
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Stabilization of Nonholonomic

Systems

by

Waseem Abbasi

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering

Department of Electrical Engineering

2018

www.cust.edu.pk
www.cust.edu.pk
waseemabbasi97@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


i

Stabilization of Nonholonomic Systems

By

Waseem Abbasi

(PE123011)

Dr. Adrian Traian Plesca

Gheorghfe Asachi Technical University of Lasi, Romania

Dr. Jawad Masood

Automotive Technology Centre of Galicia (CTAG), Spain

Dr. Fazal ur Rehman

(Thesis Supervisor)

Dr. Noor Muhammad Khan

(Head, Department of Electrical Engineering)

Dr. Imtiaz Ahmed Taj

(Dean, Faculty of Engineering)

DEPARTMENT OF ELECTRICAL ENGINEERING

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2018



ii

Copyright c© 2018 by Waseem Abbasi

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.



iii

Dedicated to my beloved father Chan Khan Abbasi, Mother, Wife and Daughter









vii

List of Publications

It is certified that following publication(s) have been made out of the research

work that has been carried out for this thesis:-

Journal Publications

1. Waseem Abbasi and Fazal ur Rehman, “Adaptive Integral Sliding Mode

Stabilization of Nonholonomic Drift-Free Systems”, Mathematical Problems

in Engineering 2016 (2016).

2. Waseem Abbasi, Fazal ur Rehman, and Ibrahim Shah, “Backstepping

Based Nonlinear Adaptive Control for the Extended Nonholonomic Double

Integrator”, Kybernetika 53, no. 4 (2017): 578-594.

3. Waseem Abbasi, Fazal ur Rehman, and Ibrahim Shah, “Smooth Super

Twisting Sliding Mode Based Steering Control for Nonholonomic Systems

Transferable into Chained Form”, Kybernetika 54, no. 3 (2018): 476-495.

4. Waseem Abbasi, Fazal ur Rehman, Ibrahim Shah, and Adeel Ahmad

Saleem, “Stabilizing Control Algorithm for Nonholonomic Wheeled Mobile

Robots using Adaptive Integral Sliding Mode”, Internal Journal of Robotics

and Automation, 2018 (Accepted).

Conference Publications

1. Waseem Abbasi, Fazal ur Rehman, and Ibrahim Shah, “Smooth Super

Twisting Sliding Mode Control Based Stabilization for Nonholonomic Me-

chanical System: A Firetruck Example”, AIET International Annual Con-

ference, Bari, Italy, October 03-05, 2018.

2. Waseem Abbasi, Fazal ur Rehman, and Ibrahim Shah, “Steering Algo-

rithm for Nonholonomic Mechanical Systems using Adaptive Sliding Mode



viii

Control”, AIET International Annual Conference, Cagliari, Italy, September

20-22, 2017.

3. Waseem Abbasi, Ibrahim Shah, Fazal ur Rehman, and Sami ud Din, “Sta-

bilization of Nonholonomic System in Chained Form Via Super Twisting

Sliding Mode Control”, International Conference on Emerging Technologies

Islamabad, Pakistan, December 27-28, 2017.



ix

Acknowledgements

In the name of Allah, The Most Gracious, The Dispenser of Grace. All praise is

due to Allah alone, Who granted me with the opportunity and abilities to pursue

my post graduate research and study. All respects is due to the Holy Prophet

Muhammad (P.B.U.H), the last messenger of Allah, whose life is the perfect role

model for all humans beings and whose teachings are the best source of guidance

in all disciplines of life.

This dissertation has been kept on track, from the beginning to the final com-

pletion, with the support and encouragement of numerous people including my

teachers, friends, and colleagues. I would like to express my thanks to all those

who contributed in many ways to the success of this study and made it an unfor-

gettable experience for me.

First of all, I am highly grateful to my research adviser Dr. Fazal ur Rehman

for his valuable guidance, strong encouragement and kind support towards my

research and study. His strong mathematical background and clear concepts of

control theory have always been the foremost source of motivation and inspiration

for my research. In fact, pursuing research in control systems would not have been

realized without Dr. Rehman’s continued motivation, guidance, and advices.

I would also like to thank all the teachers at CUST with special mention of Dr.

Mansoor Ahmed, Dr. Aamer Iqbal Bhatti, Dr. Imtiaz Taj, Dr. Noor Muhammad

Khan, Dr. Raza Samar and others for imparting up-to-date and state-of-the-art

knowledge with devotion and sincerity to me and all others who come to CUST

to seek education and carry out research. Special thanks goes to Dr. Aamer Iqbal

Bhatti for his inspirational teachings and guidance. I would like to thank Dr.

Qudrat Khan for his guidance and fruitful suggestions regarding my research.

I would like to pay my special gratitude to my research colleague, Mr. Ibrahim

Shah for his continued guidance, commitment, support, and encouragement dur-

ing my research. Due to his valuable comments and suggestions, I got the right

direction in the ongoing research work. Many thanks go to my research colleagues

Sami ud Din, Nazim Saddiqi, Sarfaraz Ahmed, Saif ur Rehamn, Mirza Yasir for

their technical discussion, encouraging remarks and fruitful suggestions. I like



x

to thanks CASPR group members for their technical discussion on sliding mode

control theory. Sincere gratitude is due to Usama and Umair of FPGA and Mi-

croelectronics Lab for their utmost cooperation. All teachers, engineers and staff

members of CUST are no less important to me during all stages of my higher

study. May Allah bless them all. Higher Education Commission of Pakistan also

deserves thanks for funding my study at CUST.

Above all, I am highly grateful to my family members for their encouragement, for

letting me ignore the many beautiful moments of life enjoying with them and for

letting me ignore them when they needed me to be with them at many occasions

during all this process of long times.



xi

Abstract

The stabilization problem of nonholonomic systems, for many reasons, has been

an active research topic for the last three decades. A key motivation for this

research stems from the fact that nonholonomic systems pose considerable chal-

lenges to control system designers. Nonholonomic systems are not stabilizable

by smooth time-invariant state-feedback control laws, and hence, the use of dis-

continuous controllers, time-varying controllers, and hybrid controllers is needed.

Systems such as wheeled mobile robots, underwater vehicles, and underactuated

satellites are common real-world applications of nonholonomic systems, and their

stabilization is of significant interest from a control point of view. Nonholonomic

systems are, therefore, a principal motivation to develop methodologies that allow

the construction of feedback control laws for the stabilization of such systems.

In this dissertation, the stabilization of nonholonomic systems is addressed using

three different methods. The first part of this thesis deals with the stabilization of

nonholonomic systems with drift and the proposed algorithm is applied to a rigid

body and an extended nonholonomic double integrator system. In this technique,

an adaptive backstepping based control algorithm is proposed for stabilization.

This is achieved by transforming the original system into a new system which can

be asymptotically stabilized. Once the new system is stabilized, the stability of the

original system is established. Lyapunov theory is used to establish the stability

of the closed-loop system. The effectiveness of the proposed control algorithm is

tested, and the results are compared to existing methods.

The second part of this dissertation proposes control algorithm for the stabilization

of drift-free nonholonomic systems. First, the system is transformed, by using in-

put transformation, into a particular structure containing a nominal part and some

unknown terms that are computed adaptively. The transformed system is then

stabilized using adaptive integral sliding mode control. The stabilizing controller

for the transformed system is constructed that consists of the nominal control

plus a compensator control. The Lyapunov stability theory is used to derive the

compensator control and the adaptive laws. The proposed control algorithm is
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applied to three different nonholonomic drift-free systems: the unicycle model,

the front-wheel car model, and the mobile robot with trailer model. Numerical

results show the effectiveness of the proposed control algorithm.

In the last part of this dissertation, a new solution to stabilization problem of non-

holonomic systems that are transformable into chained form is investigated. The

smooth super twisting sliding mode control technique is used to stabilize nonholo-

nomic systems. Firstly, the nonholonomic system is transformed into a chained

form system that is further decomposed into two subsystems. Secondly, the second

subsystem is stabilized to the origin using the smooth super twisting sliding mode

control. Finally, the first subsystem is steered to zero using the signum function.

The proposed method is applied to three nonholonomic systems, which are trans-

formable into chained form; the two-wheel car model, the model of front-wheel car,

and the firetruck model. Numerical computer simulations show the effectiveness

of the proposed method when applied to chained form nonholonomic systems.

This research work is mainly focused on the design of feedback control laws for the

stabilization of nonholonomic systems with different structures. For this purpose,

the methodologies adopted are based upon adaptive backstepping, adaptive inte-

gral sliding mode control, and smooth super twisting sling mode control technique.

The control laws are formulated using Lyapunov stability analysis. In all cases,

the control laws design for the transformed models is derived first, which is then

used to achieve the overall control design of the kinematic model of particular

nonholonomic systems. Numerical simulation results confirm the effectiveness of

these approaches.
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Chapter 1

Introduction

In the early decades of the 20th century, developments in the design of control sys-

tems were mainly focused in the area of linear control. All the systems to be con-

trolled were assumed to be linear or approximated by linear time-invariant differ-

ential equations. In most of the cases, where the linear approximation techniques

accurately describe the system, linear control methods are successful. However, in

many cases, the systems are too nonlinear and cannot be correctly described by

linear differential equations. In such cases, nonlinear techniques are required for

exact system representation. For example, in case of nonholonomic systems, non-

linear control techniques are more appropriate as the constraints on nonholonomic

systems are inherently nonlinear.

Nonholonomic systems are defined as “systems that satisfy certain non-integrable

constraints”. The constraints may arise as the result of system’s physical dynamics

and can be expressed in term of the generalized velocities. These constraints on

nonholonomic systems are not integrable, i.e., the constraints cannot be written

as the time derivative of generalized coordinates. This type of constraints on

generalized velocities is considered as first-order nonholonomic constraints and

such systems are known as first order nonholonomic systems.

In the last few decades, the applications area of the nonholonomic systems has

grown immensely due to practical utilization of these systems in different fields.

1
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As far as the applications are concerned, it is hardly possible to avoid contact with

nonholonomic systems. There are several examples of such systems in our daily

life, like going away to work by driving a car, pushing a stroller, riding a bike,

parking of a tractor with many trailers and so on.

One of the crucial features of nonholonomic systems is that these systems are not

amenable to a method of linear control theory, and hence, fundamentally require

nonlinear techniques for stabilization. Another essential characteristic of nonholo-

nomic systems is that the inputs are always less than the number of its degrees of

freedom, i.e., these systems belong to the family of underactuated mechanical sys-

tems (UMS). These features make the stabilization and control of nonholonomic

systems even more challenging and difficult.

Nonholonomic systems are controllable, but at some instant, they cannot move

in some specific directions. Although, nonholonomic systems are allowed to move

in any direction at certain time, but due to mechanical constraint, the so-called

nonholonomic constraints or kinematic constraints, they are unable to move to

a particular position or state at a particular instant, e.g. wheeled vehicles, that

move only in perpendicular direction to the axle connecting the wheels. In [1], the

author also highlights this problem that nonholonomic systems are not stabilizable

to the origin by continuous static state feedback laws. To solve this stabilization

problem, different control schemes have been adopted in the literature, such as

discontinuous control [2], time-varying control [3] and hybrid control [4]. Using

these techniques, the stabilization and tracking control of these systems can be

achieved.

Many nonlinear techniques, such as feedback linearization, gain scheduling, adap-

tive control, adaptive backstepping and sliding mode control have been developed

for the stabilization and tracking control problems of nonholonomic systems. In

feedback linearization, the control laws are designed in such a way that they can-

cel the nonlinear terms, resulting closed-loop system in a linear form. The linear

controller then stabilizes the resulting closed-loop system. This scheme may apply

to many nonlinear systems, but it cannot be applied to nonholonomic systems.
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1.1 Motivation

Before the invention of nonholonomic systems and their practical use, they were

just limited to the stuff of some scientific and academic terminologies. However,

nowadays, a vast variety of these systems are being deployed for their useful use

in daily life. Many applications of nonholonomic systems like advanced robotic

structures, wheeled mobile robots, and multi-finger robotic hands have gained

attention due to their role in different practical systems. In these systems, the

nonholonomic behavior can be controlled entirely with fewer numbers of actuators

than the degrees of freedom.

Nonholonomic systems pose new control problems that require fundamental non-

linear approaches. The linear approximation of these systems around equilibrium

points may not be controllable, and the feedback linearization technique cannot

transform the system into a linear control problem. Consequently, the linear con-

trol techniques cannot be adopted to solve the feedback stabilization or the track-

ing control problem. However, under certain conditions, the feedback stabilization

and tracking control problem can be solved by time-varying control or the discon-

tinuous feedback control strategies.

Many mechanical systems are subject to constraints on their generalized velocities.

In the field of classical mechanics, these constraints are also defined as linear

constraints of the type φ(q)q̇ = 0 which are not integrable, where the generalized

coordinates are denoted by q. The constraints are said to be non-integrable if it

cannot be written as the function of the generalized coordinates, i.e., ψ(q) = 0,

and thus cannot be solved by integration. Contrary to classical mechanics, a more

general characterization of nonholonomic constraints is chosen in this thesis.

In addition to classical formulations of nonholonomic systems, nonholonomic con-

straints can arise in other ways. If the motion of a mechanical system exhibits

specific symmetry properties, for example, if the angular momentum of the me-

chanical system is not integrable, this may be interpreted as a nonholonomic con-

straint. It should be noted that, in classical mechanics, conserved quantities are
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not regarded as constraints on a system. In control community, however, it has

been commonly accepted to view these conserved quantities as constraints that are

imposed on the system. Examples of such systems include multi-body systems and

underactuated symmetric rigid spacecraft. Nonholonomic constraints also arise as

a result of imposing design constraints on the allowable motions of the mechanical

systems like kinematically redundant manipulators and underactuated manipula-

tors. An introduction and overview of nonholonomic control systems can be found

in [5].

Nonholonomic systems are an excellent platform for research and educational pur-

pose. The kinematic constraints called “Nonholonomic constraints” imposed on

these systems make their control a challenging problem. If we talk about se-

lected examples of nonholonomic systems, a two-wheel car model, a front-wheel

car model, a car with trailer model, and a firetruck model are good examples

of nonholonomic systems having nonholonomic constraints. These mobile robots

are highly subject to external disturbance, e.g., slippery floor, dusty air, and de-

sign of control laws for such systems in the presence of external disturbances or

uncertainties is a crucial task.

1.2 Research Objectives

In the light of motivation and problems arising in the stabilization of nonholonomic

systems [1]; an objective is to investigate novel and more effective feedback control

design methodologies for the stabilization of nonholonomic systems. Moreover, due

to the existence of parametric uncertainties, the controller design for stabilization

of nonholonomic systems will become much more difficult due to the simultane-

ous existence of nonholonomic constraints and unknown system parameters. The

methodologies must be general and applicable to whole class of nonholonomic sys-

tems instead to some specific system. Meanwhile, in the absence of smooth static

time-invariant feedback laws, the primary objective is to develop such techniques

that are based on:
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1. Discontinuous feedback control laws

2. Time-varying feedback control laws

Finally, we will validate the methodologies for the following benchmark nonholo-

nomic systems:

1. Rigid Body

2. Extended Nonholonomic Double Integrator

3. A Unicycle Model

4. A Front Wheel Car Model

5. A Car with Trailer Model

6. A Firetruck Model

1.3 Research Contributions

In this thesis, the stabilization problem of nonholonomic systems is considered.

Namely, the class of nonholonomic systems that can be transformed, by an ap-

propriate coordinate and feedback transformation, into a particular form. The

particular form considerably simplifies the kinematic equations of the system and

is, therefore, more suitable for control design than the original kinematic model.

To date, studies on the control of nonholonomic systems have primarily been fo-

cused on motion planning and trajectory tracking, while less interest has been

focused on the stabilization problem. Although the kinematic models of non-

holonomic systems are quite well understood, the stabilization problem of these

systems remains a challenging task.

In this thesis the stabilization problem of the nonholonomic systems is solved with

three different techniques:
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i. Adaptive Backstepping Control [6].

ii. Adaptive Integral Sliding Mode Control (AISMC) [7].

iii. Smooth Super-Twisting Sliding Mode Control (SSTSMC) [8].

The stabilization of nonholonomic systems by using adaptive backstepping, AISMC,

and SSTSMC in the presence of constraints is the subject of this research. Finding

general control laws based directly on a kinematic model will make understanding,

analysis, and implementation of these laws straightforward. Furthermore, closed-

form analytic expressions for design parameters are used throughout the control

schemes, which is another consideration in this thesis. It also addresses the trans-

formation from the kinematic model of nonholonomic systems into a particular

form. The stability of the nonholonomic systems is analyzed with the help of

Lyapunov functions. Furthermore, this thesis includes a complete methodology

for controller design of nonholonomic systems by providing:

• Transformation of the kinematic model of nonholonomic systems into par-

ticular form by using input and state transformation [7, 8]

• Design of the control laws based on an adaptive backstepping technique to

stabilize the nonholonomic system [6]

• AISMC laws based on a Lyapunov function which stabilizes the nonholo-

nomic systems [7].

• SSTSMC laws based on a Lyapunov function which stabilizes the nonholo-

nomic systems in a chained form [8].

1.4 Outline of the Thesis

This thesis consists of seven chapters, and Figure 1.1 highlights the chapter wise

structure of this dissertation. The focus of this research work is to propose novel

solution to the stabilization problem of nonholonomic systems. In order to organize
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a self-contained text on stabilization of such systems, various feedback techniques

are being reviewed to highlight the significance of stabilization problem in the

presence of constraints. Finally, the framework is presented in a detailed fashion

and numerical results are being examined.

The descriptions of the individual chapters are as follows:

Figure 1.1: Thesis flow chart

• Chapter 2, Literature Survey: This chapter takes into account the litera-

ture review regarding stabilization of nonholonomic systems. We summarize

the literature with the findings of limitations and contributions of various

stabilization techniques. The research gaps help us to formulate the problem
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statement and to find the general laws which help in finding the solution for

the stabilization problem of nonholonomic systems.

• Chapter 3, Theoretical Foundation: In this chapter some preliminar-

ies are provided to understand the stabilization problem of nonholonomic

systems. This chapter provides foundation for Chapter 4, Chapter 5 and

Chapter 6.

• Chapter 4, Stabilization of Nonholonomic Systems: Adaptive Back-

stepping Technique: This chapter presents adaptive backstepping based

stabilization of the nonholonomic system with drift to create an interest

and insight in the stabilization of nonholonomic systems. The algorithm

presented is applied to a rigid body and an extended nonholonomic double

integrator which is considered as a benchmark nonholonomic system. The

chapter also highlights the result along with a comparison with the existing

results in the literature.

• Chapter 5, Stabilization of Nonholonomic Systems: Adaptive In-

tegral Sliding Mode Control Technique: This chapter presents the

proposed control algorithm based on adaptive integral sliding mode control.

The algorithm is applied to nonholonomic wheeled mobile robots like, e.g.,

a unicycle car model, a front wheel car model, and a model of car with a

trailer.

• Chapter 6, Stabilization of Nonholonomic Systems: Smooth Super

Twisting Sliding Mode Control Technique: This chapter presents the

proposed control algorithm based on smooth super twisting sliding mode

control. The algorithm is applied to nonholonomic wheeled mobile robots

model in chained form e.g., a unicycle car, a front wheel car, and a firetruck

model.

• Chapter 7, Conclusion and Future Work: This chapter summarizes

the overall thesis and draws conclusions along with the recommendations

and claims. The significance of the proposed research is emphasized. Future

directions have also been proposed for further research.
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1.5 Summary

In this chapter, first, the aim is to present a sketch and motivations behind this

research. Secondly, the research objectives are defined on the basis of overview

and motivation from existing literature. Thirdly, the contribution of this research

work is formulated on the basis of research objective. At the end, an outline of

the research work is also discussed.



Chapter 2

Literature Survey

This chapter aims to review different stabilization approaches to highlight the

stabilization problem and to identify the gaps, weaknesses, and issues in the sta-

bilization of nonholonomic systems. Another aspect of this chapter is to review

the different stabilization methodologies that researchers apply to investigate and

to help the industry in a choice of schemes. Furthermore, this literature review is

a meta-analysis of stabilization problem of nonholonomic systems. It enables to

integrate the findings to enhance the understanding of the stabilization problem

and research gaps in order to formulate the problem statement.

2.1 Stabilization of Nonholonomic Systems

Nonholonomic systems belong to a particular class of nonlinear systems and are

frequently encountered in the real world. Applications of such systems are car-like

and underwater vehicles, mobile robots, satellites and so on. However [1] showed

that stabilization of nonholonomic systems could not be achieved by smooth static

state feedback laws although, these systems are controllable. As a consequence,

well-developed time-invariant continuous nonlinear control methodologies cannot

be directly applied.

10
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To overcome the difficulty imposed by Brockett’s condition [1], different control

approaches have been presented in the literature. The construction of feedback

control laws for stabilization of nonholonomic systems offers some exciting chal-

lenges. As such systems are inherently nonlinear; linear control techniques cannot

be used. Moreover, such systems are not transformable into linear systems (even

locally) in any meaningful form [2]. As a result, nonlinear control techniques or

non-classical definitions of the solution to differential equations are needed.

Nonholonomic systems are usually controllable; but at some instant, they cannot

move in specific directions, e.g., wheeled vehicles, which moves only in a per-

pendicular direction to the axle connecting the wheels. Due to the mechanical

constraints on wheeled vehicles, the problem of a parallel parking of the car be-

comes an exciting challenge. Consider the car performing a parking maneuver at

some distance from its current position in the same orientation (see Figure 2.1).

This type of behavior is a particular case of nonholonomic systems.

Figure 2.1: A car in parking maneuver: cannot move sideways

Nonholonomic systems are a typical class of systems with nonlinear nature. Due

to these nonlinearities, nonholonomic systems are difficult to stabilize. In order

to cater this problem, many strategies have been proposed for the stabilization

problem of nonholonomic control systems. The work of Kolmanovsky and Mc-

Clamroch [5] serves as a tutorial presentation for the developments in the control

of nonholonomic systems.

A general introduction of nonholonomic systems and constraints on the nonholo-

nomic systems was, firstly, discussed by Murray, Li, and Sastry [9]. The book
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by Siciliano, Sciavicco, Villani and Oriolo [10] also provide an excellent literature,

where the concepts are introduced in a coherent and didactic way. This book

also contains techniques for modeling, planning, and control of the nonholonomic

systems having kinematic constraints. It also states the basic concepts from differ-

ential geometry applied to holonomic and nonholonomic systems, lead to finding

the controllability of these systems.

For the stabilization of nonholonomic systems, tools of differential geometry for

a mathematical solution were first used more than 150 years ago. Systematic de-

velopment of the theory was initiated by mathematicians and physicists, based

on a series of classic articles by Chaplygin, Carathodory, and Hertz. Recently,

the formation of control laws for such systems was discussed extensively. The

differential geometric approach in the context of nonholonomic systems was intro-

duced by Brockett, Isidori, Sussmann, and others in the 1970’s. Since then, the

advancement of theoretical tools to the design of feedback laws for the wide class

of nonholonomic systems have been done.

The kinematic model-based control of nonholonomic systems addresses the prob-

lem of motion planning, trajectory tracking, and point stabilization of such sys-

tems. The control models for such systems are usually nonlinear. One approach to

deal with nonholonomic systems is to use time-varying controllers [11]. In [11], it

has been shown that time-varying controllers for nonholonomic systems provided

algebraic (not exponential) convergence. For global asymptotic stabilization of

nonholonomic systems using time-varying law is obtained in [12].

Another way to stabilize such systems is to use discontinuous controllers that show

exponential convergence [13]. In [14], a discontinuous piecewise control scheme was

proposed to achieve exponential convergence. Later on, discontinuous control law

was proposed to obtain the exponential convergence along the desired trajectory

[15]. The control law was implemented on a nonholonomic chained form system

and achieved global stabilization. However, the system was not point stabilizable

with the proposed control law. Moreover, the extraction of discontinuous, adaptive
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and the robust control law is a demanding and challenging job in the presence of

unknown parameters, external disturbances, and uncertainties.

The stabilization of nonholonomic systems with different control techniques was

presented in [6, 16–19]. A feedback control law is proposed for nth order trailer

model is presented in [20]. In [21], a hybrid control approach is implemented on

the nonholonomic car-like robot with uncertainty. The author in [22] proposed a

technique based on sliding mode control for a broad group of nonholonomic systems

suffering from drift uncertainties. Furthermore, the design of globally asymptotic

controllers for the stabilization problem of these systems is a challenging task, and

multiple control design strategies have been used for this purpose.

The stabilization problem for nonholonomic systems can be solved by two broad

class of techniques, namely: open loop control and closed-loop control. The open-

loop control steers the nonholonomic systems in a given finite interval from initial

to final state. Various differential geometric tools were also being utilized to make

control laws for open-loop control of nonholonomic systems in [23]. In [24], a

sinusoid technique has been proposed to stabilize nonholonomic systems. Open

loop techniques for nonholonomic systems of low dimensions have been proposed

in [25]. A generalization of the sinusoids method by Lie bracket is also discussed

in [26]. Furthermore, in [27], a piecewise constant input and polynomial input are

further elaborated for the stabilization of nonholonomic systems.

Despite open loop, closed-loop control techniques, such as feedback linearization,

have gained much attention in the early 1980’s for the stabilization of nonholo-

nomic systems. These systems have uncontrollable linearization for smooth, con-

tinuous feedback control laws. Differential geometric methods were used for ap-

proximate feedback linearization for a broad class of nonholonomic systems in

[28, 29]. Later, with the development of control Lyapunov functions and back-

stepping techniques [30], a more generalized solution in the presence of matched

and unmatched uncertainties was given for stabilization of such systems.

The model of many nonholonomic systems, like wheeled mobile robots, underwater

vehicles, and satellites are first transformed into some meaningful form with the
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help of input or state transformation. During the past few decades, researchers

and scientists worked rigorously to find such transformations. The discontinuous

or time-varying control was then applied to the transformed systems to stabilize.

Discontinuous control showed exponential stability [31–33], while the time-varying

control, led to the asymptotic stability of such systems [34, 35]. More recent studies

show the exponential stability of the transformed nonholonomic systems with the

help of time-varying homogeneous control [36].

These transformations usually result in the discontinuous control laws, which need

a switching control to keep the system states away from the singularity hyper-

plane. The discontinuous control proposed in [13, 37, 38] describe ρ-process and

state scaling, which results in the exponential stabilization of nonholonomic sys-

tems. In [39, 40], improvements were made to cater the singularity problem due

to singular initial conditions. Although these existing state transformations pro-

vide a good solution, there is still an open question to develop a global nonsingular

state transformation that maps the nonholonomic systems into a controllable form

which yield global exponential stabilization.

The theory of nonholonomic open loop and closed-loop control states that there

exist no continuous, differentiable time-invariant control laws, which can asymp-

totically stabilize the nonholonomic systems. Therefore, many researchers pro-

posed time-varying control laws [41, 42], discontinuous control laws [43, 44], and

hybrid control laws [45, 46] for the stabilization of nonholonomic systems. For the

stabilization of these systems, there are two broader control strategies namely:

i. Open loop control

ii. Closed-loop control

2.1.1 Open Loop Control

The open-loop control also referred under the name of motion planning, stabilizes

the nonholonomic systems in a given finite interval from initial to final state. Some
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of the open-loop control techniques like model predictive control for the stabiliza-

tion of nonholonomic systems have been discussed in [47]. In [48], an excellent

information about open loop control for nonholonomic robots was discussed. The

open-loop control algorithm can be further classified into following three groups

according to which mathematical models are derived.

i. Strategies derived from employing differential-geometric and algebraic tech-

niques.

ii. Strategies based on the special control parametrization.

iii. Strategies employing methods of optimal control.

The open-loop control techniques also include inputs like sinusoidal, piecewise con-

stant, and a polynomial. The underlying logic behind sinusoidal inputs is to steer

all states one by one by using a sinusoid. The polynomial input approach is more

favorable than the piecewise constant input approach, because of its smoothness.

The open-loop control has one major drawback that model error and disturbances

occur in a system model cannot be eliminated. To cater to this problem a closed

loop or feedback control approach is used.

2.1.2 Closed Loop or Feedback Control

A closed-loop control system is also known as a feedback control system. The

term “feedback” simply means that some portion of the output is returned “back”

to the input. As far as stabilization problem of the nonholonomic systems is

concerned, a feedback law must be designed around an equilibrium point. In

[49], a nonholonomic system model was transformed into a two-dimensional model

to obtain a discontinuous feedback law. This discontinuous feedback controller

enforces the nonholonomic system to asymptotic approach to a particular circle

which contains the origin. In [50–52], non-smooth state feedback laws were used

to overcome the problem of stabilization of nonholonomic systems.
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In [53, 54], sliding mode approach was proposed, which used discontinuous feed-

back control to stabilize nonholonomic systems. The sliding mode control approach

uses discontinuous laws, which force the trajectory to slide along the manifold, but

the main disadvantage is that it produces chattering. In the absence of smooth

static feedback, the closed-loop synthesis method concentrates on the following

strategies.

i. Discontinuous state feedback

ii. Time-varying state feedback

iii. Hybrid feedback control

2.1.2.1 Discontinuous State Feedback Control

One of the methods to stabilize nonholonomic systems is to use discontinuous

control, which is quite simpler than its counterpart, time-varying control. However,

one major drawback of this technique is the singularity manifold, which is due to

the state transformation. The main logic behind the discontinuous control is to

switch the control, as system states leave the singular manifold. In [2], a ρ-process

is proposed to represent such control law. Discontinuous state feedback control

can be further categorized into two types.

i. Piecewise continuous feedback

ii. Sliding mode control

(i) Piecewise Continuous Feedback Control

The piecewise continuous feedback controller for a broad class of nonholonomic sys-

tems is presented in [55]. In this article, an exponential convergence with the help

of piecewise continuous feedback law has been presented for some specific examples

of nonholonomic systems. For the attitude stabilization of an underactuated rigid

spacecraft with a piecewise continuous feedback law has been proposed in [56]. A
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different way for constructing a piecewise continuous controller has been proposed

in [57, 58]. A saturated finite-time stabilization for systems in feed-forward form

is proposed in [59].

(ii) Sliding Mode Control

A sliding mode control (SMC) is well-known nonlinear feedback control technique.

One of the main advantages of SMC approach is, the system becomes insensitive

to disturbance and parameter variations. The SMC forces the trajectory to slide

along the particular surface to reach the equilibrium point. Compared to other

control laws, SMC is robust and is easy to implement. The SMC approach for a

large class of nonholonomic mechanical systems was proposed in [60, 61]. The SMC

approach also used for a particular class of higher-order nonholonomic systems in

[62, 63]. A comprehensive and detailed literature on SMC technique is studied in

the next chapter.

2.1.2.2 Time-Varying State Feedback Control

Another method to stabilize nonholonomic systems is to use time-varying con-

trollers which provide asymptotic convergence. A time-varying control law for

stabilization problem of such systems was presented in [64]. The stabilization of

the kinematic model of nonholonomic systems at the equilibrium point by time-

varying control was presented in [65]. Some explicit feedback laws for global

asymptotic stabilization of nonholonomic systems was presented in [66]. A smooth

time-varying feedback control, which explicitly depends upon time variables were

presented in [67]. In [67, 68], the smooth feedback laws are constructed by averag-

ing and saturation function. A smooth feedback law with asymptotic convergence

rate has been presented in [69].

In [70], linear controllers were constructed, which stabilize a nonholonomic sys-

tem on the nominal trajectory. For a construction of “nominal trajectory”, the

asymptotic stabilizing scheme has been presented in [71]. A smooth time periodic

feedback laws were generated by using Pomet’s method to construct a suitable
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Lyapunov function was presented in [69]. Furthermore, [72] demonstrated that

the nonholonomic system could not be steered to a neighborhood in desired time

by smooth time-periodic feedback laws. Thus, there is a need for faster conver-

gence rate laws, which necessarily be non-smooth. More detailed information on

convergence rate and the smoothness of feedback law can be found in [73].

For the stabilization problem of dynamic nonholonomic systems, a time-periodic

feedback law is proposed from kinematic controllers using integrator backstepping

techniques in [6]. The stabilization of a subclass of nonholonomic systems via a

time-varying feedback control has been discussed in [64]. In [74, 75], knife-edge,

underactuated rigid spacecraft, and free-floating multi-body spacecraft have been

stabilized by the time-varying controller.

2.1.2.3 Hybrid Feedback Control

The hybrid feedback control is the combination of discrete time and continuous

time features. As presented in [76], the hybrid controller is based on switching

between low-level continuous-time control laws. An excellent introduction to the

hybrid controllers for stabilization of the nonholonomic system like a mobile robot

was given in [77]. The hybrid controllers for attitude stabilization of an underac-

tuated rigid spacecraft have been proposed in [78]. Exponential stabilization of

these systems in a chained form by using a hybrid controller was first presented

in [79]. A more general hybrid controller, which is applicable to a large class of

nonholonomic systems was proposed in [80, 81].

2.2 Findings of the Literature Survey

The literature was reviewed in two directions (open loop control and closed loop

control) to cover majority aspects of the stabilization problem of nonholonomic

systems. It also emphasizes to establish the significance of stabilization of such

systems in the research field and in robotic industry, where new contributions
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could be made. The bulk of this literature review was on the evaluation of the

different methodologies used in the stabilization of nonholonomic systems. It

also helps us to identify the appropriate methods for investigating the research

questions raised in the previous chapter. The researchers are striving in all the

areas and phases to explore novel techniques to stabilize such systems. In the field

of stabilization or tracking control of such systems, it can be concluded that there

is no single suitable technique available for the smooth static feedback stabilization

of nonholonomic systems. The researchers are relying on the discontinuous and

time-varying methods, which globally stabilize such systems. Furthermore, hybrid

techniques are also being applied to address the stabilization problem. Following

are the list of difficulties or research gap in existing literature, which help to clarify

the scope or the objective of this dissertation.

• Existing methods, such as feedback stabilization and motion planning used

diffeomorphic state transformation, which converts the system into either

chained form or power form [2, 11, 82, 83]. These transformations are usually

defined locally.

• Many time-varying feedback approaches relay on the construction of Lya-

punov function [3, 34, 84], which is not easy to find.

• In asymptotic stabilization, time-varying controller does not provide expo-

nential convergence [55].

• One disadvantage of robust techniques like sliding mode control, is that it

produces unwanted oscillation known as chattering [85].

• Consequently, approaches for the design of robust control laws for nonholo-

nomic systems are less known. Open loop approaches are fewer likely to

produce solutions, which are not robust with respect to modeling uncertain-

ties and sensor error as compared to feedback approaches.
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2.3 Summary

In this chapter, the stabilization problem of nonholonomic systems was presented

to pinpoint the gaps and limitations in existing literature. Regardless of particular

forms and techniques, a variety of control techniques are available which have their

pros and cons as mentioned above. Furthermore, when we reviewed the literature

on the stabilization of nonholonomic systems, almost all the methods which have

been applied to the stabilization problem has certain assumptions. Consequently,

based on the review of nonholonomic systems, a complete framework is in dire

need to cope with the constraints such that these systems can be asymptotically

stabilized at origin or their equilibrium points.
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Theoretical Foundation

In this chapter, theoretical foundation and the techniques to solve the stabilization

problem of nonholonomic systems are discussed in detail. The terminologies and

research techniques that are helpful to develop the proposed methodologies are

explained with the help of simulation examples.

3.1 The Constraints Model of Nonholonomic Sys-

tems

Nonholonomic systems belong to a special class of nonlinear systems having non-

integrable constraints on their velocities. Such constraints may arise in a number

of ways; few examples of nonholonomic systems having constraints are given below:

Wheeled Mobile Robots:

The drive mechanisms of wheeled mobile robot results in constraints on the instan-

taneous velocities. For example, a wheeled robot with two forward drive wheels

and two back wheels is often required to move without slipping sideways.

Hoping Robots:

In case of hoping robots, the constraints arise because of angular momentum

conservation, as there is no external force applied on such a system.

21
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Space Robotics:

For unmanned aerial vehicle (UAV), the thrust is always aligned with the longi-

tudinal direction of the body, so there is no slippage.

3.1.1 Linear Velocity Constraints and their Integrability

Most of the velocity constraints mentioned above have the form of linear con-

straints expressed by the following system of equation:

ai(q)q̇ = 0, q ∈ <n, i = 1, ...., k (3.1)

where the vector q ∈ Rn describes the configuration of the system to be controlled.

The following example illustrates how linear velocity constraints can be written in

the form of Eq. (3.1).

Front Wheel Car Model:

Consider the front wheel drive car model as shown in Fig. 3.1. The front tires

can spin about the vertical axes while the rear tires are aligned with the car. Let

q =
(
ψ x y θ

)T
be the configuration vector, where, ψ is the directing angle w.r.t

the car body, (x, y) is the position of the rear wheels, θ is the angle of the car body

w.r.t the horizontal and l is the distance between the front and the rear wheels.

The constraints on this system are that the wheels can only move in a perpendicu-

lar direction to the axle connecting the wheels. The velocity is always restricted to

wheels aligned with the heading angle, as no slippage is allowed. The constraints

for the front and rear wheels can be expressed by making the velocities of the

wheels (sideways) to zero. The velocity of the front wheels perpendicular to the

direction is sin(θ + ψ) ẋ − cos(θ + ψ) ẏ − l cosψθ̇. = 0, and velocity of the back

wheels perpendicular to their direction is sin θ ẋ − cos θ ẏ = 0. These constraints
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x

y

θ

ψ

Figure 3.1: A front wheel car model

can be thus written as:

sin θ ẋ− cos θ ẏ = 0 or aT1 (q)q̇ = 0 (3.2)

sin(θ + ψ) ẋ− cos(θ + ψ) ẏ − l cosψθ̇ = 0 or aT2 (q)q̇ = 0 (3.3)

where

aT1 (q) = [ 0 sin θ − cos θ 0],

aT2 (q) = [0 sin(θ + ψ) − cos(θ + ψ) −l cosψ ]

or in matrix form:

AT (q) =

 sin θ − cos θ 0 0

sin(θ + ψ) − cos(θ + ψ) −l cosψ 0

 (3.4)

The constraints are said to be integrable if for each q there exist scalar functions

hj : N(q)→ R, j = 1, 2, ...., k, ( defined on some neighbor hood N(q) of q), such

that Eq. (3.1) can be written as:
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d

dt
hj(q) = ∇hj(q)q̇ = 0, j = 1, 2, ..., k, for q ∈ N(q) (3.5)

where ∇ denotes the gradient of hj. Integrating Eq. (3.5) yields:

hi(q) = 0 j = 1, 2, ..., k, q ∈ N(q) (3.6)

It follows that integrable constraints can be substituted by algebraic constraints

which do not involve velocities. The constraints are said to be non-integrable

if they cannot be written as algebraic constraints involving only configuration

variables q. Integrable constraints are known as holonomic constraints and non-

integrable constraints are called nonholonomic constraints.

3.2 The Kinematic Model of Nonholonomic Sys-

tems

The nonholonomic systems have restricted motion in a particular direction due to

the constraints. Because of these constraints, we have to discuss the directions

in which movement is permitted, instead of discussing the directions in which

movement is not allowed. Consider the problem of parallel parking of the car,

making a path q(t) ∈ <n between given points q(0) = q0 to q(tf ) = qf , in presence

of constraints AT (q) q̇ = 0.

The kinematic constraint AT (q) q̇ = 0 essentially implies that the motion of config-

uration are in the null space of constraints AT (q) i.e., q̇ ∈ null{AT(q)}, then there

exists n − k smooth linearly independent vector fields gi(q), i = 1, 2, ..., n − k

such that:

null{AT(q)} = ∆(q) = span{g1(q) , g2(q), ..., gn−k(q)} (3.7)
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It is now clear that the nonholonomic constraints aTi (q) q̇ = 0 are equivalent to the

statement that q̇ ∈ ∆(q) = span{g1(q) , g2(q), ..., gn−k(q)}, which requires that:

q̇ = g1(q)u1 + g2(q)u2 + . . .+ gn−k(q)un−k (3.8)

with coefficients u1, u2, ..., un−k generally depend on time t, as q and q̇ vary with

time. The above equation represents a control system, in which q is the state

vector and u1, u2, ..., un−k are the control inputs. Assuming that the velocity q̇

can be actuated directly, the path planning problem becomes as, finding the control

u(t) =
[
u1(t) u2(t) · · ·un−k(t)

]T
∈ <n−k which steers q0 to qf . Therefore, the

kinematic model of nonholonomic systems can be written as:

q̇ = g1(q)u1 + g2(q)u2 + . . .+ gn−k(q)um =
m∑
i=1

gi(q)ui (3.9)

The constraints on the front wheel car model are:

AT (q) q̇ = 0

where

AT (q) =

 0 sin θ − cos θ 0

0 sin(θ + ψ) − cos(θ + ψ) −l cosψ


Then the null space of AT (q) is given by:

null {AT (q) } = span{g1(q), g2(q)}

where, g1(q) =
[

1 0 0 0
]T

& g2(q) =
[

0 cos θ sin θ 1
l

tanψ
]T

.

Therefore the kinematic model of front wheel car can be written as:

q̇ =


ψ̇

ẋ

θ̇

ẏ

 =


1

0

0

0

u1 +


0

cos θ

sin θ

1
l

tanψ

u2
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3.3 Important Features of Nonholonomic Sys-

tems

In [1], the author proved that nonholonomic systems cannot be stabilized by time-

invariant feedback control laws. The exact linearization of nonholonomic systems

is impossible. Similarly, point-wise linearization also fails, because the system is

not controllable at the origin.

The important features of the nonholonomic systems are explained as:

1. The number of inputs is always less than the number of states variable, and

hence these systems are similar to underactuated mechanical systems.

2. The linearization of Eq. (3.9) at any point is uncontrollable.

3. The Eq. (3.9) has no equilibrium point i.e giving u1 = ..... = um = 0 results

in ẋ = 0.

4. The controllability of nonholonomic systems can be guaranteed by Chow’s

theorem [86]:

span{gi(q), gj(q), . . . , [gi, gj](q), . . .} = Rn

Due to these features, nonholonomic systems are the special class of nonlinear

system and the problem of stabilization of nonholonomic systems becomes a chal-

lenging task. In this chapter, an introduction to different approaches have been

explained to solve this problem e.g., backstepping, adaptive backstepping, sliding

mode control, super twisting sliding mode control, and adaptive integral sliding

mode control.
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3.4 Backstepping and Adaptive Backstepping

In control system theory, backstepping became a useful tool for the design of con-

trol laws that ensure the stability of a special class of nonlinear systems. A design

of this technique is made up of straightforward fundamental steps. This technique,

start with the first state variable with the maximum number of integrations and

“step back” towards the controller. The whole procedure is completed when we

reach the final control. That is why this process is known as “backstepping”. The

“backstepping” procedure gives us a method for the stability of the system in a

“strict-feedback form”. Backstepping itself cannot solve the uncertainty problem.

The control difficulties caused by these uncertainties can be removed using adap-

tive method along with the backstepping which is known as adaptive backstepping.

The adaptive backstepping procedure is illustrated by the following example.

Example:

Consider the following system:

ẋ1 = x2 (3.10a)

ẋ2 = x3 + θ (3.10b)

ẋ3 = u (3.10c)

Where θ is unknown. Let θ̂ be the estimate of θ and θ̃ = θ − θ̂ be the parameter

error. By Eq. (3.10a): ẋ1 = x2. Consider x2 as a virtual control and λ1 as

stabilizing function, then the error variable is: z1 = x2−λ1. Eq. (3.10a) becomes:

ẋ1 = z1 + λ1 (3.11)

Consider the Lyapunov function: V0 = 1
2
x21 for computing the stabilizing function.

Then

V̇0 = x1ẋ1 = x1(z1 + λ1) (3.12)
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Choose λ1 = −x1. Then

V̇0 = −x21 + x1z1 (3.13)

The term x1z1 will be canceled in the next step. Eq. (3.11) becomes:

ẋ1 = z1 − x1 (3.14)

Now z1 = x2 + x1 =⇒ ż1 = ẋ2 + ẋ1 = x3 + θ̂ + θ̃ + z1 − x1. Consider x3

state as virtual control and λ2 as stabilizing function, the error variable becomes

z2 = x3 − λ2. Then

ż1 = z2 + λ2 + θ̂ + θ̃ + z1 − x1 (3.15)

Consider the Lyapunov function: V1 = V0 + 1
2
z21 for computing the stabilizing

function λ2. Then

V̇1 = V̇0 + z1ż1 = −x21 + x1z1 + z1(z2 + λ2 + θ̂ + θ̃ + z1 − x1)

= −x21 + z1{z2 + λ2 + θ̂ + θ̃ + z1} (3.16)

Choose λ2 = −2z1 − θ̂, Then

V̇1 = −x21 − z12 + z1z2 + z1θ̃ (3.17)

The term z1z2 will be canceled in the next step. Eq. (3.15) becomes:

ż1 = z2 − z1 − x1 + θ̃ (3.18)

and, z2 = x3 − λ2 = x3 + 2z1 + θ̂ =⇒ ż2 = ẋ3 + 2ż1 +
˙̂
θ

ż2 = u+ 2(z2 − z1 − x1 + θ̃) +
˙̂
θ (3.19)
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Consider the Lyapunov function V2 = V1 + 1
2
z22 + 1

2
θ̃2. Then

V̇2 = V̇1 + z2ż2 + θ̃ ˙̃θ = V̇1 + z2{u+ 2(z2 − z1 − x1 + θ̃) +
˙̂
θ}+ θ̃ ˙̃θ

= −x21 + z1z2 − z12 + z1θ̃ + z2{u+ 2z2 − 2z1 − 2x1 + 2θ̃ +
˙̂
θ}+ θ̃ ˙̃θ

= −x21 − z21 + z2{2z2 − z1 − 2x1 +
˙̂
θ + u}+ θ̃{ ˙̃θ + z1 + 2z2} (3.20)

Choose ˙̃θ = −z1 − 2z2 − θ̃, and u = −3z2 + z1 + 2x1 − ˙̂
θ. Then V̇2 becomes:

V̇2 = −x21 − z21 − z22 − θ̃2 (3.21)

Eq. (3.19) becomes, ż2 = −z2 − z1 + 2θ̃. The closed loop systems becomes:

0 2 4 6 8 10
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,z
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Figure 3.2: Closed loop response of system: (x1, z1, z2) = (1, 2, 3)

ẋ1 = z1 − x1 (3.22a)

ż1 = z2 − z1 − x1 + θ̃ (3.22b)

ż2 = z2 − z1 + 2θ̃ (3.22c)

˙̃θ = −z1 − 2z2 − θ̃ (3.22d)

˙̂
θ = − ˙̃θ (3.22e)

Figure 3.2 shows the response of the closed loop systems.
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3.5 Sliding Mode Control

Among the well-known nonlinear control techniques, Sliding Mode Control (SMC)

has gained considerable attention in the last few decades. It provides remarkable

features like accuracy, robustness and easy tuning capability and implementation.

The control design process in SMC can be divided into two parts.

i. Design of sliding surface in such a way that the desired response of the system

is achieved.

ii. Selection of suitable control law, such that in the presence of external dis-

turbances and model uncertainties, it drags the sliding variable to zero.

Design of the sliding surface is established by keeping in view the design speci-

fications of sliding motion. After designing the sliding surface, a suitable law is

needed, to attract the system states towards the switching surface [61]. Closed

loop response in SMC consists of the following phases:

i. A reaching phase in which plant trajectories are driven to the sliding mani-

fold.

ii. A sliding phase in which plant trajectories slides to the origin.

The main advantage of an SMC is its robustness against external disturbances

and parameter variations. To stabilize the system, the gain is kept higher than

the norm of external disturbances and parametric variations. The switching na-

ture results in the undesirable phenomena known as chattering in SMC. Different

Higher-Order Sliding Mode (HOSM) control techniques are also adopted for the

elimination of the chattering. However, in the case where system dynamics are

not known, an observer-based SMC law is formulated to stabilize the system.

The first main advantage of SMC is its dynamic behavior, which is due to the suit-

able selection of the sliding function. Secondly, for some particular uncertainties,

closed-loop system response becomes insensitive. The principle of Sliding Mode
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(SM) can be extended to the model which has disturbances, parameter uncertain-

ties, and bounded nonlinearities. The control strategies such as SMC of uncertain

systems were briefly discussed in [87]. The main principles of SMC are outlined

in the important references regarding control of mechanical systems [88–90] and a

table is also given in this regard. This comparison shows that sliding mode control

strategies present an efficient way to control mechanical systems.

Table 3.1: Problems in the control of mechanical systems, and solutions pro-
posed by smc [91].

Problem in Control of Mechanical
Systems

Solutions proposed by SMC

Mechanical systems are nonlinear and
strongly coupled.

Sliding mode control offers decou-
pling and order reduction.

Mechanical systems with unknown pa-
rameters, e.g., friction coefficients,
loads.

Sliding mode control shows robust-
ness against parameter uncertain-
ties and unknown disturbances.

3.5.1 Sliding Mode Control Design Procedure

Consider the following nonlinear system:

ẋ = f(x) + g(x)u (3.23)

where x ∈ <n is the state vector, f(x) ∈ <n and g(x) ∈ <n are the vector fields,

where u ∈ < represents the control input. The sliding surface s(x) is chosen as:

s(x) = cTx (3.24)

where c ∈ Rn. Then

ṡ(x) = cT ẋ (3.25)

or
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ṡ(x) = cT (f(x) + g(x)u)

ṡ(x) = cTf(x) + cTg(x)u
(3.26)

The reaching law for Eq. (3.26) is defined in such a way that it ensures the

establishment of sliding mode.

ṡ(x) = −Msign(s(x)) (3.27)

where M is selected high as compared to the magnitude of disturbances and un-

certainties. From Eq. (3.26), the control law can be define as:

u = −[cTg(x)]−1[cTf(x) +Msign(s(x))] (3.28)

or we can write the control law as:

u = −
[
cTg(x)

]−1
cTf(x)− [cTg(x)]−1Msign(s(x)) (3.29)

where [cTg(x)] 6= 0, the control law has two components, one is the equivalent

control component, and other is the discontinuous control component. The distur-

bances and uncertainties always exist in a practical system, and in such situation,

the discontinuous control guarantees robustness. Figure. 3.3 shows the reaching

phase (RP), sliding mode (SM) and the sliding surface (SS).

Figure 3.3: Phases of system motion in smc.
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3.5.2 Chattering Phenomena

In sliding mode control, the control signal exhibits high-frequency oscillation called

chattering. The chattering phenomena have negative effect on real-world applica-

tions and may lead to large unwanted oscillations that degrade the performance

of the system.

Figure 3.4: The chattering phenomena.

To avoid chattering phenomena, various solutions to this problem have been pro-

posed [92, 93]. A new design scheme based on sliding variable was presented in

[94]. In [95], a describing function approach was developed for chattering analysis

on the system in the presence of the unmodeled dynamics. Another way to re-

duce chattering effect is by using second-order sliding mode (SOSM) and higher

order sliding mode (HOSM) control techniques. Figure. 3.4 shows the chattering

phenomena.

3.5.3 Integral Sliding Mode Control

In Integral Sliding Mode Control (ISMC), the reaching phase is eliminated and

the robustness of the motion in the whole state space is guaranteed [96–98]. The

ISMC consists of the nominal control input to stabilizes the nominal system and

a discontinuous control input to rejects the uncertainties.
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Consider the nonlinear system:

ẋ = f(x) +Bu+ h(x, t) (3.30)

where x ∈ <n, u ∈ <m are states and input vectors, where m < n, f(x) is the

function having nonlinearities in the states, B ∈ <n∗m is the input gain with

span(B) = m. The matched uncertainty is represented by h(x, t), such that

h(x, t) ∈ span(B), or in other words we can say h(x, t) = Buh. Also h(x, t) is

assumed to be bounded. The controller for integral sliding mode control can be

expressed as:

u = u0 + u1 (3.31)

where u0 ∈ <m is the nominal controller and u1 ∈ <m has two parts u1 = u1eq +

u1dis. u1eq is designed in such a way that it rejects the disturbance h(x, t) and

u1dis = ksign(s). By putting (3.31) into (3.30) we get:

ẋ = f(x) +Bu0 +Bu1 + h(x, t) (3.32)

The sliding surface is defined as:

s = s0(x) + z (3.33)

where s ∈ <m is the sliding surface, s0 ∈ <m is the nominal sliding surface and z ∈

<m is the integral term chosen in such a way that z(0) = −s0(0). Differentiating

(3.33) w.r.t time as:

ṡ = ṡ0(x) + ż

ṡ =
∂s0
∂x

ẋ+ ż

ṡ =
∂s0
∂x

[f(x) +Bu0 +Bu1 + h(x, t)] + ż (3.34)

To achieve the goal of the integral sliding mode, the ideal and nominal part tra-

jectory x0(t) must be equal to integral sliding mode trajectory x(t), or in another

way x(t) = x0(t). To fulfill the above-mentioned criteria, the equivalent control
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u1(t) represented by u1eq(t) must fulfill the conditions as follows.

Bu1eq(t) = −h(x, t) (3.35)

The equivalent control can best describe the system state trajectories. The integral

term z can be calculated using (3.35) into (3.34) as:

ṡ =
∂s0
∂x

[f(x) +Bu0 +Bu1 + h(x, t)] + ż

0 =
∂s0
∂x

[f(x) +Bu0] + ż

(3.36)

Eq. (3.36) hold true if the following condition satisfied.

ż = −∂s0
∂x

[f(x) +Bu0] (3.37)

To ensure s = 0 the initial condition for z(0) should be set accordingly, such that

the sliding mode will exist right from the beginning. The system dynamics in

Integral Sliding Mode (ISM) is:

ẋ = f(x) +Bu0. (3.38)

The system in Eq. (3.38) has no disturbance.

3.5.4 Higher Order Sliding Mode Control

The HOSM are popular for excellent performance and ease of implementation.

The SOSM and HOSM control techniques reduce chattering effects [99–101]. Let

r be sliding order of the system, and s be sliding variable, then higher order sliding

mode ensures that (r − 1)th derivatives become zero of the sliding variable, i.e.,

s = ṡ = s̈..... = s(r−1) = 0 (3.39)

The SOSM algorithms, e.g., super twisting controller and the suboptimal algo-

rithm were first time derived in [102, 103]. In standard or first order SMC, ṡ is
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discontinuous, whereas, in SOSM s̈ is discontinuous and s is continuous. The chat-

tering effect is minimized by finding a trade-off between disturbance rejection and

the magnitude of the controller gain. The SOSM controller ensures convergence

of ṡ = 0 within a finite time.

3.5.4.1 Super Twisting Algorithm

The super twisting algorithm [104] is a particular form of SOSM that gives finite

time convergence. The twisting algorithm can be written as:

u = −λ1|σ|1/2sign(σ) + w

ẇ = −λ2sign(σ)
(3.40)

3.5.4.2 Smooth Super Twisting Algorithm

The smooth super twisting algorithm smoothens the chattering effect and does not

require information regarding derivative of s. A smooth super twisting algorithm

can be written as:

u = −λ1|σ|
ρ−1
ρ sign(σ) + w

ẇ = −λ2|σ|
ρ−2
ρ sign(σ)

(3.41)

In real-world applications, sliding mode control often causes high switching fre-

quencies which results in a wear and tear of actuators. The super twisting algo-

rithm presents an efficient solution to this challenge. Another strategy for reduc-

ing chattering is to use asymptotic observers. However, this approach increases

complexity as compared to conventional sliding mode. For an efficient chattering

reduction, a twisting algorithm and super twisting algorithm are used.

Example 3.1. Consider the second order non linear system with matched distur-

bance as shown below in Eq. (3.42):

ẋ1 = x2

ẋ2 = β sin(x1) + u+ d(x1, x2, t)
(3.42)
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Table 3.2: Result summary of third order system subject to chattering, robust-
ness, and complexity [91]. The column symbols (+) represents low, moderate

(++), and high (+++).

Approach Chattering
reduction

Robustness Design
complexity

Sliding mode control + +++ +

Observer-based control +++ +++ +++

Hybrid control ++ + ++

Second order sliding mode control ++ + +++

Twisting algorithm +++ ++ +++

Super twisting algorithm +++ ++ ++

where x1 = x and x2 = ẋ represent the system states, u is the control input and

d(x1, x2, t) represents the disturbance term with known upper bound |d(x1, x2, t)| ≤

D. Whereas, β represents the physical parameter of the system.

The objective is to define the control input u in such a way that the overall states

x1 and x2 will be asymptotically stabilized.

A. Conventional Sliding Mode Control:

Suppose we want the nonlinear system (3.42) to behave like a linear system with

the desired dynamics given by the following homogeneous linear time-invariant

differential equation:

ẋ1 + cx1 = 0 (3.43)

where c > 0 is a design constant. In the first design step, we define the following

sliding surface:

σ = σ(x1, x2) = x2 + cx1 (3.44)

Next, to achieve the desired dynamics in (3.44), in the presence of uncertain-

ties/disturbance choose:

σ = x2 + cx1 = 0 (3.45)
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The derivative of the sliding variable σ in (3.44) is represented as:

σ̇ = cx2 + β sin(x1) + u+ d(x1, x2, t) (3.46)

By defining the Lyapunov function for system (3.44):

V =
σ2

2
(3.47)

Taking the derivative of V we get:

V̇ = σσ̇ = σ(cx2 + β sin(x1) + u+ d(x1, x2, t)) (3.48)

Let u = −cx2 − β sin(x1)− Γsign(σ), and substituting it in (3.48) we obtain:

V̇ = σ(−Γsign(σ)+d(x1, x2, t)) = −σΓsign(σ)+σd(x1, x2, t) ≤ −σΓsign(σ)+|σ|D

(3.49)

where Γ > D is a design constant and sign(x) is defined as:

sign(x) =

 1 if x > 0

−1 if x < 0

(3.50)

or Eq. (3.49) is represented as:

V̇ ≤ −|σ|Γ + |σ|D = −|σ|(Γ−D) (3.51)

which can be written as:

V̇ ≤ −|σ|(Γ−D) = − γ√
2
|σ| (3.52)

Simulation Results:

Fig. 3.5 - Fig. 3.7 show simulation results with controller parameters γ = 1,

c = 1, and system parameter β = 1 for initial condition x1(0) = 1 and x2(0) = 2,

disturbance term D(x1, x2, t) = cos(2πft), f = 0.5cycles/sec.
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Figure 3.5: Closed loop response of system states for initial condition:
(x1, x2) = (1, 2)
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Figure 3.6: The sliding surface
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Figure 3.7: The control effort

As shown in the above simulation results, the designed conventional SMC law

suffers from the practical issue of chattering.
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B. Second Order Sliding Mode Control - The Super-Twisting Algorithm

(STA):

To overcome the problem of Chattering, second order sliding mode control was

introduced as an effective solution. We consider the following second order sliding

based controller called the Super-Twisting Algorithm.for the example case.

u = −λ1|σ|1/2sign(σ) + w

ẇ = −λ2sign(σ)
(3.53)

where σ is the same sliding variable defined in (3.44) and λ1 and λ2 are design

constants for the controller gains.

Simulation Results:

Fig. 3.8 - Fig. 3.10 show simulation results with controller parameters λ1 = 5,

λ2 = 8, c = 1, and system parameter β = 1 for initial condition x1(0) = 1 and

x2(0) = 2.
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Figure 3.8: Closed loop response of system states for initial condition:
(x1, x2) = (1, 2)
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Figure 3.9: The sliding surface
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Figure 3.10: The control effort

We note from simulation results that the Super-Twisting Controller has all the

properties which were present in the conventional sliding mode control with the

extra remarkable property that now the control is smooth and the undesired high

frequency chattering in the control action is now minimized.

C. Second Order Sliding Mode Control - The Smooth Super-Twisting

Algorithm (SSTA):

The Super-Twisting Algorithm significantly attenuate the chattering phenomenon

and maintains the accuracy of conventional sliding mode control. To smooth the

control action the following second order sliding based controller called the Smooth
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Super-Twisting Algorithm (SSTA) is considered for the example case.

u = −λ1|σ|
ρ−1
ρ sign(σ) + w

ẇ = −λ2|σ|
ρ−2
ρ sign(σ)

(3.54)

where σ is the same sliding variable defined in (3.44) and λ1, λ2, and ρ are design

constants for the controller gains. For the special case of ρ = 2, the SSTA becomes

STA.

Simulation Results:

Fig. 3.11 - Fig. 3.13 show simulation results with controller parameters λ1 = 10,

λ2 = 15 , ρ = 4, c = 1, and system parameter β = 1 for initial condition x1(0) = 1

and x2(0) = 2.
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0

0.5

1

1.5

2

T ime(sec)

x
1
,
x
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x1
x2

Figure 3.11: Closed loop response of system states for initial condition:
(x1, x2) = (1, 2))

We note that SMC, being first order, drives only σ to zero and σ̇ oscillates between

two constant values, +0.707 and −0.707 in this case. On the other hand, STA and

SSTA both second order, drive both σ and σ̇ to zero.

Example Summary:

1. From the simulation results, we can deduce that sliding mode control tech-

niques are robust against parametric uncertainties and external disturbances.
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Figure 3.12: The sliding surface
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Figure 3.13: The control effort

2. The undesired chattering phenomenon present in the conventional sliding

mode control can be significantly attenuated with second-order STA and fur-

ther smoothened by SSTA.

3.6 Summary

This chapter provides an overview of the kinematic model of a nonholonomic

system. The concept of backstepping, adaptive backstepping, sliding mode control,

integral sliding mode control, second order and higher order sliding mode control

techniques are presented in brief and coherent way to establish interest to utilize

these techniques for the stabilization of nonholonomic systems. This chapter laid

the foundation for the upcoming chapters of this dissertation.



Chapter 4

Stabilization of Nonholonomic

Systems: Adaptive Backstepping

Technique

4.1 Introduction

In the present chapter, we propose adaptive backstepping based design technique

for nonholonomic systems with drift. The rigid body and the extended nonholo-

nomic double integrator model belongs to this class of nonholonomic systems. The

Brockett double integrator is considered to be a benchmark nonholonomic system.

Research has shown that the extension of Brocket double integrator called the

Extended Nonholonomic Double Integrator (ENDI) captures many properties of

nonholomic systems with drift. See for instance, (Morgansen and Brockett [105];

Morgansen [106]; Aguiar et al. [107]; Aguiar and Pascoal [108]).

The kinematic model of nonholonomic systems with drift is represented as:

ẋ = f(x) +
m∑
i=1

gi(x)ui, x ∈ <n (4.1)

44
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Our objective is to construct the stabilizing control algorithm for the class of

systems represented by (4.1). The model of the rigid body and extended nonholo-

nomic double integrator can be described as:

ẋ = f(x) + g1(x)u1 + g2(x)u2 (4.2)

In order to stabilize system (4.2), an adaptive backstepping based controller is

proposed, which yields asymptotic stabilization of the closed-loop system. This is

achieved by first transforming the original system into a new system that can be

made asymptotically stable. After the stabilization of the transformed system, the

stability of the original system can be easily established. Numerical results show

the effectiveness of the proposed control algorithm when compared to existing

methods.

4.2 The Control Problem and Preliminaries

In the presence of suitable feedback strategy, a control law is designed such that

as t→∞, x(t; 0, x0)→ xdes from any initial condition x0. It is further supposed

that xdes = 0 can be achieved by suitable transformation of the system.

4.3 The Proposed Control Algorithm

Consider the system:

ẋ = f(x) + g1(x)u1 + g2(x)u2
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where

f(x) =



x2

x3
...

xn−2

0

0

h(x)


, g1(x) =



0

0
...

0

1

0

0


, & g2(x) =



0

0
...

0

0

1

0


which can be written as:

ẋ1 = x2

ẋ2 = x3
...

ẋn−3 = xn−2

ẋn−2 = u1

ẋn−1 = u2

ẋn = h(x)

(4.3)

By choosing u1 = xn−1 and u2 = xn + θφ(x1), the system (4.3) is written as:

ẋ1 = x2

ẋ2 = x3
...

ẋn−3 = xn−2

ẋn−2 = xn−1

ẋn−1 = xn + θφ(x1)

ẋn = h(x)

(4.4)

Now with the help of below-mentioned steps, the system (4.4) can be transformed

from x→ z domain and then back from z → x by using inverse transformation.

Step 1: Firstly, the system (4.4) is transformed from the x to z domain with the

help of time-varying transformation: z = T (x, θφ(x1)). Where θ is some unknown
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parameter estimated adaptively and φ(x1) is some known function satisfying the

condition φ(0) = 0. Let θ̂ be the estimate of θ and θ̃ = θ − θ̂ be the estimation

error. Following are the properties of the proposed transformation:

i. z = T (x, θφ(x1)) = Ax+Bθ̂φ(x1), where A ∈ <n×n and B ∈ <n×m are some

constant matrices.

ii. x = T̂ (z, θφ(x1)) = Âz + B̂θ̂φ(x1), where, AÂ = I i.e T̂ (z, θφ(x1)) =

inv[T (x, θφ(x1))].

iii. ż = Mz+Nθ̃φ(x1) is the transformed dynamical system, where M represents

the negative definite matrix.

Step 2: Secondly, the adaptive law for θ̃ is chosen in such a way, that yields

asymptotic stabilization of the transformed system. The Lyapunov function is

chosen as:

V (z, θ̃) =
1

2
zT z +

1

2
θ̃T θ̃

Step 3: Finally, after the stabilization of the transformed system, the system

(4.4) is stabilized at the origin.

x = T̂ (z, θφ(x1)) = Âz + B̂θ̂φ(x1)→ 0 as z→ 0 , θ̂φ(x1)→ 0

Now the proposed algorithm is applied to two nonholonomic systems with drift:

a rigid body and an extended nonholonomic double integrator system.

4.4 The Rigid Body

A rigid body in classical mechanics is an idealized model that starts with a non-

deformable body. The body may have a continuous mass distribution, or it may

be a system of discrete mass points (e.g., atoms, molecules). Non-deformability

means that any two points of the body are always the same distance apart from
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external forces. Deformations such as deflection, compression, elongation or in-

ternal vibrations are thus excluded. The stabilization of such systems poses a

challenging problem for researchers and scientists in the control domain.

4.4.1 Mathematical Model of the Rigid Body

The rigid body [109] has three states and two inputs and it mathematical model

can be written as:

ẋ = f(x) +
2∑
i=1

gi(x)ui (4.5)

where x ∈ <3 is the state vector and u ∈ <2 is the control input vector.

f(x) =


J23x2x3

J31x3x1

J12x1x2

 , g1(x) =


1

0

0

 , g2(x) =


0

1

0

 (4.6)

Also J23 = J2−J3
J1

, J31 = J3−J1
J2

, J12 = J1−J2
J3

.

where J1, J2 and J3 are the primary moment of inertia respectively.

For controllability, the Lie Algebra Rank Condition (LARC) condition has to be

satisfied. For this, we compute:

g3(x) = [f, g1](x) =


0

−J31x3
−J12x2



g4(x) = [f, g2](x) =


−J23x3

0

−J12x1
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g5(x) = [f, g4](x) =


0

0

−1


we conclude that LARC condition is satisfied. span{g1, g2, g5}(x) = <3 ∀ x ∈ R3,

so the system is controllable. The rigid body model (4.6) can be expressed as:

ẋ1 = J23x2x3 + u1 (4.7a)

ẋ2 = J13x1x3 + u2 (4.7b)

ẋ3 = J12x1x2 (4.7c)

4.4.2 Construction of the Transformation

By above system, let

u1 = x2 − J23x2x3

u2 = x3 − J31x3x1 + θφ(x1)
(4.8)

Then the above system becomes:

ẋ1 = x2 (4.9a)

ẋ2 = x3 + θ̂φ(x1) + θ̃φ(x1) (4.9b)

ẋ3 = J12x1x2 (4.9c)

Consider Eq. (4.9a): ẋ1 = x2. Consider x2 state as a virtual input and α1 as a

stabilizing function, then the error variable z1 = x2 − α1. Eq. (4.9a) becomes:

ẋ1 = z1 + α1 (4.10)

Consider the Lyapunov function V0 = 1
2
x21 for computing the stabilizing function

α1. Then:

V̇0 = x1ẋ1 = x1(z1 + α1)
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Choose α1 = −x1, then V̇0 becomes:

V̇0 = −x21 + x1z1 (4.11)

The term x1z1 will be canceled in the next step. Eq. (4.9a) becomes:

ẋ1 = z1 − x1 (4.12)

Consider (4.9b) as: ẋ2 = x3 + θ̂φ(x1) + θ̃φ(x1). Consider x3 state as a virtual

input and α2 as a stabilizing function, then the error variable is: z2 = x3 − α2.

Eq. (4.9b) becomes:

ẋ2 = z2 + α2 + θ̂φ(x1) + θ̃φ(x1) (4.13)

and z1 = x2 − α1 = x2 + x1 ⇒ ż1 = ẋ2 + ẋ1

ż1 = z2 + α2 + z1 − x1 + θ̂φ(x1) + θ̃φ(x1) (4.14)

Consider the Lyapunov function V1 = V0 + 1
2
z21 for computing the stabilizing

function α2. Then:

V̇1 = V̇0 + z1ż1 = x1z1 − x12 + z1{z2 + α2 + θ̂φ(x1) + θ̃φ(x1) + z1 − x1}

= −x12 + z1{z2 + x2 + θ̂φ(x1) + z1}+ θ̃φ(x1)z1 (4.15)

Choose α2 = −2z1− θ̂φ(x1), then V̇1 = −x21 + z1z2− z21 + θ̃φ(x1)z1. The term z1z2

will be canceled in the next step. Eq. (4.9c) becomes:

ż1 = z2 − z1 − x1 + θ̃φ(x1) (4.16)

The stabilizing function α2 can be written as:

α2 = −2z1 − θ̂φ(x1) = −2z1 − v + θ̂



Stabilization via Adaptive Backstepping 51

where v = θ̂(φ(x1) + 1) and z2 = x3 − α2 = x3 + 2z1 + v − θ̂

ż2 = ẋ3 + 2ż1 + v̇ − ˙̂
θ = J12x1x2 + 2z2 − 2z1 − 2x1 − 2θ̃φ(x1) + v̇ − ˙̂

θ (4.17)

Consider the Lyapunov function:

V2 = V1 +
1

2
z22 +

1

2
θ̃2 (4.18)

V̇2 = V̇1 + z2ż2 + θ̃ ˙̃θ = −x21 + z1z2 − z21 + z2{J12x1x2 + 2z2 − 2z1 − 2x1 + v̇ − ˙̂
θ}

+ θ̃{(z1 − 2z2)φ(x1) + ˙̃θ} (4.19)

Choose v̇ = −x1x2 − 3z2 + z1 + 2x1 +
˙̂
θ, and ˙̃θ = (2z2 − z1)φ(x1)− θ̃ = − ˙̂

θ.

Eq. (4.19) becomes:

V̇2 = −x21 − z21 − z22 − θ̃2

Eq. (4.17) becomes:

ż2 = −z2 − z1 + 2θ̃φ(x1)

So the response of system is written as:

ẋ1 = z1 − x1

ż1 = z2 − z1 − x1 + θ̃φ(x1) (4.20)

ż2 = −z2 − z1 + 2θ̃φ(x1)

˙̃θ = (2z2 − z1)φ(x1)− θ̃

Choose overall Lyapunov function as:

V =
1

2
x21 +

1

2
z21 +

1

2
z22 +

1

2
θ̃2 (4.21)
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V̇ = x1(ẋ1) + z1(ż1) + z2(ż2) + θ̃ ˙̃θ

V̇ = x1(z1 − x1) + z1(z2 − z1 − x1 + θ̃φ(x1)) + z2(−z2 − z1 + 2θ̃φ(x1))

+ θ̃{(2z2 − z1)φ(x1)− θ̃} (4.22)

Simplifying above equation, we get

V̇ = −x21 − z21 − z22 − θ̃2 (4.23)

Define: z = [x1, z1, z2]
T

ż =


−1 1 0

−1 −1 1

0 −1 −1

 z +


0

1

2

 θ̃φ(x1) = Mz +Nθ̃φ(x1) (4.24)

where M is negative definite. Since the derivative of Lyapunov function given by

(4.23) is negative, therefore, we conclude that the transformed system (4.24) is

asymptotically stable, therefore, it implies that x1, z1, z2 → 0 and θ̃ → 0.

By using the relations:

x1 = x1

z1 = x1 + x2 (4.25)

z2 = x3 + 2z1 + θ̂φ(x1) = x3 + 2x1 + 2x2 + θ̂φ(x1)

we can write:

z =


1 0 0

1 1 0

2 2 1

x+


0

0

1

 θ̂φ(x1) = Ax+B(θ̂φ(x1)) = T (x, θφ(x1)) (4.26)

where, x =


x1

x2

x3

.
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Also using the following relations:

x1 = x1

x2 = z1 − x1 (4.27)

x3 = z2 − 2z1 − θ̂φ(x1)

x =


1 0 0

−1 1 0

0 −2 1

 z +


0

0

−1

 θ̂φ(x1) = Âz + B̂(θ̂φ(x1)) = T̂ (z, θφ(x1)) (4.28)

From above, A Â = I & ÂB = B̂. As z → 0 & θ̂φ(x1)→ 0, so x→ 0, implies

x2 = z1 − x1 → 0 & x3 = z2 − 2z1 − θ̂φ(x1)→ 0.

4.4.3 Simulation Results

The closed loop systems becomes:

ẋ1 = z1 − x1

ż1 = z2 − z1 − x1 + θ̃φ(x1) (4.29)

ż2 = −z2 − z1 + 2θ̃φ(x1)

˙̃θ = (2z2 − z1)φ(x1)− θ̃

The closed loop system is now simulated using MATLAB. The simulation results

with initial are: (x1, z1, z2) = (0.2, 0.5, 0.8). Our objective of stabilizing the system

from any initial state to any desired value has been achieved as shown by the

results.
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Figure 4.1: Closed loop response of the rigid body for initial condition:
[x1, z1, z2] = [0.2, 0.5, 0.8]T .
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Figure 4.2: Closed loop response of the rigid body for initial condition:
[x1, x2, x3] = [0.2, 0.3,−0.2]T .
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4.5 Extended Nonholonomic Double Integrator

The nonholonomic integrator has been widely studied and discussed due to its

structure which is quite related to many electromechanical systems like induction

motors and mobile robots. The control of such system is also of interest as such

systems are not stabilizable by smooth static feedback laws (Brockett [1]). The

work in literature for the stabilization and tracking control of such systems is

mainly based on the nonsmooth feedback laws (Bloch et al. [110, 111], Khennouf

and de Wit [112]), or smooth time-varying feedback laws (Pomet [3], M’Closkey

and Murray [113]). The work by Dixon et al. [114] is based on the design of control

laws which stabilize both current-fed induction motor and the double integrator

system.

The nonholonomic integrator can be generalized by adding some cascade integra-

tor before the input and perturbation terms in all its equations. The application

area of this extended nonholonomic double integrator may be voltage fed induc-

tion motors or mobile robots. In fact, the stabilization and tracking control of

nonholonomic integrator or extended nonholonomic double integrator led to the

solution of many electromechanical nonholonomic systems.

4.5.1 Mathematical Model of an Extended Nonholonomic

Double Integrator

The nonholonomic integrator is represented as:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1 − x1u2

(4.30)

Where x ∈ <3 is the state vector and u ∈ <2 is the control input vector. The above-

mentioned system has all the properties of nonholonomic systems and is known as
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a benchmark system for nonholonomic control system design and analysis in the

literature [1, 2, 5].

The kinematic model of nonholonomic integrator (4.30) exhibits all the properties

of nonholonomic systems like wheel mobile robots. However, when we take into

account both the kinematics and dynamics of the wheel robots, the nonholonomic

integrator system fails to capture all the features. To represent a more realistic

case, we must use the extended nonholonomic double integrator model. The equa-

tions of motion of an extended nonholonomic double integrator can be represented

into the following form [1]:

ẍ1 = u1

ẍ2 = u2

ẋ3 = x1ẋ2 − x2ẋ1

(4.31)

where state variable x = [x1, x2, x3, x4, x5]
T = [x1, x2, x3, ẋ1, ẋ2]

T , system (4.31)

can be written as:

ẋ1 = x4

ẋ2 = x5

ẋ3 = x1x5 − x2x4

ẋ4 = u1

ẋ5 = u2

(4.32)

The above system (4.32) is rewritten in general way as:

ẋ = f0(x) + g1(x)u1 + g2(x)u2 (4.33)

where

f0(x) =



x4

x5

x1x5 − x2x4
0

0


, g1(x) =



0

0

0

1

0


, g2(x) =



0

0

0

0

1
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The system (4.33) is referred as the Extended Nonholonomic Double Integrator

(ENDI). The ENDI system (4.33) must fulfill the following characteristic:

i. The vector f0, g1, g2 are complete real and analytic, Furthermore, f0(0) = 0.

ii. The Extended nonholonomic double integrator is accessible for x ∈ <5, as

Lie algebra rank condition (LARC) is been satisfied: span{g1, g2, g3, g4, g5} =

R5, ∀ x ∈ R5.

where

g3(x) = [f0(x), g1(x)] =



1

0

−x2
0

0


(4.34a)

g4(x) = [f0(x), g2(x)] =



0

1

x1

0

0


(4.34b)

g5(x) = [g3(x), g4(x)] =



0

0

2

0

0


(4.34c)
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4.5.2 Construction of the Transformation

By choosing u1 = x2, u2 = x3 + θφ(x1), system (4.32) can be written as:

ẋ1 = x4 (4.35a)

ẋ4 = x2 (4.35b)

ẋ2 = x5 (4.35c)

ẋ5 = x3 + θ̂φ(x1) + θ̃φ(x1) (4.35d)

ẋ3 = x1x5 − x2x4 (4.35e)

In Eq. (4.35a), consider x4 as virtual control and α1 as the stabilizing function,

then the error variable becomes: z1 = x4 − α1, Eq. (4.35a) becomes:

ẋ1 = z1 + α1 (4.36)

By considering the Lyapunov Function V0 = 1
2
x21 for (4.36), the derivative of V0

becomes:

V̇0 = x1ẋ1 = x1(z1 + α1) (4.37)

By taking α1 = −x1, Eq. (4.37) becomes:

V0 = −x21 + x1z1 (4.38)

and Eq. (4.36) can be written as:

ẋ1 = z1 − x1 (4.39)

Now consider Eq. (4.35b) and take x2 as virtual control input and α2 as the

stabilizing function, then the error variable becomes: z2 = x2 − α2, Eq. (4.35b)

becomes:

ẋ4 = z2 + α2 (4.40)
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Since the dynamic of first error variable z1 = x4 − α1 = x4 + x1 is:

ż1 = ẋ4 + ẋ1 = z2 + α2 + z1 − x1 (4.41)

By considering the Lyapunov function: V1 = V0 + 1
2
z21 for (4.39) and (4.41), the

derivative of V0 becomes:

V̇1 = −x21 + z1{z2 + α2 + z1} (4.42)

Choose α2 = −2z1

V̇1 = −x21 − z21 + z1z2 (4.43)

The above Eq. (4.41) can be written as:

ż1 = z2 − z1 − x1 (4.44)

By considering Eq. (4.35c) and taking x5 as virtual control and α3 as a stabilizing

function, the error variable can be written as: z3 = x5 − α3, Eq. (4.35c) becomes:

ẋ2 = x5 = z3 + α3 (4.45)

The dynamic of the second error variable namely z2 = x2 − α2 = x2 + 2z1 is:

ż2 = ẋ2 + 2ż1 = z3 + α3 + 2z2 − 2z1 − 2x1 (4.46)

To compute α3, choose Lyapunov function as: V2 = V1 + 1
2
z22 for (4.39), (4.44) and

(4.46). Then the derivative of the Lyapunov is written as:

V̇2 = −x21 − z21 + z2{z3 + α3 + 2z2 − z1 − 2x1} (4.47)

Choose α3 = −3z2 + z1 + 2x1, so the derivative of the V2 becomes:

V̇2 = −x21 − z21 − z22 + z2z3 (4.48)
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Eq. (4.46) becomes:

ż2 = z3 − z2 − z1 (4.49)

In Eq. (4.35d), consider x3 state as a virtual input, and α4 as a stabilizing function

and choose z4 = x3 − α4 be the error function, Eq. (4.35d) can be written as:

ẋ5 = x3 + θ̂φ(x1) + θ̃φ(x1) = z4 + α4 + θ̂φ(x1) + θ̃φ(x1) (4.50)

The dynamic of third error variable namely z3 = x5− α3 = x5 + 3z2− z1− 2x1 is:

ż3 = ẋ5 + 3ż2 − ż1 − 2ẋ1

= z4 + α4 + θ̂φ(x1) + θ̃φ(x1) + 3z3 − 3z2 − 3z1 − z2

+ z1 + x1 − 2z1 + 2x1

= z4 + α4 + 3z3 − 4z2 − 4z1 + 3x1 + θ̂φ(x1) + θ̃φ(x1) (4.51)

For α4, choose the Lyapunov function as: V3 = V2 + 1
2
z23 for (4.39), (4.44), (4.49)

and (4.51). Then

V̇3 = V̇2 + z3ż3

= −x21 − z21 − z22 + z3{z4 + α4 + 3z3 − 3z2 − 4z1 + 3x1 + θ̂φ(x1)}

+ z3θ̃φ(x1)

(4.52)

By choosing α4 = −4z3 + 3z2 + 4z1 − 3x1 − θ̂φ(x1), we have

V̇3 = −x21 − z21 − z22 − z23 + z3z4 + θ̃φ(x1)z3 (4.53)

Eq. (4.51) becomes:

ż3 = z4 − z3 − z2 + θ̃φ(x1) (4.54)

The stabilizing function α4 can be written as:

α4 = −4z3 + 3z2 + 4z1 − 3x1 − θ̂φ(x1)

= −4z3 + 3z2 + 4z1 − 3x1 − v + θ̂
(4.55)
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where v = θ̂(φ(x1) + 1).

The dynamics of fourth error variable namely z4 = x3 − α4 = x3 + 4z3 − 3z2 −

4z1 + 3x1 + v − θ̂ is:

ż4 = ẋ3 + 4ż3 − 3ż2 − 4ż1 + 3ẋ1 + v̇ − ˙̂
θ

= x1x5 − x2x4 + 4z4 − 4z3 − 4z2 + 4θ̃φ(x1)− 3z3

+ 3z2 + 3z1 − 4z2 + 4z1 + 4x1 + 3z1 − 3x1 + v̇ − ˙̂
θ

= β + 4z4 − 7z3 − 5z2 + 10z1 + x1 + 4θ̃φ(x1) + v̇ − ˙̂
θ (4.56)

where

β = x1x5 − x2x4 = x1(z3 − 3z2 + z1 + 2x1)− (z2 − 2z1)(z1 − x1) (4.57)

Consider the Lyapunov function V4 = V3+ 1
2
z24 + θ̃2 for (4.39), (4.44), (4.49), (4.54)

and (4.56).

V̇4 = V̇3 + z4ż4 + 2θ̃ ˙̃θ

= −x21 − z21 − z22 − z23 + z4{β + 4z4 − 6z3 − 5z2 + 10z1 + x1 + v̇ − ˙̂
θ}

+ θ̃{(z3 + 4z4)φ(x1) + ˙̃θ} (4.58)

By choosing

v̇ = −β − 5z4 + 6z3 + 5z2 − 10z1 − x1 +
˙̂
θ (4.59)

˙̃θ = −(z3 + 4z4)φ(x1)− θ̃ = − ˙̂
θ (4.60)

we have

V̇4 = −x12 − z12 − z22 − z32 − z42 − θ̃2 (4.61)

and the Eq. (4.56) become:

ż4 = −z4 − z3 + 4θ̃φ(x1) (4.62)
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The closed loop response becomes:

ẋ1 = z1 − x1

ż1 = z2 − z1 − x1

ż2 = z3 − z2 − z1

ż3 = z4 − z3 − z2 + θ̃φ(x1)

ż4 = −z4 − z3 + 4θ̃φ(x1)

(4.63)

By defining state variable as: z = [x1, z1, z2, z3, z4]
T , we have:

ż =



−1 1 0 0 0

−1 −1 1 0 0

0 −1 −1 1 0

0 0 −1 −1 1

0 0 0 −1 −1


z +



0

0

0

1

4


[
θ̃φ(x1)

]

= Mz +Nθ̃φ(x1) (4.64)

It can be easily verified that M is negative definite. Since the derivative of Lya-

punov function given by (4.61) is strictly negative, therefore, the transformed

system (4.64) is asymptotically stable, therefore, x1, z1, z2, z3, z4 → 0 and θ̃ → 0.

By using the following relations

x1 = x1

z1 = x4 − α1 = x4 + x1

z2 = x2 − α2 = x2 + 2x1 + 2x4

z3 = x5 + 3z2 − z1 − 2x1 = x5 + 5x4 + 3x2 + 3x1

z4 = x3 − α4 = x3 + 4z3 − 3z2 − 4z1 + 3x1 + θ̂φ(x1)

= 4x5 + 10x4 + x3 + 9x2 + 5x1 + θ̂φ(x1)

(4.65)
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we can write:

z =



1 0 0 0 0

1 0 0 1 0

2 1 0 2 0

3 3 0 5 1

5 9 1 10 4


x+



0

0

0

0

1


[
θ̂φ(x1)

]

= Ax+Bθ̂φ(x1) = T (x, θφ(x1)) (4.66)

Also using the following relations

x1 = x1

x4 = z1 − x1

x2 = z2 − 2z1

x5 = z3 − 3z2 + z1 + 2x1

x3 = z4 − 4z3 + 3z2 + 4z1 − 3x1 − θ̂φ(x1)

(4.67)

we have:

x =



1 0 0 0 0

0 −2 1 0 0

−3 4 3 −4 1

−1 1 0 0 0

2 1 −3 1 0


z +



0

0

−1

0

0


[
θ̂φ(x1)

]

= Âz + B̂θ̂φ(x1) = T̂ (z, θφ(x1)) (4.68)

From above we can easily verified that AÂ = I and ÂB = −B̂. As z → 0

and θ̂φ(x1) → 0, so x → 0, thus the original system (4.68) will also converge

asymptotically.

Theorem 4.1. By Choosing u1 = x2 and u2 = x3+θφ(x1) and the transformation
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as given in (4.66) the system (4.68) can be transformed into (4.66) which is asymp-

totically stable and therefore, by (4.68) the original system is always asymptotically

stable

Proof. By choosing a Lyapunov function as: V (z) = 1
2
zT z + 1

2
θ̃2, the derivative

along the system trajectories becomes:

V̇z = x1ẋ1 + z1ż1 + z2ż2 + z3ż3 + z4ż4 + θ̃ ˙̃θ

= x1(z1 − x1) + z1(z2 − z1 − x1) + z2(z3 − z2 − z1) + z3(z4 − z3 − z2 + θ̃φ(x1))

+ z4(−z4 − z3 + 4θ̃φ(x1)) + θ̃ ˙̃θ

= −x21 − z21 − z22 − z23 − z24 + θ̃{ ˙̃θ + z3φ(x1) + 4z4φ(x1)}

= −x21 − z21 − z22 − z23 − z24 − θ̃2 < 0

(4.69)

By choosing the Lyapunov function as:

V (z) =
1

2
zT z +

1

2
θ̃2 (4.70)

and the adaptive law as:

˙̃θ = −z3φ(x1)− 4z4φ(x1)− θ̃ (4.71)

we will come up with the asymptotic stability of Lyapunov function:

V̇ < 0

From the above equation we conclude the asymptotically stability of the trans-

formed system and by (4.68) the system (4.35a)-(4.35e) is also asymptotically

stable.

4.5.3 Simulation Results

Results show the effectiveness of the proposed method in stabilizing the ENDI

system. The aim of the control design is to stabilize the states of the system to the
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origin. Fig. 4.3 - Fig. 4.6 show simulation results for different initial conditions.

Fig. 4.7 - Fig. 4.11 shows the effect of k on the transient response of the system for

different values of k. The results of the proposed controller are compared to those

of [115] in which a continuous, and a discontinuous controller are presented. The

initial conditions are chosen to be the same as x = [0.9, 0.7, 0.4, 0.8, 0.6] for each

case. Fig. 4.12 shows the result of the proposed algorithm. Fig. 4.13 and the Fig.

4.14 shows the results of the continuous and discontinuous controller respectively.

The comparison shows that the response of the proposed controller is better than

that of [115] regarding settling time and is less oscillatory.
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Figure 4.3: Closed loop response of the extended nonholonomic double inte-
grator for initial condition:
x = [−1,−2,−3, 2, 1]T .
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Figure 4.4: Closed loop response of the extended nonholonomic double inte-
grator for initial condition:
x = [−1,−2, 3, 2,−1]T .
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Figure 4.5: Closed loop response of the extended nonholonomic double inte-
grator for initial condition:
x = [.5, .25, .35, .85, .75]T .
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Figure 4.6: Closed loop response of the extended nonholonomic double inte-
grator for initial condition:

x = [−.5,−.25, .35, .85,−.75]T
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Figure 4.7: Closed loop response of the extended nonholonomic double inte-
grator for initial condition:
x = [−1,−2, 3, 2,−1]T .
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Figure 4.8: Closed loop response of the extended nonholonomic double inte-
grator with gain k = −1 and initial condition:

x = [−1,−2, 3, 2,−1]T .
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Figure 4.9: Closed loop response of the extended nonholonomic double inte-
grator with gain k = 2 and initial condition:

x = [−1,−2, 3, 2,−1]T .
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Figure 4.10: Closed loop response of the extended nonholonomic double inte-
grator with gain k = −2 and initial condition:

x = [−1,−2, 3, 2,−1]T .
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Figure 4.11: Closed loop response of the extended nonholonomic double inte-
grator with gain k = −θ̂ and initial condition:

x = [.5, .2, .3, .9, .8]T .
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Figure 4.12: Closed loop response of the extended nonholonomic double inte-
grator for initial condition: x = [0.9, 0.7, 0.4, 0.8, 0.6]T .
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Figure 4.13: The simulation results for continuous controller [115] for initial
conditions x = [0.9, 0.7, 0.4, 0.8, 0.6]T .
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Figure 4.14: The simulation results for discontinuous controller [115] for initial
conditions x = [0.9, 0.7, 0.4, 0.8, 0.6]T .

4.6 Summary

In this chapter, a control algorithm for the stabilization of systems with drift is

presented and is applied to a rigid body and an extended nonholonomic double

integrator model. A comparison analysis has also been done with the existing

method to show the effectiveness of the proposed algorithm. By using an adaptive

backstepping technique, a time-varying transformation is constructed to transform

an original system into a new system which is asymptotically stabilized at the

origin. Simulation results show the validness of the proposed method.



Chapter 5

Stabilization of Nonholonomic

Systems: Adaptive Integral

Sliding Mode Control Technique

5.1 Introduction

This chapter presents an adaptive integral sliding mode control algorithm for the

stabilization of nonholonomic drift free systems. First, the system is transformed,

by using input transforms, into a particular structure containing a nominal part

and some unknown terms, which are computed adaptively. The transformed sys-

tem is then stabilized using adaptive integral sliding mode control. On the basis

of Lyapunov stability, the compensator control and the adaptive laws are derived.

The control algorithm is applied to three drift-free systems, namely; a unicycle

model, a front-wheel car model, and a mobile robot with trailer model. The effec-

tiveness of proposed algorithm is verified through numerical simulations.

72
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5.2 Problem Formulation

5.2.1 Mathematical Model of Nonholonomic Systems

The kinematic model for a drift-free nonholonomic system is given as:

ẋ =
m∑
i=1

gi(x) ui, x ∈ <n (5.1)

Where, gi(x) represents a vector field on <n, ui are a continuous control input

from interval [0,∞). The main hurdle in the stabilization of these systems is

that linearization of system (5.1) is uncontrollable. The most difficult issue from a

theoretical viewpoint is the design of feedback laws that can stabilize these systems

about an equilibrium position.

5.2.2 Problem Statement

For a desired point xdes ∈ <n, a control input vi : <n → <, i = 1, 2, ...,m is

constructed in such a way that xdes is an attractive point for (5.1), as t→∞ leads

to x(t; 0, x0) → xdes. Furthermore, by suitable transformation of the system,

xdes = 0 can be achieved.

5.2.3 Assumptions

The system (5.1) must fulfill the following conditions.

• (P1): The vector fields g1(x) , ..., gm(x) must be linearly independent.

• (P2): System (5.1) must satisfy the Lie algebra rank condition (LARC):

L(g1, ..., gm)(x) spans <n at each point x ∈ <n.
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5.3 The Proposed Control Algorithm

Step 1:

Write the system (5.1) as:

ẋ1 = g1(x, u)

ẋ2 = g2(x, u)

...

ẋn−1 = gn−1(x, u)

ẋn = gn(x, u)

(5.2)

where, gi : <n ×<m → R are nonlinear functions.

Step 2:

Using the input transformation, the system (5.2) can be written the following

form:

ẋ1 = h1(x)

ẋ2 = h2(x)

...

ẋn−1 = hn−1(x)

ẋn = v

(5.3)

where hi : <n × <m → R are nonlinear functions and v is the new input. After

some manipulation, system (5.3) can be rewritten as:

ẋ1 = x2 + F1

ẋ2 = x3 + F2

...

ẋn−1 = xn + Fn−1

ẋn = v

(5.4)

Where Fi = −xi+1 + hi(x).

Step 3:
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Assume that Fi are uncertainties in the system. Let F̂i, i = 1, ..., n be an es-

timate of Fi, i = 1, ..., n − 1 respectively. Apply the function approximation

technique [116] to represent Fi and their estimates F̂i as: Fi = wTi ϕi(t) and F̂i =

ŵTi ϕi(t). Where, ϕi(t) =
[
ϕi1(t) ϕi2(t) · · · ϕin(t)

]T
is a basis vector and

wi =
[
wi1 wi2 · · · win

]T
is a weight vector. Let ŵi =

[
ŵi1 ŵi2 · · · ŵin

]T
be estimate of wi =

[
wi1 wi2 · · · win

]T
. Therefore we can estimate Fi by es-

timating the weight vector wi i.e. F̂i = ŵTi ϕi(t). Define w̃i = wi− ŵi, then system

(5.4) is written as:

ẋ1 = x2 + ŵT1 ϕ1(t) + w̃T1 ϕ1(t)

ẋ2 = x3 + ŵT2 ϕ2(t) + w̃T2 ϕ2(t)

...

ẋn−1 = xn + ŵTn−1ϕn−1(t) + w̃Tn−1ϕn−1(t)

ẋn = v

(5.5)

Step 4:

Choose the nominal system for (5.5) as:

ẋ1 = x2

ẋ2 = x3
...

ẋn−1 = xn

ẋn = v0

(5.6)

Step 5:

Define the sliding manifold for the nominal system (5.6) as:

s0 = x1 +
n−1∑
i=2

cixi + xn (5.7)
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where ci > 0. Then

ṡ0 = ẋ1 +
n−1∑
i=2

ciẋi + ẋn = x2 +
n−1∑
i=2

cixi+1 + v0 (5.8)

By choosing

v0 = −x2 −
n−1∑
i=2

cixi+1 − k sign(s0), k > 0 (5.9)

We have

ṡ0 = −k sign(s0) (5.10)

Therefore Eq. (5.6) shows that the nominal system is asymptotic stable.

Step 6:

Define the sliding manifold for system (5.5) as:

s = s0 + z = x1 +
n−1∑
i=2

cixi + xn + z (5.11)

Where z is an integral term. To avoid the reaching phase, choose z(0) such that

s(0) = 0. Choose v = v0 +vs where, v0 is the nominal input and vs is compensator

term. Then

ṡ = ẋ1 +
n−1∑
i=2

ciẋi + ẋn + ż

= x2 + ŵTi ϕ1(t) + w̃Ti ϕ2(t) +
n−1∑
i=2

ci{xi+1 + ŵTi ϕi(t) + w̃Ti ϕi(t)}+ v0 + vs + ż

= x2 +
n−1∑
i=2

cixi+1 + v0 + vs + ż +
n−1∑
i=1

{ŵTi ϕi(t) + w̃Ti ϕi(t)}

(5.12)

where c1 = 1.

Step 7:

Choose a Lyapunov function as:

V =
1

2
s2 +

1

2

n−1∑
i=1

w̃Ti w̃i (5.13)
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Design the adaptive laws for w̃i & ŵi, i = 1, ..., n and compute the value of vs

such that V̇ < 0.

Theorem 5.1. Choose a Lyapunov function as:

V =
1

2
s2 +

1

2

n−1∑
i=1

w̃Ti w̃i (5.14)

Then V̇ < 0 if the adaptive laws for w̃i & ŵi, and the value of vs are chosen as:

ż = −x2 −
n−1∑
i=2

cixi+1 − v0

vs = −
n−1∑
i=1

ciŵ
T
i ϕi(t)− k sign(s)

˙̃wi = −cisϕi(t)− ki w̃i
˙̂wi = − ˙̃wi

(5.15)

where k and ki > 0, i = 1, ..., n− 1.

Proof: Since

V̇ = sṡ+
n−1∑
i=1

w̃Ti ˙̃wi = s{x2 + ŵT1 ϕ1(t) + w̃T1 ϕ1(t)

+
n−1∑
i=2

ci{xi+1 + ŵTi ϕi(t) + w̃Ti ϕi(t)}+ v0 + vs + ż}+
n−1∑
i=1

w̃Ti ˙̃wi

= s{x2 +
n−1∑
i=1

{cixi+1 + ciŵ
T
i ϕi(t)}+ v0 + vs + ż}

+
n−1∑
i=1

w̃Ti { ˙̃wi + cisϕi(t)}

(5.16)

By using

ż = −x2 −
n−1∑
i=2

cixi+1 − v0

vs = −
n−1∑
i=1

ciŵ
T
i ϕi(t)− k sign(s)

˙̃wi = −cisϕi(t)− ki w̃i
˙̂wi = − ˙̃wi

(5.17)
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where k and ki > 0, i = 1, ..., n− 1. we have

V̇ = − k |s| −
n−1∑
i=1

kiw̃
T
i w̃i (5.18)

Choosing:

kn = min(k, k1, ....., kn−1)

We have:

V̇ ≤ − kn( |s|+
n−1∑
i=1

w̃Ti w̃i) (5.19)

From this we conclude that s & w̃i → 0, i = 1, ..., n. Since s → 0, therefore

x → 0 .

In the following section, we illustrate the above algorithm by applying it to three

different nonholonomic drift free systems.

5.4 Application to Nonholonomic Systems

5.4.1 Unicycle Model

A unicycle model or a two-wheel car model, shown in Fig. 5.1, is basically a three-

dimensional nonholonomic system having two inputs and three states with depth

one Lie bracket. A two-wheel car kinematic model is defined as [117].


θ̇

ẋ

ẏ

 =


1

0

0

u1 +


0

cos θ

sin θ

u2 (5.20)
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x

y

θ

Figure 5.1: The schematics of unicycle model

By choosing state variables as: x
def
= [x1, x2, x3]

T = [θ, x, y]T , the kinematics model

(5.20) can be written as:


ẋ1

ẋ2

ẋ3

 =


1

0

0

u1 +


0

cosx1

sinx1

u2 (5.21)

Above equation can be represented as:

ẋ = g1(x)u1 + g2(x)u2, x ∈ <3 (5.22)

where, g1(x) =


1

0

0

 and g2(x) =


0

cosx1

sinx1

.

The kinematics model (5.20) satisfies the assumptions presented in section 5.2.3.
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To verify both properties (P1) and (P2), calculate the Lie bracket as: g1(x) and g2(x).

g3(x)
def
= [g1, g2](x) =


0

− sinx1

cosx1


Then the LARC namely: span{g1, g2, g3}(x) = <3, ∀ x ∈ <3 is satisfied.

5.4.1.1 Application of the Proposed Algorithm to a Unicycle Model

Step 1:

The unicycle model (5.21) can be rewritten as:

ẋ1 = u1

ẋ2 = cosx1u2

ẋ3 = sinx1u2

(5.23)

Step 2:

Choose u1 = v and u2 = x3
cosx1

, where, x1 6= π
2
, then system (5.23) becomes:

ẋ1 = v

ẋ2 = x3

ẋ3 = x3 tanx1

(5.24)

After some manipulation the above mentioned system can be written as:

ẋ2 = x3

ẋ3 = x1 + F

ẋ1 = v

(5.25)

where F = −x1 + x3 tanx1.
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Step 3:

AssumingF as an uncertainty and let F̂ be an estimate of F . The estimate of F is

computed by function approximating technique [116] as: F = wTϕ and F̂ = ŵTϕ,

then the system (5.25) can be written as:

ẋ2 = x3

ẋ3 = x1 + ŵTϕ+ w̃Tϕ

ẋ1 = v

(5.26)

Step 4:

Choose the nominal system for (5.26) as:

ẋ2 = x3

ẋ3 = x1

ẋ1 = v0

(5.27)

Step 5:

Define the sliding manifold for the nominal system (5.27) as:

s0 = x2 + 2x3 + x1 (5.28)

Then:

ṡ0 = ẋ2 + 2ẋ3 + ẋ1 = x3 + 2x1 + v0 (5.29)

By choosing:

v0 = −x3 − 2x1 − k sign(s0), k > 0 (5.30)

We have ṡ0 = −k sign(s0). Therefore (5.27) shows that the nominal system is

asymptotically stable.
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Step 6:

Define the sliding manifold for system (5.26) as:

s = s0 + z = x2 + 2x3 + x1 + z (5.31)

Choose:

v = v0 + vs

Then

ṡ = ẋ1 + 2ẋ3 + ẋ2 + ż = x3 + 2x2 + 2ŵTϕ+ 2w̃Tϕ+ v0 + vs + ż (5.32)

Step 7:

The following adaptive laws for w̃, ŵ and the value of vs

ż = −x3 − 2x2 − v0

vs = −2ŵTϕ− k sign(s)

˙̃w = −2sϕ− k1 w̃

˙̂w = − ˙̃w

(5.33)

where k and k1 > 0

Gives

V̇ = − k |s| − k1w̃T w̃ (5.34)

Where

V =
1

2
s2 +

1

2
w̃T w̃ (5.35)

Choosing:

k2 = min(k, k1)

we have:

V̇ ≤ − k2( |s|+ w̃T w̃) (5.36)



Stabilization via Adaptive Integral Sliding Mode Control 83

From the above equation it is concluded that s & w̃ → 0. Since s → 0, therefore

x → 0. Numerical results are shown in Fig. 5.4 and Fig. 5.5.

5.4.2 Front Wheel Car Model

A front-wheel car model, shown in Fig. 5.2 is basically a four-dimensional non-

holonomic system having two inputs and four states with depth two Lie bracket.

A front-wheel car kinematic model [113] can be defined as:


ψ̇

ẋ

θ̇

ẏ

 =


1

0

0

0

u1 +


0

cos θ

1
l

tanψ

sin θ

u2 (5.37)

Assuming that l = 1 and choose a new state variables as: x
def
= (x1, x2, x3, x4) =

x

y

θ

ψ

Figure 5.2: The schematics of front wheel car model
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(ψ, x, y, θ) the kinematics model (5.37) is written as:


ẋ1

ẋ2

ẋ3

ẋ4

 =


1

0

0

0

u1 +


0

cosx4

sinx4

tanx1

u2 (5.38)

or we can write the above Eq. (5.38) as:

ẋ = g1(x)u1 + g2(x)u2, x ∈ <4 (5.39)

where, g1(x) =


1

0

0

0

 and g2(x) =


0

cosx4

sinx4

tanx1


The kinematics model (5.38) satisfies the assumptions presented in section 5.2.3.

To verify both properties (P1) and (P2), the Lie brackets g1(x) & g2(x) are calcu-

lated as follows:

g3(x)
def
= [g1, g2](x) =


0

0

0

(secx1)
2

 , g4(x)
def
= [g2, g3](x) =


0

− sinx4(secx1)
2

cosx4(secx1)
2

0


From above, the LARC is satisfied: span(g1, g2, g3, g4)(x) = <4 ∀ x ∈ <4.
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5.4.2.1 Application of the Proposed Algorithm to a Front Wheel Car

Model

Step 1:

The front wheel car model as given in (5.38) is represented as:

ẋ1 = u1

ẋ2 = cosx4u2

ẋ3 = sinx4u2

ẋ4 = tanx1u2

(5.40)

Step 2:

Choose u1 = v and u2 = x3
cosx4

, wherex4 6= π
2
, then system (5.40) becomes:

ẋ1 = v

ẋ2 = x3

ẋ3 = x3 tanx4

ẋ4 = x3 tanx1 secx4

(5.41)

which can be rewritten as:

ẋ2 = x3

ẋ3 = x4 + F3

ẋ4 = x1 + F4

ẋ1 = v

(5.42)

where

F3 = −x4 + x3 tanx4

F4 = −x1 + x3 tanx1 secx4
(5.43)

Step 3:

TreatingFi, i = 3, 4 as uncertainties and let F̂i, i = 3, 4 be an estimate of Fi, i =

3, 4 respectively. Using function approximation technique [116], we can approxi-

mate Fi, i = 3, 4 as: F3 = wT3 ϕ3, F4 = wT4 ϕ4. Then F̂3 = ŵT3 ϕ3 and F̂4 = ŵT4 ϕ4.
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Then the system (5.42) can be written as:

ẋ1 = x3

ẋ3 = x4 + ŵT3 ϕ3 + w̃T3 ϕ3

ẋ4 = x2 + ŵT4 ϕ4 + w̃T4 ϕ4

ẋ2 = v

(5.44)

Step 4:

Choose the nominal system for (5.44) as:

ẋ1 = x3

ẋ3 = x4

ẋ4 = x2

ẋ2 = v0

(5.45)

Step 5:

Define the sliding manifold for the nominal system (5.45) as:

s0 = x1 + 3x3 + 3x4 + x2 (5.46)

Then

ṡ0 = ẋ1 + 3ẋ3 + 3ẋ4 + ẋ2 = x3 + 3x4 + 3x2 + v0 (5.47)

By choosing

v0 = −x3 − 3x4 − 3x2 − k sign(s0), k > 0 (5.48)

we have

ṡ0 = −k sign(s0). (5.49)

Therefore Eq. (5.45) shows that the nominal system is asymptotically stable.
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Step 6:

Define the sliding manifold for system (5.44) as:

s = s0 + z = x1 + 3x3 + 3x4 + x2 + z (5.50)

Choose:

v = v0 + vs

Then

ṡ = ẋ1 + 3ẋ3 + 3ẋ4 + ẋ2 + ż = x3 + 3x4 + 3ŵT3 ϕ3 + 3w̃T3 ϕ3

+3x2 + 3ŵT4 ϕ4 + 3w̃T4 ϕ4 + v0 + vs + ż
(5.51)

Step 7:

The following adaptive laws for w̃i, ŵi, i = 3, 4 and the value of vs are chosen as:

ż = −x3 − 3x4 − 3x2 − v0
vs = −3ŵT3 ϕ3 − 3ŵT4 ϕ4 − k sign(s)

˙̃w3 = −3sϕ3 − k1 w̃T3
˙̂w3 = − ˙̃w3

˙̃w4 = −3sϕ4 − k2w̃T4
˙̂w4 = − ˙̃w4

(5.52)

where k, k1 and k2 > 0. Gives

V̇ = − k |s| − k1w̃T3 w̃3 − k2w̃T4 w̃4 (5.53)

where

V =
1

2
s2 +

1

2
w̃T3 w̃3 +

1

2
w̃T4 w̃4 (5.54)

Choosing: k3 = min(k, k1, k2), we have:

V̇ ≤ − k3( |s|+ k1w̃
T
3 w̃3 + k2w̃

T
4 w̃4) (5.55)
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From this, we conclude that s, w̃3, w̃4 → 0. Since s→ 0, therefore x → 0 . Results

are shown in Fig. 5.6 and Fig. 5.7.

5.4.3 Mobile Robot with Trailer Model

A car with trailer model, shown in Fig. 5.3, is basically a five-dimensional non-

holonomic system having two inputs and five states with depth one, two and three

Lie brackets. A car with trailer kinematic model [118] can be defined as:

ẋ1 = cosx3 cosx4 u1

ẋ2 = cosx3 sinx4 u1

ẋ3 = u2

ẋ4 = 1
l

sinx3 u1

ẋ5 = 1
d

sin(x4 − x5) cosx3 u1

(5.56)

By assuming l = d = 1, system (5.56) is represented as:

θ

δ
y

x

ψ

Figure 5.3: The schematics of mobile robot with trailer Model

ẋ = g1(x) u1 + g2(x) u2 , x ∈ <5 (5.57)
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where,

g1(x) =



cosx3 cosx4

cosx3 sinx4

0

sinx3

cosx3 sin(x4 − x5)


and g2(x) =



0

0

1

0

0


The kinematics model (5.57) satisfies the assumptions presented in section 5.2.3.

To verify both properties (P1) and (P2), calculate the following Lie brackets as:

g3(x)
def
=[g1, g2](x) =



sinx3 cosx4

sinx3 sinx4

0

− cosx3

sinx3 sin(x4 − x5)



g4(x)
def
=[g1, [g1, g2]](x) =



− sinx4

cosx4

0

0

cos(x4 − x5)



g5(x)
def
=[g1, [g1, [g1, g2]]](x) =



− sinx3 cosx4

− sinx3 sinx4

0

0

− sinx3 sin(x4 − x5) + cos x3


If movement of the system is restricted to surface: M

def
= {x ∈ <5 : |xi| < π

2
, i =

3, 4}, then the Lie algebra rank condition namelyspan {g1(x), g2(x), ....., g5(x)} =

<5, ∀ x ∈M is satisfied, hence guarantees that system (5.57) satisfy the condi-

tions P1 and P2 on the surface M.



Stabilization via Adaptive Integral Sliding Mode Control 90

5.4.3.1 Application of the Proposed Algorithm to a Mobile Robot with

Trailer Model

Step 1:

The system (5.56) can be written as:

ẋ1 = cosx3 cosx4 u1

ẋ2 = cosx3 sinx4 u1

ẋ3 = u2

ẋ4 = sinx3 u1

ẋ5 = sin(x4 − x5) cosx3 u1

(5.58)

Step 2:

Choose u1 = x2
cosx3 cosx4

and u2 = v. Where, x3, x4 6= π
2
. Then system (5.58) can

be written as:

ẋ1 = x2

ẋ2 = x2 tanx4

ẋ3 = v

ẋ4 = x2 tanx3 secx4

ẋ5 = x2 sin(x4 − x5) secx4

(5.59)

which can be rewritten as:

ẋ1 = x2

ẋ2 = x4 + F1

ẋ4 = x5 + F2

ẋ5 = x3 + F3

ẋ3 = v

(5.60)

Step 3:

Assuming Fi, i = 2, 4, 5 as uncertainties and let F̂i, i = 2, 4, 5 be an estimate

of Fi, i = 2, 4, 5 respectively. Approximating Fi = wTi ϕi, i = 2, 4, 5 and let
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F̂i = ŵTi ϕi, i = 2, 4, 5 respectively. Then the system (5.60) can be written as:

ẋ1 = x2

ẋ2 = x4 + ŵT2 ϕ2 + w̃T2 ϕ2

ẋ4 = x5 + ŵT4 ϕ4 + w̃T4 ϕ4

ẋ5 = x3 + ŵT5 ϕ5 + w̃T5 ϕ5

ẋ3 = v

(5.61)

Step 4:

Choose the nominal system for (5.61) as:

ẋ1 = x2

ẋ2 = x4

ẋ4 = x5

ẋ5 = x3

ẋ3 = v0

(5.62)

Step 5:

Define the Hurwitz sliding manifold for the nominal system (5.62) as:

s0 = x1 + 4x2 + 6x4 + 4x5 + x3 (5.63)

Then

ṡ0 = ẋ1 + 4ẋ2 + 6ẋ4 + 4ẋ5 + ẋ3

= x2 + 4x4 + 6x5 + 4x3 + v0

(5.64)

By choosing

v0 = −x2 − 4x4 − 6x5 − 4x3 − k sign(s0), k > 0 (5.65)

we have

ṡ0 = −k sign(s0) (5.66)

Therefore the nominal system (5.62) is asymptotically stable.
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Step 6:

Define the sliding surface for the system (5.61) as:

s = s0 + z = x1 + 4x2 + 6x4 + 4x5 + x3 + z (5.67)

and choose

v = v0 + vs

Then

ṡ = ẋ1 + 4ẋ2 + 6ẋ4 + 4ẋ5 + ẋ3 + ż

= x2 + 4x4 + 4ŵT2 ϕ2 + 4w̃T2 ϕ2 + 6x5 + 6ŵT4 ϕ4 + 6w̃T4 ϕ4

+4x3 + 4ŵT5 ϕ5 + 4w̃T5 ϕ5 + v0 + vs + ż

(5.68)

Step 7: The following adaptive laws for w̃i&ŵi, and the value of vs.

ż = −x2 − 4x4 − 6x5 − 4x3 − v0
vs = −4ŵT2 ϕ2 − 6ŵT4 ϕ4 − 4ŵT5 ϕ5 − k sign(s)

˙̃w2 = −4sϕ2 − k1 w̃T2
˙̂w2 ≈ − ˙̃w2

˙̃w4 = −6sϕ4 − k2 w̃T4
˙̂w4 ≈ − ˙̃w4

˙̃w5 = −4sϕ5 − k3 w̃T5
˙̂w5 ≈ − ˙̃w5

(5.69)

where k and ki > 0, i = 1, 2, 3, Gives

V̇ = − k |s| − k1w̃T2 w̃2 − k2w̃T4 w̃4 − k3w̃T5 w̃5 (5.70)

where

V =
1

2
s2 +

1

2
w̃T2 w̃2 +

1

2
w̃T4 w̃4 +

1

2
w̃T5 w̃5 (5.71)

Choosing: k4 = min(k, k1, k2, k3), we have:

V̇ ≤ − k4( |s|+ w̃T2 w̃2 + w̃T4 w̃4 + w̃T5 w̃5) (5.72)
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From this we conclude that s, w̃T2 , w̃
T
4 and w̃T5 → 0. Since s→ 0, therefore x → 0 .

Simulation results are shown in Fig. 5.8 and Fig. 5.9.

5.5 Simulation Results

Fig. 5.4 and Fig. 5.5 show results of the unicycle model and represent that the

states, and the control effort converge to zero and have been settling time of 4

sec and 0.8 sec and have gains k = 5 and k1 = 2. The basis vector is chosen as

ϕ = cos(2πt). Fig. 5.6 and Fig. 5.7 show results of the front-wheel car model and

represent that the states, and the control effort converge to zero and have been

settling time of 6 sec and 1 sec and have gains k = 5, k1 = 3 and k2 = 3. The

basis vectors are chosen as ϕ3 = cos(2πt) and ϕ4 = sin(2πt). Fig. 5.8 and Fig.

5.9 show results for the car with trailer model and represent that the states and

control effort converge to zero and have been settling time of 10 sec and 0.4 sec

and has gains k = 5, k1 = 1, k2 = 4 and k3 = 6. The basis vectors are chosen

as ϕ2 = cos(2πt), ϕ4 = sin(2πt) and ϕ4 = sin(4πt). Numerical results show the

effectiveness of the proposed scheme.

Figure 5.4: Closed loop response of the unicycle model for initial condition:
(x1(0), x2(0), x3(0)) = (2,−1, 1)
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Figure 5.5: Control input v

Figure 5.6: Closed loop response of the front wheel car model for initial
condition: (x1(0), ..., x4(0)) = (−2, 1,−1, 3)
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Figure 5.7: Control input v

Figure 5.8: Closed loop response of the car with trailer model for initial
condition: (x1(0), ..., x5(0)) = (2,−1, 1,−2, 2)
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Figure 5.9: Control input v

5.6 Summary

An adaptive integral sliding mode based approach for the stabilization of drift-

free nonholonomic control systems is presented in this chapter. The objective is

to stabilize the nonholonomic systems to the origin which is assumed to be zero

from any initial state. The proposed algorithm is applied to three examples of

drift-free nonholonomic systems; the unicycle, the front-wheel car, and the mobile

robot with trailer. It is shown from simulation results that the objective has been

achieved. This strategy is general and can be applied to stabilize a variety of

nonholonomic systems.



Chapter 6

Stabilization of Nonholonomic

Systems: Smooth Super Twisting

Sliding Mode Control Technique

6.1 Introduction

In the present chapter, a new solution to the stabilizing control problem of non-

holonomic systems, which are transformable into chained form is investigated. A

smooth super twisting sliding mode control technique is used to stabilize nonholo-

nomic systems. Firstly, the nonholonomic system is transformed into a chained

form system, which is further decomposed into two subsystems. Secondly, the

second subsystem is stabilized to the origin by using smooth super twisting slid-

ing mode control. Finally, the first subsystem is stabilized to zero using signum

function. The stated algorithm is tested on three different nonholonomic systems,

which are transformable into chained form; a two-wheel car model, a model of

front-wheel car, and a firetruck model. Numerical computer simulations show the

effectiveness of the proposed control scheme.

97



Stabilization via Smooth Super Twisting Sliding Mode Control 98

6.2 The Control Problem Formulation

The kinematics model of nonholonomic systems in presence of constraints is rep-

resented as:

ż =
m∑
i=1

gi(z) ui, z ∈ <n (6.1)

where gi, i = 1, · · · ,m represents vector fields on <n, ui are the continuous control

input from interval [0, ∞). In control system design it is a very useful technique

that the system is first transformed into some canonical form via state-input trans-

formation. One such canonical form is chained form introduced first time by [113].

ẋ1 = v1

ẋ2 = v2

ẋ3 = x2v1

ẋ4 = x3v1
...

ẋn = xn−1v1

(6.2)

For a desired point xdes ∈ <n, a control input vi : <n → <, i = 1, 2 is con-

structed in such a way that xdes is an attractive point for (6.2), as t → ∞ lead

to x(t; 0, x0) → xdes. Furthermore, by suitable transformation of the system,

xdes = 0 can be achieved.

Assumptions:

The system (6.1) must fulfill the following conditions.

• (P1): The state vector fields g1(z) , ..., gm(z) must be linearly independent.

• (P2): System (6.1) must satisfy the Lie algebra rank condition (LARC):

L(g1, ..., gm)(z) spans <n at each point of z ∈ <n.
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6.3 The Proposed Stabilizing Control Algorithm

Step 1:

Choose v1 = 1 and v2 = v, then system (6.2) becomes:

ẋ1 = 1

ẋ2 = v

ẋ3 = x2

ẋ4 = x3
...

ẋn−1 = xn−1

ẋn = xn−1

(6.3)

Step 2:

Decompose the system (6.3) into two subsystems as:

S1 : ẋ1 = 1

S2 :



ẋn = xn−1

ẋn−1 = xn−2

...

ẋ4 = x3

ẋ3 = x2

ẋ2 = v

(6.4)

Define the sliding surface for subsystem S2 as:

s = xn +
n−3∑
i=1

cixn−i + x2 (6.5)

where ci > 0 are chosen so that s becomes Hurwitz polynomial. Then

ṡ = ẋn +
n−3∑
i=1

ciẋn−i + ẋ2 = xn−1 +
n−3∑
i=1

cixn−1−i + v (6.6)
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By choosing

v = veq + vs (6.7)

where

veq = −xn−1 −
n−3∑
i=1

cixn−1−i (6.8)

vs = −k1|s|
ρ−1
ρ sign(s) + z (6.9)

ż = −k2 |s|
ρ−2
ρ sign(s) (6.10)

where k1, k2 > 0, ρ ≥ 2.

we have

ṡ = −k1|s|y sign(s) + z (6.11)

ż = −k2 |s|y−
1
ρ sign(s) (6.12)

where k1, k2 > 0 , y = ρ−1
ρ

. Therefore the subsystem S2 is stable.

The stability proof of system (6.11) and (6.12) is based on the context given in

reference [119].

Step 3:

Apply the control inputs:

v1 = 1 (6.13)

v = veq + vs (6.14)
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where

veq = −xn−1 −
n−3∑
i=1

cixn−1−i (6.15)

vs = −k1|s|
ρ−1
ρ sign(s) + z (6.16)

ż = −k2 |s|
ρ−2
ρ sign(s) (6.17)

where k1, k2 > 0, ρ ≥ 2, until the system (6.3) reaches on a surface:

S = {x ∈ <n : xn = .... = x3 = x2 = 0 , x1 6= 0}

Step 4:

Apply the control inputs v1 = −ksign(x1) and v = 0 until the system (6.3) reaches

at origin:

O = {x ∈ <n : xn = .... = x3 = x2 = x1 = 0}

6.4 Application Examples

6.4.1 A Two Wheel Car Model

6.4.1.1 A Kinematics Model

A unicycle model or a two-wheel car model shown in Fig. 6.1 represents a three

dimensional nonholonomic system. The kinematic model of a two-wheel car is

given as [41]: 
θ̇

ẋ

ẏ

 =


1

0

0

u1 +


0

cos θ

sin θ

u2 (6.18)
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Figure 6.1: The schematics of two wheel car model

Introducing a new set of state variables z = [z1, z2, z3]
T = [θ, x, y]T the kinematics

model (6.18) can be written as:


ż1

ż2

ż3

 =


1

0

0

u1 +


0

cos z1

sin z1

u2 (6.19)

or

ż = g1(z)u1 + g2(z)u2, z ∈ <3

where,

gc(z) =


1

0

0



g2(z) =


0

cos z1

sin z1





Stabilization via Smooth Super Twisting Sliding Mode Control 103

6.4.1.2 Conversion into Chained form

Consider the following transformation:

x1 = z1 (6.20)

x2 = z2 cos z1 + z3 sin z1 (6.21)

x3 = z2 sin z1 − z3 cos z1 (6.22)

v1 = u1 (6.23)

v2 = u2 − z3u1 (6.24)

This transforms the nonholonomic system (6.20) into the following chained form

system:

ẋ1 = v1 (6.25)

ẋ2 = v2 (6.26)

ẋ3 = x2v1 (6.27)

Then, the proposed algorithm can be used with the following sliding surface:

s = x3 + x2 (6.28)

6.4.1.3 Simulation Results

Simulation results of proposed algorithm for different initial conditions are shown

in Fig. 6.2 and Fig. 6.4. In Fig. 6.2 and Fig. 6.4 the initial conditions are chosen

as [x1(0), x2(0), x3(0)] = [1, 2,−4] and [x1(0), x2(0), x3(0)] = [2,−4, 3]. Fig. 6.3

and Fig. 6.5 shows the control inputs v1, v2 with gains k1 = 1, k2 = 5. From the

figures, we can see that under the constructed controller, the solution process of

the closed-loop system converges to zero almost surely.
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Figure 6.2: Closed loop response of the two wheel car model for
initial condition: (x1, x2, x3) = (1, 2− 4)
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Figure 6.3: Control effort v1, v2
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Figure 6.4: Closed loop response of the two wheel car model for
initial condition: (x1, x2, x3) = (2,−4, 3)

0 5 10 15 20 25 30
Time(sec)

-5

0

5

10

v
1
,
v
2

v1

v2

Figure 6.5: Control effort v1, v2
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6.4.2 A Front Wheel Car Model

6.4.2.1 A Kinematics Model

The front wheel car model as shown in Fig. 6.6 represents four-dimensional non-

holonomic system. The kinematics model of a front wheel car model is given as

in [120]: 
ϕ̇

ẋ

θ̇

ẏ

 =


1

0

0

0

u1 +


0

cos θ

1
l

tanϕ

sin θ

u2 (6.29)

where,

Figure 6.6: The schematics of front wheel car model

(x, y): the center coordinate of the rear axle of the car

ϕ: the steering angle of the front wheel of the car

θ: the orientation of the car body with respect to x-axis

l: the distance between the front and rear axles of the car.
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Assuming that l = 1and introducing a new set of state variables z
def
= (z1, z2, z3, z4) =

(ϕ, x, y, θ) the kinematics model (6.29) can be written as:


ż1

ż2

ż3

ż4

 =


1

0

0

0

u1 +


0

cos z4

sin z4

tan z1

u2 (6.30)

or

ż = g1(z)u1 + g2(z)u2, z ∈ <4

where, g1(z) =


1

0

0

0

 & g2(z) =


0

cos z4

sin z4

tan z1



6.4.2.2 Conversion into Chained form

Consider the following transformation:

x1 = x = z2

x2 = tanϕ
lcos3θ

= tan z1
lcos3z4

x3 = tan θ = tan z4

x4 = y = x3

v1 = cos θ u1 = cos z4 u1

v2 = 1+tan2ϕ
lcos3θ

u1 + 3 tan θtan2ϕ
l2cos3θ

u2

= 1+tan2z1
lcos3z4

u1 + 3 tan z4tan2z1
l2cos3z4

u2

(6.31)

Transforms the nonholonomic system (6.31) into the following chained form sys-

tem:

ẋ1 = v1

ẋ2 = v2

ẋ3 = x2v1

ẋ4 = x3v1

(6.32)
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The proposed algorithm was applied to sliding surface:

s = x4 + 2x3 + x2 (6.33)

6.4.2.3 Simulation Results

Fig. 6.7 and Fig. 6.9 shows the response of system states when proposed algo-

rithm is applied. The initial conditions are chosen as [x1(0), x2(0), x3(0), x4(0)] =

[0.3, 0.4, 0.2, 0.5] and [x1(0), x2(0), x3(0), x4(0)] = [1,−2, 3,−4]. Fig. 6.8 and Fig.

6.10 shows the control inputs v1, v2 with gains k1 = 4, k2 = 10. From the fig-

ures, we can see that under the constructed controller, the solution process of the

closed-loop system converges to zero almost surely.

0 2 4 6 8 10 12 14 16 18 20
Time(sec)

-2

0

2

4

6

8

x
1
,
x
2
,
x
3
,
x
4

x1

x2

x3

x4

Figure 6.7: Closed loop response of the front wheel car model for
initial condition: (x1, x2, x3, x4) = (0.3, 0.4, 0.2, 0.5)
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Figure 6.8: Control input: v1, v2
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Figure 6.9: Closed loop response of the front wheel car model for
initial condition: (x1, x2, x3, x4) = (1,−2, 3,−4)
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Figure 6.10: Control input: v1, v2

6.4.3 A Firetruck Model

6.4.3.1 A Kinematics Model of a Firetruck

The firetruck model as shown in Fig. 6.11 represents a six dimensional non-

holonomic system. By defining the state variables: z = (z1, z2, z3, z4, z5, z6)
T =

(x, y, ϕ0, θ0, ϕ1, θ1)
T and assuming l0 = l1 = 1 in firetruck model as given in [120],

we have the following:

ż = g0(z)u1 + g2(z)u2 + g3(z)u3 (6.34)

where, g0(z) =



cos z4

sin z4

0

tan z3

0

− sin(z6 − z4 + z5) sec z5


, g2(z) =



0

0

1

0

0

0


, g3(z) =



0

0

0

0

1

0


where,
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Figure 6.11: The schematics of firetruck model

(x, y): the center coordinate of the rear axle of the cab

ϕ0: the steering angle of the front wheel of the cab

θ0: the orientation of the cab body with respect to x-axis

ϕ1: the steering angle of the rear wheel of the trailer

θ1: the orientation of the trailer with respect to x-axis

l0: the distance between the front and rear axles of the cab

l1: the distance between the centers of the rear axles of the cab and trailer

The system (6.34) can be rewritten as:

ż = g1(z)ū1 + g2(z)u2 + g3(z)u3 (6.35)

where
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g1(z) = g0(z)
cos z4

=



1

tan z4

0

tan z3 sec z4

0

− sin(z6 − z4 + z5) sec z5 sec z4


,

g2(z) =



0

0

1

0

0

0


, g3(z) =



0

0

0

0

1

0


, ū1 = cos z4u1

6.4.3.2 Conversion into Chained form

Consider the following transformation:

x1 = z1

x2 = sec3z4 tan z3

x3 = tan z4

x4 = z2

x5 = − sin(z5 − z4 + z6) sec z5 sec z4

x6 = z6

(6.36)

v1 = ū1 = cos z4u1

v2 = a1ū1 + a2u2

v3 = a3ū1 + a4u3

where,
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a1 = 3tan2z3 tan z4sec4z4

a2 = sec2z3sec3z4

a3 = cos(z5 − z4 + z6) tan z3 sec z5sec2z4 + cos(z5 − z4 + z6) sin(z5 − z4 + z6)sec2z5sec2z4

− sin(z5 − z4 + z6) sec z5sec2z4 tan z3 tan z4

a4 = − cos(z5 − z4 + z6) sec z4 sec z5 − sin(z5 − z4 + z6) sec z5 sec z4 tan z5

Transform the nonholonomic system (6.36) into the following chained form system:

ẋ1 = v1

ẋ2 = v2

ẋ3 = x2v1

ẋ4 = x3v1

ẋ5 = v3

ẋ6 = x5v1

(6.37)

The proposed algorithm was applied with the sliding surface for subsystem S2 as:

s = x6 + 4x5 + 6x4 + 4x3 + x2 (6.38)

6.4.3.3 Simulation Results

Fig. 6.12 and Fig. 6.14 shows the response of system states when proposed

algorithm is applied. The initial conditions are chosen as (x1, x2, x3, x4, x5, x6) =

(0.8, 0.5, 0.7, 0.3, 0.6, 0.4) and [x1(0), x2(0), x2(0), x3(0), x4(0), x5(0), x6(0)] = [1,−5,

2,−3, 3, 2]. Fig. 6.8 and Fig. 6.10 shows the control inputs v1, v2 with gains

k1 = 4, k2 = 10. From the figures, we can see that under the constructed con-

troller, the solution process of the closed-loop system converges to zero almost

surely.
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Figure 6.12: Closed loop response of the firetruck model for initial
condition: (x1, x2, x3, x4, x5, x6) = (0.8, 0.5, 0.7, 0.3, 0.6, 0.4)
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Figure 6.13: Control input: v1, v2
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Figure 6.14: Closed loop response of the firetruck model for initial
condition: (x1, x2, x3, x4, x5, x6) = (1,−5, 2,−3, 3, 2)
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6.4.4 Comparison between adaptive integral sliding mode

control and a smooth super twisting sliding mode

control results: A front-wheel car example

Fig. 6.16 and Fig. 6.17 show the results of the front-wheel car model and represent

that the states converges with settling time of 7 sec and 8 sec. The control efforts

for both the techniques are shown in Fig. 6.18 and Fig. 6.19. The gain of Fig.

6.16 to be set are k = 5, k1 = 3 and k2 = 3 while the gains of Fig. 6.17 are

adjusted as k1 = 4, k2 = 10. From Fig. 6.16, it has shown that all the states are

asymptotically converging to equilibrium point but initially the control effort as

shown in Fig. 6.18 chatters a little bit as compared to the control effort shown in

Fig. 6.19. In Fig. 6.17, one state variable diverge for a short period of time but

then converge to equilibrium point when the control input has been applied.

Figure 6.16: Closed loop response of the front wheel car model for
initial condition: (x1, x2, x3, x4) = (0.3, 0.4, 0.2, 0.5)
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Figure 6.17: Closed loop response of the front wheel car model for
initial condition: (x1, x2, x3, x4) = (0.3, 0.4, 0.2, 0.5)

Figure 6.18: Control input: v1, v2
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Figure 6.19: Control input: v1, v2

6.5 Summary

A smooth super twisting sliding mode based stabilizing control for nonholonomic

systems which are transformable into chained form is presented. The proposed

method is tested on three nonholonomic systems which are transformable into

chained form; a two wheel car model, a model of four-wheel car and a fire truck

model. The aim is to stabilize the nonholonomic systems to any desired value from

any initial state. The simulation results show the correctness and the effectiveness

of the proposed controller.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

The goal of this dissertation is to propose new and novel feedback control algo-

rithms for the stabilization of nonholonomic systems. Control and stabilization of

these systems is a difficult problem, as these systems are not stabilizable by con-

tinuous static state feedback control laws. Furthermore, the addition of drift term

makes stabilization of these systems even more challenging. Nevertheless, finding

a feedback or coordinate transformation that transform the system into any design

friendly form actually facilitates in designing the control law. The transformation

of these systems considerably simplifies the kinematics of these systems and also

generalizes the control design process such that it can be applied to a whole class

of first-order nonholonomic systems.

After reviewing the existing methods in the literature, firstly, a nonholonomic sys-

tem with drift is considered to gain insight into and create interest to deal with

these systems. An adaptive backstepping technique is used to stabilize the non-

holonomic systems with drift. In addition to the adaptive backstepping method,

sliding mode control technique is also used for the design of feedback control laws

for nonholonomic systems. In contrast to the basic sliding mode control, we use

119
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integral sliding mode control, and the smooth super twisting sliding mode con-

trol approaches for nonholonomic systems. For the stabilization of nonholonomic

systems, secondly, an adaptive integral sliding mode based approach is presented.

Lastly, these systems are transformed into chained form and then the smooth super

twisting sliding mode control approach is used in order to stabilize nonholonomic

systems.

The theoretical results of this thesis are applied to challenging control problems

of a rigid body, an extended nonholonomic double integrator and for a variety of

wheeled mobile robots. Detailed control design and simulation results are provided

for each of these systems. Among these examples, the stabilization of unicycle

model, front wheel car model, car with trailer model and a firetruck model to the

origin is demonstrated. Simulation results prove the effectiveness of the proposed

techniques.

7.2 Future Work

Future research will include in-depth study of other interesting nonholonomic sys-

tems, such as the snake-board, ball and the plate. More complex systems like

multi-finger hands grasping object and space robots are also of high-interest. Sta-

bilization of nonholonomic mechanical systems subject to non-classical constraints,

i.e., when the rolling contact occurs through an elastic surface and the problem of

global stabilization for very general 3-dimensional systems with two control signals

is also a field of immense interest in the control or stabilization of nonholonomic

systems.

A list of a few topics for future research is:

1. Analysis of the robustness properties with respect to both model error and

external disturbances.

2. Generalization of control strategies for 2nd order or higher order nonholo-

nomic systems.
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3. Accommodation of other control objectives such as trajectory tracking and

motion planning.

4. Observer-based control when states are not accessible for measurement.
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[91] H. Brandtstädter, “Sliding mode control of electromechanical systems,”

Ph.D. dissertation, Technische Universität München, 2009.



Bibliography 132

[92] A. Saghafinia, H. W. Ping, and M. N. Uddin, “Fuzzy sliding mode con-

trol based on boundary layer theory for chattering-free and robust induction

motor drive,” The International Journal of Advanced Manufacturing Tech-

nology, vol. 71, no. 1-4, pp. 57–68, 2014.

[93] H. Du, X. Yu, M. Z. Chen, and S. Li, “Chattering-free discrete-time sliding

mode control,” Automatica, vol. 68, pp. 87–91, 2016.

[94] M.-L. Tseng and M.-S. Chen, “Chattering reduction of sliding mode control

by low-pass filtering the control signal,” Asian Journal of control, vol. 12,

no. 3, pp. 392–398, 2010.

[95] R. E. Skelton, T. Iwasaki, and D. E. Grigoriadis, A unified algebraic approach

to control design. CRC Press, 1997.

[96] N. Adhikary and C. Mahanta, “Integral backstepping sliding mode control

for underactuated systems: Swing-up and stabilization of the cart–pendulum

system,” ISA transactions, vol. 52, no. 6, pp. 870–880, 2013.

[97] D. W. Qian, S. W. Tong, and C. D. Li, “Observer-based leader-following

formation control of uncertain multiple agents by integral sliding mode,”

Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 65, no. 1,

pp. 35–44, 2017.

[98] M. Sarfraz and F. urRehman, “Feedback stabilization of nonholonomic drift-

free systems using adaptive integral sliding mode control,” Arabian Journal

for Science and Engineering, pp. 1–11, 2017.

[99] M. Van, S. S. Ge, and H. Ren, “Finite time fault tolerant control for robot

manipulators using time delay estimation and continuous nonsingular fast

terminal sliding mode control,” IEEE Transactions on Cybernetics, 2016.

[100] J. Wang, Q. Zong, R. Su, and B. Tian, “Continuous high order sliding

mode controller design for a flexible air-breathing hypersonic vehicle,” ISA

transactions, vol. 53, no. 3, pp. 690–698, 2014.



Bibliography 133

[101] H. O. Ozer, Y. Hacioglu, and N. Yagiz, “High order sliding mode control

with estimation for vehicle active suspensions,” Transactions of the Institute

of Measurement and Control, p. 0142331216685394, 2017.

[102] G. Bartolini, A. Ferrara, A. Levant, and E. Usai, “On second order sliding

mode controllers,” in Variable structure systems, sliding mode and nonlinear

control. Springer, 1999, pp. 329–350.

[103] S. Ding and S. Li, “Second-order sliding mode controller design subject to

mismatched term,” Automatica, 2017.

[104] A. Levant, “Sliding order and sliding accuracy in sliding mode control,”

International journal of control, vol. 58, no. 6, pp. 1247–1263, 1993.

[105] K. A. Morgansen and R. W. Brockett, “Nonholonomic control based on

approximate inversion,” in American Control Conference, 1999. Proceedings

of the 1999, vol. 5. IEEE, 1999, pp. 3515–3519.

[106] K. A. Morgansen, “Controllability and trajectory tracking for classes of

cascade-form second order nonholonomic systems,” in Decision and Con-

trol, 2001. Proceedings of the 40th IEEE Conference on, vol. 3. IEEE,

2001, pp. 3031–3036.

[107] A. P. Aguiar, A. N. Atassi, and A. M. Pascoal, “Regulation of a nonholo-

nomic dynamic wheeled mobile robot with parametric modeling uncertainty

using lyapunov functions,” in Decision and Control, 2000. Proceedings of the

39th IEEE Conference on, vol. 3. IEEE, 2000, pp. 2995–3000.

[108] A. P. Aguiar and A. M. Pascoal, “Dynamic positioning and way-point track-

ing of underactuated auvs in the presence of ocean currents,” in Decision and

Control, 2002, Proceedings of the 41st IEEE Conference on, vol. 2. IEEE,

2002, pp. 2105–2110.

[109] I. Shah and A. A. Saleem, “Steering control for a rigid body having two

torque actuators using adaptive backstepping,” International Journal of

Robotics and Automation, vol. 32, no. 5, 2017.



Bibliography 134

[110] A. Bloch and S. Drakunov, “Stabilization and tracking in the nonholonomic

integrator via sliding modes,” Systems & Control Letters, vol. 29, no. 2, pp.

91–99, 1996.

[111] A. M. Bloch, S. V. Drakunov, and M. K. Kinyon, “Stabilization of non-

holonomic systems using isospectral flows,” SIAM Journal on Control and

Optimization, vol. 38, no. 3, pp. 855–874, 2000.

[112] H. Khennouf and C. C. De Wit, “On the construction of stabilizing discon-

tinuous controllers for nonholonomic systems,” IFAC Proceedings Volumes,

vol. 28, no. 14, pp. 667–672, 1995.

[113] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: Steering

using sinusoids,” IEEE Transactions on Automatic Control, vol. 38, no. 5,

pp. 700–716, 1993.

[114] W. E. Dixon, Z.-P. Jiang, and D. M. Dawson, “Global exponential setpoint

control of wheeled mobile robots: a lyapunov approach,” Automatica, vol. 36,

no. 11, pp. 1741–1746, 2000.

[115] F. urRehman, “Steering control of nonholonomic systems with drift: The ex-

tended nonholonomic double integrator example,” Nonlinear analysis-theory

& applications, vol. 62, no. 8, pp. 1498–1515, 2005.

[116] A. C. Huang, Y. F. Chen, and C. Y. Kai, Adaptive Control of Underactuated

Mechanical Systems. World Scientific, 2015.

[117] C. Gruber and M. Hofbaur, “Remarks on the classification of wheeled mobile

robots,” Mechanical Sciences, vol. 7, no. 1, pp. 93–105, 2016.

[118] W. Pasillas Lepine and W. Respondek, “Conversion of the kinematics of

the n-trailer system into kumpera-ruiz normal form and motion planning

through the singular locus,” in Decision and Control, 1999. Proceedings of

the 38th IEEE Conference on, vol. 3. IEEE, 1999, pp. 2914–2919.



Bibliography 135

[119] J. A. Moreno and M. Osorio, “A lyapunov approach to second-order sliding

mode controllers and observers,” in Decision and Control, 2008. CDC 2008.

47th IEEE Conference on. IEEE, 2008, pp. 2856–2861.

[120] F. urRehman, “Feedback stabilization of nonholonomic control systems us-

ing model decomposition,” Asian Journal of Control, vol. 7, no. 3, pp. 256–

265, 2005.


	Author's Declaration
	Plagiarism Undertaking
	List of Publications
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Research Contributions
	1.4 Outline of the Thesis
	1.5 Summary

	2 Literature Survey
	2.1 Stabilization of Nonholonomic Systems
	2.1.1 Open Loop Control
	2.1.2 Closed Loop or Feedback Control
	2.1.2.1 Discontinuous State Feedback Control
	2.1.2.2 Time-Varying State Feedback Control
	2.1.2.3 Hybrid Feedback Control


	2.2 Findings of the Literature Survey
	2.3 Summary

	3 Theoretical Foundation
	3.1 The Constraints Model of Nonholonomic Systems
	3.1.1 Linear Velocity Constraints and their Integrability

	3.2 The Kinematic Model of Nonholonomic Systems
	3.3 Important Features of Nonholonomic Systems
	3.4 Backstepping and Adaptive Backstepping
	3.5 Sliding Mode Control
	3.5.1 Sliding Mode Control Design Procedure
	3.5.2 Chattering Phenomena
	3.5.3 Integral Sliding Mode Control
	3.5.4 Higher Order Sliding Mode Control
	3.5.4.1 Super Twisting Algorithm
	3.5.4.2 Smooth Super Twisting Algorithm


	3.6 Summary

	4 Stabilization of Nonholonomic Systems: Adaptive Backstepping Technique
	4.1 Introduction
	4.2 The Control Problem and Preliminaries
	4.3 The Proposed Control Algorithm
	4.4 The Rigid Body 
	4.4.1 Mathematical Model of the Rigid Body
	4.4.2 Construction of the Transformation
	4.4.3 Simulation Results

	4.5 Extended Nonholonomic Double Integrator
	4.5.1 Mathematical Model of an Extended Nonholonomic Double Integrator
	4.5.2 Construction of the Transformation
	4.5.3 Simulation Results

	4.6 Summary

	5 Stabilization of Nonholonomic Systems: Adaptive Integral Sliding Mode Control Technique
	5.1 Introduction
	5.2 Problem Formulation
	5.2.1 Mathematical Model of Nonholonomic Systems
	5.2.2 Problem Statement
	5.2.3 Assumptions

	5.3 The Proposed Control Algorithm
	5.4 Application to Nonholonomic Systems
	5.4.1 Unicycle Model
	5.4.1.1 Application of the Proposed Algorithm to a Unicycle Model

	5.4.2 Front Wheel Car Model
	5.4.2.1 Application of the Proposed Algorithm to a Front Wheel Car Model

	5.4.3 Mobile Robot with Trailer Model
	5.4.3.1 Application of the Proposed Algorithm to a Mobile Robot with Trailer Model


	5.5 Simulation Results
	5.6 Summary

	6 Stabilization of Nonholonomic Systems: Smooth Super Twisting Sliding Mode Control Technique
	6.1 Introduction
	6.2 The Control Problem Formulation
	6.3 The Proposed Stabilizing Control Algorithm
	6.4 Application Examples
	6.4.1 A Two Wheel Car Model
	6.4.1.1 A Kinematics Model
	6.4.1.2 Conversion into Chained form
	6.4.1.3 Simulation Results

	6.4.2 A Front Wheel Car Model
	6.4.2.1 A Kinematics Model
	6.4.2.2 Conversion into Chained form
	6.4.2.3 Simulation Results

	6.4.3 A Firetruck Model 
	6.4.3.1 A Kinematics Model of a Firetruck
	6.4.3.2 Conversion into Chained form
	6.4.3.3 Simulation Results

	6.4.4 Comparison between adaptive integral sliding mode control and a smooth super twisting sliding mode control results: A front-wheel car example 

	6.5 Summary

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Bibliography

