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ABSTRACT 

  

Histone proteins wrap DNA around in small globular entities commonly known as 

nucleosomes. The post translational modifications to the histone tails are referred as 

histone modifications (HMs). The regulation of DNA in order to access the 

transcription machinery is epigenetically programmed by specific DNA and 

chromatin covalent modifications. HMs could either be present or absent at particular 

genomic loci and the combinatorial patterns of the specific modifications being 

addressed as ‘histone codes’, are believed to co-regulate significant biological 

processes. Regions defined by combinatorial patterns of marks can be referred to as 

chromatin states. Chromatin states associated with genomic locations correlate with 

specific functional elements as enhancers, transcription start sites, which can be 

exclusively inferred from successive combinations of chromatin marks in their 

contiguous locations. Biologically significant combinatorics of epigenetic 

modifications and their subsequent functional interplay are still mostly unrevealed. 

We aimed to use ChIP-Seq data of Histone modifications at different genomic loci to 

highlight the unbiased genomic grouping and to decode the complex biological 

network of HMs in association with other chromatin players in defining various 

chromatin states.  

We used different tools and techniques to accomplish our task. Complex 

biological networks underlying the hidden chromatin states were revealed via merging 

machine learning and graph theory existing approaches. Histone modification 

efficient and simple combinatorics was studied at a global and local scale by 

developing and implementing a clustering and biclustering tool. Results have been 

compared with the existing approaches. Meanwhile a simple and efficient 

computational methodology for efficient chromatin states identification for 

ChromHMM (HMM based chromatin segmentation) has also been developed by 

utilizing Hidden Markov Models components. 

As a result of above study we revealed the role of various factors in 

maintaining the chromatin state connectivity via focusing chromatin state networks. 

Our studies highlighted the minimum dominating nodes set and various hubs in 

chromatin state networks focusing their interaction patterns. Along with we developed 

and tested a clustering tool ChromClust and a biclustering tool ChromBiSim to 

highlight histone combinatorics in binarized signal data in an efficient and interactive 

way. ChromClust operates at global level while ChromBiSim mines local patterns of 

histone modifications associations.  

We conclude that epigenomic landscape is portrayed as interplay of various 

factors including histone combinations, transcription factors, chromatin modifiers and 

most importantly the underlying DNA motifs. Each chromatin state has a specific set 

of these factors which interact with each other to mark that state hence creating the 

whole chromatin states network.  
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Chapter 1 

INTRODUCTION 

The molecular unit of heredity of a living organism is a gene. A modern working 

definition of a gene is "a locatable region of genomic sequence, corresponding to a 

unit of inheritance, which is associated with regulatory regions, transcribed regions, 

and or other functional sequence regions "[1-2]. Now the question arises that are we 

the mere artifact of the important players of life- GENES? The causal hidden factors 

contributing towards the composition of the organism phenotype are anticipated to be 

revealed as a result of the human genome interpretation. This decoding process is just 

the start of this genomic era which has only shed light upon the surface of the 

complex mechanisms contributing towards organism’s phenotype. For a long time, 

the genome has been considered as incontrovertible master plan lain down with the 

inception of our lives.  

1.1 Epigenetics 

Recent discoveries highlighted the fact that the information and directives for the use 

of genetic material are the interplay of other genetic and environmental elements. 

With this view point, the first familial genetic stratum- the DNA- of the cell which is 

indistinguishable in all tissues of the individual corresponds to “the hardware” and is 

used as a platform for the execution of all the mechanisms of the body. The cell 

software on the other hand is represented by the set of connections of the changing 

environment around us. The software constitutes the second level of organization 

randomly disseminated across the genome and is continuously read, written and 

erased as a result of both social and substantial environmental signals [3]. 

Waddington in 1942 portrayed this theoretical connection between the genes and their 

instantaneous settings during development and phenotypic determination as 

epigenetics [4]. Changing patterns in gene expression without affecting the DNA 

sequential layers is referred as epigenetics. The regulation of DNA in order to access 

the transcription machinery is epigenetically programmed by specific DNA and 

chromatin covalent modifications [5].  The causal hidden molecular mechanisms of 

various epigenetic processes are being highlighted at an outstanding rate; various 
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techniques and tools being used to unravel the pathways and the key players involved. 

Many challenges are yet to be met, but we what James Watson said can’t be neglected 

that “the major problem, I think, is chromatin… you can inherit something beyond the 

DNA sequence. That’s where the real excitement of genetics is now” [6].   

1.2 Epigenetic marks 

Epigenetic marks responsible for phenotypically different tissues having the same 

genetic information and hereditary features of the organism despite of the varying 

environmental conditions occur as a result of complex enzymes/chromatin 

interactivity which maintains and establishes diverse gene expression programs in 

particular cell types [7]. 

Epigenetic modifications plunge into two major categories: DNA methylation and 

histone modifications.  

DNA methylation in vertebrates occurs almost exclusively in the context of CpG 

dinucleotides and in the genome most CpGs are methylated [8-9]. In plants non-CpG 

methylation has well developed functional role which might also be visualized in 

mammals [10]. In early mouse embryo and embryonic stem cells this has been viewed 

at a low rate, which showed a significant decrease in somatic tissues [11-12]. CpA 

methylation has been highlighted in one of the studies as means for allelic exclusion 

in sensory neurons [13]. 

Along with DNA methylation the second major category of epigenetic modifications 

is histone modifications. They detect important cell states. DNA packed inside the cell 

highlights one of the important states known as Chromatin. The fundamental unit of 

chromatin is nucleosome, an octamer of four core histones (H3, H4, H2A, H2B) 

around which 147 base pairs of DNA are wrapped. Except the N-terminal tails of 

histones which are unstructured, the core histones are mostly globular. Modification 

of the histone tails is one of the striking features of histones. Histone tails bear 

hundreds of modifications of which at least eight are of distinctive nature [14]. 

Histones have multiple modification sites. Mass spectrometry or antibody specificity 

has been used to detect over more than 60 different residues on histones where 

modifications occur. Well this could be a miscalculation of the number of 

modifications taking place on histones because a true figure could be estimated by 

looking at the fact that methylation at lysines or arginines may be one of three 
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different forms: mono-, di-, or trimethyl for lysines and mono- or di- (asymmetric or 

symmetric) for arginines. The meaningful functionality do exist for this cosmic set of 

histone modifications, but these modifications could not determined or highlighted 

one at a time on the same histone. Signaling conditions of the cell decide the 

appearance or timings of these modifications [14].  

Histone modifications are directed by the very important factory- the enzymes, which 

are being studied intensively over the last few years. Enzymes for various 

modifications have been identified in some studies like acetylation [15], methylation 

[16], phosphorylation [17], ubiquitination [18], sumoylation [19], ADP-ribosylation 

[20], deimination [21-22], and proline isomerization [23]. 

Modification of each and every nucleosome in one way or the other could be 

scrutinized comprehensively. This would provide with a static view because histone 

modifications are dynamic in nature and change rapidly. These modifications have a 

short duration of few minutes after receiving the stimulus from cell surface. 

Investigation of bulk histones under one specific set of conditions will highlight only 

a fraction of the probable modifications [14]. 

The interaction of different histones in contiguous nucleosomes under the influence of 

modifications may affect higher-order chromatin structure. Acetylation bears 

chromatin unfolding potential amongst all modification because it neutralized the 

basic charge of the lysine. 

Protein modifications recruitment and binding include specific domains. Chromo-like 

domains of the Royal family such as chromo, tudor, MBT and nonrelated PHD 

domains recognize methylation, whereas acetylation is captured by bromodomains 

and a domain within 14-3-3 proteins recognize phosphorylation [14]. 

1.3 Functional Consequences of Histone Modifications 

Histone modifications functionality simply can be categorized into two main parts, 

firstly establishing global chromatin environments and secondly management of DNA 

based biological responsibilities. Genome is divided into two major portions globally 

based on histone modification combinatorics; euchromatin and heterochromatin. 

DNA is accessible for transcription in case of euchromatin while it remains 

inaccessible in case of heterochromatin. Modifications devise chromatin 

disentanglement for assisting and facilitating DNA-based and other functions. These 
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functions range from the local one to the global, meaning from gene transcription and 

DNA repair to DNA replication or chromosome condensation. 

DNA extrication, manipulation, and reverting back to the correct chromatin state, all 

these biological functionalities require the proper sequential recruitment of the 

machinery. Facilitation of DNA functions via histone modifications is termed as 

‘histone code’. The specific set of histone modifications come under this scenario, 

while the true prediction of this code seems usually unlikely [24]. 

1.4 Establishing Global Chromatin Environments  

Silent heterochromatin and active euchromatin are the two broadly categorized 

divisions of the genome. These categories are linked with distinctive set of 

modifications. Enzyme recruitment for chromatin modification by boundary elements 

segregates the environment in different compartments. CTCF an important 

transcription factor is an example of boundary element binding protein used for the 

delivery of modification enzymes [16]. 

The occurrence of methylation at H3K4 and H3K9 in contiguous euchromatic regions 

sustain the heterochromatin boundaries shown in studies on fission yeast. Therefore 

one of the vital roles of chromatin modifications is the maintenance and preservation 

of chromatin environments into two broad categories. Safeguarding the chromosome 

ends and their segregation during mitosis is determined by the heterochromatin 

structure. High levels of methylated sites such as H3K9, H3K27 and H4K20 along 

with lower levels of acetylation are linked with silent heterochromatin state in 

mammals [16]. 

The preservation of inactive X chromosome is dealt with the employment of PC2 to 

H3K27me3, while on the other hand the maintenance of the pericentric 

heterochromatin is carried out with the employment of HP1 to H3K9me [16]. In both 

budding and fission yeast methylation at H3K27 is absent while H3K9 is found in 

fission yeast and is more likely to the higher organisms [25-27]. The production of 

small interfering RNAs (siRNAs) from the transcripts originating from centromeric 

repeats in fission yeast is carried out via the nucleation of heterochromatin instead of 

its dispersion [16, 27]. Packaging of dicer-mediated siRNAs into RITS complex 

distributes H3K9 methylation to the heterochromatin development locations. 
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Spreading and maintenance of heterochromatic state in Swi6 pombe is carried out 

with the employment of HP1 [16]. 

Large genomic portion is known as euchromatin, which is the flexible environment 

for DNA regarding biological inputs. The turning on and off behavior of the genes, 

untangling the DNA for repair and replication, and other such open choice states are 

highly reflected by the modification patterns. Genes bear low levels of acetylation, 

methylation and phosphorylation in transcriptionally inert or inactive state. Actively 

transcribed euchromatin bears higher acetylation levels along with further enzymatic 

activities and trimethylation of H3K4, H3K36 and H3K79.  One of the recent findings 

highlighted bivalent domains acquiring both repressive and active modifications, 

which has shaken the very basic observation that active and silent marks dictate two 

discrete types of chromatin environments [25]. In mouse ES cells bivalent domains 

were revealed during the scrutiny of various highly conserved noncoding elements. 

The coexistence of two contradictory methylation sites H3K27me and H3K4me in the 

bivalent domains were exposed via ChIP on ChIP technology [25, 26]. 

Typically H3K4 methylation is implicated in active chromatin while H3K27 

methylation is involved in silent chromatin. The low-level expression of 

developmental transcription factors is associated with enrichment of these conflicting 

modifications within bivalent domains. In case of differentiation of ES cells, only one 

of the modifications amongst the repressive or activation were attained.  Analysis of 

these findings highlighted that the bivalent chunk of modifications with in ES cells 

retain the transcription factors involved in controlling differentiation processes, in 

poised and low-level expression states. The preservation of pluripotency in ES cells 

could be implicated through these findings. The selective regulation of modification 

pathways would be helpful in manipulating the differentiation of stem cells. 

1.5 Management of DNA-Based Processes 

DNA-bound transcription factors distribute chromatin modifying enzymes for the 

regulation of gene expression with euchromatin. A cascade of modification events is 

generated as a result of binding of transcription factor to the promoter region of the 

specific genes, which then result in expression of repression of those genes. 

Modifications can be classified into two categories; one associated with the activation 

while the other with the repression for the purpose of transcription. 
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Activation involves acetylation, methylation, phosphorylation and ubiquitination 

while repression occupies methylation, ubiquitination, sumoylation, deimination, and 

proline isomerization. This fact has been clear from the studies that modification of 

any kind has the ability to activate or repress under varying environments; e.g. the 

coding region has a positive effect of methylation at H3K36 while in promoter it 

produces negative effects; similarly methylation of H3K9 may also have the same 

effects, like positive in coding and negative in promoter regions [28]. Environmental 

perspectives matters a lot in case of modifications to work. Histone modifications 

have vital roles to play in various processes like DNA repair, DNA replication and 

chromatin condensation. 

1.6 Histone Modifications: Truly Epigenetic or not? 

Histone modifications deal with various epigenetic processes. Epigenetics could be 

simplistically defined as those heritable phenotypic changes which don’t entail DNA 

sequence modification. Epigenetics is now being used as the term without “heritable” 

conveying the meaning of ‘passing on information’ by the genome which is not 

encoded on DNA. The term maintenance becomes important because this lies under 

the shed of non-genetic memory being transmitted from generation to generation. 

Transmission of various cellular phenotypic phenomenon like X chromosome 

inactivation, aging, reprogramming, gene silencing, heterochromatin formation, and 

imprinting occur in the same way. Along with this environment does induce various 

changes which are transmitted to next generation despite of any original stimulus, 

well studied in plants [27, 28]. 

Involvement of histone modifications in epigenetic processes is not the debatable 

question rather the passing on of the memory of a given state or memory 

implementation after passing on from a distinctive process are the areas of 

investigation [27, 28]. There is a need to know whether these processes are under the 

control of histone modifications or not? If this is so then a mechanism for the 

broadcast of such modifications onto the chromatin of replicating DNA should exist. 

Anticipation has been done for H3K9 methylation for the transmission of 

heterochromatin: employment of HP1 induces H3K9 methylation activity which alters 

the nucleosomes on the daughter strand this guaranteeing the transmission of 

H3K9me mark [27, 28]. Lysine methylation was given an epigenetic status because of 
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monitoring the persistent behavior of H3K4me3 along with the mode of transmission. 

The mother cell chromatin structure imparting the modification patterns to the 

daughter cells have not been yet declared as the true structures. So it’s also still 

questionable that does methylation of lysines dictate the memory of chromatin 

structure? Along with the discovery of demethylases, the existence of histone 

methylation as a permanent mark becomes unstable [27]. This also makes it 

questionable whether other types of modifications are epigenetic or not? Does this 

mean that entire complex chromatin structure of the whole genome is modulated by 

very few number of histone modifications? Does the correct transmission of assembly 

of local chromatin structure require other determinants? Association and transmission 

of histone modifying complexes/enzymes via small RNAs has been studied in fission 

yeast [28]. Employment of HP1, methylation of H3K9 and heterochromatin formation 

could also be affected by the deletion of the enzyme dicer which processes small 

RNAs [29-31].  

Working of RNA as a determinant is tempting and some facts do exist which 

highlighted it so. One of the studies have highlighted the fact that small RNAs in the 

sperm can be passed on to the offspring intervene an epigenetic phenotype known as 

paramutation one of the processes very firstly acknowledged in plants [32]. This 

whole mechanism is extensive rather than limited. Many genomic loci may radiate 

small RNAs and after passing on to the next generation these RNAs get involved in 

spreading and passing chromatin-modifying complexes to genes of interest and 

required loci in order to create the effect of whole chromatin being observed [28, 33].  

The extreme accuracy of small RNAs possessing nucleic acid as their guiding 

machinery adds a tempting feature in their delivery system. Time will decide for the 

pervasiveness of such assumptive means of chromatin information transfer. This 

anticipated model for RNA considers it as an ideal and faultless molecule for passing 

on the memory of a particular chromatin state [33]. 

This consideration of RNA- intervened processes doesn’t neglect the vital role of 

histone modifications in epigenetic dealings. This simply highlighted that histone 

modifications may be the executers behind this epigenetic scenario despite of being 

the carriers of the memory. DNA methylation, post translational histone tail 

modifications and non-coding RNA-based mechanisms are epigenetically regulated 

gene expression pathways [34]. 
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1.7 Transcription factors and Transcription factor binding 

sites 

Transcription factors (TFs) are important players of gene expression regulation 

mechanism. The crucial step in activation and repression of gene is binding of the TFs 

to their target loci.  TFs recognize short and dispersed DNA segments in the genome 

called as transcription factor binding sites (TFBSs). The shorter length of TFBSs 

makes their prediction challengeable [35].  

The binding of TFs vary with respect to tissue specificity, developmental stages or 

environmental conditions. This dependency makes the prediction more challenging. 

TFBSs have been predicted both by experimental as well as computational methods. 

Genome wide identification of these sites is carried out by ChIP-Seq; one of the well 

known and powerful methods [36, 37].  

The unavailability of ChIP-quality antibodies against each TF obstructs the prediction 

of all TFs encoded in the genome using ChIP-Seq. A limited number of TFs have 

been successfully tagged in mammalian genomes via tagging techniques which have 

been applied to tag every individual TF.  

1.7.1 Computational prediction of transcription factor binding sites 

Computational prediction of TFBSs is now being carried out [38].Position- specific 

scoring matrix (PSSM) which reflects the preference of nucleotides at each position 

has often been used to represent the DNA binding sites of TFs [39]. In order to 

improve prediction accuracy and to avoid false positives, additional factors as 

conservation of TFBSs and co-localization are also included. Despite of this the 

problem still remains challenging.   

1.7.2 Chromatin signatures at transcription factor binding sites 

Computational prediction of TFBSs doesn’t include conditional dependency for their 

differentiation from one condition to the other. Many studies have reported the 

association of TFBSs with various chromatin signatures. ChIP-Seq studies have 

highlighted the contribution of various chromatin modifications for the recruitment of 

TFs at particular TFBSs. Transcription factor binding events, gene interactions and 

DNA sequence analysis are the basis of gene regulation studies. Genome wide 

epigenetic marks specially DNA methylation and histone modifications have 

revolutionized the study over the past decade. The post-translational modifications of 
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the histone proteins which form nucleosomes by wrapping about 147 base pairs of 

DNA are known as histone modifications. Various biological processes such as 

transcription, dosage compensation, DNA repair, splicing and many more like 

alteration of chromatin structure or recruitment of key proteins are affected by the 

histone modifications [14, 40]. 

1.7.3 Genome-wide mapping of histone modifications via ChIP-Seq  

Genome-wide mapping of histone modifications using ChIP-Seq technologies is an 

alternative approach for TFBSs prediction [41- 42]. Various chromatin signatures are 

associated with regulatory elements like promoters and enhancers etc, and could be 

used in their prediction [41, 43-44]. Genome- wide mapping of chromatin 

modification profiles and TFBSs is carried out by combining chromatin immuno-

precipitation (ChIP) with high-throughput sequencing (ChIP-Seq). Huge amounts of 

data are being generated via ChIP-Sequencing technique and this increases the need 

of new analysis algorithms for such data [45].  

1.7.4 Histone modifications combinatorics mapping onto functional 

genomic elements 

The amalgamation of different histone modifications concedes different functional 

specificities [46]. For example, H3K4me3 and H3K9ac mark the nucleosomes near 

the active promoter regions while the inactive promoter regions in Saccharomyces 

cerevisiae generally lack these marks [24, 47-48]. In humans active promoters are 

collated with H3K4me3 while enhancers are collated with H3K4me1 and are deficient 

in H3K4me3 [41]. It is therefore clear that H3K4me3 is the histone modification 

which is liked with promoter regions in the genome and sequencing of these regions 

will show high enrichment of this modification. On the other hand the enhancer 

regions have been found deficient of H3K4me3 mark while they have shown high 

enrichment towards H3K4me1 histone modification. With the detection of plenty of 

histone modifications, it is plausible that additional patterns of chromatin 

modifications exist, and may divulge novel functional elements of the genome [49].  

1.8 Chromatin combinations and Chromatin States 

The dissemination of chromatin domain across the genome is highlighted by histone 

modifications combinatorics. Regions defined by combinatorial patterns of marks can 

be referred to as chromatin states.  Differences in histone modifications cause 
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differences in “on-off” transcriptional states and lead to two major chromatin domains 

or states referred to as euchromatin and heterochromatin [46]. Chromatin states 

associated with genomic locations correlate with specific functional elements as 

enhancers, transcription start sites, which can be exclusively inferred from successive 

combinations of chromatin marks in their contiguous locations [50]. Associations of 

histone modification combinatorics with the functional DNA elements are being 

divulged by scrutinizing multiple histone modification maps. 

These studies have used various segmentation and visualization methods for dividing 

the genome into different states and then naming the states based on the combinations 

of histone modifications but none of them have provided the unbiased criterion to 

identify the number of states for the data set under consideration. In each study the 

number of chromatin states has been fixed without providing the computational 

reason behind it which makes the criterion unbiased. 

The unbiased criterion means that there should be some computational way to identify 

the number of states for the data under consideration. Along with that it is still 

ambiguous whether these modifications are causes or effects of transcription, these 

observations evidently reveal an association between various combinations of histone 

marks and various transcription states [51]. This research will try to segment the 

genome in an unbiased fashion by validating the existing scoring methods. Along 

with these validations we will study the link between genetics with epigenetics.  

1.9 Problem Statement 

Biologically significant combinatorics of histone modifications and their subsequent 

functional interplay has mostly been unrevealed at present [52]. Regardless of 

available data about histone modifications and their functions still there is lot more to 

be explored. Particularly there is a need of understanding the underlying hidden 

system of multiple histone combinatorics and its relevance to transcription [51-53].  

Hypothesis of histone code implies regulation of gene transcription in a collective 

manner by co-occurring histone modifications. The exact pattern is yet to be 

untangled and its decoding is highly dependent on deciphering the hidden networks of 

histone modifications in different genomic regions [52-53].  

Therefore there is a need to investigate this hidden combinatorics and networks of 

histone modifications from different angles. In this PhD research we would critically 
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work on this aspect. We would be looking at chromatin state networks and the role of 

histone modification combinatorics in these networks. 

We will study the contribution of the underlying DNA motifs in setting the chromatin 

states and ultimately their effect on chromatin networks. The study of DNA motifs 

along with the combination of epigenetic marks at particular transcription factor 

binding sites representing a chromatin state will help in finding out the genetic basis 

of epigenetic marks. Classification of SNPs and genome wide association studies 

(GWAS) enrichment in various states will help in the inference of biological and 

medical data. We will also provide an efficient and unbiased platform for genome 

segmentation along with providing the computational strategy for chromatin states 

calculation for existing methods. 

1.10 Research Methodology 

To evaluate our hypothesis the following strategy will be adopted.  

1. Data Retrieval 

ChIP-Seq data of histone modifications and transcription factors binding sites 

would be retrieved from data repositories [54]. 

2. Genome Segmentation 

We would segment the genome using Hidden Markov Model (HMM) scripts 

of the data under study. 

3. Genome Mapping and Annotation 

In this phase we shall carry out the mapping and annotation of the segmented 

data into states (from step 2) to the genome in order to indentify the 

transcription factor binding sites. This is also a standard process and has been 

reported in literature [52, 54]. 

4. TFBSs relation with TFs and Histone Modifications 

Study and analysis of states and peaks of histone modifications and TFs will 

help in identifying the relationship of TFs, histone modifications and TFBS. It 

will also help in studying the link between genetics and epigenetics layer. 

5. Unbiased genomic segmentation 

We will use various statistical measures to provide a computational stratgey 

for identifying chromatin states for existing platforms. We will also provide 
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our own independent platform for identifying patterns in the genome in an 

unbiased and user friendly way. 

6. Linking genetics and epigenetics 

Step 4 would help in proposing the role of DNA sequence motifs in setting 

chromatin states. 

7. Validation 

Validation of role of DNA motifs would be obtained via results comparison 

with existing methods. 

1.11 Summary 

We introduced here the basic terminologies regarding epigenetics, histone 

modifications and their combinations, association of transcription factors with histone 

modifications, objectives of our research and the major steps to be followed to 

conduct this research work. 

This PhD thesis is organized into 6 chapters; where chapter 1 is the introductory 

chapter describing the background details of the topic chosen. Chapter 2 describes 

review of literature mainly focusing the techniques relevant to the field. Chapter 3 

highlights the tools (including hardware and softwares) used in study, while chapter 4 

highlights the methodologies which have been opted to carry out this PhD research 

work. Chapter 5 describes the results and their discussions and the last chapter 6 

concludes the studies followed by the references and appendices sections. 
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Chapter 2 

LITERATURE REVIEW 

Various computational methods have been developed and utilized for the prediction 

of histone modification combinatorics from ChIP-ChIP/Seq data sets till now. It is 

complicated to scrutinize and investigate the ChIP-Seq data [55]. Demarcation of the 

chipped enriched regions from one sample source at a time with optional control 

sample is the property of many existing analysis tools [56].As enrichments of histone 

modifications are weak and not very confined and this makes their predictability very 

tricky and tough. Peak calling approaches have been amplified for broader domains 

along with systematically signifying these signals beyond read counts [45, 57-58]. 

Peak calling methods also have been tailored to paired experimental designs in order 

to associate epigenetic signals to biological functions and processes [59]. Each 

epigenetic mark contains the information for perceiving the biochemistry and design 

of its hidden causal genome. As already discussed, histone modifications 

combinatorics, their variants and TFs mutual functionality is highly informative [60- 

61].  One of the major limitations of the peak calling methods is their inability to deal 

with multiple signals at a time and this is a challenging task [62-64].  

2.1 Genome Segmentation Approaches 

Peak calling algorithms have the drawback of handling single at a time. A challenging 

task was to handle multiple signals at a time. Therefore analyzing histone 

modifications data in the form of combinatorics was the hour of need. This has been 

fulfilled by the introduction of various approaches. These approaches majorly could 

be classified into two categories: locus-based clustering and genome wide 

segmentation. Some of the widely used segmentation techniques have been mentioned 

along with their limitations. 

2.1.1 ChromaSig 

ChromaSig [49] an unsupervised approach highlighted the recurrence of histone 

modification ‘motifs’ traversing the human genome. The histone combinatorics has 

been studied simultaneously with the help of clustering approach. Chromatin 

signatures are grouped up without the aid of any external annotations or training sets. 
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Only promoters and enhancers have been focused much ignoring the transcription 

factors effect. ChromaSig classifies genomic location with globally harmonious 

chromatin signatures. This method generally assumes that for genome annotation a 

small set of chromatin states is adequate. ChromaSig is capable of discerning subtle 

variations in chromatin signatures using histone modifications data only. It was noted 

that various functional activities related with enhancers like binding of particular 

transcription factors and co-activators are interrelated with particular histone 

modifications present at enhancers. This procedure is yet not clear and needs further 

studies. This mechanism could also be studied at various other genomic loci such as 

insulators, promoters etc. along with the effect of transcription factors. 

2.1.2 Spatial Clustering Approach 

Similarly a spatial clustering algorithm [65] utilizing Hidden Markov Model (HMM) 

was projected for the prediction of combinatorial patterns stretched over adjacent 

genomic locations. Inspecting DNA regions bearing specific histone modifications is 

now consistently being achieved via ChIP-Seq [66].  This method is limited to histone 

combinatorics without studying the effect of TFs and TFBSs. 

2.1.3 Chromia 

Histone combinatorics was studied at promoters and enhancers using supervised 

learning approach by Won [43]. Identification of functional regions such as promoters 

and enhancers solely as well as along with PSSM binding patterns and transcription 

factor binding sites by amalgamating histone modifications such that a particular 

pattern represents a signal emanating from a particular HMM state was reported by 

Won et al., [38, 43]. The data set consisting of 8 histone modifications and 13 TFBSs 

in mES cells were scrutinized which revealed the association of chromatin signatures 

along with enhancers and promoters. 

The TFs didn’t show any remarkable association with histone modifications, which is 

because of the fact that the data set was very limited and didn’t include a wide range 

of TFs and modifications. In order to unravel the hidden mechanisms, the correlation 

between the TFs and histone marks require further corroboration. The data set utilized 

only eight marks insufficient to locate any regulatory element in the genome. More 

marks along with the other regulatory elements will improve the predictions by using 

an unsupervised approach. 
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2.1.4 ChromHMM- The Binarization Approach 

In a more recent work Ernst and Kellis proposed an alternative HMM algorithm based 

on the binarization of presence or absence of each histone mark [52]. Epigenetic states 

such as heterochromatin, various enhancers, splicing regions as well as transcriptional 

process covering variety of genomic locations have been highlighted using HMMs. 

HMM states identification has not been supported by any computational view point. 

The number of states has been fixed to 41 without any sound justification.  

2.1.5 CoSBI 

Ucar et al., [50] presented a biclustering approach CoSBI for monitoring the histone 

modifications combinatorics. They identified subsets of chromatin modifications 

covering diverse genomic regions via a scalable subspace clustering approach using 

coherent and shifted bicluster identification. This study for the first time introduced 

the concept of local biclustering in case of histone modifications combinatorics. They 

presented a complex 3D input formatting of the input data. CoSBI although the first 

platform but is not user friendly. 

2.1.6 Graphical Models 

In a more recent study [51] the associations between histone modifications have been 

highlighted in the form of graphs where nodes represented the modifications and 

edges formed the associations. Associations among histone modifications specifically 

in promoter regions by various studies have been confined using Bayesian networks 

(BNs) [67-70]. These studies intended to ascertain causal links for histone 

combinatorics considering which modification is required for the occurrence of the 

other. In existence of hidden mystifying factors occurring recurrently in biological 

systems, declaration of causality in BNs is contentious [71- 73]. Furthermore, BNs 

forbid circuits or feedback system, which is not viable in biological systems [51]. The 

main focal point was the edges that correspond to direct relations. 

Associations among histone modifications which have a direct relationship and whose 

association could not be represented exclusively by mystifying factors; have been 

enlightened by drawing edges between histone modifications. This work focused 

sparse partial correlation networks (SPCNs) using graphical Gaussian models. The 

view point in using PCNs was as histone modifications combinatorics has not been 

touched via this approach [51]. Focusing interactions among histone modifications is 
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a remarkable way to pin point their relationships. These interactions are abstract and 

not physical. These networks could be better explained, defining them as physically 

existing ones, by including various other existing parameters like chromatin 

modifiers, enzymes or proteins involved in the process. So it is important to include 

the role of various transcription factors, transcription factor binding sites along with 

histone modifications combinations to mark the diverse genomic regions like 

promoters, enhancers, heterochromatin and insulators etc. 

Along with this another parallel study [53] aimed at decoding the complex biological 

network of HMs in a single region and demonstrating how the HM networks differ in 

different regulatory regions. According to this work the considerable association 

between histones and genomic functions is obtained due to variations in the network 

attributes. This basically indicates unraveling the ‘histone code’. This also has been 

highlighted by demonstrating that different crosstalk mechanisms are used to 

characterize functionally variant genomic regions as promoters, enhancers and 

insulators etc. The difference between two networks has been formalized using 

model-based approach. This study used the proposed graphical model for the selected 

HMs used in CD4+ T lymphocytes (17, 26) for 3 different types of genomic regions: 

promoters, enhancers, and insulators [53]. The model is limited for identifying the 

interactions among HMs only. 

One of recent graph based studies [74] highlighted the interactions among histone 

modifications and chromatin modifiers. Study was limited to the promoter regions 

only which is the limitation of the study. 

Graph theory approaches have been utilized to solve many problems in biological 

domain. Most of the studies used gene expression profiles and protein-protein 

interactions for this purpose. Only two to three studies [51, 53, 74] used histone 

modifications profiles for building graph models and used graph theory approaches to 

highlight interactions among histone modifications. Therefore much needed to be 

focused in this area. 

2.2 Related Studies  

Various other studies [38, 75-84] used HMMs and clustering techniques to segment 

the genome into different states or clusters. After having a look at various studies we 

can see that all of them are segmenting the genome into states using HMM or 
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clustering to segment chromatin into states but in each study number of states vary. 

Variation in number of chromatin states arose in these studies because the number of 

histone modifications under consideration was different. The combinatorics patterns 

could be achieved according to the data set under study. It varies but in total 2
(number of 

chromatin marks)
 combinations could be formed. But in most cases such huge number of 

patterns do overlap and that’s why are combined to achieve one state in order to avoid 

repetitions.  

2.3 Their Limitations and Bottlenecks  

Genome segmentation methods based on histone modification combinatorics mostly 

include clustering based approaches, some focused on HMM based approaches while 

biclustering have been used in two of the studies. Each study used different data sizes 

but none of them discussed the effect of data size on defining clusters and chromatin 

states. Along with what could be the optimal cluster solution or states solution for a 

specific data under study has also been lacking.  

Histone combination profiles have been focused mostly without the effect of other 

factors involved in transcriptional processes. The role of DNA motifs in setting the 

chromatin states remained untouched. Keeping these points in our mind we 

progressed in this direction. We in our experiments tried to address these questions 

using different approaches including clustering, biclustering and graph theory 

approach concepts.  

2.4 Summary 

Genome segmentation methods based on histone combinatorics profiles have been 

focused in many studies. Along with associations among various histone 

modifications have also uncovered via graph theory approaches. We discussed these 

studies and have looked at their limitation in this chapter. We also concluded on how 

we addressed the some left over questions in the field.  
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Chapter 3 

TOOLS AND TECHNIQUES 

In this chapter, details of the tools have been discussed which have been used while 

conducting out our research work. Tools have been categorized into different sections, 

including hardware, and softwares. Details of each tool have been given in the 

respective sections. 

3.1 Hardware used with technical specifications 

The system used in the research was Dell Inspiron with 4.00GB RAM and Intel(R) 

Core(TM) i3C CPU.  The processor specifications were M380 @ 2.53GHz.  

3.2    Software(s), simulation tool(s) used  

3.2.1 Windows platform 

 Windows 7 with 64 bits specification platform has been used for most of the 

experimental work. 

3.2.2 BioLinux 7 platform 

Open source BioLinux 7 has been used in parallel with windows for execution of 

some of the experimental work [85]. 

3.2.3 Softwares operated via windows platform 

3.2.3.1     R 

R is a freely available software environment which is used for statistical computing 

and graphics. It can be operated from many platform including Windows, UNIX and 

MacOs.  

We used 3.2.1 R version for 64 bit windows 7 platform. We have utilized R for 

writing various scripts to handle matrices and networks data [86]. 

3.2.3.2   Biolayout express  

Biolayout express 3D [87] is a visualization and analysis platform for different 

networks especially the biological ones. We utilized Biolayout express to visualize 

chromatin states networks used in our study. 
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3.2.3.3   ChromHMM 

ChromHMM is multivariate Hidden Markov Model (HMM) based freely available 

tool which is used for characterizing and learning chromatin states. Chromatin states 

learning is based on integration of multiple ChIP-Seq histone modifications data [88]. 

We learnt chromatin states at various stages in our study using ChromHMM.  

3.2.3.4   HMMSeg 

Hidden Markov Model based platform, HMMSeg is used for segmentation of 

continous genomic data. It is java based tool and can handle multiple datasets at time 

[84]. We used HMMSeg for segmentation of H1 data. 

3.2.3.5   Cluster 3.0  

The open source clustering software is used for clustering of gene expression data sets 

mostly and could be operated from any platform [89]. We used Cluster 3.0 to cluster 

various emission matrices of HMM used in our study. 

3.2.3.6  Visual studio 

Visual studio, a product by Microsoft is integrated development environment used for 

developing applications for different platforms [90]. We used visual studio to develop 

our applications, ChromClust and ChromBiSim. 

3.2.4 Softwares operated via Biolinux platform 

3.2.4.1  Homer 

Homer is a motif discovery tool used for regulatory element analysis in genomic data 

and is designed for ChIP-Seq datasets in mind. It could be applied to any of the motif 

finding problems [91]. 

3.2.4.2   Bedtools 

Bedtools are a set of tools used for the analysis of wide range of genomic data. Bed 

tools could be operated from the UNIX command lines. We used bed tools to 

manipulate most of the genomic coordinate bed files [92]. 

3.3 Summary 

We used various linux and windows based tools to achieve various objectives of our 

research.  The hardware utilized for linux and windows platform was Dell Inspiron 

N5010. 
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Chapter 4 

METHODOLOGIES 

This chapter is based on methods to achieve the objectives of the research. It is 

divided into 6 main sections, each describing the details of approaches utilized. 

4.1 A simple computational approach for predicting 

chromatin states 

4.1.1 Dataset 

We used ChIP-Seq data of human comprising of nine cell types containing data of 

nine histone marks; CTCF, H3K27me3, H3K36me3, H4K20me1, H3K4me1, 

H3K4me2, H3K4me3, H3K27ac, H3K9ac [54]. The data used were bed files 

containing the genomic coordinates and strand orientation of mapped sequence reads. 

The input control has been used as a separate mark. Chromatin combinatorics has 

been studied with and without input control in order to check the behavior of input 

control. 

4.1.2 Genome segmentation 

The histone marks and CTCF were used for genome segmentation for all cell types. 

The on and off signals of histone modifications combinations have been utilized to 

learn the HMM. This multivariate HMM was operated from the platform of 

ChromHMM software (v1.03) [88]. Firstly the genome was divided into non 

overlapping intervals containing the presence absence frequency of marks based on 

the count of tags mapped to the intervals. The non-overlapping intervals (bins) used 

were of various sizes including 200bp, 400bp, 600bp, 800bp, 1000bp, 5000bp and 

50Kbp. The tags mapping followed the Poisson background model [52] with a 

threshold of 10
-4

. Data binarization was achieved in two ways; one including the input 

control to normalize the reads of marks based on Poisson model [52] and second 

without input control. The two way binarization was achieved to test the role of input 

control in model learning. A virtual concatenation of all the cell types has been 

performed so a single model was learnt for all cell types. 
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After data binarization HMM models were learnt for two streams of data; with input 

control and without input control. We learnt models with random initialization 

varying from 2 to 30 states for all bin sizes independently for both data streams. At 

each state level from 2 to 30, 50 random initializations were used. Therefore 1450 

models were learnt for data with input stream and 1450 models for the other. 

4.1.3 Bayesian Information Criterion (BIC) score for models 

In literature Bayesian information criterion (BIC) [93] and Akaike information 

criterion (AIC) [94] have been used for model selection based on model parameters. 

BIC and AIC resolves the over fitting problem by introducing the penalty term for 

number of parameters in the model. The major difference between approaches is the 

derivation of this penalty term. The penalty term for AIC, only accounts for the 

number of free parameters in the HMM, while the BIC penalty term also factors in the 

amount of training data available. We used BIC for our study in order to consider the 

data as well. 

The BIC scores for all models have been calculated using ‘(Eq 4.1)’. The models with 

the highest BIC scores at each state level (from 2 to 30) were picked from 50 random 

initializations to see the behavior of BIC scores for states prediction (for both data 

streams and all bin sizes).     

 

                                                                                       (Eq 4.1) 

In above equation (Eq 4.1) ‘n’ is the number of data points in the data x, ‘k’ is the 

number of free parameters of the model and ‘L’ is the maximum likelihood of the 

model. All these values have been obtained from the ChromHMM produced model. 

4.1.4 Computational prediction of states 

4.1.4.1 HMM parameter evaluation 

Hidden Markov Models are defined by five parameters. These parameters include i) 

the number of states in a model, ii) The number of signals emitted by each state, iii) 

the initial state probability vector which is the probability of starting at a particular 

state, iv) the probability of moving from one state to another represented by a 

probability matrix known as transition matrix. The order of the matrix is reliant on the 

number of states. So for N states in a model the order of transition matrix will be N*N 

and v) the emission probability to emit a particular symbol by a state. This is also a 
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matrix like transition matrix but the order is different. The order of emission matrix 

depends on the N number of states and M number of signals. So the order is M*N 

[66]. Among the parameters of HMM emission matrix is important as it contains 

emission probability of all marks for the defined HMM states. Each state is defined by 

the values of the emissions in it. We utilized emission matrices of HMM models with 

the highest BIC score (mentioned in above section) at each state level for evaluating 

the states number in our study.  

The emission matrix of a particular HMM contains the number of rows (vectors) 

equal to the number of HMM states. We picked emission matrix for each model with 

highest BIC (each state level) and calculated the correlation amongst the vectors of 

each emission matrix using the stats package of R [86] by the function shown in the 

form of ‘(Eq 4.2)’. 

                                                                                                         (Eq 4.2) 

 

The correlation values of each emission matrix were utilized to calculate the mean 

emission value. The mean emission values for all state levels (from 2 to 30 for all bin 

sizes and both data streams separately) were finally compared to see the state limiting 

point as attaining equilibrium. 

4.1.4.2 Combining highly correlated states 

Two highly correlated vectors could be clustered into one group. We applied this 

concept on emission matrices and clustered the highly correlated emission vectors 

using hierarchical clustering method implemented in Cluster 3.0 [89]. The emission 

matrix of 30 states model of each bin size (for both data streams) was subjected to 

clustering. The states number produced by this reduction method has been compared 

with the mean correlation values. The output from Cluster 3.0 was visualized using 

Tree View which is a visualizer for Cluster 3.0 output. 

4.1.5 Biological annotation of all models 

Genomic annotation of states with various genomic elements at each level with 

highest BIC has been obtained. The percentage of genome overlap for each state and 

different annotation data was obtained using ChromHMM. The RefSeq Gene, Exon, 

TSS, CpG islands, repeats and laminB1 annotations were downloaded from the UCSC 

Genome Browser website. The annotation at each states level has been compared with 



 

23 

 

the next states level to check the appearance of a new biological state. These 

annotations at each level have been compared with the emission correlation values in 

order to deduce the representative model amongst the 30 states. 

This methodology has been tested at all bin sizes in order to highlight the importance 

of bin size in genomic segmentations along with the effect of input control as well. 

The methodology has been illustrated in detail in the Figure 4.1. This methodology is 

same for all bin sizes and for data with or without input control. 

4.1.6 Comparison of states number with reference model 

We compared the identified states number model by our approach (at 200bp bin size 

with input control) with the reference model [54]. The model was compared in term 

of states highlighted on the basis of emission parameter. Correlation amongst 

emission matrix of the reference and our model has been found using an R script1. 

The segmentations of reference have been compared with the segmentations produced 

by our model to find the relevance. This has been performed using a shell script2 and 

an Rscript3. 

Rscript1: 

H1_Data = read.table("D:/ReferenceModel_15.txt") 

H2_Data = read.table("D:/TestModel_14.txt") 

H1_matrix = as.matrix(H1_Data) 

H2_matrix = as.matrix(H2_Data) 

correlation = (cor(t(H1_matrix), t(H2_matrix))) 

 

Shellscript2: 

cut -f3 TestModel_14.bed | paste ReferenceModel_15.bed - > 

Ref_TestCombined.txt 

Rscript3: 

library(gplots) 

Data = read.table("D:/Ref_TestCombined.txt") 

Data_Tabular= table(Data[,c(4,5)]) 

Data_Tabular_Row_Sum = rowSums(Data_Tabular) 

Data_Tabular_Percent_All = Data_Tabular/Data_Tabular_Row_Sum *100 

 

The methodology explained is also tested on the real data set used by Ernst et al., [52] 

along with on a simulated data set produced from a randomly generated 3 states 

model as well. Results were 40 and 3 states model closer to the reference models. 

This methodology identified works on any ChIP-Seq data but one case (for real data) 

is presented here due to space constraints. 
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Figure 4.1 Detailed Methodology of unbiased computational method for HMM states 

prediction. a) Histone modifications signal tracks showing the peaks of histone 

modifications at the present locations. b) Conversion of histone modification tracks 

into binary signals using ChromHMM. c) Chromatin states learning using 

ChromHMM based on presence and absence signals of histone combinations. d) Two 

different paths followed i) Emission correlation calculation and plotting. ii) HMM 

States annotation. e) Part i of section d will gives rise to clustering and emission 

correlation plotting and part ii of d gives rise to visualization method. 

4.2 Unbiased segmentation of H1 data 

Hidden Markov Models (HMM) provide an unbiased statistical framework for 

segmentation of multi-dimensional genomic data into states. The average log2Dam-

H1/Dam ratios for all H1 variants were binned into 200bp windows and submitted to 

the HMMSeg algorithm [84]. For a given number of states, the parameters of the 

HMM (the emission and transition rates) were learnt using maximally 100 iterations 

of Baum-Welch algorithm [95] and three different random initializations. The model 

with the best log-likelihood score was chosen. This learning step was repeated for a 
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variable number of states (2–8) and a segmentation based on 5 states was chosen 

because models with higher number of states resulted in only a small increase of the 

log likelihood at the expense of many additional parameters. This choice is supported 

by a cluster solution using CLARA [96], which is implemented in the ‘‘cluster’’ 

package of R [86]. Here the optimal number of clusters, defined by a maximal 

silhouette score, was also found to be 5 [97]. 

4.3 Semi-supervised mining of histone modifications 

associations at global level 

Inspired by the binarized concept of epigenomic signals from [52] study we propose 

ChromClust, a Chromatin Clustering tool which works on binarized data. ChromClust 

has been tested on various publically available ChIP-Seq data sets [54]. Our tool 

works extraordinarily with efficient time complexity. Along with clustering our tool 

maintains the database of clustering records as well. The database stores the clustering 

features of data sets which could be utilized for clustering some other data. This 

facility makes it a semi supervised clustering tool where user can also provide some 

annotated data and can cluster new data based on these annotations. ChromClust 

efficiently clusters binarized ChIP-Seq signals along with querying facility about the 

clusters in maintained database. Tool is available freely at 

(https://sourceforge.net/projects/chromclust/). 

ChromClust is implemented in C-Sharp via visual studio and can be used on any 

windows platform with Microsoft .Net Framework 4.5 and above. Windows 

presentation form (WPF) template for desktop application is used to develop 

ChromClust. In ChromClust user first creates the database, reads the binarized data, 

performs clustering and then stores the results in the database along with the added 

facility of exporting them into a file which could be utilized for further downstream 

analysis. User can query about the clusters and can visualize clusters in heatmap and 

chart forms. Overview of the tool is shown in Figure 4.2. 

4.3.1 ChromClust Database 

The first and foremost thing in using ChromClust is data base creation. User can 

create the database by providing the name of the file and it is automatically created by 

using create database facility. Database is maintained in SQLite which is an open 

source extension of SQL type databases and allows the user to create the database on 
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the desired location of the hard drive. SQLite is available in many languages as an 

extension library. We used C-Sharp library to develop ChromClust. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Overview of ChromClust tool 

 

4.3.2 Clustering 

In order to use the clustering module, it is important to include the database to be 

used. As mentioned earlier that database is first created.  That database is then 

included for storing results. Clustering modules works on the binarized data matrix of 

whole genome. Rows represent bins of any fixed size by user while columns represent 

histone modifications. Clustering is based on the idea presented by Richard Hamming 

[98]. Overview of algorithm is presented as Scheme 1 and Figure 4.3. 

Scheme 1: Overview of algorithm 

B = Bin size 

S = Similarity measure based on Hamming Distance (Ranges from 60 to 100) 

Start 

Scan the rows of matrix M.  

Pick a row and call it cluster head C, highlight it as marked M and save in 

database if not there. 

Check all rows one by one and find distance D of each row with C. 

          If D is greater than equal to S 

                   Mark the row as M and include it in current cluster with C as head. 

           Else  

                  Move ahead  

Include cluster in set Z and exclude the elements in it for further processing. 
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Repeat all steps until end. 

  

Data is clustered and results are added to the database. Clusters could be visualized in 

heatmaps, bar charts and also could be retrieved from the database via querying 

module. Clusters could further be stored in bed format for further processing. 

 

 

 

 

 

 

 

 

Figure 4.3 ChromClust Algorithm working 

 

4.3.3 Application of ChromClust to Genome wide ChIP-Seq data 

One of widely used ENCODE project ChIP-Seq data sets based on nine human cell 

types [54] have been used in study for results illustration. 

4.3.3.1 Data normalization 

The initial unprocessed data were bed files containing the genomic coordinates and 

strand orientation of mapped sequence reads from ChIP-Seq experiments [54]. Data 

preprocessing involved binarization via ChromHMM [88] platform. The 

normalization step involved dividing the genome into 5Kbp non-overlapping bins. 

Each bin marked the presence or absence of the histone modifications by monitoring 

the total mapping to that bin following Poisson background model. The value of 

threshold ‘T’ was set to total count of reads mapped for that mark and was considered 

as the smallest integer ‘T’ so that P(Y>T)<10
-3

. Here Y is a random variable which 
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has a Poisson distribution and the mean is set to the mean of the total count of reads 

per each bin. In presence of control data the parameter of Poisson distribution is 

specified by the global average reads multiplied by the local enrichment of control 

reads [52]. 

 4.3.3.2 Clustering of ChIP-Seq data 

Initially the preprocessed binarized data was read and uploaded into the database to 

make further processing fast and easier. Bin sizes could be specified as per user 

choice. We used 5Kbp bin size for testing as chromatin signatures are larger than 

2Kbp in only promoters and enhancers [41] while the repressed marks are wider than 

that.  Data has been clustered and saved to database. We annotated the clusters with 

various elements of the genome by using data from UCSC genome browser [99]. 

4.4 Unsupervised mining of histone modifications associations at 

local level 

Several computational methods have been presented so far for highlighting 

combinations of histone modifications [43, 49, 65, 84, 88, 100-102]. Multiple studies 

have shown that combinatorics is being portrayed by only few of the modifications 

from the set of whole modifications in the data set [50, 103-104]. 

We present ChromBiSim, a Chromatin Biclustering Simplified toolbox which is 

based on BiSim algorithm [105]. We proposed BiSim algorithm for biclustering of 

binarized gene expression data.  

We implemented and tested it on binarized ChIP-Seq signals of histone modifications 

from multiple cell types [54]. We present a novel tool for identification of local 

histone association patterns from binarized ChIP-Seq signals. The software is written 

in C-sharp. It’s a windows form based desktop application which can run on any 

windows platform having Microsoft .Net framework 4.5 and above.  

The software calculates biclusters (local patterns of histone combinations) by finding 

the present signals of the histone modifications [105]. It can run on any size of data 

including whole genome histone modification profiles irrespective of the cell type and 

organism. Whole genome histone profiles could be analyzed efficiently within 30 

minutes on a system with 4.00GB Ram and with 2.53GHz processor. The time 

reduces to half on a system with greater facilities, while data for whole chromosome 

takes only few seconds to decode the hidden patterns.  
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Our tool is one of the most efficient tools to date with respect to time and space 

complexity. Identified genome wide histone associations can be visualized as heat 

maps and bar charts. Total biclusters along with amount of genome covered is also 

calculated. Overview of the tool is shown in the Figure 4.4. 

4.4.1 Biclustering algorithm 

As mentioned earlier that ChromBiSim is based on BiSim algorithm [105]. We 

proposed BiSim algorithm for finding biclusters from gene expression data sets.  

BiSim algorithm was based on binarized data matrix of gene expression data sets. We 

improved the algorithm efficiency and proposed that instead of following the divide 

and conquer recursive approach of BiMax algorithm [106], a simple iterative 

approach could solve the problem with reduced time complexity.  

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Overview of ChromBiSim 

We proposed BiSim algorithm [105] for identification of biclusters from gene 

expression data sets. BiSim algorithm simply scans the binarized data matrix and 

stores the row wise and column wise on bits along with their indices. It then compares 

and combine the overlapping indices along both the dimensions. The biclusters 

constitute of the on bits representing the presence of the signals locally under certain 

conditions.  
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We applied and tested BiSim on large scale whole genome ChIP-Seq histone 

modification profiles. In this case the rows in the data matrix represented the non 

overlapping bins along the genome while the columns instead of representing the 

conditions of gene expression matrix, represented the histone modifications reads 

along the genomic locations. BiSim then simply scans the matrices along the whole 

genome and finds the local subgroups representing the histone modifications 

combinations along the whole genome via ChromBiSim platform as shown in the 

Figure 4.5 

 

 

 

 

 

 

 

 

Figure 4.5 BiSim Algorithm  
4.4.2 Application of ChromBiSim to Genome wide ChIP-Seq data 

ChromBiSim identifies biclusters which could be mapped over various genomic 

locations. We tested ChromBiSim on various cell types [54]. Our study included 4 

cell types of human; H1hesc, Gm12878, Helas3 and K562 comprising of 10 histone 

modifications (H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, 

H3K79me2, H3K9ac, H3K9me3, and H4K20me1) and one insulator protein CTCF 
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along with the input controls of all cell types. We defined a comprehensive landscape 

of epigenomic profiles based on combinatorics of histone modifications present at 

certain locations of the genome. Results highlight histone modifications combinations 

present at certain locations of the genome in all cell types along with the similarities 

and differences highlighted.  Histone modifications data over 5K base pair non 

overlapping locations was taken and preprocessed as explained in sections 4.3.3.1 and 

4.3.3.2. Biclusters were identified and annotated with various genomic elements. 

ChromBiSim is available at (http://sourceforge.net/projects/chrombisim). 

4.5 Date and party hubs in chromatin state networks 

4.5.1 Dataset 

ChIP-Seq data of HMs over 5 cell types of human including embryonic stem cells 

(H1hesc), lymphoblastoid (Gm12878), liver carcinoma (HepG2), cervical cancer 

(Helas3) and myelogenous leukemia (K562) has been retrieved from Encode 

repository. The bam files of the data were converted to the bed files using bedtools. 

The peak files of some transcription factors (TFs) for all cell types were also retrieved 

from Encode repository as shown in the Table 4.1. 

             

Table 4.1 Data set of 5 cell types 

4.5.2 Chromatin States 

HMs data of all cell types has been used to segment the genome into states using 

multivariate hidden Markov model (HMM) [88]. Data binarization using Poisson 

S. 

No 

Gm12878 H1hesc Helas HepG2 K562 

1 H3K4me3 H3K4me3 H3K4me3 H3K4me3 H3K4me3 

2 H3K4me2 H3K4me2 H3K4me2 H3K4me2 H3K4me2 

3 H3K4me1 H3K4me1 H3K4me1 H3K4me1 H3K4me1 

4 H3K27me3 H3K27me3 H3K27me3 H3K27me3 H3K27me3 

5 H3K9me3 H3K9me3 H3K9me3 H3K9me3 H3K9me3 

6 H3K36me3 H3K36me3 H3K36me3 H3K36me3 H3K36me3 

7 H4K20me1 H4K20me1 H4K20me1 H4K20me1 H4K20me1 

8 H3K27ac H3K27ac H3K27ac H3K27ac H3K27ac 

9 H3K9ac H3K9ac H3K9ac H3K9ac H3K9ac 

10 Ctcf Ctcf Ctcf Ctcf Ctcf 

11 Input Control Input Control Input Control Input Control Input Control 

12 Ezh2 Ezh2 Ezh2 Ezh2 Ezh2 

13 H2az H2az H2az H2az H2az 

14 P300 P300 P300 P300 P300 

15 Pol2 Pol2 Pol2 Pol2 Pol2 
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background model with the threshold of 10
-4

and 15 states model learning via virtual 

concatenation of all cell types has been achieved as discussed [52, 54]. Chromatin 

states of all cell types have been annotated with RefSeq Genes, RefSeq Exons, 

RefSeq TSS, RefSeq TES, RefSeq2KbTSS, CpG islands, repeats, laminB1 (obtained 

from UCSC genome browser) and TF peaks [88]. Fold enrichment of annotations 

have been normalized with an Rscript4 for equalizing the values as the emission 

probability values of the histone marks. 

Rscript4: 

library(gplots) 

data1 = read.table("D:/EmissionCorrel.txt") 

Emissiondatamatrix = as.matrix(data1) 

EmissionDataPercent = Emissiondatamatrix*100 

png(filename="D:/EmissionCorrels1.png") 

heatmap.2(EmissionDataPercent,col =c("darkblue","dodgerblue","cyan"), 

trace = "none",dendrogram = "none",keysize = 1.2,density.info = 

"none") 

dev.off() 

data2 = read.table("D:/Annotation.txt") 

datamatrix2 = as.matrix(data2) 

Check2 = t(t(datamatrix2)/rowSums(t(datamatrix2))) 

PercentCols2 = Check2*100 

write.table(PercentCol2,"D:/EnrichmentCorrel_Results.txt",sep = "\t", 

quote=FALSE) 

png(filename="D:/EnrichmentCorrel_Result.png") 

heatmap.2(PercentCol2, col =c("darkblue","dodgerblue","cyan"), trace 

= "none",dendrogram = "none",keysize = 1.2,density.info = "none") 

dev.off() 

4.5.3 Denovo motif finding 

Chromatin states segmentations of all cell types have been exploited for de novo 

motif discovery using Homer [91]. As chromatin segmentations are obtained via 

marks combinatorics therefore DNA motifs have been mined for those regions where 

several HMs combine to emit one state and the state also shows enrichment for certain 

marks. Homer not only works with peak files but has the ability to utilize the genomic 

coordinates in bed format. The wrapper findMotifsGenome.pl is used for the said 

purpose which aids HOMER motif discovery algorithm by setting up the data for 

analysis.  Default parameters have been used for de novo motif discovery along with 

checking the enrichment for known motifs. Genome built of hg19 was used for 

mapping purpose. 

4.5.4 Date and part hubs in chromatin state networks 

Fold enrichments of TFs, emission values of HMs and enrichment of state motifs have 

been normalized to one scale of calculation using an Rscript4 mentioned in section 
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4.5.2. The normalized values have been utilized to construct chromatin state networks 

for all cell types using BioLayout Express 3D version 3.3 developed by EMBL EBI 

[87]. TFs, HMs, motifs and states have been used as nodes whereas the interactions 

between them were considered as edges. A generalized network covering all the cell 

types has been obtained by overlapping the networks. 

Chromatin state networks have been subjected to the calculation of various centrality 

measures in order to define hubs and non hubs in the networks of 5 cell types. As 

previously proposed [107] hubs are nodes with maximum interacting partners while 

non-hubs are the ones with lesser interactions. One of the studies [108] utilized 

betweenness centrality to define date and party hubs in yeast interaction networks. 

Many studies utilized closeness centrality as a measure to identify hubs in complex 

networks and its applications in; extraction of metabolic core of the networks [109], 

visualization of complex networks [110] and for drug-targets identification [111], 

[112] along with the identification of cell cycle networks dynamics [113]. We utilized 

the concept of node degree along with the addition of some more centrality measures 

in order to define hubs and non hubs. Hubs were further divided into date and party 

hubs based on the used network centrality measures. We combined various centrality 

measures including degree, out degree, betweenness, closeness and normalized 

closeness and then defined a mean centrality measure as Avg.Centr which is the 

arithmetic mean of all centralities used. It adds all centrality measures and divides 

them by the total of centralities used‘(Eq 4.3)’. 

 

                                                                
   

                             (Eq 4.3) 

 

The centrality measures were calculated using an Rscript5. The degree centrality of a 

node i in a network could be defined as in ‘(Eq 4.4)’.  

                                                

                                                           
 
                                        (Eq 4.4) 

 

where the summation      is obtained for the rest of interconnected nodes with the 

node j whose degree is being calculated. Betweenness centrality definitions were used 

as were discussed in previous studies [114- 115]. Accordingly betweenness centrality 
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is defined as the number of shortest paths from all nodes to all other nodes that pass 

through the node.  Betweenness centrality of a node is defined as given in equation 

‘(Eq 4.5)’. 

                                                                                         (Eq 4.5) 

Here σjk defines the number of shortest paths between nodes j and k whereas σjk(i) 

indicates number of those paths which pass through node i.  

Closeness centrality being the major component of average centrality was computed 

long with betweenness and node degree centralities. Closeness centralities are one of 

the key node centrality measures in networks [116-117]. Length of the shortest paths 

of the nodes in connected graphs is measured as their distance metric. Closeness 

centrality is referred as the reciprocal of node farness which is the measure of sum of 

all its distances from the rest of the network nodes [118-119]. The closeness centrality 

of a node i could be defined as in ‘(Eq 4.6)’. 

                                                                     
    

  
                               (Eq 4.6) 

Rscript5: 

library('tnet') 

HMM_Model = read.table("D:/ModelPercent.txt") 

HMM_Model_Mat = as.matrix(HMM_Model) 

Betweeness= betweenness_w(HMM_Model_Mat, directed=NULL, alpha=1) 

Closeness = closeness_w(HMM_Model_Mat, directed=NULL, gconly=TRUE, 

precomp.dist=NULL, alpha=1) 

Degree = degree_w(HMM_Model_Mat,measure=c("degree","output"), 

type="out", alpha=1) 

Distancemat = distance_w(HMM_Model_Mat, directed=NULL, gconly=TRUE, 

subsample=1, seed=NULL) 

W_Richness = weighted_richclub_w(HMM_Model_Mat, rich="k", 

reshuffle="weights", NR=1000, nbins=30, seed=NULL, directed=NULL) 

 

Along with the degree, betweenness and closeness centralities, out-degree and 

normalized closeness centralities of nodes were also calculated. Out-degree is defined 

as the sum of weights on ties originating from a node which indicates the out-strength 

of that particular node, while the normalized closeness is the closeness which has 

been normalized as divided by N-1 where N is the total number of nodes. By 

combining all the centrality measures we calculated the average centrality as in ‘(Eq 

4.3)’. The average centrality measure behaves and changes the same way as the 

closeness centrality and out-degree centrality measures as shown in the results 

section. But the added advantage of average centrality is that it is comprised of 
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complete set of degree of a node, its out-degree, its betweenness, closeness and 

normalized closeness centralities. All these measures are important in defining hubs in 

one way or the other. Average centrality measure was used to define the hubs and non 

hubs by defining certain threshold as shown in the equation ‘(Eq 4.7)’.  

                                                                                              (Eq 4.7) 

where Ni is the i
th

 node from the node set N. The threshold value was defined by 

developing consensus as per previous studies [120-124] which in our case was 25% of 

the highest average centralities of the network. Some studies [120-122] used a cutoff 

of 5-20% of highly connected nodes as a measure to define hubs, while some used a 

static cutoff of 5 [124] and 8 [107] as well. 

Hubs were divided into date and party hubs by dividing the hubs threshold into 2
nd

 

threshold. The nodes above 2
nd

 threshold were marked as party hubs while below 

were declared as date hubs as shown ‘(Eq 4.8)’ and ‘(Eq 4.9). 

                                                                                (Eq 4.8) 

                                                                                  (Eq 4.9) 

where Hubs is the set of hub nodes and i
th 

  node is the node being checked. The hubs 

greater than 2
nd

 threshold were declared as party hubs (static hubs) while the hubs 

below 2
nd

 threshold were marked as date hubs (dynamic hubs). There is no mutual 

agreement upon data and party hubs identification and one of studies [108] utilized 

betweenness centrality for the purpose. We propose average centrality measure for 

demarcation of dynamic and static hubs inspired by the concept introduced recently 

for the identification of date and party hubs [125].The level of 2
nd

 threshold was set as 

55% of the highest average centralities.  

4.5.5 Regular expressions for chromatin states motifs 

Motifs of 15 states from all cell types have been compared with respect to states 

similarity. The motifs patterns have been compared manually and using multiple 

sequence alignment and 15 generalized regular expressions have been designed to 

give generalized patterns for various chromatin states motifs. 
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4.6 Dominating nodes set in chromatin states networks 

4.6.1 Dataset 

We obtained ChIP-Seq histone modifications (HM’s) data for H1hesc and K562 from 

Encode repository and chromatin modifiers (CM’s) data from gene expression 

omnibus (GSE32509) for both the cell types. The bam files of the data retrieved were 

converted to the bed files using bedtools [92]. The bed files of transcription factor 

(TFs) peak files for both the cell types were also retrieved from Encode repository as 

shown in the Table 4.2. 

Table 4.2 Data set of all marks 

TFs-K562 CFs-K562 HMs-

K562 

TFs-H1hesc CFs-H1hesc HMs-

H1hesc 

Arid3 Mafk CBX2_CF H3K9me3 Atf2 Plu1 CHD1_CF H3K9me3 

Atf1 Max CBX8_CF H3K36me3 Atf3 Pol2 CHD7_CF H3K36me3 

Atf3 Mef2a CHD1_CF H4K20me1 Bach1 Pou5 HDAC2_CF H4K20me1 

Bach1 Mxi1a CHD7_CF H3K79me2 Bcl11 Rad21 HDAC6_CF H3K79me2 

Bcl3 Ncor ESET_CF H3K27ac Brca1 Rbbp5 JARID1A_CF H3K27ac 

Bclaf1 Nelfe EZH2_CF H3K9ac Cebpb Rfx JARID1B_CF H3K9ac 

Bdp1 Nfe2 HDAC1_CF H3K4me3 Chd1a Rxra JARID1C_CF H3K4me3 

Bhlhe Nfya HDAC2_CF H3K4me2 Chd2 Sap30 JMJD2A_CF H3K4me2 

Brf1 Nfyb HDAC6_CF H3K4me1 Chd7 Sin3 P300_CF H3K4me1 

Brf2 Nr2f2 HP1g_CF H3K27me3 Cjun Sirt6 PHF8_CF H3K27me3 

Brg1 Nrf1 JARID1C_CF Ctcf Cmyc Six5 RBBP5_CF Ctcf 

Cbp Nrsf KAT3A-

CBP_CF 

  Znf Sp1 SAP30_CF  

Cbx3 Nsd2 LSD1_CF   Ctbp Sp2 SIRT6_CF  

Cbx8 P300 MI2_CF   Egr1 Sp4 SUZ12_CF  

Ccnt2 Pcaf NCOR_CF   Ezh2 Srf EZH2_CF  

Cebpb Phf8 NSD2_CF   Fosl1 Suz12   

Cfos Plu1 P300_CF   Gabp Taf1   

Chd1a Pml PCAF_CF   Gtf2 Taf7   

Chd2 Pol2 PHF8_CF   H2az Tbp   

Chd4 Pol3 PLU1_CF   Hdac2 Tcf12   

Chd7 Pu1 RBBP5_CF   Hdac6 Tead4   

Cjun Rad21 REST_CF   Jarid1 Usf1   

Cmyc Rbbp5 RNAPIIS5P_CF   Jmjd3 Usf2   

Znf1 Rfx5 RNF2_CF   Jund Yy1   

Ezh2 Rnf2 SAP30_CF   Mafk    

H2az Rpc155 SIRT6_CF   Max    

Hdac1 Sap30 SUZ12_CF   Mxi2    

Hdac2 Setdb1     Nanog    
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4.6.2 Chromatin states learning 

The histone marks along with the input control and CTCF have been utilized to 

partition the genome into various segments based on combinatorics as discussed in 

section 4.5.2. A 15 states model has been learnt by creating a virtual concatenation of 

both cell types [54]. 

4.6.3 Segment overlap Enrichments 

Annotation data including RefSeq Genes, RefSeq Exons, RefSeq TSS, RefSeq TES, 

RefSeq2KbTSS, CpG islands, repeats and laminB1 have been retrieved from UCSC 

genome browser, while the bed files of CMs and TFs peak files have also been used 

for the overlap enrichment. Fold enrichment of all marks for the chromatin states have 

been calculated using the overlap enrichment facility of ChromHMM. 

4.6.4 Correlation of Factors 

HMM learning provided the emission matrix and fold enrichment resulted in 

enrichment matrix. The emission matrix contained the probability of a mark, while the 

enrichment matrix contained the fold enrichment. In order to find correlation between 

all the factors, the scale of measurement for all of them was equalized. The fold 

enrichments were converted into the probability values by the following formula for 

both the cell types ‘(Eq 4.10)’; 

 

Hdac6 Sin3     Nrf2    

Jund Sirt6     Nrsf    

Kap1 Six5     P300    

Lsd1 Smc3     Phf8    

Maff Sp1         

Tblr1 Sp2         

Tbp Srf         

Tead4 Stat1         

Tf3 Stat2         

Thap1 Stat5         

Tr4 Suz12         

Trim Taf1         

Ubtf Taf7         

Usf1 Tal1         

Usf2 Zbtb         

Yy1          
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              (Eq 4.10) 

Where “Ci” corresponds to a column entry, it means a particular column entry 

divided by the summation of all entries of that column produced the probability of 

enrichment for a factor at that location. The formula was executed using Rscript4.  

The emission matrix and the probability enrichment matrix were utilized to find the 

correlation between the marks for each state. Equation ‘(Eq 4.2)’ is utilized for this 

purpose. The equation is utilized to find correlations of all the marks with the 

chromatin states and with each other for 15 states for both cell types. The total 

number of correlations for one state in this way was equal to ‘m’ factorial where ‘m’ 

is the total number of entries in a vector. 

4.6.5 Complete Networks and Network complexes 

Inter-factors correlation and correlation of factors with states were utilized to uncover 

the local network of each chromatin state for both cell types. Local networks were 

obtained for each chromatin state independently for both cell types. In order highlight 

the complete network of all chromatin states for each cell type, we ignored the 

interactions amongst the factors in each state (mainly highlighted in local networks). 

Complete network of each cell type was obtained via chromatin states correlations 

with all factors and connections within the states. BioLayout Express 3D version 3.3 

developed by EMBL EBI [87] had been utilized to develop the interaction networks. 

The factors acted as nodes and the interactions as the edges between them.  

Complete networks were subjected to Markov Clustering Algorithm (MCL) [126] in 

order to mine the closely related complexes in the network (via BioLayout platform). 

The entities having strong correlation were clustered to obtain complexes within the 

network. The inflation parameter was set to 2.2, the pre-inflation parameter was set to 

3.0, and scheme parameter to manage computing resources in MCL was set to 6.0.  

4.6.6 Minimum Dominating Nodes set in Chromatin States Networks 

Dominating nodes are the set of nodes which fulfill certain properties of minimum 

dominating set for a given network [127] and act as network controllers. A minimum 

dominating set is defined as a subset of nodes from which rest of the nodes can be 

reached by one step [117, 127].  
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Following the principle of centrality lethality rule [114] and the idea presented in 

[115], we highlighted the MDNS in the chromatin state networks of both the cell 

types used in our study. 

We calculated the degree, closeness and betweenness centralities of all nodes in 

complete networks of both cell types using an Rscript5 utilizing the Tnet R package 

[86]. All node centralities were then averaged to take one combined centrality 

measure for each Node using equation ‘(Eq 4.3)’. The averaged centralities of all 

nodes were compared to find the MDNS in the chromatin state Networks. The MDNS 

of both cell types were compared. 

In order to highlight the importance of MDNS in chromatin networks we subjected 

the networks vulnerable to attack against the determined MDNS. We sorted the node 

members of the network according to their combined centralities. Starting from the 

higher combined centrality nodes successively we deleted the MDNS from the 

network until the network started to disrupt and the importance of MDNS became 

clear. 

4.6.7 Cross validation and Reduced Chromatin States Networks 

Chromatin states learning has been obtained by keeping one mark out of the set, 

means one fold cross validation has been performed in order to check the fold 

enrichment behavior of the CMs and TFs and its effect on the interaction networks. In 

this way 11 models of 15 states have been obtained. Comparison of cross validated 

models with the complete learned reference model had been performed using an R-

script3 for both the cell types. This step was performed to identify the dependence of 

CMs and TFs enrichment on the presence or absence of a certain histone mark. 

Along with the one fold cross validation, we learnt an HMM model bearing 10 states 

in order to check the effect of enrichment and the change in the interaction networks 

in both the cell types with respect to the MDNS.  

4.7 Summary 

Histone modifications combinations from ChIP-Seq profiles are retrieved via various 

computational approaches including HMM and clustering algorithms. We based our 

studies on ChIP-Seq histone modifications profiles and identified the patterns using 

various approaches including HMM, clustering and biclustering. We proposed a 

simple computational approach to segment the genome in an unbiased way using any 



 

40 

 

HMM platform. We considered ChromHMM as a case study in our case. Along with 

we applied clustering and the use of silhouette score to identify patterns in the 

genomic data of H1 profiles and used this as the basis for HMM states identification. 

We proposed efficient clustering and biclustering platforms for identifying histone 

modifications associations at both global and local scales using binarized data signals 

as input. Our approaches efficiently identify histone modifications combinatorics at 

both levels and would be useful for further downstream analysis. 

Along with the identification of histone modifications combinations we studied the 

relationship between various factors of chromatin states networks. We studied the role 

of DNA motifs in setting the chromatin states and the role of different kinds of states 

in setting chromatin networks using graph centrality measures. 
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Chapter 5 

RESULTS AND ANALYSIS 

In this chapter, we explain step by step the results obtained as a result of 

methodologies followed in Chapter 4 described above. It is mainly comprised of 6 

main sections and the summary concluding all the findings. 

5.1 A simple computational approach for finding 

chromatin states 

The analysis of the proposed computational approach for predicting chromatin states 

has been explained step by step. 

5.1.1 Comparison of BIC scores 

Chromatin states have been learnt for the defined non overlapping segments of 

different sizes.  For each bin size various models from 2 to 30 states have been learnt. 

This learning at each level was subjected to 50 random initializations of model 

learning. At each state level (from 2 to 30) we picked model with the highest BIC 

score for data with both streams. The highest BIC Score and the log likelihood of the 

models (from 2 to 30 for 200bp bin size) have been plotted in the Figures 5.1a and 

5.1b respectively. Both the plots show the continuous increase in the likelihood and 

the BIC score. This indicated the fact that at a fine resolution of 200bp, due to data 

dependency, BIC and log likelihood don’t converge. So at this resolution BIC and log 

likelihood scales could not be used to obtain the converging points for states number. 

We tested the BIC for all bin sizes. We found the convergence at 50Kbp binning as 

shown in the Figure 5.1c. This convergence showed the highest BIC Score at 11 states 

model after which the BIC score started to decrease. 
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Figure 5.1 a) BIC Score of HMM Models for cases using input control versus 

without Input control. b) Probability score of HMM Models for cases using input 

control versus without input control. 

 

 

 

 

 

 

 

 Figure 5.1c BIC Score of HMMs over 50Kbp non overlapping regions (binning) 

across various chromatin states 

5.1.2 Computational states number identification 

5.1.2.1 Emission means correlation 

The vectors of each emission matrix (at each level ) when subjected to correlation 

produced the values ranging from -1 to 1 where the values from 0 to -1 defined no 

correlation and the values between 0 to 1 defined positive correlation. The mean 

correlation of emission matrices at each states level (2 to 30) has been plotted in the 

Figure 5.2 for 200bp bin size to monitor the change. As shown in the plot the mean 

correlation of data with input control peaked at 14 states model and for data without 

input control at 16 states model and then both the lines smoothed out to show no 

further increase.   

The mean correlations for other bin sizes have been shown in the Figure 5.3a and 5.3b 

for the data with input control. The plot 5.3a showed that 400bp binning gave rise to 
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13 states model, 600bp bin size produced 12 states model while 800, 1000, 5000 and 

50Kbp binning produced 11 states models. The Figures 5.3c and 5.3d showed 15 

states model for 400 bin size, 14 states model for 600 and 13 states models for 800, 

1000, 5000 and 50Kbp bin sizes for data without input control.  Plots 5.3b and 5.3d 

show combined plots of all the bin sizes for both cases respectively. 

 

 

 

 

 

 

Figure 5.2 Mean correlation plot of Emission matrices for HMMs ranging from 2 to 

30 states at 200bp resolution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3a Cumulative Average Emission correlation plot of HMMs ranging from 2 

to 30 states for all Bin sizes using input control.  
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Figure 5.3.b. Comparison plot of Cumulative Average Emission correlation plot for 

all Bin sizes using input control. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 5.3c Cumulative Average Emission correlation plot of HMMs ranging from 2 

to 30 states for all Bin sizes without input control.  
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Figure 5.3d) Comparison plot of Cumulative Average Emission correlation plot for 

all Bin sizes without input control. 

5.1.2.2  Clustering emission vectors 

We used hierarchical clustering to cluster up the closely related and least distant 

vectors of the 30 states model for all the bin sizes. The highly correlated emission 

vectors (probability equivalent to 0.85 or greater) of each matrix were grouped up. 

Clustering results for 200bp bin size highlighted the fact that least distant vectors 

merged to give rise to 14 clusters for the data with input control and 16 clusters for 

the data without input control as shown in the Figures 5.4a and 5.4b. The correlation 

values of clusters have been shown in the Table 5.1. The emission matrices for 14 and 

16 states models have been represented in the form of circular graphs obtained from 

Circos [128] as shown in the Figures 5.5a and 5.5b respectively.  

The results of clustering of other bin sizes with and without input control have been 

shown in the Figures 5.6a and 5.6b respectively. The clustering results were similar to 

the convergence points of mean correlations for the respective bins, as represented in 

above section. The numbers of clusters were the same as the number of highly peaked 

mean correlation values. 
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Figure 5.4a Hierarchical clustering of 30 states HMM for the data with input control 

for 200bp bin size producing 14 clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4b Hierarchical clustering of 30 states HMM for the data without input 

control for 200bp bin size producing 16 clusters. 
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Table 5.1 Clustering probabilities of 30 states HMM for 200bp Bin size data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5a Emission matrix of 14 states HMM with input control for 200bp bin size.  

b. Emission matrix of 16 states HMM for data without input control for 200bp bin 

size. 

 

State Clusters-  

Data with input control  

Correlation 

probability  

State Clusters-  

Data without input control  

Correlation 

probability  

{S1,{S2,S3}}  0.92  {{S9,S10},S5}  0.87  

{{S4,S5},S6}  0.90  {S11, {{S12,S13}}  0.82  

S7, {{S4,S5},S6}  0.85  {S22,{S11,{S12,S13}}}  0.85  

{S8,S9}  0.90  [S14{S22,{S11,{S12,S13}}}]  0.85  

{S10,S11}  0.93  {S8,{S6,S7}}  0.85  

{S15, {S12,S13}}  0.90  [S30,{S8,{S6,S7}}]  0.87  

S14[{S15,{S12,S13}},{S8,S9}{S10,

S11}]  

0.90  (S23[S30,{S8,{S6,S7}}])  0.86  

[{{S16,S17},S19},S18]  0.92  {S17, {S15,S16}}  0.89  

{S20,S21}  0.91  [S21, {S17, {S15,S16}}]  0.85  

{S24,{S25,S26}}  0.90  {S18, {S19, S20}}  0.89  

S23,S27  0.90  {S1,{S2,S3}}  0.86  

S22[{(S25,S26),S24}, {(S23)(S27)}]  0.91  S4  0.85  

{S28,S29}  0.90  S29  0.87  

S30,{S28,S29}  0.85  {S25,S26}  0.89  

  { S24, {S25,S26}}  0.85  

  S27,S28  0.85  
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Figure 5.6a Hierarchical clustering of Emission correlation of 30 states model for the 

data with input control a) for 400bp bin size b) for 600bp bin size c) for 800bp bin 

size d) for 1000bp bin size e) for 5000bp bin size f) for 50,000bp bin size. 
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Figure 5.6b Hierarchical clustering of Emission correlation of 30 states model for the 

data without input control a) for 400bp bin size b) for 600bp bin size c) for 800bp bin 

size d) for 1000bp bin size e) for 5000bp bin size f) for 50,000bp bin size. 
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5.1.3 Biologically annotated models 
We performed functional annotation of the states with respect to genomic elements at 

each states level as proposed earlier [52, 54]. In the annotations achieved; the active 

promoter regions were enriched with H3K4me2/3 marks along with RefSeq TSS, 

enhancer states were enriched with H3K4me1 and H3K27ac, repressed states 

contained high frequency of H3K27me3, H3K36me3 mark showed up towards the 

transcribed states with RefSeq genes and RefSeq exons enrichment, heterochromatin 

had very low signals for all marks ,the repeat regions contained either the high 

frequency of all marks or the presence of H3K9me3 only while the CTCF marked the 

insulator region. We developed a visualization strategy to identify the states number 

amongst 2 to 30 states models for the data with and without input control for all bin 

sizes. At each level we marked the states with respect to the annotations. We observed 

the appearance of the new functionally annotated state at each level.  

This annotation was observed in all cases whereas we have shown the results of 

200bp bin size only because there was an existing reference [54] for it and the other 

annotation followed the same procedure. This visualization scheme produced newly 

functional states till 14 states model (for 200bp data with input control), after that 

annotations started repeating. There was no addition of new functional annotations 

among the states. Data without input showed newly emerging states till 16 states 

model. This scheme worked both for data with input and without input as shown in 

the Figures 5.7a and 5.7b respectively for 200bp bin sizes. The 14 states model states 

were as: state1 an insulator, states 2, 3 the weak enhancers, state 4 was the strong 

enhancer, the active promoter regions belonged to state 5, state 6 was comprised of 

weak promoter, states 7 and 14 represented the repeats regions, poised promoter has 

been represented by state 8, state 9 shows the repressed region, the heterochromatin 

comprising of the maximum part of the genome was showed by state 10 and the 

strongly transcribed regions of the genome have mapped to states 11 and 13 while the 

weak ones to state 12. 
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Figure 5.7a HMM states (ranging from 2 to 30 states) annotated visualization of data 

using input control over 200bp bin size. Similar annotated states at each states level 

are shown in same columns in order to observe the appearance of new annotated state. 

14 states model is highlighted as the final model in visualization scheme. 

Figure 5.7b HMM states (ranging from 2 to 30 states) annotated visualization of data 

without input control over 200bp bin size. 16 states model is highlighted as the final 

model in visualization scheme. 
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5.1.4 Comparison with the reference model 
5.1.4.1 Emission based comparison 

Emission means correlation along with clustering and annotation produced 14 states 

model as the optimal model for 200bp in our study. We therefore compared the 

biologically annotated state of the reference model [54] with the 14 states model of 

200bp from our study on the basis of emission vectors. The states are highly 

correlated having correlation greater than 90% in each case as shown in the 

Figure5.8a where R represents the state for the reference model and E represents our 

model which we called unbiased model. The color coding in Figure 5.8a represents 

states annotation for both models. Our model contained one strong enhancer while the 

reference contained 2 as shown in the Figures 5.8b and 5.8c respectively. Remaining 

states were exactly similar. The strong enhancer state in our model showed more than 

90% correlation with both the states which means the emission vectors are highly 

correlated with the reference model. The emission matrices of both the models shown 

in the Figure 5.8b are highly correlated. 

 

Figure 5.8 a) Emissions 

comparison of the Reference 

and the unbiased model. 

Correlation between similar 

states for the Reference and the unbiased model has been shown across the annotated 

states. b) Emission matrices of the Unbiased and c) the Reference Model are shown 

where each matrix represents the enrichment of a factor in the respective state. 
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5.1.5 State segmentation based comparison 

The genome segments of our 14 states model has been mapped onto the 15 states 

reference model [54]. The comparison has been shown in the Figure 5.9 where part a 

represents the comparison in the percentage and part b represents the pictorial heat 

map representation. As highlighted in the Figures 5.9a and 5.9b that each of the 

biologically annotated state of our model mapped exactly on the similar state of the 

reference model e.g. insulator of the unbiased model mapped onto the insulator of the 

reference with more than 90% efficiency. Same is the case for others, except for one 

strong enhancer state of the unbiased model which mapped up to 25% on one of the 

enhancer of the reference and up to 71% onto the other enhancer state of the 

reference. The models are highly correlated both with respect to the segmentation and 

emission vectors. 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 a) HMM states segmentation comparison of the Reference and the 

unbiased model. b) Heat map of the comparison in part a shows the overlap between 

various genomic regions for both the models 
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5.2 H1 subtypes segmentation 

In order to identify distinct combinations of H1 subtypes that are recurrent throughout 

the genome, we performed segmentation using an unbiased hidden Markov model 

(HMM) approach. 

We found that a 5 states model optimally described our DamID data [97]. In this 

model, state 3 is the most abundant one, covering 50% of all probed locations, and 

corresponds to an average steady-state level of all 5 H1 subtypes binding (Figure 

5.10a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10a H1 binding can be described by 5 principal states, each consisting of a 

unique combination of H1 subtypes. The bar graph shows the average DamID values 

(log Dam-H1/Dam) of H1 subtypes H1.1–H1.5 (1, 2, 3, 4, and 5) within each of the 5 

HMM states. Error bars correspond to the SD. The pie chart shows the percentage of 

genome coverage of each of the 5HMM states [97]. 

 

State 1 corresponds to regions strongly depleted of all H1 subtypes in the DamID data 

sets, and shows 3.6% genome coverage. States 2, 4, and 5 show a similar level of 

H1.1 binding and different levels of H1.2–H1.5 enrichment. State 2, which cover 

19.3% of the genome, and state 4, with 20.5% coverage, show a slight depletion and 

enrichment, respectively, of H1.2–H1.5. State 5, covering 6.2% of probed locations, 
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corresponds to high enrichments of H1.2– H1.5 and highly variable H1.1 binding. The 

fact that none of the identified states distinguished between the subtypes H1.2–H1.5 

supports the similarity of their distribution. We further corroborated this observation 

by independently calculating the correlation coefficients among our data sets for all 

somatic H1 subtypes. Indeed, the DamID results suggest the existence of two distinct 

groups: one consisting of H1.1 and one comprised of H1.2–H1.5 (Figure 5.10b) [97].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10b Correlation of H1 subtypes genomic distribution. The heat map shows 

the Pearson correlation coefficients calculated between H1 DamID binding values 

(log2Dam-H1/Dam) across all probes on the array [97]. 

 

5.3 ChromClust case study 

5.3.1 Input data 

 Starting with ChIP-Seq data based on 10 histone marks (H3K4me3, H3K4me2, 

H3K4me1, H4K20me1, H3K9ac, H3K27me3, H3K9me3, H3K9ac, H3K36me3 and 

H3K27ac), one insulator protein CTCF and input control [54], we used our approach 

to identify signal enriched regions containing these modifications in nine cell types. 

We used binarized approach for clustering purpose based on present and absent 

signals of histone modifications. Our approach recovered possible combinations 

mapping various genomic locations including promoters, enhancers, transcribed 

regions, heterochromatin, repressed and repeat regions. This method is the first of its 

kind amongst the clustering algorithms which is not restricted to already defined 

promoters and enhancers [49]. We divided the genome into 5K base pair non 

overlapping regions. The algorithm followed semi- supervised approach by first 

creating the database (DB). Data of first cell type is processed for clustering and 

results have been stored in the DB. This was achieved in an unsupervised way 
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irrespective of any a priori knowledge base. Remaining eight cell types were clustered 

one by one based on previous clustering knowledge, in a supervised fashion. This 

could be achieved without using prior knowledge as per user choice. The added 

facility of DB is used to handle this very specialty of ChromClust.  

5.3.2 Identified Clusters for various genomic regions 

 The clustering approach allows the user to select the similarity basis for clustering. 

Similarity basis is the way of achieving relaxed or strict grouping of chromatin 

combinations. It can vary from 60 percent to 100 percent. As the similarity measure 

approaches to 100 percent it tights up the clustering criteria and only exact clusters are 

observed. In this way number of clusters increases. We tested various similarity 

measures ranging from 70 to 100 percent match criteria. In case of a similarity 

measure e.g. 95%, the hamming distance between two non-overlapping regions is 

measured; if it is greater than equal to 95 percent then both the regions are part of one 

cluster and so on.  

In case of 70 percent we obtained 11 clusters, 31 clusters resulted in case of 80% 

match, 90 percent match criteria retrieved 68 clusters while 100 percent resulted into 

364 clusters. This cleared the picture that there were 364 unique regions in the 

genome with respect to binarized data in all nine cell types. 

5.3.2.1 Annotations of clusters 

We annotated the clusters with various regions obtained from UCSC genome browser. 

As an example case we describe here results for 70 percent match criteria where we 

got 11 clusters.  

Cluster 1 spanning over 44% region of the 5Kbp non overlapping segments of the 

genome marked the heterochromatin region. Cluster 1 showed the low frequency or 

absent signals of all histone marks. A high enrichment of lamin B1 has been seen in 

these regions. Cluster 2 covering over almost 5% region showed high enrichment of 

all the marks and acts as a repeat region. Cluster 3 enriched in RefSeq genes, RefSeq 

exons, RefSeq TES and mark H3K36me3 showed the transcribed regions. Cluster 4 

enriched with lamin B1 and H3K9me3 marks the repeat area. Enhancers span over 

clusters 5 and 9 (strong and weak respectively) with high enrichment in H3K4me1. 

Clusters 6, 7 and 8 represent the class of promoters (strong, weak and poised 

respectively). These regions show enrichment with CpG islands, RefSeq TSS (in case 
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of Cluster 6) and RefSeq TSS2Kb (in case of Cluster 6), H3K4me3, H4K20me1, 

H3K9ac, H3K27me3 (in case of poised one). Repressed regions have been captured in 

clusters 10 and 11 with enrichment in lamin B1 and H3K27me3.The enrichments and 

genome percents have been shown in Figure 5.11. The enrichments of clusters 

showed correlation with previous studies [42, 54, 61, 129-130]. 

 

 

 

 

 

Figure 5.11 a Clusters annotation. b. Genome wise percentage of each cluster. 

 

5.3.3 Comparison of ChromClust with other tools 

The results of our tool for the data set used showed that there were 364 unique regions 

(in 5KBp non overlapping regions) in the genome based on histone modifications 

combinatorics. However using tools like ChromHMM [88], ChromaSig [49], spatial 

clustering [65] and HMMSeg [84], it’s hard to identify the unique regions in the 

whole genomic structure. Our tool has this added facility of peeping deep into the 

genomic regions and studying the regions with respect to any similarity measure 

(starting from 60 percent and going up to 100 percent). Size of non overlapping 

regions again is a user based choice in our tool. ChromClust outperforms the others in 

terms of identifying similarity based regions and it easily splits the genome into 

unique regions as well thereby providing us the deep view of the genome under study 

as shown in the Figure 5.12. Therefore we conclude that splitting the whole genome 

into unique regions and studying the genomic structure with respect to presence of all 

possible histone combinations is the uniqueness of ChromClust. 
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Figure 5.12 Comparison of ChromClust with existing tools for 5Kbp non over 

lapping regions. 

5.4 ChromBiSim case study 

Histone modification data over 5K base pair non overlapping locations was taken. 

Raw data of 11 marks for each of the four cell types were preprocessed. The 

preprocessing step normalized the marks with respect to the input controls and 

converted them into binary format.  

The binarized data of each cell type was used for bicluster identification. In total 803 

biclusters were retrieved for all cell types where 192 biclusters were mined for 

Gm12878 cell type, 190 for H1hesc, 218 for Helas3 and 203 for K562 (Figure 5.13a). 

Each bicluster contains information of the total number of non-overlapping regions 

which it covers along with the histone modifications present in it (Figure 5.13b). 

Along with the total number of bins, it also contains information of their chromosome 

wise location as well. This information of biclusters was exported to the output files 

which were used for further downstream analysis. 

 

 

 

 

 

 

 

Figure 5.13a Bar chart representation of total number of biclusters in all cell types. 
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Figure 5.13b Bar chart representation of total number of non overlapping regions 

(bins) per biclusters in all cell types. 

5.4.1 Comparison of biclusters across cell types 

We used the output files generated by ChromBiSim for comparison purpose. We 

compared the biclusters of each cell type manually as well as overlapped the 

biclusters of all cell types using interactive tool Venny [131]. Overlapping results 

from both methods were obtained. In total 109 biclusters out of 803 were present in 

all cell types, whereas 25 were Gm12878 specific, 14 were K562 specific, 37 were 

Helas3 specific and 30 were H1hesc specific.  H1hesc and Gm12878 contained 4 

biclusters which were not found in Helas3 and K562, whereas Helas3 and K562 

contained 17 biclusters which were not present in Gm12878 and H1hesc. It means the 

normal cell types contains 4 such combinations of histone modifications which were 

not found in cancerous cell types, while cancerous cell types contains 17 such 

combinations which were not found in normal cell types. This analysis shows that 

ChromBiSim could easily highlight the differences between normal and diseased 

histone modification cell types combinatorics. Interesting combinations were also 

observed like 12 biclusters were found which were present in H1 and K562, 6 

biclusters were found in Helas3 and H1hesc only, 4 biclusters in Helas3 and 

Gm12878 while 8 biclusters were found in K562 and Gm12878 only. Among these 

combinations we observed such combinations as well which were missing only in one 

cell type, like 11 biclusters were such which were present in H1hesc, Helas3 and 

K562 while missing in Gm12878, similarly 10 biclusters were found which were 
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missing in K562 only, 8 biclusters were not present in Helas3 only and 24 were such 

which were not present in H1hesc only (Figure 5.14a). The analysis highlighted the 

cell type specific combinations along with combinations present in two cell types and 

missing in others, or three cell types and missing in one of them. This analysis and 

tool would be helpful for any other studies based on comparisons of epigenomic 

profiles as well.  

Along with similarities and differences among the biclusters we annotated the 

biclusters with the various genomic regions obtained from UCSC genome browser. 

Annotation results marked the biclusters for various regions like insulators, repeats, 

polycomb repressed regions, enhancers, transcribed regions and poised and active 

promoters. ChromBiSim mined almost all possible combinations of histone 

modifications. Amongst them some of the annotated biclusters are highlighted (Figure 

5.14b). 

 

 

 

 

 

 
Figure 5.14a Venn diagram representing similarities and differences of biclusters in 

all cell types. 

 

Figure 5.14b Some annotated biclusters with various genomic locations from all (4) 

cell types    
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5.4.2 Comparison with other tools 

ChromBiSim outperforms other methods as it works on presence of marks and 

decodes the associations within seconds from the whole genome data set. The 1Kbp 

non overlapping data of four cell types took only few minutes to mine the patterns. If 

the binning (non overlapping regions) is narrowed down like 200bp which we also 

tested on various cell types, it took over maximum 30 minutes to identify whole 

genome patterns depending on the machine being used.  

ChromBiSim is the first of its kind to mine biclusters from genome wide data based 

on binarized signals. ChromHMM [88] mined the combinatorics from the binarized 

data but it contained both the present and absent mark. Therefore ChromBiSim like 

ChromHMM [88] works on binarized data but unlikely it works on local signals and 

portrays epigenomic landscape from the present marks signals neglecting the absent 

ones.  

It outperforms the two biclustering algorithms [50, 104] for histone modifications in 

several aspects as being user friendly, not dependent on peak calling methods to 

identify peaks for bicluster analysis, producing graphical results along with exporting 

the output in files for further downstream analysis.  

5.5 Date and party hubs in chromatin state networks 

5.5.1 Chromatin states learning 

ChIP-Seq data of 5 cell types (H1hesc, K562, HepG2, Helas and Gm12878) 

comprising of 10 HMs along with input control and an insulator protein (CTCF) have 

been retrieved from public repositories. Genome segmentation was achieved using 

multivariate hidden Markov model (HMM) [88]. A virtual concatenation of cell types 

was created to learn 15 states HMM based on previous studies [54]. States of each cell 

type were individually annotated with RefSeq Genes, RefSeq Exons, RefSeq TSS, 

RefSeq TES, RefSeq2KbTSS, CpG islands, laminB1, P300, Ezh2, H2az, Pol2 and 

Ctcf binding site. The 15 annotated states were; State 1 being the repeat region was 

defined by the presence of H3K9me3 mark, state 2 marked as heterochromatin 

showed the low frequency of all marks. Both the states showed enrichment with 

LaminB1. The transcribed states numbered 3 to 5 showed high enrichment of 

H3K36me3, H3K79me2 marks along with strong annotation with Refseq exons, 

Refseq gene and Refseq TES. Enhancer regions spreading over states 6,7,11 and 12 
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form two major groups; states 6 and 7 closely related to transcribed regions lie 

immediately after them and it could be linked to the role of elongation factors in 

posing enhancers in ES cells in one of the studies [132]. This state behavior was 

shown in all cell types. Enrichment of H3K79me2 and H4K20me1 was seen in states 

6 and 7. States 11 and 12 were immediately followed by promoter states (9 and 10). 

Enrichment of P300 and H3K4me1 was observed in states 11 and 12. States 9 and 10 

marked as promoters were found highly enriched with H3K4me3, H3K4me2, 

H3K9ac, H3K27ac, Refseq TSS and Refseq TSS2Kb. State 8 marked as repeat region 

showed enrichment in all marks used. Enrichment of H3K27me3 was observed in 

states 13 and 14 which behave as polycomb repressed regions [133-134]. The last 

state 15 being highly enriched in CTCF was marked as the insulator state. The 

enrichment mapping shows high correlation with previous studies [54]. States 

distribution along with sequence of steps followed in study has been shown in Figure 

5.15 while state enrichments of all cell types have been shown in Figure 5.16.  

 

 

 

 

 

 

 

Figure 5.15 A. Sequentially annotated chromatin states key. B. Emission matrix 

representing histone marks patterns in each state. C. Cell types used in study. D. 

Sequence of steps followed in study. 
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Figure 5.16 State annotations of chromatin states in all cell types (Gm12878, H1hesc, 

Helas, HepG2 and K562) 

5.5.2 Denovo motif learning 

DNA motifs as representatives of chromatin states of 5 cell types have been obtained 

via Homer software [91]. The chromatin state segmentations of each cell type were 

subjected to de novo motif discovery using default parameters used for histone marks. 

As each chromatin state is represented by combination of histone modifications 

therefore we tried to pick the motifs for each state and compared their behavior across 

each cell type. In total 1845 motifs for all cell types were obtained with significant p-

value i-e <= 1e-
10

 [91]. Of the 1845 motifs 57 were found in state1, 128 in state2, 134 

in state3, 129 in state4, 86 in state5, 94 in state6, 151 in state7, 140 in state8, 138 in 

state9, 144 in state10, 131 in state11, 139 in state12, 83 in state13, 171 in state14 and 

120 in state15. Percentage distribution of each state with respect to motifs has been 

shown in the Figure 5.17a.  

In each chromatin state, two types of motifs have been found, one cell type specific 

and the other which were present overlapping in different cell types and are marked as 

state specific ones. Cell type and state specific motif percent counts have been 
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represented in Figure 5.17b along with detailed combination of motifs in cell types in 

Appendix-A. It has been demonstrated that the shared motifs contribute almost 20% 

towards the total motifs count.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17a Pie chart representing the percentage distribution of DNA motifs in 

each chromatin state where S1 to S15 represents the 15 states of the HMM. 

 

 

Figure 5.17b Bar chart representation of various types of DNA motifs in 4 cell types. 

 

Among the total motifs the highest count goes to enhancer states of all cell 

types presenting their ability for more cell type specific regulators [130]. The 

overlapping motifs for enhancer states were 30% in total of the 27.9% while the cell 

type specific were 70% of the 27.9%. Promoter states follow the enhancers and 
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contain the highest number of sharing motifs by multiple cell types [135], while the 

transcribed regions have lesser shared motifs than enhancers and promoters. 

Transcribed states were more inclined towards the unique motifs rather than shared 

ones [135]. Heterochromatic states, repeat regions, repressed states and insulator have 

lesser number of motifs than three significant states with respect to transcription 

process (promoter, enhancer and transcribed) of chromatin. The details of motif 

counts are highlighted in Figure 5.17c. Motifs for each state in all cell types have been 

highlighted along with their p-values, ranks and best match for known motifs in 

supplementary information. Top scoring motifs of all states (of all cell types) have 

been shown in Table 5.2 along with their motif sequences and p-values. 

Figure 5.17c Bar chart representing chromatin state specific motif percent counts. 

 

As mentioned earlier in chromatin states, the active enhancer states contained 

the highest number of motifs which is because of the presence of the active enhancer 

mark H3K27ac [137] at those sites. This is not surprising as chromatin mark across 

enhancers show dynamic nature across cell types [130]. The transcribed states have 

shown mostly the unique motifs because of the presence of transcriptional activity 

mark H3K36me3 and hence it makes the motif based regulation mostly unique [135]. 

Active promoter states sharing most of the motifs in all cell types show such behavior 

because of the combined effect of the H3K4me3 and H3K27ac at those sites [135]. 
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States Cell types Rank Motif P-Value 

1 Gm12878 1 CAYACTGGAGAG 1e-76 

2 Gm12878 1 CTATCCCCAGGC 1e-30 

3 Gm12878 1 ATGTAGCAAGTC 1e-26 

4 Gm12878 1 CAGGGGATGCCG 1e-28 

5 Gm12878 1 TATGGAAGSGGT 1e-16 

6 Gm12878 1 ACTGCCAGCTAC 1e-21 

7 Gm12878 1 CAACCTACCAAG 1e-36 

8 Gm12878 1 GTTAAAACTGGT 1e-48 

9 Gm12878 1 ACTTTCACTTTC 1e-126 

10 Gm12878 1 ASTTTCABTTTC 1e-127 

11 Gm12878 1 GRAASTGAAA 1e-242 

12 Gm12878 1 TTTCACTTCC 1e-182 

13 Gm12878 1 HAAATCGV 1e-45 

14 Gm12878 1 TGTTCCCAGCTT 1e-42 

15 Gm12878 1 GCCCCCTAGTGG 1e-12635 

1 HepG2 1 CATACTGGAGAG 1e-25 

2 HepG2 1 CCAGTTCRACTC 1e-29 

3 HepG2 1 CACACGGCGCAC 1e-25 

4 HepG2 1 GACGCCACTWGA 1e-28 

5 HepG2 1 TTDATAGGTCCT 1e-20 

6 HepG2 1 CAAGTGGCAGTC 1e-30 

7 HepG2 1 AGAGCCAGTGTG 1e-36 

8 HepG2 1 CGYWWWWW 1e-51 

9 HepG2 1 GCCMYCTGGTGG 1e-146 

10 HepG2 1 GNCGGAAT 1e-97 

11 HepG2 1 GDWCAAAGTTCA 1e-400 

12 HepG2 1 TGRACTTTGRMC 1e-249 

13 HepG2 1 STTTCRVTTT 1e-53 

14 HepG2 1 CAGTTACAATTG 1e-48 

15 HepG2 1 GCCCCCTAGTGG 1e-12483 

1 K562 1 ACACTGGAGAGA 1e-58 

2 K562 1 CATGGCTGTTGG 1e-33 

3 K562 1 CCAGGTGCACCT 1e-24 

4 K562 1 CCACCAGGGGGC 1e-27 

5 K562 1 CCTGCCGACAGC 1e-22 

6 K562 1 GAAGACRTCCCT 1e-26 

7 K562 1 GGTAAGCCACCT 1e-33 

8 K562 1 CTACATTGGATC 1e-31 

9 K562 1 GCCCCGCCCCCH 1e-156 

10 K562 1 SCGRWATT 1e-145 

11 K562 1 CSTTATCT 1e-294 

12 K562 1 BCCTTATCWN 1e-158 

13 K562 1 CGCTYTSC 1e-20 

14 K562 1 ATGSTGAACCTW 1e-43 

15 K562 1 GCCCCCTAGTGG 1e-10910 

1 H1hesc 1 AGAGAAACCHTA 1e-35 

2 H1hesc 1 CTGTCCAGATGT 1e-33 

3 H1hesc 1 GACCATGGGTCA 1e-33 

Table 5.2 Top scoring DNA motifs of chromatin states in 4 cell types 
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In order to systematically identify motifs involved in setting histone modifications 

resulting in particular chromatin states, we identified the ones which are also similar 

to the known motifs.  

Amongst the known motifs Mafk_2, ZBTB33, RUNX, GATA3, CTCF(Zf), 

ETS1, Atf3, CEPBP and HOXA2 matched with known families of TFs. Mafk_2 is 

well known as transcription regulator. It may act as an oncogene or as a tumor 

suppressor depending on cell type specificity [136, 138-140]. Mafk_2 type matching 

DNA motif [TTG (T|G) ATTTTT (T|C) T] was observed in chromatin states 10 

(strong promoter state) of HepG2 and K562 cell types. As is mentioned earlier that it 

act as a tumor suppressor and is cell type specific, it could be seen that this motif was 

observed in promoter states of two cancerous cell types, hence acting as cell type 

specific strong promoter motif. ZBTB33 is a transcriptional regulator which promotes 

histone deacetylation by recruitment of N-CoR repressor complex and leads to the 

development of repressive chromatin structures in gene promoters of the targets [141]. 

ZBTB33 type matching motif [CTCTCGCG (T|C) CAC] has been found in chromatin 

4 H1hesc 1 CAKCATCA 1e-28 

5 H1hesc 1 ATGAGGCCCTGC 1e-24 

6 H1hesc 1 CTTGCTCTTGGG 1e-42 

7 H1hesc 1 GTCTTTGTCAAA 1e-54 

8 H1hesc 1 CGNWNWNN 1e-107 

9 H1hesc 1 CGNWWWTD 1e-217 

10 H1hesc 1 SCGNWWWW 1e-181 

11 H1hesc 1 ATGCAAATGA 1e-272 

12 H1hesc 1 TTGTYATGCAAA 1e-272 

13 H1hesc 1 CGNWTTTW 1e-62 

14 H1hesc 1 GTATACTGTAAG 1e-23 

15 H1hesc 1 CCACTAGGGGGC 1e-14580 

1 Helas 1 GAGAAACCCTAT 1e-47 

2 Helas 1 CGTTTTCATCAG 1e-38 

3 Helas 1 CTCCCTGAGTGC 1e-35 

4 Helas 1 TGGTGATGGTAC 1e-47 

5 Helas 1 CAVRTTGACG 1e-27 

6 Helas 1 CAGACTTAGCAG 1e-24 

7 Helas 1 TAAAAAGTCGCA 1e-25 

8 Helas 1 TAGGCAAGACTT 1e-33 

9 Helas 1 CCACTAGATGGC 1e-186 

10 Helas 1 GSKSTGAGTCAG 1e-176 

11 Helas 1 NNATGASTCATN 1e-883 

12 Helas 1 DATGASTCATHW 1e-394 

13 Helas 1 TASTTTCAYTTT 1e-36 

14 Helas 1 CTGATCCATCTA 1e-55 

15 Helas 1 CCACYAGRKGGC 1e-8301 
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state 10 (strong promoter state) of HepG2 and H1hesc cell types. ZBTB33 being 

transcriptional regulator factor has been found in strong promoter state of two cell 

types.   

RUNX is also a class of TFs and plays its role in osteoblastic differentiation and 

skeletal morphogenesis [142]. RUNX type motif [CCCCGTGTGGTG] has been 

observed in strong enhancer states of Gm12878 and K562 cell types.  GATA3 is one 

of the TF activator binding to the enhancers of T-cells. T-helper differentiation 

process is mediated by GATA3 [143]. GATA3 motif [CGAGATAA] has been 

observed in chromatin state 11 and 7 (strong enhancer states) of HepG2, K562 and 

Helas cell types. It is noted that this motif was observed in all cancer cell types. So it 

is a cell type specific enhancer state motif.  

CTCF a TF with 11-zinc finger is included in various processes of gene regulation 

covering hormone-responsive gene silencing, chromatin insulation and promoter 

activation and repression. CTCF targets oncogenes along with tumor suppressor genes 

[144]. Due to its ability of activation or repression and targeting oncogene [57], CTCF 

type motif [GCC (A|C) (C|T) CT (A|G|T) GTGG] has been observed in enhancer state 

(state 10) of H1hesc, K562, Helas and HepG2 cell types. Gm12878 was the cell type 

which was lacking this motif in enhancer state. Hence all cancerous cell types and the 

embryonic stem cell type contained this motif which is in return marking the enhancer 

state due to histone combinatorics at these genomic locations.   

ETS1 belongs to the class of TFs involved in Gata4 regulation via enhancer sites 

[145] and the DNA motif of ETS1 [(A|G) CTTCCT (G|C) (T|C) (T|A|G|C)] has been 

found in strong enhancer state (state10) of HepG2, K562 and Gm12878 cell types. 

Atf3 acts as transcriptional repressor and stabilizes the binding of inhibitory cofactors 

at promoter regions [146]. DNA motif [(A|C|G)   TGA (C|G) TCA (T|C|G) (C|T|A)] 

of Atf3 has been found in state 10 of H1hesc and Helas cell types hence making it cell 

type specific enhancer motif. CEPBP is an enhancer binding and activator protein 

involved in TF dimerization [147] and its motif is found in Helas cell type in state 11 

(enhancer state). HOXA2 proteins are involved in spatial and temporal regulation of 

embryonic development [148] and its motif [AGATGGATGGCG] is found in 

polycomb repressed state marked by H3K27me3 in K562 and Helas cell types. It is 

clear from above discussion that DNA motifs are important in setting histone 
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modification combinations and in return marking the chromatin states. This could also 

been seen in the cell types used in one of the earlier studies [135]. 

5.5.3 Chromatin state networks 

Chromatin states obtained by histone marks combinations, enrichment of states with 

various elements of genome and enrichment of states with DNA motifs have been 

used to make chromatin state networks. Histone modifications, TFs, CMs, and DNA 

motifs have been used as nodes in these networks. The interaction between each of 

these factors was used as the connecting edge between the nodes. The probability of 

interaction was used as the weight of the edge in the network.  The networks of the 

five cell types contained in average more than 300 nodes, 600 edges, average 

connectivity of around 3.6 and maximum connectivity of around 60. The exact detail 

of each cell type is mentioned in the Table 5.3. 

  

            Table 5.3   Network information of all cell types 

 

 

 

 

 

 

 

 

 

All networks were subjected to Markov clustering (MCL) algorithm in order to find 

clusters in the network. Each network was divided into 15 clusters, each cluster 

representing the chromatin state as shown in the Figure 5.18 where cluster1 to cluster 

15 comprised of states 4, 14, 10, 11, 12, 3, 15, 5, 8, 7, 9, 2, 1, 6 and 13 respectively . 

The figure represents a generic network of all cell types. Cell type specific networks 

have been shown in Figures 5.19a, b, c, d and e.  

Each network has been visualized as a planar grid in order to have a closer look at the 

paths available through the network. The edges connecting the nodes arranged 

themselves in a plane to give a planar representation as shown in the Figure 5.20. A 

closer look at the figure marks differences at some points of connectivity pointing the 

Cell Types  Total Nodes  Total Edges  Avg. 

Connectivity  

Maximum 

Connectivity  

Gm12878  367 648 3.53 65 

H1hesc  337 621 3.69 53 

K562  337 610 3.62 58 

Helas  360 643 3.6 60 

HepG2  364 655 3.6 60 
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differences in networks of cell types hence proving the point of their being 

independent cell types. 

 

 

            

 

 

 

 

 

 

Figure 5.18 A. Generic chromatin states network of all cell types. B. Network 

clusters key with respect to states 

 

 

 

 

 

 

 

 

Figure 5.19 a. Gm12878 chromatin states network. b. H1hesc chromatin states 

network 
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Figure 5.19 c Helas chromatin states network. d. HepG2 chromatin states network 

 

 

 

 

 

 

Figure 5.19 e. K562 chromatin states network 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 Planar grids of chromatin state networks of all cell types. 
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5.5.4 Date and party hubs in networks 

Chromatin state networks were subjected to the calculation of various centrality 

measures in order to identify the hubs playing an important role in network 

connectivity. All centrality measures including closeness, degree, and betweenness 

were used to calculate a combined score represented as average centrality score as 

shown in the Table 5.4 and Figure 5.21a.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21a Average centralities of chromatin state networks of all cell types. 

 

Individual centrality measures of all cell types have been illustrated in Appendix-B 

(Tables S5.1, S5.2, S5.3, S5.4 and S5.5). As clear from the average centrality scores 

state 10 (strong promoter) is the most significant hub among the networks of all cell 

types. Repeats regions (state 8) marked significantly by all HMs is the 2
nd

 most 

significant hub followed by state 14 the Polycomb repressed state. State 1 (repeats 

marked by H3K9me3) along with states 5 and 6 (the transcribed regions) bear the 

lowest of the average centrality scores, lesser than the 25% of the most significant 

hub. Keeping the criterion of hubs identification; states 1, 5 and 6 were marked as 

non- hubs because they were lesser than the threshold values as was shown earlier in 

various studies [120-124]. Remaining states were above the threshold of hub criterion 

therefore they were also the part of hub entity set. Hence the hub entity set contained 

the heterochromatin, promoter states, strong enhancer states, polycomb repressed 

regions, poised promoters, strong transcribed states and insulator regions. 
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. 

Table 5.4 Average centrality measures of chromatin states. 

 
Nodes Gm12878 H1 Helas HepG2 K562 

S1 179.4 182.5 243.8 348.6 172.6 

S2 422.3 616.0 546.0 675.6 431.8 

S3 571.5 424.5 602.4 496.6 415.2 

S4 527.9 543.0 936.6 616.9 575.0 

S5 156.8 354.6 392.4 198.7 215.6 

S6 267.1 269.8 233.0 311.0 250.2 

S7 775.6 684.8 484.0 725.6 480.9 

S8 973.2 657.3 688.2 748.4 822.4 

S9 771.2 698.5 651.8 824.1 673.3 

S10 970.9 849.7 829.4 1028.5 714.4 

S11 606.3 610.1 738.2 593.6 890.5 

S12 605.6 501.4 607.0 511.2 597.8 

S13 756.3 539.6 313.6 592.9 434.8 

S14 647.2 554.3 781.4 1026.0 751.7 

S15 637.9 593.7 556.4 602.8 735.5 

 

Hub entity set was further classified into date and party hubs on the basis of 2nd 

threshold which was defined as 55% of the most significant hub. Hubs below the 

threshold were marked as date (dynamic) hubs while the ones above the threshold 

were declared as party (static) hubs. States 2, 3 and 13 were declared as date hubs in 

all cell types whereas the remaining ones were marked as party hubs as shown in 

Figures 5.21b and 5.21c. Date and party hubs are marked in Figure 5.21b in a bar 

chart representation while Figure 5.21c highlights connectivity of the respective hubs 

in the network. Among the states heterochromatic regions, one of the transcribed 

regions and poised promoter were the ones which behaved as the dynamic players in 

the chromatin and have been declared as the date hubs, while the enhancers, set of 

promoters, repeats, insulator and some of the transcribed regions were shown to be 

the static players and remain consistent within cell types in order to declare their role 

as party hubs. Though the values of party hubs varied amongst the cell types which 

showed the variation of connections within cell types but the overall effect of 

centrality scores remained the same for the demarcation of date and party hubs. 
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Figure 5.21b Bar chart representation of date and party hubs in chromatin state 

networks 

 

Hence based on the idea introduced by [125] our introduced measure of average 

centrality worked in the same way as their combined centrality measure. Our average 

centrality measure has shown significant similar patterns like the closeness centrality 

as was introduced in several studies for hubs identification [109-113]. We therefore 

conclude that average centrality measure is a significant measure to define hubs along 

with their further classification of date and party hubs. 

Along with network centralities role of DNA motifs was also observed in setting the 

date and party hubs. In case of date hubs, combinations of motifs in multiple cell 

types decreased while in case of party hubs it was opposite. Average of motif 

combinations was below 10 in case of date hubs while it was above 14 in case of 

party hubs as shown in the Tables 5.5 and 5.6. Party hubs contain motifs which are 

found in two, three, four and even all cell types. State 4, 8, 9, 10, 11, 12 and 15 

contains combined motifs in 2, 3,4 and all cell types, while states 7 and 14 contains 

motifs in combinations in 2 cell types. Date hubs on the other hand contained 

combinations of 2 with the exception of one motif which was present in 3 cell types in 

state 3. Total percentage of motifs was around 70% in case of party hubs while around 

18% and 12% in date and non-hubs respectively as shown in Figure 5.21d. 

 



 

75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21c Network connectivity of dynamic and static hubs. 

 

 

 

 

 

 

 

 

 

 

Figure 5.21d Percent count of date and party hubs in all networks 
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Table 5.5 Party hubs chromatin states with overlapping motifs in 4 cell types. 

State 4  State 7  State 8  State 9  State 10  State 11  State 12  State 14  State 15 Avg  

Gm12878_
HepG2_Hel
as  

Gm12878
_H1  

Gm12878_
K562_H1  

Gm12878
_K562_H
elas  

Gm1287
8_H1  

Gm12878
_H1  

Gm12878
_K562  

Gm1287
8_HepG
2  

Gm12878
_Helas 

   

Gm12878_
Helas  

Gm12878
_K562  

Gm12878_
K562_H1  

All  Gm1287
8_Helas  

Gm12878
_H1  

Gm12878
_K562  

Gm1287
8_HepG
2  

Gm12878
_Helas 

   

Gm12878_
Helas  

Gm12878
_K562  

Gm12878_
K562  

Gm12878
_Helas  

Gm1287
8_Helas  

Gm12878
_H1  

Gm12878
_K562  

Gm1287
8_Helas  

Gm12878
_Helas 

   

Gm12878_
Helas  

Gm12878
_K562  

Gm12878_
Helas  

Gm12878
_H1  

Gm1287
8_HepG
2  

Gm12878
_HepG2  

Gm12878
_HepG2  

Gm1287
8_Helas  

Gm12878
_K562 

   

Gm12878_
Helas  

Gm12878
_Helas  

Gm12878_
HepG2  

Gm12878
_K562  

Gm1287
8_K562  

Gm12878
_HepG2  

Gm12878
_HepG2  

HepG2_
K562  

Gm12878
_K562 

   

Gm12878_
HepG2  

HepG2_H
1  

HepG2_H1  AllExcept
_Helas  

HepG2_
K562_He
las  

Gm12878
_HepG2_
K562  

Gm12878
_H1  

HepG2_
K562  

Gm12878
_K562 

   

Gm12878_
H1  

HepG2_H
1  

HepG2_Hel
as  

Gm12878
_HepG2  

HepG2_
K562  

Gm12878
_K562_H1  

Gm12878
_Helas  

HepG2_
K562  

Gm12878
_HepG2 

   

HepG2_H1_
Helas  

HepG2_H
elas  

HepG2_Hel
as  

HepG2_K
562  

HepG2_
K562  

Gm12878
_Helas  

Gm12878
_Helas  

HepG2_
Helas  

Gm12878
_HepG2 
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Table 5.6 Date hubs chromatin state with overlapping motifs in 4 cell types. 

 

 

 

 

 

 

 

 

 

 

 

 

5.5.5 Regular Expressions of state motifs 

Sharing motifs of all states in multiple cell types were utilized to form the consensus 

pattern. The consensus pattern of DNA motifs represents state specific motifs, which 

has been obtained via multiple sequence alignment through CLC sequence viewer 7.5 

(CLC Seq-Viewer).  

The consensus sequences for all states along with the regular expressions have been 

shown in the Table 5.7. Gaps in alignment have been represented by alphabetical 

letter ‘Z’ while the letter ‘N’ represents any of the ‘A’, ‘T’, ‘G’ and ‘C’ letters of the 

DNA sequence.  

The regular expression patterns and consensus sequences have been generated 

keeping in view the data of 5 human cell types. Any cell type bearing the same 

sharing motifs could follow the same regular expression patterns in their chromatin 

state motifs. 

 

 

 

 

 

 

 

 

State 2 State 3 State 13 Avg. 

Gm12878_K562 Gm12878_Helas Gm12878_H1   

Gm12878_K562 Gm12878_K562_H1 Gm12878_H1   

Gm12878_Helas Gm12878_K562 Gm12878_H1   

Gm12878_Helas Gm12878_K562 Gm12878_HepG2   

Gm12878_Helas Gm12878_HepG2 Gm12878_HepG2   

K562_Helas Gm12878_HepG2 HepG2_K562   

K562_H1 HepG2_Helas HepG2_H1   

H1_Helas HepG2_Helas K562_Helas   

  K562_H1     

  K562_H1     

  H1_Helas     

  H1_Helas     

  H1_Helas     

8 13 8 9.67 
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Table 5.7 Regular expressions for state specific motifs. 

 

States Consensus 
Sequence 

Regular expression 

S1 NGTANTTTNCAC (A|G|T|C)GTA(A|G|T|C)TTT(T|A|C|G)CAC 

S2 GTGCCTGC---- GTGCCTGCZZZZ 

S3 CTGT-GTCATATG CTGTZGTCATATG 

S4 GNNCAGC---NG G(A|T|G|C)(A|T|C|G)CAGCZZZ(A|T|G|C)G 

S5 NNNAGNNNCNGT (A|T|G|C)(A|T|G|C)(A|T|G|C)AG(A|T|G|C)(A|T|G|C) 
(A|T|G|C)C(A|T|G|C)GT 

S6 CAAGCNGNAGNG CAAGC(A|T|C|G)G(A|T|C|G)AG(A|T|C|G)G 

S7 --NANNTAGGTT ZZ(A|T|C|G)A(A|T|C|G)(A|T|C|G)TAGGTT 

S8 AAAC-ACTANATG AAACZACTA(A|T|C|G)ATG 

S9 CGAGTGGGTNTCG CGAGTGGGT(A|T|C|G)TCG 

S10 G--TCGNNGTAT GZZTCG(A|T|C|G)(A|T|C|G)GTAT 

S11 ACCTGACCC—N ACCTGACCCZZ(A|T|C|G) 

S12 NANGG-CTAG-G (A|T|C|G)A(A|T|C|G)GGZCTAGZG 

S13 CCCCTCTTGTGG CCCCTCTTGTGG 

S14 NTNCNGNGCACC (A|T|C|G)T(A|T|C|G)C(A|T|C|G)G(A|T|C|G)GCACC 

S15 GCANCCC------G GCA(A|T|C|G)CCCZZZZZZG 

 

5.6 Minimum Dominating nodes set in chromatin states 

networks 

5.6.1 Chromatin States of Human cell types 

We used 15 states HMM models of both cell types from section 5.5.1. To unravel the 

chromatin states associations based on epigenetic marks we analyzed the correlations 

between them. The correlation highlighted positive as well as negative correlations as 

shown in the Figure 5.22. Positive correlations indicate the association between the 

states while negative correlation indicated that based on epigenetic features the states 

has no relevance. In the light of this state1 and state2 showed a positive correlation 

where state1 being the repeat region defined by the presence of H3K9me3 mark while 

state2 was predicted as the heterochromatin state with low level of all marks. Both the 

states showed strong enrichment of LaminB1. The transcription initiation and 

elongation states (3-5) bearing high enrichment of H3K36me3 and H3K79me2 marks 

showed positive correlation amongst them.  
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Figure 5.22 Chromatin states correlation based on emission probabilities for 15 states 

HMM (both cell types). 

Interesting results have been revealed in case of enhancer states where states (6-7, 11-

12) have been demarcated into two clusters. First cluster (states 6 and 7) showed 

positive correlation with the transcribed states which could be related to the recently 

predicted role of elongation factors in posing enhancers in ES cells [132].  This 

behavior remained the same in case of K562 cells as well. The second cluster (states 

11-12) comprising of the most active enhancers showed positive correlations with the 

promoters cluster (states 9-10 and 13). The active promoter state was enriched with 

mediator complexes and RNA PolII whereas state 11 (the very strong enhancer) 

showed high enrichment in H3K4me1, H3K27ac, P300_TF and P300_CM along with 

various other TFs which is consistent with its role as active enhancer. State 13 and 14 

showed positive correlation with relevance to enrichment in H3K27me3 mark 

involved in inactivation along with high enrichment in polycomb repressive 

complexes (CBX2 , CBX8, EZH2, SUZ12 REST and SETDB1) [133-134]. The 

insulator state marked by the presence of CTCF had not shown positive correlation 

with any other state. All the correlations of this state were negative. It showed 

enrichment in some of the TFs. The enrichments have been highlighted in Figures 
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5.23a and 5.23b for H1hesc and K562 respectively. Both cell types are highly 

correlated in their enrichment patterns. 

 

Figure 5.23 a. TFs and CMs marks enrichments of 15 states HMM for H1hesc cell 

type. Each state shows signal enrichment with respect to its specificity. 

 

 

Figure 5.23 b. TFs and CMs marks enrichments of 15 states model for K562 cell 

type. Each state shows signal enrichment with respect to its specificity. 
5.6.2 Chromatin States Networks 

The genomic regions and epigenetic marks associated with each state have been 

utilized in network creation. The chromatin states complete (global) network for both 

the cell types (Figures. 5.24a and 5.24b) highlights the direct association of the states 

with the factors (HMs, TFs and CMs) and within states correlations to show network 

connectivity. The complete network in case of H1hesc comprised of total 104 nodes 

connected with 534 edges having average network connectivity of 10.26 and 

maximum connectivity of 88. K562 network contained 148 and 1050 edges with an 

average network connectivity of 14 and maximum network connectivity of 137. Both 

complete networks after subjection to Markov clustering (MCL) formed certain 

complexes/clusters in the network based on edge correlation association. In case of 

both the cell types 6 clusters have been seen; where cluster 1 contained states 8, 9 and 

10, states 3,4,5,6 and 7 formed cluster2, cluster 3 contained states 13 and 14, while 

cluster 4 contained states 11 and 12, cluster 5 revolved around states 1 and 2, and the 
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last was cluster 6 having state 15 along with its associated features/factors as 

discussed in the above section. The clusters formed in the global networks showed 

strong association with the correlations mentioned in the above section which 

supports the positive correlation among the states.  Despite of network connectivity 

amongst states, the global networks represent bipartite property where set one 

contained the states and set 2 contained the factors. 

Figure 5.24a Complete chromatin states network for H1hesc cell type where nodes 

represent states, HMs, TFs and CMs. 

 

 

Figure 5.24b Complete chromatin states network for K562 cell type. 
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In order to study the detailed interactions at individual states level each complete 

network has been further zoomed in to obtain the local networks. The local networks 

of each state were obtained by the correlation of factors with the states along with 

inter correlation among the factors. This networking produced K complete (K=15) 

graphs, where each node was connected to every other node in the network, where K 

is the number of complete graphs as we had 15 states so it resulted in 15 complete 

graphs. So in total 30 complete graphs (local networks), 15 each for two global 

networks have been formed as shown in the Figure 5.25a (H1hesc) and Figure 5.25b 

(K562). Around 15% of interactions were common in all local networks while others 

were state specific which was due to the inclination of certain factors towards the 

associated states. State to factors direct links in local networks were around 30% 

while remaining were the indirect paths created by the inter factor interactions. The 

marks/factors associated with the states have been explained in detail in section 

above, these marks were seen in the networks both global and local. 

 

Figure 5.25a Local chromatin states network for H1hesc cell type. Each network 

represents a single state network hence in total 15 local networks. 
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Figure 5.25b Local chromatin states network for K562 cell type. Each network is a 

local network of a chromatin state ranging from state 1 to state 15 of HMM. 

 

5.6.3 Minimum Dominating nodes set (MDNS) 

The complete chromatin state networks discussed in above section have been 

subjected to the identification of set of minimum dominating nodes which could play 

an important role in guaranteeing the connectivity of underlying set of chromatin 

states mapping to the functionally genomic elements.  

H1hesc complete network when subjected to the combined centralities as mentioned 

above produced the results as shown in the Table 5.8a and Figure 5.26a. It is clear that 

state 10 which is the strong promoter produced the result with highest combined 

centrality where the weak promoter state is the second highest in ranking. The states 

after the promoter states are the strong enhancer closely correlated with the 

promoters’ states and the poised promoter. The other correlated enhancers and 

transcribed states lie after that. The state with the lowest centrality measure was the 

heterochromatin while the one before that was the repeats state.  

Chromatin states network of K562 after subjection to centrality measures produced 

similar patterns to that of H1hesc as shown in the Table 5.8b and Figure 5.26b. The 

node with the largest combined centrality measure was the strong promoter and then 

the weak promoter exactly as in case of H1hesc. The lowest centrality node was the 
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heterochromatin as in the H1hesc. The internal sequence of descending order in both 

the cell types vary at some nodes as the input set contained cell type specific factors 

and the factors of H1hesc varied from that of  K562. The TFs and CMs of H1hesc 

were comprised of 56 and 15 elements respectively whereas K562 contained 27 CMs 

and 87 TFs. The larger set of K562 contained some of the specific factors more 

oriented towards the polycomb states including CBX2, CBX8, REST and SETDB1 

which were not the part of H1hesc set; this resulted in adding the centralities of that 

state which changed the internal sequence of states. Our test on similar marks 

highlighted the fact that the sequence of states for centralities remained the same for 

both the cell types. 

 

      

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26a Combined centralities for H1hesc cell type chromatin states network 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26b Combined centralities for K562 cell type network. 
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Table 5.8a Node Centralities of H1hesc cell type. 

 

 

 

 

 

Table 5.8b Node Centralities of K562 cell type. 

 

 

 

 

Node Betweenness Closeness N.closeness Degree Output Avg.Centralities 

State1 157.0 0.1 0.0 75.0 466.0 139.6 
State2 5.0 0.0 0.0 37.0 83.0 25.0 
State3 16.0 0.0 0.0 58.0 305.0 75.8 
State4 40.0 0.0 0.0 109.0 737.0 177.2 
State5 14.0 0.0 0.0 59.0 401.0 94.8 

State6 17.0 0.0 0.0 54.0 400.0 94.2 
State7 20.0 0.1 0.0 121.0 820.0 192.2 
State8 193.5 0.1 0.0 136.0 1878.0 441.5 
State9 17.0 0.1 0.0 133.0 2274.0 484.8 
State10 963.0 0.2 0.0 131.0 3964.0 1011.6 
State11 17.0 0.1 0.0 132.0 1527.0 335.2 
State12 16.0 0.0 0.0 113.0 449.0 115.6 
State13 252.0 0.1 0.0 126.0 1674.0 410.4 
State14 81.0 0.0 0.0 78.0 452.0 122.2 
State15 41.0 0.0 0.0 118.0 579.0 147.6 

Node Degree  Output Betweenness Closeness   N.closeness Avg.Centralities 

State1 32 178 29 0.01 0.00 47.80 

State2 23 59 4 0.01 0.00 17.20 

State3 33 211 18 0.02 0.00 52.40 

State4 53 520 57 0.03 0.00 126.01 

State5 34 326 11 0.02 0.00 74.20 

State6 33 320 8 0.03 0.00 72.21 

State7 77 585 14 0.04 0.00 135.21 

State8 93 1247 151 0.05 0.00 298.21 

State9 89 1866 477 0.10 0.01 486.42 

State10 87 2901 107 0.13 0.01 619.03 

State11 86 1122 420 0.06 0.00 325.61 

State12 67 266 0 0.03 0.00 66.61 

State13 88 1398 63 0.06 0.00 309.81 

State14 72 338 7 0.03 0.00 83.41 

State15 74 500 31 0.03 0.00 121.01 
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In order to further highlight the importance of MDNS we sorted the nodes with 

combined centralities and then deleted the top centrality nodes including promoters, 

enhancers and transcribed states. The left over states and all the factors showed a 

disrupted and disconnected network where many connections were missing and the 

closeness centrality equalized to infinity as shown in the Figures 5.27a and 5.27b for 

H1hesc while Figures 5.27c and 5.27d for K562 respectively. The 5.27a and 5.27c 

illustrates the disrupted network of H1hesc and K562 while 5.27b and 5.27d shows 

the node centralities of disrupted networks. 

Figure 5.27a Disrupted chromatin states network for H1hesc cell type. 

 

 

 

 

 

 

 

 

Figure 5.27b Disrupted chromatin states network centralities for H1hesc cell type. 
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Figure 5.27c Disrupted chromatin states network for K562 cell type. 

 

 

 

 

 

 

 

Figure 5.27d Disrupted chromatin states network centralities for K562 cell type. 

5.6.4 Cross validation and reduced chromatin states networks 

The leave one out mark cross validation models have been compared with the 

reference model of all marks for both cell types. The enrichment and emissions 

patterns of both the cell types showed the difference in case of mapping to the states 

as has been shown in Figures 5.28a and 5.28b for H1hesc and 5.28c for K562 

respectively. Each mark which is left out e.g. CTCF for the learning purpose, the 

enrichment level varied in that state with respect to the reference model. Such 



 

88 

 

variance has been observed in case of all the marks. This shows the importance of the 

presence of a certain mark contributing towards the integrity of the state network. 

The combined centralities test for a reduced 10 states model for both cell types have 

shown the similar behavior as of the 15 states model as shown in the Figures 5.29a 

(H1hesc) and 5.29b (K562) respectively. State 3 the active promoter showed the 

highest centrality values preceded by the enhancer which is state 4. States 

distributions and enrichments have been shown in the Figures 5.30a (both cell types), 

5.30b (both cell types), 5.30c (H1hesc) and 5.30d (K562). This test also highlighted 

the promoter, enhancers followed by the transcribed states as the MDNS of the 

chromatin states network. So any network of chromatin states bearing these states 

would mark promoters, enhancers and transcribed states as the MDNS. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28a Emission correlations of cross correlation models with the reference 15 

states models. 
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Figure 5.28b Enrichment correlations of cross correlation models with the reference 

15 states models for H1hesc 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28c Enrichment correlations of cross correlation models with the reference 

15 states models for K562 
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Figure 5.29a Combined centralities for reduced H1hesc cell type network model 

 

 

Figure 5.29b Combined centralities for reduced K562 cell type network model 
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Figure 5.30 a Emission probabilities of reduced 10 states models. b Sequence wise 

genomic elements distribution of chromatin states. 

 

Figure 5.30 c. States enrichments of H1hesc for 10 states model.  

 

Figure 5.30 d .States enrichments of K562 for 10 states model 

 

5.7 Discussion of the findings  

Each of the results obtained mentioned in the above sections i.e. 5.1 to 5.6 have been 

compared with the previous studies in the field. 

5.7.1 Computational identification of chromatin states  

We proposed a computational scheme to find out the underlying chromatin states in 

given genomic ChIP-Seq histone modifications profiles data. We tested various 
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measures for different non-overlapping bin sizes of genomic data. One of studies [82] 

provided BIC as a criterion at 1000bp resolution for states number identification but 

our results have shown (section 5.1) that there is high data dependency at such scale 

so BIC cannot be the true scale of measurement. The BIC score converged at 11 states 

model for 50Kbp bin size which is very wide. It is not reasonable to study the 

behavior of sharp and narrow marks like H3K4me3 which has a range of 200bp to 

400bp. This shows that BIC is not a valid criterion to get optimal states in case of 

genomic data at fine resolution due to data dependency. The BIC scores for other bin 

sizes have not been shown because of the same behavior as of 200bp.  This had also 

been shown by Ernst et al., [52] with a different set of data where BIC didn’t 

converge due to data dependency.   

We used emission matrices parameters for chromatin states identification purpose. 

We tested emission matrices for different bin sizes to test the effect of non- 

overlapping bin sizes in chromatin states identification. The earlier findings of narrow 

and broad peaked marks like H3K4me3 and H3K9me3 showed the range of these 

marks from 200bp to 600bp respectively [149]. This supports the use of 200bp as the 

proper resolution scale to peep deep into the chromatin states which has been 

supported by many earlier studies [52, 54]. We identified correlation among vectors 

of emission matrices and calculated the mean correlation values. The mean correlation 

starting from negative value moved towards positive and adds up to the positivity till 

a certain level, after that it attained equilibrium. When the probability of accepting the 

next move is zero or closer, then equilibrium is reached as is defined in case of 

simulated annealing to find the next move [150]. We also found no change in mean 

correlation at the next state level after attaining the equilibrium so that was the peak 

value achieved in our case. 

Emission matrices correlation and clustering of emission matrices vectors in our study 

both showed 100% correlation in their results. Clustering of highly correlated vectors 

combines to produce distinct classes [151]. We applied the same concept and 

clustered up vectors with correlations of 0.85 and above. The reduced model 

represents the states number where the emissions vectors are distinct with low 

correlations. This highlighted the fact that underlying chromatin states in genomic 

data could be identified using this approach. Along with emission matrices, the simple 
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biological annotation scheme could also be utilized for chromatin states identification. 

Our results showed strong correlation with the reference model [54] in case of 

emission matrices technique as well as the visualization scheme. 

The use of input in data normalization is important in order to get true signals at 

various locations for different marks [152], which is also clear in this case as well. On 

the whole we can say that data normalization using input is essential in learning 

HMM states for a particular dataset under study. As the data in case of having input 

control is normalized therefore the cumulative average correlation has been converged 

earlier than the data without input control.  

So we conclude that HMM parameter based evaluation and annotation based 

visualization is a good way to identify underlying hidden states for the ChIP-Seq data 

under study even for a lay man who could not identify how many significant states the 

data under study contains. The process will help users to find states by any of the 

ways we adopted, the easiest being the clustering of emission matrix and visualization 

of annotations. 

5.7.2 Grouping of H1 data  

Our analysis suggests that, based on their DamID binding values, H1 subtypes can be 

divided into two groups: (1) H1.1 and (2) H1.2–H1.5. We found that the differences 

between the enrichment of H1.1 and that of H1.2–H1.5 seem to be more pronounced 

at regulatory regions marked by activating histone modifications such as promoters, 

enhancers, and CpG islands. For example, we observed in our DamID profiling that 

although H1.1 is not depleted at inactive and poised HCPs, H1.2–H1.5 HCPs are 

often associated with developmentally regulated genes [153], which need to be 

activated in response to external stimuli and therefore do not require a stable 

repressive chromatin organization. Moreover, although CG richness can affect H1 

subtype binding to chromatin similarly, H1.1 is the only subtype that displays a rather 

positive correlation with DNA methylation independently of its genomic location. 

Based on this, we propose that H1.1 is somehow special among H1 subtypes [97]. 

The chromatin structure promoted by H1.1 binding might support a level of 

compaction that facilitates rapid conversion into either an active or repressed state. 

Previous data also agree with this special role for H1.1. For example, it was shown 

that H1.1 had the least ability to condense nucleosomes in vitro [154], and had the 
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lowest affinity to chromatin both in fluorescence recovery after photobleaching 

experiments in vivo and biochemical studies in vitro [155-156]. The dynamic binding 

of H1.1 might at least in part explain why chromatin-containing H1.1 does not 

necessarily impede gene expression. In line with this, Alami et al. [157] showed that 

H1.1 has a unique role in activating a reporter transgene in mice. In view of its 

distinct distribution and its potential association with more active and open chromatin, 

it is not surprising that H1.1 expression is restricted to certain cells, thereby 

conferring tissue specificity [158]. Interestingly, estimation of the degree of 

nucleotide substitutions during evolution also pointed toward a functional 

differentiation of H1.1 from the other H1 subtypes, further strengthening the 

uniqueness of H1.1 among the somatic H1 subtypes from an evolutionary perspective 

[159]. 

5.7.3 Unbiased genomic segmentation via ChromClust  

Several computational methods have been presented so far for highlighting 

combinations of histone modifications. One of the supervised approaches marked 

histone modification signals at known promoter and enhancer regions [43]. Among 

the unsupervised approaches, the well-known ChromaSig [49] mined clusters 

mapping to previously defined promoter and enhancer regions hence missing the 

larger chunk of the genome. Among clustering algorithms spatial clustering 

introduced by [65] combined clustering with hidden Markov models (HMM) to find 

histone combinations. Ambiguity in the concept transpired, by the concept of sharing 

of functional elements by consecutive genomic regions [65]. 

Various HMM approaches modeling chromatin mark signal levels via multivariate 

normal’s have been used earlier [43, 49, 65, 84, 88, 101-103]. A binarized 

multivariate HMM signaling the presence or absence of histone modifications is in 

wide use these days [52]. The HMM approaches pose a restriction to the user in 

defining the number of states. Each approach then segments the genome based on user 

restricted number of states.  

Our tool ChromClust based on semi-supervised learning approach splits the genome 

based on histone modification combinatorics in a very specialized way. It works on 

the idea of binarized signals inspired by one of the previous approaches [52] but has 

the added facility of not restricting the user to specify the clusters. Existing tools don’t 
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provide a proper user friendly environment. ChromClust is a standalone desktop 

application which allows the user to conduct semi-supervised clustering in an 

interactive way. It executes efficiently on whole genome data and produces results in 

less than 30 minutes. Amongst the existing tools so far in this domain, our tool 

outperforms others in terms of cluster identification, storing results in DB, allows 

supervised learning along with un-supervised learning abilities as well. Comparison 

of our tool with others is shown in Table 5.9. 

Table 5.9 Comparison of ChromClust with other tools 
 

Tools 

 

Language / 

Platform 

 

Facilities 

 

Approach 

Time 

Consumptio

n 

 

GUI 

ChromClust C-Sharp 1. Cluster 

identification 

2. Data base 

management 

3. Results storing and 

querying posing 

with respect to 

each cluster 

facility 

Hamming 

distance based 

method 

Around 20 

mins for 

whole 

genome 

Yes 

ChromHMM Java 1. Chromatin states 

identification 

2. Annotation of 

states 

Hidden Markov 

Model 

4 to 5 hours No 

ChromaSig -     

    Cluster identification  

Euclidean 

distance based 

method 

2 hours   

No 

 

HMMSeg 

 

Java 

 

    States identification  

Hidden Markov 

Model 

4 to 5 hours  

No 

5.7.4 Unbiased genomic segmentation via ChromBiSim 

ChromBiSim outperforms other methods as it works on presence of marks and 

decodes the associations within seconds from the whole genome data set. The 5Kbp 

non overlapping data of K562 took only few seconds to mine the patterns. If the 

binning (non-overlapping regions) is narrowed down like 200bp which we also tested 

on various cell types, it took over maximum 30 minutes to identify whole genome 

patterns.  

ChromBiSim like ChromHMM [88] works on binarized data but unlikely it works on 

local signals and portrays epigenomic landscape from the present marks signals 

neglecting the absent signals. It outperforms the two biclustering algorithms [50, 104] 

for histone modifications in several aspects as being user friendly, not dependent on 

peak calling methods to identify peaks for bicluster analysis. 
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5.7.5 Date and party hubs of chromatin networks 

In order to study the details of chromatin states networks, we utilized the 

combinations of histone modifications in chromatin states learning and then 

highlighted the mapping of states to functional regions of the genome. We predicted 

the DNA motifs in setting the combinations of histone modifications ultimately giving 

rise to a chromatin state. State specific DNA motifs along with cell type specificities 

have been mined in this experimentation.  Combined information of histone 

modifications correlation, annotations of functional genomics regions and DNA 

motifs prediction have been visualized as chromatin state networks for 5 chosen cell 

types.  

Chromatin state networks were subjected to various network centrality measures in 

order to identify the hubs and non-hubs in the networks for the first time. In previous 

studies [108, 160-165] these concepts have been used for gene expression profiling 

studies along with PPI networks. We for the first time targeted chromatin state 

networks. Identified hubs were further divided into date and party hubs which 

according to literature [165] are the dynamic and static nodes in the network. 

Heterochromatin, one of the transcribed regions and poised promoter states were 

identified as date hubs which very clearly are dynamic regions of the genome and 

separate the boundaries of repressed and active states, low level marks and high level 

marks [52]. We found that enhancer and promoter regions histone mark combinations 

show stable behavior across networks of various cell types marking them as party 

hubs. This was also shown by the virtual concatenation and chromatin state learning 

of various cell types by Ernst et al., [88]. We highlighted the role of DNA motifs in 

setting the date and party hubs in chromatin state networks as well. DNA motif 

combinations involved in setting chromatin states, hubs and non-hubs were utilized to 

find the consensus patterns covering 5 cell types. We covered 5 cell types in our study 

as they have been widely in literature. This study could further be replicated over 

multiple cell types covering different species to define consensus patterns of state 

specific DNA motifs along with studying the variations and similarities in patterns of 

date and party hubs. 
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5.7.6 Minimum dominating nodes sets in chromatin networks 

Epigenetically defined chromatin states have been utilized to classify the genome for 

any cell type under consideration [52, 54]. ChromHMM [88] based on multivariate 

hidden Markov model (HMM) have become a de facto standard for classification of 

chromatin with respect to genomic elements based on the presence absence of marks 

combinatorics. State enrichments with various CMs and TFs in our study showed 

strong relevance with the previous studies [54, 80,166]. The interactions among 

different histone modifications in our state networks and their mapping to functionally 

active genomic elements as mentioned in the results section in detail strongly 

correlate with the previous studies[38,41-44, 51-53,61,74,133,134,137, 167-171]. The 

interactions of HMs shown in the study [15] have been clearly seen in our networks 

while their study focused only on the TSS regions of various genes for HMs only. The 

positive and negative correlation among various marks shown in our study along with 

the stability of the networks across different cell types is also in strong concordance 

with the previous study [51]. The crosstalk mechanism of HMs presented for 

promoters, insulators and enhancers using Bayesian approach [53] could easily be 

seen in our states network for both the cell types. Well this study like the previous 

[51] focused HM combinatorics only. One of the recent studies [74] utilized the same 

cell types we have used in our study. It [74] focused on HMs along with CMs in order 

to show the chromatin signaling networks around TSS regions using linear regression 

approach. The interactions in their network have also been mined in our study along 

with the additional interactions of heterochromatin, repeat regions, enhancers and 

transcribed states based on TFs, HMs and CMs.  Another work by the same group 

[168] presented the chromatin state networks in mouse ES cells using the same set of 

factors we used in our study. The interactions pinpointed in mouse cells have been 

recovered in ES networks of human cells in our study. Mouse networks show strong 

correlation with human networks. The [168] study focused on one cell type while we 

compared two cell types and also revealed the network stability across them. Despite 

of above all we excavated the minimum dominating set in chromatin state networks. 

In order to highlight the minimum dominating sets in networks of different areas 

several studies have been presented so far [115, 172-179]. Biologically central nodes 

(genes/proteins) bear some topological centrality as compared to the rest of nodes in 

the network and centrality measures are discerning in revealing such nodes [127, 
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180]. High-degree and high-betweenness nodes (proteins) have been considered to be 

the controllers [115] based on centrality-lethality rule [114] in such networks. These 

two measures have been utilized in highlighting the minimum dominating set in these 

networks [115].  

A chromatin states network defining the classification of the genome contains several 

important nodes which could be considered as the MDNS as in case of protein-protein 

interaction networks [115]. According to the centrality- lethality rule [114] the 

deletion of highly connected nodes (gene, protein) affects the network architecture 

three times more than a node with smaller connectivity and node centralities play an 

important role in identifying the driver nodes in biological networks (proteins). As 

genes and proteins are important part of the chromatin and cannot be considered 

without it therefore above rule implies the same for the chromatin as well. Our study 

on the identification of MDNS cleared the fact that driver nodes are important part of 

any chromatin network like PPI or other networks [115]. 

This study presents the promoter and enhancer regions followed by transcribed 

regions as MDNS in chromatin networks. So based on our results and the facts of 

previous approaches mostly presented for histone combinatorics and transcription 

factors [38, 41-44, 54, 167] we conclude that promoter and enhancers regions 

followed by the transcribed states act as the controllers of the chromatin states 

networks which could be visualized in case of any cell type. Therefore deletion of 

such nodes would lead to a chromatin without drivers like a vehicle without the 

controllers. As the controllers would be missing, the vehicle would move anywhere in 

its vicinity destroying not only the encountered things but also itself.  The same 

scenario could be visualized if controllers of the chromatin are missing. Removing 

promoters, enhancers or transcribed regions would affect the chromatin badly hence 

leading genome vehicle to enter the territory of disease networks.  Therefore the 

presence of controllers is important for the signaling activities across various elements 

of the chromatin and disruption at these nodes would be a great threat to the 

chromatin integrity. 

This study would help in future to uncover various disease networks including various 

cancers and diseases caused by disruption in histone modifications networks. This 

would also provide a great breakthrough to inter relate genomes of various species 

and their networks, a study leading to disease evolutionary networks. Furthermore the 
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targeted therapies could be easily focused when disease networks and their underlying 

mysteries would be resolved, a step leading towards evolution in disease genetics and 

epigenetics. 

5.8 Limitations  

Two major objectives of the study; one the unbiased genomic segmentation and 

secondly the role of DNA motifs in chromatin state networks have been achieved with 

valid results. Due to shortage of time we only tested the working of methodologies on 

limited data sets. Our methods could be tested on large scale data sets in order to see 

the behavior across multiple species. 

5.9 Recommendations  

We recommend the users to test the cross species comparisons when using our 

methodology. The methods could be easily replicated across any platform and could 

easily be applied on any genomes irrespective of the sizes. 

5.10 Summary 

The unbiased genome segmentation based on histone combinatorics and the mystery 

of interacting factors in those segments is a challenging task. We in this study tried to 

find out a computational approach to aid the HMM segmentation to segment the 

genome in an unbiased way. Along with we provided 2 very simple, efficient and 

unbiased genome segmentation platforms, one is a global one based on clustering of 

binarized data and the second is local one based on a biclustering approach. In order 

to highlight the interactions and associations among various partners in setting 

chromatin states we used graph theory measures. We highlighted the role of DNA 

motifs in setting the chromatin states and have also seen the difference in their role 

with respect to cell types. 
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Chapter 6 

CONCLUSION 

Building of chromatin is settled because of histone units and modifications in these 

units regulate several processes including DNA-templated processes, such as DNA 

repair, DNA replication and mitosis. Therefore focusing histone modifications with 

perspective of biomarker discovery and therapeutic purpose would be a great 

breakthrough in the field. One of the great contributions in the field would be to 

resolve the issue on the bigger canvas covering a blend of interactions among 

individual modifications on histones, their combinatorics along with their readers, 

writers and erasers. Epigenetically defined chromatin states have been utilized to 

classify the genome for any cell type under consideration. The interactions among 

various factors setting these states is important to be decoded and the true meaning of 

these interactions needs to be pointed out. We in our study tried to highlight one of 

the points in this area. 

We tried to provide an unbiased approach for any HMM platform to find the hidden 

number of states in a genome under study using specific data sizes. we conclude 

based on our observations that HMM parameter based evaluation and annotation 

based visualization is a good way to identify underlying hidden states for the ChIP-

Seq data under study even for a lay man who could not identify how many significant 

states the data under study contains. The process will help users to find states by any 

of the ways we adopted, the easiest being the clustering of emission matrix and 

visualization of annotations. 

We provided a ChromClust platform for identification of histone modifications 

combinatorics in an unbiased way. We present an efficient tool for clustering and 

classification of genome based on histone modifications combinations. Our tool is the 

first generic tool to successfully identify patterns enriched in various genomic regions 

in any species. It is robust with an easy to handle GUI (graphical user interface). It 

can easily handle data of any amount ranging from a single chromosome to whole 

genome. ChromClust represents the global clustering model. In order to highlight the 

patterns of histone modification combinatorics at local scale we present ChromBiSim 

tool. ChromBiSim is a freely available and an easy to handle tool. ChromBiSim 
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extracts local patterns and gives exact histone combinatorics present at various 

genomic locations excluding those modifications which are not present at those 

locations. Hence true associations of epigenomic modifications are extracted by our 

tool by clearly epitomizing the histone code which is foremost aspiration of 

epigenomics. 

We also highlighted the role of DNA motifs in setting chromatin states by studying 

the interactions among TFs, HMs and DNA motifs. Our study indicated that whole 

chromatin network could be visualized as connections among various hubs, some act 

as dynamic ones while others as static one, each being the important players. We also 

highlighted that each chromatin state is defined by the set of specific motifs which 

could be stated as state specific motifs while some are the cell type specific ones as 

well. Conclusively we converge at the point that chromatin is a broad canvas 

portrayed by the interactive blend of histone modifications, transcription factors, 

chromatin modifiers along with underlying DNA motifs. We tried to highlight this 

blend in our own way but still lots needed to be revealed. 
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APPENDICES 

Appendix – A 

Motifs combinations in chromatin states 

 

 

States Cell_Type Motifs 

1 AllExcept_K562 YML081W(MacIsaac)/Yeast  

 Gm12878_HepG2_K562 MA0020.1_Dof2/Jaspar  

 Gm12878_HepG2 PB0013.1_Eomes_1/Jaspar 

 HepG2_Helas dl-A/dmmpmm(Bergman)/fly 

 HepG2_Helas MA0130.1_ZNF354C/Jaspar  

 HepG2_K562 Su(H)/dmmpmm(Papatsenko)/fly 

 H1_Helas MA0085.1_Su(H)/Jaspar 

 H1_Helas PB0196.1_Zbtb7b_2/Jaspar  

 H1_Specific MA0260.1_che-1/Jaspar 

 Helas_Specific PH0017.1_Cux1_2/Jaspar 

 K562_Specific vnd/dmmpmm(Noyes_hd)/fly 

 HepG2_Specific PB0170.1_Sox17_2/Jaspar 

 Gm12878_Specific RPN4/RPN4_H2O2Lo/[](Harbison)/Yeast  

2 Gm12878_K562 ASH1/Literature(Harbison)/Yeast 

 Gm12878_K562 MA0319.1_HSF1/Jaspar  

 Gm12878_Helas MA0267.1_ACE2/Jaspar  

 Gm12878_Helas CRZ1(MacIsaac)/Yeast 

 Gm12878_Helas TATA-Box(TBP)/Promoter/Homer 

 K562_Helas toy/dmmpmm(Pollard)/fly 

 K562_H1 SOK2/SOK2_BUT14/4-
SUT1(Harbison)/Yeast 

 H1_Helas brk/dmmpmm(Down)/fly 

 H1_Specific PB0193.1_Tcfe2a_2/Jaspar 

 Helas_Specific Chop(bZIP)/MEF-Chop-ChIP-
Seq(GSE35681)/Homer 

 K562_Specific PB0150.1_Mybl1_2/Jaspar 

 HepG2_Specific YML081W(MacIsaac)/Yeast 

 Gm12878_Specific MA0524.1_TFAP2C/Jaspar 

3 Gm12878_Helas MA0364.1_REI1/Jaspar 

 Gm12878_K562_H1 MA0488.1_JUN/Jaspar 

 Gm12878_K562 CHA4(MacIsaac)/Yeast 

 Gm12878_K562 MA0349.1_OPI1/Jaspar 

 Gm12878_HepG2 MA0379.1_SIG1/Jaspar 

 Gm12878_HepG2 SeqBias: GCW-triplet 



 

114 

 

 HepG2_Helas MA0298.1_FZF1/Jaspar 

 HepG2_Helas MA0121.1_ARR10/Jaspar 

 K562_H1 tin/dmmpmm(Bigfoot)/fly 

 K562_H1 Unknown6/Drosophila-Promoters/Homer  

 H1_Helas PB0196.1_Zbtb7b_2/Jaspar 

 H1_Helas PCF/Arabidopsis-Promoters/Homer 

 H1_Helas Unknown4/Arabidopsis-Promoters/Homer  

 H1_Specific Hr46/dmmpmm(Bergman)/fly 

 Helas_Specific MA0503.1_Nkx2-5_(var.2)/Jaspar 

 K562_Specific sna/dmmpmm(Bergman)/fly 

 HepG2_Specific PHO2/PHO2_H2O2Hi/[](Harbison)/Yeast 

 Gm12878_Specific CEBP:AP1(bZIP)/ThioMac-CEBPb-ChIP-
Seq(GSE21512)/Homer 

4 Gm12878_HepG2_Helas grh/dmmpmm(Papatsenko)/fly 

 Gm12878_Helas PB0091.1_Zbtb3_1/Jaspar 

 Gm12878_Helas Unknown4/Arabidopsis-Promoters/Homer  

 Gm12878_Helas MA0089.1_NFE2L1::MafG/Jaspar 

 Gm12878_Helas MA0553.1_SMZ/Jaspar 

 Gm12878_HepG2 ACE2/ACE2_YPD/2-SWI5(Harbison)/Yeast 

 Gm12878_H1 PB0032.1_IRC900814_1/Jaspar  

 HepG2_H1_Helas MA0193.1_Lag1/Jaspar 

 HepG2_H1_Helas MA0124.1_NKX3-1/Jaspar 

 HepG2_K562 MA0095.2_YY1/Jaspar 

 K562_H1_Helas Tag/dmmpmm(Papatsenko)/fly 

 K562_Helas pho/dmmpmm(Bergman)/fly 

 H1_Helas XBP1/Literature(Harbison)/Yeast 

 H1_Specific Aef1/dmmpmm(Pollard)/fly 

 Helas_Specific Unknown2/Drosophila-Promoters/Homer 

 K562_Specific BORIS(Zf)/K562-CTCFL-ChIP-
Seq(GSE32465)/Homer 

 HepG2_Specific MA0264.1_ceh-22/Jaspar 

 HepG2_Specific CEBP:AP1(bZIP)/ThioMac-CEBPb-ChIP-
Seq(GSE21512)/Homer 

 Gm12878_Specific MA0364.1_REI1/Jaspar 

5 HepG2_k562 PB0130.1_Gm397_2/Jaspar 

 H1_Specific SKN7(MacIsaac)/Yeast 

 Helas_Specific MF0002.1_bZIP_CREB/G-box-

like_subclass/Jaspar 

 K562_Specific Tbx20(T-box)/Heart-Tbx20-ChIP-
Seq(GSE29636)/Homer 

 HepG2_Specific ttk/dmmpmm(Bigfoot)/fly 

 Gm12878_Specific MA0305.1_GCR2/Jaspar 

6 K562_Helas PB0199.1_Zfp161_2/Jaspar 

 H1_Helas MA0354.1_PDR8/Jaspar 

 H1_Specific PB0191.1_Tcfap2c_2/Jaspar 

 Helas_Specific MafK(bZIP)/C2C12-MafK-ChIP-
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Seq(GSE36030)/Homer 

 K562_Specific shn-ZFP2/dmmpmm(Bergman)/fly 

 HepG2_Specific Tbox:Smad(T-box,MAD)/ESCd5-Smad2_3-
ChIP-Seq(GSE29422)/Homer 

 Gm12878_Specific MA0100.2_Myb/Jaspar 

7 Gm12878_H1 MA0193.1_Lag1/Jaspar 

 Gm12878_K562 HAP2/Literature(Harbison)/Yeast 

 Gm12878_K562 MA0130.1_ZNF354C/Jaspar 

 Gm12878_K562 MA0403.1_TBF1/Jaspar 

 Gm12878_Helas MA0325.1_LYS14/Jaspar 

 HepG2_H1 MA0211.1_bap/Jaspar 

 HepG2_H1 PHD1(MacIsaac)/Yeast 

 HepG2_Helas MET31(MacIsaac)/Yeast 

 HepG2_K562 GATA3(Zf)/iTreg-Gata3-ChIP-
Seq(GSE20898)/Homer 

 K562_H1 Srebp2(bHLH)/HepG2-Srebp2-ChIP-
Seq(GSE31477)/Homer 

 K562_H1 tll/dmmpmm(Bergman)/fly 

 H1_Specific PB0166.1_Sox12_2/Jaspar 

 Helas_Specific gt/dmmpmm(SeSiMCMC)/fly 

 K562_Specific MA0285.1_CRZ1/Jaspar 

 HepG2_Specific brk/dmmpmm(Down)/fly 

 Gm12878_Specific PB0179.1_Sp100_2/Jaspar 

8 Gm12878_K562_H1 ovo/dmmpmm(Bigfoot)/fly 

 Gm12878_K562_H1 MA0161.1_NFIC/Jaspar 

 Gm12878_K562 br-Z2/dmmpmm(SeSiMCMC)/fly 

 Gm12878_Helas MA0126.1_ovo/Jaspar 

 Gm12878_HepG2 RPN4/RPN4_H2O2Lo/[](Harbison)/Yeast 

 HepG2_H1 MA0291.1_DAL82/Jaspar 

 HepG2_Helas SD0002.1_at_AC_acceptor/Jaspar 

 HepG2_Helas MA0524.1_TFAP2C/Jaspar 

 HepG2_Helas ACE2/ACE2_YPD/2-SWI5(Harbison)/Yeast 

 HepG2_Helas PB0002.1_Arid5a_1/Jaspar 

 HepG2_K562 TCFL2(HMG)/K562-TCF7L2-ChIP-
Seq(GSE29196)/Homer 

 HepG2_K562 MA0114.2_HNF4A/Jaspar 

 K562_Helas PB0046.1_Mybl1_1/Jaspar  

 H1_Specific MA0375.1_RSC30/Jaspar 

 Helas_Specific Meis1(Homeobox)/MastCells-Meis1-

ChIP-Seq(GSE48085)/Homer  

 K562_Specific AARE(HLH)/mES-cMyc-ChIP-Seq/Homer 

 HepG2_Specific RIM101/Literature(Harbison)/Yeast 

 Gm12878_Specific CG11617/dmmpmm(Noyes_hd)/fly 

9 Gm12878_K562_Helas IRF1(IRF)/PBMC-IRF1-ChIP-
Seq(GSE43036)/Homer 

 All Sp1(Zf)/Promoter/Homer 
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 Gm12878_Helas CTCF(Zf)/CD4+-CTCF-ChIP-Seq(Barski et 
al.)/Homer 

 Gm12878_H1 Deaf1/dmmpmm(Pollard)/fly 

 Gm12878_K562 NFY(CCAAT)/Promoter/Homer  

 AllExcept_Helas GFY(?)/Promoter/Homer 

 Gm12878_HepG2 NRF(NRF)/Promoter/Homer 

 HepG2_K562 BORIS(Zf)/K562-CTCFL-ChIP-
Seq(GSE32465)/Homer 

 HepG2_K562 MA0437.1_YPR196W/Jaspar 

 HepG2_H1 HAP2/Literature(Harbison)/Yeast 

 HepG2_H1 MA0542.1_ELT-3/Jaspar 

 HepG2_Helas kni/dmmpmm(Down)/fly 

 HepG2_Helas GFX(?)/Promoter/Homer 

 HepG2_K562_Helas PB0056.1_Rfxdc2_1/Jaspar 

 H1_Helas IME1(MacIsaac)/Yeast  

 H1_Specific Unknown3/Arabidopsis-Promoters/Homer 

 Helas_Specific PB0179.1_Sp100_2/Jaspar 

 K562_Specific PB0185.1_Tcf1_2/Jaspar 

 HepG2_Specific MA0508.1_PRDM1/Jaspar 

 Gm12878_Specific PB0052.1_Plagl1_1/Jaspar 

10 Gm12878_H1 STB5(MacIsaac)/Yeast 

 Gm12878_Helas PDR1/PDR1_YPD/[](Harbison)/Yeast 

 Gm12878_Helas RLM1(MacIsaac)/Yeast 

 Gm12878_HepG2 GCN4/GCN4_SM/121-
GCN4(Harbison)/Yeast 

 Gm12878_K562 MA0360.1_RDR1/Jaspar 

 HepG2_K562_Helas MA0325.1_LYS14/Jaspar 

 HepG2_K562 MA0393.1_STE12/Jaspar 

 HepG2_K562 MA0289.1_DAL80/Jaspar 

 HepG2_K562 PB0146.1_Mafk_2/Jaspar 

 HepG2_H1 MA0527.1_ZBTB33/Jaspar 

 HepG2_H1 MA0565.1_FUS3/Jaspar 

 HepG2_H1 dl/dmmpmm(Down)/fly 

 K562_H1 YY1(Zf)/Promoter/Homer 

 K562_H1 ZNF711(Zf)/SHSY5Y-ZNF711-ChIP-
Seq(GSE20673)/Homer 

 K562_H1 MA0420.1_YBR239C/Jaspar 

 H1_Specific MA0275.1_ASG1/Jaspar 

 Helas_Specific AP-1(bZIP)/ThioMac-PU.1-ChIP-

Seq(GSE21512)/Homer 

 K562_Specific Jun-AP1(bZIP)/K562-cJun-ChIP-
Seq(GSE31477)/Homer 

 HepG2_Specific MA0512.1_Rxra/Jaspar 

 Gm12878_Specific IRF1(IRF)/PBMC-IRF1-ChIP-
Seq(GSE43036)/Homer 

11 Gm12878_H1 MA0507.1_POU2F2/Jaspar 
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 Gm12878_H1 MA0079.3_SP1/Jaspar 

 Gm12878_H1 MET31(MacIsaac)/Yeast 

 Gm12878_HepG2 PHA-4(Forkhead)/cElegans-Embryos-
PHA4-ChIP-Seq(modEncode)/Homer 

 Gm12878_HepG2 Fra1(bZIP)/BT549-Fra1-ChIP-
Seq(GSE46166)/Homer 

 Gm12878_HepG2_K562 Ets1-distal(ETS)/CD4+-PolII-ChIP-
Seq(Barski et al.)/Homer 

 Gm12878_K562_H1 MA0460.1_ttk/Jaspar 

 Gm12878_Helas ARR1/Literature(Harbison)/Yeast 

 Gm12878_Helas PB0128.1_Gcm1_2/Jaspar 

 Gm12878_K562 RUNX2(Runt)/PCa-RUNX2-ChIP-
Seq(GSE33889)/Homer 

 HepG2_K562_Helas GATA3(Zf)/iTreg-Gata3-ChIP-
Seq(GSE20898)/Homer 

 AllExcept_Gm12878 CTCF(Zf)/CD4+-CTCF-ChIP-Seq(Barski et 
al.)/Homer 

 HepG2_K562 CRZ1(MacIsaac)/Yeast 

 HepG2_K562 MAC1/Literature(Harbison)/Yeast 

 K562_Helas EKLF(Zf)/Erythrocyte-Klf1-ChIP-
Seq(GSE20478)/Homer 

 K562_Helas RUNX(Runt)/HPC7-Runx1-ChIP-
Seq(GSE22178)/Homer 

 H1_Helas Atf3(bZIP)/GBM-ATF3-ChIP-

Seq(GSE33912)/Homer 

 H1_Specific MA0514.1_Sox3/Jaspar 

 Helas_Specific MF0006.1_bZIP_cEBP-

like_subclass/Jaspar 

 K562_Specific AP-1(bZIP)/ThioMac-PU.1-ChIP-
Seq(GSE21512)/Homer 

 HepG2_Specific MA0114.2_HNF4A/Jaspar 

 Gm12878_Specific IRF1(IRF)/PBMC-IRF1-ChIP-
Seq(GSE43036)/Homer 

12 Gm12878_K562 RUNX1(Runt)/Jurkat-RUNX1-ChIP-
Seq(GSE29180)/Homer 

 Gm12878_K562 Mef2a(MADS)/HL1-Mef2a.biotin-ChIP-
Seq(GSE21529)/Homer 

 Gm12878_K562 PB0097.1_Zfp281_1/Jaspar 

 Gm12878_HepG2 Fra1(bZIP)/BT549-Fra1-ChIP-
Seq(GSE46166)/Homer 

 Gm12878_HepG2 PB0200.1_Zfp187_2/Jaspar 

 Gm12878_H1 MA0160.1_NR4A2/Jaspar 

 Gm12878_Helas P(MYB)/Zea mays/AthaMap 

 Gm12878_Helas PB0044.1_Mtf1_1/Jaspar 

 All_ExceptGm12878 MET31(MacIsaac)/Yeast 

 HepG2_Helas MA0382.1_SKO1/Jaspar 

 H1_Helas bZIP911(2)(bZIP)/Antirrhinum 

majus/AthaMap  

 H1_Specific MA0142.1_Pou5f1::Sox2/Jaspar 

 Helas_Specific Atf3(bZIP)/GBM-ATF3-ChIP-

Seq(GSE33912)/Homer 
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 K562_Specific Gata4(Zf)/Heart-Gata4-ChIP-
Seq(GSE35151)/Homer 

 HepG2_Specific MA0114.2_HNF4A/Jaspar 

 Gm12878_Specific PU.1-IRF(ETS:IRF)/Bcell-PU.1-
ChIPSeq(GSE21512)/Homer 

13 Gm12878_H1 MA0291.1_DAL82/Jaspar 

 Gm12878_H1 MA0330.1_MBP1::SWI6/Jaspar 

 Gm12878_H1 SeqBias: CA-repeat 

 Gm12878_HepG2 MA0020.1_Dof2/Jaspar 

 Gm12878_HepG2 MA0266.1_ABF2/Jaspar 

 HepG2_K562 CST6(MacIsaac)/Yeast 

 HepG2_H1 ROX1(MacIsaac)/Yeast 

 K562_Helas IRF1(IRF)/PBMC-IRF1-ChIP-
Seq(GSE43036)/Homer 

 H1_Specific kni/dmmpmm(Down)/fly 

 Helas_Specific MA0362.1_RDS2/Jaspar 

 K562_Specific prd/dmmpmm(Down)/fly 

 HepG2_Specific IRF2(IRF)/Erythroblas-IRF2-ChIP-
Seq(GSE36985)/Homer 

 Gm12878_Specific Unknown3/Arabidopsis-Promoters/Homer 

14 Gm12878_HepG2 bap/dmmpmm(Noyes_hd)/fly 

 Gm12878_HepG2 MA0298.1_FZF1/Jaspar 

 Gm12878_Helas MA0354.1_PDR8/Jaspar 

 Gm12878_Helas CEBP:AP1(bZIP)/ThioMac-CEBPb-ChIP-
Seq(GSE21512)/Homer 

 HepG2_K562 MA0130.1_ZNF354C/Jaspar 

 HepG2_K562 RAV1(1)(AP2/EREBP)/Arabidopsis 
thaliana/AthaMap  

 HepG2_K562 GAT3(MacIsaac)/Yeast 

 HepG2_Helas PCF/Arabidopsis-Promoters/Homer  

 K562_Helas HOXA2(Homeobox)/mES-Hoxa2-ChIP-
Seq(Donaldson et al.)/Homer 

 K562_Helas MA0038.1_Gfi1/Jaspar 

 K562_Helas MA0581.1_LEC2/Jaspar 

 K562_Helas MA0362.1_RDS2/Jaspar 

 H1_Helas BH2/dmmpmm(Noyes_hd)/fly 

 H1_Specific PH0158.1_Rhox11_2/Jaspar 

 Helas_Specific MA0334.1_MET32/Jaspar 

 K562_Specific MafF(bZIP)/HepG2-MafF-ChIP-
Seq(GSE31477)/Homer 

 HepG2_Specific ovo/dmmpmm(Down)/fly 

 Gm12878_Specific Rbpj1(?)/Panc1-Rbpj1-ChIP-
Seq(GSE47459)/Homer 

15 Gm12878_Helas MA0373.1_RPN4/Jaspar 

 Gm12878_Helas PHD1(MacIsaac)/Yeast 

 Gm12878_Helas PH0158.1_Rhox11_2/Jaspar 

 Gm12878_K562 Unknown-ESC-element(?)/mES-Nanog-
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ChIP-Seq(GSE11724)/Homer 

 Gm12878_K562 MA0133.1_BRCA1/Jaspar 

 Gm12878_K562 MA0347.1_NRG1/Jaspar 

 Gm12878_HepG2 CHR(?)/Hela-CellCycle-Expression/Homer 

 Gm12878_HepG2 RDS1(MacIsaac)/Yeast 

 HepG2_H1 brk/dmmpmm(Bergman)/fly 

 HepG2_H1 MA0147.2_Myc/Jaspar 

 HepG2_Helas MA0368.1_RIM101/Jaspar 

 K562_H1 ABI4(2)(AP2/EREBP)/Zea mays/AthaMap 

 K562_H1 Unknown6/Drosophila-Promoters/Homer  

 K562_H1 MF0010.1_Homeobox_class/Jaspar 

 K562_H1 MA0382.1_SKO1/Jaspar 

 Gm12878_HepG2_K562_H1 MafA(bZIP)/Islet-MafA-ChIP-
Seq(GSE30298)/Homer 

 Gm12878_K562_H1_Helas SOK2/SOK2_BUT14/4-
SUT1(Harbison)/Yeast 

 HepG2_K562_H1_Helas MA0531.1_CTCF/Jaspar 

 HepG2_H1_Helas MA0385.1_SOK2/Jaspar 

 H1_Specific PB0113.1_E2F3_2/Jaspar 

 Helas_Specific AARE(HLH)/mES-cMyc-ChIP-

Seq/Homer 

 K562_Specific PB0076.1_Sp4_1/Jaspar 

 HepG2_Specific NF1-halfsite(CTF)/LNCaP-NF1-ChIP-
Seq(Unpublished)/Homer 

 Gm12878_Specific YY1(Zf)/Promoter/Homer 

 All BORIS(Zf)/K562-CTCFL-ChIP-
Seq(GSE32465)/Homer 

 All MA0019.1_Ddit3::Cebpa/Jaspar 
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Appendix – B 

Table S5.1 Gm12878 centrality measures 

 
Table S5.2 H1hesc centrality measures 
node degree output betweenness closeness n.closeness Avg.Centr 

S1 23 819.3 70 0.00 0.00 182.461 

S2 39 2121.2 920 0.01 0.00 616.042 

S3 41 1822.6 259 0.01 0.00 424.521 

S4 41 1739 935 0.01 0.00 543.002 

S5 39 1506.8 227 0.01 0.00 354.562 

S6 32 1167 150 0.01 0.00 269.802 

S7 56 2811 557 0.02 0.00 684.804 

S8 45 2192.4 1049 0.02 0.00 657.285 

S9 48 2595.3 849 0.02 0.00 698.465 

S10 48 2791.4 1409 0.03 0.00 849.686 

S11 48 2356.6 646 0.02 0.00 610.125 

S12 46 2195.8 265 0.02 0.00 501.363 

S13 46 2419.8 232 0.03 0.00 539.567 

S14 34 1397.6 1340 0.02 0.00 554.325 

S15 49 2424.6 495 0.02 0.00 593.725 

 

 

node degree output betweenness closeness n.closeness Avg.Centrality 

S1 24 815 58 0.01 0.00 179.40 

S2 35 1822.3 254 0.00 0.00 422.26 

S3 49 2424.4 384 0.01 0.00 571.48 

S4 45 1979.7 615 0.01 0.00 527.94 

S5 27 678 79 0.01 0.00 156.80 

S6 32 1163.4 140 0.01 0.00 267.08 

S7 62 3198.2 618 0.02 0.00 775.64 

S8 65 3503.9 1297 0.02 0.00 973.18 

S9 51 2809.8 995 0.02 0.00 771.16 

S10 58 3600.2 1196 0.03 0.00 970.85 

S11 49 2450.3 532 0.02 0.00 606.27 

S12 52 2672 304 0.02 0.00 605.60 

S13 40 1986.4 1755 0.04 0.00 756.29 

S14 53 2761.9 421 0.03 0.00 647.19 

S15 52 2617.6 520 0.02 0.00 637.92 
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Table S5.3 Helas centrality measures 

node degree output betweenness closeness n.closeness Avg.Centra 

S1 27 1071 121 0.01 0.00 243.8014 

S2 35 1846 849 0.00 0.00 546.0011 

S3 50 2612 350 0.00 0.00 602.401 

S4 62 3294 1327 0.01 0.00 936.6014 

S5 30 1800 132 0.01 0.00 392.4011 

S6 28 1005 132 0.01 0.00 233.0014 

S7 43 2020 357 0.02 0.00 484.004 

S8 45 2133 1263 0.02 0.00 688.2042 

S9 43 2135 1081 0.02 0.00 651.8045 

S10 51 2950 1146 0.03 0.00 829.4063 

S11 54 2979 658 0.02 0.00 738.2052 

S12 52 2627 356 0.02 0.00 607.0033 

S13 22 608 938 0.03 0.00 313.6067 

S14 60 3303 544 0.03 0.00 781.4058 

S15 47 2301 434 0.02 0.00 556.4046 

Table S5.4 HepG2 centrality measures 

node degree output betweenness closeness n.closeness Avg Cent 

S1 32 1531.2 180 0.01 0.00 348.64 

S2 37 2009 1332 0.01 0.00 675.6 

S3 44 2141.1 298 0.01 0.00 496.62 

S4 44 1901.3 1139 0.01 0.00 616.86 

S5 29 857.4 107 0.01 0.00 198.68 

S6 34 1335.1 186 0.01 0.00 311.02 

S7 56 2847.8 724 0.02 0.00 725.56 

S8 51 2584 1107 0.02 0.00 748.4 

S9 53 3058.4 1009 0.02 0.00 824.08 

S10 53 3260.4 1829 0.03 0.00 1028.5 

S11 48 2366.1 554 0.02 0.00 593.63 

S12 47 2250.8 258 0.02 0.00 511.16 

S13 49 2567.5 348 0.03 0.00 592.91 

S14 59 3207 1864 0.03 0.00 1026 

S15 49 2503.9 461 0.02 0.00 602.78 
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Table S5.5 K562 centrality measures 

node  degree output betweenness closeness n.closeness Avg.Cent 

S1 23 722 118 0.01 0.00 172.601 

S2 36 1814.8 308 0.00 0.00 431.761 

S3 40 1770 266 0.01 0.00 415.201 

S4 43 1911.8 920 0.01 0.00 574.962 

S5 30 901.9 146 0.01 0.00 215.582 

S6 31 1072.8 147 0.01 0.00 250.162 

S7 44 2002.7 358 0.02 0.00 480.944 

S8 53 2727 1332 0.02 0.00 822.405 

S9 44 2331.4 991 0.02 0.00 673.285 

S10 47 2791 734 0.03 0.00 714.406 

S11 56 2961.6 1435 0.02 0.00 890.525 

S12 52 2581.8 355 0.02 0.00 597.763 

S13 37 1726.9 410 0.03 0.00 434.786 

S14 59 3133.3 566 0.02 0.00 751.665 

S15 48 2347.7 1282 0.02 0.00 735.545 

 

 

 

 

 

 

 


