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: (a) GT (b) GT of FrFT of signal (c) GT of separated signal
component in fractional domain (e) GT of separated signal component in frac-
tional domain (f) GT of separated signal component (g) GT of separated signal

component

In the following section, fractional filters are applied to isolate the signal compo-

nent that are linearly separable or piecewise linearly separable in t-f plane.
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4.2 The Proposed Approach

This section presents a hybrid image processing and fractional Fourier technique to

compute the WD with significantly reduced CT. The proposed approach isolates

each signal component and analyzes the isolated components separately using

GWT. A blurred t-f image is obtained by computing the GT image of multi-

component signal. The GT image is segmented using an 8-connectivity criterion.

Each connected segment Si in t-f plane corresponds to the individual signal com-

ponents si(t) in time domain. The parameters of the separating line segments

drawn between segments define the order of fractional filters used to isolate signal

components. As discussed in previous sections, the isolated signal components

can be analyzed by computing their GWT or WD. Major steps of the proposed

approach are:

4.2.1 Blurred time frequency representation

The blurred t-f representation is obtained by computing GT of multi-component

signal s(t). The purpose of this step is to locate signal components in t-f plane.

4.2.2 Image thresholding

GT image formed in earlier consists of foreground and background regions. Fore-

ground represents the region in t-f plane where signal is present. Whereas, back-

ground represents the regions in t-f plane where signal is not present. Foreground

and background regions can be identified by converting the t-f intensity image into

a binary image by the application of a thresholding process given by,

B(t, ω) = 0, if GT (t, ω) ≥ T, Eq (4.8 )

B(t, ω) = 1, if GT (t, ω) < T, Eq (4.9 )
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where T is a threshold that is adaptively selected using the following iterative

algorithm as discussed by Acharya and Ray (2005):

1. Initially the mean value of the GT image is selected as a threshold T .

2. In each iteration,

• All pixels having value greater then a threshold ’T’ are stored in image

IA and values less than a threshold are stored in image IB. Mathemat-

ically,

IA(t, ω) = GT (t, ω), if GT (t, ω) ≥ T Eq (4.10 )

IA(t, ω) = 0, else where Eq (4.11 )

IB(t, ω) = GT (t, ω), if GT (t, ω) < T Eq (4.12 )

IB(t, ω) = 0, else where Eq (4.13 )

• New threshold is computed by taking average of the respective means

of IA and IB. Mathematically,

T =
uIA + uIB

2
. Eq (4.14 )

3. Steps 2 is repeated and the threshold T is updated in each iteration. The

iterations are terminated when the threshold value does not change in two

successive iterations.

4.2.3 Image Segmentation

The purpose of image segmentation is to decompose the foreground of the t-f image

into non-overlapping regions representing signal components. It is assumed that

all signal components have non-overlapping t-f signatures. Therefore, the binary

t-f image of a multi-component signal having N number of components can be
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decomposed into N foreground segments and one background region. Mathemat-

ically,

B =
N⋃

i=1

Si

⋃
B0, Eq (4.15 )

where B is a set containing all foreground and background pixels of a binary

image, Si is the set of pixels representing si(t) in time domain, and B0 is the set

of pixels representing background. All the pixels in each segment must fulfill the

connectivity criterion that is stated for each pixel as follows. A pixel belonging

to a segment must have at least one other pixel of the same segment in its 8-

neighborhood and it should not have any pixel of any other segment in its 8

neighbors. 8-neighborhood of a pixel at the location (x, y) is defined as a set of

all pixels at the following locations,

(x−1, y)(x+1, y)(x−1, y−1)(x+1, y+1)(x−1, y+1)(x+1, y)(x+1, y−1)(x, y+

1)(x, y − 1).

Further details of the algorithm for image segmentation based on connectivity

criteria are given by Acharya and Ray (2005).

In order to illustrate the steps of image segmentation algorithm, consider the t-f

representation of a signal composed of two parabolic chirps as shown in Fig 4.3.

The t-f image is thresholded first and then segmented into two different sets by

using connectivity criteria shown in different colors.

4.2.4 Drawing separating boundaries between regions

In the previous section, it was discussed that fractional filters can be used for

separating the signal components that are linearly separable in t-f domain. In

order to apply fractional filters, we need to compute the order of these filters,

i.e. rotation order and cut-off. These two parameters can be evaluated from the

parameters, i.e. slope and location of separating lines between segments. In order

to find the optimum separating line between any two segments, we use SVM as

36



(a) (b)

(c)

Figure 4.3: (a) GT (b) Binary Image (c) Segmented Image

discussed in the previous section. We have used linear primal SVM algorithm

because of its computational efficiency as discussed by Chapelle (2007). For each

segment Si, Ji number of lines lji(xsji, ysji, xeji, yeji) are drawn to separate Si from

the regions that are above Si in t-f plane. (xsji, ysji, xeji, yeji) are the starting and

ending points of the jth line drawn for segment Si. The total number of lines

drawn depends upon whether the segments are linearly separable or not. If they

are linearly separable, only one line would be enough. However, for nonlinearly

separable segments, multiple straight lines need to be drawn. Initially SVM is

used to draw the best possible straight line between two segments. If a drawn line

intersects Si or segments above, then Si is split into two sub-regions and lines are

drawn for both sub-regions. This process is recursively repeated till all the regions

are separated by lines.

In order to give step by step illustration of the proposed algorithm for drawing
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(a) (b)

(c) (d)

Figure 4.4: (a) Segmented Image (b) Segments separated by drawing horizon-
tal line (c) Sub Segments separated by drawing line (d) Segment separated by

multiple lines

the separating lines, a segmented t-f image of a signal composed of two parabolic

chirps is considered as shown in Fig 4.4(a). The t-f signature of different signal

components is labeled by using different colors. SVM is used to draw a single line

between these two segments. The drawn line intersects both segments as shown

in Fig 4.4(b); therefore, a single line is insufficient and fails to separate the two

segments. Thus, the segments are divided into two sub-regions and the lines are

drawn for each of them as shown in Fig 4.4(c) and Fig 4.4(d).
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4.2.5 Fractional Filtering

Each signal component appearing as segment Si in t-f plane is filtered out using

following procedure.

• Signal s[n], obtained by sampling of signal, is decomposed into Ji smaller

signals corresponding to lines lji.

s[n] =

Ji∑
j=0

ŝji[n], Eq (4.16 )

where Ji is the total number of lines separating Si from other segments in

t-f plane that are above si(t) in t-f plane.

ŝji[n] =s[n], for xsji ≤ n < xeji Eq (4.17 )

ŝji[n] =0. else where Eq (4.18 )

TFŝji
(n, l) that is the t-f representation of decomposed signal ŝji[n], can be

related to TFŝ(n, l) , the t-f representation of s[n], by the following equation.

TFŝji
(n, l) =

Ns−1∑
k=0

TFs(n, k)sinc((
Nsl

xeji − xsji

)− k) for xsji < n < xeji, 0 < l < xeji−xsji.

Eq (4.19 )

Here Ns is the length of signal s[n]. Above equation clearly shows that t-

f representation of the decomposed signal gets scaled along frequency axis

by the factor of
xeji−xsji

Ns
as a result of signal decomposition. This effect

is demonstrated in Fig 4.5. Fig 4.5(a) shows t-f representation of a signal

composed of two quadratic chirps with signal duration from -1.5s to 1.5s

while Figure 4.5(b) shows t-f representation of same signal, but time duration

limited to -1.5s to 0s. This scaling also affects the slope of separating line

drawn between segmented images corresponding to two chirps as shown in

Fig 4.5(c) and Fig 4.5(d) respectively.
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(a) (b)

(c) (d)

Figure 4.5: (a) GT of two quadratic chirps (b) GT of only half portion
of quadratic chirps (c) Segmented GT image of two quadratic chirps with
segments separated by lines drawn (e) Segmented GT image of only half

portion of quadratic chirps with lines drawn

• Fractional filters are applied to separate decomposed signals ŝji[n] from all

those signal components that are above segment Si in t-f plane thus forming

low-pass signals ŝlji[n]. we have used ideal low pass filters for this purpose.

Order of fractional filters that is rotation order αji and frequency cut-off ωji

can be estimated from the slope and y-intercept of separating lines drawn.

Scaling of frequency axis of t-f representation of the decomposed by the

factor of
(xeji−xsji)

Ns
also scales the slopes of the separating lines by the same
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factor as shown in Fig 4.5. Thus, the rotation order would be

αji =
2

π
tan−1(

mji(xeji − xsji)

Ns

). Eq (4.20 )

Here mji is the slope of line lji and is given by

mji =
yeji − ysji

xeji − xsji

. Eq (4.21 )

The frequency cut-off is computed from the y-intercept of the separating

line. Mathematically,

ωji = π
yeji + ysji

Ns

. Eq (4.22 )

• The decomposed, low-pass filtered signal components ŝlji are finally added

up to form a ”low pass” signal sli.

sli[n] =

Ji∑
j=1

slji[n]. Eq (4.23 )

• As a result of above mentioned steps, sli[n] is separated from all the com-

ponents that have segments above Si in the t-f plane, and it is composed

of si[n] and all the components that have segments that appear below Si

in t-f plane. Similar procedure is repeated with sli[n] as an input signal to

separate si[n] from all the signal components that have segments below Si

in t-f plane.

4.2.6 Computing GWT or WD of isolated signal compo-

nents

GWT or WD of the isolated and filtered signal components is calculated. Choice

of whether to compute WD or GWT depends upon application at hand. If the

given signal is composed of just linear chirp components, then only WD should

be calculated. However, for signals composed of non-linearly frequency modulated

chirps, GWT would be a better choice as demonstrated in Fig 3.3. GWT of the
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isolated signal is normalized by the maximum value of WD to preserve signal

relative amplitudes in t-f representation. Mathematically,

GWTsi
(t, ω) =

WDsi
(t, ω)GTsi

(t, ω)

WDmax
i

, Eq (4.24 )

where WDmax
i is the maximum value in WD of isolated signal component si(t).

Finally, the GWTs/WDs of all the separated signal components are added up to

obtain suppressed interference crisp t-f representation.

4.3 Step By Step Demonstration

Signal composed of three parabolic chirps with varying amplitudes is considered

in this example, defined by following equation,

s(t) = e−j(20πt3+76πt) + 0.8e−j(8πt3+50πt) + 0.6e−j(8πt3+10πt). Eq (4.25 )

The sampling frequency is chosen to be 200Hz and the signal duration is taken

to be from -1.5s to 1.5s. A step by step illustration of the proposed scheme is

shown in Fig 4.6. WD of the given signal is shown in Fig 4.6(a), GT in Fig

4.6(b), and GWT in 4.6(c). Result of image segmentation is shown in color image

Fig 4.6(d). Different components are shown in different colors. Fig 4.6(e) shows

segments separated by lines. Fig 4.6(f), Fig 4.6(g), Fig 4.6(h) shows the WDs

of filtered signal components. Finally, the desired t-f representation is obtained

by adding GWTs of separated signal component as shown in Fig 4.6(i). Fig 4.6

clearly reveals that the proposed technique outperforms GT, WD and GWT. GT

image gives blurred t-f representation. Whereas, WD is hardly readable due to

interference of the CT. GWT overcomes limitation of GT and WD to an extent.

GWT gives the de-blurred and the CT free representation of lower most chirp but

upper two chirps still suffer from CT. The proposed t-f representation overcomes

the limitation of all three techniques. The proposed t-f representation clearly

resolves all three chirps and it does not suffer from CT interference problem.
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(a) (b) (c)

(d)

(e) (f)

(g) (h) (i)

Figure 4.6: (a) WD (b) GT (c) GWT (d) GT Segmented (e) Segmented
image with Lines drawn (f) WD of isolated signal (g) WD of isolated signal (h)

WD of isolated signal (i) The Proposed Approach
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4.4 Computational Cost Analysis

It is clear from the example considered that the proposed technique results in

almost CT free t-f representation in which quality of auto-terms in not compro-

mised. Unlike GWT or kernel based methods, this technique performs well even

in scenarios when the auto-terms of WD of a signal overlap the CT. This improve-

ment comes at the expense of increased computational cost. Computational cost

of the proposed algorithm is equal to sum of computational cost of the GT image

computation, image segmentation, drawing the separating boundaries, fractional

filtering and computing GWT of the separated components. The computational

cost of the GT image computation is O(N2
s log(Ns)), that of image segmentation

is O(N2
s ) as given by Acharya and Ray (2005), and that of fractional filtering is

O(Nslog(Ns)). In order to make the proposed scheme computationally efficient,

the primal form of SVM presented by Chapelle (2007) with computational cost

of O(Nsd
2 + d3) is used. Here d is the number of dimensions, which in this case

are equal to two. The computational cost of a single computation of GWT is

O(N2
s log(Ns)) as it involves computation of the product of WD and GT. There

are N number of components in signal. Thus, the total computational cost of the

proposed algorithm is O(N(2N2
s log(Ns) +Nslog(Ns) +N2

s +Ns) +N2
s log(Ns))or

simply O(NN2
s log(Ns)). In the analysis of these algorithms, computational cost

of higher order is considered and constants are ignored as is the general practice.

The computational cost of the proposed technique depends upon two variables,

namely, the number of samples in signal, and the number of components in sig-

nal. Unlike the computational cost of GWT or other kernel based methods whose

computational cost is independent of number of components in signal, computa-

tional cost of the proposed scheme increases linearly with number of components

as shown in Fig 4.7.
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Figure 4.7: Computational cost vs number of signal components

4.5 Mathematical Properties of the Proposed t-f

distribution

The proposed t-f distribution is designed with the objective to reduce the CT

of WD and it cannot be strictly called a WD. CT contain part of signal energy.

Therefore, their removal effects the mathematical properties of reultant t-f distri-

bution. The proposed t-f distibution does not fulfill mathematical properties of

WD that are related to signal energy like time and frequency marginals. However,

rest of the mathematical properties of WD like time shift, frequency shift, time

support, frequency support, IF, and group delay are still preserved.
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Chapter 5

PERFORMANCE ANALYSIS OF THE

PROPOSED TECHNIQUE

In this chapter, we compare the proposed technique with other standard techniques

proposed in the literature on the basis of following criterion:

1. Energy concentration

2. CT suppression

3. Resolution

4. Readability

The proposed technique processes GT for identification of signal components,

therefore, it suffers from same resolution limitation as that of GT. However, the

proposed technique demonstrates good energy concentration property. Therefore,

the performance of proposed technique will be evaluated on the basis of energy

concentration, CT suppression and readability criteria.

Energy concentration and CT suppression of a t-f representation can be evaluated

both visually and on the basis of quantitative measures, such as, ratio of norms by

Jones and Parks (1992), Shannon entropy measure by Shannon (2001), normal-

ized Renyi Entropy measure by Sang and Williams (1995), LJubisa measure by

Stanković (2001). These Readability of t-f representation is a subjective criteria

and can only be judged on the basis of visual interpretation.

Rest of the chapter is organized as follows. Quantitative measures employed for

comparing t-f distributions is discussed in section 5.1. These quantitative measures

are discussed in detail by Boashash (2003). The performance of the proposed

technique, on the basis of visual inspection and quantitative measures versus other
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standard techniques, is presented in section 5.2. In section 5.3 comparison of the

proposed technique with the techniques of similar performance is made on the

basis of readability and computational cost. Section 5.4 summarizes the chapter.

5.1 Quantitative measures

Quantitative measures employed for comparing t-f representations are based on

entropy and energy criteria. Entropy is a quantitative measure used for computing

information. In the context of t-f representation higher entropy implies more

blurring, CT and less energy concentration. Whereas, less entropy implies that

given t-f representation is more concentrated and has lesser CT. Same analogy goes

for energy based t-f representations. T-f representation with less energy implies

more energy concentration and better suppression of CT.

5.1.1 Shannon Entropy

Shannon criteria for t-f representation can be mathematically expressed as

Eshannon =
∑

n

∑
ω

Q(n, ω)log2(Q(n, ω)). Eq (5.1 )

It is assumed that Eshannon has a unit energy. Mathematically,

∑
n

∑
ω

Q(n, ω) = 1. Eq (5.2 )

However, above mentioned equation cannot be applied for t-f representation with

negative values. Therefore, in such scenarios absolute values may be used. Math-

ematically,

Eshannon =
∑

n

∑
ω

|Q(n, ω)|log2(|Q(n, ω)|) Eq (5.3 )

However, using absolute values will increase the overall energy of distribution

which may assume negative values like WD.
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5.1.2 Renyi Entropy

In order to overcome the limitation of Shannon entropy for dealing with distribu-

tions with negative values Renyi entropy can be employed. Mathematically,

ERenyi =
1

1− α
log2(

∑
n

∑
ω

Qα(n, ω)), Eq (5.4 )

where α is the order of entropy. We have taken its value to be equal to 3. In order

to make the above mentioned measure energy unbiased, we consider a normalized

entropy measure.

ERenyi =
1

1− α
log2(

∑
n

∑
ω Q

α(n, ω)∑
n

∑
ω Q(n, ω)

) Eq (5.5 )

5.1.3 Ratio of Norms

Jones and Parks (1992) presented a measure of energy concentration based on

ratio of norms. Mathematically,

Ejp =

∑
n

∑
ω|Q(n, ω)|4

(
∑

n

∑
ω |Q(n, ω)|2)2

Eq (5.6 )

Unlike entropy based criterion, higher value of Ejp implies better energy concen-

tration

5.1.4 Ljubisa Measure

Stanković (2001) proposed a criterion for assessment of energy concentration of

time limited signals. Mathematically,

J [Q(n, ω)] = (
∑

n

∑
ω

|Q(n, ω)
1
β |)β, Eq (5.7 )

where ∑
n

∑
ω

Q(n, ω) = 1 Eq (5.8 )

48



and β > 1. The t-f representation that minimizes J [Q(n, ω)] is assumed to be the

best distribution.

5.2 Performance Evaluation of the Proposed Tech-

nique

In order to compare the performance of proposed technique, based on energy

criterion established in earlier section, we consider four synthetic and one real

life test signal. Performance of the proposed technique is compared with GT,

WD, Pseudo Wigner Distribution (PWD), GWT, PAGE and Zhao-Atlas-Marks

distribution(ZAM) .

5.2.1 Four linear chirps

A simple signal composed of four linear chirps is being considered. For comparison

signal is analyzed by various t-f distributions as shown in Fig 5.1. GT gives CT free

but blurred representation, both WD and PWD suffer from severe CT interference

problem and we wrongly see 6 extra chirps, ZAM fails to resolve signal components,

and GWT gives clear and crisp representation, but it wrongly displays one extra

chirp in t-f plane. This extra chirp appeared because of overlapping of CT of WD

in the support regions of GT. The proposed t-f representation clearly displays all

the four chirps. This fact is also verified by quantitative analysis. The proposed

scheme has minimum value for all entropy based measures and has maximum value

for ratio of norms as shown in table 5.1.

5.2.2 Linear chirp, Gaussian atom and parabolic chirp

A simple signal composed of linear chirp, Gaussian atom and parabolic chirp is

being considered. For comparison signal is analyzed by various t-f distributions as

shown in Fig 5.2. GT gives CT free but blurred representation, WD suffers from

both inner interference and outer interference, inner interference is suppressed to
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Table 5.1: 4 Linear Chirps
T-F Representation Shannon Renyi Ratio of Norms Ljubisa

PAGE 17.51 16.52 0.0221 0.6815
PWD 16.2731 15.29 0.0454 0.2445
ZAM 17.54 16.82 0.0136 1.37
GT 16.51 15.97 0.0215 0.54

GWT 14.78 12.93 0.3773 0.0205
The Proposed Approach 13.78 12.34 0.4308 0.0073

WD 16.78 14.30 0.2306 0.1093

large extent in PWD, but it still suffers from outer interference, PAGE distribution

is hardly readable, ZAM suppresses both inner and outer interference to large

extent but auto-terms also get blurred, and GWT suppresses CT to large extent

but CT still corrupt the auto-terms in regions where CT of WD overlap auto-

terms. The proposed technique gives crisp and almost CT free t-f representation

in which all signal components can be seen clearly with their relative amplitudes

preserved. This fact is also verified from quantitative analysis. It can be seen that

all entropy based measures are minimum and ratio of norms has second largest

value for the proposed approach as shown in table 5.2.

Table 5.2: Linear, Quadratic Chirp And Gaussian Atom
T-F Representation Shannon Renyi Ratio of Norms Ljubisa

PAGE 17.1548 15.8730 0.0441 2.2643
PWD 15.8551 14.5638 0.0840 1.0838
ZAM 16.5798 14.1299 0.3270 0.9994
GT 15.7986 14.9353 0.0589 1.0547

GWT 14.6161 13.2483 0.2502 0.1441
The Proposed Approach 13.7250 12.6326 0.3159 0.0607

WD 17.0682 16.1072 0.0268 3.9993

5.2.3 Three parabolic chirps and Gaussian atom

A simple signal composed of three parabolic chirps and Gaussian atom is being

considered. Signal is analyzed by various t-f distributions as shown in Fig 5.3. GT

gives CT free, but blurred representation. WD suffers from both inner interference
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and outer interference. Inner interference is suppressed to large extent in PWD,

but it still suffers from outer interference and we can see 3 extra chirp signals.

PAGE distribution is hardly readable. ZAM suppresses both inner and outer

interference to large extent but auto-terms also get blurred. GWT suppresses CT

to large extent. Lower most quadratic chirp can be seen clearly in GWT. However,

upper two chirps and Gaussian atom still suffers from interference of CT. Proposed

approach gives clearly displays all four chirps and Gaussian atom. This fact can

be verified by the quantitative analysis given in table 5.3. Entropy measures are

minimum for the proposed approach. However, the proposed scheme has second

largest value for ratio of norms measure.

Table 5.3: Three quadratic chirps and Gaussian atom
T-F Representation Shannon Renyi Ratio of Norms Ljubisa

PAGE 16.1537 14.97 0.0766 0.7406
Pseudo-WD 16.0619 14.77 0.0736 1.8951

ZAM 16.6215 14.41 0.2244 1.2143
GT 16.0455 15.20 0.0459 2.0101

GWT 14.7545 13.43 0.1907 0.3010
The Proposed Approach 14.3687 13.26 0.1994 0.1884

WD 17.0888 15.95 0.0322 3.7449

5.2.4 Five Gaussian atoms

In this scenario, a signal composed of five Gaussian atoms is being considered.

Its t-f representations are shown in Fig 5.4. Its GT image is blurred but clearly

displays all the five components. WD due to its CT problem wrongly displays

thirteen Gaussian atoms. PWD reduces CT to large extent, but its still shows two

extra Gaussian atoms. ZAM removes CT to great extent but quality of auto-terms

is compromised. PAGE distribution also wrongly displays nine Gaussian atoms.

GWT gives good performance in this scenario and most of the CT have been

eliminated and quality of auto-terms is preserved. However, regions where auto-

terms overlap CT, that is Gaussian atom appearing in center, still suffers from CT.

Proposed approach presented clearly resolve all the Gaussian atoms and does not
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Table 5.4: 5 Gaussian Atoms
T-F Representation Shannon Renyi Ratio of Norms Ljubisa

PAGE 13.2785 11.5663 0.0011 0.1373
Pseudo WD 13.8332 12.5356 0.0004 0.6561

ZAM 14.9510 13.0076 0.0003 3.3702
GT 13.8886 13.0272 0.0002 1.2088

GWT 12.2894 11.4489 0.0006 0.1324
The Proposed Approach 12.26 11.4014 0.0006 0.1267

WD 14.1066 12.8008 0.0004 0.5293

suffer from CT interference problem. Quantitative analysis given in table 5.4 also

shows that entropy measures are minimum for the proposed approach. However,

the proposed scheme has second largest value for ratio of norms measure.

5.2.5 Bat Signal

In this scenario, a real life bat signal is considered. This signal is widely used

for evaluating t-f distribution. This signal is different from all synthetic signals

that we have considered so far. There is a significant variation in the relative

amplitudes of its components. Its t-f representations are shown in Fig 5.5. GT

image is blurred, but clearly displays all the components. WD suffers from CT

problem. PWD reduces CT to an extent, but still it is difficult to separate signal

from CT visually. ZAM removes CT but auto-terms also get blurred. In GWT

upper two chirps are not visible at all. Main reason for elimination of upper

two chirps is that these chirps are of lesser magnitude. Therefore, multiplication

operation has further lowered their strength. Proposed approach clearly displays

all signal components without CT. All entropy based measures shown in table 5.5

gives minimum entropy value for the proposed scheme. However, ratio of norms

is maximum for GWT.
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Table 5.5: Bat Signal
T-F Representation Shannon Renyi Ratio of Norms Ljubisa

PAGE 15.17 14.19 0.0001 3.7244
Pseudo WD 14.87 13.17 0.0003 2.4427

ZAM 15.02 13.54 0.0002 3.5857
GT 14.26 13.16 0.0002 1.84

GWT 12.32 10.74 0.0015 0.0927
The Proposed Approach 10.60 10.77 0.0012 0.0593

WD 15.22 13.22 0.0004 2.127

5.3 Comparison with schemes of Similar Perfor-

mance

In section 5.3, we have demonstrated the superiority of proposed scheme w.r.t

kernel based schemes and GWT. Moreover, the proposed scheme has an added

advantage of being fully automatic. Scheme proposed by Qazi et al. (2007) and

S-method are also fully automatic CT suppression schemes that can achieve the

auto-term quality equal to that of WD with no CT. In the following sub-sections we

will compare the proposed scheme with these schemes on the basis of compuational

cost and readibility criteria.

Comparison with scheme based on fractional Fourier Transform and

signal synthesis The computational cost of proposed scheme is less than the

computational cost of scheme proposed Qazi et al. (2007) for CT suppressed WD.

For the signal given in 4.25, their scheme would require 3-iterations and at least 20

computations of WD in single iteration, thus making total of 60 WD computations.

Whereas, the proposed technique proposed obtains the desired t-f representation

by computing 3 WDs and 4 GTs. There are three signal components so 3 WDs

and 3 GTs are computed for computing the desired t-f representation while one

additional computation of GT is done initially for the identification of signal com-

ponents thus making the total number of GT computations equal to 4. Moreover,

the proposed scheme is non recursive and inherently parallel. Therefore, once
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the GT image is segmented, subsequent steps can be executed in parallel on dif-

ferent hardware platforms and the computational cost can be further reduced to

O(N2
s logNs)

Comparison with S-method and its variants Stankovic (1994) proposed

a computationally efficient S-method for computing suppressed interference WD.

However, the proposed scheme has an added advantage of separating the signal

components; therefore the readability of much weaker component can be made as

good as that of the strongest component by uniformly scaling the t-f distributions

before adding them up. This fact can be verified by considering a bat signal.

All t-f representations that we have considered so far do not clearly displays two

weak chirps. However, by uniformly scaling t-f distributions of separated signal

components, a t-f distribution can be obtained in which all components are clearly

displayed as shown in Fig 5.6.

5.4 Conclusion

In this chapter, we have demonstrated the superiority of the proposed scheme

with respect to kernel based schemes both on the basis visual interpretation and

quantitative evaluation. Moreover, efficacy of the proposed scheme with respect to

schemes of similar performance is demonstrated on the basis of computational cost

and its ability to give better readable results for much weaker signal components.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.1: (a) GT (b) GWT (c) The Proposed Approach (d) ZAM (e)PWD
(f)WD (g)Page
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.2: (a) GT (b) GWT (c) The Proposed Approach (d) ZAM (e)PWD
(f)WD (g)Page
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.3: (a) GT (b) GWT (c) The Proposed Approach (d) ZAM (e)PWD
(f)WD (g)Page 57



(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.4: (a) GT (b) GWT Transform (c) The Proposed Approach (d) ZAM
(e)PWD (f)WD (g)Page
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.5: (a) GT (b) GWT (c) The Proposed Approach (d) ZAM (e)PWD
(f)WD (g)Page
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Figure 5.6: T-F representation obtained by uniformly scaling signal compo-
nents
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Chapter 6

INSTANTANEOUS FREQUENCY

ESTIMATION

This Chapter presents IF estimation technique proposed by Khan et al. (2010)

for multi-component signals corrupted by noise. The proposed technique firstly

computes GT of multi-component signal to obtain location of signal components

in t-f plane. The GT image is then de-noised using 2nd order partial differential

equations (PDE). The de-noised image is then converted into a binary image by

applying an adaptive threshold. The binary t-f image is then segmented and

fractional filters are applied to separate the signal components. Finally, a well

known IF estimation scheme based on WD with data dependent adaptive window

length is employed to compute IF of the separated signal components. The block

diagram of proposed approach is given in Fig 6.1.

Rest of the Chapter is organized as follows. Review of IF estimation schemes is

given in section 6.1. Section 6.2 formulates the problem. Signal separation tech-

nique is described in section 6.3. Section 6.4 gives the algorithm of IF estimation

based on WD with adaptive window length. Results are given in section 6.5.

6.1 Review of IF Estimation Schemes

IF of a non-stationary signal is an important parameter and it has applications in

radar, biomedical signal analysis and motion parameter estimation as discussed by

Boashash (1992); Wang and Amin (1998); Boarshash and Mesbah (2001); Djurovic

and Stankovic (2003). IF is usually estimated by detecting the peak magnitude in

t-f distribution at an instant. WD is widely used distribution for IF estimation.

It gives an ideal IF estimate for linearly frequency modulated signals. However,

it gives biased IF estimate for non-linearly frequency modulated signals. The

bias can be overcome by computing windowed WD. However, windowing on one
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Figure 6.1: Block Diagram representation of Proposed technique
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hand reduces the bias while on another hand it increases the variance of IF esti-

mate. Thus there is trade off between variance and bias. Katkovnik and Stankovic

(1998) proposed a technique for selection of optimal window for computation of

IF. Scheme is based on Intersection of the confidence interval (ICI) rule. WD

with adaptive window length is a useful technique, but it can only be applied to

mono-component signals.

Hussain and Boashash (2002) extended WD with adaptive window length for

multi-component signals. This scheme requires tracking of maxima of each signal

component while ignoring the local maxima caused by cross terms. However this

technique requires a prior t-f analysis to locate signal components and manual

selection of thresholds. Therefore this technique is not fully automatic. Rankine

et al. (2007) presented image processing based fully automatic technique for IF

estimation of multi-component signals. A t-f representation with reduced interfer-

ence is obtained by computing modified B-distribution and the IF is estimated by

peak detection. It is assumed that the signal components have non overlapping

t-f representation, therefore a connectivity criterion is applied after peak detection

to obtain IF estimates of the signal components. One of the limitations of this

scheme is that the modified B-distribution fails to give good CT suppression if the

signal components have significant frequency modulation. In another study, Bai-

he Wang (2007) applied Viterbi algorithm for IF estimation of multi-component

signal corrupted by high noise environment. However, that scheme can only be

applied for IF estimation of linearly frequency modulated signals.

6.2 Problem Formulation

Consider a multi-component signal, s(t), composed of a sum of mono-component

signals corrupted by additive white Gaussian noise. Mathematically,

s(t) =
N∑

i=1

si(t) + n(t), Eq (6.1 )
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where

si(t) = Aie
jφi(t). Eq (6.2 )

Ai is the amplitude and φi(t) is the instantaneous phase of signal component si(t).

N is total number of signal components. IF of each component is defined as

fi(t) =
1

2π

dφi(t)

dt
. Eq (6.3 )

One way to compute IF is by detecting the peak in t-f distribution of the signal

components. Mathematically,

fi(t) = argmax
ω

TFi(t, ω). Eq (6.4 )

TFi(t, ω) is a t-f representation of signal component si(t). In order to compute

t-f representation of individual signal component, the signal components must be

extracted from a composite signal. The signal components can be separated by

hybrid image processing and fractional Fourier based technique presented in the

next section.

6.3 Modified signal separation scheme based on

Fractional Filtering

This section presents the modified version of fractional Fourier transform based

signal separation scheme presented in chapter 4. In the signal separation scheme,

we only considered noise free signals, therefore for signals corrupted by additive

white Gaussian noise, a anisotropic diffusion based image de-noising step has been

added. In sub-section 6.3.1, summary of the modified signal separation scheme is

presented. While in sub-section 6.3.2, t-f denoising scheme is discussed in detail.

6.3.1 Signal Separation Scheme

Major steps of the signal separation scheme are
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1. Gabor Transform computation: Approximate locations of the signal compo-

nents is obtained by computing GT. GT is chosen as it gives cross-term free

t-f representation.

2. Time frequency image de-noising: GT image is denoised using partial differ-

ential equations.

3. Image thresholding: The de-noised grey scale t-f image is converted into a

binary image by applying a threshold. All pixels having magnitude greater

than a chosen threshold are assigned one while zero is assigned to all other

pixels.

4. Image Segmentation: Binary image separates regions separates foreground

from background. It is assumed that signal components have non-overlapping

t-f signature. Therefore, foreground of binary image is decomposed into N

number of segments.

5. Drawing lines between segments: Segments are separated by drawing lines

between them as discussed in chapter 4.

6. Fractional Filtering: Signal components are separated by applying fractional

filters.

6.3.2 Time Frequency image De-noising

GT image is composed of foreground where signal components are present and

background where no signal component is present. These background and fore-

ground regions can be identified by applying a suitable threshold. However, noise

may cause foreground region to appear as background and background may ap-

pear as foreground. Therefore de-noising algorithm must be applied before the t-f

image is converted into binary image. Mean filtering, median filtering and Gaus-

sian filtering are standard methods of removing noise from image at the cost of

blurring of edges. Unfortunately, blurring of edges may cause two closely placed
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signal components to merge in t-f plane. Anisotropic diffusion proposed by Per-

ona and Malik (1990), where image grey level changes are modeled as a second

order partial differential equation derived from the heat equation, has emerged

as power full tool of image enhancement. This model is based on intuition that

smoothing must be performed inside object boundaries not across it. This has a

direct analogy with heat equation that flow of heat across the boundaries of dif-

ferent object is constrained by diffusion co-efficient. Mathematically anisotropic

diffusion equation is given by,

∂GTτ (t, ω)

∂τ
= c(t, ω, τ)∆Gτ (t, ω) +∇c(t, ω, τ)∇Gτ (t, ω). Eq (6.5 )

∇ and ∆ are gradient and laplacian operations respectively. c(t, ω, τ) parameter

controls smoothing inside and outside image boundaries. Ideally it should be zero

on boundary. Information regarding image boundaries can be obtained from image

gradient. Let g be a decreasing function, then

c(t, ω, τ) = g(|∇GTτ (t, ω)|). Eq (6.6 )

6.4 Adaptive Instantaneous Frequency estima-

tion

In this section, we present the summary of IF estimation technique based on WD

with adaptive window length proposed by Rankine et al. (2007). Following steps

are performed for each of the separated signal components.

1. Separated signal components si(t) obtained as a result of fractional filtering

suffer from the filtered noise. Amplitude Ai and noise variance σi of signal

component can be estimated using a method based on higher order moments

proposed by Sekhar and Sreenivas (2006)
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Ai =
√
|2E[s2

i (t)]
2 − E[s4

i (t)]|, Eq (6.7 )

σi =|E[s2
i (t)]−

√
|2E[s2

i (t)]
2 − E[s4

i (t)]||. Eq (6.8 )

2. Signal components are analyzed using multiple PWDs. Mathematically,

PWDi,hk
(t, ω) =

∫
hk(τ)si(t− τ/2)s∗i (t+ τ/2)e−jωτdτ . Eq (6.9 )

hk(τ) is hamming window selected from set of increasing window lengths

H = hk = h02
k, k = 0, 1, 2, ...J

3. In order to suppress the inner-interference PWDs of separated signal com-

ponent are multiplied with their GTs. Mathematically,

BPWDi,hk
(t, ω) = PWDi,hk

(t, ω)GTi(t, ω). Eq (6.10 )

4. IF is estimated from all the PWDs by peak detection. Mathematically,

f̂i,hk
(t) = argmax

ω
BPWDi,hk

(t, ω). Eq (6.11 )

5. Check the IF estimates obtained from window length hk and hk−1 for follow-

ing inequality

|f̂i,hk
(t)− f̂i,hk−1

(t)|≤(κ+ 1)(σi(hk) + σi(hk−1)) Eq (6.12 )

σi(hk) is the variance of window hk for signal component si(t) that can be

computed by the method described in Katkovnik and Stankovic (1998). If

the IF estimate do not fulfill above mentioned inequality, then IF estimate

obtained from hi−1 is chosen to be desired IF estimate. Otherwise, k is

incremented and step 5 is repeated till we reach the largest window.
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6.5 Results

In order to evaluate performance of our algorithm we consider two different multi-

component signals. The first one is composed of two quadratic chirps and the

second one is composed of two triangular chirps.

6.5.1 Two Quadratic Chirps

Signal composed of two quadratic chirps is being considered. Mathematically,

s(t) = ej(18πt3+104πt) + ej(18πt3+8πt) Eq (6.13 )

The sampling frequency is chosen to be 200Hz and the signal duration is taken to

be from 1.5s to 1.5s. The signal is corrupted by additive white Gaussian noise of

5db. Original and de-noised Gabor Transform images are shown in Fig 6.2(a) and

Fig 6.2(b) respectively. Two binary images, obtained by thresholding the original

image and the de-noised image, are shown in Fig 6.2(c) and Fig 6.2(d). It is clear

that the binary image obtained from the de-noised image better separates the

signal components from noise. Finally IFs of separated signals are plotted against

their original IF as shown in Fig 6.2(e).

6.5.2 Two Triangular Chirps

Multi-component signal composed of two triangular chirps with different ampli-

tudes is being considered. Mathematically,

s(t) = ej(|30πt2|+76πt) + 0.5ej(|30πt2|+4πt) Eq (6.14 )

The sampling frequency is chosen to be 200Hz and the signal duration is taken to

be from -1.5s to 1.5s. The signal is corrupted by additive white Gaussian noise

of 6db. The original and the de-noised Gabor Transform images are shown in Fig

6.3(a) and Fig 6.3(b) respectively. Two binary images, obtained by thresholding

the original and de-noised images, shown in Fig 6.3(c) and Fig 6.3(d) respectively,
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clearly demonstrate that the de-noised image better separates the signal compo-

nents from noise. Finally IFs of the separated signals are plotted against their

original IFs as shown in Fig 6.3(e).

69



(a) (b)

(c) (d)

(e)

Figure 6.2: a) GT image b) De-noised Image, c) Binary Image d) De-noised
Binary Image e) IF plot vs IF estimated
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(a) (b)

(c) (d)

(e)

Figure 6.3: a) GT image b) De-noised Image, c) GT image binary d) De-noised
image binary e) IF plot vs IF estimated
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

The thesis presents following two major contributions

1. CT Suppression in WD: We have presented a t-f representation based on

image processing and fractional filtering, that has significantly reduced CT

and has auto-term quality equal to that of WD. The proposed scheme is

computationally efficient and fully automatic. Performance of the proposed

technique is evaluated on the basis of energy concentration, readability and

CT suppression criterion. Energy concentration is evaluated on the basis of

entropy based measures while readability is judged on the basis of visual in-

spection. It has been demonstrated that the proposed scheme out performs

GWT and kernel based t-f representations both on the basis of visual inspec-

tion and quantitative measures. Computational cost of the proposed scheme

is more than kernel based schemes. However, it is less than the scheme

of similar performance Qazi et al. (2007). It has also been demonstrated

that proposed scheme can give clear representation of much weaker signal

components.

2. IF estimation: An effective IF estimation scheme based on signal separation

and WD with adaptive window length has been presented. Signal separation

technique employed for CT elimination is slightly modified with the addition

of PDE based image de-noising step. This scheme is fully automatic and does

not make any assumption about IF laws of signal components. However,

the IF estimation scheme suffers from same limitations as that of the CT

suppression scheme. Thus, any improvement in the signal separation scheme

would automatically improve the IF estimation scheme.
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7.2 Future Work

There are following limitations of proposed scheme and they can be overcome in

future work.

1. Resolution Limitation: The signal separation scheme computes GT to obtain

coarse t-f representation which is subsequently processed to obtain a t-f rep-

resentation that gives high energy concentration. Reason for choosing GT for

obtaining coarse representation is that it is a linear transformation and does

not suffer from CT. However, it suffers from resolution limitation in deal-

ing with closely placed signal components. This problem can be partially

overcome either by employing other linear transforms that can give high

resolution like Wavelet transform, Spectrogram using windows in fractional

domain proposed by Capus and Brown (2003) or by using de-blurring tech-

niques such as, de-blurring of spectrogram using neural networks proposed

by Shafi et al. (2007) or de-blurring using image de-convolution technique

proposed by kai Lu and Zhang (2009). However, employing de-blurring tech-

niques will increase the computational cost.

2. Separable auto-terms: The proposed scheme can only be applied to sig-

nals with separable auto-terms and cannot cater for signals with overlapping

auto-terms like crossing chirps. This constraint can be overcome by more

intelligent image segmentation techniques which should also incorporate the

continuity of t-f signature of signals.

3. Adaptive Thresholding: The proposed scheme applies a global threshold to

form a binary image. Better results can be obtained by applying a region

dependent adaptive threshold.

4. Signal decomposition: The proposed scheme decomposes signal whose auto-

terms are not linearly separable in t-f plane. These decomposed signals are

independently processed. Discontinuities are introduced when such signal
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components are put together. This problem can be solved for certain class

of signals by repeated filtering in consecutive fractional Fourier domains

proposed by Erden et al. (1999).

5. Improved IF estimation of mono-component signal: The proposed scheme

computes IF of the separated component using ICI rule. Recently modified

ICI rule has been presented by Lerga and Sucic (2009) that gives more

accurate IF estimate for mono-component signal. Thus, modified ICI rule

can be used to compute IF from a separated mono-component signal.

6. Image De-noising : We have employed PDE based image de-noising scheme.

One of the limitation of PDE based scheme is its iterative nature and thus

a computational cost. There has been lot of research going on image de-

noising schemes. Better and more computationally efficient schemes may be

applied to improve the performance of existing schemes.

Proposed t-f representation can be applied for following engineering problems.

1. Motion Estimation: Djurovic and Stankovic (2003) used t-f distributions for

computing velocity and position of slow moving objects in sequence of im-

ages. Synthetic images containing information about the motion parameters

is obtained by projecting video on the coordinate axes. These synthetic im-

ages are mapped to the frequency modulated signals by using constant u-

propagation. Thus the problem of velocity estimation is reduced into the

problem of IF estimation. In case of single moving object frequency mod-

ulated signal would be a mono-component signal while in case of multiple

moving objects frequency modulated signal would be composed of multiple

components. In case of single moving object WD gives best estimates of mo-

tion parameters. However, in case of multiple moving objects WD cannot

be applied because of CT problem. The proposed t-f representation removes

CT of WD to great extent, therefore the proposed scheme can be used for

computing accurate estimates of motion parameters.
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2. Channel estimation Problem: Shen and Papandreou-Suppappola (2006) pro-

posed a channel estimation scheme based upon t-f representation. Parabolic

chirp signal is transmitted as a training signal through a time varying chan-

nel. Parabolic chirp signal is de-chirped at the receiver to obtain a combi-

nation of linear chirps. Modified matching pursuit algorithm is applied to

obtain the parameters of linear chirps from the received signal. These pa-

rameters are used to obtain the parameters of channel. T-f representation

proposed in this study is computationally efficient as compared to matching

pursuit algorithm. Therefore, it can be used instead of matching pursuit al-

gorithm to obtain the parameters of channel in much more computationally

efficient manner.

3. New Born Seizure detection: Dysfunction in the central nervous system of

the neonate can be identified through seizures which can be detected from

EEG signal. Newborn seizure is a multi-component signal. IF of signal com-

ponents is an important feature and is used for diagnostic purpose. Recently

Rankine et al. (2007) proposed an IF estimation scheme for newborn seizure

detection. A direction of future work could be to compare the performance of

the IF estimation scheme proposed in this thesis with the scheme presented

by Rankine et al. (2007) for new born seizure detection.
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Stanković, L., 2001. A measure of some time-frequency distributions concentration.
Signal Process. 81 (3), 621–631.

Stankovic, S., Stankovic, L., Jul 1997. An architecture for the realization of a
system for time-frequency signal analysis. IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, 44 (7), 600 –604.

Wang, C., Amin, M., Jan 1998. Performance analysis of instantaneous frequency-
based interference excision techniques in spread spectrum communications.
IEEE Transactions on Signal Processing 46 (1), 70 –82.

79


	Acknowledgment
	Declaration
	Abstract
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Background
	1.2 Objective
	1.3 The Proposed Methodology
	1.4 Contribution
	1.5 Thesis Organization

	2 Literature Review
	2.1 Classical Signal Analysis Technique and need for t-f analysis
	2.2 Time Frequency Techniques
	2.2.1 Instantaneous Frequency
	2.2.2 Linear Time frequency representations
	2.2.2.1 Short time Fourier Transform
	2.2.2.2 Wavelet Transform

	2.2.3 Quadratic Time Frequency Distributions
	2.2.3.1 Spectrogram
	2.2.3.2 Wigner Distribution
	2.2.3.3 Limitations of WD


	2.3 Cross-term suppression techniques for WD
	2.3.1 Cohen's Distributions
	2.3.1.1 Fixed Kernel
	2.3.1.2 Signal dependent Kernel Representations

	2.3.2 Reassigned Time frequency distributions
	2.3.3 Non-linear Filtering
	2.3.4 S-Method
	2.3.5  Adaptive S-Method
	2.3.6 Polynomial Wigner Distribution 
	2.3.7 Gabor Wigner Transform
	2.3.8 Cross-terms deleted Wigner Distribution using Bessel function expansion
	2.3.9 Matching Pursuit Algorithm
	2.3.10 Fractional Fourier Based Interference suppression in Wigner Distribution
	2.3.10.1 S-Method in Fractional Fourier Domain
	2.3.10.2 Cross-term suppression using signal synthesis and fractional Fourier transform 



	3 Critical Analysis of Gabor Wigner Transform
	3.1 Limitations of Gabor Wigner transform
	3.2 Experimental Results
	3.2.1 Two Gaussian Atoms
	3.2.2 Three Gaussian Atoms
	3.2.3 Parabolic Chirp


	4 Cross-term Suppression using 2D signal processing Techniques
	4.1 Problem Formulation
	4.1.1 Desired time frequency representation
	4.1.2 Support Vector Machines
	4.1.3 Fractional Fourier Transform

	4.2 The Proposed Approach
	4.2.1 Blurred time frequency representation
	4.2.2 Image thresholding
	4.2.3 Image Segmentation
	4.2.4 Drawing separating boundaries between regions
	4.2.5 Fractional Filtering
	4.2.6 Computing GWT or WD of isolated signal components

	4.3 Step By Step Demonstration
	4.4 Computational Cost Analysis
	4.5 Mathematical Properties of the Proposed t-f distribution

	5 Performance Analysis of The Proposed Technique
	5.1 Quantitative measures
	5.1.1 Shannon Entropy
	5.1.2 Renyi Entropy
	5.1.3 Ratio of Norms
	5.1.4 Ljubisa Measure

	5.2 Performance Evaluation of the Proposed Technique
	5.2.1 Four linear chirps
	5.2.2 Linear chirp, Gaussian atom and parabolic chirp
	5.2.3 Three parabolic chirps and Gaussian atom
	5.2.4 Five Gaussian atoms
	5.2.5 Bat Signal

	5.3 Comparison with schemes of Similar Performance
	5.4 Conclusion

	6 Instantaneous Frequency Estimation
	6.1 Review of IF Estimation Schemes
	6.2 Problem Formulation
	6.3 Modified signal separation scheme based on Fractional Filtering
	6.3.1 Signal Separation Scheme
	6.3.2 Time Frequency image De-noising

	6.4 Adaptive Instantaneous Frequency estimation
	6.5 Results
	6.5.1  Two Quadratic Chirps
	6.5.2 Two Triangular Chirps


	7 Conclusion And Future Work
	7.1 Conclusion
	7.2 Future Work

	References



