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ABSTRACT 

  

Histone proteins wrap DNA around in small globular entities commonly known as 

nucleosomes. The post translational modifications to the histone tails are referred as 

histone modifications (HMs). The regulation of DNA in order to access the 

transcription machinery is epigenetically programmed by specific DNA and 

chromatin covalent modifications. HMs could either be present or absent at particular 

genomic loci and the combinatorial patterns of the specific modifications being 

addressed as óhistone codesô, are believed to co-regulate significant biological 

processes. Regions defined by combinatorial patterns of marks can be referred to as 

chromatin states. Chromatin states associated with genomic locations correlate with 

specific functional elements as enhancers, transcription start sites, which can be 

exclusively inferred from successive combinations of chromatin marks in their 

contiguous locations. Biologically significant combinatorics of epigenetic 

modifications and their subsequent functional interplay are still mostly unrevealed. 

We aimed to use ChIP-Seq data of Histone modifications at different genomic loci to 

highlight the unbiased genomic grouping and to decode the complex biological 

network of HMs in association with other chromatin players in defining various 

chromatin states.  

We used different tools and techniques to accomplish our task. Complex 

biological networks underlying the hidden chromatin states were revealed via merging 

machine learning and graph theory existing approaches. Histone modification 

efficient and simple combinatorics was studied at a global and local scale by 

developing and implementing a clustering and biclustering tool. Results have been 

compared with the existing approaches. Meanwhile a simple and efficient 

computational methodology for efficient chromatin states identification for 

ChromHMM (HMM based chromatin segmentation) has also been developed by 

utilizing Hidden Markov Models components. 

As a result of above study we revealed the role of various factors in 

maintaining the chromatin state connectivity via focusing chromatin state networks. 

Our studies highlighted the minimum dominating nodes set and various hubs in 

chromatin state networks focusing their interaction patterns. Along with we developed 

and tested a clustering tool ChromClust and a biclustering tool ChromBiSim to 

highlight histone combinatorics in binarized signal data in an efficient and interactive 

way. ChromClust operates at global level while ChromBiSim mines local patterns of 

histone modifications associations.  

We conclude that epigenomic landscape is portrayed as interplay of various 

factors including histone combinations, transcription factors, chromatin modifiers and 

most importantly the underlying DNA motifs. Each chromatin state has a specific set 

of these factors which interact with each other to mark that state hence creating the 

whole chromatin states network.  
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Chapter 1 

INTRODUCTION  

The molecular unit of heredity of a living organism is a gene. A modern working 

definition of a gene is "a locatable region of genomic sequence, corresponding to a 

unit of inheritance, which is associated with regulatory regions, transcribed regions, 

and or other functional sequence regions "[1-2]. Now the question arises that are we 

the mere artifact of the important players of life- GENES? The causal hidden factors 

contributing towards the composition of the organism phenotype are anticipated to be 

revealed as a result of the human genome interpretation. This decoding process is just 

the start of this genomic era which has only shed light upon the surface of the 

complex mechanisms contributing towards organismôs phenotype. For a long time, 

the genome has been considered as incontrovertible master plan lain down with the 

inception of our lives.  

1.1 Epigenetics 

Recent discoveries highlighted the fact that the information and directives for the use 

of genetic material are the interplay of other genetic and environmental elements. 

With this view point, the first familial genetic stratum- the DNA- of the cell which is 

indistinguishable in all tissues of the individual corresponds to ñthe hardwareò and is 

used as a platform for the execution of all the mechanisms of the body. The cell 

software on the other hand is represented by the set of connections of the changing 

environment around us. The software constitutes the second level of organization 

randomly disseminated across the genome and is continuously read, written and 

erased as a result of both social and substantial environmental signals [3]. 

Waddington in 1942 portrayed this theoretical connection between the genes and their 

instantaneous settings during development and phenotypic determination as 

epigenetics [4]. Changing patterns in gene expression without affecting the DNA 

sequential layers is referred as epigenetics. The regulation of DNA in order to access 

the transcription machinery is epigenetically programmed by specific DNA and 

chromatin covalent modifications [5].  The causal hidden molecular mechanisms of 

various epigenetic processes are being highlighted at an outstanding rate; various 
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techniques and tools being used to unravel the pathways and the key players involved. 

Many challenges are yet to be met, but we what James Watson said canôt be neglected 

that ñthe major problem, I think, is chromatiné you can inherit something beyond the 

DNA sequence. Thatôs where the real excitement of genetics is nowò [6].   

1.2 Epigenetic marks 

Epigenetic marks responsible for phenotypically different tissues having the same 

genetic information and hereditary features of the organism despite of the varying 

environmental conditions occur as a result of complex enzymes/chromatin 

interactivity which maintains and establishes diverse gene expression programs in 

particular cell types [7]. 

Epigenetic modifications plunge into two major categories: DNA methylation and 

histone modifications.  

DNA methylation in vertebrates occurs almost exclusively in the context of CpG 

dinucleotides and in the genome most CpGs are methylated [8-9]. In plants non-CpG 

methylation has well developed functional role which might also be visualized in 

mammals [10]. In early mouse embryo and embryonic stem cells this has been viewed 

at a low rate, which showed a significant decrease in somatic tissues [11-12]. CpA 

methylation has been highlighted in one of the studies as means for allelic exclusion 

in sensory neurons [13]. 

Along with DNA methylation the second major category of epigenetic modifications 

is histone modifications. They detect important cell states. DNA packed inside the cell 

highlights one of the important states known as Chromatin. The fundamental unit of 

chromatin is nucleosome, an octamer of four core histones (H3, H4, H2A, H2B) 

around which 147 base pairs of DNA are wrapped. Except the N-terminal tails of 

histones which are unstructured, the core histones are mostly globular. Modification 

of the histone tails is one of the striking features of histones. Histone tails bear 

hundreds of modifications of which at least eight are of distinctive nature [14]. 

Histones have multiple modification sites. Mass spectrometry or antibody specificity 

has been used to detect over more than 60 different residues on histones where 

modifications occur. Well this could be a miscalculation of the number of 

modifications taking place on histones because a true figure could be estimated by 

looking at the fact that methylation at lysines or arginines may be one of three 
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different forms: mono-, di-, or trimethyl for lysines and mono- or di- (asymmetric or 

symmetric) for arginines. The meaningful functionality do exist for this cosmic set of 

histone modifications, but these modifications could not determined or highlighted 

one at a time on the same histone. Signaling conditions of the cell decide the 

appearance or timings of these modifications [14].  

Histone modifications are directed by the very important factory- the enzymes, which 

are being studied intensively over the last few years. Enzymes for various 

modifications have been identified in some studies like acetylation [15], methylation 

[16], phosphorylation [17], ubiquitination [18], sumoylation [19], ADP-ribosylation 

[20], deimination [21-22], and proline isomerization [23]. 

Modification of each and every nucleosome in one way or the other could be 

scrutinized comprehensively. This would provide with a static view because histone 

modifications are dynamic in nature and change rapidly. These modifications have a 

short duration of few minutes after receiving the stimulus from cell surface. 

Investigation of bulk histones under one specific set of conditions will highlight only 

a fraction of the probable modifications [14]. 

The interaction of different histones in contiguous nucleosomes under the influence of 

modifications may affect higher-order chromatin structure. Acetylation bears 

chromatin unfolding potential amongst all modification because it neutralized the 

basic charge of the lysine. 

Protein modifications recruitment and binding include specific domains. Chromo-like 

domains of the Royal family such as chromo, tudor, MBT and nonrelated PHD 

domains recognize methylation, whereas acetylation is captured by bromodomains 

and a domain within 14-3-3 proteins recognize phosphorylation [14]. 

1.3 Functional Consequences of Histone Modifications 

Histone modifications functionality simply can be categorized into two main parts, 

firstly establishing global chromatin environments and secondly management of DNA 

based biological responsibilities. Genome is divided into two major portions globally 

based on histone modification combinatorics; euchromatin and heterochromatin. 

DNA is accessible for transcription in case of euchromatin while it remains 

inaccessible in case of heterochromatin. Modifications devise chromatin 

disentanglement for assisting and facilitating DNA-based and other functions. These 
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functions range from the local one to the global, meaning from gene transcription and 

DNA repair to DNA replication or chromosome condensation. 

DNA extrication, manipulation, and reverting back to the correct chromatin state, all 

these biological functionalities require the proper sequential recruitment of the 

machinery. Facilitation of DNA functions via histone modifications is termed as 

óhistone codeô. The specific set of histone modifications come under this scenario, 

while the true prediction of this code seems usually unlikely [24]. 

1.4 Establishing Global Chromatin Environments  

Silent heterochromatin and active euchromatin are the two broadly categorized 

divisions of the genome. These categories are linked with distinctive set of 

modifications. Enzyme recruitment for chromatin modification by boundary elements 

segregates the environment in different compartments. CTCF an important 

transcription factor is an example of boundary element binding protein used for the 

delivery of modification enzymes [16]. 

The occurrence of methylation at H3K4 and H3K9 in contiguous euchromatic regions 

sustain the heterochromatin boundaries shown in studies on fission yeast. Therefore 

one of the vital roles of chromatin modifications is the maintenance and preservation 

of chromatin environments into two broad categories. Safeguarding the chromosome 

ends and their segregation during mitosis is determined by the heterochromatin 

structure. High levels of methylated sites such as H3K9, H3K27 and H4K20 along 

with lower levels of acetylation are linked with silent heterochromatin state in 

mammals [16]. 

The preservation of inactive X chromosome is dealt with the employment of PC2 to 

H3K27me3, while on the other hand the maintenance of the pericentric 

heterochromatin is carried out with the employment of HP1 to H3K9me [16]. In both 

budding and fission yeast methylation at H3K27 is absent while H3K9 is found in 

fission yeast and is more likely to the higher organisms [25-27]. The production of 

small interfering RNAs (siRNAs) from the transcripts originating from centromeric 

repeats in fission yeast is carried out via the nucleation of heterochromatin instead of 

its dispersion [16, 27]. Packaging of dicer-mediated siRNAs into RITS complex 

distributes H3K9 methylation to the heterochromatin development locations. 
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Spreading and maintenance of heterochromatic state in Swi6 pombe is carried out 

with the employment of HP1 [16]. 

Large genomic portion is known as euchromatin, which is the flexible environment 

for DNA regarding biological inputs. The turning on and off behavior of the genes, 

untangling the DNA for repair and replication, and other such open choice states are 

highly reflected by the modification patterns. Genes bear low levels of acetylation, 

methylation and phosphorylation in transcriptionally inert or inactive state. Actively 

transcribed euchromatin bears higher acetylation levels along with further enzymatic 

activities and trimethylation of H3K4, H3K36 and H3K79.  One of the recent findings 

highlighted bivalent domains acquiring both repressive and active modifications, 

which has shaken the very basic observation that active and silent marks dictate two 

discrete types of chromatin environments [25]. In mouse ES cells bivalent domains 

were revealed during the scrutiny of various highly conserved noncoding elements. 

The coexistence of two contradictory methylation sites H3K27me and H3K4me in the 

bivalent domains were exposed via ChIP on ChIP technology [25, 26]. 

Typically H3K4 methylation is implicated in active chromatin while H3K27 

methylation is involved in silent chromatin. The low-level expression of 

developmental transcription factors is associated with enrichment of these conflicting 

modifications within bivalent domains. In case of differentiation of ES cells, only one 

of the modifications amongst the repressive or activation were attained.  Analysis of 

these findings highlighted that the bivalent chunk of modifications with in ES cells 

retain the transcription factors involved in controlling differentiation processes, in 

poised and low-level expression states. The preservation of pluripotency in ES cells 

could be implicated through these findings. The selective regulation of modification 

pathways would be helpful in manipulating the differentiation of stem cells. 

1.5 Management of DNA-Based Processes 

DNA-bound transcription factors distribute chromatin modifying enzymes for the 

regulation of gene expression with euchromatin. A cascade of modification events is 

generated as a result of binding of transcription factor to the promoter region of the 

specific genes, which then result in expression of repression of those genes. 

Modifications can be classified into two categories; one associated with the activation 

while the other with the repression for the purpose of transcription. 
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Activation involves acetylation, methylation, phosphorylation and ubiquitination 

while repression occupies methylation, ubiquitination, sumoylation, deimination, and 

proline isomerization. This fact has been clear from the studies that modification of 

any kind has the ability to activate or repress under varying environments; e.g. the 

coding region has a positive effect of methylation at H3K36 while in promoter it 

produces negative effects; similarly methylation of H3K9 may also have the same 

effects, like positive in coding and negative in promoter regions [28]. Environmental 

perspectives matters a lot in case of modifications to work. Histone modifications 

have vital roles to play in various processes like DNA repair, DNA replication and 

chromatin condensation. 

1.6 Histone Modifications: Truly Epigenetic or not? 

Histone modifications deal with various epigenetic processes. Epigenetics could be 

simplistically defined as those heritable phenotypic changes which donôt entail DNA 

sequence modification. Epigenetics is now being used as the term without ñheritableò 

conveying the meaning of ópassing on informationô by the genome which is not 

encoded on DNA. The term maintenance becomes important because this lies under 

the shed of non-genetic memory being transmitted from generation to generation. 

Transmission of various cellular phenotypic phenomenon like X chromosome 

inactivation, aging, reprogramming, gene silencing, heterochromatin formation, and 

imprinting occur in the same way. Along with this environment does induce various 

changes which are transmitted to next generation despite of any original stimulus, 

well studied in plants [27, 28]. 

Involvement of histone modifications in epigenetic processes is not the debatable 

question rather the passing on of the memory of a given state or memory 

implementation after passing on from a distinctive process are the areas of 

investigation [27, 28]. There is a need to know whether these processes are under the 

control of histone modifications or not? If this is so then a mechanism for the 

broadcast of such modifications onto the chromatin of replicating DNA should exist. 

Anticipation has been done for H3K9 methylation for the transmission of 

heterochromatin: employment of HP1 induces H3K9 methylation activity which alters 

the nucleosomes on the daughter strand this guaranteeing the transmission of 

H3K9me mark [27, 28]. Lysine methylation was given an epigenetic status because of 
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monitoring the persistent behavior of H3K4me3 along with the mode of transmission. 

The mother cell chromatin structure imparting the modification patterns to the 

daughter cells have not been yet declared as the true structures. So itôs also still 

questionable that does methylation of lysines dictate the memory of chromatin 

structure? Along with the discovery of demethylases, the existence of histone 

methylation as a permanent mark becomes unstable [27]. This also makes it 

questionable whether other types of modifications are epigenetic or not? Does this 

mean that entire complex chromatin structure of the whole genome is modulated by 

very few number of histone modifications? Does the correct transmission of assembly 

of local chromatin structure require other determinants? Association and transmission 

of histone modifying complexes/enzymes via small RNAs has been studied in fission 

yeast [28]. Employment of HP1, methylation of H3K9 and heterochromatin formation 

could also be affected by the deletion of the enzyme dicer which processes small 

RNAs [29-31].  

Working of RNA as a determinant is tempting and some facts do exist which 

highlighted it so. One of the studies have highlighted the fact that small RNAs in the 

sperm can be passed on to the offspring intervene an epigenetic phenotype known as 

paramutation one of the processes very firstly acknowledged in plants [32]. This 

whole mechanism is extensive rather than limited. Many genomic loci may radiate 

small RNAs and after passing on to the next generation these RNAs get involved in 

spreading and passing chromatin-modifying complexes to genes of interest and 

required loci in order to create the effect of whole chromatin being observed [28, 33].  

The extreme accuracy of small RNAs possessing nucleic acid as their guiding 

machinery adds a tempting feature in their delivery system. Time will decide for the 

pervasiveness of such assumptive means of chromatin information transfer. This 

anticipated model for RNA considers it as an ideal and faultless molecule for passing 

on the memory of a particular chromatin state [33]. 

This consideration of RNA- intervened processes doesnôt neglect the vital role of 

histone modifications in epigenetic dealings. This simply highlighted that histone 

modifications may be the executers behind this epigenetic scenario despite of being 

the carriers of the memory. DNA methylation, post translational histone tail 

modifications and non-coding RNA-based mechanisms are epigenetically regulated 

gene expression pathways [34]. 
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1.7 Transcription factors and Transcription factor binding 

sites 

Transcription factors (TFs) are important players of gene expression regulation 

mechanism. The crucial step in activation and repression of gene is binding of the TFs 

to their target loci.  TFs recognize short and dispersed DNA segments in the genome 

called as transcription factor binding sites (TFBSs). The shorter length of TFBSs 

makes their prediction challengeable [35].  

The binding of TFs vary with respect to tissue specificity, developmental stages or 

environmental conditions. This dependency makes the prediction more challenging. 

TFBSs have been predicted both by experimental as well as computational methods. 

Genome wide identification of these sites is carried out by ChIP-Seq; one of the well 

known and powerful methods [36, 37].  

The unavailability of ChIP-quality antibodies against each TF obstructs the prediction 

of all TFs encoded in the genome using ChIP-Seq. A limited number of TFs have 

been successfully tagged in mammalian genomes via tagging techniques which have 

been applied to tag every individual TF.  

1.7.1 Computational prediction of transcription factor binding sites 

Computational prediction of TFBSs is now being carried out [38].Position- specific 

scoring matrix (PSSM) which reflects the preference of nucleotides at each position 

has often been used to represent the DNA binding sites of TFs [39]. In order to 

improve prediction accuracy and to avoid false positives, additional factors as 

conservation of TFBSs and co-localization are also included. Despite of this the 

problem still remains challenging.   

1.7.2 Chromatin signatures at transcription factor binding sites 

Computational prediction of TFBSs doesnôt include conditional dependency for their 

differentiation from one condition to the other. Many studies have reported the 

association of TFBSs with various chromatin signatures. ChIP-Seq studies have 

highlighted the contribution of various chromatin modifications for the recruitment of 

TFs at particular TFBSs. Transcription factor binding events, gene interactions and 

DNA sequence analysis are the basis of gene regulation studies. Genome wide 

epigenetic marks specially DNA methylation and histone modifications have 

revolutionized the study over the past decade. The post-translational modifications of 



 

9 

 

the histone proteins which form nucleosomes by wrapping about 147 base pairs of 

DNA are known as histone modifications. Various biological processes such as 

transcription, dosage compensation, DNA repair, splicing and many more like 

alteration of chromatin structure or recruitment of key proteins are affected by the 

histone modifications [14, 40]. 

1.7.3 Genome-wide mapping of histone modifications via ChIP-Seq  

Genome-wide mapping of histone modifications using ChIP-Seq technologies is an 

alternative approach for TFBSs prediction [41- 42]. Various chromatin signatures are 

associated with regulatory elements like promoters and enhancers etc, and could be 

used in their prediction [41, 43-44]. Genome- wide mapping of chromatin 

modification profiles and TFBSs is carried out by combining chromatin immuno-

precipitation (ChIP) with high-throughput sequencing (ChIP-Seq). Huge amounts of 

data are being generated via ChIP-Sequencing technique and this increases the need 

of new analysis algorithms for such data [45].  

1.7.4 Histone modifications combinatorics mapping onto functional 

genomic elements 

The amalgamation of different histone modifications concedes different functional 

specificities [46]. For example, H3K4me3 and H3K9ac mark the nucleosomes near 

the active promoter regions while the inactive promoter regions in Saccharomyces 

cerevisiae generally lack these marks [24, 47-48]. In humans active promoters are 

collated with H3K4me3 while enhancers are collated with H3K4me1 and are deficient 

in H3K4me3 [41]. It is therefore clear that H3K4me3 is the histone modification 

which is liked with promoter regions in the genome and sequencing of these regions 

will show high enrichment of this modification. On the other hand the enhancer 

regions have been found deficient of H3K4me3 mark while they have shown high 

enrichment towards H3K4me1 histone modification. With the detection of plenty of 

histone modifications, it is plausible that additional patterns of chromatin 

modifications exist, and may divulge novel functional elements of the genome [49].  

1.8 Chromatin combinations and Chromatin States 

The dissemination of chromatin domain across the genome is highlighted by histone 

modifications combinatorics. Regions defined by combinatorial patterns of marks can 

be referred to as chromatin states.  Differences in histone modifications cause 



 

10 

 

differences in ñon-offò transcriptional states and lead to two major chromatin domains 

or states referred to as euchromatin and heterochromatin [46]. Chromatin states 

associated with genomic locations correlate with specific functional elements as 

enhancers, transcription start sites, which can be exclusively inferred from successive 

combinations of chromatin marks in their contiguous locations [50]. Associations of 

histone modification combinatorics with the functional DNA elements are being 

divulged by scrutinizing multiple histone modification maps. 

These studies have used various segmentation and visualization methods for dividing 

the genome into different states and then naming the states based on the combinations 

of histone modifications but none of them have provided the unbiased criterion to 

identify the number of states for the data set under consideration. In each study the 

number of chromatin states has been fixed without providing the computational 

reason behind it which makes the criterion unbiased. 

The unbiased criterion means that there should be some computational way to identify 

the number of states for the data under consideration. Along with that it is still 

ambiguous whether these modifications are causes or effects of transcription, these 

observations evidently reveal an association between various combinations of histone 

marks and various transcription states [51]. This research will try to segment the 

genome in an unbiased fashion by validating the existing scoring methods. Along 

with these validations we will study the link between genetics with epigenetics.  

1.9 Problem Statement 

Biologically significant combinatorics of histone modifications and their subsequent 

functional interplay has mostly been unrevealed at present [52]. Regardless of 

available data about histone modifications and their functions still there is lot more to 

be explored. Particularly there is a need of understanding the underlying hidden 

system of multiple histone combinatorics and its relevance to transcription [51-53].  

Hypothesis of histone code implies regulation of gene transcription in a collective 

manner by co-occurring histone modifications. The exact pattern is yet to be 

untangled and its decoding is highly dependent on deciphering the hidden networks of 

histone modifications in different genomic regions [52-53].  

Therefore there is a need to investigate this hidden combinatorics and networks of 

histone modifications from different angles. In this PhD research we would critically 
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work on this aspect. We would be looking at chromatin state networks and the role of 

histone modification combinatorics in these networks. 

We will study the contribution of the underlying DNA motifs in setting the chromatin 

states and ultimately their effect on chromatin networks. The study of DNA motifs 

along with the combination of epigenetic marks at particular transcription factor 

binding sites representing a chromatin state will help in finding out the genetic basis 

of epigenetic marks. Classification of SNPs and genome wide association studies 

(GWAS) enrichment in various states will help in the inference of biological and 

medical data. We will also provide an efficient and unbiased platform for genome 

segmentation along with providing the computational strategy for chromatin states 

calculation for existing methods. 

1.10 Research Methodology 

To evaluate our hypothesis the following strategy will be adopted.  

1. Data Retrieval 

ChIP-Seq data of histone modifications and transcription factors binding sites 

would be retrieved from data repositories [54]. 

2. Genome Segmentation 

We would segment the genome using Hidden Markov Model (HMM) scripts 

of the data under study. 

3. Genome Mapping and Annotation 

In this phase we shall carry out the mapping and annotation of the segmented 

data into states (from step 2) to the genome in order to indentify the 

transcription factor binding sites. This is also a standard process and has been 

reported in literature [52, 54]. 

4. TFBSs relation with TFs and Histone Modifications 

Study and analysis of states and peaks of histone modifications and TFs will 

help in identifying the relationship of TFs, histone modifications and TFBS. It 

will also help in studying the link between genetics and epigenetics layer. 

5. Unbiased genomic segmentation 

We will use various statistical measures to provide a computational stratgey 

for identifying chromatin states for existing platforms. We will also provide 
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our own independent platform for identifying patterns in the genome in an 

unbiased and user friendly way. 

6. Linking genetics and epigenetics 

Step 4 would help in proposing the role of DNA sequence motifs in setting 

chromatin states. 

7. Validation 

Validation of role of DNA motifs would be obtained via results comparison 

with existing methods. 

1.11 Summary 

We introduced here the basic terminologies regarding epigenetics, histone 

modifications and their combinations, association of transcription factors with histone 

modifications, objectives of our research and the major steps to be followed to 

conduct this research work. 

This PhD thesis is organized into 6 chapters; where chapter 1 is the introductory 

chapter describing the background details of the topic chosen. Chapter 2 describes 

review of literature mainly focusing the techniques relevant to the field. Chapter 3 

highlights the tools (including hardware and softwares) used in study, while chapter 4 

highlights the methodologies which have been opted to carry out this PhD research 

work. Chapter 5 describes the results and their discussions and the last chapter 6 

concludes the studies followed by the references and appendices sections. 
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Chapter 2 

LITERATURE REVIEW  

Various computational methods have been developed and utilized for the prediction 

of histone modification combinatorics from ChIP-ChIP/Seq data sets till now. It is 

complicated to scrutinize and investigate the ChIP-Seq data [55]. Demarcation of the 

chipped enriched regions from one sample source at a time with optional control 

sample is the property of many existing analysis tools [56].As enrichments of histone 

modifications are weak and not very confined and this makes their predictability very 

tricky and tough. Peak calling approaches have been amplified for broader domains 

along with systematically signifying these signals beyond read counts [45, 57-58]. 

Peak calling methods also have been tailored to paired experimental designs in order 

to associate epigenetic signals to biological functions and processes [59]. Each 

epigenetic mark contains the information for perceiving the biochemistry and design 

of its hidden causal genome. As already discussed, histone modifications 

combinatorics, their variants and TFs mutual functionality is highly informative [60- 

61].  One of the major limitations of the peak calling methods is their inability to deal 

with multiple signals at a time and this is a challenging task [62-64].  

2.1 Genome Segmentation Approaches 

Peak calling algorithms have the drawback of handling single at a time. A challenging 

task was to handle multiple signals at a time. Therefore analyzing histone 

modifications data in the form of combinatorics was the hour of need. This has been 

fulfilled by the introduction of various approaches. These approaches majorly could 

be classified into two categories: locus-based clustering and genome wide 

segmentation. Some of the widely used segmentation techniques have been mentioned 

along with their limitations. 

2.1.1 ChromaSig 

ChromaSig [49] an unsupervised approach highlighted the recurrence of histone 

modification ómotifsô traversing the human genome. The histone combinatorics has 

been studied simultaneously with the help of clustering approach. Chromatin 

signatures are grouped up without the aid of any external annotations or training sets. 
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Only promoters and enhancers have been focused much ignoring the transcription 

factors effect. ChromaSig classifies genomic location with globally harmonious 

chromatin signatures. This method generally assumes that for genome annotation a 

small set of chromatin states is adequate. ChromaSig is capable of discerning subtle 

variations in chromatin signatures using histone modifications data only. It was noted 

that various functional activities related with enhancers like binding of particular 

transcription factors and co-activators are interrelated with particular histone 

modifications present at enhancers. This procedure is yet not clear and needs further 

studies. This mechanism could also be studied at various other genomic loci such as 

insulators, promoters etc. along with the effect of transcription factors. 

2.1.2 Spatial Clustering Approach 

Similarly a spatial clustering algorithm [65] utilizing Hidden Markov Model (HMM) 

was projected for the prediction of combinatorial patterns stretched over adjacent 

genomic locations. Inspecting DNA regions bearing specific histone modifications is 

now consistently being achieved via ChIP-Seq [66].  This method is limited to histone 

combinatorics without studying the effect of TFs and TFBSs. 

2.1.3 Chromia 

Histone combinatorics was studied at promoters and enhancers using supervised 

learning approach by Won [43]. Identification of functional regions such as promoters 

and enhancers solely as well as along with PSSM binding patterns and transcription 

factor binding sites by amalgamating histone modifications such that a particular 

pattern represents a signal emanating from a particular HMM state was reported by 

Won et al., [38, 43]. The data set consisting of 8 histone modifications and 13 TFBSs 

in mES cells were scrutinized which revealed the association of chromatin signatures 

along with enhancers and promoters. 

The TFs didnôt show any remarkable association with histone modifications, which is 

because of the fact that the data set was very limited and didnôt include a wide range 

of TFs and modifications. In order to unravel the hidden mechanisms, the correlation 

between the TFs and histone marks require further corroboration. The data set utilized 

only eight marks insufficient to locate any regulatory element in the genome. More 

marks along with the other regulatory elements will improve the predictions by using 

an unsupervised approach. 
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2.1.4 ChromHMM- The Binarization Approach 

In a more recent work Ernst and Kellis proposed an alternative HMM algorithm based 

on the binarization of presence or absence of each histone mark [52]. Epigenetic states 

such as heterochromatin, various enhancers, splicing regions as well as transcriptional 

process covering variety of genomic locations have been highlighted using HMMs. 

HMM states identification has not been supported by any computational view point. 

The number of states has been fixed to 41 without any sound justification.  

2.1.5 CoSBI 

Ucar et al., [50] presented a biclustering approach CoSBI for monitoring the histone 

modifications combinatorics. They identified subsets of chromatin modifications 

covering diverse genomic regions via a scalable subspace clustering approach using 

coherent and shifted bicluster identification. This study for the first time introduced 

the concept of local biclustering in case of histone modifications combinatorics. They 

presented a complex 3D input formatting of the input data. CoSBI although the first 

platform but is not user friendly. 

2.1.6 Graphical Models 

In a more recent study [51] the associations between histone modifications have been 

highlighted in the form of graphs where nodes represented the modifications and 

edges formed the associations. Associations among histone modifications specifically 

in promoter regions by various studies have been confined using Bayesian networks 

(BNs) [67-70]. These studies intended to ascertain causal links for histone 

combinatorics considering which modification is required for the occurrence of the 

other. In existence of hidden mystifying factors occurring recurrently in biological 

systems, declaration of causality in BNs is contentious [71- 73]. Furthermore, BNs 

forbid circuits or feedback system, which is not viable in biological systems [51]. The 

main focal point was the edges that correspond to direct relations. 

Associations among histone modifications which have a direct relationship and whose 

association could not be represented exclusively by mystifying factors; have been 

enlightened by drawing edges between histone modifications. This work focused 

sparse partial correlation networks (SPCNs) using graphical Gaussian models. The 

view point in using PCNs was as histone modifications combinatorics has not been 

touched via this approach [51]. Focusing interactions among histone modifications is 
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a remarkable way to pin point their relationships. These interactions are abstract and 

not physical. These networks could be better explained, defining them as physically 

existing ones, by including various other existing parameters like chromatin 

modifiers, enzymes or proteins involved in the process. So it is important to include 

the role of various transcription factors, transcription factor binding sites along with 

histone modifications combinations to mark the diverse genomic regions like 

promoters, enhancers, heterochromatin and insulators etc. 

Along with this another parallel study [53] aimed at decoding the complex biological 

network of HMs in a single region and demonstrating how the HM networks differ in 

different regulatory regions. According to this work the considerable association 

between histones and genomic functions is obtained due to variations in the network 

attributes. This basically indicates unraveling the óhistone codeô. This also has been 

highlighted by demonstrating that different crosstalk mechanisms are used to 

characterize functionally variant genomic regions as promoters, enhancers and 

insulators etc. The difference between two networks has been formalized using 

model-based approach. This study used the proposed graphical model for the selected 

HMs used in CD4+ T lymphocytes (17, 26) for 3 different types of genomic regions: 

promoters, enhancers, and insulators [53]. The model is limited for identifying the 

interactions among HMs only. 

One of recent graph based studies [74] highlighted the interactions among histone 

modifications and chromatin modifiers. Study was limited to the promoter regions 

only which is the limitation of the study. 

Graph theory approaches have been utilized to solve many problems in biological 

domain. Most of the studies used gene expression profiles and protein-protein 

interactions for this purpose. Only two to three studies [51, 53, 74] used histone 

modifications profiles for building graph models and used graph theory approaches to 

highlight interactions among histone modifications. Therefore much needed to be 

focused in this area. 

2.2 Related Studies  

Various other studies [38, 75-84] used HMMs and clustering techniques to segment 

the genome into different states or clusters. After having a look at various studies we 

can see that all of them are segmenting the genome into states using HMM or 
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clustering to segment chromatin into states but in each study number of states vary. 

Variation in number of chromatin states arose in these studies because the number of 

histone modifications under consideration was different. The combinatorics patterns 

could be achieved according to the data set under study. It varies but in total 2
(number of 

chromatin marks)
 combinations could be formed. But in most cases such huge number of 

patterns do overlap and thatôs why are combined to achieve one state in order to avoid 

repetitions.  

2.3 Their Limitations and Bottlenecks  

Genome segmentation methods based on histone modification combinatorics mostly 

include clustering based approaches, some focused on HMM based approaches while 

biclustering have been used in two of the studies. Each study used different data sizes 

but none of them discussed the effect of data size on defining clusters and chromatin 

states. Along with what could be the optimal cluster solution or states solution for a 

specific data under study has also been lacking.  

Histone combination profiles have been focused mostly without the effect of other 

factors involved in transcriptional processes. The role of DNA motifs in setting the 

chromatin states remained untouched. Keeping these points in our mind we 

progressed in this direction. We in our experiments tried to address these questions 

using different approaches including clustering, biclustering and graph theory 

approach concepts.  

2.4 Summary 

Genome segmentation methods based on histone combinatorics profiles have been 

focused in many studies. Along with associations among various histone 

modifications have also uncovered via graph theory approaches. We discussed these 

studies and have looked at their limitation in this chapter. We also concluded on how 

we addressed the some left over questions in the field.  
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Chapter 3 

TOOLS AND TECHNIQUES  

In this chapter, details of the tools have been discussed which have been used while 

conducting out our research work. Tools have been categorized into different sections, 

including hardware, and softwares. Details of each tool have been given in the 

respective sections. 

3.1 Hardware used with technical specifications 

The system used in the research was Dell Inspiron with 4.00GB RAM and Intel(R) 

Core(TM) i3C CPU.  The processor specifications were M380 @ 2.53GHz.  

3.2    Software(s), simulation tool(s) used  

3.2.1 Windows platform 

 Windows 7 with 64 bits specification platform has been used for most of the 

experimental work. 

3.2.2 BioLinux 7 platform 

Open source BioLinux 7 has been used in parallel with windows for execution of 

some of the experimental work [85]. 

3.2.3 Softwares operated via windows platform 

3.2.3.1     R 

R is a freely available software environment which is used for statistical computing 

and graphics. It can be operated from many platform including Windows, UNIX and 

MacOs.  

We used 3.2.1 R version for 64 bit windows 7 platform. We have utilized R for 

writing various scripts to handle matrices and networks data [86]. 

3.2.3.2   Biolayout express  

Biolayout express 3D [87] is a visualization and analysis platform for different 

networks especially the biological ones. We utilized Biolayout express to visualize 

chromatin states networks used in our study. 
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3.2.3.3   ChromHMM 

ChromHMM is multivariate Hidden Markov Model (HMM) based freely available 

tool which is used for characterizing and learning chromatin states. Chromatin states 

learning is based on integration of multiple ChIP-Seq histone modifications data [88]. 

We learnt chromatin states at various stages in our study using ChromHMM.  

3.2.3.4   HMMSeg 

Hidden Markov Model based platform, HMMSeg is used for segmentation of 

continous genomic data. It is java based tool and can handle multiple datasets at time 

[84]. We used HMMSeg for segmentation of H1 data. 

3.2.3.5   Cluster 3.0  

The open source clustering software is used for clustering of gene expression data sets 

mostly and could be operated from any platform [89]. We used Cluster 3.0 to cluster 

various emission matrices of HMM used in our study. 

3.2.3.6  Visual studio 

Visual studio, a product by Microsoft is integrated development environment used for 

developing applications for different platforms [90]. We used visual studio to develop 

our applications, ChromClust and ChromBiSim. 

3.2.4 Softwares operated via Biolinux platform 

3.2.4.1  Homer 

Homer is a motif discovery tool used for regulatory element analysis in genomic data 

and is designed for ChIP-Seq datasets in mind. It could be applied to any of the motif 

finding problems [91]. 

3.2.4.2   Bedtools 

Bedtools are a set of tools used for the analysis of wide range of genomic data. Bed 

tools could be operated from the UNIX command lines. We used bed tools to 

manipulate most of the genomic coordinate bed files [92]. 

3.3 Summary 

We used various linux and windows based tools to achieve various objectives of our 

research.  The hardware utilized for linux and windows platform was Dell Inspiron 

N5010. 
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Chapter 4 

METHODOLOGIES  

This chapter is based on methods to achieve the objectives of the research. It is 

divided into 6 main sections, each describing the details of approaches utilized. 

4.1 A simple computational approach for predicting 

chromatin states 

4.1.1 Dataset 

We used ChIP-Seq data of human comprising of nine cell types containing data of 

nine histone marks; CTCF, H3K27me3, H3K36me3, H4K20me1, H3K4me1, 

H3K4me2, H3K4me3, H3K27ac, H3K9ac [54]. The data used were bed files 

containing the genomic coordinates and strand orientation of mapped sequence reads. 

The input control has been used as a separate mark. Chromatin combinatorics has 

been studied with and without input control in order to check the behavior of input 

control. 

4.1.2 Genome segmentation 

The histone marks and CTCF were used for genome segmentation for all cell types. 

The on and off signals of histone modifications combinations have been utilized to 

learn the HMM. This multivariate HMM was operated from the platform of 

ChromHMM software (v1.03) [88]. Firstly the genome was divided into non 

overlapping intervals containing the presence absence frequency of marks based on 

the count of tags mapped to the intervals. The non-overlapping intervals (bins) used 

were of various sizes including 200bp, 400bp, 600bp, 800bp, 1000bp, 5000bp and 

50Kbp. The tags mapping followed the Poisson background model [52] with a 

threshold of 10
-4

. Data binarization was achieved in two ways; one including the input 

control to normalize the reads of marks based on Poisson model [52] and second 

without input control. The two way binarization was achieved to test the role of input 

control in model learning. A virtual concatenation of all the cell types has been 

performed so a single model was learnt for all cell types. 
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After data binarization HMM models were learnt for two streams of data; with input 

control and without input control. We learnt models with random initialization 

varying from 2 to 30 states for all bin sizes independently for both data streams. At 

each state level from 2 to 30, 50 random initializations were used. Therefore 1450 

models were learnt for data with input stream and 1450 models for the other. 

4.1.3 Bayesian Information Criterion (BIC) score for models 

In literature Bayesian information criterion (BIC) [93] and Akaike information 

criterion (AIC) [94] have been used for model selection based on model parameters. 

BIC and AIC resolves the over fitting problem by introducing the penalty term for 

number of parameters in the model. The major difference between approaches is the 

derivation of this penalty term. The penalty term for AIC, only accounts for the 

number of free parameters in the HMM, while the BIC penalty term also factors in the 

amount of training data available. We used BIC for our study in order to consider the 

data as well. 

The BIC scores for all models have been calculated using ó(Eq 4.1)ô. The models with 

the highest BIC scores at each state level (from 2 to 30) were picked from 50 random 

initializations to see the behavior of BIC scores for states prediction (for both data 

streams and all bin sizes).     

 

                 ")# ςȢÌÎ, ËȢÌÎ Î                                                   (Eq 4.1) 

In above equation (Eq 4.1) ónô is the number of data points in the data x, ókô is the 

number of free parameters of the model and óLô is the maximum likelihood of the 

model. All these values have been obtained from the ChromHMM produced model. 

4.1.4 Computational prediction of states 

4.1.4.1 HMM parameter evaluation 

Hidden Markov Models are defined by five parameters. These parameters include i) 

the number of states in a model, ii) The number of signals emitted by each state, iii) 

the initial state probability vector which is the probability of starting at a particular 

state, iv) the probability of moving from one state to another represented by a 

probability matrix known as transition matrix. The order of the matrix is reliant on the 

number of states. So for N states in a model the order of transition matrix will be N*N 

and v) the emission probability to emit a particular symbol by a state. This is also a 
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matrix like transition matrix but the order is different. The order of emission matrix 

depends on the N number of states and M number of signals. So the order is M*N 

[66]. Among the parameters of HMM emission matrix is important as it contains 

emission probability of all marks for the defined HMM states. Each state is defined by 

the values of the emissions in it. We utilized emission matrices of HMM models with 

the highest BIC score (mentioned in above section) at each state level for evaluating 

the states number in our study.  

The emission matrix of a particular HMM contains the number of rows (vectors) 

equal to the number of HMM states. We picked emission matrix for each model with 

highest BIC (each state level) and calculated the correlation amongst the vectors of 

each emission matrix using the stats package of R [86] by the function shown in the 

form of ó(Eq 4.2)ô. 

                                   ÃÏÒÒÅÌÁÔÉÏÎÃÏÒ8ȟ9                                                  (Eq 4.2) 

 

The correlation values of each emission matrix were utilized to calculate the mean 

emission value. The mean emission values for all state levels (from 2 to 30 for all bin 

sizes and both data streams separately) were finally compared to see the state limiting 

point as attaining equilibrium. 

4.1.4.2 Combining highly correlated states 

Two highly correlated vectors could be clustered into one group. We applied this 

concept on emission matrices and clustered the highly correlated emission vectors 

using hierarchical clustering method implemented in Cluster 3.0 [89]. The emission 

matrix of 30 states model of each bin size (for both data streams) was subjected to 

clustering. The states number produced by this reduction method has been compared 

with the mean correlation values. The output from Cluster 3.0 was visualized using 

Tree View which is a visualizer for Cluster 3.0 output. 

4.1.5 Biological annotation of all models 

Genomic annotation of states with various genomic elements at each level with 

highest BIC has been obtained. The percentage of genome overlap for each state and 

different annotation data was obtained using ChromHMM. The RefSeq Gene, Exon, 

TSS, CpG islands, repeats and laminB1 annotations were downloaded from the UCSC 

Genome Browser website. The annotation at each states level has been compared with 
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the next states level to check the appearance of a new biological state. These 

annotations at each level have been compared with the emission correlation values in 

order to deduce the representative model amongst the 30 states. 

This methodology has been tested at all bin sizes in order to highlight the importance 

of bin size in genomic segmentations along with the effect of input control as well. 

The methodology has been illustrated in detail in the Figure 4.1. This methodology is 

same for all bin sizes and for data with or without input control. 

4.1.6 Comparison of states number with reference model 

We compared the identified states number model by our approach (at 200bp bin size 

with input control) with the reference model [54]. The model was compared in term 

of states highlighted on the basis of emission parameter. Correlation amongst 

emission matrix of the reference and our model has been found using an R script1. 

The segmentations of reference have been compared with the segmentations produced 

by our model to find the relevance. This has been performed using a shell script2 and 

an Rscript3. 

Rscript1: 

H1_Data = read.table("D:/ReferenceModel_15.txt")  

H2_Data = read .table("D:/TestModel_14.txt")  

H1_matrix = as.matrix(H1_Data)  

H2_matrix = as.matrix(H2_Data)  

correlation = (cor(t(H1_matrix), t(H2_matrix)))  

 

Shellscript2: 

cut - f3 TestModel_14.bed | paste ReferenceModel_15.bed -  > 

Ref_TestCombined.txt  

Rscript3: 

library ( gplots)  

Data = read.table("D:/Ref_TestCombined.txt")  

Data_Tabular= table(Data[,c(4,5)])  

Data_Tabular_Row_Sum = rowSums(Data_Tabular)  

Data_Tabular_Percent_All = Data_Tabular/Data_Tabular_Row_Sum *100  

 

The methodology explained is also tested on the real data set used by Ernst et al., [52] 

along with on a simulated data set produced from a randomly generated 3 states 

model as well. Results were 40 and 3 states model closer to the reference models. 

This methodology identified works on any ChIP-Seq data but one case (for real data) 

is presented here due to space constraints. 
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Figure 4.1 Detailed Methodology of unbiased computational method for HMM states 

prediction. a) Histone modifications signal tracks showing the peaks of histone 

modifications at the present locations. b) Conversion of histone modification tracks 

into binary signals using ChromHMM. c) Chromatin states learning using 

ChromHMM based on presence and absence signals of histone combinations. d) Two 

different paths followed i) Emission correlation calculation and plotting. ii) HMM 

States annotation. e) Part i of section d will gives rise to clustering and emission 

correlation plotting and part ii of d gives rise to visualization method. 

4.2 Unbiased segmentation of H1 data 

Hidden Markov Models (HMM) provide an unbiased statistical framework for 

segmentation of multi-dimensional genomic data into states. The average log2Dam-

H1/Dam ratios for all H1 variants were binned into 200bp windows and submitted to 

the HMMSeg algorithm [84]. For a given number of states, the parameters of the 

HMM (the emission and transition rates) were learnt using maximally 100 iterations 

of Baum-Welch algorithm [95] and three different random initializations. The model 

with the best log-likelihood score was chosen. This learning step was repeated for a 
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variable number of states (2ï8) and a segmentation based on 5 states was chosen 

because models with higher number of states resulted in only a small increase of the 

log likelihood at the expense of many additional parameters. This choice is supported 

by a cluster solution using CLARA [96], which is implemented in the óóclusterôô 

package of R [86]. Here the optimal number of clusters, defined by a maximal 

silhouette score, was also found to be 5 [97]. 

4.3 Semi-supervised mining of histone modifications 

associations at global level 

Inspired by the binarized concept of epigenomic signals from [52] study we propose 

ChromClust, a Chromatin Clustering tool which works on binarized data. ChromClust 

has been tested on various publically available ChIP-Seq data sets [54]. Our tool 

works extraordinarily with efficient time complexity. Along with clustering our tool 

maintains the database of clustering records as well. The database stores the clustering 

features of data sets which could be utilized for clustering some other data. This 

facility makes it a semi supervised clustering tool where user can also provide some 

annotated data and can cluster new data based on these annotations. ChromClust 

efficiently clusters binarized ChIP-Seq signals along with querying facility about the 

clusters in maintained database. Tool is available freely at 

(https://sourceforge.net/projects/chromclust/). 

ChromClust is implemented in C-Sharp via visual studio and can be used on any 

windows platform with Microsoft .Net Framework 4.5 and above. Windows 

presentation form (WPF) template for desktop application is used to develop 

ChromClust. In ChromClust user first creates the database, reads the binarized data, 

performs clustering and then stores the results in the database along with the added 

facility of exporting them into a file which could be utilized for further downstream 

analysis. User can query about the clusters and can visualize clusters in heatmap and 

chart forms. Overview of the tool is shown in Figure 4.2. 

4.3.1 ChromClust Database 

The first and foremost thing in using ChromClust is data base creation. User can 

create the database by providing the name of the file and it is automatically created by 

using create database facility. Database is maintained in SQLite which is an open 

source extension of SQL type databases and allows the user to create the database on 
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the desired location of the hard drive. SQLite is available in many languages as an 

extension library. We used C-Sharp library to develop ChromClust. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Overview of ChromClust tool 

 

4.3.2 Clustering 

In order to use the clustering module, it is important to include the database to be 

used. As mentioned earlier that database is first created.  That database is then 

included for storing results. Clustering modules works on the binarized data matrix of 

whole genome. Rows represent bins of any fixed size by user while columns represent 

histone modifications. Clustering is based on the idea presented by Richard Hamming 

[98]. Overview of algorithm is presented as Scheme 1 and Figure 4.3. 

Scheme 1: Overview of algorithm 

B = Bin size 

S = Similarity measure based on Hamming Distance (Ranges from 60 to 100) 

Start 

Scan the rows of matrix M.  

Pick a row and call it cluster head C, highlight it as marked M and save in 

database if not there. 

Check all rows one by one and find distance D of each row with C. 

          If D is greater than equal to S 

                   Mark the row as M and include it in current cluster with C as head. 

           Else  

                  Move ahead  

Include cluster in set Z and exclude the elements in it for further processing. 
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Repeat all steps until end. 

  

Data is clustered and results are added to the database. Clusters could be visualized in 

heatmaps, bar charts and also could be retrieved from the database via querying 

module. Clusters could further be stored in bed format for further processing. 

 

 

 

 

 

 

 

 

Figure 4.3 ChromClust Algorithm working 

 

4.3.3 Application of ChromClust to Genome wide ChIP-Seq data 

One of widely used ENCODE project ChIP-Seq data sets based on nine human cell 

types [54] have been used in study for results illustration. 

4.3.3.1 Data normalization 

The initial unprocessed data were bed files containing the genomic coordinates and 

strand orientation of mapped sequence reads from ChIP-Seq experiments [54]. Data 

preprocessing involved binarization via ChromHMM [88] platform. The 

normalization step involved dividing the genome into 5Kbp non-overlapping bins. 

Each bin marked the presence or absence of the histone modifications by monitoring 

the total mapping to that bin following Poisson background model. The value of 

threshold óTô was set to total count of reads mapped for that mark and was considered 

as the smallest integer óTô so that P(Y>T)<10
-3

. Here Y is a random variable which 
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has a Poisson distribution and the mean is set to the mean of the total count of reads 

per each bin. In presence of control data the parameter of Poisson distribution is 

specified by the global average reads multiplied by the local enrichment of control 

reads [52]. 

 4.3.3.2 Clustering of ChIP-Seq data 

Initially the preprocessed binarized data was read and uploaded into the database to 

make further processing fast and easier. Bin sizes could be specified as per user 

choice. We used 5Kbp bin size for testing as chromatin signatures are larger than 

2Kbp in only promoters and enhancers [41] while the repressed marks are wider than 

that.  Data has been clustered and saved to database. We annotated the clusters with 

various elements of the genome by using data from UCSC genome browser [99]. 

4.4 Unsupervised mining of histone modifications associations at 

local level 

Several computational methods have been presented so far for highlighting 

combinations of histone modifications [43, 49, 65, 84, 88, 100-102]. Multiple studies 

have shown that combinatorics is being portrayed by only few of the modifications 

from the set of whole modifications in the data set [50, 103-104]. 

We present ChromBiSim, a Chromatin Biclustering Simplified toolbox which is 

based on BiSim algorithm [105]. We proposed BiSim algorithm for biclustering of 

binarized gene expression data.  

We implemented and tested it on binarized ChIP-Seq signals of histone modifications 

from multiple cell types [54]. We present a novel tool for identification of local 

histone association patterns from binarized ChIP-Seq signals. The software is written 

in C-sharp. Itôs a windows form based desktop application which can run on any 

windows platform having Microsoft .Net framework 4.5 and above.  

The software calculates biclusters (local patterns of histone combinations) by finding 

the present signals of the histone modifications [105]. It can run on any size of data 

including whole genome histone modification profiles irrespective of the cell type and 

organism. Whole genome histone profiles could be analyzed efficiently within 30 

minutes on a system with 4.00GB Ram and with 2.53GHz processor. The time 

reduces to half on a system with greater facilities, while data for whole chromosome 

takes only few seconds to decode the hidden patterns.  
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Our tool is one of the most efficient tools to date with respect to time and space 

complexity. Identified genome wide histone associations can be visualized as heat 

maps and bar charts. Total biclusters along with amount of genome covered is also 

calculated. Overview of the tool is shown in the Figure 4.4. 

4.4.1 Biclustering algorithm 

As mentioned earlier that ChromBiSim is based on BiSim algorithm [105]. We 

proposed BiSim algorithm for finding biclusters from gene expression data sets.  

BiSim algorithm was based on binarized data matrix of gene expression data sets. We 

improved the algorithm efficiency and proposed that instead of following the divide 

and conquer recursive approach of BiMax algorithm [106], a simple iterative 

approach could solve the problem with reduced time complexity.  

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Overview of ChromBiSim 

We proposed BiSim algorithm [105] for identification of biclusters from gene 

expression data sets. BiSim algorithm simply scans the binarized data matrix and 

stores the row wise and column wise on bits along with their indices. It then compares 

and combine the overlapping indices along both the dimensions. The biclusters 

constitute of the on bits representing the presence of the signals locally under certain 

conditions.  
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We applied and tested BiSim on large scale whole genome ChIP-Seq histone 

modification profiles. In this case the rows in the data matrix represented the non 

overlapping bins along the genome while the columns instead of representing the 

conditions of gene expression matrix, represented the histone modifications reads 

along the genomic locations. BiSim then simply scans the matrices along the whole 

genome and finds the local subgroups representing the histone modifications 

combinations along the whole genome via ChromBiSim platform as shown in the 

Figure 4.5 

 

 

 

 

 

 

 

 

Figure 4.5 BiSim Algorithm  
4.4.2 Application of ChromBiSim to Genome wide ChIP-Seq data 

ChromBiSim identifies biclusters which could be mapped over various genomic 

locations. We tested ChromBiSim on various cell types [54]. Our study included 4 

cell types of human; H1hesc, Gm12878, Helas3 and K562 comprising of 10 histone 

modifications (H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, 

H3K79me2, H3K9ac, H3K9me3, and H4K20me1) and one insulator protein CTCF 
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