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Abstract

Achieving fast convergence on an energy-limited and computationally-constrained

platform still remains a dream in spite of magnificent advancements in Integrated

Circuit (IC) technologies. For instance, in telephony, the echo cancellation re-

quires a high-definition adaptive-filtering algorithm that further needs a robust

convergence performance while tracking the time varying uncertainties present in

the communication link. Nevertheless, such high definition adaptive algorithm

cannot be run on an energy-limited and computationally-constrained inexpensive

platform.

The research work in this thesis focuses to propose the low-complexity distributed

adaptive filtering solution for energy-constrained platforms. The thesis is orga-

nized in three parts. Part-1 aims to develop a low-complexity MIMO channel

estimation algorithm for MIMO communication system. Part-II and III pro-

vide the distributed and diffusion based adaptive signal processing solutions for

computationally-constrained inexpensive platforms.

The thesis begins with an overview of the adaptive algorithms with implementa-

tion constraints and then proceeds towards a comprehensive and detailed literature

survey. The literature survey can be classified into two major areas, i.e. adaptive

filter theory and adaptive algorithm implementation over low-cost platforms. Fur-

thermore, a channel model is presented with the consideration of two multipath

components for MIMO communication environment. Taking it as a reference as

channel model, a spatiotemporal low-complexity adaptive estimation algorithm

is proposed by assuming time-variant block fading channel with fixed number of

training symbols. The proposed algorithm exhibits better results than those shown

by some notable least square algorithms in the literature. The effect of varying

doppler rates on the convergence performance of the algorithm is thoroughly ob-

served to check the validation of the algorithm. Obtained simulated results show

that the proposed algorithm entails low-complexity and provides independency on

forgetting factor as compared to notable adaptive filtering algorithms.



x

In the second part of the thesis, a novel processing-efficient architecture of a group

of inexpensive and computationally-constrained small platforms is proposed for

a parallely-distributed adaptive signal processing (PDASP) operation. The pro-

posed architecture is capable of running computationally-expensive procedures like

complex adaptive algorithms cooperatively. The proposed PDASP architecture

operates properly even if perfect time alignment among the participating plat-

forms is not available. Complexity and processing time of the PDASP scheme are

compared with those of the sequentially-operated algorithms. The comparative

analysis shows that the PDASP scheme exhibits much lesser computational com-

plexity parallely than the sequentially-operated algorithms. Moreover, for high

and low doppler rates, the proposed architecture provides a parallely-decreased

processing time than the sequentially-operated MIMO algorithms.

In part III, a novel distributed diffusion-based adaptive signal processing (DDASP)

architecture for computationally-constrained small platforms is introduced. In the

proposed DDASP architecture, the adaptive algorithm is diffused into the desired

number of processing devices. The number of processing nodes that are used in

DDASP architecture is dependent upon the number of MIMO channel streams as

well as on the number multipath components. Therefore, having more nodes and

diffusion mechanism, the proposed DDASP architecture exhibits lesser and linear

computational complexity parallely on each processing node involved as compared

to the proposed PDASP architecture.
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Chapter 1

Introduction

This chapter presents an introduction of the research topic. In Section 1.1, an

overview of wireless sensor networks is given. Section 1.2 presents the multipath

radio channel along with a note on its physical phenomena. Sections 1.3 and 1.4

provide overviews on MIMO communication system and adaptive filters, respec-

tively, while Section 1.5 presents the designing structures of an adaptive filter.

Mean square error criterion and non-adaptive Wiener filter solution are presented

in section 1.6 and 1.7, respectively. Section 1.8 describes the adaptive filtering ap-

proaches used for the designing of an adaptive filter. Section 1.9 presents the major

applications of the adaptive filters and Section 1.10 provides distributed strategies

concerning wireless sensor networks. Section 1.11, 1.12 and 1.13 present the aim,

contributions and publications of the research work contained in the dissertation,

respectively. Finally, section 1.14 discusses the organization of this dissertation.

1.1 Wireless Sensor Networks (WSNs)

Wireless sensor networks (WSNs) [1, 2] have drawn considerable research interest

recently because they can efficiently monitor the environment or physical condi-

tions on behalf of reduced operational cost. However, the implementation of high

definition adaptive filtering algorithms [3–5] over the low-cost wireless platforms of

1
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these sensor networks [6] still remains a real challenge for the research community.

For instance, in telephony, the echo cancelation requires a high definition adap-

tive filtering algorithm to avail a robust convergence performance while tracking

the time varying uncertainties present in the communication link. Nevertheless,

such high definition adaptive algorithm cannot be run on an energy-limited and

computationally-constrained inexpensive platform. Moreover, due to high com-

putational complexity of the signal processing algorithms, an energy-constrained

node may not exhibit adequate performance with limited power source and exist-

ing hardware. To keep the effective utilization of existing power and hardware,

the complexity of the adaptive algorithm must be reduced while implementing

on energy-constrained platforms. On the other hand, advancement in distributed

signal processing techniques [7] allows the wireless sensor nodes to run the high-

definition adaptive filtering algorithm cooperatively. In this context, the resource-

constrained WSN may run the high definition adaptive algorithm collaboratively.

This mechanism may thus exert a significant impact on aggregate computational

complexity as well as on the energy consumption of an individual node.

Since the beginning of the last decade, the cost of deployment of a Wireless Sensor

Network (WSN) has dropped dramatically, due to which an exponential growth has

been observed in its use from commercial and industrial applications to military

areas. A WSN can be described generally a network of nodes that cooperatively

work on a desired process and have the ability to interact with the computers

or to the surrounding environment. The wireless sensor nodes may be deployed

inside the sensor field to process and share data among them and finally transfer

it towards the centralized node known as sink or gateway. A sensor node has

a central importance in the network. It generally includes the battery, wireless

transceiver, micro-controller and sensor unit. The limited memory and power

constraints restrict the wireless sensor node to run the high definition adaptive

algorithm on a single unit. In case of multiple input multiple output (MIMO)

channel estimation or equalization, the complexity of the adaptive algorithm is

directly dependent on the number of communication streams and the multipath

components involving in the propagation environment. Therefore, the modern
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WSNs have to operate cooperatively for such filtering applications with the best

utilization of limited energy resources within the constraints posed by the existing

hardware.

1.2 Multipath Radio Channel

In wireless communications, the multiple copies of the transmitted signal are re-

ceived by the receiver at different timing instants. These multiple copies may un-

dergo constructive or destructive fading depending upon their delays. The physical

phenomena that affect the transmitted signal are shown in Fig. 1.1 and their brief

descriptions are given in the subsequent subsections.

Diffraction Transmitter 

Receiver 

Figure 1.1: Multipath propagation environment

1.2.1 Refraction

Refraction is a physical phenomenon which refers to the change in the direction

of the signal when it enters from one medium to another medium. The change in

the density of the medium is the prime factor that is directly dependent on the

physical form of the signal.
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1.2.2 Reflection

Reflection arises when the signal is incident upon a smooth surface of an object. It

occurs when the dimensions of the surface are larger compared to the wavelength

of the signal.

1.2.3 Scattering

Scattering occurs when the dimensions of the obstacle are smaller or equal com-

pared to the wavelength of the signal. It divides the energy of the propagating

signal and reradiates the signal in multiple directions.

1.2.4 Diffraction

The diffraction occurs when the propagation signal encounters the edge of the

building or object. In this phenomenon, the signal is bending around the stricken

object. This gives benefit in the regions of shadowing caused due to big obstacles.

1.2.5 Multipath Fading

Due to the above-mentioned phenomena, the electromagnetic waves of varying

lengths cause multipath fading which results in constructive or destructive inter-

ference. Multipath components cause time dispersion due to the arrival of the

replicas of the transmitted signal at different timing instants. The situation be-

comes worse when the bandwidth of the channel is smaller than the bandwidth of

the transmitted signal, then the channel undergoes frequency selective fading and

induces intersymbol interference (ISI) [8]. Likewise, the multipath components

experience a shift in frequency due to the relative motion between the transmit-

ter and the receiver which results in rapid variations in the received signal over

a span of short distance. This frequency shift is known as Doppler shift and this

occurs when the coherence time of the channel is smaller than the symbol period
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of the transmitted signal. The Doppler shift is directly proportional to the carrier

frequency and the velocity of the receiver. The Doppler shift is also influenced by

the direction of motion of the receiver with respect to the direction of arrival of

the multipath components. This phenomenon also lead to distort the transmitted

signal.

1.3 MIMO Communication Channel

Multiple Input Multiple Output (MIMO) refers to signal processing techniques

which utilize multiple antenna components to enhance the performance of any

wireless communication system [9]. Communication theories show that the MIMO

communication system provides a significant impact on the data rate without in-

creasing the operational bandwidth. A block diagram of a typical MIMO commu-

nication system is shown in Fig. 1.2 which consists of N transmit and N receive

antenna elements. The capacity of the MIMO communication system is linearly

dependent on the number of MIMO antennas. Theoretically, the capacity C pro-

vided by MIMO system with M spatial streams can be expressed as

C = MB log2(1 + PS/PN) (1.1)

where B is the channel bandwidth and PS and PN are signal and noise power,

respectively. The capacity of the MIMO communication system is based on the

assumption that all the channels between transmit and receive antennas must be

precisely known. However, in real time scenario, each antenna receives not only

the direct line of sight component but also the other spatial streams coming from

the other antennas elements. Even, the multipath radio environment makes the

channel matrix at the receiver side more complex. Therefore, the true information

of the channel states must be required at the receiver side to detect signals correctly

in order to meet the demands of improved capacity and high data rate.
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Encoder S/P 

Mod 

Mod 

...
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...
......

1

N

Decoded bits 

Figure 1.2: A typical N ×N MIMO communication system

1.4 Adaptive Filters

The term filter is commonly used for any system or device that processes the

mixture of elements or particles given as its input and produces a desired set of

elements or particles at its output according to certain principles or rules. However,

in the perspective of signals and systems, the elements or particles can be referred

to frequency components of the desired signal and the filter is used to pass all the

frequencies belonging to the required frequency band and reject the rest of them.

Filters may be either linear or non-linear. In this study, the emphasis revolves

only around the linear filter theory and analysis.

The filter that adjusts its parameters according to unknown environmental condi-

tions is known as adaptive filter. To keep the tracking of uncertainty, the adaption

rate of adaptive filter must be faster than the rate at which change occurs in statis-

tics. Since, the beginning of last decade, adaptive filtering techniques play a very

important role in the emerging fields of science and technology [10–12]. Adaptive

filters are evaluated by their numerical stability, steady-state mean squared error

(MSE), convergence performance and computational complexity. Many adaptive

algorithms have been introduced in the literature with the target to enhance the

performance of adaptive algorithms in sense of tracking capability, steady-state

MSE and convergence rate. The most important features of adaptive filtering

algorithm are as follows:
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• The convergence of the adaptive filter must be faster than the unknown

changing statistics.

• The miss-adjustment should be minimum as much as it can be.

• The tracking performance should be high according to time variations pro-

vided by the propagation environment.

• The computational complexity should be minimal which makes possible of

programming requirements and data processing.

• Numerical accuracy and stability should be comprehended

• The design of the adaptive filter should be efficient in sense of hardware

implementation.

1.5 Adaptive Filter Structures

The most common structures used for the implementation of adaptive filters are fi-

nite impulse response (FIR) and infinite impulse response (IIR) [13]. The response

of IIR filter is infinite in time which provides many difficulties while implement-

ing the adaptive filtering algorithm on any practical application. Therefore, the

applications of IIR filter in the domain of adaptive filtering theory are limited. In

many cases, the digital IIR filter becomes unstable due to the poles being outside

the unit circle. Moreover, the performance function of IIR filter results in many

local-minimum points which forces the algorithm to converge to any one of the

local-minimum points rather than global minimum point. A typical structure of

IIR filter is shown in Fig. 1.3. The output signal yk is the linear combination of

the recursive and non-recursive products and can be expressed as

yk =
N−1∑
i=0

ai,kxk−i +
N−1∑
j=1

bj,kxk−j (1.2)

where N shows the filter order, xk is the input signal and ai,k and bj,k are the

feed-forward and feedback weights of the ith and jth tap, respectively, at time
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instant k. On the other hand, the performance function of FIR filter has a single

minimum point which makes the filter faster to converge. The structure of FIR

filter is shown in Fig. 1.4. Likewise, the output yk in FIR filter is the linear

combination of the non-recursive products of filter weight taps wi,k and delayed

versions of input signal. yk can be expressed as

yk =
N−1∑
i=0

wi,kxk−i (1.3)

The error signal ek that is the difference of yk and the desired signal dk is used to

update the filter weights. Furthermore, it can be realized that the computational

complexity provided by IIR structure is greater than that of FIR filter. Therefore,

the increased computational complexity restricts the IIR filter to be implemented

on computationally constrained small platforms.

1.6 Mean Squared Error (MSE) Criterion

The block diagram of a typical adaptive filtering problem is shown in Fig. 1.5. The
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Figure 1.3: Adaptive IIR filter
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input signal xk and desired signal dk are taken from the random white process.

The estimation error that is the difference of output signal yk and the desired

signal dk shows a key importance of the performance of linear discrete time filter.

The output signal yk of discrete time filter approaches towards dk as the estimation

error approaches zero. Therefore, the performance function ξ that makes the filter

output approach towards the desired signal and permits the analysis of a discrete

filter [14], can be expressed as

ξ = E[|ek|2] (1.4)

where E[·] denotes the expectation operator. The performance function ξ is the so-

called mean squared error criterion. In mathematical perceptive, the performance

function can be handled easily if it has single global minimum or maximum point.

Therefore, the performance function ξ is hyper-paraboloid that has a single global

minimum point and can be calculated easily with second order statistics of random

process.
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Figure 1.5: Block diagram of adaptive filtering problem
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1.7 Wiener Filter Solution

The Wiener filter is used to develop an analytical non-recursive solution for the

minimization problem of the mean squared error between the desired process and

the estimated random process. The gradient and least square based approaches

follow the mean squared error criterion and converge to Wiener optimal solution

as well. To develop the solution of Wiener filter, we can rewrite Eq. (1.3) into

vector form, as

yk = wT
k xk (1.5)

The performance function in Wiener filter solution is based on mean squared error

(MSE) criterion that can be expressed in simplified form as

E[ek]
2 =E[dk −wT

k xk]
2

=E[d2k]− 2wT
k E[xkdk] + wT

k E[xkx
T
k ]wk

=rdd − 2wT
k rxd + wT

k Rxxwk

(1.6)

where rdd is the mean square value of the desired signal, Rxx is the input signal au-

tocorrelation matrix and rxd is the cross-correlation vector. The optimum Wiener

filter coefficients vector, wo, can be obtained by taking the gradient of Eq. (1.6)

and setting the equation equal to zero, as

wo = R−1xxrxd (1.7)

To obtain the unique solution of Wiener filter, it must be noted that the number

of filter coefficients must be equal to or greater than the number of multipath

components which are present between the transmitter and the receiver.

1.8 Adaptive Filtering Algorithms

There are many approaches that are used to design the adaptive filtering algorithm.

However, the most important approaches for the design and development of an
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adaptive algorithm are as follows:

1.8.1 The Stochastic Gradient

The stochastic gradient approach uses the transversal or FIR structure for the

designing of adaptive filtering algorithm. In this approach, the solution of the

minimization problem of MSE criterion can be found by using the optimization

method which is known as steepest decent. In steepest decent algorithm, the

error function is minimized gradually after its gradient vector is taken. The most

common Least Mean Square (LMS) adaptive filtering algorithm [13, 14] also works

on the principle of stochastic gradient which was derived by B. Widrow in 1959.

The LMS adaptive algorithm is the recursive form of Wiener filter solution which

provides the computational complexity of order O(N) and gradually forces the

error function towards minimum. The update equation of the weights of LMS

filter can be written as

wk = wk−1 + 2αekxk (1.8)

where α is the step size parameter. The convergence of LMS filter is basically

dependent on the step size parameter. The selection of step size parameter in time

varying environment is one of the promising tasks. The in-appropriate selection of

step size while estimating an unknown parameters may cause miss-adjustment to

the algorithm or may make it slower to converge. Likewise, the variants of LMS

algorithm (e.g., Normalized LMS, Variable Step-Size LMS, Signed LMS, Leaky

LMS [15], etc.) also have their own limitations and provide slow convergence.

Nevertheless, all stochastic gradient based algorithms entail low computational

complexity as well.

1.8.2 Kalman Filter

The Kalman filter is an extension of Wiener filter solution and it recursively min-

imizes the mean squared error function [14]. It is also known as linear quadratic
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estimation (LQE). The algorithm in Kalman filter is based on the set of mathe-

matical equations which provides an optimal estimate of the state of a process.

The optimal estimate provided by Kalman filter is more accurate than those which

are based on single measurement alone. The Kalman filter provides good track-

ing performance on behalf of very high computational complexity of order O(N3).

The Kalman filter is too powerful filtering algorithm in many aspects, e.g. it

precisely estimates the model parameters even when the system model is un-

known or not available, and it can predict and estimate the future and present

states, respectively. Nevertheless, the high computational complexity of Kalman

filter restricts the filtering algorithm to be implemented sequentially on low-cost

computationally-constrained small platforms.

1.8.3 Least Square Estimation

The least square estimation approach is based on minimization of an error func-

tion which is described as the weighted sum of error squares. This approach can

be classified into two main categories, namely: 1) block estimation 2) recursive

estimation [13]. In block estimation, the input data sequence is divided into blocks

of equal time length and then processing procedure proceeds block by block. On

the other hand, in recursive estimation, the processing procedure operates on the

individual input data sample rather than a complete input data block. Therefore,

the recursive estimation technique is more papular because of its low memory us-

age. The most popular Recursive Least Square (RLS) adaptive algorithm works

on the principle of recursive approach and it can be seen as the special case of

Kalman filter. The update equation of the weights of RLS filter can be written as

wk = wk−1 + gkek (1.9)

where gk is the Kalman gain at time instant k. As compared to gradient based ap-

proach, RLS filter and its variants (e.g., Modified RLS, Fast RLS, Extended RLS,

Robust RLS, etc.) provide fast convergence performance on behalf of enhanced

computational complexity of order O(N2).
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1.9 Major Applications of Adaptive Filters

There are many applications of adaptive filters in signal processing domain [16–

21]. The major applications of adaptive filters that are within the scope of this

work are as follows:

1.9.1 MIMO Channel Estimation

As explained in the earlier section, MIMO antenna systems are used to increase

the system capacity rather than increasing the operational bandwidth. In order to

increase or improve the data transmission rate, the receiver must have the knowl-

edge about the current channel state information (CSI) [22]. In frequency and

time selective fading, the transmitted signal suffers from time-varying distortion

in amplitude as well as in phase due to the multipath interference. To overcome

such distortions, current channel state information is used in the detection process.

For this purpose, some known bits are transmitted at the start of every commu-

nication session and channel is estimated by using the knowledge of the received

and transmitted signals. In this context, adaptive filters are used which play a

vital role to find unknown channel characteristics. The length of the training se-

quence and the duration of the communication session can be adjusted according

to the coherence time of the channel, and the convergence analysis of the adaptive

filter. The convergence performance of these adaptive filters is dependent upon

how better they make use of training sequences. Therefore, to avail high data

rate and better system performance, adaptive algorithms with fast convergence

performance and low computational complexity are demanded.

1.9.2 System Identification in Case of Missing Data

Recursive least square based approaches are widely used in many applications,

e.g. system identification or system parameters estimation while most of them

are working on the assumption that the input-output data are available at every
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sampling instant. However, in missing data system, the subset of output data

is available rather than the complete output information restricts the directly

use of standard identification algorithm. Therefore, in missing data system, the

stochastic framework may only be used as reference model rather than the use

of FIR filter [23]. Moreover, in missing data systems, the recursive algorithm

continuously provides the estimated output data at every sample point. Therefore,

due to high computational complexity of the adaptive algorithm, the efficiency of

the system may degrade its performance. Hence, the distributed adaptive filtering

is only being the choice which runs the adaptive algorithm distributively and

provides a significant impact on the efficiency of the missing data systems.

1.10 Distributed Wireless Sensor Networks

A distributed wireless sensor network performs decentralized processing by using

wireless sensor nodes which constitute the distributed network. In a distributed

wireless sensor network, a group of nodes collaboratively estimates the parame-

ters of interest. Therefore, a distributed wireless sensor network exhibits higher

significance due to its applicability in many real life applications such as big data,

environmental monitoring, distributed estimation, social networks, etc. Various

strategies such as consensus, diffusion and incremental are used to connect the

nodes in the distributed wireless sensor network. In consensus strategy [24], two

time scales are used: one time scale for the collection of measurements across the

distinct nodes while other time scale to iterate sufficiently enough over the col-

lected data to accomplish agreement before going to next iteration. On the other

hand, the diffusion strategy [25] uses only one time scale which provides a better

performance as compared to consensus scheme. However, both the schemes have

the best use in the application of distributed channel estimation. Furthermore, in

incremental approach [26], each node in the network communicates with adjacent

node, and consequently the data is processed cyclically throughout the distributed

network. The model diagram of incremental network is shown in Fig. 1.6. The

selection of number of nodes in the incremental network is based on the number of



Introduction 15

iterations which are used for the complete convergence of the adaptive algorithm.

Although all the distributed schemes exhibit high computational complexity as

compared to the same high definition algorithm being run sequentially on a singe

node; however, their computational cost is distributed among all participating

nodes.

1.11 Research Aim

The limited memory and energy constraint restrict a wireless sensor node to

run the high definition adaptive filtering algorithm. Therefore, for the effective

utilization of existing power and limited memory, the complexity of the adap-

tive algorithm must be reduced while implementing it on an energy-limited and

computationally-constrained platform. In this context, the aim of this research

is twofold: one of its objectives is to develop the low-complexity adaptive fil-

tering algorithm that may be run as standalone on a wireless sensor node and

the other objective is to develop distributed solutions for a group of low-cost

computationally-constrained nodes to run computationally-expensive procedures

parallely which provide a significant impact on aggregate computational complex-

ity as well as on the energy consumption of an individual node.

Node 1 

Node 2 

Node 3 

Node 4 Node N 

Figure 1.6: Distributed adaptive incremental strategy
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1.12 Research Contributions

The research contributions presented in this doctoral thesis can be listed in the

following subsections.

1.12.1 Low Complexity Linear MIMO Channel Estimation

Algorithm

A new low-complexity MIMO channel estimator is introduced with the consid-

eration of block fading channel environment. The proposed algorithm provides

independency on forgetting factor parameter and entails lesser multiplication com-

putations than RLS algorithm and variants.

1.12.2 Parallel Distributed Adaptive RLS Filtering

A new time non-aligned distributed architecture for computationally-constrained

small platforms is introduced which runs the complex adaptive algorithm paral-

lely. The proposed architecture provides parallely much reduced complexity and

processing time than the sequentially-operated algorithms.

1.12.3 Parallel Distributed Diffusion-based Adaptive RLS

Filtering

A new time aligned distributed-diffusion based architecture for computationally-

constrained small platforms is introduced which runs the complex adaptive algo-

rithm distributively. The proposed architecture provides parallely linear computa-

tional complexity and gives significant improvement in decreased processing time

than the sequentially-operated least square algorithms.
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1.12.4 Application of Diffusion-based RLS Architecture on

Missing Data Systems

The proposed distributed diffusion-based architecture is implemented for system

identification problem with missing data. It is observed that the proposed ar-

chitecture provides parallely much reduced complexity and processing time than

the sequentially-operated algorithms. It is also observed that PDASP that uses

non-aligned time indexes does not work for missing data application.

1.13 Organization of the Thesis

The rest of the thesis report is organized as follows: In Chapter 2, a detailed

literature survey is presented that can be classified into two main categories, i.e.

adaptive filter theory and adaptive filter implementation over low-cost platforms.

Furthermore, the research motivation and problem formulation is also described

at the end of this chapter. In Chapter 3, the system model is presented which

describes the methodology of the MIMO-capable cluster head and its signal pro-

cessing capabilities. Furthermore, the time varying MIMO channel model in terms

of first order Markov process with the assumption of unit power channel matrix is

presented. In Chapter 4, a low-complexity MIMO channel estimator is introduced.

The proposed algorithm is derived through the expression of estimation error and

enlarge into filter weight matrix by considering the assumption of block fading.

Chapter 5 and 6 provide distributed solutions for the complex sequential adaptive

filtering algorithm with time non-aligned and time aligned strategies, respectively.

In Chapter 7, the problem related to output error models of data estimation and

parameter identification for missing data systems is presented. Finally, Chapter 8

provides a summary of the thesis, presents the concluding remarks and discusses

the future research work depending upon the obtained results of this thesis.



Chapter 2

Literature Survey and Problem

Formulation

The literature survey presented in this chapter can be classified into two main cat-

egories, namely: 1) adaptive filter theory 2) implementation of adaptive algorithm

over low-cost platforms. The research motivation and research methodology are

also described at the end of this chapter.

2.1 Literature Survey

High-speed internet has a major impact on the socioeconomic development of the

world. Online banking services, mobile-operated transactions and web based in-

teractions demand seamless connectivity to the internet. Multiple Input Multiple

Output (MIMO) systems are turning into the promising tools that can ensure to

resolve the problems raised by the capacity bottleneck of the present and future

fast data-rate communications. Even with the use of multiple antennas at the

transmitting and receiving ends, high data-rates can be achieved without corre-

sponding increase in the transmit power or the bandwidth. Furthermore, the rapid

growth of wireless services has presented unbound innovative challenges in terms

of high data rates and larger capacities for future mobile communications [27].

18
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Utilization of space time coding [28–30] and antenna arrays [31] provides a new

paradigm in signal processing research that further encourages better estimation

techniques to address the above mentioned challenges. Although the problems re-

lated to MIMO channel estimation have been studied deeply in [32–35]; however,

adaptive algorithms still need to be dealt in comprehensively in term of reduction

in their computational complexities.

In order to address the two-fold research aim presented in Chapter 1, the literature

documented in this dissertation spans over two major areas, i.e. adaptive filter

theory and adaptive algorithm implementation over low-cost platforms.

2.1.1 Adaptive Filter Theory

Adaptive filtering techniques play a very important role in the emerging fields of

science and technology, however, from the last two decades have witnessed tremen-

dous research in the field of adaptive filtering for the improvement of their conver-

gence and complexity requirements [36–38]. However, achieving fast convergence

on an energy-constrained platform still remains a dream in spite of magnificent ad-

vancements in Integrated Circuit (IC) technologies. In [39], a maximum likelihood

MIMO channel estimator is introduced, where the expressions of the estimator al-

gorithm are derived by assuming stationary and quasi-stationary channel environ-

ments. However, in quasi-stationary environment, the algorithm shows undesirable

behavior that exerts a critical impact on the convergence performance of the algo-

rithm. Furthermore, the tracking performance of the maximum likelihood MIMO

channel estimator is improved in [40] by modifying the structure of the algorithm.

A major drawback of this algorithm is the need of a priori knowledge of the

channel model. A number of linear adaptive algorithms are used for channel esti-

mation that include Recursive Least Square (RLS), Recursive Least M-estimation

(RLM) [41] and Robust RLS (RRLS) [42] algorithms. If we take MIMO channel

estimation as an example application for our research work, some of the filtering

algorithms like RRLS and RLM find their use only in SISO systems, because of

their single-error constraint. The well known RLS algorithm has been in use for



Literature Survey and Problem Formulation 20

the applications of channel estimation and channel equalization since its advent

[14, 43, 44]. In the stationary environment, RLS algorithm provides good tracking

performance by assuming the normal underlaying noise. However, for time vary-

ing channel conditions, the fixed value of forgetting factor in RLS algorithm is not

suitable to find unknown channel coefficients [44, 45]. This exerts adverse impact

on the memory utilization of the algorithm and forces the algorithm to converge

slowly. In order to improve the tracking performance of the RLS filtering algo-

rithm for time varying channel conditions, a modified adaptive forgetting-factor

RLS (MAFF-RLS) is introduced in [46]. However, the forgetting factor approx-

imation in the algorithm severely degrades its tracking performance which is a

major drawback of this algorithm. Furthermore, in [47], a decision directed RLS

(DD-RLS) for MIMO channel tracking is introduced, where, a lower complexity

was claimed with reference to the higher complexity of a Kalman filter. However,

the DD-RLS is also not economic or feasible because of its enormous computa-

tional complexity for the finding channel coefficients. Likewise, in [48], a modified

RLS algorithm is introduced which provides more enhanced tracking performance

than the conventional RLS algorithm; however, the complexity of the modified

RLS algorithm is greater than that of conventional RLS algorithm which makes a

critical impact on the processing time of the algorithm. In [49], optimum weighted

RLS (OP-RLS) algorithm is proposed for the estimation of rapid fading MIMO

channel. However, the OP-RLS also suffers from an enhanced computational com-

plexity. Furthermore, in [50], a robust recursive weighted least squares with both

scale and variable forgetting factors (RRWLSV) is introduced. The RRWLSV al-

gorithm outperforms recursive least square variable forgetting factor (RLSVF) and

robustified recursive least square with scale factor (RRLSS) adaptive filtering al-

gorithms in impulsive noise environment. The enhanced convergence performance

provided by RRWLSV is on behalf of complex computational complexity which

also provides a critical impact on the processing time of the algorithm. On the

other hand, gradient based techniques proposed in [51] provide least mean square

(LMS) solutions to tackle time-varying MIMO channels. However, the proposed



Literature Survey and Problem Formulation 21

solutions are affected by the intrinsic fact that the gradient based algorithms con-

verge slower than the recursive least square based schemes. Similarly, in adaptive

multiuser detection, the same complexity problems appear, where matrix inver-

sions exist in both MMSE and decorrelating detectors [52]. On the other hand

in [53], a reduced rank linear interference suppression provides low-complexity so-

lution with the use of polynomial expansion (PE), where the inverse of matrix is

represented by P th order matrix polynomial [52–55]; however, the selection of P

is one of the promising tasks because its selection depends on the tradeoff between

detection performance and complexity. In [56, 57], Banachiewicz inversion formu-

lation is used to perform the matrix inversion for MIMO-OFDM based software

defined radio (SDR) signal detection. The inversion of a 4×4 matrix is divided

into four 2×2 matrices that reduce the computational operations. Likewise, the

authors in [58] derive a low-complexity algorithm for Hermitian positive-definite

recursive matrix inversion that provides lower computational complexity than [56]

and [57] with the utilization of 52 operations for finding matrix inversion only.

Nevertheless, using the concepts proposed in [56–58] for matrix inversion do not

exhibit a significant impact on the computational cost of high definition adaptive

filtering [42]. Meanwhile, many other approaches like a polynomial process model

or autoregressive (AR) model (see ,e.g., [49, 59] and the references therein) for the

time varying environment were also proposed. However, these algorithms provide

enhanced performance to some extent in certain applications compared to RLS

algorithm. In nutshell, most of the algorithms have major limitations such as high

computational complexity and prior knowledge of noise power.

2.1.2 Implementation of Adaptive Algorithm Filtering over

Low Cost Platforms

A typical wireless sensor node generally includes the battery, wireless transceiver,

micro-controller and sensor unit. The limited memory and power constraints re-

strict the wireless sensor node to run the high definition adaptive algorithm on a

single unit. On the other hand, the distributed solutions may allow the group of
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wireless sensor nodes to run the high definition adaptive filtering algorithms collab-

oratively and may provide a significant reduction in the aggregate computational

complexity while enhancing the performance of those low-cost devices. Several dis-

tributed filtering techniques have been introduced in the literature with the target

to reduce the high computational complexity of the adaptive algorithm which per-

mit the low-cost devices to run the high definition algorithms distributively. In

[60], Lin et al. introduced an LR-MMSE algorithm based on QR decomposition

and complex lattice reduction (CLR) which provides 35.5% lesser computational

complexity than MMSE based scheme [61]; however, 35.5% lesser computational

cost still restrict the computationally-constrained low-cost sensor node to run this

filtering algorithm on a single unit. In [62], a comparison of renowned subband

adaptive filtering (SAF) structures is presented with parallel arrangement of multi-

rate filter banks. The SAF technique based on adaptive noise cancelation exhibits

reduced complexity through the use of least mean square (LMS) adaptive filter-

ing algorithm in acoustic noise environment. Therefore, due to phase, aliasing

and amplitude distortions and extra processing delay, these systems may be ruled

out for real time implementation. Another architecture configuration for reducing

runtime is the MMSE signal estimation using wireless sensor nodes [63]. In this

architecture, authors use the distributed adaptive node-specific signal estimation

(DANSE) technique to estimate the channel coefficients by following Wiener Hopf

equation. However, DANSE technique only follows the MMSE criterion rather

than running the adaptive filtering algorithm. This makes DANSE incapable of

estimating time-varying channel conditions.

Distributed network based architecture provides improved performance for many

communication applications, such as environmental monitoring, channel estima-

tion and source tracking [64–67]. The distributed and energy aware strategies for

estimation over networks can be classified into two main groups, i.e., consensus

strategies and incremental cooperation mode strategies [68]. In consensus strate-

gies [69, 70], the procedure of the estimation is done in two stages. Unfortunately,

this kind of implementation provides an increase of communication load and is not

suitable for real time estimation in time varying channel environments. On the
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other hand, in incremental strategies [26, 71–76], each node in the network com-

municates only with one neighbor node, and consequently the data is processed

cyclically throughout the distributed network. Moreover, in incremental mode, all

the nodes entail the complex computational complexity of the adaptive algorithm

and each node in the network is being free for K − 1 iterations, where K is the

total number of iterations required for the complete convergence of the adaptive

filtering algorithm. Furthermore, in [77], a distributed RLS (DRLS) algorithm

with reduced communication load is introduced. However, in this technique, the

RLS algorithm works in sequential form because each respective node waits until

the information is not retrieved from the previous processing node. Therefore, this

technique does not show a significant role in sense of reducing the computational

complexity or even cannot run the algorithm in parallel fashion. Furthermore, the

stability and performance analysis of DRLS algorithm is presented in [78]. The

experimental validation of the DRLS algorithm only focusses on the performance

and stability rather than the complexity or the processing time of the algorithm.

Furthermore, in distributed estimation, different approaches [79–83] such as diffu-

sion based techniques are used to regulate the information among different nodes.

In this framework, each node in the network uses a local algorithm to update

the desired parameters and then exchange the information towards central node

to update the estimation. The diffusion techniques provide high computational

cost and cause an increase of huge communication load while exchanging the in-

formation among the nodes. For example, in an M -node diffusion network, the

communication load is written by M × N times; where N shows the dimension

of diffused vector. Therefore, this multiplication factor implies a crucial impact

on the communication burden. Moreover, large neighborhood nodes require more

power for information interchange [64–67] that is a major drawback of these dis-

tributed diffusion-based architectures.
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2.2 Research Motivation and Problem Statement

As discussed earlier, vast research has been done on devising techniques for using

wireless sensor nodes to monitor various parameters in unattended areas. How-

ever, implementation of high definition adaptive filtering algorithm over these

low-cost wireless sensor nodes still remains a dream due to their low energy and

limited memory constraints. The incremental strategies [26, 71–76] and DRLS [77]

provide the distributed platforms that make these nodes run the high definition

adaptive filtering algorithm distributively. In incremental strategies [26, 71–76],

all of the K iterations of the adaptive algorithm required for its convergence are

assigned to K nodes. Likewise, in DRLS [77], parts of the adaptive algorithm are

assigned to the desired number of nodes to run the adaptive algorithm distribu-

tively. However, both techniques work in sequential form because each respective

node waits till the information is retrieved from the previous processing node.

Furthermore, in order to accommodate distributed processing Matlab c© [84] and

Labview c© [85] use software parallelism which is available in various architectures

of the present fast processing multi-core computers with perfect time-alignment

processors. These software provide parallel processing toolbox to divide the large

problems into smaller computations, hence requiring reduced running time. Like-

wise, graphical processing unit (GPU) enables to run high definition graphics on

a personal computer (PC) by exploiting hundreds of cores [86]. Furthermore,

compute unified device architecture (CUDA) [87] is NVIDIA’s GPU architecture

which provides multithreaded applications where cores can communicate and ex-

change information with each other. However, these cores have not been used to

run adaptive algorithms in parallel with non-aligned time indexes due to being

the components of a single system clock. According to the best of our knowledge;

there is no parallel structure of recursive adaptive filtering algorithms in the liter-

ature where any of the complex adaptive algorithms runs in parallel fashion over

computationally-constrained platforms with no perfect time alignment.
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2.3 Research Methodology

The methodology to conduct the proposed research is divided into three stages. In

the first stage of our research, we intend to reduce the complexity of adaptive filter-

ing by proposing a sequential low complexity MIMO channel estimation algorithm

for the time varying MIMO channel environments. For this purpose, we aim to

take Kalman filter approach and modify it into low complexity algorithm. In order

to simplify the system model, we assume block fading channel environment which

is a valid assumption in all modern wireless communication systems. In the sec-

ond stage, we aim to make a network based on low-cost computational-constrained

wireless sensor nodes to run a high definition algorithm. For this purpose, we aim

to propose a parallel distributed adaptive signal processing (PDASP) architecture

using non-aligned time indexes. Finally, in the third stage, we intend to provide

a distributed solution for perfect time aligned systems. In this regard, we aim

to propose a distributed diffusion based adaptive signal processing (DDASP) ar-

chitecture using aligned time indexes. The proposed solutions will be based on

diffusion [25, 79–83] and distributed incremental strategies [26, 73, 74, 76] which

provide the distributed platforms that run the high definition adaptive filtering

algorithm distributively.



Chapter 3

System and Channel Model

This chapter presents the description of system and channel model for MIMO com-

munication system. Section 3.1 describes the methodology of the MIMO capable

cluster head and its signal processing capability. Section 3.2 presents the MIMO

channel model with respect to frequency and time selective fading characteristics.

3.1 System Model

Consider a MIMO-capable cluster head which is engaged in communication with a

far gate way is shown in Fig. 3.1. The MIMO-capable cluster head is considered to

be the specific purpose node. As it is discussed earlier that the multipath fading

characteristics and the number of MIMO antennas are directly dependent on the

computational complexity of the adaptive signal processing algorithm. Therefore,

the selection of sequential or distributed adaptive signal processing technique for

MIMO channel estimation is dependent on the processing capability of MIMO-

capable cluster head which is as follows:

• If the MIMO-capable cluster head has large signal processing capability then

it uses the sequential low-complexity MIMO channel estimation algorithm

as on a single unit which is presented in Chapter 4.

26
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• If the MIMO-capable cluster head has limited signal processing capability

then the specific purpose MIMO-capable cluster head iteratively gives the

received data vector towards the general purpose PDASP or DDASP archi-

tecture nodes which are described in Chapter 5 and 6, respectively. The

PDASP or DDASP architecture runs the highly complex adaptive filtering

algorithm parallely and send back the desired information of channel esti-

mation towards the MIMO-capable cluster head.

3.2 MIMO Channel Model

An NT×NR MIMO communication system with N independent spatial streams

is considered, where the received signal y
(m)
k at the mth (m = 1, ...., NR) receiver

element at time index k can be written as

y
(m)
k =

NT∑
n=1

h
(n,m)
k x

(n)
k + ϑ

(m)
k (3.1)

where x
(n)
k is transmitted signal from nth transmitting antenna, h

(n,m)
k is channel

attenuation coefficient between nth transmitter and mth receiver and ϑ
(m)
k is white

noise at mth receiving element. The autocorrelation of the channel parameters

Node1 

Node2 Node3 

Node N 

MIMO-Capable         

Cluster Head 

Tx Rx 

Gate Way 

PDASP/DDASP 

Figure 3.1: System model for MIMO communication system.
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during block fading transmission [88] can be written as

E{h(n,m)
k [h

(n,m)
l ]∗} ∼= Jo(2πf

(n,m)
D T | k − l |) (3.2)

where E(.) is the expectation operator, superscript “ ∗ ” represents the conjugate

operator, Jo(.) is first kind zero order Bessel function, f
(n,m)
D is Doppler frequency

and T is symbol duration. According to uncorrelated scattering model [89], all

channel streams are independent and approximately written by the following Au-

toregressive (AR) model of order C.

h
(n,m)
k =

C∑
c=1

β(n,m)
c hn,mk−c + ω

(n,m)
k (3.3)

where β
(n,m)
c is cth AR coefficient of the channel coefficient in between nth trans-

mitting and mth receiving antenna at time epoch, k and ω
(n,m)
k is independent

identically distributed (i.i.d) zero mean Gaussion process. The variance of i.i.d

Gaussion process can be written as

E{ω(n,m)
k [ω

(n,m)
k ]∗} = σ2

ω
(n,m)
k

(3.4)

and

σ2

ω
(n,m)
k

= 1−
C∑
c=1

(
β(n,m)
c

)2
(3.5)

The selection of optimal parameters for AR channel model can be achieved using

(2) through the following Wiener equation [90],

Jo(2πf
(n,m)
D T | k − t |) =

C∑
c=1

Jo(2πf
(n,m)
D T | k − c− t |)β(n,m)

c

for t = k − C, k − C + 1, k − C + 2, ..., k − 1.

(3.6)

Due to the assumption of unit power channel matrix coefficients [91], the power

of each time-varying channel coefficient can be written as

M∑
m=1

L−1∑
l=0

E[|h(n,m)
k |2] := 1 ∀ n,m (3.7)



System and Channel Model 29

where L is the total number of multipaths. The time variation of channel is typi-

cally dependent on the velocity of the mobile user and its respective Doppler shift

in the carrier frequency. A viable assumption, that is standard in vast majority of

cases is

f
(n,m)
D = fD ∀ n,m (3.8)

Due to the viable assumption used in Eq. (3.8), the AR coefficient β [92] is assumed

to be same for all f
(n,m)
D which can be written as

β = Jo(2πfDT ) (3.9)

The smaller value of β corresponds to large Doppler shift which leads to fast vari-

ations in the channel. Due to large or increased Doppler shifts, a signal undergoes

time-selective fading or fast fading. Therefore, to accommodate those variations,

Markov chain of higher order can be used in Eq.(8). However, for the purpose of

keeping simplicity, in this article, Markov chain of first order is applied in analysis

as well as in simulations. The time varying attitude of the channel matrix Hk can

be written in terms of first order Markov process [93],

Hk = βHk−1 + Ωk (3.10)

where Ωk is a matrix of i.i.d. Gaussion processes with variance σ2
Ω. With the

assumption made in (3.7), the variance of i.i.d. Gaussion processes can be written

as

σ2
Ω = 1− β2 (3.11)

Due to parallel interference [94], Eq. (3.1) can be expressed in matrix form

yk = HH
k xk + υk (3.12)

where
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Hk =


h
(11)
k h

(12)
k · · · h

(1NR)
k

h
(21)
k h

(22)
k · · · h

(2NR)
k

...
...

. . .
...

h
(NT 1)
k h

(NT 2)
k · · · h

(NT NR)
k


is NT×NR channel matrix, x(n) = [x

(1)
k x

(2)
k · · · x(NT )

k ]T is the transmitted signal

vector and υk = [υ
(1)
k υ

(2)
k · · · υ(NR)

k ]T is zero-mean Additive White Gaussian Noise

(AWGN) with variance σ2
υ.

Furthermore, if the bandwidth of the channel, BC is smaller than the bandwidth

of the transmitted signal, Bx, the channel undergoes frequency selective fading.

Due to the frequency selectivity, the multiple versions of transmitted waveform

which are faded and delayed in time are added into the received signal. Thus,

the channel induces inter-symbol interference (ISI). To summarize, the channel

induces ISI if

Bx > BC

T < στ

(3.13)

where Bx is the signal bandwidth, BC is the channel bandwidth and στ is the

rms delay spread. Therefore, due to the multi-path components that exist on the

Figure 3.2: Frequency-selective channel model for MIMO communications.
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H̃k =


h
(11(0))
k · · · h

(11(L))
k h

(21(0))
k · · · h

(NT 1(L))
k

h
(12(0))
k · · · h

(12(L))
k h

(22(0))
k · · · h

(NT 2(L))
k

...
...

...
. . .

...

h
(1NR(0))
k · · · h(1NR(L))

k h
(2NR(0))
k · · · h(NT NR(L))

k



W̃k =


w

(11(0))
k · · · w

(11(Le))
k w

(21(0))
k · · · w

(NT 1(Le))
k

w
(12(0))
k · · · w

(12(Le))
k w

(22(0))
k · · · w

(NT 2(Le))
k

...
...

...
. . .

...

w
(1NR(0))
k · · · w(1NR(Le))

k w
(2NR(0))
k · · · w(NT NR(Le))

k



way between transmit and receive antennas, the channel matrix H̃k becomes an

NR×(NT+NR(L)) matrix which can be written on the top of the page, where L

is the total number of multipaths, including line of sight (LoS). The dimensions of

H̃k are not only dependent on the number of transmit and receive antennas but

also on the number of multi-path components that exist between the transmit and

receive antennas, as shown in Fig. 3.2.

Each entry of the channel matrix H̃k is now h
(trl)
k , where t = 1, 2, · · · , NT , r =

1, 2, · · · , NR and l = 1, · · · , L. Likewise, xk also changes to x̃k = [x
(1)
k · · · x

(1)
k−(L)x

(2)
k

· · ·x(2)k−(L) · · ·x
(NT )
k−(L)]

T which is a concatenated transmitted signal vector with ele-

ments, x
(i)
k , where i shows the index of the transmit antenna element and k shows

the time epoch. Time epochs other than current provide ISI in the model. From

now onward “ ∼ ” will be used to denote the values that incorporate multi-

path processing. Furthermore, considering block fading, the multi-path channel

is assumed to be constant over a specific block. Likewise of channel matrix, the

estimated channel matrix W̃k through the adaptive algorithm is the same as that

of multipath channel matrix H̃k is shown on the top of the previous page.



Chapter 4

Low-Complexity Channel

Estimation for MIMO

Communication Systems

In this chapter, a new recursive Multiple Input Multiple Output (MIMO) channel

estimation is introduced which is based on the recursive least square solution.

Section 4.1 presents the overview of the proposed algorithm. Section 4.2 describes

the formulation of proposed low-complexity MIMO channel estimation algorithm.

Section 4.3 presents the complexity analysis and finally, Section 4.4 describes the

simulation results and discussion.

4.1 Overview

Channel estimation is employed to get the current knowledge of channel states for

an optimum detection in fading environments. The proposed algorithm is derived

through the expression of estimation error and enlarge into filter weight matrix

by considering the assumption of block fading environment. The proposed re-

cursive algorithm utilizes short training sequence on one hand and requires low

computational complexity on the other hand. It is pertinent to note that the

32
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length of training sequence is dependent on the convergence performance of the

adaptive algorithm. The proposed algorithm provides fast convergence as com-

pared to Recursive Least Square (RLS) and Robust Variable Forgetting Factor

RLS (RVFF-RLS) adaptive algorithms while utilizing lesser computational cost

and provides independency on forgetting factor λ. Moreover, the proposed low

complexity MIMO algorithm can be run as distributed or standalone depending

upon the processing capability of the MIMO capable cluster head. The distributed

architectures which can be used to run the low complexity MIMO algorithm par-

allely on a number of nodes are discussed in Chapter 5 and Chapter 6.

4.2 Proposed Low-Complexity MIMO Algorithm

According to MIMO frequency selective fading channel impairments, Eq. (3.12)

can also be written as

yk = H̃kx̃k + υk (4.1)

The estimation error ek which is the difference of the received sequence yk and

the estimate of the received sequence ŷk can be defined as

ek = yk − ŷk (4.2)

and

ŷk = W̃kx̃k (4.3)

where x̃k =

[x
(1)
k · · · x(1)k−(Le)

x
(2)
k · · · x(2)k−(Le)

· · · x(NT )
k−(Le)

]T is the concatenated vector which is

constructed with training symbols and is then passed through the filter of length

equal to Le ≥ L and weight matrix W̃k of the estimator of the order NT×M ;

where M = NR + NRLe is the order of estimator and depends on Le, the input

of the estimator from each receiver antenna which can be written in Section 3.2

of Chapter 3. In case of LoS-only link, the dimension of M is equal to NR here it
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by considering the condition of filter length Le = L. Substituting the value of ŷk

from Eq. (4.3) and yk from Eq. (4.1) and putting into Eq. (4.2), the error vector

can also be written as

ek =
{

H̃k − W̃k

}
x̃k + υk (4.4)

ek = Ξ̃kx̃k − υk (4.5)

where

Ξ̃k = H̃k − W̃k (4.6)

Correlation function of the innovation process ek can be written as

ck = E
{

eHk ek

}
(4.7)

where E{.} is the expectation operator.

ck = E
{(

Ξ̃kx̃k + υk
)H(

Ξ̃kx̃k − υk
)}

(4.8)

or

ck = x̃Hk Ψ̃kx̃k + σ2
υ,k (4.9)

Where, Ψ̃k = E
{
Ξ̃H
k Ξ̃k

}
is M×M weight-error correlation matrix and is associ-

ated with the error correlation of the channel state. To find the estimate of the

channel state matrix H̃k in terms of W̃k through innovation process ek, it is con-

sidered that the channel state estimate can be written as a sequence of innovation

process,

W̃k+1 =
k+1∑
p=1

epb̃
H
p (4.10)

where b̃Hp is an arbitrary deterministic vector at the timing instant q. According

to the orthogonality principle, the difference of the inverse channel state matrix

at time instant, k + 1, is orthogonal to the innovation process at any time instant,

q; therefore,

E
{

eHq Ξ̃k+1

}
= 0

q = 1, 2, 3...., k + 1.
(4.11)
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E
{

eHq
(
H̃k+1 − W̃k+1

)}
= 0 (4.12)

Substituting the value of W̃k+1 from Eq. (4.10) in Eq. (4.12),

E
{

eHq
(
H̃k+1 − eqb̃

H
q

)}
= 0 (4.13)

E
{

eHq H̃k+1

}
− E

{
eHq eq

}
b̃Hq = 0 (4.14)

Solving Eq. (4.14) for the value of b̃q;

b̃q = E
{(

H̃k+1

)H
eq

}
c−1q (4.15)

Substituting the value of b̃q into Eq. (4.10);

W̃k+1 =
k+1∑
p=1

epE
{

eHp H̃k+1

}
c−1p (4.16)

W̃k+1 =
k∑
p=1

epE
{

eHp H̃k

}
c−1p + ekE

{
eHk H̃k

}
c−1k (4.17)

W̃k+1 = W̃k + ekg̃
H
k (4.18)

The Kalman gain vector, M×1 is

g̃k = E
{(

H̃k

)H
ek

}
c−1k (4.19)

Substituting the value of ek from Eq. (4.5) into Eq. (4.19), Kalman gain, becomes,

g̃k = E
{(

H̃k

)H
Ξ̃kx̃k −

(
H̃k

)H
υk

}
c−1k (4.20)

As H̃k and υk are uncorrelated so their product is equal to zero. Putting the value

of H̃k from Eq. (4.6) into Eq. (4.20)

g̃k = E
{(

Ξ̃k + W̃k

)H
Ξ̃kx̃k

}
c−1k (4.21)
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Furthermore, Ξ̃k, the difference of the inverse predicted channel matrix H̃k and

W̃k is orthogonal to W̃k, therefore, the Kalman gain matrix is

g̃k = E
{

Ξ̃H
k Ξ̃k

}
x̃kc

−1
k (4.22)

g̃k = Ψ̃kx̃kc
−1
k (4.23)

To formulate the error covariance matrix Ψ̃k, rewriting the difference of H̃k and

W̃k from (Eq. 4.6) for timing instant ′k + 1′,

Ξ̃k+1 = H̃k+1 − W̃k+1 (4.24)

Substituting the value of W̃k+1 from Eq. (4.18) into Eq. (4.24) and considering

that the state H̃k+1 is equal to H̃k according to the assumption of block fading,

Ξ̃k+1 = H̃k − W̃k − ekg̃
H
k (4.25)

Rewriting the expression Ξ̃k+1 by putting the value of ek from Eq. (4.5), we get

Ξ̃k+1 = Ξ̃k

(
IM×M − x̃kg̃

H
k

)
− υkg̃Hk (4.26)

The correlation matrix of the difference of channel state can be written as

Ψ̃k+1 = E
{

Ξ̃H
k+1Ξ̃k+1

}
(4.27)

Substituting the Eq. (4.26) into Eq. (4.27), we get the Riccati difference equation

and new M×M matrix is described by the recursive computation is

Ψ̃k+1 =
(
IM×M − x̃kg̃

H
k

)H
E
{

Ξ̃H
k Ξ̃k

}
(
IM×M − x̃kg̃

T
k

)
+ g̃kE

{
υHk υk

}
g̃Hk

(4.28)

Ψ̃k+1 =
(
IM×M − x̃kg̃

H
k

)H
Ψ̃k

(
IM×M − x̃kg̃

H
k

)
+ g̃kσ

2
υ,kg̃

H
k (4.29)

Ψ̃k+1 = Ψ̃k − g̃kx̃
H
k Ψ̃k − Ψ̃kx̃kg̃

H
k + g̃k

(
x̃Hk Ψ̃kx̃k + σ2

υ,k

)
g̃Hk (4.30)
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Ψ̃k+1 = Ψ̃k − g̃kx̃
H
k Ψ̃k − Ψ̃kx̃kg̃

H
k + g̃kckg̃

H
k

(4.31)

multiplying both sides of Eq. (4.23) by ckg̃
H
k , we get

g̃kckg̃
H
k = Ψ̃kx̃kg̃

H
k (4.32)

substituting the value of g̃kckg̃
H
k from Eq. (4.32) into Eq. (4.31); the correlation

matrix becomes

Ψ̃k+1 = Ψ̃k − g̃kx̃
H
k Ψ̃k (4.33)

Eq. (4.33) exhibits the same results shown by RLS and RVFF-RLS with much

reduced complexity, however, it does not dependent on the appropriate selection

of forgetting factor λ.

4.3 Complexity Analysis

The implementation of the proposed algorithm is summarized in Table 4.1. The

proposed algorithm requires 2(N+NL)2+2N2(L+1)+2N(L+1)+1 multiplications

and 2(N+NL)2+2N2(L+1) additions, where N represents the MIMO order and L

shows the number of multipath components. On the other hand, the conventional

RLS algorithm entails 3(N+NL)2+2N2(L+1)+2N(L+1)+2 multiplications and

2(N +NL)2 + 2N2(L+ 1) additions per iteration, whereas, RVFF-RLS algorithm

entails 3(N + NL)2 + 2N2(L + 1) + 2N(L + 1) + 14 multiplications and 2(N +

NL)2 +2N2(L+1)+8 additions. The multiplication computational complexity of

the proposed algorithm is (N +NL)2 lesser than RLS and RVFF-RLS algorithms.

Table 4.1: The proposed low-complexity MIMO channel estimation
algorithm

Initilize:W̃k, Ψ̃k

ŷk = W̃kx̃
H
k

ek = yk − ŷk
ck = x̃Hk Ψ̃kx̃k + σ2υ,k
g̃k = x̃Hk Ψ̃kc

−1
k

Ψ̃k+1 = Ψ̃k − g̃kx̃
H
k Ψ̃k

W̃k+1 = W̃k + ekg̃
H
k
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Figure 4.1: Per-iteration multiplication complexity versus multipath
components for 2× 2 MIMO communication system
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Figure 4.2: Per-iteration multiplication complexity versus multipath
components for 4× 4 MIMO communication system

4.4 Simulation Results and Discussion

In this section, Monte Carlo simulations are performed on an NT×NR MIMO com-

munication system by considering two multipath components of BPSK modulated

transmitted signal. The time varying channel states are taken from a first order

Markovian process presented in Eq. (3.10). The proposed low-complexity MIMO

channel estimator is compared with RVFF-RLS and conventional RLS algorithms
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Figure 4.3: Per-iteration multiplication complexity versus multipath
components for 6× 6 MIMO communication system
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Figure 4.4: Processing time versus number of iterations at SNR=20dB for a
4×4 MIMO system with LoS-only link

in terms of computational complexity, processing time and mean squared error

(MSE). The per-iteration multiplication complexity comparisons of the proposed

low-complexity MIMO algorithm with those of RVFF-RLS and conventional RLS

algorithms for 2× 2, 4× 4 and 6× 6 MIMO communication systems are shown in

Fig. 4.1, Fig. 4.2 and Fig. 4.3, respectively. It can be seen that at every number

of multipath component, the proposed low-complexity MIMO algorithm provides
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Figure 4.5: Mean squared error at SNR=20dB for a 4×4 MIMO system with
LoS-only link at fDT = 0.01
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Figure 4.6: Comparison of the MSE when the proposed algorithm is applied
to various fading conditions at SNR=20dB for a 4×4 MIMO system with

LoS-only link

lesser complexity than the conventional algorithms. Furthermore, the processing

time with respect to number of iterations for a 4×4 MIMO communication system

at an SNR of 20dB is illustrated in Fig. 4.4. It can be observed that the proposed

low-complexity MIMO estimator takes lesser processing time than that taken by

both RVFF-RLS and RLS algorithms. Moreover, the MSE plot is presented in

Fig. 4.5 where, it can be clearly seen that the proposed low-complexity MIMO
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Figure 4.7: Behavior of minimum mean squared error (MMSE) against
Eb/No for a 4×4 MIMO system with LoS-only link when fDT = 0.004
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Figure 4.8: Probability of bit error rate (BER) against Eb/No for a 4×4
MIMO system with LoS-only link when fDT = 0.004

algorithm outperforms RVFF-RLS and RLS filtering algorithms. It is realized

that the proposed algorithm entails 20 iterations for its complete convergence. On

the other hand, the conventional RLS and RVFF-RLS algorithms require 30 and

40 iterations, respectively. Likewise, Fig. 4.6 shows the MSE comparison of the

proposed algorithm for different Doppler rates. It is obvious from the results that

the proposed algorithm converges faster for lower fading rates, and requires more

training data for fast fading channels. Furthermore, the minimum mean squared
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error for different values of Eb/No is shown in Fig. 4.7. It can be seen that the

proposed algorithm gives the smaller MMSE at all values of Eb/No than those of

RLS and VFF-RLS filtering algorithms. Moreover, the proposed low-complexity

adaptive algorithm can be run on any application like channel equalization. The

channel equalizer behaves as the inverse of channel that is used to estimate the

transmitted signal. Therefore, the performance of any adaptive filtering algorithm

is measured through the probability of error which is the ratio of the number of un-

true received data elements to total transmitted data elements. A plot showing the

behavior of bit error rate (BER) against different values of Eb/No is presented in

Fig. 4.8. It is clearly observed that the proposed low-complexity MIMO algorithm

outperforms RVFF-RLS and RLS algorithms.



Chapter 5

Parallel Distributed Adaptive

RLS Filtering

In this chapter, the working procedure of proposed parallely-operated Recursive

Least Square (RLS) filter in the light of its conventional sequential operation is

introduced. Section 5.1 presents the overview of the proposed parallel distributed

adaptive signal processing (PDASP) technique. Section 5.2 describes the formula-

tion of proposed PDASP architecture for MIMO communication system. Section

5.3 presents the complexity analysis and finally, Section 5.4 describes the simula-

tion results and discussion.

5.1 Overview

In conventional (RLS) adaptive algorithm and its variants, all filter subparts are

interdependent on each other and operate sequentially. Before introducing the

proposed parallel RLS operation over individual platforms with different clock

systems, we define some timing variables with illustration shown in Fig. 5.1, where

a single iteration of an RLS algorithm consists of N sequential blocks.

• Computational time Tc: This is the time taken by the processor for a

single computation. It can be calculated simply by the speed of the processor.

43
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• Block processing time Tb: It is the processing time of a block of the

algorithm. It depends on the number of computations involved in a block.

It can thus be a multiple of Tc.

• Fetch time Tf : This is the time in which one block fetches information

from another block usually its predecessor.

• Algorithm step time Ts: It is the processing time of a complete iteration

of the algorithm.

If RLS filtering is operated on a single computationally-capable platform, all al-

gorithm blocks would be executed sequentially as shown in Fig. 5.1 with fetch

time Tf −→ 0. However, if the same RLS filtering is operated on a group of

computationally-constrained platforms using the proposed PDASP architecture,

different algorithm blocks would be executed parallely on various individual plat-

forms with varying fetch times depending upon the media among the nodes as

shown in Fig. 5.2.

The only possible way to operate the RLS algorithm in parallel fashion on individ-

ual platforms with different clock systems is by putting the time as non-aligned.

While setting the time non-alignment, two things must be taken into account:

.
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Figure 5.1: Sequential working of conventional RLS algorithm (a). sequential
working of individual blocks (b). processes involved in a single block
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First, it must be seen that the filter does not show the unstable behavior though

implementing on any application. Secondly, all the filter sub parts are able to

work in parallel manner with favorable fetch times with respect to block process-

ing times. In this way, the sequential structure may be able to work parallely even

with non-aligned time indexes. In Fig. 5.2, the cooperative parallely-operated RLS

filtering architecture consists of four processing nodes, namely M1, M2, M3 and

M4. The selection of four nodes is dependent on the parts (e.g. Kalman gain,

error covariance matrix, etc) of the adaptive filtering algorithm. Furthermore, it

is assumed that the task time allocated to each processing node is sufficient and

report the processing outcome to the cluster-head within a predefined time-stamp.

The processing nodes M1 and M4 are interlinked with M2 and M3, respectively

while being connected to themselves also. Likewise, M2 is interconnected with M1

and M4 and M3 is only linked with M4. All the processing nodes would first share

information with one another and then would work out the desired process. The

processing time of each block differs from one another and is known to all nodes;

therefore, all processing nodes which complete their processing tasks earlier than

others, wait the processing time equivalent to the block of maximum processing

time till the processing of the block with maximum processing time ends. In this

1M 2M

,11 0fT ≅

,21 ,12or 0f fT T >

,24 0fT >

3M 4M
,43 ,34or 0f fT T >

,44 0fT ≅

Figure 5.2: Proposed cooperative parallely-operated RLS filtering
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way, the inexpensive and computationally-constrained platforms work in parallel

for a combined goal.

5.2 Proposed PDASP Technique for RLS with

Non-aligned Time Indexes

In adaptive filtering, all the filter sub-parts are interdependent on one another.

Due to cascaded fashion the algorithm takes mutual processing time while attain-

ing its convergence with respect to uncertain channel conditions. By using the

PDASP technique, RLS algorithm runs in parallel manner even with non-aligned

time indexes while providing parallely low processing time at each machine or

processing node. The flow diagram of PDASP technique using RLS is shown in

Fig. 5.3. The notation “TX ” is used to represent the time used in processing

of X whose computation is done inside the pointed block. Let the processing

times taken by error covariance matrix “Ψk”, Kalman gain “gk”, received signal

estimation ŷk, estimation error “ek” and update filter coefficient matrix “Ĥk” be

TΨ, Tg, Tŷ, Te and TĤ respectively. Therefore, the total time taken by the whole

algorithm that runs in cascaded fashion is

TΨ + Tg + Tŷ + Te + TĤ = Ttot (5.1)

The maximum processing time among TΨ...TĤ is TΨ because Ψk takes more mul-

tiplications than any of gk, ŷk, ek and Ĥk. In order to operate RLS algorithm

parallely while distributing the operation of various blocks on individual nodes

with non-aligned time indexes. The strict and sufficient conditions with respect

to fast convergence rate in terms of multiplication and addition computations can

thus be written as,

Tg, Tŷ, Te, TĤ ≤ TΨ (5.2)

and

TΨ + Tf � Ttot. (5.3)
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Due to non-aligned time indexes, the mismatch ζ between the aligned and non

aligned time indexes can be written as

ζ =| e
Seq
− e

NA
| (5.4)

where e
Seq

is the error of sequential algorithm and e
NA

is the error of the PDASP

algorithm with non-aligned time indexes. The pseudocode of the working proce-

dure of the PDASP architecture is presented in Table. 5.1. Moreover, the proposed

architecture can be run in sequential format for convergence calibration. The se-

quential implementation of PDASP RLS algorithm with non-aligned time indexes

is nearly the same as that of a conventional RLS algorithm run on a single machine.

Steps of this sequential format are tabulated in Table. 5.2.
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Figure 5.3: Proposed PDASP architecture for MIMO RLS algorithm with
non-aligned time indexes
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Table 5.1: Pseudo code: Working procedure of PDASP architecture for MIMO
communication system

Initilize: λ, Ĥk+1,ak, ŷk+1,Ψk+1,Ψk, ek,gk
for k=0:N

Process running at node M1

at time t1: Ψk+2 = λ−1
{
Ψk − gka

T
k

}
at time t2: Wait until receive gk+1

at time t3: Receive gk+1 from M2

at time t4: Wait
at time t5: Transmit Ψk+2 from M1 to M2

at time t6: Wait until receive aTk+1

at time t7: Wait until receive aTk+1

at time t8: Receive aTk+1 from M2

Process running at node M2

at time t1: aTk+1 = xTk+1Ψk+1

gk+1 =
ak+1

aTk+1xk+1 + λ

at time t2: Transmit gk+1 from M2 to M1

at time t3: Transmit gk+1 from M2 to M4

at time t4: Wait until receive Ψk+2

at time t5: Wait until receive Ψk+2

at time t6: Receive Ψk+2 from M1

at time t7: Transmit aTk+1 from M2 to M1

at time t8: Ready for next iteration

Process running at node M3

at time t1: ŷTk+2 = xTk+2Ĥk+1

ek+1 = yk+1 − ŷk+1

at time t2: Wait until receive Ĥk+2

at time t3: Wait until receive Ĥk+2

at time t4: Wait until receive Ĥk+2

at time t5: Wait until receive Ĥk+2

at time t6: Receive Ĥk+2 from M4

at time t7: Transmit ek+1 from M3 to M4

at time t8: Ready for next iteration

Process running at node M4

at time t1: Ĥk+2 = Ĥk+1 + ekg
T
k

at time t2: Wait until receive gk+1

at time t3: Wait until receive gk+1

at time t4: Receive gk+1 from M2

at time t5: Transmit Ĥk+2 from M4 to M3

at time t6: Wait until receive ek+1

at time t7: Wait until receive ek+1

at time t8: Receive ek+1 from M3
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Table 5.2: PDASP RLS algorithm with non-aligned time indexes if runs se-
quentially

Initilize:λ, Ĥk+1,ak, ŷk+1,Ψk+1,Ψk, ek,gk

ŷTk+2 = xTk+2Ĥk+1

ek+1 = yk+1 − ŷk+1

aTk+1 = xTk+1Ψk+1

gk+1 =
ak+1

aTk+1xk+1 + λ

Ψk+2 = λ−1
{
Ψk − gka

T
k

}
Ĥk+2 = Ĥk+1 + ekg

T
k

5.3 Complexity Analysis

The complexity of the linear Kalman filter requires 2(N + NL)3 + 6N2(L + 1) +

3N(L + 1) + 1 multiplications and 3(N + NL)3 + 4N2(L + 1) + 2 additions per

iteration; where N represents the MIMO order and L shows the number of multi-

path components. Likewise, RLS algorithm that is the special case of Kalman

filter entails 3(N + NL)2 + 2N2(L + 1) + 2N(L + 1) + 2 multiplications and

2(N + NL)2 + 2N2(L + 1) additions per iteration; The implementation of the

proposed PDASP technique on RLS algorithm exhibits much lesser computational

cost for each parallely-distributed entity block. The proposed PDASP technique

with non-aligned time indexes entails parallely 2(N + NL)2 multiplications and

(N +NL)2 additions per iteration at maximum. The proposed parallel technique

thus provides much lesser processing time than that of sequential Kalman and

RLS algorithms.

5.4 Simulation Results and Discussion

In this section, Monte Carlo simulations with binary phase shift keying (BPSK)

are performed on 4×4 MIMO communication system to substantiate the validation
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Figure 5.4: Per-iteration multiplication complexity comparison among 2 × 2
MIMO sequential algorithms and proposed PDASP technique
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Figure 5.5: Per-iteration multiplication complexity comparison among 4 × 4
MIMO sequential algorithms and proposed PDASP technique

of our proposed PDASP architecture. The forgetting factor λ is set to be 0.98 for

both the proposed PDASP and sequential RLS algorithms.

The proposed parallel technique that is implemented on MIMO RLS is then com-

pared with the sequential MIMO RLS adaptive algorithm and Kalman filter in

terms of computational complexity, mean square error (MSE) and processing

time with non-aligned time indexes. The implementation of the proposed PDASP
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Figure 5.6: Per-iteration multiplication complexity comparison among 6 × 6
MIMO sequential algorithms and proposed PDASP technique
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Figure 5.7: Per-iteration addition complexity comparison among 2×2 MIMO
sequential algorithms and proposed PDASP technique

scheme is done using MIMO RLS algorithm and its performance in terms compu-

tational complexity is then compared with a sequentially-operated non-distributed

Kalman and RLS adaptive filtering algorithms. The parallel technique provides

much lesser computational complexity parallely than the sequential Kalman and

MIMO RLS algorithms. The per-iteration multiplication complexity comparison

of proposed PDASP technique than those of sequentially-operated Kalman and
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Figure 5.8: Per-iteration addition complexity comparison among 4×4 MIMO
sequential algorithms and proposed PDASP technique
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Figure 5.9: Per-iteration addition complexity comparison among 6×6 MIMO
sequential algorithms and proposed PDASP technique

MIMO RLS algorithms for 2 × 2, 4 × 4 and 6 × 6 MIMO communication sys-

tems are shown in Fig. 5.4, Fig. 5.5 and Fig. 5.6, respectively. Likewise, the

per-iteration addition complexity comparison of proposed PDASP technique than

those of sequentially-operated Kalman and MIMO RLS algorithms for 2×2, 4×4

and 6×6 MIMO communication systems are shown in Fig. 5.7, Fig. 5.8 and Fig. 5.9,
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Figure 5.10: Mean square error (MSE) tracking performance versus training
length for 4× 4 MIMO when fDT = 10−6

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Iterations

M
ea

n 
S

qu
ar

e 
E

rr
or

 (
M

S
E

)

 

 
Sequential MIMO RLS
Sequential Linear Kalman
Parallel PDASP based MIMO RLS

Figure 5.11: Mean square error (MSE) tracking performance versus training
length for 4× 4 MIMO when fDT = 10−3

respectively. It is observed that at every number of multipath component, the pro-

posed PDASP technique using non-aligned time indexes provides parallely much

lesser multiplication and addition complexity than sequential Kalman and MIMO

RLS algorithms. Furthermore, Fig. 5.10 and Fig. 5.11 show the MSE performance

at low doppler rate fDT = 10−6 and high doppler rate fDT = 10−3, respectively

and Fig. 5.12 shows their MSE difference among the proposed PDASP MIMO

RLS and sequentially-operated algorithms. It is realized that the difference in

convergence performance of proposed PDASP scheme run with non-aligned time

indexes and that of the sequential Kalman and MIMO RLS algorithms is only
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Figure 5.12: Mean square error difference among sequential algorithms and
proposed PDASP scheme

of 20 and 10 iterations, respectively at low doppler spread and about 30 and 20

iterations with relatively high doppler spread, respectively. Considering the dif-

ference in Fig. 5.12, it can be seen that, due to initialization of the algorithm

parameters of PDASP technique, the error difference that is small at the start,

gradually increases, then reverses to decrease and eventually becomes zero on a

specific number of iterations. The fast Ethernet speed of 125Mbits/s is taken as

the reference peak bit rate in the wired communication. In 4× 4 MIMO PDASP

scheme, the maximum size of 4× 4 matrix is to be transmitted from one machine

node to another through wired communication.

However, each entry in 4 × 4 MIMO matrix is consisted on 4 bytes, in which

two significant bytes are before the decimal point and two significant bytes are

taken after the decimal point. The total number of bits for 4 × 4 matrix are

4× 16× 8 = 512 bits. The fetch time Tf according to this number of bits is 41µs.

Therefore, the processing time comparison and the processing time difference at

Tf = 41µs among the sequential algorithms and the proposed PDASP technique

are presented in Fig. 5.13 and Fig. 5.14, respectively. It is clear that the proposed

PDASP technique provides much lesser processing time than the sequentially-

operated Kalman filter and MIMO RLS algorithm. The percentage improvement

in decreased processing time is shown in Table. 5.3 and Table. 5.4. At low doppler
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Figure 5.13: Processing time comparison among sequential algorithms and
proposed PDASP technique
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Figure 5.14: Processing time difference for 4×4 MIMO system (a). sequential
RLS vs proposed PDASP technique (b). sequential linear Kalman vs proposed

PDASP technique

rate, it is realized that the proposed PDASP MIMO RLS alogrithm converges

about 35 iterations with the addition of Tf = 41µs at each iteration but still

utilizes 95.83% and 82.29% lesser processing time than the sequential Kalman and

MIMO RLS algorithms, respectively. Likewise, for high doppler rate, the proposed

PDASP MIMO RLS takes 50 iterations for its convergence with the increase of

30 and 20 iterations than the sequential Kalman and MIMO RLS algorithms,

respectivley. It can be seen that, the proposed technique still entails 94.12% and

72.28% lesser processing time than the sequentially-operated Kalman and MIMO

RLS algorithms, respectively.
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Table 5.3: Percentage improvement in decreased processing of PDASP MIMO RLS with respect to sequential MIMO RLS

MIMO RLS Proposed PDASP MIMO RLS
Doppler

Rate Convergence
(iteration)

Processing Time
TRLS (sec)

Convergence
(iteration)

Processing Time
TPDASP (sec) with

Tf = 41µsec

Improvement in
Terms of Decreased
Processing Time
TRLS−TPDASP

TRLS
× 100

fDT = 10−6 25 0.0096373 35 0.0016825 82.29%

fDT = 10−3 30 0.0107447 50 0.0024410 77.28%

Table 5.4: Percentage improvement in decreased processing of PDASP with respect to sequential linear Kalman

Kalman Filter Proposed PDASP MIMO RLS
Doppler

Rate Convergence
(iteration)

Processing Time
TKalman (sec)

Convergence
(iteration)

Processing Time
TPDASP (sec) with

Tf = 41µsec

Improvement in
Terms of Decreased
Processing Time
TKalman−TPDASP

TKalman
× 100

fDT = 10−6 15 0.0403 35 0.0016825 95.83%

fDT = 10−3 20 0.0415 50 0.0024410 94.12%



Chapter 6

Parallel Distributed Diffusion

based Adaptive RLS Filtering

In this chapter, the working procedure of proposed distributed diffusion based Re-

cursive Least Square (RLS) filtering for computationally-constrained platforms is

introduced. Section 6.1 presents the system model for diffusion based distributed

adaptive signal processing and discusses the number of nodes to be used in the re-

quirement for the MIMO channel estimation. Section 6.2 describes the formulation

of distributed diffusion based adaptive signal processing (DDASP) architecture for

MIMO system with line of sight link. Likewise, Section 6.3 describes the proposed

DDASP architecture for MIMO system with diffused components. Section 6.4

presents the complexity analysis and finally, Section 6.5 describes the results and

presents the comparison of its computational complexity with those of PDASP

architecture and the existing DDASP systems.

57
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6.1 System Model for Diffusion based Distributed

Adaptive Signal Processing

In the proposed PDASP architecture presented in Chapter 5, only four nodes are

used to run recursive least square algorithm parallely with non-aligned time in-

dexes for MIMO channel estimation. However, in DDASP, the adaptive algorithm

is diffused into the desired number of processing devices. Therefore, the number

of processing nodes that are used to run the MIMO RLS algorithm on DDASP

architecture is dependent upon the number of MIMO antennas as well as on multi-

path components. In case of no multipath components, the number of slave nodes

(S1, S2 · · ·SN) are equivalent to the number of MIMO spatial streams along with

one master node Mo. The master node is used to operate the other processing or

slave nodes in the distributed network. The block diagram of DDASP architecture

for N ×N MIMO communication system is shown in Fig. 6.1.

S1 
S2 SN 

Mo 

Figure 6.1: Block Diagram of DDASP Architecture

In the proposed DDASP architecture, the number of processing nodes Pn that are

required to run any adaptive algorithm for N ×N MIMO communication system

can be found through the following equation

Pn = NT +NRL+ 1 (6.1)

where NT and NR show the number of MIMO transmitting and receiving anten-

nas, respectively, and L shows the number of diffused components. The number

of processing nodes required for 2 × 2, 3 × 3 and 4 × 4 MIMO communication

systems with line of sight (LoS) and diffused components are shown in Table. 6.1,
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Table 6.1: Number of processing devices require for various MIMO systems
with or without multipath components along with one master node

Multipath
Components

2× 2
MIMO

3× 3
MIMO

4 × 4
MIMO

No Multipath
3 4 5

One Multipath
5 7 9

Two
Multipaths 7 10 13

respectively. Likewise, the dimensions of channel matrix Wk, error covariance

matrix Φk, estimation error ek, and Kalman gain gk can be found as

Wk =NR × (NT +NRL)

Φk =(NT +NRL)× (NT +NRL)

ek =1×NR

gk =1× (NT +NRL)

(6.2)

In the proposed DDASP architecture, the adaptive algorithm is diffused into the

desired number of processing nodes which cooperatively run the adaptive algo-

rithm. Having more nodes and diffusion mechanism, the proposed DDASP archi-

tecture must exhibit the following desirable features while implementing a kind of

least square adaptive filtering algorithm as compared to PDASP architecture.

• The communication burden taken by DDASP must be lesser than the PDASP

architecture

• The maximum computational complexity of DDASP architecture being lin-

ear up to some extent is lesser than that of PDASP architecture

• The overall processing time must be reduced than PDASP structure
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6.2 DDASP Architecture for LoS-only Link

In this section, DDASP architecture with no diffused components is introduced.

The DDASP architecture with the implementation of MIMO RLS algorithm is

shown in Fig. 6.2. The diffused tasks for the estimated values of the received

signals ŷ
(1)
k and ŷ

(2)
k can be defined as

ŷk = Wkxk ŷ
(1)
k

ŷ
(2)
k

 =

 w
(11)
k w

(12)
k

w
(21)
k w

(22)
k

 x
(1)
k

x
(2)
k


ŷ
(1)
k = w

(11)
k x

(1)
k + w

(12)
k x

(2)
k

ŷ
(2)
k = w

(21)
k x

(1)
k + w

(22)
k x

(2)
k

Likewise, the diffused tasks for the components a
(1)
k , a

(2)
k , b

(1)
k , b

(2)
k , and c that are

used to make the formation of Kalman gain gk, can be expressed as

gk =
xTkΨk

xTkΨkxk + λ
(6.3)
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Figure 6.2: Proposed DDASP architecture for 2 × 2 MIMO RLS algorithm
with LoS-only link
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gk =

[
x
(1)
k x

(2)
k

] Ψ
(11)
k Ψ

(12)
k

Ψ
(21)
k Ψ

(22)
k


[
x
(1)
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k

] Ψ
(11)
k Ψ

(12)
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Ψ
(21)
k Ψ

(22)
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 x
(1)
k

x
(2)
k
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gk =

[
a
(1)
k a

(2)
k

]
[
a
(1)
k a

(2)
k

] x
(1)
k

x
(2)
k
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=

[
a
(1)
k a

(2)
k

]
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a
(1)
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(1)
k + ψ
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Similarly, the diffusion procedure of covariance matrix Ψk and channel matrix Wk

for DDASP architecture can be defined as

Ψk+1 = λ−1
[
Ψk − gkx

T
kΨk

]
Ψk+1 = λ−1
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Wk+1 = Wk + gke
T
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k+1 w

(12)
k+1

w
(21)
k+1 w

(22)
k+1

 =

 w
(11)
k w

(12)
k

w
(21)
k w

(22)
k

+

 g
(1)
k

g
(2)
k

[ e(1)k e
(2)
k

]
 w

(11)
k+1

w
(21)
k+1

 =

 w
(11)
k

w
(21)
k

+

 e
(1)
k g

(1)
k

e
(1)
k g

(2)
k

 ,
 w

(12)
k+1

w
(22)
k+1

 =

 w
(12)
k

w
(22)
k

+

 e
(2)
k g

(1)
k

e
(2)
k g

(2)
k


Let the processing time taken by any slave node S1 or S2 and master node Mo

being TS and TMo , respectively, can be expressed as

TS = Tŷ + Ta + Tb + Tpi,j ,pi,j + Twi,j ,wi,j

TMo = Tek + Tc + Tgk

(6.4)

where, processing time T is either subscripted by the respective variable or by i

and j that show the index number. It is pertinent to note that the processing

times of all the salve nodes are the same in our current case, i.e. TS1 = TS2 = TS;

therefore, the strict and sufficient condition with respect to processing time of

DDASP and PDASP architectures can thus be written as

TS + TMo + Tf,(S1,2↔Mo) = TDDASP � TPDASP (6.5)

where TDDASP is the total time taken by DDASP with no diffused component

for one iteration and Tf,S↔Mo is the total fetch time for the communication of

data elements among the master and slave nodes. The pseudocode of the working

procedure of master and slave nodes in the DDASP architecture with no diffused

components is presented in Table. 6.2.

Table 6.2: Pseudo code: Working procedure of DDASP for 2 × 2 MIMO
communication system

Initilize:Ψ
(11)
k ,Ψ

(12)
k ,Ψ

(21)
k ,Ψ

(22)
k , w

(11)
k , w

(12)
k , w

(21)
k , w

(21)
k

for k=0:N

Process running at node M1

at time t1: ŷ
(1)
k = w

(11)
k x

(1)
k + w

(12)
k x

(2)
k

at time t2: Transmit ŷ
(1)
k from S1 to Mo
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at time t3: Wait until receive e
(1)
k

at time t4: Wait until receive e
(1)
k

at time t5: Wait until receive e
(1)
k

at time t6: Receive e
(1)
k from Mo

at time t7: a
(1)
k = Ψ

(11)
k x

(1)
k + Ψ

(12)
k x

(2)
k

b
(1)
k = x

(1)
k a

(1)
k

at time t8: Transmit a
(1)
k and b

(1)
k from S1 to Mo

at time t9: Wait until receive gk

at time t10: Wait until receive gk

at time t11: Wait until receive gk

at time t12: Receive gk from Mo

at time t13:

[
Ψ

(11)
k+1

Ψ
(21)
k+1

]
=λ−1

{[
Ψ

(11)
k

Ψ
(21)
k

]
-

[
a
(1)
k g

(1)
k

a
(1)
k g

(2)
k

]}

at time t14:

[
w

(11)
k+1

w
(21)
k+1

]
=

[
w

(11)
k

w
(21)
k

]
-

[
e
(1)
k g

(1)
k

e
(1)
k g

(2)
k

]
Process running at node Mo

at time t1: Wait until receive ŷ
(1)
k and ŷ

(2)
k

at time t2: Wait until receive ŷ
(1)
k and ŷ

(2)
k

at time t3: Receive ŷ
(1)
k and ŷ

(2)
k from S1 and S2

at time t4:

[
e
(1)
k

e
(2)
k

]
=

[
y
(1)
k − ŷ

(1)
k

y
(2)
k − ŷ

(1)
k

]
at time t5: Transmit e

(1)
k and e

(2)
k towards S1 and S2, respectively

at time t6: Wait until receive a
(1)
k , a

(2)
k , b

(1)
k , b

(2)
k

at time t7: Wait until receive a
(1)
k , a

(2)
k , b

(1)
k , b

(2)
k

at time t8: Wait until receive a
(1)
k , a

(2)
k , b

(1)
k , b

(2)
k

at time t9: Receive a
(1)
k , b

(1)
k and a

(2)
k , b

(2)
k from S1 and S2, respectively

at time t10: c = b
(1)
k + b

(2)
k + λ

gk = 1
c

[
a
(1)
k a

(2)
k

]
at time t11: Transmit gk from Mo towards S1 and S2

at time t12: Ready for next iteration

at time t13: Ready for next iteration
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Process running at node S2

at time t1: ŷ
(2)
k = w

(21)
k x

(1)
k + w

(22)
k x

(2)
k

at time t2: Transmit ŷ
(2)
k from S2 to Mo

at time t3: Wait until receive e
(2)
k

at time t4: Wait until receive e
(2)
k

at time t5: Wait until receive e
(2)
k

at time t6: Receive e
(2)
k from Mo

at time t7: a
(2)
k = Ψ

(21)
k x

(1)
k + Ψ

(22)
k x

(2)
k

b
(2)
k = x

(2)
k a

(2)
k

at time t8: Transmit a
(2)
k and b

(2)
k from S2 to Mo

at time t9: Wait until receive gk

at time t10: Wait until receive gk

at time t11: Wait until receive gk

at time t12: Receive gk from Mo

at time t13:

[
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Ψ
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]
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6.3 DDASP Architecture for Multipath based

Link

The flow diagram of DDASP for 2×2 MIMO system with one diffused component

other than the LoS link is shown in Fig. 6.3, where, the vector notations used in the

DDASP architecture are defined in Table. 6.3. Due to the diffused components, the

DDASP architecture requires more processing nodes than the PDASP architecture.

The working procedure of each node in this architecture is the same as that of 2×2

MIMO system with no diffused components. Therefore, the strict and sufficient

condition with respect to processing time can be written as
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Table 6.3: Vector notations used in DDASP architecture for 2 × 2 MIMO
system with one diffused component

xTk,1 = [x
(1)
k x
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k ], xTk,2 = [x
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k ]

wT
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(3)
k g

(4)
k ]

TS1 = TS2 = TS3 = TS4 = TS

TS + TMo + Tf,(S1,2,3,4↔Mo) = TDDASP

TDDASP � TPDASP

(6.6)
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Figure 6.3: Proposed DDASP architecture for 2×2 MIMO channel estimation
with one multipath component
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where TS is the processing time taken by each slave node, TMo is the processing

time of master node and Tf,(S1,2,3,4↔Mo) is the total fetch time.

6.4 Results and Discussion

6.4.1 Computational Complexity Comparison

In this section, the theoretically results of the computational complexity of pro-

posed PDASP, proposed DDASP and existing distributed architectures [74, 75]

are discussed for different MIMO communication systems considering LoS-only

and multipath based links. The maximum computational complexity of PDASP

architecture entails 2(N +NL)2 multiplications and (N+NL)2 additions per iter-

ation. However, in DDASP architecture, the computational complexity of any of

the slave node provides 3(N+NL)+2N+1 multiplications and 2(N+NL)+2N−2

additions per iteration; likewise, the master node entails N+NL+1 multiplications

and 2(N +NL) additions. Therefore, the combined computational complexity of

the slave and master node provides 4(N + NL) + 2N + 2 multiplications and

4(N +NL) + 2N − 2 additions. The per-iteration multiplication complexity com-

parison between proposed DDASP and proposed PDASP architecture for 2 × 2,

4× 4 and 6× 6 MIMO communication systems are shown in Fig. 6.4, Fig. 6.5 and

Fig. 6.6, respectively. Likewise, the per-iteration addition complexity comparison

between proposed DDASP and proposed PDASP architectures for 2×2, 4×4 and

6× 6 MIMO communication systems are shown in Fig. 6.7, Fig. 6.8 and Fig. 6.9,

respectively. It is observed that at every number of multipath component, the pro-

posed DDASP technique provides parallely much lesser multiplication and addition

complexity than the proposed PDASP architecture. Furthermore, the computa-

tional complexity comparison among the proposed PDASP, proposed DDASP and

other notable existing distributed architectures is shown in Table. 6.4. It is realized

that the computational complexity provided by the existing notable distributed

techniques on each processing node is much higher than those of the proposed
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PDASP and DDASP architectures. Moreover, among all these distributed tech-

niques, DDASP architecture provides linear computational complexity parallely

on each node involved. Furthermore, the multiplication and addition complex-

ity comparisons between the proposed PDASP and DDASP for different MIMO

communication systems are shown in Table. 6.5 and Table. 6.6, respectively. It is

realized that DDASP architecture provides much lower multiplication and addi-

tion complexity for all MIMO communication system with diffused components.

However, in case of LoS-only MIMO communication link, the addition and mul-

tiplication complexity provided by PDASP architecture is lower than DDASP ar-

chitecture. As it is discussed earlier that the complexity of the adaptive algorithm

is directly dependent on the number of communication streams and the multi-

path components. Therefore, in case of multipath based link, the computational

complexity of the adaptive algorithm is very high which can be found easily using

Eq. 6.2 and DDASP becomes the only suitable choice to run the computationally

complex adaptive algorithm on a distributed and diffused platform. On the other

hand, in case of LoS-only communication link, the computational complexity of

the adaptive algorithm is not so high and PDASP architecture come to be the right

choice. Furthermore, the processing time based on their computational complexity

taken by the PDASP and DDASP architectures using Arduino UNO platform is

shown in Table. 6.7. In case of diffused component addition, it is observed that

the processing time taken by DDASP architecture is lower than the PDASP ar-

chitecture. However, in case of LoS-only link, the PDASP architecture provides a

significant improvement in processing time than the DDASP architecture.

6.4.2 Node Requirement

The number of devices required in the proposed PDASP, proposed DDASP and

notable existing architectures [74, 75] for 1× 1, 2× 2 and 3× 3 MIMO communi-

cation systems are shown in Table. 6.8. It is observed that the proposed PDASP

architecture requires only 4 nodes for any order of MIMO communication system.
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Figure 6.4: Per-iteration multiplication complexity comparison between 2× 2
proposed DDASP and proposed PDASP architectures
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Figure 6.5: Per-iteration multiplication complexity comparison between 4× 4
proposed DDASP and proposed PDASP architectures

On the other hand, the number of nodes required for the proposed DDASP ar-

chitecture are dependent upon the system order and increases with an increase in

the system order. However, the existing distributed techniques [74, 75] require K

nodes to run the adaptive algorithm distributively, where K is equal to the total

number of iterations required for the complete convergence of the adaptive filtering

algorithm. Moreover, in the existing distributed techniques, each iteration task of
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Figure 6.6: Per-iteration multiplication complexity comparison between 6× 6
proposed DDASP and proposed PDASP architectures
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Figure 6.7: Per-iteration addition complexity comparison between 2× 2 pro-
posed DDASP and proposed PDASP architectures

the adaptive algorithm is assigned to the specific node in the distributed network.

In this context, all the nodes entail the complex computational complexity of the

adaptive algorithm and each node is being free for K − 1 iterations which are the

major limitations of these existing techniques.
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Figure 6.8: Per-iteration addition complexity comparison between 4× 4 pro-
posed DDASP and proposed PDASP architectures
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Figure 6.9: Per-iteration addition complexity comparison between 6× 6 pro-
posed DDASP and proposed PDASP architectures

6.4.3 Communication Burden

The communication burden comparison among the proposed PDASP, proposed

DDASP and notable existing architectures [74, 75] for 1x1, 2x2 and 3x3 MIMO

communication systems is shown in Table. 6.9. It is observed that the communi-

cation burden provided by the PDASP architecture is almost equivalent or lesser
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Table 6.4: Computational complexity comparison for various distributed tech-
niques using N ×N MIMO system with LoS-only links

Computational
Complexity

PDASP DDASP dRLS
[74]

LC-
dRLS
[74]

BC-
RLS
[75]

Multiplication
Complexity

2N2 6N+2 5N2 +
2N + 2

5N2 +
2N+2

6N2 +
3N + 3

Addition
Complexity

N2 6N−2 4N2 4N2 5N2

Table 6.5: Distributed multiplication complexity for various MIMO systems
with LoS-only and multipath based link

Architecture Name Multipath
Components

2× 2
MIMO

3× 3
MIMO

4 × 4
MIMO

PDASP No Multipath 8 17 32

DDASP No Multipath 14 20 26

PDASP One Multipath 32 72 128

DDASP One Multipath 22 32 42

PDASP Two Multipaths 72 162 288

DDASP Two Multipaths 30 44 58

Table 6.6: Distributed addition complexity for various MIMO systems with
LoS-only and and multipath based link

Architecture Name Multipath
Components

2× 2
MIMO

3× 3
MIMO

4 × 4
MIMO

PDASP No Multipath 4 9 16

DDASP No Multipath 10 16 22

PDASP One Multipath 16 36 64

DDASP One Multipath 18 28 38

PDASP Two Multipaths 36 81 144

DDASP Two Multipaths 26 40 54
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Table 6.7: Processing time comparison between DDASP and PDASP in µsec
for different MIMO systems with LoS-only and multipath based link

Architecture Name Multipath
Components

2× 2
MIMO

3× 3
MIMO

4 × 4
MIMO

PDASP No Multipath 196 348 512

DDASP No Multipath 268 396 602

PDASP One Multipath 524 1008 1772

DDASP One Multipath 396 490 652

PDASP Two Multipaths 1020 2268 4544

DDASP Two Multipaths 448 652 976

Table 6.8: Number of processing nodes required in various distributed tech-
niques for different communication systems

Communication
system

PDASP DDASP dRLS
[74]

LC-
dRLS
[74]

BC-
RLS
[75]

1× 1 SISO
system

4 1 K K K

2× 2 MIMO
system

4 3 K K K

3× 3 MIMO
system

4 4 K K K

than the dRLS [75] and BCRLS [74] algorithms. Likewise, the communication

burden entailed by DDASP architecture is slightly greater than the both dRLS

and BCRLS algorithms. On the other hand, LC-dRLS technique [75] provides

lesser communication burden than all the other techniques including PDASP and

DDASP. This reduction in the communication burden by LC-dRLS is due to the

assumption that each node in the distributed network uses the initialized value

of error covariance matrix Ψk and it is not needed to be transmitted from one

node to another. Although LC-dRLS reduces the network communication bur-

den; however, it degrades the convergence performance of the adaptive algorithm

significantly.
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Table 6.9: Communication burden comparison on various distributed archi-
tectures for different communication systems

Communication
system

PDASP DDASP dRLS
[74]

LC-
dRLS
[74]

BC-
RLS
[75]

1× 1 SISO
system

3K − 2K K 2K

2× 2 MIMO
system

8K 12K 8K 4K 8K

3× 3 MIMO
system

15K 21K 18K 9K 18K



Chapter 7

Application of Proposed DDASP

Architecture on Missing Data

Systems

In this chapter, the proposed DDASP architecture presented in Chapter 6 is used

to estimate the parameters of auxiliary model of missing data application. Section

7.1 presents an overview of the topic. Section 7.2 describes the system model and

presents missing data patterns. Section 7.3 presents an auxiliary model description

of missing data systems. Section 7.4 describes the implementation of DDASP

architecture on missing data systems. Section 7.5 presents the complexity analysis

of the proposed DDASP architecture with respect to its implementation on missing

data systems and compares it with complexity of the sequential RLS. Finally,

Section 7.6 presents the simulation results and their discussion.

7.1 Overview

In the case of the implementation of PDASP architecture for the estimation of

MIMO channel coefficients, the RLS adaptive algorithm perfectly runs parallely

on a group of nodes even with non-aligned time indexes. However, as far as its

74
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implementation for missing data application is concerned it shows unstable be-

havior due to its inherent working based on non-aligned time indexes. Since,

missing data application needs perfect time alignment among various parts of the

algorithm in order to reach a specific goal. Therefore, sequentially-run algorithm

(e.g. RLS, etc) or diffusion-oriented architecture (e.g. DDASP) become the only

suitable choice for system identification in case of missing data systems. In the

literature, a number of auxiliary model-based methods have been presented to find

the coefficients of reference system [95]. Likewise, in [96], an auxiliary model for

dual-rate sampled data system with the affect of colored noise is introduced. The

extended least square adaptive filtering algorithm is used for finding coefficients in

the auxiliary model of missing data systems [97]. In [98–100], a least square based

filtering algorithm for system identification is used in multi-rate systems. In [23],

an RLS algorithm is used for two-fold applications, i.e. to find the coefficients of

auxiliary model and to estimate the missing data in stochastic framework. In [101],

an auxiliary model using RLS filtering algorithm is introduced with state-space

model for dual-rate systems. From the above discussion, it is realized that all the

sequential techniques used for finding coefficients of auxiliary model provide high

complex computational complexity. Nevertheless, such high definition adaptive

algorithm cannot be run on an energy-limited and computationally-constrained

inexpensive platform. Moreover, due to high computational complexity of these

signal processing algorithms, an energy-constrained node may not exhibits ade-

quate performance with limited power source and existing hardware. Therefore,

the proposed distributed diffusion-based adaptive signal processing (DDASP) be-

come the only suitable choice.
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7.2 System model and Missing Data Patterns

7.2.1 Noise-free Discrete Missing Data System

Consider the following input-output relationship of noise-free discrete time system

of missing data

yk = X(z)xk

=
N(z)

D(z)
xk

(7.1)

where, xk and yk are the input and output of the above-mentioned discrete sys-

tem, respectively, and X(z) shows its transfer function. The numerator N(z) and

denominator D(z) can be defined as

N(z) = b̄1z
−1 + · · ·+ b̄Nz

−N

D(z) = 1 + ā1z
−1 + · · ·+ āNz

−N
(7.2)

Assume that the order of polynomials in (7.2) is known a priori. Let h be the

transfer function coefficients vector and uk be the input-output information vector

defined as

h = [ā1, ā2, · · · , āN , b̄1, b̄2, · · · , b̄N ] (7.3)

uk = [−yk−1,−yk−2, · · · ,−yk−N , xk−1, xk−2, · · · , xk−N ] (7.4)

Rewriting Eq. (7.1), we get

yk = uTkh (7.5)

In the System identification problem, it is assumed that the output data from the

unknown system is available at every sample point. However, due to sensory limi-

tations and infrequent data sampling, the subset of output data is available rather

than the complete output information. Therefore, the missing data examination

function can be expressed as

ρk =

{
1 if yk available

0 otherwise
(7.6)
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For instance, the irregular missing data output pattern and the respective discrete

time indexes corresponding to its values can be defined as

yk = [y0, y1, y3, y6, y7, y9, y10, y14, y15, . . .]

k0 = 0, k1 = 1, k2 = 3, k3 = 6, k4 = 7, k5 = 9, k6 = 10, k7 = 14, k8 = 15, . . .

Likewise, their corresponding missing data examination function can also be writ-

ten as

ρ0 = ρ1 = ρ3 = ρ6 = ρ7 = ρ9 = ρ10 = ρ14 = ρ15 = 1, . . .

In the missing data output framework, there is no regular pattern of the output

data available. In this context, a stochastic framework can only be used rather than

the use of FIR filter. In the stochastic framework, complete known training input

input is given to the adaptive algorithm with partial output data for parameter

identification.

7.2.2 Noisy Discrete-time Missing Data System

Consider the missing data output system in stochastic framework shown in Fig. 7.1.

The input output relationship for the missing data system can be written as

yk = rk + ωk (7.7)

where ωk is additive white noise with variance σ2
ω, yk is the measurable system

output and rk is the unmeasurable noise free output given as

rk =
N(z)

D(z)
xk (7.8)

The vector h of transfer function coefficients is the same as defined in section 7.2

and the updated form of input-output information vector uk can be expressed as

uk = [−rk−1,−rk−2, · · · ,−rk−N , xk−1, xk−2, · · · , xk−N ] (7.9)
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Rewriting Eq. (7.7) and Eq. (7.8) in terms of uk and h, we get

rk = uTkh (7.10)

yk = uTkh + υk (7.11)

7.3 Auxiliary Model

The reference/auxiliary model Na(z)/Da(z) with input xm is shown in Fig. 7.2,

where, the numerator Na(z) and denominator Da(z) of transfer function auxiliary

system are the same as those of N(z) and D(z) of original system, respectively.

Therefore, rewriting the Eq. (7.10) in terms of time index m for auxiliary model,

gives

r̂m = uTmĥ (7.12)

likewise, the updated form of input-output information vector according to auxil-

iary model can thus be written as

um = [−r̂m−1,−r̂m−2, · · · ,−r̂m−N , xm−1, xm−2, · · · , xm−N ] (7.13)

where um is the information vector of an auxiliary model. Considering a mini-

mization problem, the cost function according to least square error criterion can

be defined as

J(h) = [ym − uTmh]2 (7.14)

( )

( )

N z

D z


kx
kr ky

k

Figure 7.1: Missing data error system
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According to this minimization criteria, the proposed low-complexity algorithm

(proposed in Chapter 4) based on the above-defined auxiliary model for missing

data system can be outlined as follows:

ĥm = ĥm−1 + emΨmum (7.15)

em = ym − uTmĥm−1 (7.16)

r̂m = uTmĥm−1 (7.17)

( )

( )

N z

D z


mx
mr my

m

^

^

( )

( )

N z

D z

^
mr

Original Error System 
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Figure 7.2: Missing data error system with reference model
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Figure 7.3: Proposed DDASP architecture for low-complexity estimation al-
gorithm with aligned time indexes
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gm = Ψmum =
Ψm−1um

σ2
υ + uTmΨm−1um

(7.18)

Ψm =
[
Ψm−1 −

Ψm−1umuTmΨm−1

σ2
υ + uTmΨm−1um

]
=
[
Ψm−1 − gmuTmΨm−1

] (7.19)

where, Ψm is the covariance matrix and gm is the Kalman gain vector. It is

pertinent to note that the initialization of covariance matrix Ψ0 must be a large

positive constant matrix which may affect the convergence performance of the

algorithm [13].

7.4 Implementation of DDASP on Missing Data

System

The flow diagram of the proposed DDASP architecture with the implementation

of low-complexity estimation algorithm for missing data application is shown in

Fig. 7.3. The distributed architecture consists of one master node Mo and four

slave nodes S1, S2, S3 and S4 for N = 4 estimation system. The number of slave

nodes is proportional to the length of the estimation vector N . The diffused tasks

for the estimated values of the received signals r̂
(1)
m , r̂

(2)
m , r̂

(3)
m and r̂

(4)
m in missing

data system can be defined as

r̂m = uTmĥm−1

r̂(1)m = u(1)m ĥ
(1)
m−1 = −r̂m−1ˆ̄a1

r̂(2)m = u(2)m ĥ
(2)
m−1 = −r̂m−2ˆ̄a2

r̂(3)m = u(3)m ĥ
(3)
m−1 = x̂m−1

ˆ̄b1

r̂(4)m = u(4)m ĥ
(4)
m−1 = x̂m−2

ˆ̄b2

Likewise, diffused tasks for components a
(1)
m , a

(2)
m , a

(3)
m , a

(4)
m , b

(1)
m , b

(2)
m , b

(3)
m , b

(4)
m and

c that are used to make the formation of Kalman gain gm, can be expressed as
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gm =
uTmΨm−1

uTkΨm−1um + σ2
ω

gm =

[
u
(1)
m u

(2)
m u

(3)
m u

(4)
m

]


Ψ
(11)
m−1 Ψ

(12)
m−1 Ψ

(13)
m−1 Ψ

(14)
m−1

Ψ
(21)
m−1 Ψ

(22)
m−1 Ψ

(23)
m−1 Ψ

(24)
m−1

Ψ
(31)
m−1 Ψ

(32)
m−1 Ψ

(33)
m−1 Ψ

(34)
m−1

Ψ
(41)
m−1 Ψ

(42)
m−1 Ψ

(43)
m−1 Ψ

(44)
m−1



[
u
(1)
m u

(2)
m u

(3)
m u

(4)
m

]


Ψ
(11)
m−1 Ψ

(12)
m−1 Ψ

(13)
m−1 Ψ

(14)
m−1

Ψ
(21)
m−1 Ψ

(22)
m−1 Ψ

(23)
m−1 Ψ

(24)
m−1

Ψ
(31)
m−1 Ψ

(32)
m−1 Ψ

(33)
m−1 Ψ

(34)
m−1

Ψ
(41)
m−1 Ψ

(42)
m−1 Ψ

(43)
m−1 Ψ

(44)
m−1




u
(1)
m

u
(2)
m

u
(1)
m

u
(2)
m

+ σ2
ω

gm =

[
a
(1)
m a

(2)
m a

(3)
m a

(4)
m

]

[
a
(1)
m a

(2)
m a

(3)
m a

(4)
m

]

u
(1)
m

u
(2)
m

u
(3)
m

u
(4)
m

+ σ2
ω

=

[
a
(1)
m a

(2)
m a

(3)
m a

(4)
m

]
b1m + b2m + b3m + b4m + σ2

ω

a(1)m = ψ
(11)
m−1u

(1)
m + ψ

(21)
m−1u

(2)
m + ψ

(31)
m−1u

(3)
m + ψ

(41)
m−1u

(4)
m

a(2)m = ψ
(12)
m−1u

(1)
m + ψ

(22)
m−1u

(2)
m + ψ

(32)
m−1u

(3)
m + ψ

(42)
m−1u

(4)
m

a(3)m = ψ
(13)
m−1u

(1)
m + ψ

(23)
m−1u

(2)
m + ψ

(33)
m−1u

(3)
m + ψ

(43)
m−1u

(4)
m

a(4)m = ψ
(14)
m−1u

(1)
m + ψ

(24)
m−1u

(2)
m + ψ

(34)
m−1u

(3)
m + ψ

(44)
m−1u

(4)
m

b(1)m = u(1)m a(1)m

b(2)m = u(2)m a(2)m

b(3)m = u(3)m a(3)m

b(4)m = u(4)m a(4)m

c = b(1)m + b(2)m + b(3)m + b(4)m + σ2
ω

Similarly, the diffusion procedure of covariance matrix Ψm for DDASP architecture

in missing data system can be defined as
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Ψm = Ψm−1 − gmuTmΨm−1

Ψm =


Ψ

(11)
m−1 Ψ

(12)
m−1 Ψ
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Let the processing time taken by covariance matrix Ψm, Kalman gain gm, parame-

ter estimation error em and coefficient vector ĥm be TΨ, Tg, Te and Tĥ, respectively.

Therefore, the overall processing time taken by the sequentially-operated adaptive

algorithm when it runs in distributed manner is

TΨ + Tg + Te + Tĥ = Tseq (7.20)

where, Tseq is the time taken by the sequential algorithm when it runs in non

parallel fashion. The cumulative fetch time Tf,c for the communication of data

elements among the master and slave nodes can be written as

T
f,r̂

(1,2,3,4)
m

+ T
f,a

(1,2,3,4)
m

+ T
f,b

(1,2,3,4)
m

+ T
f,ĥ

(1,2,3,4)
m

+ Tf,g(m) = Tf,c (7.21)
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The strict and sufficient condition for the distributive parameter estimation of

irregular missing data output system can thus be expressed as

TΨ + Tg + Te + Tĥ + Tf,c ≤ Tseq (7.22)

Table 7.1: Multiplication and addition complexity of DDASP architecture
with respect to each processing node

Processing
Node

Multiplication
Complexity

Addition
Complexity

Mo 2N + 1 3N

S1 2N + 2 2N − 1

S2 2N + 2 2N − 1

S3 2N + 2 2N − 1

S4 2N + 2 2N − 1

Table 7.2: Coefficient estimation of example scenario using conventional RLS
algorithm at forgetting factor λ = 0.9999

No. of
Iterations K

ˆ̄a1 ˆ̄a2 ˆ̄b1
ˆ̄b2 γ

100 -0.5190 -0.1651 0.4457 0.6185 1.4247
200 -0.6341 -0.1749 0.2791 0.4819 1.4118
300 -0.7470 -0.0347 0.3198 0.4623 1.1543
500 -0.8985 0.0883 0.2962 0.3973 0.8503
1000 -1.2137 0.4089 0.3305 0.3195 0.3100
1500 -1.2935 0.4930 0.3193 0.2638 0.2079
2000 -1.3922 0.5764 0.3144 0.2266 0.1073
2500 -1.4577 0.6429 0.3050 0.2009 0.0412
3000 -1.4963 0.6819 0.3054 0.1918 0.0125
3500 -1.5143 0.7107 0.3078 0.1886 0.0122
4000 -1.5164 0.7190 0.3099 0.1903 0.0167

True Values -1.5000 0.7000 0.3000 0.2000

7.5 Complexity Comparison

In this section, the computational cost of the distributed low-complexity esti-

mation algorithm is compared with both of sequentially-operated low-complexity
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Table 7.3: Coefficient estimation of example scenario using proposed DDASP
based low-complexity algorithm

No. of
Iterations K

ˆ̄a1 ˆ̄a2 ˆ̄b1
ˆ̄b2 γ

100 -0.4635 -0.2441 0.4261 0.5879 1.5960
200 -0.6952 -0.1245 0.2603 0.4513 1.3255
300 -0.8816 0.0936 0.2969 0.4255 0.8698
500 -1.1003 0.2825 0.2824 0.3520 0.4898
1000 -1.4022 0.6089 0.3065 0.2725 0.0964
1500 -1.4121 0.6185 0.3020 0.2468 0.0818
2000 -1.4405 0.6375 0.3044 0.2337 0.0574
2500 -1.4758 0.6624 0.2981 0.2220 0.0398
3000 -1.4790 0.6765 0.2998 0.2105 0.0110
3500 -1.4854 0.6852 0.3029 0.2074 0.0098
4000 -1.4978 0.6980 0.3015 0.2027 0.0021

True Values -1.5000 0.7000 0.3000 0.2000

Table 7.4: Sequential and distributed multiplication complexity for various
system orders in missing data systems

Estimation
Vector of
Order N

Sequential
RLS

Algorithm

Sequential
Low-

Complexity
Algorithm

Distributive
Complex-

ity of
Node Mo

Distributive
Complexity of
any Specific
Node S

2 22 17 5 6
3 41 31 7 8
4 66 49 9 10
5 97 71 11 12
6 137 97 13 14
7 177 127 15 16
8 226 161 17 18
9 281 199 19 20
10 342 241 21 22

algorithm and conventional RLS algorithm. The multiplication and addition com-

plexity of RLS algorithm entails 3N2+4N+2 and 2N2+2N , respectively. Likewise,

the low-complexity estimation algorithm provides 2N2 + 4N + 1 multiplications

and 2N2 + 2N additions per iterations. On the other hand, the proposed DDASP
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Table 7.5: Sequential and distributed addition complexity for various system
orders in missing data systems

Estimation
Vector of
Order N

Sequential
RLS

Algorithm

Sequential
Low-

Complexity
Algorithm

Distributive
Complex-

ity of
Node Mo

Distributive
Complexity of
any Specific
Node S

2 12 12 6 3
3 24 24 9 5
4 40 40 12 7
5 60 60 15 9
6 84 84 18 11
7 112 112 21 13
8 144 144 24 15
9 180 180 27 17
10 220 220 30 19

Table 7.6: Sequential and proposed node-by-node distributed processing time
in µsec for various system orders

Estimation
Vector of
Order N

Sequential
RLS

Algorithm

Sequential
Low-

Complexity
Algorithm

Processing
Time of
Node Mo

Processing
Time of
any Spe-
cific Node
S

Total Dis-
tributed
Processing
Time of
All Nodes

2 568 532 1.33 4.1 5.34
4 1532 1432 8.42 20.23 28.65
6 3088 2700 12.33 24.13 36.46
8 4987 4412 14.13 28.42 42.55
10 7132 6414 15.92 31.89 47.81

based low-complexity estimation algorithm provides 4N + 3 multiplications and

5N −1 additions at maximum. The step by step addition and multiplication com-

plexity is shown in Table. 7.1. It is realized that the DDASP architecture provides

linear computational complexity parallely on each node involved. Furthermore,

the multiplication and addition complexity comparisons among the master and

slave nodes of DDASP architecture and sequentially-operated low-complexity and

RLS algorithms are shown in Table. 7.4 and Table. 7.5, respectively. Likwise, the

per-iteration multiplication and addition complexity comparisons of the combined
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Figure 7.4: Per-iteration multiplication complexity comparison among sequen-
tial algorithms and proposed DDASP technique on missing data system
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Figure 7.5: Per-iteration addition complexity comparison among sequential
algorithms and proposed DDASP technique on missing data system

master and slave node of proposed DDASP architecture with those of sequentially-

operated low-complexity and RLS algorithms are shown in Fig. 7.4 and Fig. 7.5,

respectively. It is observed that at every order of transfer function coefficients,

the proposed DDASP technique provides parallely much lesser multiplication and

addition complexity than the sequentially-operated low-complexity and RLS algo-

rithms.
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7.6 Simulation Results and Discussion

In this section, the measurement results are presented by considering the following

second order system for missing data application

ym =
N(z)

D(z)
xm + υm

=
b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
xm + υm

=
0.30z−1 + 0.20z−2

1 + 1.50z−1 + 0.70z−2
xm + υm

where xm is the input signal with zero mean and variance σ2
x = 1 and υm is additive

white noise with zero mean and variance σ2
w. The signal to noise ratio (SNR) is

set to be 20dB according to the following relation

SNR =
σ2
x

σ2
w

The proposed low-complexity estimation algorithm proposed in Chapter 4 is im-

plemented on distributive architecture to substantiate the validation of parameter

estimation of missing data system in terms of convergence performance, processing

time and computational complexity. The coefficients estimation for the above ex-

ample scenario by using the sequentially-operated RLS algorithm and the proposed

DDASP based low-complexity algorithm are shown in Table. 7.2 and Table. 7.3,

respectively. It is observed that the proposed DDASP based low-complexity algo-

rithm provides fast convergence performance than the sequentially-operated RLS

filtering algorithm.

Furthermore, the parameter estimation error γ = ‖(ĥm−h)‖/‖ĥm‖ using DDASP

based low-complexity algorithm and sequentially-operated RLS algorithm with

forgetting factor λ = 0.999999 and λ = 0.98 are shown in Fig. 7.6 and Fig. 7.7, re-

spectively. It is realized that the DDASP based low-complexity algorithm provides

better estimation error as compared to RLS filtering algorithm at λ = 0.999999.
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Figure 7.6: Coefficients estimation error versus number of iterations at 30dB
SNR
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Figure 7.7: Coefficients estimation error versus number of iterations at 20dB
SNR

However, for λ = 0.98, the estimation error of RLS algorithm decreases as com-

pared to the proposed DDASP based low-complexity algorithm but the final set-

tling value is not be obtained. Moreover, the convergence performance of the

proposed DDASP based low-complexity algorithm is compared with sequentially-

operated RLS algorithm for λ = 0.999999. It is analyzed that the proposed

DDASP based low-complexity algorithm provides better convergence performance

than that of RLS filtering algorithm which is clearly envisioned in Table. 7.2 and
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Table. 7.3, respectively. Furthermore, the processing time comparison among the

DDASP based low-complexity and sequentially-operated algorithms on Arduino

UNO platform is presented in Table. 7.6. It is realized that the combined pro-

cessing time of the master node Mo and any of the salve nodes S is much lesser

than those of both sequentially-operated standard RLS and sequentially-operated

low-complexity estimation algorithm.



Chapter 8

Conclusions and Future

Directions

This chapter presents conclusion of the dissertation in Section 8.1 and discusses

the prospective future work in Section 8.2 on the basis of obtained results.

8.1 Conclusions

In this dissertation, a new fast low-complexity MIMO channel estimator has been

proposed that performs well in multipath fading environment. The proposed al-

gorithm uses the concept of Kalman gain to provide fast convergence performance

while keeping its complexity lower than the standard RLS or Kalman filter. Ob-

tained simulation results show that the proposed algorithm exhibits low probability

of error compared to RVFF-RLS and RLS algorithms. Furthermore, the proposed

algorithm provides (N +NL)2 lesser multiplication complexity and independency

on forgetting factor λ than RVFF-RLS and RLS adaptive filtering algorithms.

Usually, in a wireless sensor network, the limited memory and energy constraint re-

strict a wireless sensor node to run the high definition adaptive filtering algorithm

as a single unit. In this context, a novel low-complexity architecture for the paral-

lely distributed adaptive signal processing (PDASP) operation of inexpensive and

91
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computationally-constrained small platforms has been proposed. The proposed

architecture makes the inexpensive and computationally-constrained devices run

computationally expensive procedures like complex adaptive Kalman and RLS

algorithms cooperatively. The proposed architecture can even be run in the pres-

ence of time non-alignment. The complexity and processing time of the proposed

PDASP scheme with RLS algorithm have been compared with those of sequen-

tially operated Kalman and RLS algorithms. It has been observed that PDASP

scheme exhibits much lesser computational complexity and processing time par-

allely than the sequentially-operated Kalman and RLS algorithms. The proposed

PDASP technique with non-aligned time indexes entails parallely 2(N + NL)2

multiplications and (N + NL)2 additions per iteration at maximum. Likewise,

the proposed technique utilizes 95.83% and 82.29% lesser processing time than

the sequential Kalman and MIMO RLS algorithms, respectively, for low doppler

rate. Similarly, for high doppler rate, the proposed technique entails 94.12% and

77.28% decreased processing than sequentially-operated Kalman and MIMO RLS

algorithms, respectively. In nutshell, processing time and parallel complexity of

the proposed PDASP based MIMO RLS scheme have been observed to be much

lesser than those of Kalman and RLS adaptive filtering algorithms, if operated

sequentially on a single unit.

Although, the computational complexity provided by the PDASP architecture is

much lesser than the sequential Kalman and MIMO RLS algorithms; however,

the PDASP architecture still shows non-linear behavior in terms of computational

cost. In this context, a new low-complexity architecture for the distributed dif-

fusion based adaptive signal processing (DDASP) operation of computationally

constrained small platforms has been proposed. In the DDASP architecture, the

adaptive algorithm is diffused into the desired number of low-cost processing de-

vices. Therefore, the number of processing nodes that are used to run the MIMO

RLS algorithm on DDASP architecture is dependent upon the number of MIMO

spatial streams as well as on the number of multipath components. It has been

observed that, in case of no multipath components, the number of slave nodes

(S1, S2 · · ·SN) are equivalent to the number of MIMO spatial streams along with
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one master node M . The master node is used to operate the other processing

or slave nodes in the distributed network. It has been observed that the PDASP

architecture exhibits lesser and linear computational complexity parallely on each

processing node involved as compared to the PDASP architecture and existing

distributed architectures [74, 75]. The computational complexity of any of the

slave nodes in the DDASP architecture provides 3(N +NL) + 2N + 1 multiplica-

tions and 2(N +NL) + 2N − 2 additions per iteration; likewise, the master node

in the DDASP architecture entails N + NL + 1 multiplications and 2(N + NL)

additions. Therefore, the combined computational complexity of a slave and mas-

ter node provides 4(N +NL) + 2N + 2 multiplications and 4(N +NL) + 2N − 2

additions.

In addition to the application of MIMO channel estimation, parametric estima-

tion of the auxiliary model for the retrieval of missing data can be considered

another good example of cooperative distributed processing of small platforms for

a common goal. It has been observed that the proposed PDASP architecture can

perfectly run a group of nodes for the estimation of MIMO channel coefficients;

however, as far as its implementation for missing data application is concerned,

it shows unstable behavior due to its inherent working based on non-aligned time

indexes. Since, missing data application needs perfect time alignment among var-

ious parts of the algorithm in order to reach a specific common goal. Therefore,

sequentially-run algorithms or diffusion-oriented architectures become the only

suitable choices. It has been realized that the implementation of the proposed

DDASP technique using the proposed low-complexity algorithm provides much

lesser and linear computational complexity parallely on each node involved as

compared to any sequentially-operated least square algorithm.

8.2 Future Directions

On the basis of the research carried out in the dissertation, the following future

research directions may be furnished:
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• The proposed low-complexity distributed architectures for energy-inefficient

and computationally-constrained platforms can be extended to massive MIMO

communication systems, in order to accommodate the use of such energy-

inefficient and computationally-constrained devices in internet of things (IoT)

networks. In recent years, massive MIMO antenna infrastructure has been

proposed to facilitate high data rates over mmwaves in prospective 5G com-

munication systems which are supposed to provide communication frame-

work for IoT solutions.

• The reduction of communication burden in DDASP architecture can be car-

ried out in future to make sure the feasibility of distributed techniques in

highly time-varying channel environments.

• The experimental validation of PDASP and DDASP architectures for quasi-

stationary and time-varying channel environments with stability and com-

munication burden analyses can be carried out in future. Moreover, the

distributed solutions related to master-slave node systems can also be de-

ployed to highly complex systems, e.g. distributed estimation etc.

• The reduction of training sequence in PDASP architecture can be carried

out in future by reducing communication overload to make sure the fast

convergence of the adaptive filtering algorithm.

• The task allocation and time thresholding regarding distributed network or

individual nodes can further be analyzed by implementing the distributed

architectures on low cost computationally-constrained platforms.
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