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ABSTRACT

Histone proteins wrap DNA around in small globular entities commonly known as
nucleosomes. The post translational modifications to the histone tails are referred as
histone modifications (HMs). The regulation &NA in order to access the
transcription machinery is epigenetically programmed by specific DNA and
chromatin covalent modificationslMs could either be present or absent at particular
genomic loci and the combinatorial patterns of the specific modoitstibeing
addressed as 0 hi st on e-regulatel significant la@ofogical b el i e
processes. Regions defined by combinatorial patterns of marks can be referred to as
chromatin states. Chromatin states associated with genomic locations corrtlate wi
specific functional elements as enhancers, transcription start sites, which can be
exclusively inferred from successive combinations of chromatin marks in their
contiguous locations. Biologically significant combinatorics of epigenetic
modifications andheir subsequent functional interplay are still mostly unrevealed.
We aimed to us€hlP-Seq data oHistone modificationst different genomic loci to
highlight the unbiased genomigrouping and to decode the complex biological
network of HMsin association with other chromatin players defining \arious
chromatin states.

We used different tools and techniques to accomplish our task. Complex
biological networks underlying the hidden chromatin states were revealed via merging
machine learningand graph theory existing approaches. Histone modification
efficient and simple combinatorics was studied at a global and local scale by
developing and implementing a clustering and biclustering tool. Results have been
compared with the existing approasheMeanwhile a simple and efficient
computational methodology for efficient chromatin states identification for
ChromHMM (HMM based chromatin segmentation) has also been developed by
utilizing Hidden Markov Models components.

As a result of above study weevealed the role of various factors in
maintaining the chromatin stat®nnectivityvia focusing chromatin state networks.

Our studies highlighted theninimum dominating nodes seind various hubs in
chromatin state networks focusing their interactiomgpas. Along with we developed
and tested a clustering tool ChromClust and a biclustering tool ChromBiSim to
highlight histone combinatorics in binarized signal data in an efficient and interactive
way. ChromClust operates at global level while ChromBi8imes local patterns of
histone modifications associations.

We concludethat epigenomic landscape is portrayed as interplay of various
factors including histone combinations, transcription factors, chromatin modifiers and
most importantly the underlyingNDA motifs. Each chromatin state has a specific set
of these factors which interact with each other to mark that state hence creating the
whole chromatin states network.

Vi
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Chapter 1

INTRODUCTION

The molecular unit of heredity of a living organism is a gene. A modern working
definition of a gene is "a locatable regionggnomic sequence, corresponding to a

unit of inheritance, which is associated with regulatory regions, transcribed regions,
and or other functional sequence regiofis2]. Now the question arises thakawve

the mere artifact of the important players ité-| GENES? The causal hidden factors
contributing towards the composition of the organism phenotype are anticipated to be
revealed as a result of the human genome interpretation. This decoding process is just
the start of this genomic era which has onhed light upon the surface of the
compl ex mechanisms contributing towards
the genome has been considered as incontrovertible master plan lain down with the

inception of our lives.

1.1 Epigenetics

Recent discoveries highlighted the fact that the information and directives for the use
of genetic material are the interplay of other genetic and environmental elements.
With this view point, the first familial genetic stratuthe DNA- of the cell whichis

i ndi stinguishable in all tissues of the
used as a platform for the execution of all the mechanisms of the body. The cell
software on the other hand is represented by the set of connections of the changing
environment around us. The software constitutes the second level of organization
randomly disseminated across the genome and is continuously read, written and
erased as a result of both social and substantial environmental si{@hals
Waddington in 1942 qrtrayed this theoretical connection between the genes and their
instantaneous settings during development and phenotypic determination as
epigenetics[4]. Changing patterns in gene expression without affecting the DNA
sequential layers is referred as epigtics. The regulation of DNA in order to access

the transcription machinery is epigenetically programmed by specific DNA and
chromatin covalent modificatiori]. The causal hidden molecular mechanisms of

various epigenetic processes are being higldgjhat an outstanding rate; various



techniques and tools being used to unravel the pathways and the key players involved.

Many challenges are yet to be met, but we
that Athe major pr obl ean,jnhelitsdmething keyondtlse c hr o
DNA sequence. Thatos where tfole real excit

1.2 Epigenetic marks

Epigenetic marks responsible for phenotypically different tissues having the same
genetic information and hereditary featurdstlte organism despite of the varying
environmental conditions occur as a result of complex enzymes/chromatin
interactivity which maintains and establishes diverse gene expression programs in
particular cell type§7].

Epigenetic modifications plunge intwvo major categories: DNA methylation and
histone modifications.

DNA methylation in vertebrates occurs almost exclusively in the context of CpG
dinucleotides and in the genome most CpGs are methyBd@[d In plants norCpG
methylation has well develogefunctional role which might also be visualized in
mammalgq10]. In early mouse embryo and embryonic stem cells this has been viewed
at a low rate, which showed a significant decrease in somatic tigsl:é2]. CpA
methylation has been highlighted in oviethe studies as means for allelic exclusion

in sensory neuror4d.3].

Along with DNA methylation the second major category of epigenetic modifications
is histone modifications. They detect important cell states. DNA packed inside the cell
highlights oneof the important states known as Chromatin. The fundamental unit of
chromatin is nucleosome, an octamer of four core histones (H3, H4, H2A, H2B)
around which 147 base pairs of DNA are wrapped. Except tterminal tails of
histones which are unstructurgtle core histones are mostly globular. Modification

of the histone tails is one of the striking features of histones. Histone tails bear
hundreds of modifications of which at least eight are of distinctive nafide
Histones have multiple modificatiaites. Mass spectrometry or antibody specificity
has been used to detect over more than 60 different residues on histones where
modifications occur. Well this could be a miscalculation of the number of
modifications taking place on histones because afiguee could be estimated by

looking at the fact that methylation at lysines or arginines may be one of three



different forms: mongq di-, or trimethyl for lysines and monaor di- (asymmetric or
symmetric) for arginines. The meaningful functionality desefor this cosmic set of
histone modifications, but these modifications could not determined or highlighted
one at a time on the same histone. Signaling conditions of the cell decide the
appearance or timings of these modificatifiidy.

Histone modifiations are directed by the very important factaing enzymes, which

are being studied intensively over the last few years. Enzymes for various
modifications have been identified in some studies like acetylftin methylation

[16], phosphorylatior{17], ubiquitination[18], sumoylation[19], ADP-ribosylation

[20], deimination21-22], and proline isomerizatid3].

Modification of each and every nucleosome in one way or the other could be
scrutinized comprehensively. This would provide with a stagev\because histone
modifications are dynamic in nature and change rapidly. These modifications have a
short duration of few minutes after receiving the stimulus from cell surface.
Investigation of bulk histones under one specific set of conditions \gtilight only

a fraction of the probable modificatiofist].

The interaction of different histones in contiguous nucleosomes under the influence of
modifications may affect higherder chromatin structure. Acetylation bears
chromatin unfolding potential amngst all modification because it neutralized the
basic charge of the lysine.

Protein modifications recruitment and binding include specific domains. CHikeno
domains of the Royal family such as chromo, tudor, MBT and nonrelated PHD
domains recognize rteylation, whereas acetylation is captured by bromodomains
and a domain within 18-3 proteins recognize phosphorylatidm].

1.3 Functional Consequences of Histone Modifications

Histone modifications functionality simply can be categorized into two rpaits,
firstly establishing global chromatin environments and secondly management of DNA
based biological responsibilities. Genome is divided into two major portions globally
based on histte modification combinatorics;uehromatin and heterochromatin.
DNA is accessible for transcription in case of euchromatin while it remains
inaccessible in case of heterochromatin. Modifications devise chromatin

disentanglement for assisting and facilitating DNd&sed and other functian§hese



functions range from the local one to the global, meaning from gene transcription and
DNA repair to DNA replication or chromosome condensation.

DNA extrication, manipulation, and reverting back to the correct chromatin state, all
these biological dnctionalities require the proper sequential recruitment of the
machinery. Facilitation of DNA functions via histone modifications is termed as

Ohi stone codeb. The specific set of hi st

while the true prediction dhis code seems usually unlikgR4].

1.4 Establishing Global Chromatin Environments

Silent heterochromatin and active euchromatin are the two broadly categorized
divisions of the genome. These categories are linked with distinctive set of
modifications Enzyme recruitment for chromatin modification by boundary elements
segregates the environment in different compartments. CTCF an important
transcription factor is an example of boundary element binding protein used for the
delivery of modification enzyns{16].

The occurrence of methylation at H3K4 and H3K9 in contiguous euchroragtans
sustain the heterochromatin boundaries shown in studies on fission yeast. Therefore
one of the vital roles of chromatin modifications is the maintenance and preservation
of chromatin environments into two broad categories. Safeguarding the cbromos
ends and their segregation during mitosis is determined by the heterochromatin
structure. High levels of methylated sites such as H3K9, H3K27 and H4K20 along
with lower levels of acetylation are linked with silent heterochromatin state in
mammalq16].

The preservation of inactive X chromosome is dealt with the employment of PC2 to
H3K27me3, while on the other hand the maintenance of the pericentric
heterochromatin is carried out with the employment of HP1 to H3K36ie In both
budding and fission ysa methylation at H3K27 is absent while H3K9 is found in
fission yeast and is more likely to the higher organi§®&s27]. The production of
small interfering RNAs (siRNAs) from the transcripts originating from centromeric
repeats in fission yeast is cadliout via the nucleation of heterochromatin instead of
its dispersion[16, 27]. Packaging of dicemediated siRNAs into RITS complex

distributes H3K9 methylation to the heterochromatin development locations.



Spreading and maintenance of heterochromatite Sh Swi6é pombe is carried out
with the employment of HP[IL6].

Large genomic portion is known as euchromatin, which is the flexible environment
for DNA regarding biological inputs. The turning on and off behavior of the genes,
untangling the DNA for regir and replication, and other such open choice states are
highly reflected by the modification patterns. Genes bear low levels of acetylation,
methylation and phosphorylation in transcriptionally inert or inactive state. Actively
transcribed euchromatirebrs higher acetylation levels along with further enzymatic
activities and trimethylation of H3K4, H3K36 and H3K79. One of the recent findings
highlighted bivalent domains acquiring both repressive and active modifications,
which has shaken the very basigservation that active and silent marks dictate two
discrete types of chromatin environmef®25]. In mouse ES cells bivalent domains
were revealed during the scrutiny of various highly conserved noncoding elements.
The coexistence of two contradictorethylation sites H3K27me and H3K4me in the
bivalent domains were exposed via ChIP on ChIP techn¢Rigy6].

Typically H3K4 methylation is implicated in active chromatin while H3K27
methylation is involved in silent chromatin. The lsvel expression of
developmental transcription factors is associated with enrichment of these conflicting
modifications within bivalent domains. In case of differentiation of ES cells, only one
of the modifications amongst the repressive or activation were attained. iaralys
these findings highlighted that the bivalent chunk of modifications with in ES cells
retain the transcription factors involved in controlling differentiation processes, in
poised and lowevel expression states. The preservation of pluripotency inell$
could be implicated through these findings. The selective regulation of modification

pathways would be helpful in manipulating the differentiation of stem cells.

1.5 Management of DNABased Processes

DNA-bound transcription factors distribute chrdmamodifying enzymes for the
regulation of gene expression with euchromatin. A cascade of modification events is
generated as a result of binding of transcription factor to the promoter region of the
specific genes, which then result in expression of esgon of those genes.
Modifications can be classified into two categories; one associated with the activation

while the other with the repression for the purpose of transcription.



Activation involves acetylation, methylation, phosphorylation and ubigtitin

while repression occupies methylation, ubiquitination, sumoylation, deimination, and
proline isomerization. This fact has been clear from the studies that modification of
any kind has the ability to activate or repress under varying environmentshes.g
coding region has a positive effect of methylation at H3K36 while in promoter it
produces negative effects; similarly methylation of H3K9 may also have the same
effects, like positive in coding and negative in promoter regi28 Environmental
perspectives matters a lot in case of modifications to work. Histone modifications
have vital roles to play in various processes likeADrepair, DNA replication and

chromatin condensation.

1.6 Histone Modifications: Truly Epigenetic or not?

Histone modificabns deal with various epigenetic processes. Epigenetics could be

simplistically defined as those heritabl e
sequence modification. Epigenetics 1S nov
conveying the meaning f Opassing on informationd by

encoded on DNA. The term maintenance becomes important because this lies under
the shed of noigenetic memory being transmitted from generation to generation.
Transmission of various cellular phenatypphenomenon like X chromosome
inactivation, aging, reprogramming, gene silencing, heterochromatin formation, and
imprinting occur in the same way. Along with this environment does induce various
changes which are transmitted to next generation despigmyoriginal stimulus,

well studied in plantf27, 28].

Involvement of histone modifications in epigenetic processes is not the debatable
question rather the passing on of the memory of a given state or memory
implementation after passing on from a distive process are the areas of
investigation[27, 28]. There is a need to know whether these processes are under the
control of histone modifications or not? this is so then a mechanism for the
broadcast of such modifications onto the chromatin of gafig DNA should exist.
Anticipation has been done for H3K9 methylation for the transmission of
heterochromatin: employment of HP1 induces H3K9 methylation activity which alters
the nucleosomes on the daughter strand this guaranteeing the transmission of

H3K9me marlf27, 28]. Lysine methylation was given an epigenetic status because of



monitoring the persistent behavior of H3K4me3 along with the mode of transmission.
The mother cell chromatin structure imparting the modification patterns to the
daughter cel s have not been yet decl ared as
guestionable that does methylation of lysines dictate the memory of chromatin
structure? Along with the discovery of demethylases, the existence of histone
methylation as a permanembhark becomes unstablR7]. This also makes it
guestionable whether other types of modifications are epigenetic or not? Does this
mean that entire complex chromatin structure of the whole genome is modulated by
very few number of histone modifications? &3athe correct transmission of assembly

of local chromatin structure require other determinants? Association and transmission
of histone modifying complexes/enzymes via small RNAs has been studied in fission
yeast[28]. Employment of HP1, methylation of M8 and heterochromatin formation
could also be affectelly the deletion of the enzymeacdr which processes small
RNAs[29-31].

Working of RNA as a determinant is tempting and some facts do exist which
highlighted it so. One of the studies have highlightee fact that small RNAs in the
sperm can be passed on to the offspring intervene an epigenetic phenotype known as
paramutation one of the processes very firstly acknowledged in gEits This

whole mechanism is extensive rather than limited. Manygén loci may radiate

small RNAs and after passing on to the next generation these RNAs get involved in
spreading and passing chromatmodifying complexes to genes of interest and
required loci in order to create the effect of whole chromatin being adi@8; 33].

The extreme accuracy of small RNAs possessing nucleic acid as their guiding
machinery adds a tempting feature in their delivery system. Time will decide for the
pervasiveness of such assumptive means of chromatin information transfer. This
articipated model for RNA considers it as an ideal and faultless molecule for passing
on the memory of a particular chromatin s{a@j.

This consideration of RNAi nt er vened processes doesnot
histone modifications in epigenetic alemgs. This simply highlighted that histone
modifications may be the executers behind this epigenetic scenario despite of being
the carriers of the memory. DNA methylation, post translational histone tail
modifications and nowoding RNAbased mechanisnere epigenetically regulated

gene expression pathwajssl].



1.7 Transcription factors and Transcription factor binding
sites

Transcription factors (TFs) are important players of gene expression regulation
mechanism. The crucial step in activation and 1=pom of gene is binding of the TFs

to their target loci. TFs recognize short and dispersed DNA segments in the genome
called as transcription factor binding sites (TFBSs). The shorter length of TFBSs
makestheir prediction challengeable [35]

The binding of TFs vary with respect to tissue specificity, developmental stages or
environmental conditions. This dependency makes the prediction more challenging.
TFBSs have been predicted both by experimental as well as computational methods.
Genome wié identification of these sites is carried out by C8H?; one of the well
known and powerful method36, 37].

The unavailability of ChlRyuality antibodies against each TF obstructs the prediction

of all TFs encoded in the genome using CBEY. A limied number of TFs have

been successfully tagged in mammalian genomes via tagging techniques which have

been applied to tag every individual TF.

1.7.1 Computational prediction of transcription factor binding sites
Computational prediction of TFBSs is nowibg carried ouf38].Position specific
scoring matrix (PSSM) which reflects the preference of nucleotides at each position
has often been used to represent the DNA binding sites off38fsIn order to
improve prediction accuracy and to avoid false fpees, additional factors as
conservation of TFBSs and -tacalization are also included. Despite of this the

problem still remains challenging.

1.7.2 Chromatin signatures at transcription factor binding sites
Computational p r e d indude conditional deperd@&Bysfor thedre s n 0 t
differentiation from one condition to the other. Many studies have reported the
association of TFBSs with various chromatin signatures. -Self studies have
highlighted the contribution of various chromatin modifions for the recruitment of

TFs at particular TFBSsIranscription factor binding events, gene interactions and

DNA sequence analysis are the basis of gene regulation studies. Genome wide
epigenetic marks specially DNA methylation and histone modifioatilhave
revolutionized the study over the past decade. Thetposdlational modifications of



the histone proteins which form nucleosomes by wrapping about 147 base pairs of
DNA are known as histone modifications. Various biological processes such as
transcription, dosage compensation, DNA repair, splicing and many more like
alteration of chromatin structure or recruitment of key proteins are affected by the
histone modification§l4, 40].

1.7.3 Genomewide mapping of histone modifications via Ckeq
Genomewide mapping of histone modifications using CI8Bq technologies is an
alternative approach for TFBSs predictidi- 42]. Various chromatin signatures are
associated with regulatory elements like promoters and enhancers etc, and could be
used in th& prediction [41, 4344]. Genome wide mapping of chromatin
modification profiles and TFBSs is carried out by combining chromatin immuno
precipitation (ChlP) with higlthroughput sequencing (ChBeq).Huge amounts of

data are being generated WhlP-Seqiencingtechniqueandthis increases the need

of new analysis algorithms for such da].

1.7.4 Histone modifications combinatorics mapping onto functional
genomic elements

The amalgamation of different histone modifications concedes different fuaiction
specificities[46]. For example, H3K4me3 and H3K9ac mark the nucleosomes near
the active promoter regions while the inactive promoter regiorf3astharomyces
cerevisiaegenerally ack these markf24, 47-48]. In humans active promoters are
collated with H3K4me3 while enhancers are collated with H3K4mel and are deficient
in H3K4me3[41]. It is therefore clear that H3K4me3 is the histone modification
which is liked with promoter regions in the genome and sequencing of these regions
will show high enrichmet of this modification. On the other hand the enhancer
regions have been found deficient of H3K4me3 mark while they have shown high
enrichment towards H3K4mel histone modificati@vith the detection of plenty of
histone modifications, it is plausible that additional patterns of chromatin

modifications exist, and may divulge novel functional elements of the gejd@he

1.8 Chromatin combinations and Chromatin States
The disseminatin of chromatin domain across the genome is highlighted by histone
modifications combinatoricfkegions defined by combinatorial patterns of marks can

be referred to as chromatin states. Differences in histone modifications cause



differences im o-an f fradscriptional states and lead to two major chromatmaiios

or states referred to as euchromatin amtdefochromatin[46]. Chromatin states
associated with genomic locations correlate with specific functional elements as
enhancers, transcription startesi, which can be exclusively inferred from successive
combinations of chromatin marks in their contiguous locat[60% Associations of
histone modification combinatorics with the functional DNA elements are being
divulged by scrutinizing multiple hist@ modification maps.

These studies have used various segmentation and visualization methods for dividing
the genome into different states and then naming the states based on the combinations
of histone modifications but none of them have provided theasadi criterion to
identify the number of states for the data set under considerati@ach study the
number of chromatin states has been fixed without providing the computational
reason behind it which makes the criterion unbiased.

The unbiased criteriomeans that there should be some computational way to identify
the number of states for the data under consideration. Along with that it is still
ambiguous whether these modifications are causes or effects of transcription, these
observations evidently veal an association between various combinations of histone
marks and various transcription staféd]. This research will try to segment the
genome in an unbiased fashion by validating the existing scoring methods. Along
with these validations we will stly the link between genetics with epigenetics.

1.9 Problem Statement

Biologically significant combinatorics of histone modifications and their subsequent
functional interplay has mostly been unrevealed at preggjt Regardless of
available data aboutistone modifications and their functions still there is lot more to
be explored. Particularly there is a need of understanding the underlying hidden
system of multiple histone combinatorics and its relevance to transciipli3].
Hypothesis of histom code implies regulation of gene transcription in a collective
manner by cepccurring histone modifications. The exact pattern is yet to be
untangled and its decoding is highly dependent on deciphering the hidden networks of
histone modifications in diffent genomic region®2-53].

Therefore there is a need to investigttis hidden combinatoricend networks of

histone modificationgrom different angles. In this PhD research we would critically
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work on this aspeciVe would be looking at chromatinasé networks and the role of
histone modification combinatorics in these networks.

We will study the contribution of the underlyim@NA motifs in setting thechromatin

states and ultimately their effect on chromatin netwoikee study of DNA motifs

along with the combination of epigenetic marks at particular transcription factor
binding sites representing a chromatin state will help in finding out the genetic basis
of epigenetic marks. Classification of SNPs and genome wide association studies
(GWAS) enriqiment in various states will help in the inference of biological and
medical data. We wilklso provide an efficient and unbiasgdiatform for genome
segmentatioralong with providing the computational strategy for chromatin states

calculation for existingnethods

1.10 Research Methodology

To evaluate our hypothesis the following strategy will be adopted.
1. Data Retrieval

ChIP-Seq data of istone modifications and traaription factors binding sites

would be retrievedrom data repositorig®4].

2. GenomeSegmentation
We would segment theegome using idden Marke Model (HMM) scripts
of the data under study.

3. Genome Mapping and Annotation
In this phase we shall carry out the mapping and annotatitre (fegmented
data into states (from step 2)to the genora in order to indentify the
transcription factor binding sites. This is also a standard process and has been
reported in literaturgs2, 54].

4. TFBSs relation with TFs and Histone Modifications
Study and analysis of states and peaks of histone modificai@h3 Fs will
help in identifying the relationship of TFs, histone modifications and TFBS. It
will also help in studying the link between genetics and epigenetics layer.

5. Unbiased genomic segmentation
We will use \arious statistical measurés provide a cornputational stratgey

for identifying chromatin states for existing platforms. We will also provide
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our own independent platform for identifying patterns in the genome in an
unbiasedand user friendlyvay.

6. Linking genetics and epigenetics
Step 4 would helpni proposing the role of DNA sequenc®tifs in setting
chromatin states.

7. Validation
Validation of role of DNA motifs would be obtained via results comparison

with existing methods

1.11 Summary

We introduced here the basic terminologies regardingpigenetics, histone
modifications and their combinatiorassociation ofranscription factorsvith histone
modifications objectives of our research and the major stepsbe followed to

conduct this research work.

This PhD thesis is organized into 6 phexrs; where chapter 1 is the introductory
chapter describing the background details of the topic chosen. Chapter 2 describes
review of literature mainly focusing the techniques relevant to the field. Chapter 3
highlights the tools (including hardware asaftwares) used in study, while chapter 4
highlights the methodologies which have been opted to carry out this PhD research
work. Chapter 5 describes the results and their discussions and the last chapter 6

concludes the studidsliowed by the referencemnd appendices sections
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Chapter 2
LITERATURE REVIEW

Various computational methods have been developed and utilized for the prediction
of histone modification combinatorics from ChGhIP/Seq data sets till now. It is
complicated to scrutize andinvestigate the ChH3eq datg55]. Demarcation of the
chipped enriched regions from one sample source at a time with optional control
sample is the propertyf mmany existing analysis tools [58s enrichments of histone
modifications are weak and ne¢ry confined and this makes their predictability very
tricky and tough. Peak calling approaches have been amplified for broader domains
along with systematically signifying these signals beyond read c¢dibts5758].

Peak calling methods also have béaifored to paired experimental designs in order

to associate epigenetic signals to biological functions and procgsSesEach
epigenetic mark contains the information for perceiving the biochemistry and design
of its hidden causal genome. As alreadyscdssed, histone modifications
combinatorics, their variants and TFs mutual fiorglity is highly informative [60

61]. One of the major limitations of the peak calling methods is their inability to deal
with multiple signals at a time and this is altdraging tas{62-64].

2.1 Genome Segmentation Approaches

Peak calling algorithms have the drawback of handling single at a time. A challenging
task was to handle multiple signals at a time. Therefore analyzing histone
modifications data in the form of combinatorics was the hour of need. This has been
fulfilled by the introduction of various approach@kese approaches majorly could

be classified intotwo categories: locubased clustering and genome wide
segmentation. Some of the widely used segmentation techniques have been mentioned

along with their limitatios.

2.1.1 ChromaSig

ChromasSig[49] an unsupervised approach highlighted the recurrence of histone
modi fication Omotifsdé traversing the hum
been studied simultaneously with the help of clustering approach. Chromatin
signatures are grouped up without the aid of any external annotations or training sets.

13



Only promoters and enhancers have been focused much ignoring the transcription
factors effect. ChromaSig classifies genomic location with globally harmonious
chromatin gynatures. This method generally assumes that for genome annotation a
small set of chromatin states is adequate. ChromaSig is capable of discerning subtle
variations in chromatin signatures using histone modifications data only. It was noted
that various factional activities related with enhancers like binding of particular
transcription factors and eactivators are interrelated with particular histone
modifications present at enhancers. This procedure is yet not clear and needs further
studies. This mecimism could also be studied at various other genomic loci such as

insulators, promoters etalong with the effect of transcription factors.

2.1.2 Spatial Clustering Approach

Similarly a spatial clustering algorithfs5] utilizing Hidden Markov Model (HMM)

was projected for the prediction of combinatorial patterns stretched over adjacent
genomic locations. Inspecting DNA regions bearing specific histone modifications is
now consistemy being achieved via Ch#Beq [66] This method is limited to histone

combinatorics without studying the effect of TFs and TFBSs.

2.1.3 Chromia

Histone combinatorics was studied at promoters and enhancers using supervised
learning approach by Won [43]. Identification of functional regions such as promoters

and enhancers soles well as along with PSSM binding patterns and transcription

factor binding sites by amalgamating histone modifications such that a particular
pattern represents a signal emanating from a particular HMM state was reported by
Won et al, [38,43]. The dataet consisting of 8 histone modifications and 13 TFBSs

in mMES cells were scrutinized which revealed the association of chromatin signatures
along with enhancers and promoters.

The TFs didndét show any remar kabl Bisassoci
because of the fact that the data set wa:
of TFs and modifications. In order to unravel the hidden mechanisms, the correlation
between the TFs and histone marks require further corroboration. The ddtbzset u

only eight marks insufficient to locate any regulatory element in the genome. More
marks along with the other regulatory elements will improve the predictions by using

an unsupervised approach.
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2.1.4 ChromHMM- The Binarization Approach

In a more reent work Ernst and Kellis proposed an alternative HMM algorithm based
on the binarization of presence or absence of each histond58arkpigenetic states

such as heterochromatin, various enhancers, splicing regions as well as transcriptional
process overing variety of genomic locations have been highlighted using HMMs.
HMM states identification has not been supported by any computational view point.

The number of states has been fixed to 41 without any sound justification.

2.1.5 CoSBI

Ucar et al., [50] presented a biclustering approach CoSBI for monitoring the histone
modifications combinatorics. They identified subsets of chromatin modifications
covering diverse genomic regions via a scalable subspace clustering approach using
coherent and shifteldicluster identification. This study for the first time introduced

the concept of local biclustering in case of histone modifications combinatorics. They
presented a complex 3D input formatting of the input data. CoSBI although the first

platform but is notuser friendly.

2.1.6 Graphical Models

In a more recent studp1] the associations between histone modifications have been
highlighted in the form of graphs where nodes represented the modifications and
edges formed the associations. Associations among histone modifications specifically
in promoter regions by varioususlies have been confined using Bayesian networks
(BNs) [67-70]. These studies intended to ascertain causal links for histone
combinatorics considering which modification is required for the occurrence of the
other. In existence of hidden mystifying factascurring recurrently in biological
systems, declaration ofasality inBNs is contentious [#173]. Furthermore, BNs
forbid circuits or feedback system, which is not viable in biological sysigijsThe

main focal point was the edges that correspordirect relations.

Associations among histone modifications which have a direct relationship and whose
association could not be represented exclusively by mystifying factors; have been
enlightened by drawing edges between histone modifications. This feoused

sparse partial correlation networks (SPCNs) using graphical Gaussian models. The
view point in using PCNs was as histone modifications combinatorics has not been

touched via this approach [51]. Focusing interactions among histone modifications is
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aremarkable way to pin point their relationships. These interactions are abstract and
not physical. These networks could be better explained, defining them as physically
existing ones, by including various other existing parameters like chromatin
modifiers enzymes or proteins involved in the procé&s.it is important to include
therole of various transcription factors, transcription factor binding sites along with
histone modifications combinations to mark tdéeserse genomic regions like

promoters, enlncers, heterochromatin amsulators etc.

Along with this another parallel study [53] aimed at decoding the complex biological
network of HMs in a single region and demonstrating how the HM networks differ in
different regulatory regions. According toighwork the considerable association
between histones and genomic functions is obtained due to variations in the network
attributes. This basically indicates unr ;
highlighted by demonstrating that different @@k mechanisms are used to
characterize functionally variant genomic regions as promoters, enhancers and
insulators etc. Thelifference between two networks hbsen formalized using
modeltbased approach. This study used the proposed graphical motted f@lected

HMs used in CD4+ T lymphocytes (17, 26) for 3 different types of genomic regions:
promoters, enhancers, and insulators [53]. The model is limited for identifying the

interactions among HMs only.

One of recent graph based studies [74] highlighthe interactions among histone
modifications and chromatin modifiers. Study was limited to the promoter regions

only which is the limitation of the study.

Graph theory approaches have been utilized to solve many problems in biological
domain. Most of th studies used gene expression profiles and prptetein
interactions for this purpose.ny two to three studies [51, 534] used histone
modifications profiles for building graph models and used graph theory approaches to
highlight interactions amongistone modifications. Therefore much needed to be

focused in this area.

2.2 Related Studies
Various other studief38, 75-84] used HMMs and clustering techniquessegment

the genome into different states or clustéfser having alook atvarious stdies we

can see that all of them are segmenting the genome into states using HMM or
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clustering to segment chromatin into states but in each study number of states vary.
Variation in number of chromatin states arose in these studies because the number of
histone modifications under consideration was differéhe combinatorics patterns

could be achieved according to the data set under study. It varies but in"t8¥&l 2

chromatin marks)sompinations could be formed. But in most cases such huge naiber
patterns do overlap and thatés why are co

repetitions.

2.3 Their Limitations and Bottlenecks

Genome segmentation methods based on histone modification combinatorics mostly
include clustering based approashsome focused on HMM based approaches while
biclustering have been used in two of the studies. Each study used different data sizes
but none of them discussed the effect of data size on defining clusters and chromatin
states. Along with what could be tlptimal cluster solution or states solution for a
specific data under study has also been lacking.

Histone combination profiles have been focused mostly without the effect of other
factors involved in transcriptional processes. The role of DNA motifsetting the
chromatin states remained untouched. Keeping these points in our mind we
progressed in this direction. We in our experiments tried to address these questions
using different approaches including clustering, biclustering and graph theory

approab concepts

2.4 Summary

Genome segmentation methods based on histone combinatorics profiles have been
focused in many studies. Along with associations among various histone
modifications have also uncovered via graph theory approaches. We discussed these
studies and have looked at their limitation in this chapter. We also concluded on how

we addressed the some left over questions in the field.
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Chapter 3

TOOLS AND TECHNIQUES

In this chapter, details of the tools have been discussed which have beerhilised w
conducting out our research work. Tools have been categorized into different sections,
including hardware, and softwares. Details of each tool have been given in the

respective sections.

3.1 Hardware used with technical specifications
The system useth the research waSell Inspiron with 4.00GB RAM andntel(R)
Core(TM) i3C CPU.The processor specifications wéi880 @ 2.53GHz

3.2 Software(s), simulation tool(s) used
3.2.1 Windows platform
Windows 7 with 64 bits specification platform has baesed for most of the

experimental work.

3.2.2 BioLinux 7 platform
Open source BioLinux 7 has been used in parallel with windows for execution of

someof the experimentalork [85].

3.2.3 Softwares operated via windows platform

3231 R

R is a frey available software@nvironmentwhich is usedor statistical computing
and graphicslt can be operated from many platform including Windows, UNIX and
MacOs.

We used 3.2.1 R version for 64 bit windows 7 platform. We have utilized R for
writing various sapts to handle matrices and networks data [86].

3.2.3.2 Biolayout express

Biolayout express 3D [87] is a visualization and analysis platform for different
networks especially the biological ones. We utilized Biolayout express to visualize

chromatin stas networks used in our study.
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3.2.3.3 ChromHMM

ChromHMM is multivariate Hidden Markov Mod€HMM) based freely available

tool which is used for characterizing and learning chromatin states. Chromatin states
learning is based on integration of multiplBlE-Seq histone modifications dg&8].

We learnt chromatin states at various stages in our sisidg ChromHMM.

3.2.3.4 HMMSeg

Hidden Markov Model based platform, HMMSeg is used for segmentation of
continous genomic data. It is java based tool amdheendle multiple datasets at time
[84]. We used HMMSeg for segmentation of H1 data.

3.2.3.5 Cluster 3.0
The open source clustering software is used for clustering of gene expression data sets
mostly and could be operated from any platf¢89]. We usedCluster 3.0 to cluster

various emission matrices of HMM used in our study.

3.2.3.6 Visual studio
Visual studio, a product by Microsoft is integrated development environment used for
developing applicatiasifor different platformg90]. We used visual stlio to develop

our applications, ChromClust and ChromBiSim.

3.2.4 Softwares operated via Biolinux platform

3.2.4.1 Homer

Homer is a motif discovery tool used for regulatory element analysis in genomic data
and is designed for ChiBeq datasets in mind.dbuld be applied to gnof the motif
finding problems [91].

3.2.4.2 Bedtools
Bedtools are a set of tools used for the analysis of wide range of genomic data. Bed
tools could be operated from the UNIX command lines. We used bed tools to

manipulate mostfahe genomic coordinate bed filg32].

3.3 Summary

We used various linux and windows based tools to achieve various objectives of our
research. The hardware utilized for linux and windows platform was Dell Inspiron
N5010.
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Chapter 4

METHODOLOGIES

This chapter is based on methods to achieve the objectives of the research. It is

divided into6 main sections, each describing the details of approaches utilized.

4.1 A simple computational approach for predicting
chromatin states

4.1.1 Dataset

We used ChiIFSg data of human comprising of nine cell types containing data of
nine histone marks; CTCF, H3K27me3, H3K36me3, H4K20mel, H3K4mel,
H3K4me2, H3K4me3, H3K27ac, H3K9akb4]. The data used were bed files
containing the genomic coordinates and strand orientafiompped sequence reads.

The input control has been used as a separate mark. Chromatin combinatorics has
been studied with and without input control in order to check the behavior of input

control.

4.1.2 Genome segmentation

The histone marks and CTCF were used for genome segmentation for all cell types.
The on and off signals of histone modificatiac@mbinations have been utilized

learn the HMM This multivariate HMM was operated from the platform of
ChromHMM software (vI3) [88]. Firstly the genome was divided into non
overlapping intervals containing the presence absence frequency of marks based on
the count of tags mapped to the intervals. The-aw@rlapping intervals (bins) used
were of various sizes including 200b400bp, 600bp, 800bp, 1000bp, 5000bp and
50Kbp. The tags mapping followed the Poisson backgroundeim@®] with a
threshold of 10. Data binarization was achieved in two ways; one including the input
control to normalize the reads of marks based on &wissodel[52] and second
without input control. The two way binarization was achieved to test the role of input
control in model learning. A virtual concatenation of all the cell types has been

performed so a single model was learnt for all cell types.
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After data binarization HMM models were learnt for two streams of data; with input
control and without input control. We learnt models with random initialization
varying from 2 to 30 states for all bin sizes independently for both data streams. At
each statdevel from 2 to 30, 50 random initializations were used. Therefore 1450

models were learnt for data with input stream and 1450 models for the other.

4.1.3 Bayesian Information Criterion (BIC) score for models

In literature Bayesian information criterion I [93] and Akaike information
criterion (AIC) [94] have been used for model selection based on model parameters.
BIC and AIC resolves the over fitting problem by introducing the penalty term for
number of parameters in the model. The major differencedest approaches is the
derivation of this penalty term. The penalty term for AIC, only accounts for the
number of free parameters in the HMM, while the BIC penalty term also factors in the
amount of training data available. We used BIC for our study iardadconsider the

data as well.

The BIC scores forallmodelsa v e been c akga.l |dhd neodelswithi n g
the highest BIC scores at each state level (from 2 to 30) were picked from 50 random
initializations to see the behavior of BIC scores dtates prediction (for both data

streams and all bin sizes).

"y# ¢d ] E 1 (Eq 4.9
In above equationHg 4.)6ndé6 is the number of dat a
number of free parameters of the model

model. All these values have been obtained from the ChromHMM produced model.

4.1.4 Computational prediction of states
4.14.1HMM parameter evaluation

Hidden Markov Models are defined by five parameters. These parameters include i
the number of states in a model, ii) The number of signals emitted by each state, iii)
the initial state probability vector which is the probability of starting at a particular
state, iv) the probability of moving from one state to another represented by
probability matrix known as transition matrix. The order of the matrix is reliant on the
number of states. So for N states in a model the order of transition matrix will be N*N
and v) the emission probability to emit a particular symbol by a state.isThlso a
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matrix like transition matrix but the order is different. The order of emission matrix
depends on the N number of states and M number of signals. So the order is M*N
[66]. Among the parameters of HMM emission matrix is important as it contains
emission probability of all marks for the defined HMM states. Each state is defined by
the values of the emissions in it. We utilized emission matrices of HMM models with
the highest BIC score (mentioned in above section) at each state level for evaluating

the states number in our study.

The emission matrix of a particular HMM contains the number of rows (vectors)
equal to the number of HMM states. We picked emission matrix for each model with
highest BIC (each state level) and calculated the correlatiamgsh the vectors of
each emission matrix using the stats package of R [86] by the function shown in the
f or mEg4f) &0.(

AT OOAT AO®S 1 (Eq 4.2

The correlatiorvalues of each emission matrix were utilized to calculate the mean
emission value. The mean emission values for all state levels (from 2 to 30 for all bin
sizes and both data streams separately) were finally compared to see the state limiting
point as attming equilibrium.

4.1.4.2Combining highly correlated states

Two highly correlated vectors could be clustered into one group. We applied this
concept on emission matrices and clustered the highly correlated emission vectors
using hierarchical clustering method implemented in Cluste{82P The emission

matrix of 30 states model of each bin size (for both data streams) was subjected to
clustering. The states number produced by this reduction method has been compared
with the mean correlation values. The output from Cluster 3.0 was visualized using

Tree View which $ a visualizer for Cluster 3.0 output

4.1.5 Biological annotation of all models

Genomic annotation of states with various genomic elements at each level with
highest BIC has been obtained. The percentage of genome overlap for each state and
different anntation data was obtained using ChromHMM. The RefSeq Gene, Exon,
TSS, CpG islands, repeats and laminB1 annotations were downloaded from the UCSC

Genome Browser website. The annotation at each states level has been compared with
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the next states level to chedhe appearance of a new biological state. These
annotations at each level have been compared with the emission correlation values in
order to deduce the representative model amongst the 30 states.

This methodology has been tested at all bin sizes i twd@ghlight the importance

of bin size in genomic segmentations along with the effect of input control as well.
The methodology has been illustrated in detail inRigeire 4.1.This methodology is

same for all bin sizes and for data with or withouuingontrol.

4.1.6 Comparison of states number with reference model

We compared the identified states number model by our approach (at 200bp bin size
with input control) with the reference modél]. The model was compared in term

of states highlighted orthe basis of emission parameter. Correlation amongst
emission matrix of the reference and our model has been found using an R script
The segmentations of reference have been compared with the segmentations produced
by our model to find the relevance. This has been performed using asi@Rk and

an Rscript3.

Rscriptl:

H1 Data = read.table("D:/ReferenceModel_15.txt")
H2 Data=read .table("D:/TestModel_14.txt")
H1 matrix = as.matrix(H1_Data)

H2_matrix = as.matrix(H2_Data)

correlation = (cor(t(H1_matrix), t(H2_matrix)))
Shellscript2:

cut -f3 TestModel_14.bed | paste ReferenceModel_15.bed - >
Ref_TestCombined.txt

Rscript3:

library  ( gplots)

Data = read.table("D:/Ref_TestCombined.txt")

Data_Tabular= table(Data[,c(4,5)])

Data_Tabular_ Row_Sum = rowSums(Data_Tabular)

Data_Tabular_Percent_All = Data_Tabular/Data_Tabular_Row_Sum *100

The methodology explained is also tested on the reals#dtused by Ernst al, [52]

along with on a simulated data set produced from a randomly generated 3 states
model as well. Results were 40 and 3 states model closer to the reference models.
This methodology identified works on any CHieq data but onease (for real data)

is presented here due to space constraints.
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Figure 4.1 Detailed Methodologpf unbiased computational method for HMM states
prediction a) Histone modificationsignal tracks showing the peaks of histone
modifications at the present locatioy Conversion of histone modification tracks
into binary signalsusing ChromHMM c¢) Chromatin states learning using
ChromHMM based on presence and absence signals of histone combindYidms
different paths followed i) Emission correlation calculation and plotting. i) HMM
States annotation. e) Part i of section d will gives rise to clustering and emission
correlation plotting and part ii of d gives rise to visualization method.

4.2 Unbiased segmentation of H1 data

Hidden Markov Models (HMM) provide an unbiased statistical framework for
segmentation of muHilimensional genomic data into states. The average log2Dam
H1/Dam ratios for all H1 variants were binned into 200bpdewws and sbimitted to

the HMMSegalgorithm [84]. For a given number of states, the parameters of the
HMM (the emission and transition rates) were learsing maximally 100 iterations

of BaumWelch algorithm[95] and three different random initializations. The model

with the best lodikelihood score was chosen. This learning step was repeated for a
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variable number of statesi@ and a segmentation based on 5 states was chosen
because models with higher number of states resulted in only a small increase of the
log likelihood at the expense of many additional parametéis.choice is supported

by a cluster solution using CLARAO6], which is i mplemented
package of R[86]. Here the optimal number of clusters, defined by a maximal

silhouette score, &s also found to be[97].

4.3 Semisupervised mining of histone modifications
associations at global level

Inspired by the binarized concept of epigenomic sigfrals [52] studywe propose
ChromClust, &hromatinClustering tool which works on binarizeldta. ChromClust

has been tested on various publically available €3dg data setf4]. Our tool

works extraordinarily with #icient time complexity.Along with clustering our tool
maintains the database of clustering records as Wedl database s&s the clustering
featuresof data setswvhich could be utilized for clustering some other datais

facility makes it a semi supervised clustering tool where user can also provide some
annotated data and can cluster new data based on these annotatronsCIG$t
efficiently clusters binarized ChiBeq signals along with querying facility about the
clusters in  maintained database. Tool is available freely at
(https://sourceforge.net/projects/chromclust/).

ChromClust is implemented in-Sharp via visual studio and can be used on any
windows platform with Microsoft .Net Framework 4.5 and above. Windows
presentation form (WPF) template for desktop application is used to develop
ChromClust. In ChromClust userdt creates the database, reads the binarized data,
performs clustering and then stores the results in the database along with the added
facility of exporting them into a file which could be utilized for further downstream
analysis. User can query abobétclusters and can visualize clusters in heatmap and

chart forms. Overview of the tool is shownRigure 4.2

4.3.1 ChromClust Database

The first and foremost thing in using ChromClust is data base creation. User can
create the database by providing the name of the file and it is automatically created by
using create database facility. Database is maintained in SQLite which is an open
sour@ extension of SQL type databases and allows the user to create the database on
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the desired location of the hard drive. SQLite is available in many languages as

extension libraryWe usedC-Sharp libraryto develop ChromClust

ChromClust

Database ()
Clustering ()
Visualization ()
Contact Us()
Database Visualization
CreateDB .
Include DB% C'“S‘"“‘g g::tcmha;;s(())
Save Data DB() Cluster()
Query Results () Check Cluster()
Save Results ()
Visualize Results()
! ‘ Export Results()
Perform E" LIS Check DB()
Clustering() Bar Charts() Wite to file() Perform
Heatmaps () Save Data DB() Clustering()

Figure 4.2 Overview of ChromClust tool

4.3.2 Clustering

In order to use the clustering module, it is important to include the database to be
used. As mentioned earlier that database is first created. That database is then
included for storing results. Clustering modules works on the binarized data matrix of
whole genome. Rows represent bins of any fixed size by user while columns represent
histone modifications. Clustering is based on the idea presented by Richard Hamming

[98]. Overview of algorithm is presented as Scheme 1Fayate 4.3.

Scheme 1: Overview o&lgorithm

B = Bin size
S= Similarity measure based on Hamming Distance (Ranges from 60 to 100)
Start
Scan the rows of matrix.
Pick a row and call it cluster he&y highlight it as marke and save in
database if not there.
Check all rows one by orand find distanc® of each row withC.
If D is greater than equal ®
Mark the row a#v and include it in current cluster withas head.
Else
Move ahead
Include cluster in sef and exclude thelements in it for further processing.
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Repeat all steps until end.

Data is clustered and results are added to the database. Clusters could be visualized in
heatmaps, bar charts and also could be retrieved from the database via querying

module. Clustersould further be stored in bed format for further processing.

Input Binary ChiP-Seq Data —> Savedata as a table in Data base

l Yes

— Exit

Set Bin size = B

IfR ==
l e \
No
Check set R

Set Clustering Similarity measure
=S

| |

Add it to remaining set
Include cluster in

Pick first row of data and mark it R ——.
as Cluster head = C
l TNO T
Check distance D of remaining ves 3 Include rows in cluster pool with
rows with C > L

Cluster head C and mark rows as
M

Figure 4.3ChromClustAlgorithm working

4.3.3 Application of ChromClust to Genome wide CHieq data
One of widely used ENCODE project Ch@eq data sets based on nine human cell
types[54] have been used in study for results illustration.

4.3.3.1Data normalization

The initial unprocessed data were bed files comtgithe genomic coordinates and

strand orientation of mapped sequence reads from-SédPexperimentfb4]. Data
preprocessing involved binarization via ChromHMNBS8] platform. The
normalization step involved dividing the genome into 5Kbp-oeerlapping ins.

Each bin marked the presence or absence of the histone modifications by monitoring

the total mapping to that bin following Poisson background model. The value of
threshold 6T6 was set to total count of r
ast he smal |l est i nt e geHere& Tsé rasdom vafiablé whieh( Y > T)
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has a Poisson distribution and the mean is set to the mean of the total count of reads
per each bin. In presence of control data the parameter of Poisson distribution is
specifed by the global average reads multiplied by the local enrichment of control
readg52].

4.3.3.2Clustering of ChIPSeq data
Initially the preprocessed binarized data was read and uploaded into the database to

make further processing fast and easier. 8lies could be specified as per user
choice. We used 5Kbp bin size for testing as chromatin signatures are larger than
2Kbp in only promoters and enhancgtd] while the repressed marks are wider than
that. Data has been clustered and saved to datalasannotated the clusters with

various elements of the genome by using data from UCSC genome bf@9jser

4.4 Unsupervised mining of histone modifications associations at
local level

Several computational methods have been presented so far for higiglighti
combinations of histone modificatiof@3, 49, 65, 84, 88, 16002]. Multiple studies

have shown that combinatorics is being portrayed by only few of the modifications
from the set of whole modifications in the data[56t 103104].

We present ChromBiSim, &hromatin Biclustering Simplified toolbox which is
based on BiSim algorithrfLl05]. We proposed BiSim algorithm for biclustering of
binarized gene expression data.

We implemented and tested it on binarized C&#? signals of histee modifications

from multiple cell typeg[54]. We present a novel tool for identification of local
histone association patterns from binarized €b#@ signalsThe software is written
inCshar p. ltds a windows form brmmmady deskt
windows platform having Microsoft .Net framework 4.5 and above.

The software calculates biclusters (local patterns of histone combinations) by finding
the present signals of the histone modificatiff@5]. It can run on any size of data
including whole genome histone modification profiles irrespective of the cell type and
organism. Whole genome histone profiles could be analyzed efficiently within 30
minutes on a system with 4.00GB Ram and with 2.53GHz processor. The time
reduces to half on a ggsn with greater facilities, while data for whole chromosome

takes only few seconds to decode the hidden patterns.
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Our tool is one of the most efficient tools to date with respect to time and space
complexity. Identified genome wide histone associaticas Iloe visualized as heat
maps and bar charts. Total biclusters along with amount of genome covered is also

calculatedOverview of the tool is shown in thiégure 4.4.

4.4.1 Biclustering algorithm

As mentioned earlier that ChromBiSim is based on BiSim algorithd®]. We
proposed BiSim algorithm for finding biclusters from gene expression data sets.

BiSim algorithm was based on binarized data matrix of gene expression data sets. We
improved the algrithm efficiency and proposed that instead of following the divide
and conquer recursive approach of BiMax algoritfib®6], a simple iterative

approach could solve the problem with reduced time complexity.

Biclustenng ()
Contact Us ()
Howto Use()

Hel ] ] Email
p( Biclustering .
Individual Biclustering()
Common Biclustering ()
Individual Common
Biclustering Biclustering
Ome File _Bi u:l.us.t er() Cormeon Bicluster()
Visnalization(} Visualization()
Save Besults() Save Results()
Export Results()
Export Results
Wiite to file()

Figure 4.40verview of ChromBiSim

We proposed BiSim algorithm [105] for identification of biclusters from gene
expression data sets. BiSim algorithm simply scans the binarized data matrix and
stores the row wise and column wise on bits along with their indices. It then compares
and combinethe overlapping indices along both the dimensions. The biclusters
constitute of the on bits representing the presence of the signals locally under certain

conditions.
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We applied and tested BiSim on large scale whole genome-&3gPhistone
modification pofiles. In this case the rows in the data matrix represented the non
overlapping bins along the genome while the columns instead of representing the
conditions of gene expression matrix, represented the histone modifications reads
along the genomic locaitns. BiSim then simply scans the matrices along the whole
genome and finds the local subgroups representing the histone modifications
combinations along the whole genome via ChromBiSim platform as shown in the
Figure 4.5

Input Binary ChIP-Seq Data Initialize Bicluster Set =B
Row bicluster vector Vr = Column bicluster vector Vc =
Scan the data matrix Column indices of all on entries Row indices of all on entries
Row wise scanning Column wise scanning
Find overlaps in Vr and Vc and

combine row and column
bicluster

Consecutive on bits Disconnected on bits
identification identification
Row bicluster vector Vir = Column bicluster vector Vc =
Column start index to end index Row start index to end index

Find overlaps in Vr and Vc and
combine row and column Add Bicluster to set B
bicluster

Figure 4.5BiSim Algorithm

4.4.2 Application of ChromBiSim to Genome wide Ch8eq data
ChromBiSim identifies biclusters which could be mapped over various genomic
locations. We tested ChromBIiSim on various cell types [&4ir study included 4

cell types of human; Hlhesc, Gm128F&las3 and K562 comprising of 10 histone
modifications (H3K27ac, H3K27me3, H3K36me3, H3K4mel, H3K4me2, H3K4me3,
H3K79me2, H3K9ac, H3K9me3, and H4K20mel) and one insulator protein CTCF
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http://www.epigeneticsandchromatin.com/sfx_links?ui=1756-8935-7-33&bibl=B139




















































