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ABSTRACT

On-board model based condition monitoring of an automotive spark ig-
nition engine is still a challenging task for automotive industry. The diagnostic
system aims to enhance fuel efficiency and to reduce harmful exhaust emissions.
Among various subsystems of gasoline engine, air intake system holds prime impor-
tance as it is responsible to ensure proper air and fuel proportions in combustion
mixture. This subsystem exhibits highly nonlinear behavior due to its components
like throttle body, intake manifold etc. Health monitoring of such nonlinear system
cannot be performed by conventional diagnosis methods. That is why On-Board
Diagnostic (OBD-II) standard kits do not have the provision to diagnose vari-
ous air intake system faults. These faults include air leakages in intake manifold,
clogged air filter, reduced throttle body efficiency and certain sensor faults. This
manuscript presents a novel nonlinear health monitoring scheme based on sliding
mode theory for on-board diagnostics of air intake system. Sliding mode theory is
extensively used in fault diagnosis methodologies. Sliding mode observers based on
nonlinear dynamics deliver robust platform for the estimation of un-measurable
system variables. The estimation of such parameters can be exploited for fault
diagnosis of dynamical systems. In this dissertation, second order sliding mode
observers are designed for air intake system. The designed observers are used to
estimate un-measurable and critical parameters/states. Five of the estimated crit-
ical parameters are: frictional torque, combustion efficiency, volumetric efficiency,
air filter discharge coefficient and throttle discharge coefficient. These parameters
are estimated from a two state nonlinear model of gasoline engine based on inlet
manifold pressure and rotational speed dynamics. These parameters are extremely
helpful in engine modeling, controller design and fault diagnosis/prognosis. An-
other contribution of this thesis is the development of virtual sensors for air intake
system. Pressure dynamics are estimated from crankshaft sensor measurements
and vice-versa. The outlined parameters and virtual sensors are used to moni-
tor various functions of air intake system. These functions cannot be routinely
sensed/monitored by any sensor. The estimation of afore-mentioned parameters
has been conducted under healthy and faulty operating conditions to generate
residuals. These residuals are evaluated to identify/classify any malfunction in air
intake system. A detailed procedure for three fault diagnostic schemes have been
discussed. These scheme require no extra sensor/hardware for their evaluation,
only conventional on-board diagnostics (OBD) equipments are mandatory. The
validation of novel estimation and diagnostic scheme is performed on production
vehicle engine equipped with engine control unit compliant to OBD-II standards.
It has been shown experimentally that the above discussed faults have been timely
identified. The proposed fault diagnosis scheme has the potential for online im-
plementation as it operates sample-by-sample on OBD-II measurements.
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Chapter 1

INTRODUCTION

Automobiles are one of the major means of transportation since last century. Due

to constantly increasing demand of automobiles, the automotive technology has

continuously evolved to meet the requirements of environment protection agencies

and end-users. Automotive industry is among the fastest growing industries in

the last few decades. A rough estimate shows that around 6920 1300cc and above

vehicles were sold in June 2010 only in Pakistan [3].

Modern vehicles are heavily equipped with sensors, actuators, controllers and com-

puter modules embedded inside the vehicle body. These electronics aim to provide

comfort in driving, increase fuel economy and reduce harmful exhaust gases pro-

duced during combustion process. Among various electronic systems involved in

any modern vehicle like anti-lock braking, electronic fuel injection etc, on-board

diagnostics is an essential component.

1.1 Background

On-board fault diagnostics of an automotive engine is its integral part as it needs

to be strictly monitored in uncertain operating conditions. The main aim of engine

on board monitoring is to ensure proper portions of air and fuel in combustion

mixture. Any deviation from desired proportions will lead to degraded engine

performance and result in harmful pollutants in exhaust gases.

The incorporation of on board diagnostics (OBD) in any vehicle is also due to leg-

islation requirements emerged in 1993 at California [4]. These legislation require-

ments aim to reduce hazardous pollutants produced by the automobile engines.

The same legislations are imposed in every country like in Pakistan, Environment

Protection Agency (EPA) ensures vehicle health under its rules defined in [5]. The

main focus of the legislation rules is to regulate Smoke and Noise produced by

any vehicle. In case of smoke, the carbon content should be minimized along with

other hazardous chemical components like nitrogen oxides, lead etc. According to
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[5], noise level should remain under 85 dB. These legislative requirements can only

be ensured if the vehicle is equipped with on-board diagnostics systems.

OBD-II is a standard issued by Society of Automotive Engineers (SAE) and In-

ternational Standard Organization (ISO). This standard describes the interchange

of digital information between on-board emission-related Electronic Control Units

(ECUs) of road vehicles and an OBD-II scan tool. OBD-II also commonly refers

to the physical on-board diagnostic system of a vehicle, which consists of an ECU,

Malfunction Indicator Light (MIL), Diagnostic Link Connector, and the wiring

that connect the different elements.

On-board diagnostics have various advantages besides fulfilling the legal require-

ments. One of the main advantages is: the maintenance schedule is adaptively

updated according to engine health indicated by Malfunction Indication Light.

Similarly, the mechanics can access the stored fault code and replace the respective

component without any hesitation instead of diagnosing by hit and trial method-

ology. To ensure engine optimal performance, the announced faulty component

is excluded from engine control loop and suboptimal control strategy is employed

until the vehicle gets repaired. Above all, the emissions are under check and

balance.

1.2 Motivation

Automotive engine is a system with highly nonlinear dynamics. These nonlinear

dynamics are induced due to its components like throttle/butterfly valve, intake

pressure manifold etc. It has been elaborated in [6], [7] that for the health moni-

toring of a nonlinear system like engine, methodologies from linear systems theory

do not possess the desired capability. Thus for an automotive gasoline engine a

nonlinear fault diagnosis scheme is mandatory.

This task can be achieved if one can develop a nonlinear model of engine subsys-

tems dynamics and later on these dynamics can be used for the formulation of

diagnosis scheme. The nonlinear model based fault diagnosis scheme will inherit

the engine behavior that will result in efficient health monitoring. This practice
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can benefit us with the monitoring of such malfunctions that cannot be routinely

detected and isolated.

It has been often claimed that certain gasoline engine malfunctions are still not

monitored in available on-board diagnostics. It was reported by the owners of

electronically controlled engine vehicles that faults like throttle body blockade

and manifold leakages effect engine performance but these faults are not reported

by the on-board diagnostic systems. Like, in case of manifold leakages the engine

stumbled during start-up and halted later on. The on-board diagnostic system

failed to report the air leakage problem. In second case, due to throttle area

blockade the engine used to start but was unable to continue its operation during

idling conditions. Once again the on-board diagnostic system did not announce

any fault in engine.

The current on-board diagnostic system monitors numerous engine faults with

the help of sensor measurements thresholding, look-up table and experience based

techniques. But some of the faults of nonlinear engine, including above mentioned

malfunctions, still remain undiagnosed. Although, one can find many solutions to

the above mentioned problems but the available techniques lack the ability to get

incorporated in on-board diagnostic system. All of the available methodologies

either require extra sensors or hardware for their applicability.

The above discussion motivates the development of a diagnostic algorithm based

on a nonlinear engine model. This algorithm should be able to diagnose such fault

which effect the engine dynamics negatively and yet these fault are not routinely

monitored.

1.3 Objectives

In order to meet the requirements of OBD-II bylaws for gasoline engine, the fol-

lowing subsystems must be strictly monitored.

• Air Intake System

• Fuel and Combustion System
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• Exhaust After-treatment System

If any of these subsystem starts to malfunction, engine performance will deteriorate

and it will result in poor fuel efficiency.

Air intake subsystem holds prime importance in maintaining engine performance.

This subsystem is responsible to deliver clean air to avoid wear and tear in engine

due to abrasive pollutants. At the same time it is also liable for desired amount

of air for combustion process. If air intake subsystem is properly functioning the

engine can deliver desired power and torque performance. These tasks are achieved

by retaining proper proportions of air and fuel in combustion chamber.

Keeping in view the importance of air intake system, the main objective of this

thesis is to monitor its operations rigourously. This task can be achieved by em-

ploying nonlinear engine model for the estimation of critical parameters. These

critical parameters are un-measurable in nature and carry useful information of

system health. These parameters can be identified using sliding mode based esti-

mation techniques. The nominal and faulty values of the parameters can be used

to generate residuals to identify any fault in air intake system, thus ensuring strict

health monitoring.

1.4 Contributions

The major contribution of the research work is the development of model based

fault diagnosis scheme for air intake system. The proposed scheme delivers higher

fault detection performance i.e. smaller faults can be detected in shorter time.

The developed scheme will work on nonlinear model thus there is no limit on its

operating range. Another benefit of model based fault diagnosis is the possibil-

ity of isolating various faults. The proposed model based fault diagnosis scheme

evaluates the residuals being generated from the parameters estimated from slid-

ing mode techniques. The input to this technique is the measurements that are

readily available from OBD-II scanner, thus declaring the scheme readily online

implementable.

Following are main contributions of the presented research work.
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• Estimation of five critical & un-measurable engine parameters

• Development of virtual sensors for air intake system

• Air filter health monitoring

• Manifold leakages diagnosis

• Throttle body efficiency monitoring

• Supervision of air intake system sensors functions

The above mentioned tasks are conducted on OBD-II measurements with no extra

hardware requirement.

1.5 Overview

Rest of the thesis is organized as discussed below;

Chapter 2 will introduce the reader to basic terminologies used with in fault

diagnosis community. It will also include numerous fault diagnosis schemes

used by the researchers around the world. The discussion will brief the ad-

vantages of second order sliding mode observer based parameter estimation

and fault diagnosis over other schemes. It also covers an introduction about

the faults that can occur in air intake system of gasoline engine and their

effects on engine performance. Later on these effects will be exploited for

fault identification and classification.

Chapter 3 contains automotive engine modeling based on its pressure and an-

gular speed dynamics. These nonlinear dynamics provide solid ground for

health monitoring of air intake system. The pressure dynamics are modeled

based on air flow across the intake manifold. The angular speed dynam-

ics are described by the torques produced by combustion process, frictional

and pumping actions. These engine dynamics will be used to develop model

based fault diagnosis scheme for engine health monitoring.
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Chapter 4 contains the main contribution of this dissertation. It will discuss

about the estimation of gasoline engine parameters. Several engine parame-

ters that cannot be routinely measured can reveal information about engine

health. In this chapter a second order sliding mode observer based esti-

mation scheme will be formulated. It also contains a discussion about the

verification of the presented scheme for identification of production vehicle

engine parameters.

Chapter 5 contains some novel fault diagnosis methodologies proposed in this

manuscript. This chapter encompasses three fault detection schemes for

monitoring air intake system functions. The proposed schemes will help in

monitoring clogged air filter, manifold leakages, throttle body efficiency and

certain sensor faults. The proposed methodologies will be verified by imple-

menting it for the health monitoring of production vehicle gasoline engine. In

addition this chapter will give a detailed overview of the experimental setup

used for validation of the proposed model based fault diagnosis scheme.

Chapter 6 will conclude the thesis by outlining its major contributions along-

with a list of tasks that can be performed in future.
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Chapter 2

INTRODUCTION TO FAULT DIAGNOSIS

AND GASOLINE ENGINE FAULTS

An introduction to basic terminologies used in fault diagnosis literature is dis-

cussed in this chapter. The definition of the terminologies are adopted as outlined

in IFAC workshop on SAFEPROCESS in 1996. These terminologies will be used

throughout the thesis. This chapter also elaborates upon the fault diagnosis tech-

niques being exercised by researchers around the world. An overview of model

and model free fault diagnosis techniques is provided along with their applica-

tions. The possible faults that can occur in air intake path of automotive engine

are also explored in detail. The overview explains the past efforts of the researchers

to diagnose these faults using various diagnosis techniques. Moreover, it has been

argued that on-board model based engine fault diagnosis, to ensure fuel efficiency

and reduced emissions, is still a challenging task for automotive industry. It is

still an open research task as the current diagnosis techniques lack the ability to

be employed for on-board engine diagnostics.

2.1 Fault Diagnosis Terminology

The terminologies and their definitions used in the field of fault diagnosis was

standardized at IFAC workshop on SAFEPROCESS in 1996 [8]. This effort was

aimed at synchronizing the terminologies used by researchers in fault diagnosis

field.

These terminologies are categorized as follows;

1. States and Signals.

2. Functions.

3. Models.

4. Fault Types.

7



2.1.1 States and Signals

States and signals in fault diagnosis comprise of Fault, Residual, Malfunction,

Error, Disturbance and Perturbation. Fault is unacceptable deviation of at least

one property or parameter of the system from its usual behavior. Residual is

defined as fault indicator. It is measure of the deviation between measurements

and model-equation-based computations. The definition of other terminologies

can be seen in [8].

2.1.2 Functions

The tasks involved in fault diagnosis are termed as Functions. These tasks include

Fault Detection, Fault Isolation, Fault Identification, Fault Diagnosis, Monitoring,

Supervision and Protection. Fault detection is defined as determination of faults

present in a system and time of detection. Similarly, Fault isolation is determi-

nation of kind, location and the time of detection of a fault. Fault Identification

is determination of the size and time-variant behavior of a fault and Fault diag-

nosis is determination of kind, size, location and time of a fault. Monitoring is a

continuous real time task of determining the conditions of a physical system, by

recording information recognizing and indicating anomalies of the behavior. Other

functions can be seen in [8].

2.1.3 Models

Models are mathematical equations that are used to reconstruct and to diagnose

faults in a particular engineering system. The models used to diagnose faults in

engineering system can be Quantitative model, Qualitative model and Diagnostic

model. These models are based on static and dynamic relations among system

variables and parameters in order to describe systems behavior [8]. Another ter-

minology in this context is Analytical redundancy, which is the concept of utilizing

two or more methods to determine a variable that is prone to fault. This approach

is also practiced for fault diagnosis.
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2.1.4 Fault Classification

Faults can be classified according to time dependency, their nature and component

type. These classifications are explained below;

Figure 2.1: Fault types with respect to time

2.1.4.1 Time Dependency Based Fault Classification

The occurrence and growth of faults with the time in system are covered under

this category. The faults in the system may occur suddenly due to any accident.

It may grow with time due to aging of the components or it may occur randomly

due to make-break of electrical connections. The time based fault categorization

is shown in Figure 2.1 and can be done as;

• Abrupt Fault is sudden and permanent occurrence of fault in the system or

its components. It is modeled as a step function. Abrupt fault sometimes

exhibits itself as bias in the monitored signal.

• Incipient fault represents slow growth of the fault in the system or its com-

ponents. It can be modeled as ramp function. Incipient fault may show itself

as time dependant deviation of the monitored signal from real measurement.

• Intermittent faults are the faults that occur randomly in the system. It may

be a combination of impulses with different amplitudes.
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Figure 2.2: Additive and Multiplicative Faults

2.1.4.2 Fault Nature based Classification

How the faults interact with the system itself or its output is explained by fault

nature. Figure 2.2 explains the fault nature symbolically, where Y (t) is system

output, U(t) is system input, f represents fault and G represents system. Depend-

ing on fault nature, the faults can either be additive or multiplicative;

• Additive faults influence the system output/variable by an offset. This off-

set can be expressed by addition. Additive faults can be due to noise or

disturbance in the system. A common additive fault is offsets in sensor

measurements.

• Multiplicative faults appear as a result of parametric changes in the system.

These parametric changes appear in multiplication with the system states

or inputs.

2.1.4.3 Components Based Faults

The faults can occur in each component of the system. The broad classification

of the components include sensors, process/system and actuator. Based on these

components the faults can be classified as;

• System Faults

• Actuator Faults

• Sensor Faults
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These faults can be comprehensively explained by representing a system mathe-

matically as

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) Eq (2.1 )

where,

x ∈ <n is the system state vector.

u ∈ <l is the control input vector.

y ∈ <p is the output vector.

A ∈ <(n×n) is the system matrix.

B ∈ <(n×l) is the input distribution matrix.

C ∈ <(p×n) is the output distribution matrix.

The above mentioned faults can be explained as.

2.1.4.3.1 System Faults: System/process faults occur by change in system

itself. Any change in system reflects itself in its parameters. So the system faults

will reflect themselves in system matrix A. Hence, the faults in dynamical systems

can be expressed as:

ẋ(t) = (A+ ∆A)x(t) +Bu(t)

y(t) = Cx(t) Eq (2.2 )

where, ∆A is change in system matrix A and represents system fault.

System faults can be due to damaging and aging of its components. Like in engine,

manifold leakages and clogged air filter in gasoline engine can be termed as system

fault.

2.1.4.3.2 Actuator Faults: Actuator faults correspond to the variation of the

control input u(t) applied to the system. The faults reflect themselves in input
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matrix. Mathematically, the actuator faults can be represented as,

ẋ(t) = Ax(t) +Bfx(t) Eq (2.3 )

where,

Bf = B(1− Γ)

Bf = B − ΓB

ΓB is change in B caused by the fault. Where, 0 < Γ < 1. 1 means component

total failure and Γ = 0 represents healthy system actuators. Another mathematical

representation of actuator faults representation as [9]:

ua(t) = La(t)u(t) + (1− La(t))fa(t) Eq (2.4 )

where,

La ≤ 1 is the efficiency gain.

fa ∈ < contains the values at which the actuators are stuck.

Actuator faults can be stuck-up of floating control valves in process industry.

Similarly degraded motors for actuation purpose are also classified in this category.

2.1.4.3.3 Sensor Faults For each state to be measured a sensor is installed

at a particular location. Faults that appear in the installed sensors are termed

as Sensor Faults. Mathematically, y = Cx represents measured outputs of the

system. The sensor faults can be of the following types,

• Degraded Efficiency: In this case sensor will be showing false values but the

changing trends will be same as the system behavior. Mathematically, loss in

accuracy/degraded efficiency of sensor can be explained as y = C(1−sloss)x,

where sloss represents the degraded efficiency.

• Freeze: In this case, the measurements taken from installed sensors will

contain either ’0‘ in case of fully damaged or any other value which will
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remain constant through the system process. Freezing nature of sensor can

be modeled as y = sfreeze, where sfreeze is constant value that sensor is

sharing with the processor.

• Drift: If the sensor is showing increasing values of the measured state

with time, this behavior is termed as drift and it can be modeled as y =

sdrift(t)Cx, where sdrift(t) is time dependant factor by which the value is

drifting from its original value.

• Bias: The sensor measurements sometimes show biased value from true

value, this can be modeled as y = sbias + Cx, where sbias is the bias added

in the sensor readings.

2.2 Fault Diagnosis Methodologies

Optimum performance of engineering systems heavily rely on the proper function-

ality of sub-systems. Each sub-system should be precisely monitored for smooth

operation of any engineering system. This motivation lead to the development

of various fault diagnosis methodologies as shown in Figure 2.3. Fault diagnosis

schemes are mainly classified into two main streams,

• Model based fault diagnosis techniques.

• Model free fault diagnosis techniques.

However in reality, none of the approach is completely either model-based or

model-free in nature. Each of the model-free fault diagnosis schemes uses data

that has some kind of an underlying model. Similarly, every model-based ap-

proach requires a certain amount of calibration based on available data. In truth,

every approach is a combination of data-based (model-free) and physics-model-

based (model-based) techniques [10].

2.2.1 Model-Free Fault Diagnosis Techniques

Model-free approaches typically do not rely on any physics based model for diag-

nosis of faults. These techniques utilize system characteristics and heuristics to
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Figure 2.3: Classification of fault diagnosis methodologies

classify healthy and faulty system. A broad classification of model-free approaches

is

• Signal Based Approach

• Physical Redundancy

• Plausibility Check

2.2.1.1 Signal Based Fault Diagnosis

Signal-based fault diagnosis approaches exploit system features for identifying

healthy and faulty status of the system [11]. Figure 2.4 gives a brief idea about the

methodology. Any fault in sensor, actuator or system will vary the features of the

whole system. The features can be analyzed using signal processing techniques
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Figure 2.4: Signal based fault diagnosis methodology

like Periodogram, Welch periodogram, Scalogram, Spectrogram [12]. Based on

archived fault scenarios, the respective system behavior is analyzed and classified

accordingly. The authors in [13] proposed signal based fault diagnosis techniques

for engine fault diagnosis. However, signal based fault diagnosis methodology ig-

nores internal system dynamics to make its decision and fault scenarios database

is not readily available.

2.2.1.2 Physical Redundancy

Physical redundancy is an expensive and naive way of monitoring system health.

This approach requires installing of atleast three sensors to measure a single phys-

ical phenomena. The decision is made upon majority vote logic. Generally, two

out of three logic is used to ascertain system health. If two sensors are declaring

system faulty and the third one is declaring it normal, the decision will be faulty

system. The authors in [14] employed physical redundancy with plausibility check

approach to monitor sensor signals for vehicle health monitoring.

2.2.1.3 Plausibility Check

Plausibility check or signal analysis is performed on the sensor measurements in-

stalled in the system. The analysis involves the validation of system behavior

against the physical laws. This is a preliminary phase of model-based fault di-

agnosis as it does not involve dynamic relation between system variables, thus
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Figure 2.5: Model based fault diagnosis methodology

it lacks system insights. Versmold and Saeger [14] performed plausibility check

based fault diagnosis from sensor signals for vehicle dynamics control systems.

2.2.2 Model Based Fault Diagnosis Techniques

A model based fault diagnosis scheme utilizes an underlying mathematical model

that operates in parallel to monitor system health. The inputs and outputs of the

actual system are provided to the developed model. The comparison of the actual

system outputs and model outputs helps in generating residuals. These residuals

are further explored to analyze and reconstruct faults. Figure 2.5 gives a brief idea

about the model-based fault diagnosis schemes. Following are the popular model

based fault diagnosis techniques.

2.2.2.1 Knowledge Based Models

Knowledge based models are the qualitative models that are developed on fuzzy-

logic based techniques. The symptoms database and knowledge based models are

combinely used to generate and evaluate residuals. Generally, knowledge models

are used where the user is facing imprecise measurements and uncertain environ-

ment. This scheme increases the degree of abstraction, which plays a fundamental
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role in reaching correct diagnosis in uncertain environment with imprecise mea-

surement. Perschl and Schmidt [15] used knowledge based models to diagnose

various fault in gas transmission networks. However, the major hurdle in de-

veloping this technique is the requirement of prior knowledge acquired through

experience and symptoms database.

2.2.2.2 Data Based Models For Fault Diagnosis

Among model based fault diagnosis, the data based models are extensively used for

condition monitoring of engineering systems. These models are developed by the

data sets collected from the system to be monitored. The data set contains those

features that can help in classification of all the possible system conditions/states.

The conditions/states can either be healthy or faulty. This phase is termed as

training phase. Once the algorithm is developed upon the training data sets, the

data based diagnosis models are ready to classify system health status.

Following are some of the data based models fault diagnosis techniques:

Neural Networks: Neural network based models are composed of neurons, input

and output layers. The coefficient of these neurons are trained in order to

classify the system health status. The input features vectors are utilized to

differentiate between normal behavior and faults. The neural network based

model is first trained on the data of each class. The training data involves

such features sets that can help in precise classification. Once the whole

network in trained, the model can be used to diagnose the faults. Several

authors have proposed fault diagnosis using neural network based models like

in [16]. Similarly, the authors in [17] used auto-associative neural networks

for fault diagnosis for automotive diesel engine. The major inconvenience

in formulating neural network based diagnosis scheme is the requirement of

large number of training samples to deliver efficient diagnosis results.

Fuzzy Models: These models are made up from fuzzy rules which describe the

symptoms of faulty and fault-free operation in terms of predefined fuzzy ref-

erence sets. The models are based on expert knowledge or learned offline

from the training data produced by computer simulation of typical plant,

17



with and without the faults. A particular model is defined by specifying the

values of the elements of its associated fuzzy relational array. Each element

of the array is a measure of the credibility or confidence that the associated

rule correctly describes the behavior of the system around a particular oper-

ating point. The diagnosis of the fault is determined by comparing the rules

of the reference models with the rules of a partial fuzzy model identified

using normal operating data collected on-line from the real plant [18]. Lu

et al. [19] proposed a fuzzy system for Automotive Fault Diagnosis. The

fuzzy model comprised of the algorithms for automatically generating fuzzy

rules and optimizing fuzzy membership functions. The diagnosis scheme was

used for the detection of vacuum leaks in the automotive engine. Although

fuzzy models are widely used for fault diagnosis, but detection results can

be imprecise if system dynamics are ignored.

Hidden Markov Models (HMM): HMM is an statistical tool for modeling a

wide range of time series data. This powerful statistical tool is used for

modeling generative sequences that can be characterized by an underlying

process producing an observable sequence. The observable sequence is used

to train single HMM for each healthy and faulty status. After training

process, each HMM corresponds to unique fault and it helps to diagnose

that particular fault. The classified HMM is further explored to evaluate

fault severity. Besides its extensive application in signal processing [20],

HMM is widely used for estimation, Condition Based Monitoring (CBM),

fault diagnosis and prognosis of engineering systems [21], [22], [23], [24], [25].

Although, HMM based fault diagnosis is widely practicely, but it requires

extensive training from the data sets of various health status of the system,

thus the devised methodology has its scope limited to particular system.

2.2.2.3 Analytical Models

The analytical models are popular tool for fault diagnosis in control systems com-

munity. This model based fault diagnosis scheme relies on a dynamical model

of the system developed on the basis of physical laws. Each component i.e. ac-

tuators, sensors, process of the system is dynamically modeled. The dynamical
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Figure 2.6: Parity space based fault diagnosis

model is then utilized to generate residuals based on the same inputs and outputs

of the actual system to be diagnosed. The last stage involves the evaluation of the

generated residuals to detect, quantify and isolate faults.

Some of the popular analytical model based fault diagnosis techniques are

• Parity Space

• Diagnostic Observers

• Parameter Estimation

2.2.2.3.1 Parity Space Parity space approach is based on consistency check

(parity check) of parity equations. The parity equations are supplied by the same

inputs as given the actual system. The deviation in the model and actual system

output results in the generation of residuals. The parity equation can be developed

using transfer functions or state space equations of the system. Figure 2.6 gives

an outline of the parity space based residual generation for fault diagnosis. The

same input (U(t)) is supplied to the parity space equation (G) and actual system.

The output of the parity space (Y’(t)) and system (Y(t)) is then compared to

generate residuals. The matrix (V(s)) is used to separate/isolate multiple faults in

the system. Mostofi et al. in [26] used parity space relation to diagnose the faults

of crankshaft sensor in gasoline engine. Karsihnaswami et al. [7] used nonlinear

parity equations for the fault diagnosis of internal combustion engines. It can be
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noticed that the parity based fault diagnosis does not consider noise effects and

heavily relies on precise system model and precise models are rarely available.

Figure 2.7: Observer based fault diagnosis

2.2.2.3.2 Diagnostic Observers Diagnostic observers are employed to recon-

struct all of the system states from the available output measurements as shown

in Figure 2.7. Linear diagnostics observers are extensively used to reconstruct the

faults and diagnose the system health [27], [28]. Proportional observer, also known

as Luenberger Observer, is a full state observer and provide solid ground to rebuild

faults [29]. Similarly, proportional integral observers incorporate output error in-

tegral dynamics with conventional proportional error dynamics for convergence.

This provides asymptotic and robust course of reconstruction of the states and

residuals. Figure 2.8 explains the proportional-integral observer functioning. The

dash-line box in Figure 2.8 represents the proportional observers functionality.

In Figure 2.8, A,B,C are system matrices. x̂ and ŷ are observed state and output

vectors respectively. v̂(t) is the vector of the observed state variables of the effect

system. ŷ(t) is the vector of the observed output variables of the control system.

ŷv(t) is the vector of the reconstructed output variables of the effect system, inter-

preted as the vector of the reconstructed effect variables (fault variables, ...). LE

is the input matrix of the control system with respect to the type of influencing

its behavior. LC is the output matrix of the effect system. LP is the matrix of the
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Figure 2.8: Proportional integral Observer Structure

Figure 2.9: Parameter estimation based fault diagnosis

proportional gains. LI is the matrix of the integral gains (both to be calculated).

ey(t) = y(t) - ŷ(t) is the vector of the reconstruction error of the output variables

of the control system [30].

Proportional integral observers have been used for fault diagnosis also [31], [32],

[33]. Z. Li and Jaimoukha [34] proposed observer-based fault detection and isola-

tion filter design for linear time-invariant systems. The fault diagnosis can be done

using a single observer excited by single/all output or bank of observers excited

by single/all outputs [35].

2.2.2.3.3 Parameter Estimation Estimation of critical system parameters

can be very useful for the diagnosis of engineering systems [36], [37]. A gray
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system whose dynamics are known and time varying parameter need to be esti-

mated/identified can be diagnosed by estimating its health indicating parameters.

Figure 2.9 gives a brief idea about the parameter estimation methodology. The

input (U(t)) and output (Y(t)) are supplied to parameter estimation technique.

The estimated parameters are compared to their nominal operating values for the

diagnosis of various faults. Some popular parameter estimation techniques are:

• Least Squares & its variants

• Kalman Filter & its variants

• Sliding mode techniques

Least Squares & its variants: The method of least squares is used to estimate

the approximate solution of over-determined systems. By over-determined

system it is meant that number of unknowns is more than number of avail-

able equations. The optimality criterion of standard least squares minimizes

the squared sum of residuals between actual measured outputs and output

values of the gray model being predicted from input observations. Once the

residuals are minimized the respective parameters can be evaluated for con-

dition monitoring. Figure 2.10 explains least square parameter estimation

based fault diagnosis. This approach along-with its variants has been widely

used for fault diagnosis [38], [39]. The least squares delivers an offline esti-

mation solution for linear systems only. For a nonlinear dynamical system

the estimation results are inaccurate and computational expensive [40].

Kalman Filter & its variants: Kalman filter is extensively used for state and

parameter estimation of engineering systems [41], [42]. Standard Kalman

filter requires linear model of the underlying system, initial measurement

and process noise distribution and parameter/state estimates. Based on this

information, the algorithm first predicts the estimates and rectifies the esti-

mates using the measurements and Kalman filter gain. As standard Kalman

filter is limited to linear system, a number of Kalman filter variants have

been proposed to broaden its horizon. Among number of variants, few are:
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Figure 2.10: Least square parameter estimation based fault diagnosis

Extended Kalman Filter (EKF), being used for estimation of nonlinear sys-

tem by linearizing it around a single operating point. Similarly, Unscented

Kalman Filter (UKF) and its variants like Square-root UKF, performs stan-

dard unscented transform prior to recursive estimation [42]. Figure 2.11 gives

a brief idea about the working of Unscented Kalman Filter. The unscented

transformation is applied on initialized states. These transformed states are

then utilized for estimation. If the parameters to be estimated are declared

as states then the same procedure can be adopted for their estimation. Both

tasks of state and parameter estimation can be performed in parallel using

Joint Extended Kalman Filter or Dual Extended Kalman Filter. Wenael in

[43] utilized dual extended Kalman filter for the estimation of vehicle states

and parameters.

Sliding mode techniques: Sliding mode techniques are very powerful tool to

estimate the parameters of uncertain systems. Figure 2.12 explains the slid-

ing mode observer being used for parameter estimation. The actual system

measurements are tracked using sliding mode observer. The uncertainty

is modeled under the sliding mode injectors. These robust injectors elim-

inate the difference with actual and observed output. The detailed error

analysis helps in estimating critical parameters being used to diagnose the

faults of the system. Sliding mode techniques have been extensively used
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Figure 2.11: Unscented Kalman Filter state and parameter estimation based
fault diagnosis

for estimation and control [44], [45], [46]. Currently, for the estimation of

un-measurable and inaccessible system states, second order sliding mode

techniques have been used by many researchers [47], [48], [49] [50], [51], [52].

2.2.2.4 Advantages of Second Order Sliding Mode Technique

After going through numerous fault diagnosis methodologies, it can be observed

that each diagnosis scheme faces certain limitations. Like, physical redundancy

needs extra sensors installation, which is expensive and obsolete approach. Other

model free diagnosis techniques only work on sensor measurements without con-

sidering underlying working model and actual inputs to the systems. Knowledge

based models require experience to develop model rules. Similarly, data based
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Figure 2.12: Sliding mode observer parameter estimation based fault diagno-
sis.

models require extensive training data sets. Insufficient training sets may lead to

imprecise health monitoring. Another problem with data based schemes is their

off-line execution for fault diagnosis.

Among analytical models, Proportional (Luenberger Observer) and proportional

integral observers only work with linear models which makes fault diagnosis of

highly nonlinear systems very difficult. The parity space approach often shows very

good results in simulations, but it can be highly sensitive to measurement noise

and process noise, since these are not taken into consideration in the design of the

parity space. In the parameter estimation techniques, least squares and its variants

work efficiently for linear systems only. First order sliding mode approach provides

estimation of parameters with noise that needs to be filtered. This introduces a

phase shift and bias. The need for filtering effects the finite time convergence

property. The deficiency in identification of uncertainties and parameter persists

until second order filtering is employed. This may lead to corruption of results
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[49].

However, super twisting algorithm based second order sliding mode (SOSM) ob-

servers possess the same robustness as first order sliding mode and ensure reduc-

tion in chattering phenomenon [53]. These observers are utilized for parameters

estimation because they make the states observation without filtering. This en-

sures the identification of uncertainties with just one filtering only, that helps in

parameters identification [49], [54].

The other advantages of second order sliding observer include: it may or may

not require complete system information and noise distribution for convergence

as mandatory in Kalman filter based state/parameter estimation. Moreover, the

nonlinear framework of second order sliding mode based technique is efficient,

computationally cheap & online implementable as it is free of multiple matrices

evaluation and multiplication like in prediction stage of Kalman filter. In addition

it does not involve the system to be Jacobian linearized as required in EKF. This

linearization can be inaccurate for a system with large nonlinearities for short time

period [41]. Similarly SOSM observer is free of transformations, computation of

sigma points, Cholesky factor updating, efficient least squares and decompositions

as mandatory in UKF and its variants [42]. Therefore, one can implement SOSM

observer using low cost embedded system very easily. �

After going through various fault diagnostic techniques, the following sections will

highlight the malfunctions that can occur in gasoline engine.

2.3 Fault Diagnosis in Gasoline Engines

Vehicles with gasoline automotive engines are widely used for transportation pur-

pose in modern era. Figure 2.13 elaborates a subset of the subsystems, sensors

and actuators installed in a typical gasoline engine. The mentioned list of sensors

are used to precisely monitor engine functions. The actuators are responsible for

the execution of the desired tasks. Due to abundant usage of these engines, the

demand of flawless engine functioning is also increasing. The demanding sources

include environmental protection agencies and end-users. To meet these demands,

the above discussed model or model free fault diagnosis techniques have been
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Figure 2.13: Automotive gasoline engine; its actuators, subsystems and sen-
sors

widely practiced to monitor various components of gasoline engine [16], [52], [55],

[56].

2.3.1 Air Intake System & its Faults

Air Intake System (AIS) is an integral subsystem of a gasoline engine. Primarily,

this system is responsible for clean and optimum amount of air for the combustion

process. The amount of air that enters the manifold is sensed by an air pres-

sure/flow sensor and the fuel is sprayed from injectors such that air to fuel ratio

(AFR) is ensured. If there occurs any fault in AIS, air fuel mixture will either

become rich or lean. As a consequence, loss of engine power, harmful exhaust
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emissions and retarded fuel efficiency will effect engine performance. Thus, strict

monitoring of AIS function must be ensured in order to avoid these problems

In this section malfunctions due to various components involved in AIS of gasoline

engine are discussed. These components are air filter, pressure manifold, throttle

body, manifold pressure and angular speed sensors. Each of the components if not

working properly can cause multiple adverse effects on engine performance. The

following discussion will give us an idea about the problems caused by clogged air

filter, manifold leakages and reduced throttle body efficiency. Similarly, crankshaft

and manifold pressure sensor can also degrade the engine performance, if not

working properly. Each subsection sequent will contain a brief overview about the

past efforts of researchers to diagnose these faults. After going through the severity

of the faults and certain limitations of available diagnosis techniques, these faults

are planned to be diagnosed in order to ensure optimum engine performance.

2.3.1.1 Clogged Air Filter

Air filter is supposed to deliver clean air for combustion process. This will help in

reducing dust concentration in air intake path. A serious consequence of increase

in abrasive dust particle is engine wear and tear. As air filter remains exposed

to environmental hazards most of the time, the natural phenomenon of choking

degrades the air filter performance with the passage of time. A clogged air filter

(as shown in Figure 2.14) will hinder to deliver required amount of air to produce

optimum power, especially at high speeds and loads. The choking phenomenon

increases the pressure drop across air filter [57], [58]. This negatively affects the

pressure dynamics of intake manifold. Figure 2.14 gives us an idea about the

clogged and healthy air filter.

Factors effecting air filter performance has been discussed in detail in [57]. The

degraded air filter in open loop carburated engine vehicles, affects fuel efficiency

significantly. It has been shown in [59] that the fuel economy is increased by 14%

when clean air filter is used. However, in modern electronically controlled vehicles,

air filter has no significant affects on fuel economy. The closed loop/feed forward

action in Engine Control Unit (ECU) maintains the desired AFR despite of choked
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Figure 2.14: Healthy and Clogged Air Filters

air filter. On the other hand, clogged air filter influences the driving performance

of ECU equipped engines as acceleration/pick up time is increased.

2.3.1.1.1 Clogged Air Filter Diagnosis Methodologies: Keeping in view

the adverse effects of clogged air filter on engine performance, its health monitoring

becomes mandatory. In the literature, air filter health is mostly diagnosed by

measuring pressure drop across it. The filter health degradation is directly related

to pressure drop after air filter. This requires installation of additional three

pressure sensors [57], [59]. Similarly, a signal based diagnosis of emulated choked

air filter has been carried out by [60]. It has been observed that air filter health

diagnosis is less practiced in available literature. One of the main reasons is: air

filter is either ignored or assumed as clean filter while modeling pressure dynamics

of engine air intake path [61], [62], [63].

2.3.1.2 Manifold Leakages and Reduced Throttle Body Efficiency

Among the major components of air intake system, intake manifold and throttle

body are primarily responsible for smooth air flow for air fuel mixture. This

ensures optimum engine performance. However, the intake manifold behavior is

adversely affected by leakages. Similarly, throttle body efficiency is reduced if its

effective area is reduced or increased. Figure 2.15 and Figure 2.16 give an idea
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Figure 2.15: Intake manifold and its connecting elements

about intake manifold and throttle body respectively. The following discussion

about manifold leakages and reduced Throttle Body Efficiency will brief about

their effect on engine and how researchers have diagnosed these problems.

2.3.1.2.1 Manifold Leakages: Air leakages in inlet manifold increase the

amount of uncontrolled oxygen for combustion process, that may result in high

engine rotational speed and unpredictable manifold pressure. This malfunctioning

may let end-user experience:

• Hissing Noise

• Engine Stumbling

• Rough/Fast Idling or Stalling

• Poor Gas Mileage

• Hesitation/Poor Pick Up

However, in actual air leakages in manifold force manifold absolute pressure sensor

to generate false measurements that can result in AFR deviation. The deviation

in AFR may cause emissions to increase. Similarly, an inevitable consequence of

manifold leakages is the loss of generated power due to lean air fuel mixture.
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Figure 2.16: Throttle Valve/Butterfly Valve

These symptoms become visible after air leakage has occurred. The possible causes

of manifold leakages may be aging affects of hoses connecting manifold to other

components like Exhaust Gas Recirculation (EGR) hose, power brake booster

hose. Other causes may include EGR valve leaks, intake manifold gasket leaks,

aging of throttle/butterfly valve and other gaskets leaks. Figure 2.15 gives an idea

of components attached to AIS, that may result in air leakage. Besides leakage

in AIS, components in connection with manifold, if get ruptured, also cause air

leakages. For example, any damage to power brake booster can cause air leakage

in manifold.

2.3.1.2.2 Defective Throttle Body/Butterfly Valve: Similarly, the sec-

ond factor that may hamper engine performance is defective throttle valve. Throt-

tle valve is responsible to deliver desired amount of air for combustion process.

Manipulating throttle valve controls the power produced by engine. Any mal-

function by the actuator will effect the engine performance. One of the main

consequences of degraded throttle valve is its loss of effectiveness. This results in

Throttle Effective Area (AE) reduction. This decrease in AE can be due to depo-

sition of unwanted materials in throttle body or any obstruction in AIS. On the

other hand, electronically operated throttle valve can malfunction to decrease AE

if there exists any fault in its electronic circuit. Similarly, bowden cable operated
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throttle valve is dependent on cable for its efficiency. Any damage to bowden cable

will negatively effect AE due to decrease in throttle valve performance. Moreover,

AE reduction can be due to the clogged air filter, as it remains exposed to envi-

ronmental hazardous most of the time.

2.3.1.2.3 Manifold Leakages and Reduced AE Diagnosis Methodolo-

gies: Keeping in view the adverse effects of manifold leakages and decrease in

AE due to throttle malfunction, various researchers have tried to diagnose these

AIS faults through various algorithms. Nyberg et al. [55] identified manifold

air leakage and throttle faults by proposing a physical model of these faults for

turbo charged engine whose parameters were identified by Recursive Least Squares

(RLS). The identified parameters helped to check the severity of leakages and de-

crease in AE. The authors in [64] presented mathematical model of an internal

combustion engine to detect failures in the intake manifold. The proposed fault

detection and isolation method performed threshold tests on the directional resid-

uals. The residuals were generated by a combination of a state-dependent Kalman

filter, an open-loop observer and an unknown input estimator. In [65], it was pro-

posed to detect air leakage using the with-in cycle crank-angle-based Model. The

proposed scheme showed improved fault sensitivity as compared to Mean Value

Engine Model (MVEM) based approach. Franchek et al. [66] suggested diagnostic

approach for air leakage based on a static air path model, which was adapted on-

line such that the model output matches the measured output during steady state

conditions. The resulting changes in the model coefficients created a vector whose

magnitude and direction were used for fault detection and isolation. Sangha et

al. [16] proposed Radial Basis Function (RBF) neural network based diagnosis

scheme for air leakages. MVEM was used to simulate air leaks and other faults

to validate the scheme. The authors in [60] proposed classifier fusion approach

for diagnosis of automotive systems. The methodology validation was limited to

synthetic faults generated by Computer aided multi analysis system in Hardware

In Loop Simulations (HILS). Weinhold et al. [67] suggested model based diagnosis

of air leakage and AE blockage. PI observer was employed to generate residuals.

Later on these residuals were evaluated to diagnose AIS health. It can be observed
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that diagnosis of leakages and AE reduction is widely practice but an algorithm

compliant to OBD-II scanner is still a question.

2.3.1.3 Air Intake System Sensor Faults

Engine fuel efficiency depends on the air to fuel ratio of in-cylinder mixture that is

required to be as close to its stoichiometric proportions as possible. The standard

stoichiometric ratio can be maintained if AIS performance is ensured. Any mal-

function in AIS will affect the amount of oxygen required for complete combustion,

thus disturbing stoichiometric proportion. One of the main factors that retards

fuel efficiency is malfunctioning of manifold absolute pressure and crankshaft sen-

sor.

2.3.1.3.1 Manifold Pressure Sensor: A faulty MAP sensor may let an end-

user experience:

• Exhaust Gases and gas smell.

• Rough Idling.

• Poor Gas Mileage.

• Hesitation/Poor Pick Up.

However, in actual, due to various nature of sensor faults, MAP sensor generate

false measurements that can result in:

• Deviation in AFR, that may cause emissions to increase. (Pollution)

• Lean or rich air fuel mixture, that may cause misfire. (Hesitation)

2.3.1.3.2 Crankshaft Sensor: Similarly, a crankshaft sensor is used to mea-

sure angular speed. If it has failed or is failing, certain timing problems will arise

in engine function. The engine may start normally in some cases, but will cut off

after a few minutes (or seconds) of operation. More than likely the engine will be

unable to start at all. Since the crankshaft sensor is responsible for engine timing,
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the driver may experience engine backfire or irregular angular speed function, if

the vehicle starts at all.

These symptoms are visible only after fault in the sensors has occurred. These

faults can be due to bias or drift in sensor outputs. Other causes may include loss

in effectiveness, damaging of sensors or frozen sensor outputs. In order to avoid

such situations early diagnosis of sensor health becomes inevitable. Currently, au-

tomotive industry utilizes many experience and lookup tables based techniques to

monitor sensor faults. However, in literature, various researchers have attempted

to diagnose sensor faults in automotive engine.

2.3.1.3.3 Sensor Faults Diagnosis Methodologies: Sensor fault diagno-

sis has been carried out with various algorithms. Balaban et al. [68] employed

neural network based classifier to figure out different faults in sensors with its

application in aerospace systems. Similarly, Singh et al. [69] developed an arti-

ficial neural network-based virtual fault detector for detection and identification

of faults in Wheatstone bridge-oriented transducers of a computer-based measure-

ment system. In automotives, the authors in [70] discussed sensors fault detection,

isolation, and accommodation procedure for public transportation. The approach

was to develop analytical redundancy for installed sensors that can diagnose the

faults efficiently. Crossman et al. [71], analyzed various signals of vehicle sensors

and control module to diagnose its faults. The procedures of pattern recognition

were employed to classify different faults. Rizzoni and Min [72] proposed detection

filters to diagnose sensor failures in automotive engine control systems. The de-

tection filter utilized analytical redundancy within a dynamical system to isolate

the cause and location of abnormal behavior. Hsu et al. [73] suggested a hex-

adecimal decision table to relate all possible failure patterns to the residual code.

The residual code was obtained through simple threshold testing of the residuals,

which were the output of a general scheme of residual generators. The proposed

diagnostic system was applied to automotive engine sensors and actuators. Ny-

berg [74] developed a model based fault diagnosis algorithms to detect air intake

system faults: sensor faults and manifold leakage. In [60] it was suggested to fuse

classifiers for the diagnosis various faults in automotive systems. The authors in
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[75] described the hybrid solution, based on artificial neural networks, and the

production rule adopted in the realization of sensor fault detection, isolation, and

accommodation scheme for automotive applications. It can be observed that AIS

sensors fault diagnosis is widely practiced but a model based sensor fault diagnosis

compatible to On-Board Diagnostic version-II (OBD-II) standards is still an open

problem.

2.4 Conclusion

This chapter explored basic fault diagnosis terminologies and various fault diag-

nosis techniques. The overview gave an idea and application areas of each fault

diagnosis scheme. Keeping in view the advantages of SOSM observer based fault

diagnosis technique, it can efficiently diagnose engine health based on the estima-

tion of critical parameters. These critical parameters can be helpful to diagnose

the possible discussed faults that can occur in various components of AIS. The ad-

verse effects of these faults have been explored in detail. It can be seen that each

fault affects the engine performance negatively and thus needs to be monitored.

It can be observed that model based engine diagnosis are extensively explored

but still automotive industry is still struggling to incorporate OBD model based

methodologies to monitor gasoline engine health in real time. Currently, lookup

table and experience based diagnosis techniques are widely employed in available

production vehicles. However, keeping in view the strengths of model based on-

board condition monitoring, it is still an open challenging task for automotive

industry.

In the coming chapter, mean value engine model will be formulated for model based

fault diagnosis scheme. A second order sliding mode observer based parameter

estimation scheme will be formulated for air intake system of gasoline engine.

Later on, the estimated parameters will be analyzed for gasoline engine health

monitoring.
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Chapter 3

AUTOMOTIVE ENGINE MODELING

Model based fault diagnostic schemes heavily rely on accurate model of the dy-

namical system. This chapter will discuss the gasoline engine functions and its

mathematical modeling. Various engine parameters like Throttle Discharge Co-

efficient, Volumetric Efficiency, Combustion Efficiency etc are employed to develop

a realistic mean value engine model. These parameters are used to produce actual

engine behavior from the mean value engine model developed on ideal physical

laws. The attempts to model these engine parameters are also discussed in the

chapter. A successful validation of the developed mean value engine model is car-

ried out against a commercial vehicle engine. Later on the validated model will

be used for estimation and diagnosis purposes.

3.1 Gasoline Engine

The engine is a device which converts chemical energy into mechanical energy.

Chemical energy stored in the fuel is first converted to thermal energy by means

of combustion process with air inside the cylinder. This thermal energy then raises

the temperature and pressure of the gases within the cylinder of the engine. This

high-pressure gas then expands against the mechanical mechanisms of the engine.

This expansion is converted by the mechanical linkages of the engine to a rotating

crankshaft which is the output of the engine.

The engine under study is naturally aspirated spark ignition internal combustion

engine. Its working cycle consists of four strokes with reciprocating basic design.

The first stroke sucks fluids inside the cylinder termed as Intake Stroke, which is

compressed in the second stroke i.e Compression Stroke. The third stroke takes

place after combustion carried by the ignition of spark plug. The spark plug

gives a high-voltage electrical discharge between two electrodes which ignites the

air-fuel mixture in the combustion chamber surrounding the plug. This stroke is
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responsible for the work done by the engine and is known as Power Stroke. Finally,

the Exhaust Stroke expels all the gases created as result of combustion.

A Spark Ignition (SI) engine is highly complex system that consists of several sub-

systems and can be modeled by a combination of highly nonlinear algebraic and

differential equation. SI engine can be modeled based on its reciprocating nature

under Discrete Event Models (DEM) and if we neglect discrete cycles of engine and

consider all processes of continuous nature then this approach is termed as Mean

Value Engine Modeling. The choice of model depends on the control objectives,

like DEMs are used for engine mis-fire detection and MVEMs used for the control

of slow engine processes.

Mean Value or low frequency model neglects discrete events of engine and describes

the engine dynamics with limited bandwidth, equivalent to considering the mean

behavior of states variables over a few engine cycles. All Mean Value Engine

Models are control oriented models, which means input-output behavior of the

system is modeled with reasonable precision but low computational complexity

and include explicitly all relevant transients effects. MVEMs have been extensively

used for engine control strategy development [62].

Most mean value models are having lumped parameters i.e. system description

that has no spatially varying variables and that are represented by ordinary dif-

ferential equation. If location, volume, temperature are to be used as independent

variables, then resulting models are represented by Partial Differential Equations

(PDE) and PDEs are computationally too demanding.

The subsystems involved in mean value modeling depends on the nature of control

tasks as certain subsystems can be neglected in order to make the model relatively

simpler and computational friendly. Following are the subsystems that can be

modeled in MVEMs

• Air system, defines how much air is inducted into cylinder

• Engine Inertial system, explains the engine speed.
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• Torque Generation system, defines how much torque is produced by air/fuel

mixture.

• Fuel system, defines how much fuel is inducted into cylinder.

• Engine Thermal system, dictates dynamic thermal behavior of the engine

• Pollution Formation system, models the engine-out emissions.

• Pollution Abatement system, models the behavior of catalyst, sensors and

other relevant equipment in the exhaust pipe.

Based on our pre-defined objectives, we will be modeling the first three subsystems

in order to obtain a Mean Value Engine Model. The formulated model will have

output as engine speed in revolutions per minute (RPM) & inlet manifold pressure

in kilo pascals (kPa)and input as throttle angle in degrees (◦).

The model is based upon the important modeling processes namely throttle body,

intake manifold, combustion and rotational dynamics processes. The modeling

processes of the above sub-models are carried out by considering few assumptions.

One-dimensional steady compressible flow is considered in the throttle body [61].

Filling and emptying approach is employed for capturing the air dynamics in the

intake manifold. Otto cycle is utilized for analysis of in-cylinder dynamics [2]. The

Figure 3.1: Components Involved in Engine Modeling
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Figure 3.2: Block diagram elaborating the component modeling flow.

Newton’s Law is applied to calculate the torque and rotational dynamics. The

schematic diagram can be seen in Figure 3.1 which shows the air intake system

components that are used in engine modeling.

The modeling of each engine component will be performed systematically as elab-

orated in Figure 3.2. First air filter behavior will be analyzed, then air flow across

the throttle body will be defined. Throttle body controls the air flow into the in-

take manifold. Fuel is added into air to make an air-fuel mixture, intake manifold

pressure is obtained. The air-fuel mixture enters the cylinder and becomes a part

of combustion process. This process generates indicated torque during expansion

of gases against piston in the cylinder. The brake torque is obtained by subtracting

the frictional, pumping and load torques from indicated torque. The net torque

produces acceleration in the crank shaft. Engine speed is the final output, which

is calculated by integrating the acceleration.
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3.2 Air Intake System

Among various subsystems of gasoline engine, air intake system hold prime im-

portance. Its prime objective is to deliver proper amount of air accurately and

equally to all the cylinders at proper time in the engine cycle. This subsystem

comprises of following components to deliver the assigned objective.

• Air filter

• Throttle Valve

• Pressure Manifold

The air, after purifying from dust particles and other unwanted agents through air

filter, passes through the butterfly/throttle valve. The effective area of throttle

determines air flow through manifold where certain pressure is required to be built

up. Each of these components will now be discussed in detail.

3.2.1 Air Filter

Air filter is an important part of the Air intake System, that ensures clean air

inflow from the environment. Air filter blocks the dust particle and let the clean

air to approach throttle valve. This maximum engine power would be expected to

be affected by the intake air restriction imposed by a clogged filter [59]. Effects of

air filter on air flow in AIS can be modeled either by pressure drop across it or by

measuring its discharge coefficient Caf .

3.2.1.1 Pressure Drop Across Air Filter

Air filter can be represented by modeling the pressure drop across it. As a con-

sequence of deposition of pollutants, pressure drop across the air filter increases.

This pressure drop is dependent on velocity of air flow [57]. It has linear rela-

tionship with filter thickness and exponential relationship with filter porosity [58].

The velocity factor is negligible in our case as the air intake velocity is less than

20-30 cm/s and has no significant effect on pressure drop [57]. Therefore, we can
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say that the pressure available after the filter can be expressed by the following

expression,

Pa = P̄a − [Pinie
−εporεdia + cεth] Eq (3.1 )

where,

P̄a is Ambient Pressure in Pascals (Pa).

εpor is Filter Porosity in (%).

εdia is Filter pores diameter in millimeters (mm).

εth is Filter fiber thickness in millimeters (mm).

c is proportionality Constant.

Pini is the maximum pressure drop in Pascals (Pa).

The maximum pressure drop (Pini) across the air intake for SI engines is generally

5-7.6 kPa.

The simulations carried out on the above formulated model show typical behavior

of engine. Figure 3.3 shows the air filter performance which is dependent on its

porosity. Its can be observed that the pressure drop decreases with the increase

Figure 3.3: Decline in pressure due to porosity
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Figure 3.4: Pressure available after the air filter

in porosity. As the porosity decreases with time due to pollutants and dust in the

environment the pressure available after the air filter is not ambient pressure. The

pressure available after the air filter with 90% porosity can be seen in Figure 3.4.

3.2.1.2 Discharge Coefficient of Air Filter Caf

Alternately, a realistic modeling of engine can also be carried out by considering

the affects of air filter on intake manifold dynamics. It can be visualized in Fig-

ure 3.1 that the restrictions in flow can be either due to throttle body or air filter.

Generally, throttle discharge coefficient (CD) is used to measure flow limitations

caused by throttle body. Under steady state conditions CD remains a constant

value [76]. Other fluctuations in air flow under steady state operation can be due

to air filter behavior. In order to incorporate the effects of air filter health on air

flow through inlet manifold, Caf has been proposed in this manuscript. Smaller

Caf means lesser air flow through air intake path components and vice versa.

Mathematically, Caf can be defined as

Caf =
ṁin(actual)

ṁin(ideal)

Eq (3.2 )

where,
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ṁin(actual)
Actual Air flow entering the manifold in kg/sec.

ṁin(Ideal)
Ideal Air flow entering the manifold in kg/sec.

The actual degraded air flow rate due to air filter is determined experimentally

and ideal mass flow rate is given by the flow equation. When the engine is in

steady state conditions, none of the flow rates will be equal to zero. Hence this

parameter will always be greater than 0 and less than 1.

3.2.2 Throttle Effective Area

Throttle is a butterfly valve mounted at the intake of air path after the air filter.

Its function is to control the amount of air flow required by the engine. Car

accelerator is connected with throttle plate, the more the accelerator is pressed

the more is the throttle angle. The state of the throttle valve is called wide open

throttle (WOT) when the pedal is fully pressed, otherwise, it is termed as part

open throttle. It is assumed that there is a steady one-dimensional compressible

air flow from ambient to past throttle. This flow can be considered as isentropic

flow due to its adiabatic and reversible nature in the throttle body. The Effective

Throttle Area is the area of throttle pipe through which the air can pass. It is

calculated by subtracting the disc (at an angle) area from the total area of throttle

pipe. The effective throttle area can be expressed in simple mathematical form as

[77]

AE = (1− cosα)π
D2

4
Eq (3.3 )

where,

AE is the throttle effective area in m2.

α is the throttle angle in degrees (o).

D is the diameter of inlet pipe in meters (m).
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Eq (3.3) is a simple approximation of effective area. However, slightly precise

equation can be of the form [78], [79]

AE = (1− cos(α + αcl
αcl

))π
D2

4
Eq (3.4 )

where,

αcl is the throttle angle at closed position w.r.t. normal axis.

More accurate and complex equations can be seen in [56], [80].

The selection of expression for calculation of effective area depends upon the level

of required accuracy and the type of application. In some cases it may be necessary

to use the more exact expression. The accuracy of area plays a pivotal role in the

accurate measurement of air flow to an engine cylinder. The throttle angle is either

controlled by electric devices or by bowden cable, which gives desired effective area.

The engine outputs can be manipulated by the air flow through controlling the

effective throttle area.

3.2.3 Manifold Pressure Dynamics

The intake pressure manifold is responsible to deliver air to the engine through

pipes to each cylinder. The intake manifold can be visualized in Figure 3.1, it

is the part of the air intake system that starts after throttle body and it finally

connects to the piston. It is also termed as receivers/runners. These receivers

are assumed to have fixed volume for which the thermodynamic states (pressure,

temperature...) are same all over the volume (lumped parameter approach). The

manifold dynamics can be modeled on the basis of filling and emptying of air.

The mass and energy of the air serves as inputs and outputs of the receivers. It is

assumed that no substantial changes occur in energy and no mass & heat transfers

through the walls [61]. Therefore, we can describe such a receiver by

d

dt
m = ṁin − ṁout Eq (3.5 )

where,
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ṁin is air flow entering the manifold in kg/sec.

ṁout is air flow entering the cylinder/leaving the manifold in kg/sec.

The fluids can be modeled as perfect gases, for which the following expression

holds [61], [81],

PmVm = mRTm Eq (3.6 )

where,

Vm is Manifold volume in (m3).

Pm is Manifold pressure in Pascals (Pa).

Tm is Manifold temperature in Kelvin (K).

R is Specific gas constant in J/kg.K.

m is the mass of the air in kg.

It is assumed that temperature of out-flowing and in-flowing gases from manifold

is same i.e. Tout = Tin. Taking the derivatives of Eq (3.6) and substituting

respectively in Eq (3.5) gives us,

d

dt
Pm =

RTm
Vm

[ṁin − ṁout] Eq (3.7 )

3.2.3.1 Air Flow Across Throttle Body (ṁin)

The flow of fluids between two reservoirs is determined by valves. The basis of

the fluid flow at the inlet of the manifold i.e.throttle body is one-dimensional

compressible flow and is modeled with respect to pressure across the device [80].

Lumped parameter approach is also employed in modeling of fluid in-flow i.e. the

temperature and pressure remain homogeneous within flowing body. The intake

manifold model can be developed on principles of conservation of mass and energy,

ideal gas laws and Dalton‘s law of partial pressure [61], [62], [82].
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The modeling of flow through the valve can be done with the following assumptions

in view,

• The fluid is compressible

• There is no friction and inertial effects in the flow

• No losses occur in accelerating part up to narrowest point i.e. potential

energy isentropically converts into Kinetic Energy

• After the narrowest point, the flow is fully turbulent and it kinetic energy

dissipates in thermal energy.

Now the fluid flow across the valve can be determined by Bernoulli Law as a

function of inlet and outlet pressure.

ṁin = AEρa

√
2Cp(Ta − Tm) Eq (3.8 )

where,

Cp is γR
γ−1

ρa is Air density in kg/m3.

γ is Ratio of heat capacities.

Ta is ambient temperature in Kelvin.

The flow process in the throttle body is adiabatic process [2]. Based on adiabatic

process Eq (3.8) can be modified as

ṁin(t) = AEρa

√
2CpTa[1−

Pm
Pa

]
γ−1
γ Eq (3.9 )

The entropy of the fluid flowing across the throttle remains the same, i.e. isentropic

process, this phenomena helps us is formulating the air density across the valve as

ρa = (
Pm
Pa

)
1
γ
Pa
RTa

Eq (3.10 )

46



Substituting Eq (3.10) in Eq (3.9) and simplifying,

ṁin(t) = AEPa

√
2γ

((γ − 1)RTa)

√
(
Pm
Pa

)
2
γ − (

Pm
Pa

)
γ+1
γ Eq (3.11 )

As the fluid passes by narrowest point i.e. choked flow, the above equation can be

modified as [61], [62],

ṁin(t) = AEPa

√
1

(RTa)

√
γ[

2

γ + 1
]
γ+1
γ−1 Eq (3.12 )

Analytically, the choked flow can be determined by critical pressure if it is greater

then manifold pressure i.e. Pm < Pcr, where

Pcr = [
2

γ + 1
]
γ
γ−1Pa Eq (3.13 )

As the piecewise switching functions in Eq (3.11) and Eq (3.12) are unsmooth and

the existence of derivatives of such functions is not guaranteed, therefore these

functions are not suitable for control, estimation and diagnosis purpose, hence we

can replace these functions by a single non-switching nonlinear function as follows

[79].

ṁin = AEPa

√
1

(RTa)

√
γ(

2

γ + 1
)
γ+1
γ−1 (1− exp(Pm

Pa
− 1)) Eq (3.14 )

3.2.3.1.1 Throttle Discharge Coefficient CD: The inflow of air across the

throttle body of an automotive engine is represented by the gas equation of isen-

tropically compressible air mass flow through an orifice under ideal conditions

given in Eq (3.14). In the real world, ideal conditions hardly exist; therefore,

the modeled equation is unable to correctly predict the air mass flow across the

throttle valve. To accommodate the assumptions and inaccuracies, a coefficient of

discharge is introduced in gas equation. This correction factor is defined as a ratio

of actual to the ideal flow rates of air mass. Actual mass flow rate is determined

experimentally and ideal mass flow rate is given by the flow equation. When the

engine is running, any one of the flow rates would not be equal to zero; hence, CD
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would be well defined within the operating range of engine as,

CD =
ṁin(actual)

ṁin(ideal)

In steady-state conditions discharge coefficient is nearly a constant number. But

at varying input and engine load, it is neither a constant parameter nor a linear

variation [83]. Therefore, a number of approaches can be found in literature to

analyze the effect of CD. The coefficient of discharge has been taken as a constant

parameter by most researchers in MVEM like in [79], [84], [82]. Other community

working on engine has taken discharge coefficient as a varying parameter and

developed various expressions that require other engine parameters as input like

manifold pressure, throttle valve area, air temperature, engine speed etc [83], [63].

Several authors have attempted to estimate CD from sliding mode observers [47],

[52].

So, the realistic throttle mass flow ṁin can be represented as

ṁin = CDAEPa

√
1

(RTa)

√
γ(

2

γ + 1
)
γ+1
γ−1 (1− exp(Pm

Pa
− 1)) Eq (3.15 )

As discussed in Section 3.2.1, the air filter effects on air flow in manifold can be

modeled by incorporating air filter discharge coefficient Caf . Thus, Eq (3.15) can

be further modified to represent real air flow in manifold as,

ṁin = CDCafAEPa

√
1

(RTa)

√
γ(

2

γ + 1
)
γ+1
γ−1 (1− exp(Pm

Pa
− 1)) Eq (3.16 )

3.2.3.2 Idle Air Control

Idle Air Control is a type of alternate route of the throttle plate. In the alternate

route, there is a valve which controls the amount of air flow into the intake manifold

during idle operation. The throttle is typically closed during idle operation [2],

[62]. Idle air control is also modeled with Eq (3.16) in a manner similar to the

throttle body. The effective area for estimation of idle air is equal to 5o − 10o
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opening of the throttle plate. For the particular engine is use, this angle in 9.8o

ṁinidle = CDCafAE(α = 9.8o)Pa

√
1

(RTa)

√
γ(

2

γ + 1
)
γ+1
γ−1 (1− exp(Pm

P̄a
− 1))

Eq (3.17 )

3.2.3.3 Vacuum Leaks

Vacuum Leaks of intake manifold are also considered. The size of leak depends

on the condition of intake manifold. These leaks occur repeatedly during intake

stroke due to vacuum in the intake manifold. The vacuum leaks are also modeled

with Eq (3.16) as a repeated sequence with a leak size of two percent of the total

throttle area [62].

ṁinleaks = 0.02CDCafAEPa

√
1

(RTa)

√
γ(

2

γ + 1
)
γ+1
γ−1 (1−exp(Pm

P̄a
−1)) Eq (3.18 )

3.2.3.4 Air Flow Across Engine (ṁout)

The air mass induced into the cylinder is due to the reciprocating motion of en-

gine. The intake stroke creates negative pressure and sucks the air inside the

piston. The exhaust stroke exhales the combustion mixture. This motion resem-

bles reciprocating pumps or compressors and it can be modeled with the help of

speed density equation [61]. A typical formulation for such four stroke engine is

given by

ṁout =
Vdωe
4π

ρm Eq (3.19 )

where,

ṁout is air flow entering the cylinder/leaving the Manifold in kg/sec.

Vd is displaced volume (m3).

ωe is engine Speed in rad/sec.

ρm is the density air in manifold in kg/m3.
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and according to ideal gas law,

ρm =
Pm
RTm

Eq (3.20 )

The displacement volume is a fraction of manifold volume and can be expressed

as

Vd = kVm Eq (3.21 )

Thus, an ideal air flow leaving the manifold is given by Eq (3.19). The realistic

air flow leaving manifold can be modeled by incorporating volumetric efficiency

(ηvol) of engine.

Volumetric Efficiency (ηvol)

One of the most important process that governs power and performance of engine

is getting the optimum amount of air into the cylinder during each cycle. More

air means more fuel can be converted to output power. Ideally, a mass of air equal

to the density of atmospheric air times the displacement volume of the cylinder

should be ingested in each cycle. However, because of the short cycle time available

and the flow restrictions caused by air filter, intake manifold and intake valves,

less than ideal amount of air enters the cylinder. ηvol is the measurement of how

close the actual volumetric flow rate is to the theoretical volumetric flow rate.

Mathematically, it can be defined as [2],

ηvol =
ṁout(actual)

ṁout(ideal)

Eq (3.22 )

where,

ṁout(actual) is the actual air mass flow leaving the manifold.

ṁout(ideal) is the ideal air mass flow leaving the manifold.

Under normal operating conditions none of the air flows will be zero. Actual

air mass flow rate is determined experimentally and ideal air mass flow rate is

given by the speed density equation. Typically, ηvol for an engine at wide open

throttle remains steady state but it alters with the throttle body movements [2].
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The change in ηvol effects the pumping efficiency of the engine thus motivating

the need for its estimation. In the public literature various attempts have been

employed to measure the volumetric efficiency of the engine. A number of au-

thors have considered volumetric efficiency as constant term [47], [62], [56], thus

ignoring the dynamics induced by ηvol while manipulating the throttle angle. In

[2], a mathematical relationship based on displaced volume and air density for

its estimation is suggested. Recently, Muller [85] attempted to explain ηvol as a

function of inlet and exhaust manifold pressure. The author in [79] calculated the

volumetric efficiency through modeling of the valve opening and closing. Some

researchers [86] utilized parametric and non parametric techniques to measure the

ηvol through available sensors data. [80] suggested mathematical relation of ηvol for

its transient and steady state behavior that depends on engine speed, air inflow,

and various other engine parameters.

Thus, the real air mass flow entering the engine cylinder or leaving the intake

manifold can finally be given as

ṁout =
Vdωe
4π

ρmηvol Eq (3.23 )

3.2.3.5 Complete Manifold Pressure Dynamics

Finally, by replacing Eq (3.23) and Eq (3.16) in Eq (3.5), we get manifold pressure

dynamics as

Ṗm =
RTm
Vm

(CDCafAEPa

√
γ

RTa
(

2

γ + 1
)
γ+1
γ−1 (1−exp(Pm

Pa
−1))−(

kVmωe
4π

)(
Pm
RTm

ηvol))

Eq (3.24 )

3.3 Torque Generation System

The primary objective of an automotive engine is to produce mechanical power.

Its speed determines the amount of torque to be produced. The torque produced

depends on mixture and its composition in the cylinder. The mean value engine
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torque can be taken as nonlinear function of many variables i.e. fuel mass, air/fuel

ratio, engine speed, ignition or injection timing etc.

The phenomenon of torque generation from pressure has been approximated in

different way by various authors. Like in [61], the engine torque simplification

has been made on Willans Approximation, which states that simple relationship

between mean fuel pressure and mean effective pressure approximates real engine

behavior. Where mean fuel pressure is brake mean effective pressure, that an

engine with an 100% efficiency (perfect conversion of fuel thermal energy into

mechanical energy) would produce with fuel mass burnt per engine cycle. Brake

mean effective pressure is defined as the pressure that has to act on piston during

one full expansion stroke to produces the same amount of work as the real engine

does in two engine revolutions. In [79], the authors utilized the same concept of

torque generation i.e. the total pressure developed as a result of thermal energy

released by the fuel minus the pressure generated due to frictional and other losses.

[82] emphasized on components engine dynamics other than torque generation.

[87] suggested torque generation as function of air/fuel mixture, mass of EGR,

spark advance and engine speed. Similarly, [88] discussed the engine dynamics by

indicated torque and frictional torque.

Kazmi and Trimizi in [77] have formulated the torque generation model based on

Otto cycle. The Otto cycle explains the thermodynamics taking place inside four

stroke engine using Pressure Volume (PV) diagram as shown in Figure 3.5. The

mean effective pressure has been calculated using Otto cycle derivations and later

on, mean effective pressure will utilized for the calculation of generated torque.

The generated torque will be further exploited to calculate the angular engine

speed.

In mean value engine modeling, angular speed is simply calculated from the torque

produced as a consequence of pressure produced in engine cylinders. One can

define the relation of torque and engine speed as

Tb = Je
d

dt
ωe Eq (3.25 )
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Figure 3.5: Pressure Volume diagram of Otto Cycle

where,

Tb = Ti − Tf − Tp − Tl Eq (3.26 )

and,

Tb is Brake torque in Nm

Ti is Indicated torque in Nm

Tf is Frictional torque in Nm

Tp is Pumping torque in Nm

Tl is Load torque in Nm

Je is Engine inertia in kgm2

ωe is Engine angular speed in rad/sec

The angular velocity in rad/sec can be converted in revolution per seconds (RPM)

according to following relation.

Ne = ωe
60

2π
Eq (3.27 )
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where,

Ne = Engine angular speed in RPM.

Now each of the torque contributing in engine angular speed generation will be

discussed individually.

3.3.1 Indicated Torque (Ti)

The energy produced inside the combustion chamber due to air-fuel mixture burn-

ing during power stroke results in indicated torque. The resultant torque produced

exhibits conversion of chemical energy into mechanical energy without any losses.

It is a function of mean effective pressure and can be defined as

Ti =
Vd
4π
ηth.mep Eq (3.28 )

where,

mep =
Work/cycle

SweptV olume

Work/Cycle =
p3V3 − p6V6

γ − 1
− p5V5 − p4V4

γ − 1

SweptV olume = Vccr

ηth = [1− (
Vc

Vc + Vd
)γ−1]

and,

ηth is Thermal efficiency

mep is Mean effective pressure in kPa

Vc is Compressed volume in m3

cr is Compression ratio

The subscripts of p and V refer to PV diagram shown in Figure 3.5.
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Finally, indicated torque is explained as

Ti = B1ηcPm Eq (3.29 )

where

B1 = VdQηth(1−(cγ−1
r )−1)(c2−γr )((cγ−1

r )−1)
4πAFR(γ−1)(cr−1)cvTm

and

ηc is Combustion efficiency.

Q is Heat value of fuel in J/kg.

AFR is Air to fuel ratio.

cv is Specific heat at constant volume in J/m3K.

Tm is Manifold temperature in Kelvin.

The detailed derivation of the above mention expression can be found in [2].

3.3.1.1 Combustion Efficiency (ηc)

Combustion efficiency plays an important in conversion of chemical energy stored

in fuel to mechanical energy. The combustion process time is very brief and not all

the fuel molecules may find an oxygen molecule to combine. Similarly, 100% com-

bustion will not occur if the combustion chamber temperature is not favorable for

reaction. These reasons may cause incomplete combustion of fuel. Consequently,

a small amount of fuel remains unburnt and exits with the exhaust flow [2]. This

results in inefficient fuel performance and air pollution if three way catalyst is not

employed. The amount of fuel burnt can be explained by Combustion efficiency.

For SI engines, air and fuel mixtures richer than stoichiometric ratio prevents

complete combustion of fuel carbon and hydrogen due to the lack of required oxy-

gen. The combustion efficiency steadily decreases as the mixture becomes richer,

provided the engine combustion process remains stable. Mathematically, combus-

tion efficiency can be defined by the ratio of net chemical energy (Hnet) produced

during chemical reaction to the fuel energy (Hfuel) supplied in the combustion
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chamber [2].

ηc =
Hnet

Hfuel

Typically, combustion efficiency is modeled as a function of AFR [2], [89]. Most

of the time it is taken as constant value of 0.95-0.98.

3.3.2 Frictional Torque

Friction torque is mainly a function of engine speed, load and engine oil temper-

ature [90]. Friction torque losses may also change with time due to aging of the

engine components. This behavior may lead to change engine speed function in an

unpredictable fashion. In public literature, various attempts to model SI engine

friction are available. The modeling of frictional torque can be carried out as a

function of engine speed. Stotsky in [90] delivered a solution to estimate frictional

torque through a look-up table. The look-up table defines engine friction torque

as a function of engine speed and indicated torque. An empirical function based

on engine speed has been developed in [2]. The empirical expression derived in [2]

is

Tf = 11.72 + 5.69× 10−5ωe + 2.33× 10−14ω2
e Eq (3.30 )

Similarly, in [1], [79] an empirical relation has been derived for engine dynamics by

investigating friction induced by each engine component. These relations require

engine characteristics like bore diameter, bearing diameter & width, valve lift,

stroke length, oil viscosity etc. The mechanical friction losses of the rubbing

engine components can be divided into four component groups:

• Crankshaft: Main bearings, front and rear main bearing oil seals.

• Reciprocating: Piston skirts, piston rings, connecting rod bearings.

• Valve train: Camshafts, cam followers and valve actuation mechanisms.

• Auxiliary Components: Components which are running along with the en-

gine, inducing mechanical friction to the engine.
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For each of the component groups, an expression for the losses, expressed in pres-

sures, are drawn up in [1]. The frictional mean effective pressure fmep can be

taken as

fmep = cfmep+ rfmep+ vfmep+ afmep Eq (3.31 )

where,

cfmep is Crankshaft friction.

rfmep is Reciprocating friction.

vfmep is Valve train friction.

afmep is Auxiliary friction.

Finally, after incorporating the effects of the above mentioned frictional elements

formulated in [1], [79], the mathematical form of the frictional mean effective

pressure comes out to be

Tf = 5.21ω−1
e +2.00+0.46ω.5e +0.09ωe+2.33×10−14ω2

e−3.30×10−6ω3
e Eq (3.32 )

Remark 3.1. The empirical constants in Eq (3.30) and Eq (3.32) were identified

off-line using least squares methods for the engine used in experimentation. The

input to the empirical formula is engine angular speed.

3.3.2.1 Drawbacks of current techniques

It can be observed that current techniques statically model friction torque through

engine speed & indicated torque. However, engine modeling reveals that Tf is also

dependent on Pm (Ti and Tp calculation requires Pm) besides Tl & ωe. Moreover,

these methodologies require a list of engine parameters like bore diameter, oil

viscosity etc, that are not readily available to solve respective expressions.

3.3.3 Pumping Torque

The torque required by engine to perform pumping action i.e. intake and exhaust

of gas mixtures, is termed as pumping torque. Mathematically, it is developed

from pumping mean effective pressure, that is the sum of the intake and exhaust
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pressures. Based on this phenomena the expression for pumping torque comes out

to be

Tp =
Vd
4π

(Pa − Pm) Eq (3.33 )

The engine speed can now be obtained from Eq (3.25) by employing Ti, Tf and

Tp. Tl is the torque contributed by engine components like flywheel, pistons,

crankshaft etc. It can be taken constant as 30 N.m under steady state conditions

or it can be estimated as in [47], [52] and [91].

3.4 Complete Dynamics of Gasoline Engine

The pressure and angular speed dynamics based two state gasoline engine model

can be represented by the states and input given as follows; Pm

ωe

 =

 ManifoldPressure

EngineAngularSpeed

 Eq (3.34 )

α = ThrottleAngle Eq (3.35 )

Finally, the gasoline engine model can be explained as follows;

Ṗm = A1f(Pm)− A2Pmωeηvol

ω̇e =
1

Je
(B1ηcPm − Tf − Tp − Tl) Eq (3.36 )

where,

A1 =
RTm
Vm

AE(α)PaCDCafγc

A2 =
Vd

Vm4π

AE(α) = π
D2

4
.(1− cos(α + αcl

αcl
))

γc =

√
1

(R.Ta)
.

√
γ(

2

γ + 1
)
γ+1
γ−1

f(Pm) = 1− e(Pm
Pa
−1)
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B1 =
VdQηth(1− (cγ−1

r )−1)(c2−γ
r )((cγ−1

r )− 1)

4πAFR(γ − 1)(cr − 1)cvTm

Tp =
Vd
4π

(Pa − Pm)

Tf = 11.72 + 5.69× 10−5ωe + 2.33× 10−14ω2
e

Table 3.1: MVEM parameters description, nominal values and units

Symbol Description Values/Units
Pa Ambient pressure 101325Pa
Tm Manifold temperature 325K
Ta Ambient temperature 298K
αcl Throttle angle at closed position 9.8◦

D Inlet diameter 0.054m
R Specific gas constant 287J/kg.K
CD Throttle discharge coefficient 0.8
γ Ratio of heat capacities 1.4
Vd Displaced volume 0.001294m3

Vm Manifold volume 0.001127m3

ηvol Volumetric efficiency 0.7
ηc Combustion efficiency 0.9
AFR Air to fuel ratio 14.7
Je Engine inertia 0.25kg.m2

Q Heat value of fuel 44kJ/Kg
cv Heat capacity at specific volume 717J/(m3K)
cr Compression ratio 10

3.5 Simulation Results

In the first phase, the mean value engine model formulated in Eq (3.36) will be

analyzed through simulations. The values of the MVEM parameters used for

simulation are given in Table 3.1. The engine model has the input as throttle angle

and the initial load. These two inputs have been manipulated to observe the engine

behavior. The outputs of interest are engine angular speed and manifold pressure.

Figure 3.6 shows the response with constant load and variable throttle angle. It

can be observed that by increasing the throttle angle the engine angular speed

increases and the manifold pressure settles at lower values after slight transients

die out.
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Figure 3.6: Engine response with variable throttle angle and constant load

Figure 3.7: Engine response with variable load and constant throttle angle

Similarly, in Figure 3.7 the throttle angle is kept constant and load is varied with

time. One can observe that due to increase in load engine angular speed declines

and manifold pressure increases. These simulation results apparently validate the

engine behavior. Further validation will be carried on the actual of 1.3L production

vehicle engine.
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3.6 MVEM Validation

The rigorous validation of model in Eq (3.36) is carried out against a 1.3L gaso-

line engine of production vehicle. The details regarding experimental setup are

discussed in Chapter 5. The inputs and outputs of the engine were accessed by

OBD-II data scanning and logging software. The validation procedure involved

manipulation of throttle paddle several times. Extra load on engine was induced

at 300 sec as vehicle air conditioner is turned on. For the validation purpose,

the inputs to the actual engine logged by OBD-II scanner/logger were provided

to MVEM in Eq (3.36) and the logged outputs were compared with MVEM out-

puts. The response shown in Figure 3.8 depicts that 1.3L engine and model in

Eq (3.36) exhibit almost the same response with some acceptable discrepancies

due to modeling errors. These errors can be explained on the grounds of struc-

tural uncertainties like air by-pass valve. Another factor may include un-modeled

couplings between manifold pressure and rotational speed dynamics. Similarly,

temperature dynamics are assumed to be constant. Moreover, the engine parame-

ters during simulation were taken constant with nominal values found in literature

[2].

However, as MVEM remains accurate in steady state conditions with uniform

temperature, the same conditions were ensured during second validation process.

The operating temperature of the engine was around 89oC. The throttle valve

was kept constant after manipulating it at 110, 170 & 230 seconds and steady

state conditions were ensured. The off-line identified parameters of MVEM were

used to obtain the desired results. The response of MVEM and 1.3L engine to

the same inputs is shown in Figure 3.9. It can be observed that the MVEM in

Eq (3.24) and Eq (3.25) exhibits same response as actual engine in steady state

conditions. The error of pressure and angular speed dynamics remain within 5%

and 8% respectively. Thus, the verified model can be used for estimation and fault

diagnosis scheme.
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Figure 3.8: Rigorous Comparison of the MVEM Eq (3.36) and 1.3L commer-
cial engine

Figure 3.9: Validation of MVEM in Eq (3.36) with 1.3L production vehicle
engine in steady state comparison
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3.7 Conclusion

A two state mean value engine model has been formulated in this chapter. Realistic

modeling of air intake path is practiced by considering the contributing effects air

filter, throttle body and frictional torque. The intake manifold pressure dynamics

and angular speed dynamics in Eq (3.36) have been successfully validation against

a 1300cc production vehicle engine. This validated model can now be utilized in

estimation of un-measurable parameters like CD, Caf , ηvol, ηc and Tf , as these

parameters vary for different operation conditions. Furthermore, these critical

parameters can be analyzed for the health diagnosis various components in air

intake path.
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Chapter 4

GASOLINE ENGINE PARAMETER

ESTIMATION

This chapter deals with the estimation of gasoline engine parameters based on

the model given in the preceding chapter. Among various engine parameters five

critical parameters have been chosen for estimation. These parameters include:

Frictional Torque, Combustion Efficiency, Volumetric Efficiency, Throttle Body

Discharge Coefficient and Air Filter Discharge Coefficient. These parameters pro-

vide credible knowledge about engine performance and can be efficiently used for

health monitoring of gasoline engine and its various components. Along-with the

estimation scheme, a methodology for the development of virtual sensors for pres-

sure and angular speed is also discussed. These objectives have been achieved

by employing a robust Second Order Sliding Mode (SOSM) Observer based esti-

mation scheme. The super twisting based SOSM Observer operates on a highly

nonlinear two state pressure and angular speed dynamics. A successful imple-

mentation of the estimation scheme is conducted on a production vehicle engine.

Initially, the parameters have been estimated under steady state and healthy op-

erating conditions. Later on, these values can be compared with faulty operating

values to generate residuals for proficient engine condition monitoring.

4.1 Benefits of Parameter Estimation

There are certain system parameters that directly correspond to system health

status. Most of the times, these parameters are measurable by installing sensors to

sense the respective phenomena. However, in some cases it is almost impossible to

use a sensor to assess particular parameter for health diagnosis. In case of control

and diagnosis scheme development, precise values of un-measurable parameters

are required to develop an accurate mathematical model of a dynamical system.

Sometimes, it is required to create redundancy for the installed sensor in order to
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obey strict safety bylaws. These problems can be resolved by employing state-of-

art estimation techniques. The significant benefits of parameter estimation are:

• Efficient health monitoring can be done by the estimation of un-measurable

critical parameter [74].

• Instead of installing another sensor, virtual sensors can be developed to sense

a phenomena in parallel to real sensors (A cheaper solution). This reduces

dependance on a single sensor and can also help in sensor health monitoring

[92].

• As model based fault diagnosis techniques heavily depends on precise dy-

namical models, this model precision can be achieved by estimating unknown

parameters [47].

Keeping in view the various advantages of parameter estimation, there are certain

critical parameters in gasoline engine whose estimation can benefit us in number of

ways. Among various engine parameters, following parameters are selected based

on their numerous advantages, as discussed below.

4.1.1 Frictional Torque

Frictional torque has been discussed in detail in Section 3.3.2. It plays an im-

portant role in the torque based angular speed model accuracy. The available

techniques identify frictional torque based on number of readily unavailable pa-

rameters like bore diameter, bearing diameter & width, valve lift, stroke length

and oil viscosity. This motivates the need of estimating frictional torque from

readily available information. It can be seen in Eq (3.36) that we can easily iden-

tify frictional torque from the pressure sensor and angular speed measurements.

To improve fuel efficiency, frictional torque must be reduced if it is monitored

properly. Honda used Molybdenum Disulfide coated pistons, ion plating piston

rings, piston oil jets and plateau honing cylindrical walls in Intelligent Variable

Valve Timing and Electronic Control (i-VTEC) engine to reduce 10% frictional

torque as compared to conventional engines [93]. This was only possible due to

precise measurement of frictional torque.
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4.1.2 Combustion Efficiency

Combustion efficiency (ηc) plays an important role in improving engine perfor-

mance. Typically, combustion efficiency is modeled as a function of air to fuel

ratio (AFR) [2], [89], but availability of AFR remains a question unless a lambda

sensor is installed for its measurement. A cheaper solution of judging combus-

tion efficiency can be its estimation by manifold pressure and engine rotational

speed (These sensors are mandatory in every OBD-II compliant vehicle engine.).

This will also facilitate in monitoring AFR indirectly. Even in modern cars with

lambda sensors installed in the exhaust manifold to observe AFR, the estimated

combustion efficiency can serve as second indicator for AFR cross-check. More-

over, the computation of combustion efficiency can be helpful in health monitoring

of lambda sensors. Various smart concepts like spark advance, dual ignition cylin-

ders, intelligent variable valve control system to control valve timing at variable

engine speeds are used to enhance combustion efficiency. This task can only be

accomplished with the help of precise estimation of ηc.

4.1.3 Volumetric Efficiency

Volumetric efficiency (ηvol) is discussed in detail in Section 3.2.3.4. This parameter

explains the actual pumping efficiency of engine. Volumetric efficiency provides an

estimate of air being sucked inside from intake manifold and pumped into exhaust

manifold. It depends on various engine design parameters such as piston size, pis-

ton stroke, and number of cylinders and is strongly influenced by camshaft design.

An apparent advantage of estimating volumetric efficiency can be optimization of

these engine components for desired performance. Another benefit of estimating

ηvol is, it will let us know whether there is any leakage in intake manifold or any

blockade in air intake path. The leakage will result in low values of ηvol and block-

ade will result in higher values of pumping efficiency. Thus reliable engine fault

diagnosis can be ensured.
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4.1.4 Throttle Body Discharge Coefficient

Butterfly valve/throttle valve is integral part of air intake path of gasoline engine.

The actual air flow across can be modeled by estimating throttle body discharge

coefficient (CD). The estimation of throttle discharge coefficient can be helpful

in improving throttle/butterfly valve. Another benefit of estimating CD is health

monitoring of throttle valve. The decrease in values of CD will result in degraded

throttle valve performance. In conventional vehicles, throttle is normally operated

by bowden cable, however in modern electronic vehicles drive by wire throttle

mechanism is introduced. The proper functioning of both manipulating mecha-

nisms can be ensured if we can precisely estimate CD.

4.1.5 Air Filter Discharge Coefficient

Another obstruction in air flow but useful component in intake path, is air filter.

The values of air filter discharge coefficient (Caf ) is the measured air amount flow-

ing across the air filter. This coefficient can be useful in improving air filter quality

and its assembly designs. On the other hand, although air filter is manufactured

from delicate fibreous material and is well protected inside a dust proof body but

it still remains exposed to hazards of polluted environment. The air flow across air

filter decreases with the increase of clogging due to air pollutants. This clogging

phenomenon of air filter can be efficiently monitored by estimating Caf .

4.1.6 Virtual Sensors

Virtual sensors measure a phenomena through another inter-related process, thus

providing a redundancy in measurements. The sensors under consideration are:

Manifold Air Pressure (MAP) Sensor and Crankshaft Sensor. The estimation of

pressure (P̄m) from angular speed and rotational speed (ω̄e) from manifold pressure

can help us in the development of virtual sensors. Modern automotive industry

employee highly sophisticated sensors. These sensors are heavily relied upon to

ensure optimum engine performance. The development of virtual sensors can help

in creating redundancy for these sensors and health monitoring of these sensors

can be conducted efficiently.
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4.2 Pertinent Model Properties

Consider a nonlinear system,

ẋ = f(x,p, t, u)

y = g(x,p, t, u) Eq (4.1 )

where,

x ∈ <n are the system states.

p ∈ <p are the system parameters.

u ∈ <q is the input to the system.

y ∈ <l are the system outputs.

Before proceeding to the development of estimation scheme, the definition of fol-

lowing terminologies will contribute in better understanding in the coming sec-

tions.

4.2.1 Observability

Definition 4.1. The nonlinear system in Eq (4.1) is said to be observable if at any

unknown initial state x(0), there exist a finite t1 > 0 such that the knowledge of

the input u and the output y over [0, t1] suffices to determine uniquely the initial

state x(0) [94].

In differential geometry, nonlinear system in Eq (4.1) is said to be observable if

following observability matrix (JO) does not lose its rank or,

rank(JO) = rank[
∂fi
∂xj

] = n Eq (4.2 )

where, i = 1, 2, ...n and j = 1, 2, ...n [95].

If any system obeys observability criteria then one can design state observer based

on the available system outputs.
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4.2.2 Identifiability

Definition 4.2. The nonlinear system in Eq (4.1) is said to be identifiable w.r.t

p if at any unknown initial parameter p(0), there exist a finite t1 > 0 such that

the knowledge of the input u and the output y over [0, t1] suffices to determine

uniquely the initial parameter p(0).

In differential geometry, nonlinear system in Eq (4.1) is said to identifiable with

respect to p if following identifiably matrix (JI) remains full ranked or,

rank(JI) = rank[
∂fi
∂pj

] = n Eq (4.3 )

where, i = 1, 2, ...n and j = 1, 2, ...k [95].

In simple words, whether the parameters of interest are identifiable or not, this

inspection is conducted under identifiability analysis.

4.2.3 Boundedness

Definition 4.3. If for the nonlinear system in Eq (4.1), ∃ f+ and δf+ as two

positive numbers ∀ t ∈ <+ , ∀ x and u < u+ such that following relations are

satisfied.

|f(x, p, t, u)| < f+ Eq (4.4 )

|df(x, p, t, u)

dt
| < δf+ Eq (4.5 )

Then the system is termed as bounded in nature. �

Initially, the above mentioned analysis will be performed for pressure and angular

speed dynamics. The observability analysis will ensure whether SOSM Observer

can be designed for pressure/speed dynamics or not. The identifiability analysis

will confirm the whether the parameters of interest are detectable or not. Bound-

edness of pressure/speed dynamics will be useful for finite time convergence of

SOSM Observers.
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4.3 Second Order Sliding Mode Observers for

Gasoline Engine

Keeping in view the importance of afore-mentioned parameters and attributes of

SOSM Observer discussed in Section 2.2.2.4, these parameters can be estimated

by super twisting algorithm based SOSM Observer. Figure 2.12 explains SOSM

Observer functioning and Figure 4.1 outlines the proposed estimation strategy for

gasoline engine pressure and angular speed dynamics. The measurements from

engine will serve as inputs to the designed observer and the resultant correcting

injectors of these SOSM Observers will deliver us un-measurable parameters.

The SOSM Observer based estimation scheme is not only computationally cheap

but also has the potential for online implementation as it involves ‘sample by

sample’ processing of the data acquired from OBD-II scanner (See Chapter 5

Figure 4.1: Proposed second order sliding mode observer based estimation
strategy for gasoline engine parameters.
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for further details on OBD-II). Unlike other estimation schemes (Line Search,

Levenberg Marquardt, Powells Dog Leg), that require a batch of samples for curve

fitting to develop empirical relations [96]. Moreover, the suggested scheme remains

valid for the production line spread of a single make, as it does not involve curve

fitting. �

Now we will analyze the pressure and angular speed dynamics in detail and then

design SOSM Observer for both dynamics. Once the observers are running is sec-

ond order sliding modes the respective error dynamics will be explored to estimate

afore-mentioned parameters.

4.4 Intake Manifold Pressure Dynamics

Consider the following states x, outputs y and input u, as defined in the context

of an engine. (See List of Symbols for symbols description.)

x =

 x1

x2

 =


x1

x2

x3

x4

 =


Pm

Ṗm

ωe

ω̇e

 Eq (4.6 )

y =

 x1

x3

 =

 Pm

ωe

 Eq (4.7 )

u = α Eq (4.8 )

Based on above defined states, output and input, the validated pressure dynamics

in Eq (3.36) can be written as,

ẋ1 = x2 = A1.f(x1)− A2x1x3ηvol = g1(x, t, u) Eq (4.9 )

Taking time derivative of x2, we get ẋ2 as

ẋ2 =
A1

Pa
(e−(

x1
Pa
−1))ẋ1 − A2ηvol(ẋ1x3 + x1ẋ3) Eq (4.10 )
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By replacing pressure and angular speed dynamics (See Eq (3.36)) in Eq (4.10)

and simplifying, we get

ẋ2 = A7ηvol
2 − (A5 + A6 + A8)ηvol + A4 = g2(x, t, u) Eq (4.11 )

where,

A1 =
RTm
Vm

AEPaCDCafγc Eq (4.12 )

A2 =
Vd

Vm4π
Eq (4.13 )

A3 = A1
1

Pa
(−e(

x1
Pa
−1)) Eq (4.14 )

A4 = A1A3f(x1) Eq (4.15 )

A5 = A3A2x1x3 Eq (4.16 )

A6 = A2A1f(x1)x3 Eq (4.17 )

A7 = (A2x3)2x1 Eq (4.18 )

A8 = A2x4x1 Eq (4.19 )

γc =

√
1

RTa

√
γ(

2

γ + 1
)
γ+1
γ−1 Eq (4.20 )

f(x1) = (1− e(
x1
Pa
−1)) Eq (4.21 )

AE = π
D2

4
(1− cos(α + αcl

αcl
)) Eq (4.22 )

Now these dynamics will be analyzed for

• Observability

• Identifiability

• Boundedness

These analysis will evaluate the eligibility of the pressure dynamics to be used for

estimation purpose.
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4.4.1 Observability Analysis

For the gasoline engine pressure dynamics in Eq (4.9) and Eq (4.11) the observ-

ability matrix (JO) in Eq (4.2) can be written as,

JO =

 ∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

 =

A3 − A2x3ηvol 0

∂g2
∂x1

A3 − A2x3ηvol

 Eq (4.23 )

where, ∂g2
∂x1

= 1
Pa
A3x2 − A2(A3 − A2x2ηvol) + A2x4ηvol + A2x1

∂x4

∂x1
.

or

JO =

−3.5686 0

∂g2
∂x1

−3.5686

 Eq (4.24 )

The SOSM Observer will be implemented under steady state and idle operating

conditions, when engine angular speed is around 80 rad/sec and manifold pressure

is around 30 Nm. Under such conditions, JO for air intake pressure manifold

remains full ranked (rank(JO) = 2 = n) as |JO| is not equal to zero (See Eq (4.25)).

|JO| = 12.7352− 0 6= 0 Eq (4.25 )

Hence, SOSM Observer can be designed for intake manifold pressure dynamics, as

these dynamics are observable in nature.

4.4.2 Identifiability Analysis

The outlined parameters i.e. throttle discharge coefficient, air filter discharge

coefficient and volumetric efficiency can be comfortably estimated by manifold

pressure dynamics along with the development of virtual sensor for speed. In order

to avoid complicated calculations, a comprehensive and straightforward solution

can be adopted if we estimate volumetric efficiency (ηvol) from Eq (4.11) and

all other parameters from Eq (4.9) one by one. The parameters other than to

be identified can be taken as of constant values estimated earlier. This can be
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confirmed by following identifiability analysis of pressure dynamics with respect

to parameters of interest.

4.4.2.1 Volumetric efficiency and Throttle Discharge Coefficient

The identifiability analysis of pressure dynamics in g1(x, t, u) and g2(x, t, u) with

respect to ηvol and CD results in following matrix.

JI =

 ∂g1
∂CD

∂g1
∂ηvol

∂g2
∂CD

∂g2
∂ηvol

 =

 A9

f(x1)
−A2x1x3

∂g2
∂CD

2A7ηvol − (A5 + A6 + A8)

 Eq (4.26 )

where,

∂g2

∂CD
=

A9

f(x1)
[− 1

Pa
A2x1x3e

(
x1
Pa
−1) + A2f(x1)x3]

A9 =
RTm
Vm

AECaf (α)Paγcf(x1)

or

JI =

 1.3677× 106 2.1929× 105

−1.4641× 106 −2.4078× 106

 Eq (4.27 )

During steady state and idle operations of gasoline engine, the above identifiability

matrix remains full ranked as seen in Eq (4.28).

|JI | = −2.1922× 1012 − (−3.2106× 1011) 6= 0 Eq (4.28 )

Hence, it can be concluded that the parameters CD and ηvol can be estimated/i-

dentified from pressure dynamics.

4.4.2.2 Volumetric Efficiency and Air Filter Discharge Coefficient

The identifiability matrix in Eq (4.3) for pressure dynamics with respect to ηvol

and Caf comes out as follows,

JI =

 ∂g1
∂Caf

∂g1
∂ηvol

∂g2
∂Caf

∂g2
∂ηvol

 =

 A10

f(x1)
−A2x1x3

∂g2
∂Caf

2A7ηvol − (A5 + A6 + A8)

 Eq (4.29 )

74



where,

∂g2

∂Caf
=

A10

f(x1)
[− 1

Pa
A2x1x3e

(
x1
Pa
−1) + A2f(x1)x3] Eq (4.30 )

A10 =
RTm
Vm

AECD(α)Paγcf(x1) Eq (4.31 )

or

JI =

 1.3677× 106 2.1929× 105

−5.8563× 105 −2.4078× 106

 Eq (4.32 )

It can be observed that under steady state and idle operating conditions of gasoline

engine, the above matrix does not lose its rank (See Eq (4.33)) and hence Caf turn

out as identifiable variable along with ηvol.

|JI | = −2.1922× 1012 − (−1.2842× 1011) 6= 0 Eq (4.33 )

4.4.2.3 Volumetric Efficiency and Engine Angular Speed

The third pair of parameters i.e (ηvol, ω̄e) that can be estimated from pressure

dynamics results in following identifiability matrix,

JI =

 ∂g1
∂ω̄e

∂g1
∂ηvol

∂g2
∂ω̄e

∂g2
∂ηvol

 =

−A2ηvolx1 −A2x1x3

∂g2
ω̄e

2A7ηvol − (A5 + A6 + A8)

 Eq (4.34 )

where,

∂g2

ω̄e
= η2

volx12(A2x3)− ηvol(A3A2x1 + A2A1f(x1) + A2x1
∂x4

x̄3

)

or

JI =

−1.3705× 103 −2.1929× 105

8.4577× 104 −2.4078× 106

 Eq (4.35 )

|JI | = 3.3× 109 − (−1.85× 1010) 6= 0 Eq (4.36 )
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It can be observed that under steady state and idle conditions, the resultant JI in

Eq (4.34) does not lose its rank as it can be seen in Eq (4.36). Hence, the above

analysis certifies that ηvol can be estimated and sensor redundancy can be created

by designing virtual sensor for the measurement of engine angular speed. �

Based on the above identifiability analysis, the inlet manifold pressure dynamics

can be written as:

ẋ1 = x2

ẋ2 = f1(x, t, u) + ξ1(x, t, u) Eq (4.37 )

where, the initially known nonlinear dynamics of pressure manifold are:

f1(x, t, u) = A4 Eq (4.38 )

and the dynamics to be estimated are:

ξ1(x, t, u) = A7ηvol
2 − (A5 + A6 + A8)ηvol Eq (4.39 )

4.4.3 Boundedness Analysis

An Engine Control Unit (ECU) equipped gasoline engine is operating under bounded

input (α < 90◦), the pressure dynamics will always remain bounded. This charac-

terizes the system as Bounded Input and Bounded Output (BIBO) system. There-

fore, the uncertain function ξ1(x, t, u) defined in Eq (4.39) and its time derivative

will always remain bounded by positive numbers ξ+
1 and δξ+

1 respectively. The

boundedness of the pressure dynamics will help to ensure convergence of the de-

signed SOSM Observer.
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4.4.4 SOSM Observer for Manifold Pressure Dynamics

After analyzing the pressure dynamics in detail, an observer based on [97] is pro-

posed to estimate of the state vector x1 and extract unknown variables.

˙̂x1 = x̂2 + z1

˙̂x2 = f1(x̂, t, u) + z2

ŷ1 = x̂1 Eq (4.40 )

where x̂1 represents the corresponding observer states and z1, z2 are the observer

injectors based on super twisting algorithm. These injectors aim to eliminate the

error between the estimated states and the actual states i.e. (e1 = x1 − x̂1) &

(e2 = x2 − x̂2). These injectors are defined as,

z1 = λ1|e1|1/2sign(e1) + υ1

υ̇1 = α1sign(e1) Eq (4.41 )

and

z2 = 0 if e1 6= 0 & ė1 6= 0

z2 = λ2|z1|1/2sign(z1) + υ2 if e1 = 0 & ė1 = 0

υ̇2 = α2sign(z1) Eq (4.42 )

The state x1 is available for measurement from the sensor installed in the engine

inlet manifold. The gains λ1, α1 are the observer gains. The above second order

sliding mode observer inherits anti-peaking structure, where e1 and e2 reach the

sliding manifold one by one in a recursive fashion [97].

77



4.4.4.1 Convergence and Error Dynamics Analysis

The error dynamics before converging to the surface i.e. e1 = 0 comes out to be

ė1 = e2 − z1

ė2 = F1(x, x̂, t, u) Eq (4.43 )

where

F1(x, x̂, t, u) = f1(x, t, u)− f1(x̂, t, u) + ξ1(x, t, u)

In order to analyze the convergence of the proposed observer in Eq (4.40) for inlet

pressure manifold, ∃ α < 90◦, ∀ t ∈ <+ and ∀ x1 ∃ k1 and k2, such that Assumption

1 is satisfied.

Assumption 1. There exist two positive constants k1 and k2 such that

|f1(x1, x2, t, u)| − |f1(x̂1, x̂2, t, u)| ≤ k1|e1|
d|f1(x1, x2, t, u)| − |f1(x̂1, x̂2, t, u)|

dt
≤ k2|e2| Eq (4.44 )

Based on BIBO behavior of pressure dynamics (See Section 4.4.3) and Assumption

1, ∀ t ∈ <+, ∀ x1, x̂1, u we have

|F1(x, x̂, t, u)| < k1|e1|+ ξ+
1 Eq (4.45 )

d|F1(x, x̂, t, u)|
dt

< k2|e2|+ δξ+
1 Eq (4.46 )

Theorem 4.4. If the condition Eq (4.45) holds for inlet manifold pressure dynamics

in Eq (4.38), and the parameters of the proposed observer in Eq (4.40) are selected

according to following criteria [97]:

α1 >
√
k1ė1o + ξ+

1

λ1 >
4α1√
α1 − ξ+

1

Eq (4.47 )

Then x̂1 will converge to x1 in finite time.
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Remark 4.5. The choice of α1 and λ1 depends on the uncertainty bound and the

initial state estimation error (ė1o) in the worst case. As F1(.) is bounded for

engine pressure dynamics, therefore sufficiently large values of α1 is chosen to

satisfy Eq (4.47).

The constants k1 and k2 can be chosen as explained in convergence proof given by

[97].

When e1 converges to sliding manifold, the dynamics of e2 becomes

ė2 = F1(x, x̂, t, u)− z2 Eq (4.48 )

The constants α2, λ2 in z2 can be chosen in a similar way as discussed for α1, λ1

in z1 and convergence of e2 will be ensured in similar fashion.

After the second order sliding mode has been achieved, the term e1 approaches to

zero.

ė1 = e2 − z̄1 Eq (4.49 )

0 = e2 − z̄1 Eq (4.50 )

When e1 approaches to zero, ė1 also vanishes and from Eq (4.43) we are left with,

z̄1 = x2 − x̂2 Eq (4.51 )

where

x2 = A9CD − A2ηvolx1x3 Eq (4.52 )

or

z̄1 = A9CD − A2ηvolx1x3 − x̂2 Eq (4.53 )
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As the convergence of e1 is achieved, the convergence of e2 is also guaranteed.

Under convergence i.e. e2 = 0 and ė2 = 0 the following sliding mode dynamics

from Eq (4.48) will be available.

ė2 = F1(x, x̂, t, u)− z̄2 Eq (4.54 )

or

0 = ξ1(x, t, u)− z̄2 Eq (4.55 )

or

z̄2 = ξ1(x, t, u) Eq (4.56 )

where,

ξ1(x, t, u) = A7ηvol
2 − (A5 + A6 + A8)ηvol Eq (4.57 )

or

z̄2 = A7ηvol
2 − (A5 + A6 + A8)ηvol Eq (4.58 )

Remark 4.6. It may be kept in mind that z̄1 and z̄2 are the low pass filtered

versions of switching functions z1 and z2 respectively. These first order low pass

filters are employed to cater for switching of discontinuous injectors in estimation

results. The time constant of low pass filters can be chosen as 0.2 seconds for

reduced phase lags.

4.4.4.2 Estimation of Parameters from Pressure Dynamics

4.4.4.2.1 Estimation of ηvol and CD: It can be observed that the only un-

known in Eq (4.58) is ηvol, that can be calculated as in Eq (4.59).

ηvol =
(A5 + A6 + A8)±

√
(A5 + A6 + A8)2 + 4A7z̄2

A7

Eq (4.59 )
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Once ηvol has been estimated it can lead to computation of CD from Eq (4.53) as

follows [50].

CD =
(z̄1 + x̂2 + A2ηvolx1x3)

A9

Eq (4.60 )

4.4.4.2.2 Estimation of Caf : Similarly, Caf can be estimated as follows along

with the estimation of ηvol by Eq (4.59).

Caf =
(z̄1 + x̂2 + A2ηvolx1ωe)

A10

Eq (4.61 )

For the estimation of Caf , CD is taken as constant value. The constant value can

be taken as found during the evaluation of estimation process for the first pair

(ηvol, CD).

4.4.4.2.3 Identification of ω̄e: The third pair of parameters to be estimated

is (ηvol, ω̄e). ηvol can be estimated again by Eq (4.59) and ω̄e can be calculated as

follows.

x̄3 = ω̄e =
1

ηvolA2x1

(A9 − (z̄1 + x̂2)) Eq (4.62 )

We can also say that Eq (4.62) provides us sensor redundancy by facilitating with

virtual rotational speed sensor [92].

The Ai in above equations are defined in Eq (4.12) - Eq (4.22). The estimation

of ηvol involves an initial value to calculate CD/Caf/ω̄e, but later on the value of

CD/Caf/ω̄e is updated with estimated value from Eq (4.60)/Eq (4.61)/ Eq (4.62).

The recursive estimation of parameters involves iterative calculations. For the

calculation of CD/Caf/ω̄e, ηvol is replaced in Eq (4.60)/Eq (4.61)/Eq (4.62) by

Eq (4.59) and vice versa. The new value of CD/Caf/ω̄e can be updated as:

CD/Caf/ω̄e(k + 1)= ε.CD/Caf/ω̄e(k), where |ε| < 1 is guaranteed for manifold

pressure dynamics. Hence, the convergence and stability of CD/Caf/ω̄e estima-

tion is ensured.
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Remark 4.7. Eq (4.58) will have two solutions for ηvol in general; however we will

not be interested in negative values as they have no physical significance.

4.5 Engine Angular Speed Dynamics

Now we will proceed with the analysis of engine angular speed dynamics. Based

on states, output and input defined in Eq (4.6), these dynamics given in Eq (3.36)

can be written as,

ẋ3 = x4 =
1

Je
(B1x1 − Tf − Tp − Tl) = g3(x, t, u) Eq (4.63 )

Similarly, by taking the derivative of x4, higher order angular speed dynamics can

be written as,

ẋ4 =
1

Je
(ηcB1x2 +

Vd
4π
x2 − Ṫf − Ṫl) = g4(x, t, u) Eq (4.64 )

where Tf and Tl can be taken as exogenous inputs and their derivatives can be

ignored due to unavailability of required information.

Before we proceed with the development of estimation scheme, the observability,

identifiability and boundedness analysis will be performed on above angular speed

dynamics. These analysis will reveal whether we can design SOSM Observer based

parameter estimation scheme for speed dynamics or not.

4.5.1 Observability Analysis

For the above defined angular speed dynamics, the observability matrix in Eq (4.2)

can be derived as,

JO =

 ∂g3
∂x3

∂g3
∂x4

∂g4
∂x3

∂g4
∂x4

 =

−5.69× 10−5 − 4.66× 10−14x3 0

∂g4
∂x3

−5.69× 10−5 − 4.66× 10−14x4


Eq (4.65 )
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or

JO =

−5.69× 10−5 0

∂g4
∂x3

−5.69× 10−5

 Eq (4.66 )

Under steady state and idle operating conditions of gasoline engine, JO for angular

speed dynamics remains full ranked (rank(JO) = 2 = n) as |JO| is not equal to

zero (See Eq (4.67)).

|JO| = 3.2376× 10−9 − 0 6= 0 Eq (4.67 )

Hence, a SOSM Observer can be formulated for angular speed dynamics, as these

dynamics are observable in nature.

4.5.2 Identifiability Analysis

The parameters outlined earlier i.e. combustion efficiency (ηc) and frictional torque

(Tf ) can be efficiently estimated using angular speed dynamics. Similarly, these

dynamics provide solid ground to develop virtual sensor for manifold pressure

measurement (P̄m). A systematic estimation procedure can be outlined if we esti-

mate ηc from Eq (4.64) and other entities (Tf , P̄m) from Eq (4.63). This practice

can provide us simpler mathematical calculations along with better understand-

ing. The estimation/identification of these parameters can be ensured by following

identifiability analysis.

4.5.2.1 Combustion Efficiency and Frictional Torque

For angular speed dynamics, the identifiability matrix (JI) in Eq (4.3) with respect

to ηc and Tf comes out as

JI =

∂g3
∂ηc

∂g3
∂Tf

∂g4
∂ηc

∂g4
∂Tf

 =

 1
Je

(B1x1) 1
Je

1
Je

(B1x2) 0

 Eq (4.68 )

or

JI =

2.3480× 103 4

5.3839× 104 0

 Eq (4.69 )
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Under steady state and idle operating conditions, when the manifold pressure is

around 30 kPa and angular speed is around 80 rad/sec, ηc and Tf remain identi-

fiable as the matrix in Eq (4.68) does not lose its rank (See Eq (4.70)).

|JI | = 2.1536× 105 − (0) 6= 0 Eq (4.70 )

Hence, the pair of frictional torque and combustion efficiency remain identifiable

from angular speed dynamics.

4.5.2.2 Combustion Efficiency and Manifold Pressure

With respect to ηc and P̄m, for the angular speed dynamics in Eq (4.63) and

Eq (4.64), the identifiability matrix in Eq (4.3) is given as follows.

JI =

∂g3
∂ηc

∂g3
∂P̄m

∂g4
∂ηc

∂g4
∂P̄m

 =

 1
Je

(B1x1) 1
Je

(ηcB1 + Vd
4π

(Pa))

1
Je

(B1x2) 1
Je

(ηcB1 + Vd
4π

(Pa))[A1A3 − A2x3ηvol]

 Eq (4.71 )

or

JI =

2.3480× 103 411.9476

5.3839× 104 2.0354× 103

 Eq (4.72 )

Under steady state and idle operating conditions, the mentioned parameters re-

main identifiable as Eq (4.71) does not loose its rank (See Eq (4.73)).

|JI | = 4.77× 106 − (2.2179× 107) 6= 0 Eq (4.73 )

Hence it can be concluded that ηc remains identifiable from engine angular speed

dynamics along with the development of virtual sensor (P̄m) for manifold pressure

measurement. �

After analyzing the speed engine rotational dynamics in detail analysis, these

dynamics can be written as:

ẋ3 = x4

ẋ4 = f2(x, t, u) + ξ2(x, t, u) Eq (4.74 )
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where, the initially known linear rotational dynamics are:

f2(x, t, u) = B2 Eq (4.75 )

where,

B2 =
1

Je
(
Vd
4π
x2)− Ṫl

and the dynamics to be estimated are:

ξ2(x, t, u) =
1

Je
(ηcB1x2) Eq (4.76 )

4.5.3 Boundedness Analysis

As ECU equipped gasoline engine is operating under closed loop and bounded

input (α < 90◦), the angular speed dynamics will always remain bounded. This

characterizes the system as Bounded Input and Bounded Output (BIBO) sys-

tem. Therefore, the uncertain function ξ2(x, t, u) defined in Eq (4.76) and its time

derivative will always remained bounded by positive numbers ξ+
2 and δξ+

2 respec-

tively (See Definition 4.3). The bounded nature of rotational speed will guarantee

the convergence of SOSM Observer in future.

4.5.4 SOSM Observer for Engine Rotational Dynamics

After analyzing angular speed dynamics in detail, a similar observer can be de-

fined as follows in order to estimate x2 and extract unknown variables from these

dynamics.

˙̂x3 = x̂4 + z3

˙̂x4 = f2(x̂, t, u) + z4

ŷ2 = x̂3 Eq (4.77 )

where x̂2 represents the observer states and z3, z4 are the observer injectors. These

injectors can be calculated with the same methodology, that was followed to design
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z1 and z2 in Eq (4.41) and Eq (4.42). The aim of these injectors is to eliminate

the error defined as (e3 = x3 − x̂3) & (e4 = x4 − x̂4). The state x3 is available

for measurement from the sensor installed inside the engine housing that can be

accessed from OBD II kit. The above second order sliding mode observer inherits

anti-peaking structure, where e3 and e4 reach the sliding manifold one by one in

a recursive way [97].

4.5.4.1 Convergence and Error Dynamics Analysis

The states and parameters involved in ECU controlled engine angular speed dy-

namics are bounded in nature as discussed in Section 4.5.3. Similarly, k1 and k2

for angular dynamics can be calculated to satisfy Assumption 1 and Theorem 4.4

holds for angular speed dynamics. Thus, the convergence of designed observer is

also ensured [97].

The error dynamics before converging to the surface i.e. e3 = 0 comes out to be

ė3 = e4 − z3 Eq (4.78 )

ė4 = F2(x, x̂, t, u) Eq (4.79 )

where

F2(x, x̂, t, u) = f2(x, t, u)− f2(x̂, t, u) + ξ2(x, t, u)

The observer gains pair (α3, λ3) and (α4, λ4) can be chosen with the same proce-

dure defined in Eq (4.47). As the convergence of e3 is achieved, the dynamics of

e4 before converging to sliding manifold comes out to be

ė4 = F2(x, x̂, t, u)− z4 Eq (4.80 )

After the second order sliding mode has been achieved, we are left with e3 = 0

and ė3 = 0.

ė3 = e4 − z̄3 Eq (4.81 )
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or

0 = e4 − z̄3 Eq (4.82 )

or

z̄3 = x4 − x̂4 Eq (4.83 )

where

x4 =
1

Je
((x1B1ηc)− Tf − Tp − Tl) Eq (4.84 )

From above, the dynamics during second order sliding mode can be written as,

z̄3 =
1

Je
((x1B1ηc)− Tf − Tp − Tl)− x̂4 Eq (4.85 )

As the convergence of e3 is achieved, the convergence of e4 is also guaranteed.

Under convergence of e4 the following sliding mode dynamics from Eq (4.80) will

be available.

ė4 = F2(t,x, x̂, u)− z̄4 Eq (4.86 )

or,

0 = ξ2(t,x, x̂, u)− z̄4 Eq (4.87 )

where,

ξ2(t,x, x̂, u) =
1

Je
(ηcB1x2) Eq (4.88 )

or,

z̄4 =
1

Je
(ηcB1x2) Eq (4.89 )
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4.5.4.2 Estimation of Parameters from Speed Dynamics

4.5.4.2.1 Estimation of ηc and Tf : The first pair of parameters to be es-

timated from engine speed dynamics is (ηc, Tf ). It can be observed that the

only unknown in Eq (4.89) is engine combustion efficiency (ηc), it can be easily

calculated as follows [76].

ηc =
z̄4Je
B1x2

Eq (4.90 )

Once ηc has been estimated it can lead to the identification of Tf from Eq (4.85)

as,

Tf = −Je(z̄3 + x̂4) + (x1B1ηc)− Tp − Tl Eq (4.91 )

4.5.4.2.2 Estimation of ηc and P̄m: The second pair of parameters to esti-

mated from engine angular speed dynamics is (ηc, P̄m). ηc can be estimated by

Eq (4.90) and then supplied to Eq (4.85) for the development of virtual sensor for

manifold pressure P̄m. The respective virtual sensor is given below [92],

x̄1 = P̄m =
1

B3

(Je(x̂4 + z̄3) +B4) Eq (4.92 )

where,

B4 =
VdPa
4π

+ Tl Eq (4.93 )

4.6 Experimental Evaluation of Estimation Scheme

The estimation method formulated in the previous sections was tested and im-

plemented for computing parameters of a 1.3L production vehicle gasoline engine.

The details of the experimental setup are discussed in Chapter 5. It was asserted

in the previous sections that pressure dynamics were used to develop three in-

dependent SOSM Observer based estimation schemes for the following pairs of

parameters.
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• CD and ηvol

• Caf and ηvol

• ω̄e and ηvol

Similarly, the angular speed dynamics were used to develop two independent

SOSM Observer based identification schemes for the following pairs of parame-

ters.

• TF and ηc

• P̄m and ηc

By independent estimation schemes, it is meant that for each pair of parameters

an independent SOSM observer based estimation scheme will execute to deliver

results. The evaluation of each SOSM Observer based estimation scheme will

be conducted against an independent set of experimental data. A systematic

procedure was outlined to estimate the above mentioned parameters. The outlined

steps are

1. Data will be acquired from gasoline engine and will be supplied to SOSM

Observer.

2. SOSM Observer gains will be selected to ensure its convergence.

3. After convergence, the observer injectors will be used to estimate desired

parameters.

The experiment was conducted under steady state and idle condition. Steady

state condition means that the throttle valve was kept constant through out the

experiment. Idle condition means that the experiment was performed in neutral

gear. This scheme allows to estimate nominal values of the mentioned parameters.

In future work, this practice can help to identify normal and faulty behavior of

the engine under controlled environment. As, any deviation from nominal values

will help in the identification of faults.
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Figure 4.2: Measurements of α, Tl, Pm and ωe taken from OBD-II scan-
ner/logger for the estimation scheme.

4.6.1 Throttle Discharge Coefficient and Volumetric Effi-

ciency Estimation Results

In the first step, the input data required for SOSM Observers was acquired from

engine via OBD-II kit as shown in Figure 4.2. It can be observed that under steady

state conditions, throttle value remained at 8.8o. The nominal load on engine is

contributed by: rotating engine components mass i.e. crank shaft, fly wheel and

power train components engaged. As no extra load was induced, load torque

remained around 29-30 Nm. With these inputs to the engine, the pressure and

rotational speed can be visualized under steady state conditions too. The slight

drop in engine speed at 65 seconds was due to introduction of minor disturbance

in air intake path. It can be observed that the measurements are corrupted with

acquisition noise and engine behavior even in steady state conditions. The same

trends will be observed in the estimation results.

The data set (Figure 4.2) acquired from OBD-II kit serves as input for proposed

estimation scheme. SOSM Observer based on pressure dynamics convergence was

achieved, in the first phase. The initial conditions and SOSM Observer parameters
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Figure 4.3: The convergence of robust SOSM Observers to 1.3L engine pres-
sure and angular speed dynamics.

were chosen as given in Table 4.1. These observer parameters were tuned according

to Theorem 4.4 by following Remark 4.5 to acquire desired results. The first result

in Figure 4.3 shows the 1.3L engine & SOSM observer output and the convergence

error. It can be seen that throughout the experiment, SOSM observer efficiently

tracked the actual values of pressure and speed. The tracking error remained near

to zero almost.

Remark 4.8. The robustness of the observer can be visualized after t=65s in Fig-

ure 4.3. Even with variations in engine behavior, the designed observer tracked

the engine outputs efficiently.

Table 4.1: SOSM Observer parameters for CD and ηvol estimation.

Parameter Value
x̂1(0) 30 kPa
x̂2(0) 0
α1 1.5
λ1 1.6
α2 20
λ2 160
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Figure 4.4: Estimated volumetric efficiency, throttle discharge coefficient and
Combustion efficiency.

Once the observer was successfully running in second order sliding modes, the

computed injection signals were used for parameter estimation. The observer in

Eq (4.40) for pressure dynamics was used to estimate ηvol and CD. In the first

phase, ηvol was computed through the injector z̄2 as shown in Eq (4.59). The

estimated ηvol was then fed back in Eq (4.60) to compute CD.

First two results in Figure 4.4 shows the filtered version of estimated values of ηvol

and CD under steady state conditions. It can be seen that ηvol converged in 0.6

seconds after second order sliding mode was achieved and any change afterwards

was adopted in fraction of seconds. This convergence delay of 0.6 seconds was due

to reachability phase and will not induce any unwanted issues for its application

in fault diagnosis strategies. The estimated value of ηvol corresponds to true value

that is between .75 and .90, as discussed in [2]. Similarly, CD converged to the

value of 0.4− 0.5 which corresponds to its true value as claimed in [47], [52].
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4.6.2 Frictional Torque and Combustion Efficiency Esti-

mation Results

The second observer in Eq (4.77) designed for rotational speed dynamics was

utilized to estimate ηc and Tf . The same data as shown in Figure 4.2 was supplied

for estimation purpose. The convergence of SOSM Observer for angular speed

dynamics can be seen in second result of Figure 4.3. The initial conditions and

SOSM Observer parameters were chosen as given in Table 4.2 and were tuned as

discussed for preceding estimation results. ηc was calculated by using uncertainty

estimated in z̄4 by Eq (4.90). The estimated ηc was then used for the calculation

of Tf through Eq (4.91).

The last result in Figure 4.4 shows the filtered version of estimated values of ηc

under steady state conditions. Under normal combustion process, the estimated

combustion efficiency ηc converges to the value of 0.95. This value strengthens

the claim that under normal combustion process combustion efficiency remained

between 0.95− 0.98 [2], [89]. The variations shown in zoomed view in Figure 4.4

are due to measurement noise and engine response as shown in Figure 4.2.

Figure 4.5 demonstrates frictional torques calculated from the expressions found

in [1], [2] and estimated by the proposed SOSM Observer. The first result in

Figure 4.5, corresponds to frictional torque calculated by TF = 5.21ω−1
e + 2.00 +

0.46ω.5e + 0.09ωe + 2.33 × 10−14ω2
e − 3.30 × 10−6ω3

e [1]. The constants in the ex-

pression were identified off-line using least squares methods and are dependent

on lubricant viscosity, piston assembly friction, reciprocating crankshaft and valve

train motion. The mentioned final expression requires engine angular speed as

Table 4.2: SOSM Observer parameters for ηc and Tf estimation.

Parameter Value
x̂3(0) 93 rad/sec
x̂4(0) 0
α3 2
λ3 19.6
α4 10
λ4 1700
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Figure 4.5: Frictional torque calculated by [1], [2] and estimated by Eq (4.91),
respectively.

input. The second result is of the empirical expression derived in [2], TF =

11.72 + 5.69 × 10−5ωe + 2.33 × 10−14ω2
e . The empirical constants were identi-

fied off-line using least squares methods for the engine used in experimentation.

The input to the empirical formula is again engine angular speed. The third result

is of Tf estimated by SOSM observer using Pm and ωe. It can be inferred that the

magnitude and trend of the proposed estimator for frictional torque correspond

to results produced by expressions found in literature [1] and [2]. The slight dif-

ference is due to the fact that first two techniques consider ωe as input and the

proposed technique takes Pm, ωe and Tl as input. The variations in estimation

results are due to engine response and measurement noise as shown in Figure 4.2.

The similar variations are also observed in estimated parameters in Figure 4.4.

4.6.3 Air Filter Discharge Coefficient and Volumetric Ef-

ficiency Estimation Results

Another experiment was conducted to estimated air filter discharge coefficient

(Caf ) along with gasoline engine volumetric efficiency (ηvol) from manifold pressure

dynamics. The same set of measurements were taken from the same gasoline
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Figure 4.6: Input data acquired from OBD-II Scanner/Logger for Caf esti-
mation.

engine as shown in Figure 4.6. However, the throttle angle was kept at 18o and

the experiment was conducted in neutral gear. The loads on the engine were

increased at 88 seconds by turning on air conditioner, fan, lights and scree vipers.

Clean air filter was used for experimentation. The respective measurements of α,

Pm, ωe and Tl were acquired from OBD-II kit and supplied to estimation scheme.

In the second phase of estimation scheme evaluation, convergence of SOSM Ob-

server designed in Eq (4.40) was achieved. The initial conditions and SOSM Ob-

server parameters were taken as given in Table 5.2. It can be observed in first

Table 4.3: SOSM Observer parameters for Caf estimation.

Parameter Value
x̂1(0) 25 kPa
x̂2(0) 0
α1 10
λ1 40
α2 10
λ2 190
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Figure 4.7: SOSM Observer convergence and estimated results of Caf and
ηvol.

result of Figure 4.7 that the SOSM Observer successfully tracked the intake mani-

fold pressure through out the experiment. Once the convergence has been achieved,

Eq (4.59) and Eq (4.61) were employed to estimate volumetric efficiency and air

filter discharge coefficient respectively. Second and third results in Figure 4.7

demonstrate the estimated values of Caf and ηvol respectively. For healthy/clean

air filter the value of Caf converges to 0.8 with in one second and ηvol efficiency

converges to 0.75 which corresponds to the previous estimated values.

4.6.4 Virtual Sensors for Angular Speed and Manifold Pres-

sure Measurement

Another important outcome of the proposed methodology is the redundancy of

the sensors installed in gasoline. These sensors include: manifold pressure and

crankshaft sensor. This redundancy is achieved by designing virtual sensors. In

this experiment, measurements from pressure sensor were used to develop virtual

sensor/estimator for angular speed using Eq (4.62). Similarly crankshaft sensor

measurements were used to build virtual sensor/estimator for manifold pressure

sensor by employing Eq (4.92).
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Figure 4.8: Input data acquired from OBD-II Scanner/Logger for proposed
virtual sensors evaluation.

In the first phase of experimental evaluation, the sensors measurements were ac-

quired from OBD-II kit as shown in Figure 4.8. The acquired data was supplied

to the SOSM observer in Eq (4.40) to estimate angular speed from pressure dy-

namics. Similarly, the same data was supplied to SOSM Observer in Eq (4.77) for

the estimation of manifold pressure from engine angular speed. The convergence

of both designed observers for angular speed and manifold pressure estimation

is shown in Figure 4.9. The initial conditions and injector parameters for the

designed SOSM Observers are given in Table 4.4 and Table 4.5.

Table 4.4: SOSM Observer parameters for ωe virtual sensor.

Parameter Value
x̂1(0) 30 kPa
x̂2(0) 0
α1 200
λ1 18
α2 550
λ2 1527
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Figure 4.9: SOSM observers convergence for virtual sensor experiments.

Table 4.5: SOSM Observer parameters for Pm virtual sensor.

Parameter Value
x̂1(0) 75 rad/sec
x̂2(0) 0
α1 1
λ1 1.5
α2 1
λ2 135

Figure 4.10 shows the measurements from actual sensors installed inside produc-

tion vehicle engine and virtual sensors. It can be observed that virtual sensors

efficiently track actual sensors as the measurements are with less than 8% er-

ror of the actual sensors readings. These minor delays in estimation results are

due to reachability phase and do not influence the effectiveness of suggested fault

diagnostic methodology. �

The sequence of instantaneous values of all parameters acquired from Eq (4.59),

Eq (4.60), Eq (4.62), Eq (4.61), Eq (4.90), Eq (4.91) and Eq (4.92) would rep-

resent sampled version of their continuous-time nonlinear representations. The
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Figure 4.10: Measurements by actual and virtual Crankshaft and Pressure
sensors, serving as redundancy.

smaller the sample time, each parameter will converge to its continuous time rep-

resentation. Therefore, a reasonable sampling time 0.01 sec was used to evaluate

the observers in all these experiments.

4.7 Conclusion

A second order sliding mode observer based parameter estimation scheme has

been proposed for gasoline engine parameters. These critical parameters are un-

measurable in nature as no sensor can be installed to measure them. Similarly,

virtual sensors for manifold pressure and angular speed are also devised from the

suggested scheme. A successful evaluation of the presented scheme was conducted

on 1.3L production vehicle engine. The parameters were estimated under normal

operating conditions. The experimental results of estimation schemes were verified

by the values of respective parameters found in literature. This practice gave an

idea about the nominal operating values of these critical parameters. In the coming

chapter these parameters will be explored for the diagnosis of gasoline engine

health by estimating listed parameters under both healthy and faulty conditions.
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Chapter 5

EXPERIMENTAL EVALUATION OF

GASOLINE ENGINE FAULT DIAGNOSIS

SCHEME

This chapter includes second order sliding mode observer based strategies for gaso-

line engine health monitoring. The presented strategies are based on the parame-

ters estimated in preceding chapter. Among various sub systems of gasoline engine,

the prime focus of fault diagnosis methodology in this thesis is air intake system.

The prime responsibility of this system is to ensure strict proportions of air and

fuel in air-fuel mixture in combustion chamber. The components of air intake

system are air filter, intake manifold, throttle body, manifold pressure sensor and

crankshaft sensor. Each of these components must be strictly monitored to ensure

desired engine performance and fuel efficiency. This condition monitoring task can

be achieved by estimating critical engine parameters. These critical parameters

are observed under both healthy and defective operating engine conditions to gen-

erate residuals. These residuals are then evaluated to diagnose various air intake

system faults. The presented scheme is successfully applied to a production vehicle

engine. It is worth mentioning that on board diagnostic system of the vehicle is

unable to diagnose these faults. Thus, adding to the importance and credibility

of the presented scheme.

5.1 Experimental Setup

This section elaborates the experimental setup used for the validation of estimation

and fault diagnosis scheme. The experimental setup comprises of an On-Board

Diagnostic version II (OBD-II) compliant production vehicle engine equipped with

engine control unit (ECU) and data acquisition/logging devices. The details of

these experimental components are discussed below.
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Figure 5.1: Honda i-DSIr engine experimental setup

5.1.1 Engine Rig

The production vehicle engine rig used in the experimentation can be seen in

Figure 5.1. This engine is equipped with twin spark plugs and 2 valves per cylin-

der. Each spark plug has independent coil. The low friction designed engine has

compact combustion chambers and the cam mechanism is chain driven. Other

specifications can be seen in Table 5.1. The intelligent dual sequential ignition

(i-DSI) makes the engine more fuel efficient with optimum performance, as fuel

is ignited according to engine angular speeds. The engine is equipped with ECU

which is compliant to OBD-II standards. This engine was selected for validation

process as it meets all the bylaws outlined by environmental protection agencies

in OBD-II document. However, some of the faults that effect engine performance

and cause emissions are not taken care in the existing on-board diagnostic system.

Thus, motivating the need to develop credible fault diagnostic methodology.

Attribute Specifications
Variant 1.3 S
Type i-DSI, 4-cylinder chain drive
Fuel Supply System PGM-FI (Programmed Fuel Injection)
Engine Displacement (cc) 1339
Bore/Stroke (mm) 73.0× 80.0
Compression ratio 10.4
Maximum power 63 kW (84 hp) @ 5700 rpm
Maximum torque 119 Nm (88 lb ft) @ 2800 rpm

Table 5.1: Honda i-DSI r Engine Specifications.
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Figure 5.2: Schematic diagram of air intake system

This production vehicle engine has various sub systems, which play vital role

in its performance. Among these sub systems, air intake system holds prime

importance as it is responsible to maintain strict proportions of air and fuel in

air fuel mixture. Any fault in air intake path or in its components will result in

poor engine performance, degraded efficiency and emissions. Keeping in view the

importance of air intake system, the parameter estimation based fault diagnosis

scheme has been proposed in the last chapter to look after operations of air intake

path and its components.

The schematic overview of air intake system is given in Figure 5.2. The hardware

components of interest involved in air intake system are:

• Air Filter Assembly and Air Filter

• Bowden Cable Operated Throttle/Butterfly Valve

• Intake Pressure Manifold

• Sensors
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– Manifold Pressure Sensor

– Crankshaft Sensor

– Throttle Position Sensor

Some of these components can be seen in Figure 5.1 in actual.

5.1.2 Engine Control Unit

The engine used for testing and evaluation of fault diagnosis scheme is equipped

with Engine control unit(ECU)/engine control module (ECM). It is an embedded

electronic device and its prime responsibility is to ensure optimum engine per-

formance and fuel efficiency. This digital device reads signals from the sensors

installed to measure respective phenomena and based on engine behavior it issues

commands to actuators to execute necessary actions. The ECU comprises of a

micro-controller, digital inputs/outputs, analog inputs/outputs, memory devices

to store fuel maps and signal conditioning modules. These hardware components

coordinate with each other through a built-in firmware.

Figure 5.3 gives an idea about the engine control unit. It can be seen that all

sensors in the vehicle share their measurements with ECU. Among these sensors,

some sensors are installed at air intake path like Manifold Air Pressure (MAP)

sensor, Intake Air Temperature (IAT), etc. Some sensors are installed in air ex-

haust path like oxygen sensor. Similarly, crankshaft sensor is installed around fly

wheel to measure engine angular speed. Based on the engine performance observed

through sensors, ECU issues commands to injector and ignition system to ensure

optimum performance.

One of the major tasks of ECU is to monitor and announce system health with

the help of on-board diagnostics. Whenever there occurs a fault in the engine

electronic system, ECU shifts to sub-optimal control strategy and announces the

fault through Malfunction Indicator Light (MIL). Once the MIL is turned on the

respective information can be acquired and analyzed for the fault rectification.
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Figure 5.3: Schematic diagram of engine control unit
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5.1.3 Sensors

The electronic vehicle engine shown in Figure 5.1 is heavily equipped with state

of the art sensors. These sensors are heavily relied upon to monitor each of the

vehicle subsystem precisely. Among number of sensors in electronic engine, the

sensors involved in air intake system can help to monitor its health. Like, manifold

absolute pressure (MAP) sensor is used to measure pressure inside the intake

manifold. The pressure is sensed due to change in electrical resistance as the

silicon chip in the sensor flexes with variable pressure. The rotational speed of the

engine is measured by hall effect based crankshaft sensor. Similarly, throttle valve

manipulations can be measured by the installed throttle position sensor (TPS).

The throttle position is sensed due to change in magnetic field using a hall effect

sensor. Another sensor in intake path is air intake temperature (IAT) sensor, its

responsibility is to monitor the temperature of the air flowing through the intake

path. As, the SOSM Observer based fault diagnostic (FD) is based on two state

mean value engine model, therefore the sensors of interest will be MAP sensor,

crankshaft sensor and TPS.

5.1.4 Data Acquisition

Each sensor installed in the engine is communicating with ECU. Sensor measure-

ments can be acquired from ECU using OBD-II scanner. OBD-II cable is used to

connect OBD-II scanner with ECU through the OBD-II connector. This connec-

tor is an essential and legal requirement in electronic fuel injection (EFI) engines.

According to OBD-II bylaws, this connector is required to be within 2 feet (0.61

m) of the steering wheel. The scanner/logger is connected to laptop where the sen-

sors data is displayed on graphical user interface, which can be analyzed and saved

according to user requirements. The whole communication network is exchanging

the information using ISO 9141-2 protocol. By using OBD-II data acquisition

devices one can acquire measurements from MAP sensor in kilo Pascals (kPa),

Crankshaft sensor in revolutions per minute (RPM) and TPS in degrees. Another

requirement of SOSM Observer based fault diagnosis is load torque. The available

OBD-II scanner/logger provides estimated values of load torque based on its static
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and directly proportional relationship with manifold pressure. The load torque is

measured as percentage of maximum available torque given in Table 5.1 i.e. 119

Nm [98].

5.2 Proposed Fault Diagnosis Evaluation Scheme

After going through the experimental setup details, the proposed fault diagnosis

can now be understood more comprehensively. Among various air intake system

faults, the following ones are planned to be monitored as they effect the engine

performance negatively and still remain undiagnosed by the current on-board di-

agnostic system.

Figure 5.4: Experimental evaluation procedure for proposed fault diagnosis
scheme.
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1. Clogged Air Filter (System Fault)

2. Air Leakages in Intake Pressure Manifold (System Fault)

3. Loss of Effectiveness of Throttle Valve (Actuator Fault)

4. Defected Crankshaft Sensor (Sensor Fault)

5. Defected Manifold Pressure Sensor (Sensor Fault)

These faults can be efficiently monitored by the parameters outlined in Chapter 4.

The estimated value of each parameter can reveal the health status of air intake

path and its components. Like,

• Air filter discharge coefficient (Caf ) can monitor air filter health.

• Throttle discharge coefficient (CD) and volumetric efficiency (ηvol) can keep

check on throttle body efficiency and pressure manifold leakages.

• Virtual MAP sensor (P̄m) can keep a watch on actual MAP sensor working.

• Virtual crankshaft sensor (ω̄m) can observe actual crankshaft sensor working.

Figure 5.4 outlines discrete steps for the health monitoring of gasoline engine air

intake system. These steps will be ensured for the detection of afore-mentioned

faults. The steps are:

1. Gasoline engine will be operated in idle and steady state conditions.

2. Measurements from MAP Sensor, Crankshaft Sensor and TPS will be logged

with the help of ODB-II scanner/logger as explained earlier.

3. SOSM Observer convergence will be achieved by selecting suitable gains of

αi, λi (i=1...4). The selected gains must satisfy Eq (4.47) .

4. The correcting injectors in Eq (4.41) and Eq (4.42) will be used to estimate

the critical parameters.
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5. The identified parameters will be compared with their nominal operating

values to generate residuals.

6. The residuals will be evaluated to diagnose the respective fault in the air

intake system.

The idle and steady state operating conditions are ensured so that the proposed

health monitoring can be conducted. Under transient behavior it would become

difficult to differentiate between the nominal and faulty values of the estimated

parameters. The experimental procedure has been finalized after conducting num-

ber of experiments and those experimental procedure were finalized which helped

in credible fault diagnosis. This practice is termed as Active Diagnosis [81]. In

actual active diagnosis means that the system is manipulated is such a way that

the hidden faults are exposed for diagnosis.

Remark 5.1. The residuals are evaluated based on thresholding techniques. The

thresholds are identified after conducting fault diagnosis experiments. These

thresholds can be made adaptive to the operating conditions but as the active

diagnosis is under practice, fixed thresholds can deliver the acceptable results.

Remark 5.2. For the experimental evaluation of the parameter estimation based

engine fault diagnosis, it has been assumed that only one of the afore-mentioned

faults will occur at a time.

Now the diagnosis methodology for each of the afore-mentioned air intake system

faults will be discussed in details alongwith its experimental results.

5.3 Air Filter Health Monitoring

Air filter effects on engine performance have been discussed in Section 2.3.1.1.

Intake manifold pressure dynamics in Eq (3.24) can be exploited to monitor its

health. These dynamics are used to develop SOSM Observer given in Eq (4.40).

The resultant injectors can be used to estimate air filter discharge coefficient (Caf )

as follows.

Caf =
(z̄1 + x̂2 + A2ηvolx1ωe)

A10

Eq (5.1 )
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Figure 5.5: Air filter fault Diagnosis Methodology

Caf provides solid grounds to monitor air filter health, as it measures the hindrance

in air flow through air intake path caused by air filter. Figure 5.5 outlines the steps

necessary to classify air filter as clogged or healthy.

5.3.1 Data Acquisition & Experimentation

The measurements acquired from OBD-II scanner are used as input for SOSM

Observer. Figure 5.7 shows the ECU equipped engine variables i.e. Manifold

pressure (Pm), angular speed (ωe), throttle angle (α) and load torque (Tl). It can

be observed that under steady state conditions, throttle valve remained at 18o.

Extra loads on engine were induced at 88s. With these inputs to the engine, the

manifold pressure and angular speed can be seen as well. It can be observed that

the measurements are corrupted with acquisition noise and engine behavior even

in steady state conditions. The similar trends will contribute in estimation results.
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Figure 5.6: Clogged and healthy air filters used for experimentation.

Figure 5.6 shows the healthy and clogged air filter used in the diagnosis procedure.

It was observed that at low angular speeds and low loads, both air filters provided

sufficient amount of air required by engine to carry out normal operations. So,

it was not possible to diagnose air filter health at low operating speeds. An

experiment was conducted in steady state conditions at higher angular speeds and

loads. The throttle angle was kept at 18o and loads were induced by turning on

air conditioner, headlights, screen wipers and fan.

5.3.2 Fault Diagnosis Results

The acquired data sets (Figure 5.7) served as input for proposed estimation and

diagnosis scheme. In the first phase, observers convergence was achieved. Figure

5.8 shows the Pm of 1.3L engine & observers output and the convergence error for

both air filters. It can be seen that throughout the experiments, SOSM Observers

efficiently tracked the actual values of manifold pressure. The estimators error

remained near to zero. The SOSM Observer gains and initial conditions were cho-

sen as given in Table 5.2. While tuning observer parameters for the demonstrated

results, initially the conditions on α1 and λ1 given in Eq (4.47) were ensured ac-

cording to Remark 4.5. Later on, these gains were manipulated to get healthy

values of the parameters as found in the literature. The same SOSM Observer
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Figure 5.7: Data acquired when both clogged and healthy air filter were used
for diagnostic experiment.

gains were used for faulty conditions, thus revealing abnormal values of the same

parameters.

Figure 5.9 depicts the estimated parameters. It can be observed that ηvol remained

around 0.7 for both air filters. The value of Caf differed in case of healthy &

clogged air filter. Caf remained around 0.3 for clogged air filer and for healthy air

filter it remained around 0.9. The rise in Caf and decline in ηvol at 88s was due

to increase of air demand to cater for high loads. As the engine was operating

under ECU commands being issued according to lookup maps working on engine

speed, ηvol was maintained around 0.7 by ECU for both air filters. However, the

Table 5.2: SOSM Observer parameters for Caf estimation.

Parameter Value
x̂1(0) 25 kPa
x̂2(0) 0
α1 10
λ1 40
α2 10
λ2 190
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Figure 5.8: Observer Convergence for Air Filter Experiment

interruption in air flow due to air filter remained the same even in ECU control.

This uncertain hindrance in air flow was modeled under z̄1 by the designed SOSM

Observer. Later on, Caf was calculated based on z̄1. That is why, Caf varied in

both cases as it is the measure of obstruction in air flow due to air filter. After

the experimental evaluations, it can be observed that a value below caf < 0.30 of

Caf indicates air filter replacement and a value closer to ‘1’ refers to healthy air

filter. Thus classification of healthy and clogged air filter is ensured.

5.4 Monitoring of Manifold Leakages and Throt-

tle Body Efficiency

Keeping in view the effects of air leakages and reduced throttle body efficiency

on engine performance in Section 2.3.1.2, a diagnostic methodology is devised

to cater for these problems. For this purpose, the proposed health monitoring

methodology is shown in Figure 5.10. It is proposed that following relations of

volumetric efficiency (ηvol) and throttle discharge coefficient (CD) can be efficiently
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Figure 5.9: Air filter parameter estimation results

used to monitor these faults.

ηvol =
(A5 + A6 + A8)±

√
(A5 + A6 + A8)2 + 4A7z̄2

A7

Eq (5.2 )

CD =
(z̄1 + x̂2 + A2ηvolx1x3)

A9

Eq (5.3 )

These parameters are estimated using pressure and angular speed dynamics given

in Eq (3.36). The engine pressure dynamics are observed through the SOSM

Observer in Eq (4.40). The estimation of ηvol and CD is performed with the

help of Manifold pressure (Pm), angular speed (ωe), throttle angle (α) and load

torque (Tl) being acquired from OBD-II scanner/logger. Once these parameters

are estimated, their values can be compared with their normal operating ranges.

Any deviation in their nominal values will help to generate respective residuals

RCD and Rηvol defined as

RCD = CDnominal − CDactual Eq (5.4 )

Rηvol = ηvolnominal − ηvolactual Eq (5.5 )
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The thresholds constant are C1 and C2. These constants can ideally be zero

but practically 10% values of C1 & C2 can provide sufficient tolerance to detect

faults. These generated residuals will indicate the respective fault and its severity.

Furthermore, for the isolation of manifold leakages and reduced throttle body effi-

ciency the signs of residual will be analyzed. Negative values of RCD and positive

values of Rηvol will indicate leakages in manifold. Similarly, positive values of RCD

and negative values of Rηvol will specify reduced throttle body efficiency. There-

fore, the above discussed faults in air intake system can be efficiently diagnosed

by the proposed methodology.

5.4.1 Manifold Leakage Detection

The first experiment involves the detection and identification of air leakage in

manifold. Figure 5.12 shows the data acquired from OBD-II scanner. It can

be observed that throttle angle remained at 9.8o (Idle Position) throughout the

experiment. The leakages were introduced according to the Table 5.3 as shown

in Figure 5.11. As the air flow increases due to leakages, the surge in angular

speed can be visualized as well. However, manifold pressure and load torque

are solemnly effected due to manifold air leakages. The oscillatory behavior of

angular speed and manifold pressure depicts the ECU control action trying to cater

these manifold leakages. Initially, it was noticed during the experimentation that

minor leakages were successfully controlled by the ECU control action. However,

as the leakage diameter was increased ECU was unable to maintain the engine

performance as seen in the acquired data. On the other hand, exhaust emissions

started to increase and engine stumbled with the increase in leakages. One can

observe peaks at 180 seconds in the data acquired from OBD-II scanner/logger.

These peaks are due to manual experimentation as precise setup for introducing

manifold leakages in production vehicle was not available. The air leakages in

pressure manifold were introduced with the help of power brake hose. This hose

connects intake manifold with brake drum. The hose diameter is 5mm and it was

removed for the experiment. Initially, the approximate diameter of leakage was

kept at 2mm to introduce leakages and gradually it was increased to 5mm with

time as shown in Figure 5.11.
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Figure 5.10: Manifold leakage and reduced throttle body efficiency monitoring
methodology.

5.4.1.1 Manifold Diagnosis Results

The obtained data was given to the designed SOSM Observer in Eq (4.40). The

parameters of the designed SOSM Observer are enlisted in Table 5.4. Again the

tuning of observer parameters for the demonstrated results was carried out accord-

ing to Theorem 4.4 through Remark 4.5. Later on, these gains were manipulated

to get healthy values of the parameters as found in the literature. The same SOSM
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Leakage Diameter (Approx) Time of Leakage Introduction
2mm 182 seconds
3mm 357 seconds
4mm 679 seconds
5mm 959 seconds

Table 5.3: Increase in Manifold Leakage Area with time.

Figure 5.11: Introduction of leakages in pressure manifold with time.

Observer gains were then used in faulty conditions, thus revealing abnormal values

of the same parameters.

The observer convergence in the presence of leakage in intake manifold is displayed

in first result of Figure 5.13. It can be observed that the convergence is achieved

within one second as the convergence error remained near to zero through out the

experiment. The slight tracking error seen in Figure 5.13 is due to demonstration

of results such that the responses can be distinguished, however in actual the error

is near to zero.

After the SOSM Observer convergence was achieved, the computed injector signals

z1 and z2 were used for the estimation of un-measurable critical parameters CD

and ηvol. It can be observed that under normal operating conditions (before 182
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Figure 5.12: Experimental data for Manifold Leakages

seconds), the values of the estimated parameters corresponded to their actual

values as discussed in [50]. However, as the leakages were introduced, uncontrolled

air flow increased in pressure manifold. In other words, the pumping efficiency of

the engine reduced as it was unable to pump all of the available air. The same

trends can be observed in estimated parameters. The increase in CD indicates

the increase in air flow through intake manifold. Similarly, the decrease in ηvol

shows the decrease in pumping capacity of engine due to increase in air flow in

the manifold.

The nominal operating values of estimated parameters (values before 182 seconds

Parameter Value
x̂1(0) 26 kPa
x̂2(0) 0
α1 1
λ1 1.5
α2 30
λ2 140

Table 5.4: SOSM Observer parameters for manifold leakage detection.
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Figure 5.13: Observer Convergence for Manifold Leakages and reduced throt-
tle body efficiency.

in Figure 5.14) and faulty operating values (values after 182 seconds in Figure

5.14) are used to generate residuals. These residuals are generated according

to Eq (5.4) and Eq (5.5). The residuals generated due to deviation in nominal

values of estimated parameters can be visualized in Figure 5.15. The detection

and identification of air leakage can be performed easily based on these residuals.

Decrease in RCD and increase in Rηvol represent leakage in manifold and respective

magnitudes can be further analyzed to quantify the severity of the air leakages.

Remark 5.3. It can be visualized that when the leakage area was increased at 679

seconds in Figure 5.12, the pressure sensor started to generate false readings. One

possible reason can be the location of installed sensor, which is at 6 inches away

from the leakage in manifold (One can visualize the leakage location in Figure 5.2,

the leakage was introduced near power brake hose). The performance of the engine

started to decline and ECU was unable to detect and announce malfunctioning

of engine as malfunction Indication Light (MIL) remained off through out the

experiment.
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Figure 5.14: Estimated values of CD and ηvol from pressure manifold dynamics
in the presence of leakages.

5.4.2 Reduced Throttle Body Efficiency

The second experiment involved the detection and identification of reduced throt-

tle body efficiency (throttle valve fault). Figure 5.16 depicts the data acquired

from OBD-II scanner and logger. It can be visualized that throttle angle re-

mained at 16.4o throughout the experiment instead of 9.8o. The reduction in AE

at 9.8o did not allow much provision to emulate throttle body fault. Therefore, the

idling throttle angle was kept at higher values as it facilitated with large effective

throttle area (AE) that can be blocked to emulate reduced throttle body efficiency.

The efficiency was reduced by decreasing AE according to Table 5.5 as shown in

Figure 5.17. This reduction in AE represents throttle body fault. As the required

amount of air is reduced due to blockage of AE, decrease in angular speed can be

visualized as well. The decrease in rotational speed is due to reduced power pro-

duced as lesser amount of air fuel mixture was available in combustion chamber.

This data was then supplied to SOSM Observer and its convergence was achieved

as shown in second result of Figure 5.13. The SOSM Observer parameters were
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Figure 5.15: Resultant residuals in the presence of manifold leakages

chosen as shown in Table 5.6. The tuning of SOSM Observer gains was performed

as discussed in preceding experiments.

Reduced AE in % Time of Blockade Introduction
10% 115 seconds
22% 196 seconds
48% 280 seconds
60% 350 seconds

Table 5.5: Decrease in Effective Throttle Area

5.4.2.1 Throttle Body Fault Diagnosis Results

Once the second order sliding mode was achieved, the respective parameters were

estimated. Figure 5.18 shows estimated CD and ηvol in the presence of throttle

fault. It can be noticed that due to decrease in AE, the air flow in air intake system

decreases as CD is reduced. The other outcome of blocked AE was the engine

started pumping more of the available air, thus its pumping efficiency increased as

shown in Figure 5.18. The nominal values of estimated parameters when engine

was working normally till 115 seconds, were used to generate residuals. These

residuals were evaluated for detection and identification of throttle fault. The
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Figure 5.16: Experimental data for reduced throttle body efficiency attained
by blocking throttle effective area.

Parameter Value
x̂1(0) 25 kPa
x̂2(0) 0
α1 5
λ1 30
α2 3
λ2 80

Table 5.6: SOSM Observer parameters for throttle fault detection

increase in RCD and decline in Rηvol actually represented engine behavior in the

presence of AE blockage as discussed earlier. The magnitude of the respective

residuals can be further analyzed for the severity of AE blockage.

Remark 5.4. It is interesting to note that due to blockage in AE, the engine per-

formance started to decline as diagnosed and shown in Figure 5.16. However,

ECU was unable to detect the respective fault as MIL was off throughout the

experiment.

Remark 5.5. It can be observed that under high speeds (Figure 5.16), the estimated

parameters (CD & ηvol in Figure 5.14 and Figure 5.18) possess different nominal
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Figure 5.17: Decrease in Effective Throttle Area due to blocking throttle
effective area.

operating values as compared to values in low speeds (Figure 5.12) [50]. Thus the

results strengthens the motivation for estimation scheme as these parameters have

different values at different operating conditions.
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Figure 5.18: Estimated CD and ηvol (Reduced AE)

Figure 5.19: Residuals (Reduced AE)
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5.5 Sensor Fault Diagnosis Scheme

The last and major outcome of the proposed scheme is the fault diagnosis of

the installed sensors in air intake system. Figure 5.20 describes the fault diagnosis

methodology for pressure and angular speed sensor. The SOSM Observer designed

in Eq (4.40) used measurements from manifold pressure sensor to watch engine

angular speed through Eq (4.62). Similarly, SOSM Observer designed in Eq (4.77)

utilized measurements from crankshaft sensor to monitor manifold pressure using

Eq (4.92).

These estimated values were compared with the actual sensor measurements to

generate residuals. In healthy circumstances, the following residuals should remain

within a bound (Thresholding).

r1 = Pm − P̄m Eq (5.6 )

r2 = ωe − ω̄e Eq (5.7 )

These thresholds are defined under cp for pressure sensor and cw for crankshaft

sensor. Ideally, cp and cw can be zero but in actual 10% values of these constants

can provide sufficient tolerance. Under faulty condition, the residuals will exceed

the defined bound and sensor fault can be detected well in time. All the sensor

faults: bias, drift, scaling, freeze and drop-out, will certainly let the residuals to

cross the defined bounds. The moment the residuals cross the defined thresholds,

respective sensor fault will be announced on time.

5.5.1 Data Acquisition & Experimentation

In order to validate virtual sensors, an experiment was conducted in steady state

conditions while idling. By steady state condition it was meant that: throttle

valve and load on engine were kept constant through out the experiment. Under

steady state conditions, throttle value remained at 9.8o. The nominal load on
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Figure 5.20: Air intake system sensors fault diagnosis methodology.

engine was contributed by: engine rotating mass e.g. crank shaft, fly wheel, power

train components engaged. As no extra load is induced, load torque remained

around 29 Nm. With these inputs to the engine, the pressure and rotational speed

remained in steady state conditions.

The prime requirement of the proposed scheme was the convergence of observers

in Eq (4.40) and Eq (4.77). Figure 5.21 shows the 1.3L engine and SOSM Ob-

servers output. The SOSM Observers gains and initial conditions were taken as

shown in Table 4.4 and Table 4.5. It can be seen that throughout the experiments,

SOSM Observers efficiently track the actual values of manifold pressure and an-

gular speed. The estimators error remain near to zero. The robustness of the

scheme can be observed when the observers are tracking the sensors reading even

in the presence of variations in engine behavior. Once the observers convergence

was achieved, sensors fault diagnosis can be conducted.
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Figure 5.21: SOSM Observer convergence for pressure and angular speed
dynamics, to be used for sensors fault diagnostics.

Remark 5.6. It was ensured that SOSM Observer parameters (α1, α2, λ1 and

λ2) satisfy Theorem 4.4 by employing Remark 4.5 and these parameters were

further tweaked till the virtual sensors outputs started to reproduce/duplicate

actual sensor measurements.

5.5.2 Sensor Fault Diagnosis Results

The functioning of the sensors involved in air intake system can be monitored with

the help of following virtual sensors developed in previous chapter.

x̄3 = ω̄e =
1

ηvolA2x1

(A9 − (z̄1 + x̂2)) Eq (5.8 )

x̄1 = P̄m =
1

B3

(Je(x̂4 + z̄3) +B4) Eq (5.9 )

These virtual sensors have been validated against actual sensor as shown in Fig-

ure 4.10.
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Figure 5.22: Input data acquired from OBD-II scanner in the presence of
sensor fault diagnosis.

For the pressure sensor fault diagnosis, an experiment was performed that repli-

cated pressure sensor diaphragm damage. When the diaphragm gets ruptured,

instead of measuring actual pressure the sensor starts sensing normal air pressure

of 93 kPa. This replicates freeze sensor fault in nature. This behavior can be vi-

sualized in Figure 5.22. On the contrary, engine angular speed demonstrated that

engine was working properly as the throttle angle was kept at 9.8o throughout

the experiment. The load torque exhibited the shown response as it was calcu-

lated by a relation that is proportional to manifold pressure sensor measurements.

Thus, the consequences of the faulty MAP sensor were visible on engine perfor-

mance. An inevitable outcome of the MAP sensor fault was exhaust emissions.

The higher values of MAP sensor measurements indicated false demand of air for

air-fuel mixture. As a result more fuel was injected in combustion chamber that

resulted in rich mixture and incomplete combustion, thus founding the base for

exhaust emissions.

In the second step, the acquired data (Figure 5.22) was supplied to SOSM Observer
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Figure 5.23: Manifold pressure sensor fault diagnosis results.

based estimation scheme. The manifold pressure was virtually sensed from angular

speed using Eq (5.9) and correcting injectors in Eq (4.41). The SOSM Observer

convergence was achieved by selecting gains as given in Table 4.5. Figure 5.23

demonstrates the effectiveness and sensitivity of the proposed methodology, as the

fault was detected in less than one second. It can be seen that the virtual sensor

informed that the pressure is 30 kPa, after the fault has occurred in pressure

sensor. Thus, the residual r1 announced the occurrence of fault in MAP sensor.

Remark 5.7. It may be kept in mind that engine operations during sensor fault

diagnosis experiment were working properly (See Figure 5.22), only the pressure

sensor started malfunctioning. This is the reason virtual pressure sensor revealed

healthy engine operations.

Remark 5.8. When the power of MAP sensor was interrupted, ECU at once an-

nounced the fault code for pressure sensor, however for the experiment conducted

as shown in Figure 5.23, ECU did not announce any fault code, this depicts the

effectiveness of the proposed algorithm.
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Remark 5.9. The same methodology can be applied for crankshaft sensor health

monitoring. The angular speed virtual sensor devised in Chapter 4 can keep a

check on crankshaft sensor working. The experiment for crankshaft sensor fault

diagnosis was not conducted as ECU of available production vehicle engine rig

does not allow to introduce fault in crankshaft sensor.

5.6 Conclusion

A SOSM Observer based fault diagnosis scheme for automotive engine has been

discussed in this chapter. The critical parameters of air intake path were estimated

and the estimated values were compared under normal and faulty operating con-

ditions to generate residuals. These residuals were evaluated to diagnose fault in

air intake system and its components. The presented scheme was implemented

to monitor the health of production vehicle engine and successfully detection of

a major set of air intake system faults has been presented. The credibility of the

diagnosis scheme can be observed when the engine performance was effected by

these faults and on board diagnostic system was unable to detect these faults.

However, the proposed scheme diagnosed these faults, thus proving the validity of

the proposed scheme.
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Chapter 6

CONCLUSION & FUTURE WORK

This manuscript presented a novel health monitoring scheme for automotive gaso-

line engine. The focus of methodology was air intake subsystem. The prime

responsibility of this subsystem is to ensure strict air and fuel proportions in com-

bustion chamber mixture. Any malfunction in this subsystem or its components

can disturb the air fuel mixture that will result in poor engine performance, re-

tarded fuel efficiency and harmful exhaust emissions. Among various faults in air

intake system, few defects have been discussed along-with their consequences. It

has been discussed that

• Clogged air filter may effect the drivability performance of engine, as the

engine acceleration time is increased in ECU equipped engines.

• Air leakages in intake manifold may result in degraded drivability perfor-

mance.

• Any blockade in throttle body may cause low engine angular speeds and if

the blockade increases with time, engine may fail to operate during idling.

• Any fault in manifold absolute pressure sensor may result in hazardous emis-

sions.

• Crankshaft sensor malfunction may hinder the engine performance.

It can be seen that the above mentioned failures result in poor engine performance

and harmful emissions and yet these faults are not catered in modern gasoline

engines equipped with on-board diagnostics. Therefore, for a highly nonlinear air

intake system, a nonlinear fault diagnosis scheme was proposed that can timely

monitor these malfunctions.

The task of health monitoring was achieved by estimating such critical parame-

ters that are nonlinear & un-measurable in nature and carry credible information
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about the air intake system health. Such parameters include air filter discharge

coefficient, throttle body discharge coefficient, volumetric efficiency, combustion

efficiency and frictional torque were estimated. These parameters were estimated

by employing robust second order sliding mode observer. The SOSM Observer was

designed with the help of a highly nonlinear two state mean value engine model.

The reliability of the engine dynamical model was ensured by validating it against

a production vehicle engine. The presented scheme also delivered the solution to

devise virtual/soft sensors for manifold pressure and angular speed measurement.

The second order sliding mode observer was selected as it inherits the same ro-

bustness as first order sliding mode observer. However, it was preferred due to

its quick convergence solution for highly nonlinear systems. It did not require

any mandatory initial information of the system for its convergence. It operates

sample by sample to deliver estimation results, thus making it computationally

cheap. These attributes make SOSM observer based estimation superior than any

other estimation technique.

The SOSM Observers were designed for pressure and angular speed dynamics.

Once the convergence was achieved by selecting suitable SOSM Observer param-

eters, the identification of aforementioned parameters was conducted under idle,

steady state and healthy operating conditions. The estimation results were ver-

ified from the available literature resources. Virtual sensors were validated with

actual sensors measurements.

The proposed scheme was validated on a 1300 cc production vehicle engine. The

engine was equipped with ECU compliant to OBD-II standards. OBD-II scan-

ner/logger was used to record engine operations. The recorded data was supplied

to estimation scheme sample by sample. The proposed estimation scheme was

evaluated under healthy and faulty operating conditions to generate residuals.

The residuals were later on analyzed for the identification of respective fault. It

was shown experimentally that all of the mentioned faults were timely diagnosed

successfully.
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6.1 Contributions

After going through a brief discussion on the presented work, the main contribu-

tions of the thesis can be enumerated as follows,

1. Incorporation of air filter effects on air flow across the intake manifold to

refine manifold pressure dynamics. The air filter effects are modeled under

air filter discharge coefficient or by measuring pressure drop across air filter.

2. Estimation of

(a) Air filter discharge coefficient (Caf )

(b) Gasoline engine volumetric efficiency (ηvol)

(c) Gasoline engine combustion efficiency (ηc)

(d) Frictional torque (Tf )

from highly nonlinear gasoline engine pressure and angular speed dynamics.

These dynamics were used to develop estimation scheme from super twisting

based second order sliding mode observer. The presented scheme required

measurements from throttle position sensor, manifold pressure sensor and

crankshaft sensor. These sensors are mandatory in every OBD-II compli-

ant vehicle. This practice can serve as replacement for lookup table based

solution to acquire values for above parameters.

3. Development of virtual/soft sensor for manifold pressure computation. This

task was accomplished by estimating manifold pressure from crankshaft sen-

sor readings.

4. Fabrication of virtual/soft sensor for angular speed quantification. For this

purpose, manifold pressure sensor measurements were employed to sense

rotational speed virtually.

5. Health monitoring of air filter by generating residuals from estimation of air

filter discharge coefficient. These residuals were analyzed to diagnose clogged

air filter.
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6. Diagnosis of manifold air leakages and throttle body efficiency by analyzing

the residuals generated from estimation of throttle discharge coefficient (CD)

and ηvol.

7. Development of sensor redundancy for air intake system. This redundancy

was exploited for monitoring crankshaft and manifold air pressure sensor

functions.

8. The presented scheme can be termed as OBD-II based estimation and fault

diagnosis strategy. It only requires measurements that can be accessed from

basic OBD-II kit without installing any extra hardware for data acquisition.

Thus it can be implemented on any OBD-II kit as discuss in future tasks.

6.2 Future Prospects

The presented work in this manuscript can be extended in several directions. Few

of the future tasks are discussed below;

Modeling of Other Engine Subsystems: In this monograph, intake mani-

fold pressure and angular speed dynamics are used to model engine behavior.

Rest of the dynamics like intake temperature dynamics, fuel dynamics were

assumed to be constant. In future, the engine can be precisely modeled if

one can include engine fuel dynamics, intake manifold temperature dynam-

ics and exhaust pressure dynamics [61]. This practice will also contribute

in improving estimation results and can help in health monitoring of other

auxiliary engine components.

Analysis of Estimation Results: The SOSM Observer based parameter es-

timation results are sensitive to number of factors. These factors include

SOSM Observer gains, SOSM Observer initial conditions, numerical solver,

numerical solver sampling time and low pass filter time constant. The pre-

sented estimation and fault diagnosis results are applicable for the given

values of the mentioned factors. These values were tuned after number of

experiments. The sensitivity analysis of estimation results with respect to
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these factor may reveal the dependency of the solutions [99], [100]. This can

save the time for estimation results tuning and can improve fault diagnostics.

Air Fuel Ratio Estimation: One of the major parameters which cannot be

routinely sensed and encompass vital information is, Air Fuel Ratio [56].

This parameter is usually monitored by modeling the engine fuel dynamics.

In this manuscript it has been taken as a constant value but one can es-

timation it using angular speed dynamics. This practice can eliminate the

need of modeling fuel dynamics as conventionally these dynamics are used

to monitor air fuel ratio.

Fault Diagnosis using Combustion Efficiency: Estimation of combustion ef-

ficiency can serve as effective tool for health monitoring of combustion pro-

cess and its after-effects. The air fuel mixture if not in its proper proportions

can reflect itself on combustion efficiency. This is generally sensed by oxygen

sensor. So, combustion efficiency can help in health monitoring of combus-

tion process, exhaust emissions and oxygen sensor functions.

Fault Diagnosis using Frictional Torque: Friction estimation can reveal im-

portant information about lubrication issues. Generally, frictional torque is

modeled as a function of valve lift, oil temperature, oil viscosity, piston speed

and other factors. Conversely, estimation of frictional torque from speed dy-

namics can reveal information about these factors. Any increase or decrease

in frictional torque can mention to check any malfunctions due to above

factors.

Adaptive Thresholding: When the fault diagnosis is carried out under active

diagnosis procedure, it allows to threshold the residuals with constants. How-

ever, the generated residuals can be evaluated under more strict conditions.

One can avoid a predefined procedures requirement for residual evaluation if

adaptive thresholding is employed. The results of presented health monitor-

ing scheme can be improved by extending it to other scenarios with adaptive

thresholding for residual evaluation [101], [102]. The adaptive thresholding

can be done by fuzzy-based approaches, knowledge based approaches etc.
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Implementation on Low Cost Embedded System: The available low cost

OBD-II kits does offer a long list of faults that can be diagnosed well in time.

However, diagnosis of clogged air filter, manifold leakages, throttle body

efficiency and certain MAP sensors faults is still not addressed in current

OBD-II kits. The presented scheme analyzes the readily available sensors

measurements and is computationally cheap. One can easily implement it on

a low cost embedded system for online fault diagnosis of production vehicle

engines.
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