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Abstract

In this dissertation, a novel methodology for direct down-conversion of radio fre-
quency (RF) is proposed, which in return is useful to minimize sampling frequency
for an evenly spaced spectrum comprising multiband RF signals. The proposed
methodology describes a set of rules to achieve the lowest possible sampling fre-
quency without any compromise of spectrum folding or overlap of aliases in base-
band after down conversion. It is shown that the minimum sampling rate has a
unique relation with the layout of the spectrum of interest (SOI). For instance, if
there are N number of information bands of equal bandwidth B in the SOI, then
it is possible to down-convert the complete SOI using the sampling rate, 2N B,
which is twice of the total information bandwidth only if all bands are evenly
spaced in the SOI. Another factor introduced to the achieve the minimum sam-
pling rate is the sparseness-nature in the SOI, which is the ratio of null bandwidth
to information bandwidth. The proposed methodology is general in nature and is
flexible to the number of input signals or bands as well as to their positions in the
desired spectrum. In the proposed research work, simulations are carried out that
verify that by using the recommended minimum sampling rates, the desired signal
is extractable without any additional computational complexity due to spectrum
folding or aliasing-overlap. Our proposed methodology has a vast scope in the
design of general-purpose receivers, global navigational satellite system (GNSS)
receiver and cognitive radios (CR) because of the use of a low speed ADC. More-
over, the same can be efficiently used to monitor a wide band spectrum in military
communications especially for electronic warfare receivers, where reduction of the
complexity, size and cost has significant importance.

As a model application of our proposed work, we present a composite design for
the multiband-multistandard GNSS receiver. The design efficacy is based on the
proposed bandpass sampling methodology that transforms the sparse-spectrum
electromagnetic environment into a quasi-uniformly spaced spectrum of compact
bandwidth, which is more appropriate and useful for simultaneous digitization and
down-conversion of analogue signals. In this method, only a part of SOI is trans-

formed to an intermediate frequency. In this way, the desired frequency bands of



information that are widely spread, are grouped to form a contiguous-spectrum
which is quasi-uniformly spaced. There on, a sub- sampling is carried out for si-
multaneous digitization and translation of input signals to the first-Nyquist zone.
The proposed composite architecture is also helpful to circumvent the higher-order
intermodulation components. The proposed design is validated for conventional
Global Positioning System L1 and L2 bands and also for new L5 band used in
GNSS (GLONASS, Galileo and Beidou) receivers. The presented results show
considerable reduction in the sampling rates, and improvement in signal-to-noise
and distortion ratio, which can be easily managed by a low sampling analogue to

digital conversion.
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Chapter 1

Introduction

1.1 Overview

Bandpass sampling is a well established process that downconverts an analogue
pass-band signal either directly to base-band or to an intermediate frequency (IF)
signal without involving analog mixers [1]. As a matter of fact, this process makes
signal processing very simple and efficient, where the sampling process is accom-
plished by applying an analogue signal to an analog-to-digital (A/D) converter
whose output is a sequence of discrete values. What we are calling bandpass sam-
pling (BPS) is also goes by a number of alternative terms in the literature, such as
intermediate frequency sampling, harmonic sampling [2], sub-Nyquist sampling,
under-sampling [3], first-order bandpass sampling and sub-sampling [4]. As BPS
is a type of periodic sampling of real signals, the Nyquist-Shannon criterion must
still be satisfied.

The Nyquist- Shannon sampling theorem sets a necessary and sufficient condition,
not only for the sampling of a band-limited signal but also for the reconstruction
of an original analogue signal. When the reconstruction of an analogue signal is
accomplished through the Whittaker-Shannon interpolation formula, then to avoid
aliasing, the Nyquist criterion also becomes a necessary condition. This implies

that if sampling rate is slower than twice the bandwidth, then there are chances
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that a part of the signal will be destructed, resulting in loss of information. Nev-
ertheless, if additional constraints, like position, bandwidth, sparseness etc are
imposed on the signal , then the Nyquist criterion may no longer be a mandatory
restriction. An imperative example that takes advantage of additional supposi-
tions about the signal is provided by the latest field of compressed sensing, which
permits the complete reconstruction of input signal sampled at a sub-Nyquist
rate. Specially, this is pertinent to the signals that are sparse in frequency do-
main. As we know that compressed sensing is performed for a spectrum that
has a little non-zero energy content (the information bandwidth), over indefinite
frequency locations, rather than being composed of a contiguous single band. In
other words, the frequency spectrum is sparse and under such constraints the pass-
band methodology doesn’t remain applicable in a classical sense. Fundamentally,
the indispensable sampling rate is thus twice of the information bandwidth. On
the contrary, compressed sensing techniques provide an alternative that the in-
formation signal could be reconstructed in a perfect manner even if it is sampled
at a rate slightly lesser than twice of the information bandwidth. The drawback
of this technique is that reconstruction is not given in closed form by a formula.
Consequently, it is dependent on the solution to a convex optimization program
which requires well-calculated but nonlinear methods [5].

In connection to the sampling theory, the elementary point of concern, which needs
attention is just how quick a given signal that is continuous in the time domain
must be sampled so that its information contents may be recovered in the recon-
struction process without any loss. Of course, we can sample a time-continuous
signal at an appropriate sample rate suitable to our application, and get a series
of discrete values but here we need to answer three basic questions. How close do
the remitted discrete values represent the actual signal? What are the optimum
sampling rates and what price in terms of complexity, power dissipation, cost, size

etc we are paying for the remitted sampling rates?
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1.2 Objective and Significance of the Research

In wireless communication particularly in software defined radio (SDR) systems,
it is desirable to down convert multiple RF signals simultaneously by placing the
analogue-to-digital converter (ADC) as near to the antenna as possible [6]. How-
ever, this requires very large sampling rates using high speed analogue to digital
converters. Resultantly, such type of solution poses two major disadvantages. The
first is the large power dissipation and the second is the cost effect. In this connec-
tion, radio frequency (RF) sub-sampling generally known as bandpass sampling
is considered to be the alternative established methodology that is used in radio
receivers to directly down-convert and digitize RF' signals.

In our proposed research work, we intend to explore the bandpass sampling the-
ory in order to reduce the sampling rates. Analytical methods that exist in the
literature permit minimum bandpass sampling frequencies to be computed in case
of single-band spectrum. However, BPS has its issues for multiband signal spec-
trum due to its non-linear nature. This includes constraints like aliasing, spectral
folding, reconstruction of information band etc. Also there is no analogous set of
equations available for a multiband bandpass system, consisting of signals with
arbitrary center frequencies and bandwidths. In the last decade, BPS for multi-
band signals gained significant attention and efforts have been made to find out
valid bandpass sampling frequency ranges for direct down-conversion of multiband
RF signals. However, formulation for the minimum sampling frequency cannot be
acquired in a closed form due to the nonlinear nature of spectrum folding in the
process of sampling. In order to find out the minimum useable sampling fre-
quency, the literature highlights the need to address certain BPS limitations like
sparse spectrum, fixed bandwidth (BW) and non-availability of a universal rule.
In this connection, various sampling methods, DSP techniques and hardware, and
reconstruction algorithms have their role to define the bounds. Another alter-
native term, which is used in literature to understand and solve the above men-
tioned problem and realize the solution is Digital Aliasing-free Signal Processing

(DASP)][7.
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To exemplify the significance of the digital aliasing-free signal processing, upper-
bound of the application array of analogue-to-digital convertor practicable in a
large number of cases may be considered on the basis of this DASP techniques.
Taking into account the conventional digital signal processing (DSP) approach,
the upper limit of the sampling rates of the existing analogue-to-digital convertor
characterize their application extension in the frequency domain. In the field of
DSP it is possible to implement processing of a desired signal in the digital do-
main only if the available analogue-to-digital convertor could be used at a higher
enough sampling frequency. In this way the useable highest sampling frequency of
the particular type of analogue-to-digital convertor might be considered as a yard-
stick defining the application matrix. A significant amount of effort and money
have been expended on evolving the expertise for manufacturing state of the art
microelectronic devices. This includes but is not limited to manufacturing of wide-
band, high speed and more precise ADC, FPGAs and DSP kits etc. Consequently,
superior analogue-to-digital convertor chips, appropriate for a broader frequency
range, were developed and made available in the market. As a result, the ap-
plication range of DSP skills begin to widen uninterruptedly. Nonetheless, the
progression that took place followed a long path and is considered evolutionary,
somewhat time-consuming and considerably overpriced. On the other hand dig-
ital aliasing free signal processing shows the way to the requisite outcomes in a
much economical fashion for a large variety of applications. Nevertheless, in DASP
broadening, the ADC applications array is accomplished by means of unconven-
tional signal processing techniques and methods instead of refining the existing
manufacturing technologies in the field of semiconductor physics. In a traditional
approach founded on DSP, a desired input signal that could be managed by an
ADC rests on two pertinent parameters: the analogue bandwidth of the input sig-
nal and the highest sampling rate. The prescribed analogue bandwidth then has
to be equal to or greater than at least half of the highest sampling rate. However,
practically in a number of cases it is wider enough to be handled by an ordinary
ADC. Typically it is often 4 to 8 times wider than the corresponding half of the
sampling rate [7]. Consequently the worthy foundation of ADC technology could
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not be best utilized in a large number of applications based on traditional DSP
techniques. Thus it is the DASP technology, whose induction into system design
changes the situation drastically. Here, appropriate bandpass sampling and com-
patible DSP techniques can be applied to circumvent aliasing. Eventually, the
requisite sampling frequency does not exclusively rest on the upper frequency of
the input signal. Only the other stated ADC feature, viz. the analogue bandwidth
of the input signal, limits this upper frequency. Conversely, as in majority cases,
this bandwidth is significantly broader for a given ADC than half of the acceptable
sampling rate. Using the DASP methodology classically enhances the frequency
bound to a point that is more than a many times higher. The area of bandpass
sampling is thus a facet of DSP which finds applications in diverse disciplines in-
cluding, but not limited to communication, optics, radar, power measurements,
biomedical signals, and instrumentation such as oscilloscope, spectrum analyzer
etc. The only thing, which requires attention is how to use this technology in
an efficient manner. The objective of our research is to establish neces-
sary conditions to find minimum sampling rates for a uniformly- spaced
sparse spectrum with any sparse ratio. The intended research has a number
of applications in radio receivers, global navigational receiver systems, cognitive
radios for spectrum sensing and other wireless applications, where reduction in
complexity, size and cost etc has significant importance. However, case of the
multiband or multistandard radio receiver, system-nonlinearities, specifically due
to low-noise amplifiers and down-conversion circuits can produce a series of output
spectra with varying amplitude components. Bandpass sampling of such a spec-
trum, in the presence of other non-idealities such as jitter noise and thermal folded
noise, without aliasing-overlap is not the perview of this research. We intend to
remain restricted to find out the necessary and sufficient conditions which ensure
minimum sampling rates. Conversely, our endeavour is to describe the nature and
layout of the electromagnetic spectra when it best suits the Nyquist sampling rates
for direct down-conversion to an intermediate frequency that is less than or equal

to half of the sampling rate.
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1.3 Research Methodology

Our research methodology is based on both analytical and empirical methods. It
may be broadly divided into two parts: Part-I and Part-II. Part-I further consists
of three stages. In the first stage, a comprehensive survey is conducted. The survey
mainly reveals and exploits two areas. First area pertains to the contemporary
sampling techniques, their strong point and their weaknesses. In the second area,
applications of these sampling techniques are evaluated. A special emphasis is
given to the the field of radio receivers specially software defined radios (SDRs)
and viz-a-viz bandpass sampling. In the second stage, a theory is developed in
order to ascertain the ideal conditions, where minimum sampling rate could be
achieved with out any aliasing-overlap or loss of information. Then necessary
conditions are established so that the desired results can be achieved with full
reliability. Finally, these conditions are incorporated in to an algorithm. In the
third and final stage, simulations are carried out using Matlab®and it is confirmed
that the proposed theory is valid for simultaneous down-conversion and digitization
of multiple bands or signals in spectrum of interest. Firstly, the proposed theory
along with achieved result is published in [8].

In the part-II, after ascertaining the theoretical part, an emphasis is given to its
practical applications. In this context a composite receiver design is simulated to
set up scenario for the application of the proposed work. This design is later used
for a composite receiver for Global Navigational Satellite System (GNSS). As the
various bands used by the conventional positioning systems (GPS, GLONASS,
Galileo and Beidou) are not uniformly spaced, therefore the proposed theory is
not directly applicable. Consequently, some modification are made in terms of
radio spectrum management to achieve a quasi-uniformly spaced spectrum. The
target is to acquire minimum possible sampling rate without any aliasing in the
base-band. The results are compared with those already obtained by [9-12] and
a significant reduction is achieved. Besides Matlab®, simulations are also carried
out using Multisim©, of National Instruments (NI) and the achieved results are

found same as that of Matlab®.
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1.4 Thesis Organization

Chapter 2 gives a brief description of bandpass sampling theory. In chapter 3 the
literature survey is presented and we formulated the problem statement, keeping
in view the previous work carried out by researchers. Chapter 4 pertains to the
analytical description and research methodology that we intend to adopt in the
light of the basics of sampling theory. Chapter 5 pertains to the test set up and
simulations to verify the proposed methodology. In chapter 6 we presented a com-
posite receiver design as an appication of our work and applied the methodology to
a non-uniform sparse-spectrum . A case of GNSS-spectrum is studied and then by
carrying spectrum-management planning, where the spectrum of interest (SOI) is
transformed into a quasi uniform. There on the proposed sampling methodology
is applied. In chapter 7 we conclude our research work and suggest its extension

to future work.



Chapter 2

Fundamentals of Sampling
Theory

2.1 Overview

The widespread usage of digital devices for data processing has increased the
significance of various techniques used in digital signal processing (DSP). A con-
tinuous signal in time domain can not be directly processed by digital devices. To
process an analogue signal in time domain, it is first mandatory to convert it into
sequences of discrete values by sampling. A digital computer can process only
binary numbers in form of ones and zeros. For this objective, sampling rate must
be selected in such a way that characteristics of analogue signal are not changed,
while reconstructing it from the sequences obtained during sampling.

In this chapter we explain the fundamental terms and concepts used in sampling
theory. After developing a clear understanding of the terminology, we explore
further and introduce famous theorems used in sampling schemes. Both lowpass
sampling and bandpass sampling theorems are still very much used in the area of

digital signal processing (DSP) and have their own advantages and disadvantages.
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2.2 Sampling

In digital signal processing, sampling can be described as a simple process used
for conversion of analogue or continuous-time signal, z(¢) to discrete sequence of
values. In this way, we obtain a series of points in time to produce the sample val-
ues, xs(t) = x(nTs) = x[n]. Normally it is followed by operations like quantization
and encoding to acquire a digital signal. This is carried out in a fashion so as, we

can reconstruct the original signal without loss of information.

2.2.1 Practical Sampling Methods.

In electrical circuits, sampling methods are based on voltage sampling and charge
sampling. Voltage sampling is realized by the sampleand-hold (S/H) circuit, which
tracks an analogue signal and stores the sampled value as a voltage across a
sampling-capacitor for some duration of time. On the contrary to the voltage
sampling, charge sampling does not track the signal level but integrates the signal
current within a given interval of time [13]. The analogue signal to be sampled (in
its voltage mode) is first converted to current mode by a trans-conductance cell
before carrying out charge sampling. As compared to voltage sampling, charge
sampling has the advantage that the bandwidth of the charge sampling device
only relies on the sampling duration but not on the switch-on resistance so that
a wide-band sampler design is more feasible [14]. Bandpass sampling can also be

performed by both charge sampling and voltage sampling [15].

2.2.1.1 Voltage Sampling.

An ideal voltage sampling process can be demonstrated as an input voltage signal
x(t) sampled by a periodic pulse p(t) = i d(t —ts(n)) (see Fig. 2.1). However,
in practice, voltage sampling is implemeﬁ‘?(;doostraightaway by an Sample-and-Hold
(S/H) circuit as shown in Fig. 2.1 along with the suitable clock scheme. Consider

the sampling function is not a series of Dirac delta functions but the convolution



Fundamentals of Sampling Theory 10

of the Dirac delta functions with a pulse shape ¢, = nT;(wheref, = 1/T}), is the
discrete time and 7 is the duty cycle of sampling clock ¢(0 < 7 < 1) The output
voltage V,,;(t) by Sample-and-Hold is a convolution of x,(t) and h(t), given by

Vour(t) = z5(t) % h(t), (2.1)

where z4(t) is defined as

z(t) = 2(O)p(t) = () Y 8t —t(n) (2.2)

n=—oo

consequently, h(t) =1 for nT; <t < (n+ 7)Ts and equal to zero, otherwise.

@ Vin(t) C —— |Vou(t) I\ Hold /| Track

t, t, + 71T,

FiGurE 2.1: Voltage sampling using switched capacitor circuit

In the frequency domain output voltage will be

[e.9]

) > X(f—kf) (2.3)

n=—oo

Vs = X.()H (), = 7o sine({ 7

2.2.1.2 Charge Sampling.

Charge sampling is different from the voltage sampling in the way that, instead of
storing the voltage value across a sampling capacitor, charge sampling integrates
charge within a time window [¢,,, t,+t] . This process can be modeled as illustrated

in Fig. 2.2, where s(t) = >  0(t—(t,+At)) represents a mathematical equivalent

n=—oo
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of an ideal sampling process and t,, represents the instant when the integration
process gets starts. The sampled output data-signal z4(t) = 2'(¢)s(t) is expressed

by
xy(t) = ' ()s(t)
o tn+AL (24)
S / 2(€)dE | 5t — t, — A).

n=—00
t'VL

x(t) ft.ﬂ#r/_\t x'(t) @ T (i)
t,

FIGURE 2.2: An ideal charge sampling process

However, in practice, charge sampling is modeled as a switched capacitor circuit
with I;,,(¢) as an input current signal, alongwith an appropriate clock scheme as
shown in Fig. 2.3. Assuming that t,, = nT, and starting from Eq. 2.4 | the output

voltage of charge sampling and the corresponding Fourier transform spectrum are

given as
1 tn+AL 0o
Voult) = - / La(©)de | S 6t —t, — At). (2.5)
tn n=—oo
and
A (o.¢]
Vout(f) = !

CL-TS kz_:oo [m(f - kfs)sinc[(f — kfs)At]efj”(erkfs)At

(2.6)
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respectively, without considering the zero-order samle and hold function at the

hold phase, where sinc(z) = sin(mx)/(7z).

¢’1 ¢D
| L

S ‘ ‘ \—
I,,(1) Q) o <{ Cr —— Vo NCharge Hold

| : N AN
%7 tn tn + Al

FIGURE 2.3: Charge sampling in SC-circuit, representing three phase; hold-
ing/readout, charge integral and reset.

2.2.2 Sampling Model

The primary step to reconstruct a digital signal, z[n] from a continuous-time signal,
x(t), is to sample x(¢) at uniformly spaced intervals in time domain to produce
discrete sample values, such that z4(t) = x(nTs), where parameter Ty = 1/f, is

known as the sampling period.

A basic model as shown in Fig. 2.4 illustrates the sampling operation, where the
input continuous-time signal z(t) is multiplied by a periodic pulse p(¢) to form the

sampled signal z,(t). Mathematically,

ws(t) = x(t)p(t) (2.7)

where p(t) is the sampling function, which in practice is a periodic narrow pulse
having an amplitude either 0 zero or 1. Being periodic in nature p(¢) can be

represented by the Fourier series as given by

= Z Crexp(j2mnfst) (2.8)

n=—oo
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x(t) g x, (1)
Tp(t) 4

0 T, 2T 3T,
(a) (b)

FIGURE 2.4: A simple sampling operation model. (a) Sampling operation. (b)
Sampling function.

p(1)

in which C), are known as the Fourier coefficients and can be defined by

T./2

C, = 1/T; / p(t)exp(—j2mnfst)dt (2.9)

—Ty/2
Substituting value of p(t) from Eq. 2.8 into Eq. 2.7 results

vy(t) = x(t) > Chexp(j2mnfit) (2.10)

n=—oo

for the sampled signal.

2.2.3 Lowpass sampling theorem

A band-limited signal x(t) can be reconstructed without any loss of information or
error from sample values of the signal provided the sampling frequency fs > 2f,
where fy, is the highest frequency component present in the signal under sampling
operation.

In literature this theorem is also known by many other names, like, Nyquist sam-

pling theorem or lowpass sampling theorem.
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2.2.4 Analytical reconstruction of analogue signal

Consider a discrete signal z4(n) such that z(nT;) denotes the nth sample of the
original continuous in time signal, z(t), where t represents time in seconds. Thus,
T, is the sampling period in seconds and n ranges over integers. The sampling
frequency in Hertz (Hz) is just the reciprocal of the sampling period, i.e.,f; = 1/T5.
To avoid losing any information as a result of sampling, we must assume z(t) is
band-limited to less than half the sampling frequency. This means there can be
no energy in x(t) at frequency fs/2 or above.

Let X (f) denote the Fourier transform of z(t), i.e.,

o0

X(f) = / 2 (t)exp(—j2r f)tdt. (2.11)

—00

In order to prove that under given constraint x(¢) can be completely reconstructed
by the samples z(nT). In this regard, we have to derive the spectrum of z4(¢) and
show that x(t) can be reliably reconstructed from z4(t). Taking Fourier transform

of sampled signal in Eq. 2.10 gives

oo

X.(f) = / 2(t) S Cuexp(j2mnfit)exp(—j2r f)tdt (2.12)

n=—oo
—00

which, after a little manipulation becomes

X(P)= Y G [ altespl-s2n(s ~ nf.)od (2.13)

Using Fourier transform theory and equation Eq. 2.13 the Fourier transform (FT)

of the sampled signal can be obtained as

Xo(f)= Y CuX(f—nf) (2.14)

n=—oo
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It is therefore evident from Eq. 2.14 that a continuous-time signal sampled at an
appropriate rate can be reproduced around f = 0 Hz and its harmonics are trans-
lated to the integer multiple of the sampling frequency, i.e, (f = nf;). However,
these translated spectra are weighted by the respective C), of the narrow sampling
pulse p(t).

The last step, in the derivation of the lowpass sampling theorem is to define p(t).
As we know that all the samples are taken instantaneously, an appropriate defini-

tion of p(t) is

p(t) = Y o(t—nT,) (2.15)

n=—oo
This is called as impulse function sampling. It is to be noticed that, in this, the
sample values are represented by the weights of the impulse functions already

mentioned in Eq. 2.9. Substituting Eq. 2.15 into Eq. 2.9 gives

T./2

C, = 1/T, / 5(t)exp(—j2mn fot)dt (2.16)
—Ty/2

Again applying sifting property of the §(¢) function gives us the results
Cn=1/Ts = fs (2.17)

Using this result in Eq. 2.8 shows that the Fourier transform of p(t) can be
represented by

P =1 S 6(f —nf) (2.18)

Since for impulse function sampling and also from Eq. 2.17 we see that C,, = f;

for all n. Thus, Eq. 2.14 the spectrum of the sampled signal becomes

XJ(f) =1, ) X(f—nf) (2.19)

n=—0o0

Note that this result could have also been obtained from the expression

X(f) = X(f) @ P(f) (2.20)



Fundamentals of Sampling Theory 16

where ® denotes convolution. X,(f) the Fourier transform of sampled signal z(t)
using Eq. 2.20 is illustrated in Eq. 2.5. This is in fact an illustration of lowpass

sampling theorem.

X
—A
f
0
2 I;(f) f fi
S A SO S
5 0 f 2,
X0
AWWAVAS
p o 5 T . o !
fs_fh

FIGURE 2.5: An illustration of lowpass sampling theorem

2.2.5 Bandpass sampling theorem

Bandpass sampling is a technique that performs simultaneous digitization and
frequency translation of single or multiple bands in the first Nyquist zone in a single
process. In the literature, bandpass sampling is also known by other names, such
as undersampling, sub-Nyquist sampling, sub-sampling, intermediate frequency
sampling and harmonic sampling [16], [17]. Bandpass sub-sampling provides us
two major advantages. First, it reduces the requirement of high speed of A/D
converters as required for conventional direct RF sampling. Secondly, it requires
very less amount of digital memory necessary for storage of a continuous signal of

the same time interval.
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The bandpass sampling theorem may be stated as follows [18]:

If a bandpass signal has bandwidth B and highest frequency fy,, the signal can be
sampled and reconstructed using a sampling frequency of fs = 2fn/m, where m
is the largest integer not exceeding fn/B. All higher sampling frequencies are not
necessarily usable unless they exceed 2f,, which is the value of fs dictated by the
lowpass sampling theorem.

A plot of the normalized sampling frequency f;/B as a function of the normalized
center frequency f./B is illustrated in Fig. 2.6, where f. and f, are related by
frn = fe+ B/2. As described in [19] the allowable sampling frequency always lies
in the range 2B < f; < 4B. However, we see that the theoretically achieved
minimum sampling rate fs = 2B, corresponding to integer band positioning lies
at the tips of the wedges and these points are not feasible from implementation
point of view, because any hardware imperfection will move the sampling rate into

disallowed area causing aliases overlaps.

Normalized sampling frequency—f:/ B

0 1 2 3 4 5 6 7 8 9 10

Normalized center frequency— f./B

F1GURE 2.6: Allowable sampling frequency laying in the range 2B < f; < 4B

Let us consider a continuous-time input signal of bandwidth B with its carrier

frequency centered at f. Hz as shown in Fig. 2.7. It is possible for us to sample
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the continuous signal at a rate, f; = fy Hz, such that spectral replicas of the
positive and negative bands, just come up against each other exactly at the origin,
i.e, zero Hz as shown in the Fig. 2.8(a). If m is an arbitrary number of replications,

with upper bound less than 2f. — B, we can realize that,

mfy =2f.—B (2.21)

This implies that

fe =(2f.—B)/m (2.22)

where m is a positive integer such that fy > 2B

« 2f.-B >
h | 1.
-f, 0 f. Freq

1 1}
<« 2f-B > Bt
! < fc -Bf2 ———»«— fs.—ﬂ
1 L
A v ~ A [N A [N A [ A . A [ [N H
g SN ST T T i
@@ 1§ i R EE IR EE P
1 i ; i i ! H ;— H 0 i i f! H 2!f H i H ll:b
-f, -2f -1 s s f req
2f,-B »
- B I e B P B U I i s B S B .
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ixt ) lip! lel il leiip! leilipl leiip! leiip! lel " HE S .
} }
- Fr
f, eq
i« 2f, + B =§
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1 1 1 . ] ]
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_fc _Zfsu f:w 0 fs,, zfsf; f Freq

FIGURE 2.8: Bandpass sampling frequency limits: (a) Bandpass sample rate
fs = f¢ = (2f. — B)/m by taking m = 6; (b) Bandpass sampling rate is less
than fy; (c¢) Lowest possible sampling rate for < fy.
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TABLE 2.1: Selection of upper bound and lower bound sampling frequency in
kHz and optimum sampling frequency, fo,: in kHz, for BPS

m fs/:(sz_B)/m fs”:(2fc+B)/<m+1) fopt
1 42 27 27
2 21 18 21
3 14 13.5 13.5
4 10.5 10.8 -
5 8.4 9.0 -

If the sampling rate f, is increased further beyond f, the already butt up repli-
cations, i.e, P and Q tend to overlap with each other. However, the original signal
does not shift. This shows that fy is in fact upper limit prescribed in Eq. 2.22,

therefore, for an arbitrary m, upper bound of the sampling rate f, can be given as

fs < (2fe = B)/m (2.23)

Similarly, as we can see in Fig. 2.8 (b) when we start reducing the sampling rate
from fy, the inter replications gaps starts decreasing without any effect on the
original spectra. Again we notice that at some sampling rate f,» < fy, a situation
arises when the replication P’ will just come up against the original signal centered
at f. as shown in Fig. 2.8(c). At this stage any reduction in sampling rate will
cause aliasing overlap. We may consider this fys as the lower sampling bound,
i.e, the sampling rate must always exceed this to circumvent any aliasing-overlap.

This lower bound of f, may be expressed as

for = 2fc+B)/(m+1) (2.24)

Finally, combining Fqs. 2.23 and 2.24 we can choose f, anywhere in between f»

and fy to avoid any overlaps resulting in loss of information

2fe+ B)/(m+1) = fo < (2fc = B)/(m) (2.25)

To explore further the significance of frequently-referred relationships in Eq. 2.25,

in literature [20], we need to explain with an example of a bandpass signal. Let us
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(@) l f, = 42kHz J

O ==

-8 -6 4 -2 0 2 4 6 8

FIGURE 2.9: Permissible sampling-frequency ranges of a dual-tone passband

signal comprising of 21 kHz and 27 kHz tones: (a) fs = 42 kHz produces

inverted spectrum alongwith Nog; (b) fs = 27 kHz produces inverted spectrum;

(c) fs = 21 kHz is optimized;(d) fs; = 18 kHz but produces Nog (e) fs = 13.5
kHz produces inverted spectrum

have a signal comprising of two tones only, i.e, 21 kHz and 27 kHz such that there
is no other information signal between these two tones. The central frequency f.
of our signal will be 24 kHz. In other word bandwidth of our signal is 6 kHz.
Using Eq. 2.25, we can calculate various sampling rates shown in Table 2.1, which
tells us that permissible sample rate may vary in between of 13.5 and 42 kHz.
However, the complete range is not suitable or allowable and is further split in
three sub-ranges, i.e, from 27-42 kHz, 18-21 kHz and 13.5- 14 kHz. Any sample
rate below 13.5 kHz is unacceptable because that does not satisfy Eq. 2.25 as well
as the basic Nyquist criterion of f; > 2B. The aliases frequency or replica signals
resulting from permissible sampling rates given in Table 2.1 are illustrated in Fig.

2.9. In Table 2.1, values of fy and fy are listed for m ranging from 1 to 5. It can
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be noticed that we can select optimum values for m = 1, 2 and 3 and for higher
values of m, the signal will suffer aliasing-overlap because conditions imposed in
Eq. 2.25 are violated. Similarly, spectra for sampling rates below 2B is not shown
because of guaranteed aliasing.

Finally, after determining permissible sampling ranges, we are able to select opti-
mal frequency for each value of m as shown in the last column of Table 2.1. Here
we refer to the term optimum sampling frequency in the same way as defined in
[20]. Tt is the frequency where spectral replications do not butt up against each
other except at zero Hz. As we see in Fig. 2.9(a), if the signal is sampled at the
rate of 42 KHz it would certainly suffer out-of band noise ( 0- 15 kHz while using
LPF), while the permissible sampling frequency of 27 kHz; makes the sampled
signal to undergo subsequent digital signal processing like filtering operations and
other processing much easier. This is because, our lowpass filter is designed for
0- fs/2 and may give more gain to the components below f;/2 — B and starts
attenuating the original signal closer to fs/2. Also notice that for other two opti-
mal frequencies, we observe spectral inversion. This spectral inversion occurs for
all odd values of m as illustrated in Fig. 2.9(a), 2.9(b) and 2.9(e). For all even
values of m the original positive spectral components of are symmetrical about
the f = f. or f =0, no spectral inversion is possible. Thus any non-aliasing value

for f, from Eq. 2.25 can be selected.

Another method of illustrating the behaviour of Eq. (210) is to plot the normalized
minimum sampling rate, (2fc+ B)/(m+1), for values of m, as a function of newly

introduced term bandwidth-normalized frequency component, 'R’ defined as

R=(f.+ B/2)/B (2.26)

and normalized sampling rate may be obtained from Eq. 2.25 by dividing f, by the
signal-bandwidth B. As a result, we acquire a curve whose axes are normalized to
the bandwidth B marked as the solid-curve in Fig. 2.10. This figure presents the
minimum normalized sampling frequency f; as a function of the normalized highest

frequency component present in the bandpass signal. It can also be witnessed that,
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irrespective of the value of R, the minimum sampling frequency is always less than
4B and tends towards 2B with increase in the carrier frequency. Ironically, the
minimum acceptable sample rate approaches towards 2B, i.e, decreases as the
carrier frequency increases.

In the light of our above discussion and observing the bold-gray line at f,/B =
2.25 in Fig. 2.10 we can infer by reviewing example depicted in Fig. 2.9 where
R =27/6 = 4.5. This R value is indicated by the gray line in Fig. 2.10 showing
that for m = 3 the ratio f;/B is 2.25. With B = 6 kHz, then, the minimum f, =
13.5 kHz in agreement with Table 2.4. The leftmost line in Fig. 2.10 shows the
low-pass sampling case, where the sample rate f, must be twice the signals highest
frequency component. So the normalized sample rate f;/B is twice the highest

frequency component over B or 2R.

A

4.0
This line corresponds to
the low-pass sampling case,
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FiGurE 2.10: The minimum normalized sampling frequency fs as a function
of the normalized highest frequency.

Fig. 2.10 has been frequently referred in the literature, but at times it is possible
that the viewer may jump to the false deduction, that all sample rates above the
minimum rates as shown in the figure are acceptable.[21], [22], [23], [24], [25].
In order to avoid any such confusion, if we plot the permissible ranges of BPS
frequencies as given in Eq. 2.25 as functions of R, we get the illustration shown in
Fig. 2.11. As we notice from Eq. 2.25, Table 2.1, and Fig. 2.9, permissible BPS
rates are the sequences of frequency ranges with gaps of undesirable sampling

frequencies rates. It means a permissible BPS frequency has to be above the
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minimum sampling frequency as depicted in Fig. 2.10, but it cannot be any
random frequency of own choice above the minimum sampling frequency other
than the defined range. The gray areas in Fig. 2.11 show the normalized BPS
rates, which will be a root cause of spectral aliasing. Sample rates within the
white areas of Fig. 2.11 are permissible. Therefore, in the case of BPS, we want
our sample rate must be in the white regions linked with some value of m as
prescribed by Eq. 2.25. The importance of Fig. 2.11 can be emphasized once
again by considering bandpass signal example illustrated in Fig. 2.9. As shown in
Fig. 2.12, R being the ratio of the highest frequency component and bandwidth
B is 4.5, denoted by vertical line in gray colour. The gray line intersects the three
acceptable sample frequency ranges alongwith the undesired sample rates(shown
in gray shaded region). The same results can also be verified from the already
calculated sample rates presented in Table 2.4. So we can claim that Fig. 2.11
gives a more clear illustration of bandpass sampling constraints as compared to

that given in Fig. 2.10.

Although, Fig. 2.11 and 2.12 permit the use of sample rates those are set on
the edges of white and gray-shaded regions; however, such sample rates should
be avoided for all practical purposes. The major reasons for this is the non-
ideal response of analogue bandpass filters (BPF), instabilities in sample rate
clock-generator and the imperfections in A/D converters, which do not permit to
achieve the exact cut off frequencies. It is, therefore, wise to keep f, somewhat in
the middle of the extreme limits.

Consider the BPS setup shown in Fig. 2.13a. The frequency response of typical
analogue bandpass filter (BPF) is indicated by the gray colour line. Under such
circumstances, it is wise to consider the filters bandwidth a little plus than the
desired bandwidth B as shown in Fig 2.13b. The additional bandwidth, called as
guard bandwidth is in fact used to compensate the shortcomings of our BPF due
to its nonideal behaviour. This means that if we keep an additional bandwidth
(based on roll off factor of BPF and other component limitations) on either side
of the filter we can avoid any aliasing by a careful calculation as shown in Fig.

2.13d. This is just a brief description for the selection of sampling frequency.
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FIGURE 2.11: Useable sampling rates for BPS, normalized to the signal band-
width (fs/B).

A comprehensive analysis, of how guard bandwidths and A/D clock parameters

relate to the geometry of Figure 214 is available in [19].

Now let us see, how this guard band idea is applicable to Fig. 2.11. Examine one
of the white wedge of it, for example, the one relates to m = 1. The closer we
select our sampling rate to the vertex of it, the more strict are the requirements
of BPF design and vice versa. A more clear depiction is illustrated in Fig. 2.15.
It can be noticed that if we set our sampling rate down towards the vertex of the
white area we are more successful in acquiring a low sampling rate. Nonetheless,
the closer we set our operating point to the boundary of a gray-shaded area, the
lesser the margin we will have for the guard band, demanding a steeper analogue
BPF. In addition, it needs strict compliance to the stability and accuracy of the
analogue-to-digital clock generator. This implies, as a safety measure, we select

some intermediate point, which is fairly optimized with reference to the sampling
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FIGURE 2.12: Useable sample rates for the bandpass signal of bandwidth 6 kHz
and bandwidth-normalized frequency to R = 4.5.

rates and hardware constraints, away from the gray-shaded regions as shown in
Fig. 2.14.

In order to ensure that we are not operating closer to the boundary, we have two
options. Option one is to select the sampling rate in the center of the respective
white-region for a given value of R. This can be accomplished by taking the mean
value of the maximum and minimum sampling rates for a specific value of m, using

Eq. 2.25, we get a sampling rate given as

Js,entr = ! FfC_B + chwﬂ _ Y= B2 - 2fe+ B2 (2.27)

2 m m+1 m m—+1

The other option is that we evade the boundaries of Fig. 2.14 and by using the

expression given below and find an intermediate f,; operating point:

fsi - 4fc/wqfodd (228)

where mqq is an odd integer [26]. Using Eq. 2.28 leads to an interesting conclusion
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FIGURE 2.13: BPS with aliasing occurring only in the filter guard bands. (a)
A typical BPS setup. (b) Spectrum of original continuous time signal showing
bandpass filter response. (c) Spectrum of filtered continuous signal showing
parts of in-band noise. (d) Spectrum of digital samples after A/D conversion.

that the spectrum of the sampled signal will be centered at one-fourth of the sample
rate, i.e., (fs/4). This situation is attractive because it greatly simplifies follow-
on complex frequency translation down to the first Nyquist zone and is of great
use in a number of applications pertaining to digital communications. However,
the constraint of myqq must ensure that the Nyquist restriction of f;; > 2B be

satisfied.

2.3 The Concept of Aliasing-ambiguity

Aliasing is considered as a frequency-domain ambiguity that does not exist in time
domain. The phenomenon occurs when a continuous signal z(t) is sampled at a
uniform rate, then there exists a set of equally spaced values in the sequence ob-
tained, which are a sub set of some other discrete sequence obtained by sampling
some signal y(t). To appreciate the effects of this ambiguity, we require some

understanding pertaining to the nature of discrete sequences obtained as a result
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FIGURE 2.14: Typical operating point for fs to compensate for nonideal hard-
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of sampling. Consider the following sequence of values obtained by sampling a

sinewave at uniform periodic-intervals:-

= [0 0.6695 0.6695 0 — 0.6695 — 0.6695 0] (2.29)

Now if we draw the sinewave by plotting the above mentioned sequence of discrete
values shown with the help of stems in Fig. 2.16, it is not necessary that there
exists only one sinewave of given frequency. In otherword, it is not mandatory that,
the achieved sinewave is necessarily formed by using the above given sequence of
values. In Fig. 2.17 we can see two sinusoids of frequency 2-kHz and 8-kHz, both

are constructed from the same sequence of discrete values.

In order to have an analytical review, we derive an expression for this frequency-

domain ambiguity. Let us have a continuous time-domain signal defined as

x(t) = sin(27 fot) = sin(w,t) (2.30)
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FIGURE 2.16: Discrete-time sequence of values

Now if we sample x(t) at a rate of f; samples/s, that is, at uniform intervals of ¢,

seconds where t; = 1/f;. we obtain:

x(n) = sin(27 font,)

(2.31)
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FIGURE 2.17: Different sinusoids created from same set of discrete values

Using the trigonometric identity, sin(f) = sin(f + 27m) where m is any integer,

we can write Eq. 2.31 as

x(n) = sin(27 fonts + 2mm) = sin(27(fo + m/nts)nts (2.32)

Now if we consider m as an integer multiple of n, so that m = kn and 1/t; = f,

it is possible to replace the ratio m/n in Eq. 2.32 with k such that

x(n) = sin(27 fonts + 2mm) = sin(2w(fo + kfs)nts) (2.33)

This shows that, factors fo and (fo + kfs) in Eq 2.33 are equal. This also implies
that, z(n) sequence of equally spaced discrete samples values, present in a sinewave
of fo Hz, also exactly produces sinewaves at some other frequencies, namely, fo +
kfs. This relationships is of a paramount significance in the field of DSP and forms

basis of sampling theory. In words, Eq. 2.33 states that

When sampling at a rate of f; samples/s, it is not possible to distin-
guish between the sampled values obtained from a sinusoid having a
fundamental frequency fo Hz and a sinewave of (fy + kfs) Hz where k

18 any positive or negative integer.

To illustrate further the impact of Eq. 2.33, we may use Fig. 2.17 and consider the
sampling of a 6-kHz sinusoid at a sample rate of 8 kHz. A new set of samples is ob-
tained, equally spaced at an interval of 125 microseconds. Their values are shown

at intersection points alongwith another sinewave in Fig. 2.17. Now if we replace
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6 kHz sinewave with 2 kHz and sample it at the same rate, i.e, 8 ksps kHz we no-

tice that the discrete values remains same, i.e, intersection points of both sinusoid.

Comparing it with Eq. 2.33 fo = 6 kHz, f, = 8 ksps, and k = —1, we notice that
|fo £ kfs] = |[6 — 1(8))]| = 2 kHz. This implies that 2 kHz is an alias of 6-kHz
when sampled at the rate of 8 ksps. In reality there is no processing scheme that
can determine if the discrete values of given sequence, are output of 6 kHz or a
2 kHz sinusoid. If these amplitude values are applied to a DSP system that is
capable of detecting energy at 2 kHz, the detector response would be positive, i.e.,

showing energy at 2 kHz.

i A y (n)
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FI1GURE 2.18: sampling process of two sinusoid
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FiGURE 2.19: FFT spectrum showing energy at 2kHz only

Now let us apply both sinusoid to a processing system, which can determine spec-
trum of the given input. If p(¢) is the sampling pulse and z1(¢) and x5 (t) are inputs
to the system, we can find out the sampling sequence y(n) as shown in Fig. 2.18.
Using the same sampling rate of 8 ksps kHz and input sinusoid of 2 kHz and 6

kHz, we see that there is only one out put present at 2 kHz. In fact, most of the



Fundamentals of Sampling Theory 31

spectrum-analyzer instruments specially oscilloscopes display energy with respect
to the first Nyquist zone, which is limited to the f;/2. In this case, the first alias
of 6 kHz is 2 kHz and both sinusoid completely overlap as shown in Fig. 2.19.

Mathematically, we may conclude that for any sampling frequency, f; we can

decompose or write the carrier frequency f. as

where m is the highest odd integer such that f;/2 > € then

fo=1fs/2—¢ (2.35)

where f, is aliasing frequency

Example 2.1

Let f. = 300 kHz and f; = 96 kHz, then we can write f. as follow
fe = 7(48) kHz - 36 kHz

therefore f, = 48 - 36 kHz = 12 kHz

Example 2.2

Let f. = 300 kHz and f; = 172 kHz, then we can write f. as follow

fe = 3(86) kHz + 42 kHz

therefore f, = 86 kHz - 42 kHz = 44 kHz

In the literature, this phenomenon is also known as folding, since f, is a mirror im-
age of f. about fs/2. The sampling theory proposed by Shannon is also applicable
for the case of an uneven sampling, that is, the case, when samples taken are not
equally spaced in the time domain. In the literature, this is known as nonuniform
sampling (NUS). According to Shannon theory for non-uniform sampling a band-
limited signal whose X (f) = 0 outside the SOI, can be perfectly reconstructed
from its discrete sequence provided that, the average sampling rate satisfies the
Nyquist condition [27]. This leads us to the conclusion that, it might be easier

to develop reconstruction algorithms for uniformly spaced samples but it is not
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a necessary or sufficient condition for perfect reconstruction. For an ideal NUS
process, ts(n) = t, # nTs. In the case of NUS, the frequency spectrum of z4(t) is

not necessarily periodic and the Fourier transform becomes
Xo(f) = altn)e™. (2.36)

In the case of NUS the corresponding Energy Density Spectrum can be obtained

by taking the square of the magnitude of the Fourier transform [28§], i.e.,

E.(f) =|Xs(f)P=[ ..+ z(ty) cos2fty + x(ty) cos 2ft;

+ x(ta) cos2fty + ...+ x(t,) cos2ft, + ...]?

+ [ .. 4+ x(to) sin 2 fty + x(t1) sin 2 fty

+ x(ta) sin2fty + ... + x(t,) sin 2ft, + .. .J*...(2.37)

Non-uniform Sampling technique is well used in spectrograms for spectral analysis
and also for obtaining oscillograms in oscilloscopes [29]. As described in [30],
that when we sample a signal at the recommended Nyquist rate there will always
be an aliasing error till the signal is ideally band-limited. So in order to avoid
such odds for alias-free sampling, selected criterion must be based on unequally
spaced instants of time referred as NUS. The aperiodic attribute of the frequency
spectrum enables NUS to overpower the interfering signal spectrum caused by

intentional or unintentional aliasing.

2.4 Receivers Architectures

a. Superhyterodyne receiver architecture. This kind of receiver uses two
stages to translates the signal to a low frequency band by down-conversion mix-
ing. Generally, the second IF of a dual-IF superhyterodyne receiver is equal to
zero. In the such case, demodulation and detection are carried out at base-band

level. Figure 2.20 illustrates the superhetrodyne architecture as zero IF receiver.
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In the zero IF architecture, second down-conversion is performed through quadra-
ture mixers, which have a 7/2 radians phase shift between its LOs signals. Con-
sequently, any offset of I and Q components from the nominal phase shift (7/2)
radians or amplitude mismatches shall produce the Bit Error Rate (BER). How-
ever, if the second IF is higher than zero (mostly by a frequency gap of more than
the signal-bandwidth), the architecture may be considered as a digital-IF receiver.
In the such case the IF bandpass signal is processed by an ADC, and the 1/Q

mismatches can be circumvented by signal processing in the digital domain.
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FIGURE 2.20: A conventional dual IF superhyterdyne receiver with second IF
as zero

b. An homodyne receiver architecture. An homodyne receiver may be the
other choice, where there is no IF stage between passband and base-band. The
input to the ADC is fed at base-band,as shown in the Fig. 2.21. This has a
major advantage over the superheterodyne receiver, i.e., image problem can be
eliminated because of zero IF, consequently no IRF required. However, homodyne
receiver gets effected from the problems of DC-offset and LO leakage. The leaked
signal gets mixed with the output of the LO and generates a DC component. This
undesired DC component and DC off set have adverse affect on the information
signal.

c. Low-IF receivers. In the low-IF receiver, a low IF stage is cascaded between
passband and base-band. The low IF signal is first filtered, amplified and then
digitized by an ADC as shown in the Fig. 2.22. After this, frequency transla-

tion from the low-IF to base-band makes it more convenient to tackle problems in
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digital domain, such as I/Q mismatches which are mostly found in the analogue
domain. This design also offers some advantages in terms of simplicity and higher
level integration with modern receivers. Moreover, low-IF receivers as compared
to homo-dyne receivers, have no DC-offset issues since the signal after the first
down-conversion is still considerably higher than DC. However, in low-1F receivers
the IF is very low (it may be 1-2 times the information signal bandwidth), and
this rises an issue of image-signal rejection in the RF bandpass filter. In this case,

both the image and the wanted signal may be sampled and quantized in the ADC.
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FIGURE 2.21: Homodyne receiver architecture with reduced discrete compo-
nents
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d. Wideband IF receiver. This architecture may be considered as an alternate
to superhetrodyne receiver based on IF receiver architecture. In the wideband IF
receiver, the entire RF-band containing the information signal is down-converted
to IF. This is accomplished by multiplying the output of the first LO with a
fixed frequency. The IF signal passes through a LPF such that the frequency
components higher than the IF are filtered out. The desired channel out of the
complete band is then further down-converted to DC using a tunable LO and fed
into an LPF. The selected channel signal, which is frequency-translated is then
processed by an ADC in the same fashion, as is carried out in the conventional

superheterodyne or homo-dyne receivers.
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FIGURE 2.23: Wideband IF receiver architecture
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FIGURE 2.24: A sub-sampling SDR architecture

e. Sub-sampling receiver architecture. This architecture is mostly used in
SDR. Two major concerns of SDR are position of the ADC with reference to an-
tenna and DSP efficiency to deal with the higher sampling rate [31]. One of the
solution is to place the ADC as close as possible to the antenna. Ideally both
sampling and digitization are performed simultaneously on the RF signal. This
however demands an ADC with a higher dynamic range because of the presence of
strong interfering signals around desired SOI. Although this is possible to achieve
with the present technology, however, it is not advisable in most of the cases. It

is more reasonable to do an IF digitization as shown in Fig. 2.25. The sampling
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function can be either classic lowpass sampling or bandpass sampling. In the case
of LPS, the output of the BPF at IF stage is directly sampled and digitized by an
ADC. The direct down-conversion and digitization is useful to overcome the prob-
lem of 1/Q mismatches. However, in this case sampling rate on an IF bandpass
signal is significantly high, based on Shannons sampling theorem, using interpola-
tion formula. This leads to certain restrictions on the performance requirements of
ADC, e.g., linearity and dynamic range etc. In the case of bandpass sampling the
requirements on the digitizing ADC are relaxed due to a low sampling rate that

is only slightly greater than twice the information bandwidth. It can be noticed
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FIGURE 2.25: Subsampling receiver architecture
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that out of the all of the above mentioned architecture only sub-sampling SDR
architecture provides an opportunity to place the ADC as close to the antenna
as possible. Moreover number of discrete components are considerably reduced in
this type of architecture. However, still there are some constraints which needs
to be settled. Mostly, these constraints are related to the sampling methodology;
such that there would not be any frequency aliasing-overlap after down-conversion

of complete SOI in the base-band.

2.5 Bandpass Sampling for Multiple RF Signals

Classical sampling techniques discussed till now are limited and applicable to a a
spectrum composed of single band or signal. Consider an RF spectrum comprising

N bandpass signals which are positioned in a nonlinear fashion and each signal
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has a bandwidth Wy, Wy, ... Wx = B. These bandpass signals are spaced in such
a fashion that their frequency separation Af = fi.1 — fi, >> W,. Fig. 2.26
illustrates the spectral layout of the system, that is sparse in nature such that f;
is the lowest frequency of signal X;"and highest frequency in the spectrum under

consideration is fj,n belongs to the signal X}.
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FIGURE 2.26: Passband spectrum of multiple RF bandpass signal

The basic rules for downconversion of such a spectrum using software -defined radio
(SDR) are introduced in [32]. First, the ADC should be placed as near the antenna
as feasible in the chain of radio frequency front-end circuitry. Second, the resulting
samples should be processed on a programmable micro or signal processor. These
two guidelines enables the realization of all the benefits associated with the SDR.
If we desire to down-convert two contiguous bandpass signals X3, , and X3 to
the baseband, then there are two major factors which require our attention. One
is the receiver architecture and other is the sampling technique. Using an efficient
receiver architecture supplemented by appropriate sampling methodology enables
us to utilize our maximum SOI; while committing minimum resources in terms of
hardware and processing time etc. The common constraints, which are frequently
referred in 