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Abstract

Large-scale network simulations are resource and time intensive tasks due to a

number of factors i.e., setup configuration, computation time, hardware, and en-

ergy cost. These factors ultimately force network researchers to scale-down the

scope of experiments, either in terms of Simulation Entities (SEs) involved or

in abridging expected micro-level details. The Cloud technology facilitates re-

searchers to address mentioned factors by the provisioning of Cloud instances on

shared infrastructure. In this thesis, an academic Cloud SIM-Cumulus targeting

the research institutions is proposed. The thesis is divided into three parts, each

part discussing the contributions achieved in thesis.

The first part of this thesis discusses the design and implementation of SIM-

Cumulus academic Cloud framework for the provisioning of Network-Simulation-

as-a-Service (NSaaS). SIM-Cumulus provides the framework of Virtual Machine

(VM) instances specifically configured for large-scale network simulations, with

the aim of efficiency in terms of simulation execution time and energy cost. The

performance of SIM-Cumulus is evaluated using large-scale Wireless Network sim-

ulations that executed sequentially as well as in parallel. Simulation results show

that SIM-Cumulus is beneficial in three aspects i.e., (i) promotion of research

within the domain of computer networks through configured Cloud instances of

network simulators (ii) consumption of considerably fewer resources in terms of

simulation elapsed time and usage cost and (iii) reduction of carbon emission

leading towards sustainable IT development. The execution of simulation in par-

allel involves the partitioning of simulation model into several components and

each component is assigned to separate execution units (Logical Processes (LPs)).

Each LP is comprised of a set of SEs that can interact with local as well as remote

SEs. However, the remote communication among SEs and synchronization man-

agement across LPs are the two main issues related to the parallel and distributed

executions of large-scale simulations. A number of migration techniques are used

to mitigate the problem of high remote communication and lead to a reduction

in remote communication among SEs. However, most of the existing migration
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strategies results in higher number of migration which lead to higher computation

overhead. The second part of the thesis contributes Migration-based Adaptive

Heuristic Algorithm (known as MAHA). MAHA provides dynamic partitioning of

the simulation model based on runtime dynamics of the wireless network simula-

tions. The proposed algorithm uses an intelligent heuristic for migration decision

in order to reduce the number of migrations with an ultimate goal to achieve better

Local Communication Ratio (LCR). The proposed algorithm is better in terms of

achieving optimum LCR with reduced number of migrations as compared to the

existing technique(s). The third contribution of this thesis is related to implemen-

tation of adaptive SIM-Cumulus (A-SIM-Cumulus) that integrates Advanced RTI

System (ARTIS) and Generic Adaptive Interaction Architecture (GAIA) with the

SIM-Cumulus framework. To obtain an insight into the performance gain, the

simulation has been performed multiple times with different configurations and

execution environments. The obtained results assert that the proposed algorithm

significantly reduces the number of migrations and achieves a good speedup in

terms of execution time for parallel (i.e., both multi-core and distributed) simula-

tions on the A-SIM-Cumulus Cloud.
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Chapter 1

Introduction

1.1 Overview

The successful deployment of a new (i.e., wireless, mobile, and ad hoc) communi-

cation network always relies on the predicted behavior of a system’s performance

already obtained through the use of analytical, experimental, or simulation [1]

techniques. Experimental techniques are expensive (both in terms of time and

resources) whereas analytical methods are unable to fully grasp the character-

istics associated with communications in wireless networks. Therefore, simula-

tion techniques are extensively used during the design, implementation and per-

formance analysis of a large number of wireless networks i.e., Mobile Ad hoc

Networks (MANETs), Vehicular Ad-hoc Networks (VANETs), Urban Mesh Net-

works (UMNs), and Wireless Sensor Networks (WSNs) etc. Numerous simulation

tools such as NS-2 [2], NS-3 [3], OMNeT++ [4] [5], OPNET [6], QualNet [7],

DRMSim [8], Artery [9], JiST/SWANS [10] [11], DIVERT [12], NCTUns [13],

iTETRIS [14], Castalia [15], SURE [16] etc.) are being employed by computer

network researchers to quantify the performance of their proposed protocols for

infrastructure-based and Ad hoc networks. However, the selection of an appro-

priate network simulator involves certain considerations, such as: ease in con-

figuration, learning curve of the corresponding programming language, type of

1
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communication system to simulate, provisioning of GUI environment, and sup-

port for scalability. These factors have also been acknowledged by the researchers

in a survey (titled as Working with Network Simulators [17]). This survey analyzes

the trends associated with the selection and usage of network simulators. The in-

depth analysis in the survey has revealed two factors predominantly influencing

the selection of a network simulator i.e., configuration complexity and scalability.

Figure 1.1 shows an excerpt of the results on the time consumption for executing

some standard tasks in network simulations as surveyed along more than 100 re-

searchers from renowned universities. The survey results are shown in Figure 1.1.

Figure 1.1 (a) is related to the researchers experience (i.e., in number of years) on

any tool that they used for the network simulation. Time required for simulation

environment setup is also important in the selection of a particular network simu-

lator. The second part of survey is related to the time taken for initial installation

and environment configuration as shown in Figure 1.1 (b). After initial configu-

rations, the next important consideration is the time taken for the execution of

available simulation example(s). Figure 1.1 (c) shows the survey results pertaining

to the time taken by the researchers to execute simple network simulations. Most

of the simulators are extended by patches to provide the functionality of certain

scenarios. Figure 1.1 (d) is related to the time taken by researchers to install and

configure customized patches for their required simulation. The obtained survey

results reveal few important points: The time required for the initial simulator

configuration and setup is quite high and is normally ignored. Users of the simu-

lation often face difficulty in executing the very basic example. The last and very

important point is that the researchers often face difficulty and waste sufficient

time in configuring customized patches and running their required simulation.

The intended network simulation can be small-to-medium as well as large-scale,

having large number of nodes. The computation complexity of the simulation is

dependent on the granularity of details (i.e., macroscopic, microscopic or meso-

scopic) involved in the simulation modeling [18]. The macroscopic details highlight

the big picture of the system to be simulated whereas the microscopic approach

considers more details about the simulation model. The mesoscopic simulation
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Figure 1.1: (a) Researchers’ experience with network simulators, (b) Time
taken to configure network simulator, (c) Time taken to execute basic example,

(d) Time taken to execute simulation with available frameworks/patches.

analyzes intermediate details about simulation model. For example, in VANETs,

macroscopic, microscopic, and mesoscopic details are related to complete road

flow, individual vehicle details and transportation elements in small groups, re-

spectively. An inadequate amount of details can lead to incorrect results during

performance evaluation [19]. The correctness of the simulation results highly de-

pend on the amount of details required to represent the simulated model [20].

However, simulations with microscopic parameters can lead to high memory and

computation requirements to simulate a modeled system. Moreover, the highly

dense simulation with granular details also attribute to more time required for

simulation execution.

Simulations (either microscopic or macroscopic) can be executed in two different

ways (i.e., sequential and parallel). The sequential approach for network simu-

lation execution is based on monolithic design, where a single execution unit is

in-charge of managing all parts of the simulation. The monolithic approach is

more realistic for small and medium scale network simulations [21]. On the other
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hand, scalable wireless network simulations, with microscopic details are imprac-

tical to execute on monolithic systems. Generally, microscopic details of a wireless

network simulation model ascertain the accuracy of simulation results and are

essential for the successful deployment of the proposed model. Concerning the

monolithic systems, memory scarcity and low computing power are two important

factors that limit the scale of network simulations [22]. This is due to the fact that

memory requirements increase exponentially (as representation of each nodes state

requires a certain amount of memory) and simulations takes long time span to be

completed. Moreover, numerous interactions (i.e., event, packets) are required to

be created, stored and delivered instantly [21], [23].

Alternatively, Parallel And Distributed Simulation (PADS) [24] approaches effec-

tively deals with the execution of large-scale network simulations. In PADS, the

simulation is segregated into several parts and each part is assigned to specific

logical unit (LP). These LPs may reside on same or different Physical Execution

Unit (PEU). The PADS has the capability to employ a huge amount of memory

and computation resources from different PEUs. For precise simulation execution

using PADS, all LPs are required to be synchronized during the entire span of the

simulation. The initial employed partitioning scheme is based on the static allo-

cation of SEs on a number of LPs. The goal of this scheme is two folds: the load

on different LPs should be balanced, keeping the remote communication (among

SEs located on different LPs [25]) as minimum as possible. However, the static

partitioning approach embroils two issues that are: latency overhead of remote

communication (inter-LP communication for parallel execution) and synchroniza-

tion management among the LPs. The nodes in the wireless networks are mobile

in nature and frequently move due to high mobility involved. This leads to high

remote communication and thus every form of static partitioning may not be an

optimal choice. The partitioning problem become more complex due to a number

of factors that must be taken into account. The LPs in the simulation may not be

homogeneous [23] in nature and the communication pattern may vary during the

course of the simulation as the transmission of message by the SEs is random in

wireless networks. Moreover, the execution architecture may comprised of several
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components that can be heterogeneous (i.e., both in terms of hardware used and

performance).

In contrast to the static partitioning techniques, the dynamic partitioning are

proposed that keep the load balanced on LPs and reduce high remote communica-

tion [26]. The dynamic partitioning techniques use the concept of SE migrations

from one LP to another with the aim to reducing the high remote communication.

The migration is triggered based on the condition specified by heuristics that are

evaluated for each SE at their respective LPs. The local available information

is used for the migration decision. The migration mechanism is an attempt to

localize the communication among the SEs as much as possible and to keep the

load balanced on different LPs. Moreover, the migration mechanism has a certain

computation cost which is crucial for achieving good performance. The migration

approach will be effective if the cost associated with employing the migration is

lower than the remote communication cost. Another important consideration is

related to the number of migrations which is required to minimize the remote com-

munication among SEs located on different LPs. The type of network chosen in

this research thesis is wireless networks. The nodes in the mobile wireless networks

are in movement due to the mobility involved. This means that the communica-

tion pattern among the simulation nodes changes continuously during the course

of the simulation. The required number of migrations also raise frequently due to

the continues node mobility. Thus more computing and memory will be required

to achieve optimal LCR (Local Communication Ratio). The LCR corresponds

to the ratio of the total number of local communications by all SEs in a given

LP, with respect to all interactions originating from this LP [23]. The suggested

approaches [23], [27], [26] are appropriate to handle the networks with no or very

low mobility nodes. The high mobility involved in these type of mobile wireless

networks will lead to more frequent migration which attribute huge migration cost,

ultimately leading to poor simulation performance.

PADS simulations could be implemented on multiple platforms, such as grid com-

puting [28], High Performance Computing (HPC) [29] [30], Cloud computing [27]

etc. In recent advancements, Cloud computing eliminates the barriers of resource
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limitations for large-scale applications [31]. The implementation of PADS over

Cloud computing provides an essential platform to address the problems encom-

passing scalable simulations with microscopic details.

1.2 Problem Statement

The required amount of memory and computation time (for each simulation run)

are two important factors that limit the scale of packet-level simulations. In case

of scalable network simulations, memory requirements increase exponentially as

representation of each nodes state requires a certain amount of memory. Analy-

sis of large-scale networks and realistic scenarios through computer simulations on

stand-alone machines becomes a time consuming process due to prolonged elapsed-

time of simulation. A number of schemes i.e., Grid computing [32], Agent-based

solution [33], [34], [35], [36], [37], HPC [29], and Cloud computing [38–41] are be-

ing employed by the researchers to attain the demands of large-scale simulation.

Grid computing is designed for large-scale distributed data processing/storage

and works with assigning subtasks across different clusters [32], [42]. The grid

computing environment is best suitable choice for specialized type of large-scale

computing tasks and often inefficient for network simulations as the components

of the grid are loosely coupled and thus the synchronization among them is quite

complex. Agent-based simulation approaches [33–35, 43–45] are suitable to ef-

fectively deal with situations where each agent has been independently assigned

different set of tasks. The agent-based approaches are not suitable for large-scale

network simulation tasks due to the frequent synchronization required among dif-

ferent agents. In addition, agent-based approaches require HPC to support the

network simulations. Nevertheless, independent task assignment in case of HPC

environment is restricted and requires pre-training to be configured to meet the

simulation requirements [29]. On the other hand, in recent times, Cloud comput-

ing provides solution encompassing large-scale problems including the domains

of storage, computational intensive tasks, real-time applications, and simulation

jobs [38–41] etc. Due to the complex nature of large-scale network simulations and
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limitations of network simulators; to-date only few Cloud solutions (e.g., SEMsim

cloud service, CloudSME etc.) are available that are specifically designed for large-

scale simulation jobs. The problems related to the existing Cloud approaches for

large-scale network simulations are two folds. First, for large-scale network simu-

lations, the existing Cloud frameworks have considered specifically designed net-

work simulators (encompassing a specific network scenario e.g., urban scenario)

and are only compatible with proposed Cloud architecture. On the other hand,

most of multipurpose Clouds (i.e., Amazon Web Services (AWS), Google Cloud

etc.) provide various type of services at generic level (i.e., infrastructure, stor-

age, software service, and platform) and are difficult to be customized for network

simulation services. Although, these Clouds are quite powerful in terms of avail-

able resources; however, usefulness of the existing Cloud platforms is questionable

because of difficult integration with the existing state-of-the-art simulation tools

(i.e., NS-2, NS-3, OMNeT++ etc.). Second, the Parallel and Distributed Sim-

ulation (PADS) approaches are used for large-scale network simulations. PADS

approaches partition the large-scale wireless network simulation into a number of

components called Logical Processes (LPs) and each LP is assigned part of the

simulation model (i.e., equal number of Simulation Entities (SEs). The SEs in

the wireless networks are mobile in nature and thus involve high remote commu-

nication cost due to high mobility of the SEs that ultimately increase simulation

execution time. A number of migration and load-balancing techniques have been

proposed to reduce the high-end remote communication for large-scale wireless

network simulations [23], [27], [26], [23]. Although, the existing approaches lead

to a good level of Local to Remote Communication Ratio (LCR); however, huge

number of migrations (in wireless networks) may lead to additional overhead and

producing a negative impact on the overall performance gain. The higher number

of migrations make these approaches unsuitable for large-scale wireless network

simulations involving high mobility.
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1.3 Research Objective

The following research objectives which are intended to be achieved in this research

thesis as follows.

� analysis of state-of-the-art approaches to perform large-scale network simu-

lation by harnessing the contemporary approaches;

� design and implementation of an Academic Cloud that solely employed for

small to medium scale network simulations and more specifically for large-

scale wireless network simulations;

� implementation of dynamic partitioning (migration-based approach) algo-

rithm for large-scale network simulations using PADS approach to minimize

the number of migrations and to obtain time-efficient simulation execution;

� facilitate the students/faculty/researchers by providing them a Cloud-based

network simulation service that is efficient in terms of memory, time, cost

and accuracy.

In addition, the proposed Cloud also helps in maintaining sustainable green IT.

1.4 Research Contribution

The contributions of this thesis are discussed as follows.

� This thesis provides a comprehensive and detailed survey of the existing

techniques used for large-scale network simulation. In this work, the de-

tailed literature survey served as a baseline for designing and deploying the

proposed academic Cloud framework.

� An academic Cloud framework named SIM-Cumulus is designed and imple-

mented to support large-scale wireless network simulations. The proposed
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Cloud framework provides the solution to facilitate the student/faculty re-

searchers in validating their research work with an ease without facing the

complexity of configuring the simulation environment setup. Moreover, the

employment of SIM-Cumulus reduces the time required for simulating large-

scale network simulation.

� Contributed Migration-based Adaptive Heuristic Algorithm (MAHA) that

reduces the high remote communication of SEs across PADS for both multi-

core and distributed architectures.

� A set of simulation experiments are executed to show the effectiveness of the

proposed Cloud and migration algorithm. Results reveal that SIM-Cumulus

assist the researchers in various ways such as provisioning high performance

computing, lowering the costs of IT infrastructure for academic institutions

and reducing power consumption that will pave the way towards sustainable

green IT.

1.5 Research Evaluation

To evaluate the performance of large-scale network simulations, we have consid-

ered three different ad hoc network simulation scenarios (i.e., Vehicular Ad hoc

Networks (VANETs), Underwater Wireless Sensor Networks (UWSNs), and Wire-

less Local Area Networks (WLANs). The VANETs scenario is considered because

of its computation complexity due to the involvement of a number of factors i.e.,

realistic mobility traces, nodes mobility, propagation model, heterogeneous access

technologies, packet rate in routing protocols etc. These factors with microscopic

details are associated with each node in the simulation scenario. Therefore, the

memory consumption and computation time increase exponentially with addition

of each vehicular node in the simulation scenario. Various platforms (details are

available in Table 5.2 in revised version of Submitted thesis) with diverse hardware

specifications have been used to evaluate the performance of large-scale network



Introduction 10

simulations in terms of execution time, simulation speed, and energy consump-

tion. Large-scale UWSNs scenario is considered to evaluate the effectiveness of

proposed academic Cloud SIM-Cumulus in terms of simulation execution time

utilizing monolithic and parallel execution modes. Like VANETs, the UWSNs

scenario considers three aspects i.e., mobility, propagation model and routing that

ultimately increase the computational complexity of the network simulations es-

pecially in the case of large-scale deployment. Large-scale WLAN scenarios have

been taken into account to evaluate and compare the performance of MAHA and

EHA approaches. The ARTIS/GAIA framework has been selected (for the imple-

mentation of large-scale WLAN scenarios), which supports the dynamic migration

of simulation entities (SEs) and is specifically designed for the execution of large-

scale Parallel and Distributed Simulations (PADS).

1.6 Thesis Organization

The rest of the thesis is structured as follows (also shown in Figure 1.2): Chap-

ter 2 provides details regarding large-scale network simulation issues and existing

approaches to handle large-scale network simulation. The discussion related to

the existing popular Academic Clouds is also part of this section. Moreover, the

review of partitioning (i.e., static and dynamic) approaches used to cope with

high remote communication is presented at the end of Chapter 2. The Chap-

ter 4 delineates the contributions of this thesis (i.e., SIM-Cumulus, MAHA and

A-SIM-Cumulus). The proposed work is divided into three parts that are: First

part presents SIM-Cumulus architecture overview, working details, mathematical

model and cost analysis pertaining to the large-scale network simulations. A-SIM-

Cumulus architecture and working details is presented in second part of Chapter 4.

The discussion related to the proposed migration algorithm (i.e., MAHA) is pre-

sented in last part of Chapter 4. Chapter 5 presents the experimental setup details

for large-scale wireless network simulations. The results and discussion related to

the large-scale network simulation and migration implementation are also part of
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Figure 1.2: Thesis structure.

Chapter 5. The conclusion of the study is presented in Chapter 6 along with the

future perspectives of this thesis.



Chapter 2

Literature Review

The wireless systems are often very complex and may comprise of large number

of nodes. The discovery of new wireless applications is compelling researchers to

meet new and very stringent requirements for its simulations that demand the

involvement and integration of traffic generators, map generators, mobility mod-

els and communication models. Moreover, the computation complexity of scalable

wireless network simulation is increased due to the involvement of mobility models

and heterogeneous access technologies e.g., accurate channel modeling, encoding

techniques and routing protocols [46, 47] etc. The complex nature, expensive

experimentations, and limitations of conventional analytical evaluation methods

adhere the espousal of network simulation for pre-deployment performance evalu-

ation of scalable communication and wireless network systems [21]. However, the

simulations of such large-scale complex wireless network systems are resource and

time intensive tasks due to a number of factors i.e., setup configuration, computa-

tion time, hardware, and energy cost. Many solutions are proposed to cope with

large-scale simulations. One of the solutions can be the use of simulators that par-

ticularly target the large-scale wireless simulations e.g., DIVERT [12], iTETRIS [14],

and NCTUns [13], VNS [48], DRMSim [8], Artery [9]. However, the problem related to

the high computing time for multiple simulation runs on a single workstation still

persists. As an alternative, PADS [24] approaches are used that effectively executes

the large-scale simulations. In PADS, the simulation is segregated into different

12
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parts and each part is assigned to specific logical unit (i.e., called LP). These LPs

may reside on same or different PEU. The PADS has a capability to employ a huge

amount of memory and computation resources from different PEUs. For precise

simulation execution using PADS, all LPs are required to be synchronized during

the whole span of a simulation. PADS simulations could be implemented on mul-

tiple platforms, such as grid computing [32], HPC [29], Cloud computing [27] etc.

The nodes in the wireless networks are mobile in nature and frequently move due

to high mobility involved. This leads to high-end remote communication and thus

every form of static partitioning may not be an optimal choice. The partitioning

problem becomes more complex due to a number of factors that must be taken

into account. The LPs in the simulation may not be homogeneous [23] in nature

and the communication pattern may vary during the course of the simulation as

the message sending by the SEs is random in wireless networks. Moreover, the

execution architecture may be comprised of several components that can be het-

erogeneous (i.e., both in terms of hardware used and performance). In contrast

to the static partitioning techniques, the dynamic partitioning was proposed to

keep the load balanced on LPs and reduce high end remote communication [26].

The dynamic partitioning techniques use the concept of SE migrations from one

LP to another with the aim of reducing the high remote communication. The

discussion related to the provisioning of large-scale wireless network simulation is

presented in section 2.1. Section 2.3 delineates the work related to the discussion

of academic clouds for the provisioning of large-scale network simulations. The

discussion pertaining to simulation partitioning of large-scale wireless networks is

presented in section 2.4. In addition, section 2.4 also discuss the state-of-the-art

static and dynamic partitioning techniques.
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2.1 Large-scale Wireless Network Simulations Pro-

visioning

Recent innovations in internet-based systems have attracted network researchers

towards the adoption of web-based simulation environments [49]. The notion of

web-based simulation design and modeling is initiated by Lorenz et al. in [50]

where authors have presented prototypes of web-based simulations. The proposed

approaches provides the user web-based interactive interface to perform their sim-

ulation experiments and visualize the obtained results. The author discussed the

basic components and standards used for the adoption of web interfaces for man-

aging simulation. The users of the simulation can either run the existing model

or change the simulation model according to their requirements. Taylor et al. [51]

have discussed research efforts related to the exploitation of web infrastructure

for online simulation modeling, design, and result visualization. The author high-

lighted the issues involved in using virtualized environment for modeling and sim-

ulation. Moreover, discussed the challenges associated with the integration of

Internet of things (IoT) with existing modeling and simulation approaches. All

of these schemes have emphasized the classical way of offering web interfaces for

controlling simulations. Nevertheless, emerging trends of large-scale simulations

demand the distribution of simulation jobs over physical and virtual computing

resources for load balancing [29]. A number of schemes i.e., Parallel process-

ing [52], [53], Grid computing [32], Agent-based solution [33], [34], [35], [36], [37],

Distributed computing, HPC [29], and Cloud computing are being employed by

the researchers to attain the demands of large-scale simulation.

Parallel processing [52], [53] is used to perform large-scale simulations via running

multiple copies of the simulator (each representing a different portion of the sim-

ulation) in parallel. The author in [52] proposed parallel computing framework

for the simulation of large-scale mesoscopic transportation system. A synchronous

space parallel simulation approach is presented where different parts of the sim-

ulation model are assigned to different LPs. Figure 2.1 shows how different LPs

are assigned to different CPUs according to required partitioning strategy.
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Figure 2.1: LP distribution on parallel computing instance.

Grid computing is designed for large-scale distributed data processing and stor-

age, and works with assigning subtasks across different clusters [32], [42]. In [32],

the author presented the applications of smart grid used for electric, gas, and wa-

ter usage across the Austin city. The paper also discussed different monitoring

methods used for collecting residential energy consumption. The grid computing

environment is most suitable choice for specialized type of large-scale computing

tasks and often in-efficient for network simulations. Agent-based simulation ap-

proaches [33–35, 43–45] are suitable to effectively deal with situations where each

agent has been independently assigned different set of tasks. The author presented

the tools required for the implementation of agent based modeling and simulation

and discussed different applications of agent-based simulation [33]. The author

in [45] evaluate how the agent-based simulation tools can offer value able services

in the modeling and simulation of large-scale complex networks such as wireless

mesh networks, VANETs, UWSNs, large-scale peer-to-peer systems,and networks

involving considerable human interaction. Moreover, an agent-based approach re-

quires HPC to support the simulations. However, HPC environment is restricted

and requires pre-training to be configured to meet the simulation requirements [29].

Figure 2.2 shows the generic structure of agent-based approach where each agent

has either synchronized locally or globally with agents that resides on remote agent

platform.

In recent times, Cloud computing is used to solve large-scale problems including
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Figure 2.2: Generic structure of Agent-based approach.

storage, computational intensive, real-time response applications, simulation [38–

41] etc. The following section explains the effectiveness of Cloud computing for

solving large-scale simulation.

2.2 Cloud computing

The evolutionary concept of Cloud computing has long history dating back to the

era of 1970’s. The emergence of various technologies in chronological order upon

which Cloud computing concept is essentially based as shown in Figure 2.3. The

paradigm of Cloud computing provides an environment that facilitates sharing of

resources in the form of scalable infrastructure, platform, and value-added applica-

tions for business and academia on utility basis [54]. Nevertheless, from plethora of

available definitions, the Cloud can defined as: the straightforward thinking about

Cloud computing is just an imagination of a colossal web data center where inte-

grated hardware and virtualized software resources offer a variety of on-demand,

elastic services in terms of infrastructure, platform, and software to the end users
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Figure 2.3: Evolution of Cloud and related technologies.

on both utility and non-utility basis through abstract web interfaces, to facilitate

business organizations as well as academic institutions.

Cloud computing has been in use in various fields of life including health care,

business, data analytics, academia etc. The business Clouds [55] are related to the

availability of infrastructure and usage of information technology advancements

with a clear objective of increasing business productivity. Cloud computing with

its benefits (i.e., low IT infrastructure cost, performance, scalable storage, avail-

ability, green computing, remote access, better response time etc.) opens new op-

portunities for small-scale and large-scale businesses. A number of business cloud

models have been proposed and currently organizations focal concern is related to

the selection and adoption of an appropriate business model to achieve sustain-

ability [56]. Healthcare cloud [57] provide the environment for all the medical and

health units to make use of the cloud computing conveniently in way to reduce the

usage costs and make some improvements in medical standards. Authors in [27]

have favored the idea of Cloud computing paradigm for dynamic sizing of the

large-scale network simulations. Guo et al. [58] proposed a five layered framework

for systematic support of Simulation Software as a Service (SIMSaaS) in Cloud.

According to Cayirci [59], the cloud computing has been considered as an impor-

tant model to support modeling and simulation for most of military and civilian

applications. The provisioning of Cloud toolkits i.e., CloudSim [60] and Cloud-

netSim++ [61] have enabled researchers and professionals to perform modeling of

data centers and virtual machines, while managing the energy efficiency in Cloud.

In [62], the author proposed a layered hierarchical model GP-CMW that works
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to manage meta computing nodes in simulation process. GP-CMW is a kind of

simulation model that works well in both parallel as well as distributed simula-

tions with diverse nature of computing nodes having GPUs and CPUs. All these

issues are tried to resolve through implementation a three layered GP-MW model

for simulation. After analyzing this approach it come to notice that it is efficient

in intensive situations with multi core GPUs and CPUs. In terms of scalability

it is also more effective than other proposed models. Through exploiting multiple

resources for computing this model not only overcome the scalability issues, it

also make the communication process 3.6% faster among heterogeneous sources

involved in simulation. Rahman et al. [63] have compared various Cloud sim-

ulators and highlighted their strengths and limitations. In addition, the authors

have proposed Cloud simulator Nutshell, which offers realistic Cloud environments

and protocols. Ficoo et al. [64] have devised a method to cope with simulation

of large-scale critical systems on private Cloud. Gabriele [23] proposed an adap-

tive solution for large-scale simulations using parallel and distributed simulation

(PADS) approach. CloudSME [65] was proposed as a Cloud-based simulation

framework for large-scale simulation of manufacturing and engineering industry.

In [66] the author has proposed an E-Learning cloud framework that virtualizes

the physical machines and then performs allocation to the clients on demand for

E-Learning systems. Recently, Academic Clouds [67] [68] [69] grab attention from

the researchers due to its versatile services. The discussion about Academic Cloud

is presented in next section.

2.3 Academic Clouds

The Academic Clouds are intended to facilitate the provisioning of infrastructure

and usage of technology to solve problems related to research and IT establish-

ment. The emergence of various technologies in chronological order upon which

Cloud computing concept is essentially based are shown in Figure 2.3. However,

Cloud computing is a merger of several of its precursor technologies (i.e., Grid,

Cluster etc.). Many people from different backgrounds have been involved in the
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Table 2.1: Approaches to support network simulation.

Paper Approach Large-scale
simulation

support

Web-
interface

Elastic

[52] Parallel
processing

Yes No No

[32] Grid
computing

Yes No No

[33] Agent-based Yes Yes No
[27] Cloud

computing
Yes Yes Yes

[64] Private cloud Yes Yes Yes
[67] Academic

Clouds
Yes Yes Yes

development of Cloud; therefore, research community has not been able to develop

a consensus on a common definition for Cloud [70].

The usage of Cloud technology for academia is threefold as shown in Figure 2.4:

� Adoption of Cloud computing technology by educational establishments;

� Provisioning of high computing power to facilitate research work within aca-

demic institutions;

Figure 2.4: Users’ academic cloud perspective.
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Figure 2.5: Structure of popular academic clouds.

� Provisioning of IT services to students and academic staff;

Although several existing academic Clouds fit in various informal Cloud defini-

tions, they differ in several aspects such as how they are configured, managed,

and programmed [70]. The nature of academic applications (both in research and

teaching domains) requires full control over the system. Therefore, private or com-

munity Cloud computing platforms are considered a first choice by the academia.

This requirement also favors open-source solutions as they have additional bene-

fits such as low initial investment and support for customizable scientific libraries.

Mostly, Cloud systems tend to provide several compatible APIs to make it easy

for Cloud engineers to integrate different functionalities of various Clouds to work

together as shown in Figure 2.5.

The discussion about few of the most popular Academic Cloud systems [71, 72] is

presented as given.

OpenNebula [73] is an open-source toolkit utilized for the design and implemen-

tation of private Clouds. The flexible design and extensive customizability options

of OpenNebula lends it one of the best candidates to be integrated with networking

and storage solutions and to fit into existing data centers. From administrator’s

perspective, the significant customizability feature is the shared file system that
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is used to store all of the OpenNebula’s files; whereas from user’s perspective, re-

sources such as memory, processor, network, and storage can be requested in any

configuration.

Nimbus [74] advertises itself as a science cloud solution, which is equipped with

the cloudkit to manage the configurations. Cloudkit consists of a manager service

hosting, an image repository and Globus [75] credentials for all users authentica-

tion. Nimbus provides several customization options to Cloud administrators.

Moreover, Nimbus has the capability to turn clusters into an Infrastructure as a

Service (IaaS) for Cloud Computing focusing mainly on scientific applications.

OpenStack [76] is among the most complete open-source solution for creating and

managing small Cloud infrastructures, however it lacks advance monitoring and

reconfiguration mechanisms, useful to implement dynamic service calling features.

It consists of mainly four customizable components for both computation and

storage resources to enable dynamic allocations of Virtual Machines (VMs) i.e.,

API Service, compute service, network services, and schedular services. OpenStack

is also compatible with Amazon EC2 and Eucalyptus to interact with shared web

services.

Apache Virtual Computing LAB (VCL) [77] is an open-source solution for

the remote access over the Internet to dynamically provision and reserve compu-

tational resources for diverse applications, acting as Software as a Service (SaaS)

solution. VCL manager is the vital component that uses system profile and prove-

nance information to optimize scheduling of the request and problem resolution.

A typical VCL environment consists of an operating system (with an application

or a combination of applications) that is distributed in nature including resource

scheduler, resource manager, computational, storage, network resources, and an

end-user interface.

Eucalyptus [78] is considered as one of most popular open-source Cloud comput-

ing framework. Eucalyptus is flexible, modular, extensible, and has the potential

to be integrated with the existing commercial solutions (i.e., Amazon Cloud etc).

The highly decentralized design of Eucalyptus (with multiple clusters, distributed
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storage, and locally stored virtual disks) lends itself to a large number of ma-

chines. The Eucalyptus is considered an implementation platform for various

research studies that includes intrusion detection and video streaming.

In particular, academic Cloud systems provide several compatible APIs to facil-

itate Cloud engineers in integrating different functionalities of various Clouds to

work together as shown in Figure 2.5. Such Clouds could be based on virtual

machine (VM) management, Virtual Instance (VI) management, and Cloud man-

agement layers.

Keeping in view the architecture of existing academic Clouds, we have envisioned

the general academic Cloud architecture for network simulations. The architec-

ture comprises of three components that are User Interface (UI), Work Break-

down Manager (WBM), and Simulation Execution Manager (SEM) as shown in

Figure 2.6. Users are provided with web-based interfaces to start Cloud instances

through available Cloud APIs. The UI component performs the functionality avail-

able in cloud management layer. Concerning VI management, WBM is responsible

for the provisioning of required virtual instances and allocation/de-allocation of

demanded resources in Cloud. The core module SEM performs management of

simulation execution. Simulation executions can be serial or parallel. In case of

monotonic simulations, the SEM signals the simulator to start simulation execu-

tion in serial. However, if the simulation is large-scale, the SEM decomposes the

simulation model into a number of components and allocates them on the available

execution units. To achieve parallelism, Message Passing Interface (MPI) [21] can

be used for interaction between SEs on different cores or on different VMs. Taking

into account these design considerations of general academic Cloud architecture,

this work implemented SIM-Cumulus, which is presented in Chapter 4. The sim-

ulation on Cloud computing can be executed in parallel on one (i.e., multi-core)

or more Cloud instances. The simulation model thus need to be partitioned into

smaller parts where each part need to be executed independently on a core or

physical VM instance. The simulation partitioning is further discussed in next

section.
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Figure 2.6: Generic Cloud architecture for network simulations.

2.4 Simulation model partitioning and SE mi-

gration

Executing large-scale wireless network simulation in parallel involve partitioning

of the simulation model into a number of smaller components also called LPs [23].

The components encompasses part of the simulation that need to be executed

independently on an individual PEU. Concerning the partitioning of simulation

models in a distributed environment, a number of approaches have been proposed

to maintain a global shared-state in the distributed simulation. Some partition

schemes are based on the static approach [25], while other schemes such as simula-

tion domains [79], data distribution management [80], [81], dynamically adaptive

partitioning [82], and hierarchical federations [83] use dynamic approach. The

author presented a static partitioning approach for parallel conservative simula-

tions [84]. In [85], the author proposed the static as well as dynamic load balancing
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strategies. The proposed approach [85] relies on the use of conservative synchro-

nization algorithm and thus is applicable only on shared memory architecture.

The author introduced a novel approach [86] for the partitioning of disjoint parts

of the large-scale network topology and assigning them to different LPs for per-

formance efficiency. Three set of partitioning strategies (i.e., random, k-cluster,

and METIS) are implemented in order to quantify the performance of the pro-

posed partitioning scheme. The author proposed a novel partitioning approach

that use the concept of convex hulls [87] for partitioning of crowded simulations.

The authors in [88], [89], [90] presented the work related to the provisioning of the

Internet of Things (IoT) simulations. The proposed methodology in [88] integrates

multiple simulation models (i.e., OMNeT++, MATLAB, and ARTIS/GAIA) for

the implementation of IoT-based complex scenarios. Logan et.al floated a novel

agent-based approach for PADS simulations [91]. In their approach, each of the

agent is implemented as distinct LP. The dynamic partitioning method is used

to implement the parallel simulation using shared-state approach. The proposed

technique support conservative as well as optimistic synchronization in an adap-

tive way to meet the requirements of computation and communication demands

of the simulated model. The associated cost related to the migration is not op-

timal and may vary due to the involvement of high mobility nodes. The author

in [92], proposed a load balancing and migration scheme for the HLA-based large-

scale distributed simulation. The proposed scheme balance the communication

as well as computation among different parts of the simulations. The idea is to

employ local as well as cluster monitoring mechanism to observe the imbalance of

communication pattern and load variation and repartition the simulation model

dynamically. A number of migration decision making approaches are employed

for prediction management of load balancing across large-scale PADS systems.

The obtained results shows better performance in terms of local communication

and load balancing. Most of the PADS solutions have been suffered due to the

high cost of remote communication and computation required for synchroniza-

tion management. A number of techniques have been proposed to accomplish
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Figure 2.7: ARTIS high level architecture [95].

the speedup in simulations using migration and load balancing for PADS simula-

tion [23], [27], [26]. In [93], [94], the authors have proposed dynamic partitioning

algorithms for optimistic distributed simulation that is based on the migration of

parts of the simulated model. The proposed approaches reduces the computation

and communication cost using migration and load balancing mechanisms. Anglo

et al. [94] have introduced an adaptive and dynamic approach to obtain simulation

speedup through the use of two proposed heuristics for efficient migration and load

balancing of SEs. In [81], the authors have proposed ARTIS Middleware, which

supports PADS for large-scale wireless networks over heterogeneous execution ar-

chitecture. The high level architecture of ARTIS is shown in Figure 2.7. The

ARTIS is comprised of four different layers. At the top of the model, the user sim-

ulation layer is shown that allow the user to run the simulation. A number of APIs

are provided by the ARTIS to work with different services provided by ARTIS.

The RTI core layer is responsible for the management of distributed simulation

across different LPs. The bottom layer represent the communication layer, re-

sponsible for message defemination among different components of the simulation

model. The ARTIS is also integrated with GAIA framework that manage the mi-

gration of SEs among different LPs. GAIA is also responsible for synchronization

and state updating of different SEs upon their migration. The ARTIS uses mi-

gration mechanism to minimize the remote communication among SEs located on
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different LPs. Moreover, ARTIS is in combination with GAIA [96] is implemented

for load balancing of SEs across different LPs. Anglo et al. [97] have designed

a new simulation tool namely PaScas that enables the simulation of scale-free

networks. The ARTIS middleware is used as the underlying module for remote

communication provisioning and management among SEs (i.e., located on differ-

ent LPs). In addition, the authors have presented a number of algorithms (named

as GOSSIP) as test cases to evaluate the performance of the scale-free networks.

The proposed solution leads to a good level of LCR; however, the number of mi-

grations leads to an extra overhead. Thus, producing a negative impact on the

overall performance gain. A slightly different technique has been proposed in [98]

that uses a fault-tolerant parallel simulation Middleware to support PADS. The

SEs are replicated and distributed on different LPs, which consequently provides

a mechanism to handle crash-failures of execution units (LPs). In [23], PADS ap-

proach is presented that uses the concept of dynamic partitioning (i.e., migration)

of the simulation model to handle large-scale wireless network simulation. A set

of heuristics are being employed that are evaluated (i.e., locally on each LP) for

the SEs migration during the simulation execution. In Table 2.2, the comparison

about various partition approaches (i.e., static and dynamic) is presented. The

techniques are compared in terms of migration support, the mobility speed level,

and the number of migrations.

Table 2.2: Partitioning approach comparison.

Paper Partitioning approach Migration Mobility number of Migrations
[25] Static No Yes N/A
[82] Dynamic Yes Yes High
[83] Dynamic Yes Yes Moderate
[84] Dynamic Yes Yes High
[85] Static/Dynamic Yes Yes Moderate
[98] Dynamic Yes Yes Moderate
[97] Dynamic Yes Yes High

The static partitioning techniques do not support migration. The approach in [82]

and [84] support high mobility and thus results in higher number of migrations to

localize the communication among SEs. The technique in [85], support static as
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well as dynamic partitioning and require less number of migrations as compared

to [82] and [84]. The summary of the chapter is presented below.

2.5 Chapter Summary

To meet the requirements of the large-scale network simulations, the researchers

proposed a number of approaches including Grid computing [32], Agent-based

solution [33], [34], [35], [36], [37], HPC [29], and Cloud computing [38–41].

The grid computing environment is considered as most viable solution for spe-

cialized type of large-scale computing tasks. Considering gird computing for the

simulation of large-scale network scenarios often lead to synchronization overhead

as the components of the grid are usually loosely coupled.

The agent-based approaches are suitable for large-scale jobs where the synchro-

nization among the agents is less frequent. However, agent-based approaches are

not appropriate for large-scale wireless network simulations where the nodes in

the simulation are mobile in nature and thus frequent synchronization among the

agents is required. Moreover, the agent-based approaches require HPC to support

the network simulations. However, specialized type of training is required to con-

figure the simulation environment for large-scale network simulation on HPC [29].

Recently, Cloud computing provides solution encompassing large-scale problems

including the domains of storage, computationally intensive tasks, real-time appli-

cations, and simulation jobs [38–41] etc. Due to the complex nature of large-scale

network simulations and limitations of network simulators; to-date only few Cloud

solutions (e.g., SEMsim cloud service [29], CloudSME [65] etc.) are available that

are specifically designed for large-scale simulation jobs.

The existing Cloud frameworks have considered specifically designed network sim-

ulators (encompassing a specific network scenario e.g., urban scenario) for large-

scale network simulations. Similarly, most of the publicly available generic Clouds

(i.e., Amazon Web Services (AWS), Google Cloud etc.) provide various type of
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services (i.e., infrastructure, storage, software service, and platform). Although,

these Clouds are quite powerful in terms of available resources; however, usefulness

of the existing Cloud platforms is questionable because of difficult integration with

the existing state-of-the-art simulation tools (i.e., NS-2, NS-3, OMNeT++ etc.).

Large Scale network simulation can be dealt by using the approach of Parallel and

Distributed Simulation (PADS).This approach divides the simulation into a num-

ber of components labeled as Logical Processes (LPs) and each LP contribute as

an integral part of simulating model which has (LP) having equal number of (SEs).

In the wireless system the SEs have high mobility due to which remote communi-

cation (having high cost) get involved hence resulted into increased simulation ex-

ecution time. Various migration and load-balancing Techniques [23], [27], [26], [23]

have been suggested for minimizing the costly distant remote communication in

context of large-scale wireless network simulations. Although, the prevailing ap-

proaches resulted into an increased level of Local to Remote Communication Ratio

(LCR); yet, huge number of migrations (in wireless networks) can contribute to-

wards additional overhead and reflects a negative impact on the overall acquired

performance. Due to the high volume migration existing approaches become unfit-

ting for large-scale wireless having high mobility. To cop this situation an adaptive

migration approach is required that could administer the appropriate level of LCR

by keeping the possible minimal number of migrations. The subsequent chapter

delineates the proposed methodology, grounded by the discussion provided in this

chapter.
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Research Methodology

This chapter provides an overview of the operational and systemic research frame-

work to achieve the objectives of this research work that are:

1) propose an academic Cloud SIM-Cumulus to support the provisioning of large-

scale NSaaS. The SIM-Cumulus supports small-to-medium as well as large-scale

wireless network simulations.

2) propose adaptive migration algorithm MAHA that provides dynamic migration

of SEs in the context of PADS simulations. To support migration of SEs, ARTIS/-

GAIA middleware is integrated into SIM-Cumulus (named as A-SIM-Cumulus).

The research operational framework provides the detailed research methodology

used to design and implement SIM-Cumulus and MAHA algorithm, respectively.

The details of different phases involved in research operational framework are

presented in next section.

3.1 Research Operational Framework

Figure 3.1 corresponds to the operational framework of this research that is com-

prised of three phases i.e., 1) Problem Investigation, 2) Design and Procedure, and

3) Simulation Setup and Performance Evaluation.

29
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The problem investigation provide an insight into the details regarding research

gap followed by the design and implementation of the proposed academic Cloud

SIM-Cumulus and MAHA algorithm. Furthermore, the details of simulation ex-

periments and performance evaluation are explored in the last phase of the op-

erational framework. The discussion details about each phase is presented in the

following sections.

Figure 3.1: Flowchart of the Research Operational Framework.
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3.2 Problem Investigation

The problem formulation concerning proposed work is based on the literature re-

view of the existing approaches used to support large-scale NSaaS. The existing

approaches are studied in detail aiming to identify the current challenges in the

design and development of an academic Cloud that provide network simulation

services to the researchers and handling large-scale network simulations. Further-

more, the existing literature related to simulation model partitioning techniques

(i.e., static as well as dynamic partitioning) for PADS in Cloud are discussed with

an aim to propose adaptive migration algorithm.

3.2.1 Provisioning of an Academic Cloud to Support Large-

scale NSaaS

Numerous approaches i.e., Grid computing [32], Agent-based solution [33–37],

HPC [29], and Cloud computing [38–41] are being employed by the researchers to

attain the demands of large-scale network simulations. Grid computing is devised

for large-scale distributed data processing/storage that functions with allocated

subtasks across different clusters [32], [42]. The grid computing environment is

best suited choice for specialized type of large-scale computing tasks. It is often

inefficient for network simulation jobs as the constituents of the grid are loosely

coupled and thus the synchronization is quite complex among the respective com-

ponents. Agent-based simulation approaches are well suited for scenarios where

each agent has been assigned to do individual segment of task independently. The

agent-based approaches are not suitable for large-scale network simulation tasks

due to required frequent synchronization among different agents. In addition,

agent-based approaches require HPC to support the network simulations. More-

over, the HPC environment is restricted and requires pre-training to be configured

to meet the simulation requirements [29]. Recently, Cloud computing offers solu-

tion to large-scale computing problems related to the domains of storage, compu-

tational intensive tasks, real-time applications, and simulation jobs etc. Keeping in
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mind the complex nature of large-scale network simulations and limitations of net-

work simulators; only few Cloud solutions (e.g., SEMsim cloud service, CloudSME

etc.) have been proposed that are particularly designed for large-scale simulations.

To support large-scale network simulations, the existing Cloud approaches suffer

from following issues that are: 1) for large-scale network simulations, the exist-

ing Cloud frameworks have considered specifically designed network simulators

(encompassing a specific network scenario e.g., urban scenario). These network

simulators are only compatible with the proposed Cloud architecture. 2) Rest

of the available public Clouds (i.e., Amazon Web Services (AWS), Google Cloud

etc.) offer multifaced services including infrastructure, storage, software service,

and platform. Even though, these Clouds are quite powerful in terms of available

resources; yet, usefulness of the these Cloud platforms is questionable because of

difficult integration with the contemporary simulation tools (i.e., OPNET, NS-2,

NS-3, OMNeT++ etc.).

3.2.2 Require an adaptive SE migration Approach for High

Mobility Wireless Networks

Executing large-scale wireless network simulations in parallel involve partitioning

of the simulation model into a number of smaller components also called LPs,

where each LP encompasses part of the simulation that need to be executed inde-

pendently on an individual PEU. The SEs in the wireless networks are mobile in

nature and thus involve high remote communication cost due to high mobility of

SEs that ultimately increase simulation execution time. The authors in [23], [26],

[27] contributed a number of migration and load-balancing techniques with an

aim to reduce the high-end remote communication for large-scale wireless network

simulations. Although, existing approaches lead to a good level of LCR; however,

huge number of migrations (in wireless networks) may lead to additional overhead

and producing a negative impact on the overall performance gain. The higher

number of migrations make these approaches unsuitable for large-scale wireless

network simulations involving high mobility.
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3.3 Research Design and Development

In this section, the aforementioned research gaps are addressed by the provisioning

of two contributions that are 1) designing and implementing an academic Cloud

named SIM-Cumulus and 2) propose MAHA approach to provide dynamic mi-

gration of SEs. These two contributions along with the respective methodology

details are discussed in Table 3.1.

Table 3.1: Design and Development of the Research

Table

Research Questions Research Objectives Methodology

How to reduce the ex-

ecution time required

for large-scale network

simulations (that are

time consuming and

resource intensive).

To design and develop an

academic Cloud framework

with an aim of providing

NSaaS and handling large-

scale network simulations.

The proposed academic Cloud ex-

ecutes large-scale (VANET and

UWSNs) simulations in paral-

lel on multiple LPs to speedup

the simulation that ultimately de-

crease the execution time.

How to reduce the

higher number of mi-

grations in highly mo-

bile and scalable wire-

less network simula-

tion?

To design and develop

a migration-based adap-

tive heuristic algorithm

(MAHA) that reduces the

higher number SEs migra-

tions across PADS for both

multicore and distributed

architectures.

The proposed MAHA approach

minimizes the number of migra-

tions by exploiting the transitive

dependency of SEs in order to lo-

calize the simulation and decrease

the execution time.
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3.4 Simulation Setup and Performance Evalua-

tion

Simulation setup and performance evaluation is the last phase of the research

framework. In this phase, a number of simulations executed in sequential and

in parallel to evaluate the performance of the SIM-Cumulus and compare the re-

sults against stand-alone workstations and generic Cloud instance(s). In addition,

simulation results (in terms of LCR, number of migrations, simulation execution

time, and simulation speedup) are obtained to evaluate the performance of MAHA

and compared to the EHA. This section presents simulation setup, performance

metrics, and performance evaluation steps in the following sub-sections.

3.4.1 Simulation Setup

A network simulator provides a virtual environment to design and analyze the pro-

posed models and protocols without getting into details of real-life environment.

In this research, three different sets of simulations are performed to evaluate the

performance of the proposed SIM-Cumulus and MAHA approach. The first set

of simulations (using VANET simulation over OPNET modeler) is performed (se-

quentially) on three stand-alone machines as well as on Amazon EC2 instances.

The second set of experiments consists of large-scale UWSN simulations on OM-

NeT++ and WLANs simulations on ARTIS/GAIA simulator. Three workstations

and two Cloud instances (i.e., SIM-Cumulus and MS Azure) are utilized for the

simulation experiments. The large-scale UWSNs simulation are executed in mono-

lithic as well as parallel fashion on all the machines. The third set of simulations are

executed for the proposed MAHA approach on ARTIS/GAIA PADS framework.

In this experiment, four simulations are executed on multi-core and distributed

setup for MAHA and EHA comparison.
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3.4.2 Performance Metrics

The efficiency and performance of SIM-Cumulus for large-scale wireless networks

are tested and evaluated in terms of simulation speed (in number of events per

second), execution time, energy consumption, CPU utilization, and LCR. Simu-

lation results in terms of LCR, number of migrations, simulation execution time,

and simulation speedup are obtained to evaluate the performance of MAHA and

compared against EHA approach. These performance metrics are discussed in the

following sub-sections.

Simulation speed The simulation speed shows the number of events executed

per second.

Execution time The execution time indicates the wall clock time required to

complete the simulation execution on each machine and Cloud instances.

Energy consumption Energy consumption shows the total energy consumed by

the machine to generate simulation events during the simulation execution. The

energy consumption is represented by two sub-metrics that are electricity con-

sumed and CO2 emission. The electricity consumed represents the total electric-

ity consumed during the simulation execution on all machines and Cloud instance

whereas CO2 emission indicates the total CO2 emitted during each simulation

execution.

CPU utilization The CPU utilization represents the CPU usage trend on each

LP during all the simulation runs.

LCR The LCR corresponds to the ratio of the total number of local communi-

cations by all SEs in a given LP, with respect to all interactions originating from

this LP.

Number of migrations The number of migrations represents the total number

of SEs migrated during each simulation run on a specific machine. The migrations

corresponds to the movement of an SE from one LP to another remote LP (after

an SE has done sufficient remote communication and thus eligible for migration).
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3.4.3 Performance evaluation

The experiments (using VANET simulation) are performed (sequentially) on three

stand-alone machines as well as on Amazon EC2 instances. The results are plot-

ted for three parameters that are simulation speed in terms of simulation events

per second, execution time in number of hours to complete the simulation exe-

cution, and energy consumption (i.e., electricity consumed and CO2 emission).

To evaluate the performance of SIM-Cumulus, large-scale UWSN simulations (on

OMNeT++ and WLANs simulations on ARTIS/GAIA simulator) are executed on

three workstations and two cloud instances (i.e., SIM-Cumulus and MS Azure).

The large-scale UWSNs simulations are executed in monolithic as well as parallel

fashion on all the machines and Cloud instances. Moreover, four set of simula-

tions are executed on multi-core and distributed setup for the proposed MAHA

approach to evaluate its performance against EHA approach.



Chapter 4

Proposed Work

The research work in this thesis contributed an academic Cloud namely SIM-

Cumulus, to support the provisioning of NSaaS. SIM-Cumulus handle small-to-

medium as well as large-scale wireless network simulations. Moreover, MAHA

algorithm is proposed that supports dynamic partitioning of large-scale PADS sim-

ulation. In addition, ARTIS/GAIA middleware is integrated into SIM-Cumulus

(named as A-SIM-Cumulus) that supports PADS simulation. This chapter pro-

vides discussion about SIM-Cumulus and A-SIM-Cumulus in section 4.1 and sec-

tion 4.2, respectively. The details about Dynamic partitioning and MAHA ap-

proach are presented in section 4.3 and section 4.3.3, respectively.

4.1 SIM-Cumulus

This section delineates the high-level architecture and workflow of SIM-Cumulus.

In addition, details regarding mathematical modeling, and cost analysis of se-

quential and parallel simulation execution on SIM-Cumulus are also part of this

section.

37
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Figure 4.1: SIM-Cumulus proposed architecture.

4.1.1 SIM-Cumulus Architecture

Considering the layering approach of our envisioned Cloud for network simulations,

the implemented SIM-Cumulus comprises of four layers i.e., System Accessibility

Layer, Cloud Instance Management Layer, Virtual Platform layer, and Physical

Infrastructure layer as shown in Figure 4.1. The details of all necessary SIM-

Cumulus components (at all layers) required to perform network simulations are

presented below.

System Accessibility Layer (SAL) The SAL enables the users to interact

with Cloud Instance Management Layer (CIML) by using Cloud Front-end In-

terface (CFI). At CFI, the Representational State Transfer (REST) API is used

to provide end-user registration and acquire Cloud instance usage information.

RESTful web services allow end-users to configure and launch required instances
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of SIM-Cumulus through selection of operating system, network simulator, mobil-

ity model, traffic generators etc. The Remote Desktop Protocol (RDP) serves as

a launcher of SIM-Cumulus instances.

Cloud Instance Management Layer (CIML)

The CIML layer hides the configuration complexities associated with network

simulation tools, which reduces the time consumed during installation/configu-

ration/setup phase. CIML layer consists of two major components that are Cloud

Instance Resource Management (CIRM) and Cloud Provenance. CIRM is re-

sponsible for configuration, control, and management of on-demand SIM-Cumulus

virtual instances. This component exposes simulation services to the SAL. The

envisioned components of proposed CIRM include Service Level Agreement Man-

agement (SLA), Account Management Module (AMM), Snapshot Organization

Module (SOM), Configuration Module (CM), and Load Balancer (LB). However,

the focus of this work is related to the realization of two modules (i.e., AMM and

CM) of this layer. The AMM is responsible for management of user-related in-

formation such as authentication, instance usage information, accessibility rights

etc. CM is responsible for creating VM instances according to the user's configura-

tion. The description of other related components of the proposed SIM-Cumulus

can be found in [99]. The Cloud Provenance component keeps track of user and

machine-level information. This includes the demands/requests of a user for pre-

scribed network simulation as well as for the resource patterns of Cloud instances.

The provenance related to the individual Cloud instances is used to dynamically

model the resources according to the behavior of network simulation. The SIM-

Cumulus uses the services of Eucalyptus platform [100] to provide instance-level

Cloud provenance. In addition, a third-party library JavaSysmon [101] is utilized

to obtain system-level Cloud provenance.

Virtual Platform Layer (VPL) VPL is fundamentally responsible for configu-

ration of virtual operating system instances configured with various network sim-

ulators (i.e., NS-2, NS-3, OPNET, OMNeT++ etc.) based on the DES kernel and
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parallel simulation support. Moreover, it provides realistic mobility map trajec-

tory and traffic generator tools. The VPL enables users to access simulation-based

Cloud instances using Eucalyptus services. VPL layer comprises of two modules

(i.e., Simulation Configuration Module (SCM) and the Simulation Distribution

Module (SDM)) to manage small and/or large-scale network simulations. Initial

network simulation configuration parameters (simulation type, number of nodes,

simulation area, simulation time, mobility model, sequential/parallel mode etc.)

are provided by the users through the SCM module. Once the initial parameters

are provided, the SDM module decides on either a sequential or parallel run. For

small-scale networks, the simulation is executed in sequential fashion. To execute

large-scale simulations, the SDM module of the SIM-Cumulus is responsible to

partition the simulation into equal number of components also called LPs. SDM

also assign each LP to a separate execution unit (core). After LP assignment, the

SDM module signals the simulation tool (i.e., OMNeT++ in our case) to execute

simulation in parallel.

In general, the SDM considers Cloud provenance information (accumulated in the

SIM-Cumulus repository) for decision making in terms of sequential or parallel

simulation execution. The Cloud provenance information is used to keep track

of: 1) Cloud instance resource usage (i.e., RAM, CPU, Virtual Memory) and 2)

simulation details i.e., simulation tool, scenario type, number of nodes, simulation

execution time, execution strategy (sequential or parallel) etc.

To elaborate the SDM decision making process, a number of simulations are

performed using different problem sizes (number of nodes). Table 4.1 demon-

strates the results of simulation execution with sequential and parallel modes.

The speedup value smaller than 1 (as compared to sequential execution) shows

degradation in performance of parallel execution (based on 2 LPs).

Speedup in execution time indicates that results with sequential execution are

better as compared to the parallel execution (2 LPs) for the simulation runs using

400 or less nodes. This degraded performance of the parallel simulation is due

to the overhead involved in the parallelization (for smaller problem size). This
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Table 4.1: Obtained Execution Speedup

Nodes Sequential (Sec) Parallel (Sec) with 2 LPs Speedup
100 600 1250 0.48
150 720 1380 0.52
200 1320 2074 0.64
300 3600 4050 0.89
400 11520 11952 0.96
500 17280 15300 1.13
600 24876 21890 1.14
700 32580 28260 1.15
800 46080 37152 1.24
900 54360 42476 1.28
1000 71820 41840 1.72

overhead leads to an increase in execution time. However, as the simulation size

increases (greater than 500 nodes), an improved execution speedup of parallel

simulation is observed up to 1.28 for 2 LPs. With an even larger simulation size

(1000 nodes), speedup of 1.72 for 2 LPs is observed that is very close to an ideal

theoretical speedup of 2.

Keeping in view these results, the SDM module uses provenance information (i.e.,

number of nodes, simulation execution time, and execution strategy (sequential

or parallel)) for simulation execution decision. Results provided in Table 4.1 are

specifically related to a realistic simulation scenario of Underwater Wireless Sen-

sor Networks (UWSNs) using OMNeT++ (detailed configuration is provided in

simulation setup section). However, the decision of SDM is not confined to this

simulation scenario and OMNeT++ simulator only, but can be applied to any

other realistic simulation/simulator. In section V, we have also provided the re-

sults of ARTIS/GAIA-based wireless network simulations to highlight the usability

of SIM-Cumulus with other network simulators.

Virtual Infrastructure Layer (VIL) VIL resides at the lower layer of SIM-

Cumulus. It has a role to expose the Cloud resources to the upper layers. We have

considered Eucalyptus Open Source Cloud platform [100] to implement the SIM-

Cumulus Cloud architecture. The SIM-Cumulus exploits the benefits of the Eu-

calyptus to provide NSaaS to the researchers. The Eucalyptus provides feasibility
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for private and hybrid Cloud implementation [102]. The main reason for adopt-

ing Eucalyptus is its inherent flexibility and interoperability with contemporary

commercial solutions (i.e., Amazon EC2, IBM SmartCloud etc.). In addition, the

highly decentralized design of Eucalyptus (with multiple clusters, distributed stor-

age, and locally stored virtual disks) lends itself to a large number of machines.

Eucalyptus uses KVM as a baseline hypervisor for virtualization in the Cloud en-

vironment. KVM can achieve hardware acceleration by making use of emulated

I/O supported by QEMU [103]. KVM minimizes the virtualization overhead to

very low levels by combining hardware acceleration and para-virtual I/O. More-

over, KVM supports live migration of running VMs (without disrupting the guest

OS) during Cloud maintenance. However, dynamic migration is beyond the scope

of this work.

Physical Infrastructure Layer (PIL) PIL represents the lowest layer in SIM-

Cumulus architecture. It consists of physical computing resources such as: multi/many-

core machines, clusters, data-centers, networks, storage devices etc., (see Fig-

ure 4.1). These resources are the actual hardware components used in the simu-

lations and users are assigned to them in a transparent manner.

4.1.2 SIM-Cumulus Workflow

The workflow of SIM-Cumulus represents an automation of a network simulation

task in the Cloud. In general, at each layer of the SIM-Cumulus architecture, the

workflow can be distinguished into several phases as shown in Figure 4.2. The

System Accessibility Phase deals with the important aspects of end-user verifi-

cation and privacy. Registered users make use of CFI (i.e., REST and RDP)

module to access configured Cloud instances. The Deployment Phase handles the

preservation of the provenance information related to resource usage of the Cloud

instances. The Provenance information assists network researchers by keeping

track of resource usage for load balancing. The Configuration Phase is concerned

with parameters of the simulation experiments. The Simulation Execution Phase



Proposed Work 43

Figure 4.2: SIM-Cumulus workflow.

performs execution management based on the input parameters provided in con-

figuration phase. In addition, dynamic preservation of resource (i.e., CPU, RAM)

usage eventuates at this layer. Resource usage information is helpful for the pro-

visioning of suitable Cloud instances for particular future simulation scenarios.

4.1.3 Parallel Simulation Execution

To obtain an insight into the performance of parallel simulation on SIM-Cumulus,

a large-scale UWSN has been simulated using OMNeT++. OMNeT++ as Parallel

Discrete Event Simulation (PDES) [104] offers flexible approach for parallel simu-

lations. PDES has the capability to achieve high speed by distributing the simu-

lation over several LPs. Each LP maintains their simulation clock independently

and is responsible to keep track of the concurrent events execution [52]. Various

approaches (i.e., Message Passing Interface (MPI), named pipes, file system based

communication mechanism etc.) have been proposed to support synchronization

among multiple LPs. In this work, we have utilized the MPI standard [21] for the

communication of time stamped messages (i.e., event messages). Most of the sim-

ulators use the placeholder (PH) modules and proxy gates to achieve parallelism,

such as OMNeT++ in our case. Placeholder modules hold sibling sub-modules

that are instantiated on other LPs. Proxy gates receive the messages at the place-

holder module and transparently forward it to the real module while residing on
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Figure 4.3: Remote communication among SEs.

another LP. Two types of message flows are illustrated in Figure 4.3. The first

one indicates a flow between real node and placeholder node on the same LP and

second shows a flow between placeholder nodes of two different LPs. For instance,

SE0 on LP0 wants to send a message to SE3 on LP3. The SE0 has no direct link

with SE3, therefore, it sends message to the placeholder node PH3(on LP0), which

in turn is responsible for forwarding the message to SE3 using proxy gate.

The detailed mathematical modeling of simulation execution on SIM-Cumulus is

given below.

Let SLP represents the set of LPs as shown in Equation 4.1:

SLP =
{
LP1, LP2, LP3, ..., LPm

}
(4.1)

and SSE represents the set of SEs in the simulation model:

SSE =
{
SE1, SE2, SE3, ..., SEn

}
(4.2)
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Equation 4.2 corresponds to the number of SEs in the simulation model. To

distribute SEs across available LPs, it is required to find out the number of SEs

(N) on each LP as shown in Equation 4.3.

N = n/m (4.3)

where n represents the number of SEs in the simulation and m represents the

number of LPs. In order to execute parallel simulation, SEs are required to be

distributed across different LPs. The allocation of specific range of SEs on different

LPs can be obtained by the given equation:

LPi =
{

(i− 1)(N) + 1, (i− 1)(N) + 2..., (i− 1)(N) +N
}

(4.4)

In Eq.4.4, i represents index in SLP. To execute simulation in parallel, SEs are

required to be distributed across different LPs. The allocation of specific range of

PHs on different LPs is obtained using Eq.4.5.

LPPH = SSE \ LPi =
{
SE : SE ∈ SSE and SE /∈ LPi

}
(4.5)

The simulation execution is started after the placement of SEs and PHs on their

respective LPs. During the simulation execution, SEs communicate with other

SEs that reside either on the same LP on which the sending SE is located or on

some other remote LP. Sender and receiver SEs (i.e., SES, SER) located within

the same LP, send messages directly by using the Input gate (Ig) during their

communication. However, if SES, SER are located on different LPs, the messages

will be sent to the destinations in two steps. In the first step, the SES will send the

message to the PH node using Proxy gate (Pg). In the second step, the PH will

forward message to the corresponding SER through the use of Pg. The pseudo-

code shown below presents how communication is performed among different SEs.
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if (SES&SER) ∈ LPi then

Sendmsg(msg, SES, SER, Ig)

else

Sendmsg(msg, SES, PH, Pg)

Forwardmsg(msg, PH, SER, Pg)

end if

4.1.4 Simulation Cost Analysis

This section discusses the aspects related to the cost associated with the simula-

tion execution in sequential/parallel mode. In the sequential mode, the simulation

execution takes place on stand-alone machines and Cloud Instances in a mono-

lithic fashion. For sequential execution, the Overall Execution Cost (OEC) can be

defined as the time required to complete the simulation execution. OEC is com-

posed of two different costs i.e., State Updating Cost (SUC) and Local Interaction

Cost (LIC) as shown in Eq.4.6:

OEC = SUC + LIC (4.6)

Simulation execution in DES environment illustrates that all the time is spent

either on messages delivery among the SEs or updating the state variables after

each simulation event. SUC corresponds to the cost involved in updating the state

variables after each simulation event. LIC pertains to the cost involved in deliv-

ering the messages among entities (on same LP) during the course of simulation.

On the other hand, if the simulation is partitioned into a number of LPs and need

execution in parallel, then OEC can be obtained as shown in Eq.4.7:

OEC = SUC +GCC (4.7)

GCC is generic communication cost that is comprised of Interaction Cost (IC),

Synchronization Cost (SynC) and Middleware Management (MM) cost:
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OEC = SUC + (IC + SynC +MM) (4.8)

Thus the then modified OEC can be obtained as shown in Eq.4.8. The synchro-

nization among different LPs should be ensured to obtain more accurate results.

The IC pertains to the cost that is involved in delivering messages among different

SEs. The cost of message delivery depends on the message size and the destination

LP of the receiving SE. The location of the receiving SE is quintessential as it can

lead to subtle difference in cost that whether the SE is located on the same LP or

not. IC is composed of local and remote interaction cost as given in Eq.4.9. Local

Interaction Cost (LIC) refers to the cost involved in delivering the message to the

SE of the same LP and Remote Interaction Cost (RIC) refers to the delivery of

message to an SE located on a remote LP.

IC = LIC +RIC (4.9)

Thus overall execution cost can be calculated as given in Eq.4.10.

OEC = SUC + (LIC +RIC + SynC +MM) (4.10)

The OEC depends on the ratio between local and remote communication. If LComm

represents the size of local communication and RComm represents size of remote

communication then LRR (i.e., Local to Remote Communication Ratio) can be

obtained by the given formula (Eq.4.11).

LRR = LComm | RComm (4.11)
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Figure 4.4: A-SIM-Cumulus Architecture.

4.2 Adaptive SIM-Cumulus Architecture

The SIM-Cumulus deals with the execution of network simulations on multi-core

Cloud instances. To implement the execution of network simulations on multiple

(distributed) SIM-Cumulus instances, ARTIS/GAIA middleware is integrated into

SIM-Cumulus. The extended SIM-Cumulus is called as Adaptive SIM-Cumulus

(A-SIM-Cumulus). The A-SIM-Cumulus comprises of four layers i.e., SAL, CIML,

modified virtual platform layer (M-VPL), and PIL as shown in Figure 4.4. The

details of necessary A-SIM-Cumulus components required to perform network sim-

ulations are presented below.

The description of SAL, CIML, and PIL of the A-SIM-Cumulus is already pre-

sented in section 4.1.1.

Modified Virtual Platform Layer (M-VPL): The M-VPL is responsible for

the provisioning of Cloud instances configured with various network simulators

(i.e., MATLAB, NS2, OMNeT++ etc.). The M-VPL uses the Eucalyptus services
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and enable users to access Cloud instances. ARTIS and GAIA are integrated into

VPL layer to support parallel simulations. The ARTIS is middleware that imple-

ments several modules to optimize parallel simulation (of microscopic, dynamic,

and complex nature systems) over homogeneous and heterogeneous execution plat-

forms [96]. The ARTIS offers several services such as simulation bootstrap and

termination, LP co-ordination, track runtime statistics, synchronization manage-

ment, and managing the interaction primitives for the communication among SEs

on different LPs [23]. The GAIA framework allows the migration of SEs from one

LP to another LP. The migration decision in GAIA is implemented on the basis

of heuristics that basically involves the local and remote communication among

different SEs. The local and remote communication of the SEs is useful in deter-

mining the migration decision of a particular SE. If the ratio of remote to local

communication of an SE crosses a certain threshold, then that SE is considered as

candidates for migration. The migration has a certain computational cost, which

could be very crucial. In other words, the introduction of the complex heuristic

algorithm for migration decision may attribute to a high overhead. Moreover,

the heuristic may contribute to higher number of migrations while achieving the

same LCR value. This work exploits the migration and communication services of

ARTIS and GAIA middleware to perform adaptive migration of SEs dynamically.

In this paper, the MAHA is proposed to use an intelligent heuristic for migration

decision and minimize the number of migrations with an ultimate goal to achieve

better LCR. The objective is to pay some extra computation (i.e., reduce num-

ber of migrations) with the aim to reduce the computation overhead required for

large number of migrations. The MAHA algorithm is better in terms of achiev-

ing the same LCR with reduced number of migrations. The proposed algorithm

is implemented and evaluated using our proposed Cloud framework known as A-

SIM-Cumulus. The details pertaining to migration decision is provided in section.

The VIL layer deals with the creation and destruction of cloud instances and PIL

deals with the management of resource pool (i.e., hardware resources).
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4.3 Dynamic Partitioning of Simulation Model

The PADS provides the opportunity to solve simulation problems that encom-

passes large number of nodes with micro-level details. The PADS approach re-

quires the partitioning of simulation model into a number of equal partitions and

then placing each component on a separate execution component called LP. Each

LP is responsible for the management and handling of simulation events among

the SEs that are located on it. A major hurdle in getting the required gain in

performance is due to the LP synchronization and remote communication cost in

the PADS simulation [23]. Moreover, the distributed simulation environment is

dynamic and unpredictable in nature with respect to the network load. Parti-

tioning the simulation model in an effective way can attribute to the performance

gain. However, the static partitioning of wireless networks simulation does not

help in a performance gain due to involvement of the high mobility which could

lead to an increase in the cost of LP synchronization and remote communication.

Thus, every form of static partitioning is inadequate and therefore, requires a

dynamic and adaptive migration approach. In this work, a adaptive migration

algorithm MAHA is proposed that automatically reconfigures the network simula-

tion in an adaptive fashion to meet the run-time dynamics of the simulation. This

is the starting point to design and implement a mechanism that will result in a

reduction in communication cost and is discussed in section4.3.1. The proposed

adaptive algorithm details are presented in section 4.3.3.

4.3.1 Remote Communication Cost Reduction

The simulation model comprises a number of SEs which interact with each other

during the simulation execution. The intra-LP communication between SEs has

low link latency. However, the intr-LP communication between SEs may face

inconsistent latency depending on the type of link between the LPs. Figure 4.5

and Figure 4.6 shows the intra-LP and inter-LP communication of different SEs,

respectively. The main idea is to observe the communication pattern of every SE
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Figure 4.5: Intra-LP communication between SEs.

during simulation execution and decides whether the migration of SE to another

LP is necessary. SEs that have high interaction with other remote SEs during

certain time period are considered as appropriate candidates for migration. In

this way, the high cost of inter-LP (remote) communication is reduced. The SE

migration leads to a performance gain, however; it may results in performance

degradation if the cost of migration is higher than remote communication cost.

Figure 4.6: Inter-LP communication between SEs.
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Figure 4.7: SE internal/external interaction and migration execution.

4.3.2 Heuristic Basis for Dynamic Partitioning

The MAHA approach considers the transitive dependency among SEs located on

different LPs for migration. Transitive dependency has been explained with an

example. Suppose, simulation model shown in Figure 4.7 comprises of multiple

simulation nodes that are placed at four LPs where each LP contains part of the

simulation model.

SE7 has most of its interaction with SE13 and at the same time SE13 has high

interaction with SE11. Thus, after a certain amount of time, SE7 needs to be

migrated to LP2 and SE13 needs to be migrated to LP3. In order to cluster SE7

with SE13, the SE7 is first migrated to LP2 and then moves to LP3. This will lead

to extra overhead in terms of computing resources for moving SE7 to LP2 first and

then migrating to LP3. This problem is more specifically known as a transitive

dependency. To resolve this issue, this work proposed MAHA algorithm to handle
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migrations in PADS environment. The heuristic can be evaluated in two ways;

1) firstly the evaluation of the heuristic is done after each timestep [23]. This

evaluation is beneficial for systems that involves a lot of communication among

the SEs and there are rare chances that a timestep results in zero interaction.

However, with a large number of SEs the cost of heuristic evaluation can lead

to extensive computation, that will, in turn, result in performance degradation.

2) The alternate approach for heuristic evaluation uses the interaction size as a

decision parameter for evaluation. The evaluation is triggered only if SE has sent

at least M messages since the last evaluation. The value of M represents the

maximum size of interaction window. In many large-scale systems, this evaluation

approach greatly reduces the number of evaluation at each timestep and thus leads

to more scalable performance. The base condition used for the evaluation of this

approach employs the technique introduced in [23]. The algorithm checks whether

there exists SEs that meet the condition of the transitive dependency and thus

migration is triggered. WLAN simulation is used to evaluate the performance of

the proposed adaptive heuristic algorithm for large-scale parallel and distributed

simulation. The wireless communication networks are suitable as the interaction

among the wireless nodes is generally location dependent. In wireless networks, all

the nodes move due to the mobility changes which lead to a change of the neighbor

nodes and network topology. Therefore, the communication pattern among the

SEs changes very frequently during the course of the simulation.

4.3.3 MAHA: Migration-based Adaptive Heuristic Algo-

rithm

Algorithm 1 lines 1-2, the values of CommWinSize and MaxWinThreshold are ini-

tialized. The CommWinSize and MaxWinThreshold parameters are used in the

decision-making pertaining to the short-listing of SEs for migration evaluation.

Next, all SEs eligible for migration during each timestep is determined by the

algorithm (lines 312). During migration eligibility process, the local and remote

communications of a particular SE interactions are added to calculate the total
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interactions of that SE at each timestep (lines 5-6). The CommWinSize is deter-

mined on the basis of total SEInteractions (line 7). At lines 8-9, all SEs that have

done sufficient communication are evaluated for the eligibility of possible migra-

tion. The information about SE local interaction, remote interaction, and LP are

added to hash table SEMigEvalHashtbl (line 10). The hash table is then passed

to EvalSEforMig module (in algorithm 2), which is used to find out all SEs that

need migration.

Algorithm 1 FindSEMigEval - Finds all SEs Eligible for Migration Evaluation

Input: SSE = ListofSEs(i.e., SE1, SE2, SE3, , SEn)
Output: SEMigEvalHashtbl

1: CommWinSize← NULL
2: MaxWinThreshold← N
3: for all t timesteps do
4: for all LPs do
5: for all SEs in the communication do
6: SEInteraction+ = SELocInt

7: SEInteraction+ = SERemInt

8: CommWinSize+ = SEInteraction
9: if (CommWinSize >= MaxWinThreshold) then

10: Add SEj, LPi, SELocInt, SERemInt to SEMigEvalHashtbl

11: end if
12: end for
13: end for
14: end for
15: EvalSEforMig(SEMigEvalHashtbl)
16: Return SEMigEvalHashtbl

The algorithm 2 determines all the SEs that need to be migrated upon their

eligibility. The information regarding the local interaction, remote interaction

and LP (i.e., where the SE is located) is provided as an input to Algorithm 2

in the form of SEMigEvalHashtbl. The flaglist, Migration Threshold (migTS),

Standard Migration Factor (SMF), and Migration Factor (Migf) are initialized

(lines 1-4). The SEs that are eligible for the migration are flagged and necessary

details required for migration are added to hash table MigHashTbl (lines 5-11).

The Migration Factor (MF) is calculated using SElocInt and SEremInt of the SE

(i.e., MigF = SERemInt / SELocInt) as given in line 6. After the determining of

MigF, the SE is considered for migration only (line 7) if:
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(MigF ¿ SMF ) and At least ∆TSSE timesteps having passed since the last

evaluation of the corresponding SE.

All the SEs that meets the criteria mentioned at line 7 are added to flagList

(line 8). The information regarding source SE, Destination SE, Source LP, and

Destination LP is added to hash table MigHashTbl (line 9). This information is

given as an input to FlagMig module given in algorithm 3. All the SEs that meets

the criteria mentioned at line 7 are added to flagList (line 8). The information

regarding source SE, Destination SE, Source LP, and Destination LP is added to

hash table MigHashTbl (line 9). This information is given as an input to FlagMig

module given in algorithm 3.

Algorithm 2 EvalSEforMig - Finds all SEs to be migrated

Input: MigEvalHashtbl, SMF,MigF, TSSEi,migTS
Output: SEsMigrHashTbl

1: flagList[]
2: migTS ← 10
3: SMF ← 1− 20
4: MigF ← 0
5: for all i in SEMigEvalHashtbl do
6: MigF = SERemInt / SELocInt

7: if ( MigF >= SMF AND ∆TSSEi > migV alue) then
8: flagList[i] = SEi
9: Add srcSE, destSE, srcLP , destLP toMigHashTbl

10: end if
11: end for
12: FlagMig(MigHashTbl)
13: Return MigHashTbl

The first two algorithm represents the EHA [23] approach which is extended by

proposed MAHA in Algorithm 3 and 4. Algorithm 3 represents the MAHA core

algorithm to determine all those SEs that meet the criterion of transitive depen-

dency required for migration decision. The input of Algorithm 3 is the MigHashTbl

containing information regarding Source SE, Destination SE, Source LP, and Des-

tination LP. All the SEs meeting the criterion of transitive dependency are flagged

for migration and added to MigHashTbl table (lines 1-11). Each destination SE is

compared with all the source SEs one by one and if the Destination SE is Source



Proposed Work 56

SE in another record, then both Destination SEi and Source SEj are migrated to

LP where destination SEj is located (line 5-8).

Algorithm 3 FlagMig - Filter SEs based on transitive dependency to be flagged
for migration using MAHA approach.

Input: MigHashTbl
Output: SEsMigList

1: i← 0
2: j ← 0
3: for all i in MigHashTbl do
4: for all j in MigHashTbl do
5: if (destSEi == srcSEj ) then
6: flagList[i] = SEi
7: execMig(destSE[i], destSE[j],MigHashTbl)
8: execMig(srcSE[j], destSE[j],MigHashTbl)
9: else

10: ExecMig(srcSE[i], destSE[i],MigHashTbl)
11: end if
12: end for
13: end for
14: Return SEsMigList

Algorithm 4 ExecMig - Filter SEs are migrated to the respective LP.
Input: SEsMigList
Output: FlagedSEsMigrated

1: k ← FlagedSEs
2: for all k in SEsMigList do
3: MigrateSEs(srcSE[k], destSE[k],MigHashTbl)
4: end for

The initial placement of SEs on the LPs is static, thus all the SEs are placed

at random. Figure 4.8 shows the initial distribution of SEs. All the SEs are

random and thus their is a very rare chances of clustered SEs that have most of

its interaction as local. The EHA algorithm is applied that find out SEs that have

most of its with SEs that are located on the remote LPs. The EHA migrate SEs

that have high-end remote communication. Figure 4.9 shows the distribution of

SEs across the LPs. A more balanced and better clustering of SEs is observed

in Figure 4.9. However, their are still some SEs that need further migration to

form a more stable cluster. Moreover the situation tends to be more worst if the
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Figure 4.8: Migration OFF [95].

Figure 4.9: Migration ON EHA [95].

nodes in the simulation having high mobility thus need very careful decision of

migration. One major issue with EHA approach is that if the SEs are migrated

to some other LP, the already clustered SEs also will need migration. This will

increase the number of migrations to achieve better localization of interaction.

The problem is the migration cost involved in executing the required migration.
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Figure 4.10: Migration ON MAHA.

Figure 4.11: Migration OFF, EHA and MAHA comparison.

The MAHA approach take advantage of SEs behavior and migration is done keep-

ing in the view the transitive dependency property of SEs interaction. This will

lead to achieve better clustering thus leading to a decrease in the total required

migrations. Figure 4.10 shows the placement of SEs when the MAHA approach is

employed. Figure 4.11 shows the placement of SEs with migration OFF and ON

(i.e., EHA and MAHA).
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4.3.4 Mathematical Model for Simulation Model Parti-

tioning

The ARTIS/GAIA as Parallel Discrete Event Simulation (PDES) [104] provides

flexible platform for the execution of large-scale simulation. The simulation speedup

using PDES can be achieved by distributing the simulation over a number of LPs

that run in parallel. Each LP maintains their simulation clock independently

and is responsible to keep track of the concurrent events execution [52]. ARTIS

framework is utilized to perform communication and synchronization management

among multiple LPs. To support dynamic partitioning of the simulation model

based on the run-time dynamics of the simulation, the GAIA framework is used.

The SEs that have high remote communication are analyzed during communica-

tion and migration is executed if required to minimize the remote communication.

The detailed mathematical modeling of static and dynamic (i.e., SEs migration)

partitioning is discussed as below.

Let α represents the set of available LPs that can be obtained as shown in Eq. 4.12

α =
{
LP1, LP2, LP3, ..., LPN

}
(4.12)

and β be the set of SEs in the simulation model as given in Eq. 4.13:

β =
{
SE1, SE2, SE3, ..., SEn

}
(4.13)

Initially, the Simulation model is divided into equal number of static partitions

i.e., LPs and each is assigned equal number of SEs. The number of SEs on each

LP can be obtained as shown in Eq. 4.14

γ = n/N (4.14)

where n represents the number of SEs in the simulation and N represents the

number of LPs. In order to execute parallel simulation, SEs are required to be
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distributed across different LPs. The allocation of specific range of SEs on different

LPs can be obtained by Eq 4.15

LPi =
{

(i− 1)(N) + 1, (i− 1)(N) + 2..., (i− 1)(N) +N
}

(4.15)

To execute simulation in parallel, SEs are required to be distributed across differ-

ent LPs. The simulation execution is started after the initial placement of SEs to

their respective LPs. During the simulation execution, SEs communicate locally

within the same LP or remotely with SEs located on other LP. The information

about local and remote communication is maintained by each of the LP locally

and if the remote communication crosses a certain threshold the migration will be

required to minimize the high-end remote communication. Let Γ represents the

ratio of the remote communication to the local communication as shown in Eq. 4.16

Γ = SERemInt / SELocInt (4.16)

The migration will be required only if

Γ > ω (4.17)

and at least ρ timestep has passed since last migration as can be seen in Eq. 4.17.

ω is standard migration factor used to control the number of migrations. This

represents the EHA approach employed for migration execution. The obtained

local communication is increase however, the number of migration tends to increase

for wireless network with high mobility nodes. The MAHA approach is employed

to control the number of migrations achieving an approximate same level of LCR.

All SEs that were tagged for migrations are given as an input to the MAHA. The

SEs will be finalized for migration only if
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for all i in MigHashTbl do
for all j in MigHashTbl do

if (destSEi == srcSEj ) then
flagList[i] = SEi
execMig(destSE[i], destSE[j],MigHashTbl)
execMig(srcSE[j], destSE[j],MigHashTbl)

else
ExecMig(srcSE[i], destSE[i],MigHashTbl)

end if
end for

end for

4.3.5 Cost Analysis of MAHA Approach

This section discusses the cost associated with the simulation execution when the

migration algorithm is implemented for PADS execution.

Given the cost difference between these two communication types, the best per-

formance can be obtained maximizing the local interactions. For this reason, we

propose a migration mechanism that re-allocates SEs among the LP. In other

words, a mechanism that changes the partitioning configuration. This aims to

cluster the SEs that interacts frequently in the same LP, reducing the use of costly

inter-LP communications. In Eq. 4.18 all these aspects are considered.

OEC = SUC + (LIC +RIC + SynC +MM) +MigC (4.18)

The new term MigC introduced in the previous equation is the Migration Cost. It

means that the total execution cost of the PADS now includes the computation

and communication costs paid for the reallocation of SEs. More in detail, MigC

can be seen as composed of few addends as shown in Eq. 4.19.

MigC = MigCPU +MigComm +HeuC (4.19)

The computation cost of CPU is represented by MigCPU whereas MigComm is

the cost associated with the cost associated with the SE migration. The HeuC
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correspond to the computation cost required for the implementation of heuristic

implementation.

4.4 Chapter Summary

This chapter provides details related to the design and implementation of SIM-

Cumulus, an academic Cloud that supports the provisioning of NSaaS to the end-

users. SIM-Cumulus provides web-based interfaces that can be used by the users to

access the simulation services and execute their simulations in an on-demand fash-

ion. SIM-Cumulus provides several modules, including MPI, to support execution

of large-scale wireless network simulations. These strengths make SIM-Cumulus

suitable candidate for the simulation of large-scale wireless network simulations.

Moreover, MAHA algorithm is proposed and presented that supports migration

for PADS simulations on Cloud (i.e., multi-core and distributed architectures).



Chapter 5

Simulation Modeling, Design and

Analysis

To evaluate the performance of proposed SIM-Cumulus and MAHA algorithm,

we have considered three different large-scale wireless networks (i.e., VANETs,

UWSNs and WLANs) simulations. The simulation experiments are divided in to

three different sets. The first set of the simulations are executed in sequential

and parallel fashion on Cloud instances and stand-alone workstations. The exper-

iments (using VANET simulation) are performed (sequentially) on three stand-

alone machines as well as Amazon EC2 instances. The results are plotted for

three parameters that are simulation speed in terms of simulation events per sec-

ond, execution time in number of hours to complete the simulation execution, and

energy consumption (i.e., electricity consumed and CO2 emission). The second

set of experiments consists of large-scale UWSN simulations on OMNeT++ and

WLANs simulations on ARTIS/GAIA simulator. Three workstations and two

cloud instances (i.e., SIM-Cumulus and MS Azure) are utilized for the simulation

experiments. The large-scale UWSNs simulation are executed in monolithic as well

as parallel fashion on all the machines. The simulation results are obtained for

simulation speed in number of events per second, execution time, energy consump-

tion, CPU utilization, and LCR. The results of SIM-Cumulus are compared with

the workstations as well as with the MS Azure Cloud instances, for sequential and

63
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parallel executions. The third set of simulations are executed for the proposed

MAHA approach. Overall, four set of simulation experiments are executed on

multi-core and distributed setup respectively. Simulation results in terms of LCR,

number of migrations, simulation execution time, and simulation speedup) are

obtained to evaluate the performance of MAHA and compared to the EHA. The

discussion related to the simulation experiments and obtained results is presented

in the following sections.

5.1 VANETs simulation on SIM-Cumulus

The VANETs operates in hybrid deployment mode i.e., Vehicle to Vehicle (V2V)

and Vehicle to Infrastructure (V2I). The computational complexity of network sim-

ulation is magnified in hybrid VANET due to the involvement of mobility models

and heterogeneous access technologies [105]. Therefore, we consider VANET as

a suitable test case for examining the performance of Cloud based environment

with respect to network simulations.

We implemented and executed large-scale realistic scenario related to Urban VANET

that considers three aspects i.e., realistic map, propagation model, and vehicular

mobility. The realistic maps are utilized to represent realistic road trajectories for

the vehicular movements. We have considered the stop sign mobility model defi-

nitions reported in [106] for further movement related aspects such as acceleration

and deceleration of vehicles. Moreover, we have employed free-space line-of-sight

propagation model that represents the simplified situation related to signal trans-

mission in an urban environment. Table 5.1 summarizes all the parameters used

in defined simulations.

VANET simulations have been performed by utilizing the available Four stand-

alone workstations and compared the resource utilization performance with Ama-

zon Elastic Computing Cloud (EC2) service i.e., on Windows operating system

instances (configured with OPNET simulator representing VPL layer shown in
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Table 5.1: Simulation parameters.

Parameter Value
Network Simulator OPNET Modeler
Simulation Area 2350× 2000 m2

Mobility Model Stop Sign Mobility
Wait time at Intersection = 5sec

Nodes Count 250
Base Station Count 4
Access Point Count 13
Mobility (Speed) 15 KM/h
MAC Protocol IEEE 802.11a
Data Rate 54Mbps
Total Simulation Time 36000 sec
Routing Protocol AODV
AODV Configurable Active Route Timeout=3

Allowed Hello Loss = 2
Transmission Power Base Station = 0.5W

Access Point = 0.005W
Propagation Model FreeSpace Line of Sight
Total Simulation Time 36000 seconds
Topology Huazhong University of Science

Technology’s Road Layout

SIM-Cumulus architecture. The amount of CPU that is allocated to a particular

instance is expressed in terms of Amazon EC2 Compute Units (ECU).

An ECU provides the relative measure of the integer processing power of an Ama-

zon EC2 instance. A single ECU contains a processor having 1.0− 1.2 GHz Xeon

processor and 17.1GB memory. For Cloud computation environment, 6.5 Amazon

ECUs are employed. ECUs are used to compare CPU capacity between different

instance types. Four different workstation (Wks) configurations have been used

for comparison with EC2 cloud. Description of these workstations is given in

Table 5.2.

Table 5.2: Workstations specification.

Machine CPU Memory
Wks-A Intel Core 2 duo 2.53GHz 2GB
Wks-B Intel Core 2 duo 2.20GHz 2GB
Wks-C Intel 2.93GHz 1.28GB
Wks-D Intel 2GHz 1GB
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Figure 5.1 shows experimental results of three workstations along with Amazon

EC2 cloud instance. Figure 5.1(d) represents Wks-C execution results for VANET

simulation based on parameters referred in Table 5.1. Y-axis shows the number

of discrete events handled at any particular instance and X-axis represents the

elapsed simulation time in seconds. Blue line shows the current simulation events

(per second) whereas red line shows the average number of completed simulation

events (per seconds). The simulation speed has been observed at an average 37632

events within initial 785 seconds. The current simulation speed (depicted using

blue curve) begins from a single event at the start of simulation and gradually rises

to 39225 events at its peak during first 785 seconds. For the rest of the simulation

time in Figure 5.1 (d), we observe an average simulation speed of 38387 events (per

second). For current simulation speed, minimum of 33640 and maximum 37852

events per seconds are observed.

Wks-B shown in Figure 5.1(c) shows on average better simulation speed. The

simulation speed reaches up to an average of 50000 events (per second) at 23527th

second. Wks-B is run under the influence of external load to test its impact on

simulation speed. Therefore, the current simulation speed shows irregular behavior

due to the external load employed on this machine. After this period, the average

speed remains above 50000 events (per second) mark and reaches at the peak point

of 52277 events (per second).

Wks-A is the fastest among the available machines in the experimental setup and

it was run without any external load. Simulation results of Wks-A are shown in

Figure 5.1(b) which are on average 83248 events (per second). The lower point

of current simulation speed is observed at the final stages of the simulation as

77198 events (per second) and the maximum point is observed at 83438 events

(per second).

The simulation run on Wks-D terminated abnormally due to the in-sufficient re-

sources (i.e., memory and low-clocked CPU). The simulation ended immaturely

after 2100 minutes (35 hours) and only partial data could be collected from that

machine which is discussed in Figures 5.2 and 5.3.
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Figure 5.1(a) shows VANET simulation results on Amazon EC2 Cloud instance.

The results highlight average speed of 111268 simulation events (per second). The

lowest current simulation speed 99736 events (per second) is observed at 22105th

second. Two unexpected spikes with respect to the current simulation speed are

observed. This behavior possibly occurs due to the instant availability of more

computing resources: allocation of more number of CPUs, more amount of mem-

ory, etc.

Results observed for Wks-C Figure (5.1(d)) highlight erratic computing pattern

compared to the Wks-A Figure (5.1(b)). This computational behavior of Wks-C is

due to the higher memory latency employed during DRAM accesses. The Wks-A

has low latency memory with higher memory-bandwidth, which resulted in fast

memory-access during simulation run. In realistic scenario, computing machines

are often not available exclusively for single application execution. Therefore, on

Wks-B Figure (5.1(c)) some external load was employed to observe the effect on

simulation performance. From start to 18378th second, the simulation performance

is effected negatively because of CPU time sharing between the executing simula-

tion and the external load. In summary, these simulation results show that average

simulation speed (in terms of events/sec for VANET scenario) on Wks-A, Wks-B,

and Wks-C is 20%, 50%, and 62% lower than that of execution speed on Amazon

EC2 proposed model, respectively.

Figure 5.2 shows the EC2 performance in terms of total elapsed time regarding

simulation execution. Elapsed time is lower than that of stand-alone machines

e.g., elapsed time is approximately 9×, 4×, 3×, and 2× lower than that of Wks-D,

Wks-C, Wks-B, and Wks-A, respectively. Usage cost area in Figure 5.2 symbolizes

affiliation of various cost factors associated with the usage of stand-alone com-

puting machines. Zero involvement of this usage cost area with EC2 shows that

without up-front investments, maintenance, and electricity costs etc., EC2 would

be an appropriate choice for institutions.

For the past few years, sustainable and green computing is receiving much at-

tention across the world [107]. Considering important role of green computing in



Simulation Setup and Evaluation 68

Figure 5.1: Average simulation speed of VANET scenario using (a) EC2 Model
(b) Wks-A (c) Wks-B (d) Wks-C.

academia, there exists awareness for IT sustainability and green movement for sim-

ulating wireless networks. [107, 108] have explained that the cloud computing is

a possible game-changer in green IT. High computing and reduced time utilization

(for computer application executions) are two significant effects of the proposed

cloud usage that decrease electronic waste and electricity consumption within aca-

demic institutes. Using Joulemeter (a software to estimate the power consump-

tion of desktops, VMs, and individual software running on a computer) [109], this

study estimates the consumption of electricity and the emission of Carbon Dioxide

(CO2) on stand-alone workstations (with above mentioned configurations) against
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Figure 5.2: Simulation elapsed time for large-scale VANET.

Figure 5.3: Electricity consumption and emission of CO2.

simulation elapsed time (for simulation detail specified in Table 5.1). From Fig-

ure 5.3, it becomes clear that both electricity consumption and equivalent esti-

mated emission of CO2 are directly proportional to the usage time of simulation

scenario on stand-alone machine.

Therefore, for execution of simulation scenario that takes approximately 4.35 hours

(Figure 5.2) within cloud instance, electricity consumption would be 0.622 kWh

with 3.69 ft3 (calculated from Figure 5.3) of equivalent CO2 emission (for any local

workstation on which cloud has been launched). Given results and comparisons

advocate for the adoption of cloud computing for large-scale realistic simulations.



Simulation Setup and Evaluation 70

The benefits associated with Cloud in terms of electricity, usage cost, and green

IT are shown in Figure 5.3. In order to get better understanding, let’s assume

that 100 students within an institution (having workstations similar to Wks-A)

are involved in simulation analysis similar to VANET scenario. Wks-A takes 7.26

hours and therefore total electricity consumption for 100 workstations would be

3030 kW-h/month as well as emission of 18480 ft3 CO2. On the other hand, same

execution takes 4.35 hours within Cloud and therefore electricity consumption (for

local workstation on which cloud has been launched) would be 1800 kW-h/month

along with the emission of 11070 ft3 of CO2 (40% less than execution on Wks-A).

The results show the advantages associated with the usage of cloud for network

simulations in terms of electricity, green IT, and IT sustainability.

5.2 OMNeT++ Simulation on SIM-Cumulus

As discussed earlier, the computation complexity of a network simulation not only

depends on the scale of the network but also the granularity of the microscopic

details of the network characteristics that a researcher wishes to study. In this

study, we have considered two wireless network simulation scenarios on two dif-

ferent network simulators (i.e., GUI-based OMNeT++ and command-line-based

ARTIS/GAIA [23]). OMNeT++ being a resource hungry simulator fails to com-

plete the discussed simulations on a stand-alone machine. However, ARTIS/GAIA

has the ability to provide results of simulations of even for higher number of nodes

with equivalent simulation parameters. The aim of the experiments presented

in this work is to show the effectiveness of SIM-Cumulus considering sequential

and parallel execution of the network simulations that are either not feasible on

stand-alone machines or take extra-ordinary long duration to complete. The ef-

fectiveness is evaluated based on reduced simulation execution time and increased

rate of completed simulation events by productive distribution of SEs over various

number of LPs.
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Concerning simulations in OMNeT++, large-scale UWSNs scenario is considered.

The UWSNs scenario considers three aspects; mobility, propagation model and

routing. We have considered the Random Way Point (RWP) mobility model def-

initions reported in [110] for sensor movement in underwater environment. More-

over, path loss propagation model [111] is employed to simulate the physical layer

characteristics of the UWSNs. The opted routing protocol for UWSNs is Vector-

Based Forwarding (VBF) [112]. The computational complexity of the network

simulation is magnified in UWSNs due to the involvement of all considered param-

eters especially in the case of large-scale deployment [113]. Table 5.3 summarizes

all the parameters used in the OMNeT++ simulations.

Table 5.3: Simulation parameters

Parameter Value
Simulation Platform OMNet++

Simulation Area 1500 * 1500 m2

Mobility Model Random way point
Node Count 1000

Transmission Range 100m
Mobility (Speed) 2mps

Queue Size 14
MAC Protocol IEEE 802.15.4

Data Rate 2Mbps
Routing Protocol VBF [112]
Frame Capacity 10

rtsThresholdBytes 3000B
Simulation Time 100 seconds

In addition to these simulation parameters, the GUI environment has high memory

and computational requirements to maintain the state of each node [114]. There-

fore, we have considered a large-scale UWSNs as a suitable test-case to evaluate

the performance of Cloud-based simulation environment. Simulations are executed

multiple times with different number of threads during a single run. The obtained

results on SIM-Cumulus are compared with Cloud instances of MS Azure [115] and

two workstations. Description of available instances and available workstations is

depicted in Table 5.6.
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Table 5.4: Platform specification

Machine CPU Memory No of Cores
Wks-1 Intel 1.7GHz 4GB 4
Wks-2 Intel 2.50GHz 4GB 4

MS-Azure Intel 2.60GHz 8GB 8
SIM-Cumulus Intel 2.66GHz 8GB 8

Figure 5.4: Simulation execution time.

We have utilized five metrics i.e., execution time, simulation speed, CPU uti-

lization, Green IT effect and Local to Remote Communication Ratio (LRR) to

quantify the performance of SIM-Cumulus. The configuration parameters of the

simulation are shown in Table 5.3. The experimental results regarding simulation

execution time are presented in Figure 5.4.

Results in Figure 5.4 indicate that the Cloud-based execution of the simulation

takes up to 22% less execution time compared to simulations performed on stand-

alone workstations. This trend is due to the difference in resources (i.e., high CPU

and RAM) available on Cloud-based instances as compared to the stand-alone

workstations. The parallel execution of the simulation, using 2 processor cores,

results in a decrease of 37-41% in execution time over the sequential execution

on all the machines. These results yield good scalability of the parallel execution

for 2 CPU cores. Performing a simulation using different number of cores (i.e.,

4, 6 and 8), the simulation execution time is further reduced to 71%. Overall,

the results are promising and assert that employing the Cloud-based computing
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Figure 5.5: SSimulation speed (events/second.

infrastructure reduces execution time considerably. Moreover, it attains better

speedup as compared to the stand-alone machines.

The large-scale UWSNs simulation comprises of a large number of nodes and is

ultimately able to generate a huge number of simulation events. The performance

of simulation executions in terms of simulation speed is shown in Figure 5.5. Em-

ploying multiple cores for Wks-1 and Wks-2 resulted in improved performance

in terms of number of simulated events per second. Simulation executions on

the MS Azure [115] and SIM-Cumulus have achieved better results in terms of

events per seconds. The overall simulation results ultimately supports the usage

of SIM-Cumulus for large-scale wireless networks. For the past few years, sustain-

able and green computing has grabbed the attention across the world [116, 117].

Cloud computing is considered the appropriate choice for achieving green com-

puting [107]. In this study, we have utilized Joulemeter [109] to approximate

the power-consumption of workstations, VMs, and an individual application ex-

ecution on Cloud (i.e., MS Azure and SIM-Cumulus) instances. The Joulemeter

uses separate models to calculate the power usage for CPU, Memory, and Disk.

In order to measure the energy consumption of CPU, the processor utilization

during active and idle time are used. The power used by the memory repre-

sents the last level cache (LLC) misses during a certain time. The disk reads and

writes are used to calculate the energy consumed by the disk usage. Figure 5.6

presents CO2 emission and energy-consumption of different employed multi-core
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Figure 5.6: CO2 emission and electricity consumption.

simulation machines. Simulation results show that sequential execution on Cloud

instances results in 19% decrease of energy consumption, compared to the stand-

alone workstations. Moreover, energy consumption is significantly decreased for

parallel simulation in the case of 2 and 4 cores. With the increase in number

of LPs, look-ahead delay [118] tends to disrupt the total execution time. Thus

further increase in the number of LPs does not lead to significant improvement in

terms of energy reduction, but still lead to some energy reduction.

In most of the parallel and distributed simulations, the major hurdle in achieving

the required speedup is a share of high remote communication involved in the

simulation. To provide an insight into the performance gain, we obtained results

regarding the LRR. LRR is the ratio of local communication of SEs to remote

communication for the LPs. Figure 5.7 to Figure 5.10 represent the obtained

LRR on the available machines (having different number of LPs). The simulation

execution was initially run with a single LP and afterwards it was repeated several

times with a different number of LPs (i.e., 2, 4, 6, and 8). Results shown in
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Figure 5.7: LRR with 2 LPs.

Figure 5.7 and Figure 5.8 exhibit an average increase of 15% and 19% in remote

communication on the machine with 2 and 4 LPs respectively as compared to

monolithic execution. This increase directs to a good load distribution of SEs.

However, this adds look-ahead cost [118], required for the transmission of packets

among SEs located on different LPs.

The results shown in Figure 5.10 demonstrate imbalanced communication pattern

between available LPs. The results on the LP1, LP4, and LP6 show average LRR

Figure 5.8: LRR with 4 LPs.
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Figure 5.9: LRR with 6 LPs.

value of 78% whereas the attained LRR ratio on LP5 and LP7 is reduced to

70%. The obtained results of different LPs yield that the speedup is obtained

using parallel simulation. However, the look-ahead cost may disrupt the attained

speediness.

Figure 5.11 and Figure 5.12 show the results pertaining to the CPU utilization

on different cores of a workstation (Wks-1 ) and a Cloud instance (SIM-Cumulus).

A high CPU utilization up to 95% is observed for the simulation execution. For

Wks-1, the average CPU utilization observed for the processor cores is 70.03-79.3%

as shown in Figure 5.11.

Figure 5.10: LRR with 8 LPs.
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Figure 5.11: CPU usage on Wks-1.

For the proposed academic cloud SIM-Cumulus, the CPU utilization observed is

on average 72.4-85.5% as shown in Figure 5.12. Results show imbalanced CPU

utilization on different cores (of stand-alone workstations and Cloud instances)

during the course of the simulation. The resultant imbalance is due to the differ-

ence in communication patterns among the SEs located on different LPs. In most

of the cases, the real world systems have physical characteristics that have a clear

effect on the interaction dynamics. It is possible to exploit such characteristics to

re-arrange partitioning at runtime (dynamic partitions) of the simulation compo-

nents that may lead to significant benefits. Dynamic partitioning will result in two

benefits. Firstly, reduce the high cost of inter-communication among the SEs on

Figure 5.12: CPU usage on SIM-Cumulus.
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different LPs and secondly, perform load balance to achieve simulation execution

speedup.

5.3 ARTIS/GAIA simulation setup and result

discussion

In order to show the effectiveness of SIM-Cumulus with other network simulators,

we have performed simulations using ARTIS/GAIA. Considering large-scale wire-

less network scenario in ARTIS/GAIA simulations, a total of 10,000 SEs (wireless

nodes) were distributed on 8 LPs. The SEs interact with other SEs that are

within the range of 250 spaceunits. Each SE is placed at random position using

2-Dimensional plane and is assigned to a certain LP. An equal number of SEs

are placed at each LP. However, the assignment of a specific SE on certain LP is

random. Each simulation run is executed for 100 seconds, keeping the simulation

area 10000 x 10000 spaceunits. The probability of interaction (where each SE can

communicate at a given timestep during the simulation) is set to 0.5. This means

that during a certain timestep, half of the SEs are allowed to send messages. The

mobility model is RWP (Random way point) and mobility speed is in the range

of 1-25 spaceunits per second. We have used two metrics i.e., simulation exe-

cution time and simulation speed (events/seconds) to quantify the performance

of SIM-Cumulus. The configuration parameters of the simulation are described

in section IV. The simulation is executed in sequential and parallel (i.e., 2, 4, 6,

and 8 LPs) modes on the SIM-Cumulus instance. The results are plotted for each

independent simulation execution. The experimental results regarding simulation

execution time are presented in Figure 5.13. Results reveal that parallel (i.e., 2

LPs) execution of the simulation takes up to 26% less time compared to simula-

tions performed in sequential fashion. The parallel execution of the simulation,

using 4-6 processor cores, resulted in a decrease of 47-61% in execution time over
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Figure 5.13: Simulation execution time.

the sequential execution. These results yield good scalability of the parallel exe-

cution for 8 CPU cores. The simulation execution time is further reduced to 72%

for simulation that involves 8 cores.

The large-scale wireless simulation in ARTIS/GAIA comprises of a large number

of nodes and is ultimately able to generate a huge number of simulation events.

The performance of simulation executions in terms of simulation speed is shown

in Figure 5.14.

An increase of 35% in simulation events per second is observed for parallel simula-

tion execution (i.e., 2 LPs) as compared to the sequential execution. The obtained

results elaborate that employing multiple cores for SIM-Cumulus instance resulted

in improved performance in terms of number of simulated events per second. The

overall simulation results ultimately supports the usage of SIM-Cumulus for large-

scale wireless networks.
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Figure 5.14: Simulation speed.

5.4 Performance evaluation of MAHA

For simulation experiments concerning MAHA and EHA, we consider large-scale

WLANs network with microscopic details and high-density nodes. The compu-

tational complexity of the network simulation is magnified in wireless networks

due to the involvement of continuous node (i.e., SE) mobility; especially in the

case of large-scale deployment [113]. The choice of the model is Agent-based

approach [23], where the agents correspond to the SEs. The simulation area com-

prises of two dimensions wherein each agent is allowed to move freely. All the

agents communicate with their neighbor nodes that are located in their proximity.

In other words, if any SE has a new interaction, it will be forwarded to all SEs

that are situated within a threshold distance. To comply with the interaction re-

quirements, the Random Waypoint (RWP) mobility model is selected [119]. It is

one of the most prevalent mobility models that allows unrestricted movement of

all of the agents in the entire simulated area and these agents are not correlated

with each other. To obtain the simulation results, the experiments are performed

using the proposed algorithm and EHA [23]. Three sets of simulation experiments

are executed to scrutinize the performance of the adaptive algorithm.



Simulation Setup and Evaluation 81

5.4.1 Simulation 1

In the first round of simulation, 10,000 SEs are distributed on eight LPs. The

SEs can send an interaction to other SEs that are located within a range of 250

space units. Each SE is placed in random positions according to two dimensional

plane and is assigned to a certain LP. Each LP contain equal number of SEs and

the assignment of SE to each LP is performed randomly. The simulations are

executed for 3600 seconds, occupying the 10000 x 10000 space units of simulation

area. The probability of interaction (where each of the SE can communicate at

a given timestep, during the simulation) is set to 0.5. This indicates that during

a certain timestep, half of the SEs are allowed to send messages. The mobility

model is RWP and the mobility speed is in the range of 1-25. The range of MF is

set to 1-19 and the migration threshold (MT) is equal to 10.

For every MT value and mobility speed value in the specified range, an independent

simulation is executed. Figure 5.15 plots the relationship between the total number

of migrations, the obtained LCR and the mobility speed. The results reveal that

for low-speed mobility values, a limited number of migrations can lead to a very

high LCR values. The important observation is that for a static allocation of

SEs on 8 LPs, the reported LCR value is 24%. For moderate speed values, the

Figure 5.15: LCR obtained with a given speed and with an increasing number
of migrations.
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obtained LCR value rises up to 81%. For higher mobility speed, a good clustering

is obtained, however, leading to the escalation in the number of migrations.

5.4.2 Simulation 2

To obtain an insight into the performance of the proposed adaptive algorithm,

with respect to the LCR obtained, the simulation is executed multiple times, by

employing different number of LPs (i.e., 2, 4, 8, 16 and 32) during each simulation

run. The partitioning of the simulation model into more and more LPS results in

smaller clusters, which ultimately lead to the decrease in overall local communi-

cation. In this simulation, performance is investigated with respect to the ∆LCR

gain and MR value when the number of LPs is in 2-32 range. Here, the ∆LCR is

defined as the difference between the average value of local communication ratio

when the migration status is on and off written as given in Eq. 5.1

∆LCR = LCRMigrationON − LCRMigrationOFF (5.1)

The positive value of ∆LCR means that the employed clustering technique is

able to cluster the interacting SEs in a better way, whereas a negative or zero

means that the approach is unable to cluster the SEs merely added the processing

overhead. All the parameters of this simulation experiment are same as that of

simulation except MR and the mobility speed that is set to 11 spaceunits per

timestep. Figure 5.16 presents the results of gain in local communication (∆LCR)

when the simulation is executed multiple times for different number of LPs (2, 4,

8, 16 and 32) in each execution. The results in Figure 5.16 demonstrate that for

a moderate number of LPs, the proposed algorithm is able to achieve large LCR

(61 to 65%) gain. When the simulation is divided into smaller partitions, it will

be more difficult to produce effective clustering among the interacting SEs, even

though there is still some LCR gain.

The results in figure 5.17 presents the details regarding number of migrations when

the simulation model is partitioned into a different number of LPs during each
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Figure 5.16: Effect of the number of LPs on ∆LCR (LCR gain).

simulation run. The simulation is executed multiple times with parameters stated

in the initial discussion of simulation 5.4.1. The obtained results demonstrate 15

to 22 % decrease in the number of migrations, while the attained LCR is same for

both the approaches (MAHA and existing).

Figure 5.17: Migration comparison proposed MAHA approach with existing
approach.



Simulation Setup and Evaluation 84

5.4.3 Simulation 3

The third simulation experiment is executed to measure the performance of the

adaptive algorithm in terms of the attained speedup on the A-SIM-Cumulus Cloud

for both parallel and distributed setup. The obtained results are then compared

to that of the EHA. The simulation runs over parallel and distributed setup and

the obtained execution time (Wall Clock Time (WCT)) with and without the

migration is compared. For the parallel execution of the simulation, the A-SIM-

Cumulus multi-core VM instance is configured with ARTIS/GAIA middleware.

The number of cores allocated to VM is eight and the installed physical memory

reserved for VM is 8 GB. The simulation executed multiple times and with different

interaction probability (π) that is π = 0.2, 0.5, and 0.8, while keeping the value

of MF to 1.1. This means that if the value of π is set to 0.5, then 50% of the

SEs sends interaction (messages) during each timestep. The migration state size

is set to 100, 45000, and 80000 bytes. The value 100 is default migration size for

the simulations whereas 45000 and 80000 are obtained by padding extra bytes. In

addition, the size of the communication message during each interaction is kept

1, 100, and 1024 bytes. The obtained results are average of several independent

runs.

In Table 5.5, the obtained results pertaining to the execution time over parallel

setup are reported. The simulation runs multiple times with different configura-

tions (interaction size and migration size) for three different dissemination prob-

ability values (Low, Moderate, and High) represented by π = 0.2, 0.5, and 0.8

respectively. In all cases, the simulation runs with migration status set to OFF

and recorded the time (SimT) taken to complete the simulation execution. After-

wards, the simulation is executed, using the proposed MAHA algorithm and EHA.

To evaluate the performance of the proposed approach, ∆SimT is used to show the

obtained speedup. The ∆SimT is defined as the difference between the time taken

to complete the simulation with and without migration. It is noted that ∆SimT

is used to show the attained speedup for both the approaches (i.e., MAHA and

EHA). For all the reported results presented in Table 1, the migration approach
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Table 5.5: Parallel setup with migration OFF/ON. Different migration and
interaction sizes. Different dissemination probability (π).

Input Parameters
π = 0.2 π = 0.5 π = 0.8
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is able to obtain a performance gain (2.73% for EHA and 3.64% for MAHA) as

highlighted in Table 1. The worst case results are obtained when the migration

size is increased up to 80000 bytes and the interaction size is 1 byte. Even though

the migration mechanism is able to save costly remote communication for cheaper

local communication cost (LCC). However, this results in an increase of cost paid

for the migration and thus the gain in performance is narrow. On the other hand,

the best results obtained are 20.39% for EHA and 28% for MAHA when the inter-

action size is large (i.e., 1024 bytes) and the migration size is small (i.e., 100 bytes).

It is worth noting that the best results are obtained when the MF is decreased to

1, thus leading to an increase in the number of migrations. The increase in the

interaction dissemination probability also has a greater impact on the increase in

the total interaction among SEs in the simulation. To obtain a detailed impact

of MF on the performance of the proposed algorithm, the worst case and best

case results are further investigated. For all the values of MF, the gain and loss

in execution time are reported in Figure 5.18. The simulation is executed with

two different configurations (i.e., in first experiment the Migration size is kept 100

bytes and interaction size 1024 bytes, and in the second experiment the Migration

size is kept 80000 bytes and Interaction size 1 byte). The Y-axis represents ∆SimT

(i.e., performance gain in terms of the execution time) and MF is represented on

X-axis. The proposed MAHA algorithm outperforms EHA in terms of execution

time for both the configurations. The best results obtained are 20.39% for EHA

and 28% for MAHA when the interaction size is large (i.e., 1024 bytes) and the

migration size is small (i.e., 100 bytes). The results in Figure 5.18 reveal that for

MF value in the range of [1-10], EHA and MAHA obtain a performance gain for

both the approaches on both configurations. However, the increase in MF beyond

11 leads to a decrease in performance gain.

The simulation is also executed on the distributed setup (A-SIM-Cumulus Cloud).

The detailed specification for Cloud instances used in the simulation is given in

Table 5.6.

The parameters chosen for parallel simulation are also used for distributed simu-

lation setup. The obtained simulation results are reported in Table 5.7. All the
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Figure 5.18: ∆SimT for parallel setup when the value is in the range 1-19.

Table 5.6: Platform specification

Machine CPU Memory No of Cores Operating
System

VM1 Intel Core i3
1.70 GHz

4GB 4 Ubuntu
12.04.5 LTS

VM2 Intel Core i7
3.40 GHz

4GB 4 Ubuntu
12.04.5 LTS

VM3 Intel Core i7
3.40 GHz

8GB 8 Ubuntu
12.04.5 LTS

VM4 Intel Core i5
3.20 GHz

8GB 8 Ubuntu
12.04.5 LTS

configuration in terms of migration size and interaction size is tested for different

dissemination probability (i.e., low, moderate, and high). Initially, the simulation

runs without migration option and the simulation time (SimT) is measured for

different runs. The obtained results are then stated as ∆SimT as shown in Table

3. ∆SimT is the difference between the time required to execute the simulation,

with and without migration. In order to find the best configuration, the simu-

lation is executed with different MF value in the range from 1 to 19. The best

and worst case results for both MAHA and EHA are represented as italic face in

Table 5.7. The best results obtained on EHA is 64% and on MAHA bumped up

to 80% when the interaction size is 1024 and the migration size is 100 bytes. The

gain is positive for the simulation where the value of MF is less than or equal to
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Table 5.7: Distributed setup with migration OFF/ON. Different migration
and interaction sizes. Different dissemination probability (π).

Input Parameters
π = 0.2 π = 0.5 π = 0.8
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Figure 5.19: ∆SimT for distributed setup when the value is in the range 1-19.

10 which tends to decrease when MF is greater than 10.

The best and worst speedup (∆SimT) results for the distributed simulation config-

uration are plotted in Figure 5.19. The simulation was executed with two different

configurations (i.e., in first experiment the Migration size is kept to 100 bytes and

interaction size to 1024 bytes, and in the second experiment the Migration size

is kept to 80000 bytes and interaction size 1 byte). The Y-axis represents SimT

(i.e., performance gain in terms of the execution time) and MF is represented on

X-axis. The results in Figure 5.19 demonstrate that for small value of MF (i.e., 1),

the proposed algorithm MAHA is able to achieve 16% improvement in execution

time as compared to EHA when the interaction size is large (i.e., 1024 bytes) and

the migration size is small (i.e., 100 bytes). From the given results it can be said

that the look-ahead delay has a clear impact on the time required to complete the

simulation execution.
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5.4.4 Simulation 4

The last simulation experiment is executed to measure the performance of MAHA

approach in terms of simulation events per second and execution time on the A-

SIM-Cumulus Cloud for parallel setup. The obtained results are then compared

to that of the EHA. The simulation runs over parallel setup and the obtained

execution time (simulation time (WCT)) with and without the migration. For the

parallel execution of the simulation, the A-SIM-Cumulus multi-core VM instance

is configured with ARTIS/GAIA middleware. The number of LPs used in the

simulation is set to 2, 4, 8 ,16 and 32 and the installed physical memory reserved

for VM is eight GB. The simulation executed multiple times and with interaction

probability (π) π = 0.5, while keeping the value of MF (Migration factor) to

1.1. This means that if the value of π is set to 0.5, then 50% of the SEs sends

interaction (messages) during each timestep. The migration state size is set to

100 bytes. The mobility speed is kept 10 meters per second and the number of

SEs in the simulation run is 20,000. The obtained results are average of several

independent runs.

The best case and worst case execution time WCT for the parallel simulation con-

figuration are plotted in Figure 5.20. The simulation took 650 seconds when the

number of LPs was two and there was no migration involved. A decrease of 11%

and 17% in execution time is observed for EHA and MAHA, respectively. A good

speed up of 15% and 21% in simulation execution is observed when the number

of LPs are increased up to 8. The best results obtained on EHA is 17% and on

MAHA increased to 23% for 16 or more LPs. Overall the results show better exe-

cution time when the migration is employed for MAHA on multi-core systems as

compared to EHA and without migration approach. The large-scale wireless sim-

ulation in ARTIS/GAIA comprises of a large number of nodes and is ultimately

able to generate a huge number of simulation events. The number of events per

second shows the simulation efficiency in terms of simulation speedup. The per-

formance of simulation executions in terms of simulation speed for three different

simulation setups (i.e., migration OFF, EHA and MAHA) is shown in Figure 5.21.
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Figure 5.20: WCT with and without Migration for EHA and MAHA.

An increase of 12% and 19% in simulation events per second is observed for parallel

simulation execution (i.e., 2 LPs) on EHA and MAHA respectively, as compared

simulation execution without migration. A further increase of 16-24% in number

of events per second for EHA and 26-31% MAHA is observed for 4 or more LPs.

The obtained results reveal that employing MAHA for A-SIM-Cumulus instance

resulted in improved performance in terms of number of simulated events per sec-

ond. The overall simulation results ultimately supports the usage of MAHA for

large-scale wireless networks.

In summary, the proposed migration algorithm is able to achieve speed up for all

the tested configuration on the parallel setup. Even though the magnitude of gain

is limited in some configurations but relevant. For distributed simulation in most

of the tested configurations, the results are much better in terms of performance

gain. However, in some cases, the results are dropped down to negative.

5.5 Chapter Summary

In this chapter, discussion related to the simulation design setup and obtained re-

sults is presented. Three set of simulation experiments are performed to evaluate
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Figure 5.21: Simulation speed comparison of EHA and MAHA.

the proposed work. The simulations are performed multiple times sequentially as

well as in parallel mode on all the machines (i.e., stand-alone workstations, MS

Azure instance, and SIM-Cumulus instance). The results (i.e., simulation execu-

tion time, simulation speed, energy consumption, CPU utilization, and LRR) are

examined for the proposed SIM-Cumulus and are compared with the workstations

and MS Azure Cloud instance. Moreover, the results pertaining to the proposed

MAHA algorithm are also obtained and presented in detail.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Network simulation approaches serve as a platform to evaluate the performance

of network systems before its actual deployment. The simulation of complex and

large-scale systems is a time-consuming process due to numerous factors, i.e., time

taken to execute the simulation, the processing, memory requirements and im-

plementation. Over the past few years, Cloud computing is deemed as a viable

solution to solve large-scale computing problems related to both industry and

academia. In academic institutions, the trend to adopt Cloud computing is grad-

ually increasing to empower IT infrastructure and to assist the researchers. More-

over, the service-oriented paradigm of Cloud computing has lent itself as a suitable

platform for customized solutions. In this thesis, an academic cloud SIM-Cumulus

is proposed and implemented to provide NSaaS. The required simulation can be

small to medium as well as large-scale complex systems. The proposed Cloud

framework will assist the network researchers by providing customized simulation

services with high computing power and large memory instances to perform large-

scale network simulations. SIM-Cumulus provides the users with web-based API

to access the Cloud resources and to perform the simulation as per their require-

ments. The users create their instances configured with their choice of simulator

93
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and use secure RDP connection to work with their simulations. SIM-Cumulus

provides two modules (i.e., SCM and SDM) to handle large-scale simulation using

parallel execution on the respective instance. The SDM is responsible for the par-

titioning of simulation model (i.e., divide into several LPs) and distribution of SEs

on specific LP. The simulation results of SIM-Cumulus have obtained remarkable

effectiveness and efficiency in terms of simulation elapsed time, cost, and green IT

effect.

The second contribution of this thesis pertains to the dynamic partitioning of large-

scale PADS simulation. The large-scale simulation is partitioned into a number

of components called LPs and each component is assigned to a separate execution

unit wherein each LP contains a number of SEs. The distribution of SEs on dif-

ferent LPs may follow a different communication pattern. The SEs on the LP can

communicate locally as well as to the remote SEs. The remote communication

has a certain cost which leads to extra time for remote interaction dissemination.

Thus, the parallel simulation may not achieve the required gain in the time cost

reduction. The dynamic partitioning (i.e., SE migration) techniques are employed

with the aim of remote communication reduction. In this work, we have presented

a dynamic partitioning algorithm MAHA to cope with the high-end remote com-

munication end. To support large-scale simulation in the Cloud, ARTIS/GAIA

framework is integrated with SIM-Cumulus Cloud. The obtained results, for both

the multi-core and distributed simulations, demonstrate that the proposed migra-

tion algorithm reduces the total migrations and achieves an optimum level of the

LCR. In addition, it is able to achieve the speedup in terms of execution time on

both the multi-core and distributed architectures using SIM-Cumulus instances.

Conclusively, the SIM-Cumulus and A-SIM-Cumulus help academia in the follow-

ing ways:

� to reduce the time and effort required to configure simulation environment;

� to improve simulation performance in terms of simulation elapsed time;
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� to exploit the under-utilized computing resources for research work in a more

effective way;

� to lower the cost of IT infrastructure for educational establishments;

� to shift software licensing and maintenance responsibilities to Cloud providers;

� to reduce electricity consumption and emission of carbon footprints.

6.2 Future Work

This research work opens new directions in the area of migrations for large-scale

PADS simulations. In the case of distributed PADS, all the LPs follow heteroge-

neous architecture in terms of hardware resources and simulation communication

load. An LP may overload due to the computation required for handling huge

communication (i.e., local as well as remote), which may result in LP crash, thus

the failure of overall simulation execution. To resolve this issue, LP migration

approach is required that could detect the LP load at run time and migrate it

accordingly. In future work, VM migration approach is going to be proposed to

handle the aforementioned issue.
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