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Abstract

Protein sequence similarity is commonly used to compare proteins, and to search

for proteins similar to a query protein. With the growing use of biomedical ontolo-

gies, especially Gene Ontology (GO), semantic similarity between ontology terms,

proteins and genes is getting attention of researchers. Protein semantic similarity

measurement has many applications in bioinformatics, including protein function

prediction and protein-protein interactions. Semantic similarity measures were

proposed by Resnik, Jiang and Conrath, and Lin. Recent measures include Wang

and AIC.

The question whether the semantic similarity has a strong correlation with se-

quence similarity, has been addressed by some authors. It has been reported that

such correlation exists, and it has been used for the evaluation of semantic similar-

ity computation methods as well as for protein function prediction. We investigate

the correlation between semantic similarity and sequence similarity using graphs,

Pearson’s correlation coefficient and example proteins. We find that there is no

strong correlation between the two similarity measures. Pearson’s correlation coef-

ficient is not sufficient to explain the nature of this relationship, if not accompanied

by graph analysis. We find that there are several pairs with low sequence similar-

ity and high semantic similarity, but very few pairs with high sequence similarity

and low semantic similarity. Interestingly, the correlation coefficient depends only

on the number of common GO terms in proteins under comparison.

We propose a novel method SemSim for semantic similarity measurement. It

addresses the limitations of existing methods, and computes similarity in two steps.

In the first step, SimGIC like approach is used where contribution of common

ancestors is divided by contribution of all ancestors. In the second step, we use two

new factors: Specificity computed from ontology based information content, and

Uniqueness computed from annotation based information content. The final result,

after applying these two factors, makes clear distinction between the generalized

and specialized terms. We conducted experiments on protein pairs having evidence

of high similarity, and the ones having evidence of low similarity. Experiments

show that SemSim performs better than the previous measures in both cases.

When semantic similarity is used for searching proteins from large databases, the

speed issue becomes significant. To search for proteins similar to a query protein
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having m annotations, from the database of p proteins, p × m × n × g compar-

isons would be required. Here n is the average annotations per protein, g is the

complexity of GO term similarity computation algorithm, and it is assumed that

each term of one protein is compared with each term of the other. We propose a

method SimExact that is suitable for high speed searching of semantically similar

proteins. Although SimExact works on common terms only, our experiments show

that it gives correct results required for protein semantic searching. SimExact can

be used as a pre processor, generating candidate list for the existing methods,

which proceed for further computation. Such arrangement will gain high speed

while retaining the accuracy of the given method. We provide online tool that

generates a ranked list of the proteins similar to a query protein, with a response

time of less than 8 seconds in our setup. We use SimExact to search for protein

pairs having high disparity between semantic similarity and sequence similarity.

SimExact makes such searches possible, which would be NP-hard otherwise.
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Chapter 1

Introduction

1.1 Background

Proteins are the functional units of life, taking part essentially in every structure

and activity of life. They are the basic building materials for living cells, and

consist of 20 amino acids combined in different ways, which makes more than

100,000 different proteins in a human body.

The sequencing of genomes from various organisms and X-Ray structure analysis

has brought to us a large amount of data about the sequences and structures of

thousand of proteins. This information can be used for biological research only

if one can extract functional insight from it. Bioinformatics uses the analysis of

protein sequences and structures to help annotate the genome, to understand their

function, and to predict their structure when only sequence is known. Bioinfor-

matics methods are used in fundamental research on theories of evolution as well

as in more practical works on protein design. Algorithms and techniques used in

these areas include sequence alignments, secondary structure prediction, functional

classification of proteins, threading and modeling of distantly-related homologous

proteins, modeling the progress of protein expression and so on.

Homology means existence of two or more proteins that evolved from a common

ancestor. It can be used to predict a gene’s function. Sequence alignment is used to

1
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find homology between two polypeptide chains. Finding out sequence alignments

can help detect evolutionary origins and trace back the function, structure, and

mechanism of a genome. Repeated motifs can be detected by aligning a sequence

with itself. Newly discovered protein sequences can be matched by inputting the

sequence to a system having large database of previously known proteins using

some alignment tool, like BLAST (Basic Local Alignment Search Tool). Using

BLAST, homology of a newly sequenced protein can be found, and function and

tertiary structure of a protein can be predicted.

Proteins demonstrate diverse sequence-structure relationships. Understanding

protein similarity relationships is vital for the annotation of gene products. Pro-

teins with high sequence similarity and high structural similarity tend to have

some functional similarity and evolutionary relationships. However, examples of

proteins having low sequence similarity and high structural and functional simi-

larity exist.

Sequence similarity of proteins means comparing them based on what they appear

to be. There are other ways to measure protein similarity. Many bioinformatics

applications would need to compare proteins based on what they do (function).

There is an increasing use of ontology (e.g. Gene Ontology) in bioinformatics

research. Ontology models a domain of interest. It defines concept hierarchies,

object properties, data type properties, and many other constructs that enable

automated agents to understand and process the information according to the

semantics of the domain. For example in biology, ontology can organize concepts

(biological terms) as taxonomy where each term is inherited from some parent

concept (is a relationship). Database technology is normally used to store ontology

in an efficient manner, where Structured Query Language (SQL) is used to retrieve

information.

The Gene Ontology (GO) [1] aims at fulfilling the requirements of research com-

munity for correct descriptions of gene products (genes, proteins). It consists of

three vocabularies that describe gene products in terms of biological processes, cel-

lular components and molecular functions in a species-independent way. It defines
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over 38000 biological terms and the relationship (is-a, part-of) between pairs of

terms. For example, term protein C-terminus binding (GO:0008022) is a protein

binding (GO:0005515), which is a molecular function (GO:0003674).This forms a

large taxonomy of terms (concepts in the context of ontology) where each term can

be traced for its inheritance of characteristics. Terms can have multiple parents, so

the Gene Ontology is a Directed Acyclic Graph (DAG) rather than a tree. An ex-

ample taxonomy from Gene Ontology is shown in Figure 1.1. It shows parent-child

relationship between terms, and that a term may have multiple parents.

Protein annotation means assigning a protein to one or more GO terms. This

means to assert that a protein takes part in a certain biological process, performs a

molecular function, and is found in a cellular component. Annotation database is a

mapping of protein ids to GO term ids in the form of a many-to-many relationship.

Annotation of proteins with GO terms makes a valuable knowledge base that

integrates the knowledge of many scientists on a single platform which can be

understood by computers. Research organizations are constantly adding to this

valuable database.

The combination of Gene Ontology and annotations offers a new opportunity for

computation of protein similarity based upon their function, often called semantic

similarity. Protein semantic similarity takes into account the role of proteins in

biological activities. To enable such comparison, we need to compare terms from

Gene Ontology that annotate the proteins to be compared. The location of a con-

cept (GO term) in the Gene Ontology graph holds biological meaning (semantics)

of that concept, which is understandable to computer programs. A number of

researchers have proposed methods for measuring semantic similarity between the

concepts (terms) of Gene Ontology [2]. Among the early proposed methods are

Resnik [3], Jiang and Conrath [4], and Lin [5].

To compute semantic similarity between two proteins, the annotated GO terms

of both proteins are compared. The schematic diagram of Figure 1.2 shows the

elements involved in semantic similarity measurement in a generic way. Gene

Ontology forms taxonomy of terms for example, g1, g2 etc. To measure semantic
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Figure 1.1: A Part of Gene Ontology.

similarity between two proteins p1 and p2, each GO term annotated with p1 is

compared with each GO term annotated with p2. Then the similarity between p1

and p2 is computed using one of three aggregation approaches: average, maximum

and best match average [2]. In average approach, the similarity between p1 and

p2 is the average of all GO term similarity values. In maximum approach, the

protein similarity is the maximum of the term similarity values. Best Match

Average (BMA) is a balance between these two approaches. For each term in one

set, the best matching term in the other set is determined. Protein similarity is

computed by taking average of the similarity values of the best matching pairs.
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If we take several protein pairs, and compute sequence similarity and semantic

similarity between each pair, we can check the correlation between the two mea-

sures. Pearson’s correlation coefficient is commonly used to determine the extent

of correlation between two variables, where 0 means no correlation and 1 means

perfect correlation.

Rank correlation coefficients are also used to determine the relationship between

two variables. They measure the extent to which, when one variable increases,

the other also increases, without being sensitive to how much each increases. For

an example, let us consider the (x, y) pairs: (1, 5), (2, 20), (3, 200), (4, 2000),

(5, 2001). It can be seen that when x increases, y always increases, although the

increments are not uniform. Rank correlation between x and y will be 1 whereas,

Pearson’s correlation will be 0.89. As the name indicates, rank correlation works

on the ranks of data which, in the above example are (1, 1), (2, 2), (3, 3), (4, 4),

(5, 5). Spearman’s correlation coefficient and Kendall’s correlation coefficient are

commonly used rank correlation coefficients.

The nature of this relationship has more important implications in this area. It can

help us to answer a basic question: how the sequence of a protein can determine

its biological function. Moreover, the current protein querying can be improved

significantly. A very high correlation would suggest the use of semantic based

query answering tools as alternate to the current sequence matching tools. A

low correlation would make the semantic similarity an independent measure to be

explored further.

1.2 Statement of Problem and Research Ques-

tions

Semantic similarity measuring methods frequently disagree with one another.

There is no established criterion for the evaluation of these methods. Correla-

tion with sequence similarity has been used as an evaluation criterion in some
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Figure 1.2: A schematic diagram of Gene Ontology and protein annotations.

studies. Assumption of a significant correlation between semantic similarity and

sequence similarity is used for the evaluation. However, there is no thorough ex-

perimental evidence of the significant correlation, and there are studies reporting

on the contrary. Tools to search semantically (functionally) similar proteins do

not exist, and the current methods are not fast enough to support such search.

To solve the above problems, we need to answer the following questions, which are

the research questions of this dissertation:

1. RQ1: Are the semantic similarity measuring methods consistent? If not,

then what are the reasons? If various methods give significantly different

results, then there is a possibility that some of them have problems.

2. RQ2: What is the relationship between semantic similarity of protein pairs

and their sequence similarity? There are varying opinions about this rela-

tionship in the literature, and therefore a detailed study is required.

3. RQ3: Can the correlation with sequence similarity be used as a standard

criterion for evaluation of novel semantic similarity measures or there is a
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need of some other benchmark? This correlation has been used for evaluation

of similarity methods, but there are views on the contrary.

4. RQ4: Can we devise a semantic similarity method which gives results con-

sistent with the benchmark / dataset provided by domain experts? If the

presence of problems in the existing methods is established, then there would

be a need to fix the problems, and design new method.

5. RQ5: Can a software tool be implemented to measure the semantic similarity

with acceptable accuracy and in a faster way (in real time)? Given the

large protein databases, the problem of searching proteins similar to a query

protein would require fast comparisons.

6. RQ6: Can the pattern of sequence-semantic similarity graph be used to

understand or investigate the behavior of proteins? After assessing the cor-

relation between semantic similarity and sequence similarity, we would need

to explore the reasons of such relationship.

1.3 Methodology

Following are the major steps of methodology adopted in the research:

1. Literature review to study the existing semantic similarity measures, and

the relationship between semantic similarity and sequence similarity

2. Implementation of existing methods for similarity measurement in order to

have a test bed for experimentation

3. Selection of data set for experiments

4. Performing experiments by using the test bed

5. Result analysis and evaluation of correlation between sequence and semantic

similarity. First, the existing semantic similarity measures were compared

and correlated with one another to observe their agreement or disagreement.
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Then the correlation between semantic and sequence similarities were stud-

ied.

6. Formulation of new semantic similarity measures SemSim and SimExact.

SemSim incorporates specificity and uniqueness of GO terms in accordance

with the semantics of the ontology.

7. Experiments and comparison of SemSim and SimExact with existing simi-

larity measures

Steps 1 to 4 are going to answer the research question 1. Step 5 is going to be

helpful in answering the research question 2. The philosophy behind the selection

of data for the evaluation of correlation explains the answer to question 3. We

need a data set which is annotated by domain experts in order to evaluate the

similarity methods. Based upon the results of experiments and our understanding

of the problem, we devised new methods to find semantic similarity. Step 6 answers

question 4 to 6.

1.4 Selection of Data Sets

We carried out experiments with multiple datasets to strengthen the conclusions.

In order to minimize the bias, some data sets are selected from the published

literature. When there was a need of a particular type of data set according to

the requirements of an experiment, then the data set is selected randomly, or

generated by a program using random pattern. The explanation of the selection

of each dataset is given in the following sections:

1.4.1 Dataset 1

Protein pairs for experiments on semantic-sequence correlation were taken from

CESSM (http://xldb.di.fc.ul.pt/tools/cessm/downloaddata.php) [6]. CESSM data
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is particularly created for experiments related with protein similarity measure-

ment. The proteins of this data set have reasonable number of GO annotations,

and are therefore suitable for our experiments. Every protein is manually anno-

tated with at least one GO term in all three GO sub ontologies with IC of at

least 0.5. The proteins BLAST e-values for both directions are below 10−4. The

dataset consists of 13430 protein pairs. Some later works on semantic similarity

measures e.g. Couto et al. [7] and Alvarez and Yan [8] have used this data, too.

Use of dataset from an independent source helps make our experimental results

unbiased. GO term pairs are generated during the computation of semantic simi-

larity for protein pairs. They consist of GO terms annotated by CESSM proteins.

These pairs are used for experiments on GO terms.

1.4.2 Dataset 2

Non-IEA (IEA means Inferred from Electronic Annotation) or manually assigned

annotations are considered to be most reliable, because they are established by

experts on the basis of experiments. Experiments with these annotations are

particularly useful for our research. To perform such experiment, we required

additional pairs to supplement CESSM dataset. This is because many proteins in

CESSM dataset did not have manual annotations, whereas we required those with

manual annotations. Our program generated protein pairs having varying values

of sequence similarity, and varying number of common GO terms in the non-IEA

annotations. This dataset consists of 4270 protein pairs.

1.4.3 Dataset 3

If different methods produce different similarity values, it is important to check

if these methods rank GO terms similar to a given term in the same order or

not. This dataset is prepared to evaluate the correlation between the semantic

similarity rankings of different methods. That is, if method A rank of similarity

is same as that for method B. It is a set of GO term pairs where a reference
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term is picked randomly, and then n most similar terms with the reference term

(according to each method) are selected. We used n=50, while total number of

pairs is 10800.

1.4.4 Dataset 4

This dataset has been built based on Dataset 1. For experiments concerning

with the effect of common terms, two more datasets were required: one with zero

common terms, and the other with non-zero common terms. In CESSM dataset,

most of pairs have at least one common GO term. However, by shuffling the

CESSM proteins, Dataset 4 could easily be generated, having zero common terms.

The purpose of this dataset is to study the correlation in the absence of common

terms. These are 1771 protein pairs.

1.4.5 Dataset 5

Dataset 5 has been built based on Dataset 1. It is taken from CESSM pairs, having

at least one common term. This was required to study the effect of common terms.

It consists of 9355 protein pairs.

1.4.6 Dataset 6

It consists of pairs of globins from Lesk and Chothia [9]. These protein pairs have

evidence of having very high function similarity. This dataset is used to evalu-

ate our method, and compare it with the existing methods to compute semantic

similarity. These are 9 globins, making 72 protein pairs.
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1.4.7 Dataset 7

It consists of protein pairs from Trad et al. [10]. The protein pairs have evidence of

having very low function similarity. They are used in our novel evaluation method.

These are 9 protein pairs.

1.4.8 Dataset 8

This dataset has been built based on Dataset 1. Its purpose is to test the be-

haviour of similarity methods on generalized GO terms. To produce this dataset,

CESSM protein pairs having 25% to 75% common terms were sorted on IC value

in descending order. Then top 100 pairs were selected. This gives us the protein

pairs sharing most generalized (low IC) GO terms.

1.5 Organization

Here is a description of the rest of this dissertation. Chapter 2 gives a review

of the existing literature about semantic similarity measurement, and its correla-

tion with sequence similarity. It points out limitations of the existing methods.

Chapter 3 describes our proposed similarity methods and reasoning behind them.

The tools developed for protein query answering are also described. Chapters 4,

5 and 6 furnish the results of our experiments and the analysis of these results.

Chapter 4 is about comparison of semantic similarity measures and their corre-

lation with sequence similarity. Results of our novel similarity measures SemSim

and SimExact are given in Chapter 5. Comparison of our method with existing

similarity measures is also given. The results are traced and checked to find out

which measure performs better than others. Chapter 6 further investigates why

the correlation between semantic similarity and sequence similarity is not strong.

Chapter 7 gives the final conclusions of our research.



Chapter 2

Literature Review

2.1 Semantic Similarity Measures

Gene Ontology is extensively covered in the recent literature of bioinformatics as

well as semantic computing. A number of authors have contributed in the area of

semantic similarity and proposed measurement methods for it. Some well known

measures are described here.

2.1.1 Information Content

Many similarity measures are based on Information Content (IC), a measure of

specificity of a concept in ontology. Generic concepts have less information while

specific concepts have more information. Frequency of a concept in Gene Ontology

is the number of gene products (genes or proteins) annotated with the concept (GO

term) and its descendants. The probability that a concept occurs is computed

from its frequency Freq divided by the maximum frequency (frequency of the

root concept) found in the ontology.

Prob(c) =
Freq(c)

MaxFreq
(2.1)

12
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The information content IC of a concept is defined as

IC(c) = −log(Prob(c)) (2.2)

Specialized concepts will have high IC, while generalized concepts will have lower

IC. The leaf concepts (GO terms) with least protein annotations will have highest

IC, whereas the root concept will have lowest IC.

2.1.2 Resnik

Resnik [3] defined semantic similarity measure (SimRes) between two concepts c1

and c2 as the IC of the most informative common ancestor.

SimRes(c1, c2) = MAX(IC(c)|c is ancestor of c1 and c2) (2.3)

To find similarity between concepts c1 and c2, we would move upwards from c1

and c2 and stop on the concept where the two paths meet (the common ancestor).

This is going to be the most informative common ancestor (MICA) of c1 and c2.

The IC of this concept measures the similarity between c1 and c2. For two sibling

terms, parent term is the immediate common ancestor. Grand parent and above

terms are all common ancestors, but the immediate parent, having least IC, is

the MICA. Two distantly located concepts will meet at a high level, giving low

similarity, whereas closely located concepts will meet at a lower level, giving higher

similarity.

The minimum Resnik similarity is 0, which is between such concepts that have

only one common ancestor that is the root concept. Maximum value of similarity

is not fixed, and depends upon the ontology size and annotations.
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2.1.3 Jiang Conrath

Jiang and Conrath [4] computed the similarity from the semantic distance between

two concepts. The distance is defined as

DistJiang(c1, c2) = IC(c1) + IC(c2)− 2 · SimRes(c1, c2) (2.4)

Jiang Conrath similarity (SimJiang) is defined as the reciprocal of semantic dis-

tance

SimJiang(c1, c2) =
1

DistJiang(c1, c2) + 1
(2.5)

The similarity value ranges from 0 to 1.

2.1.4 Lin

Lin [5] defined semantic similarity as

SimLin(c1, c2) =
2 · SimRes(c1, c2)
IC(c1) + IC(c2)

(2.6)

The IC of the most informative common ancestor (MICA) is divided by the av-

erage of the ICs of the two concepts to be compared. Lin’s similarity between

two close terms located near root will be higher as compared to Resnik similarity.

Moreover, the similarity of a term with itself will be 1, whether the term is general

or specific. The similarity value ranges from 0 to 1.

2.1.5 SimUI and SimGIC

Gentleman [11] proposed SimUI and Pesquita et al. [12] proposed simGIC, using

the Jaccard index.

J(A,B) =
|A ∩B|
|A ∪B|

(2.7)
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SimUI and SimGIC similarity is obtained by dividing the sum of contribution from

common ancestors by the sum of contribution from all ancestors of the two terms.

SimUI simply counts the ancestor terms, while SimGIC takes IC of each ancestor

as the contribution. The similarity ranges from 0 to 1.

2.1.6 GraSM

Couto et al. [13] made adjustments in the above three methods and proposed

Graph-based Similarity Measure (GraSM) technique. They suggested that the

similarity measurement techniques should not consider the ontology, especially

Gene Ontology, as a tree. Since many concepts in Gene Ontology have multiple

parents, the ancestors of a concept make a complex formation. They use the notion

of disjunctive common ancestors and take average of the IC of these common

ancestors. They applied their adjustment on the three existing methods.

Two common ancestors are disjunctive if there are independent paths from both

ancestors to the concept. GraSM takes average of IC values of the disjunctive

common ancestors of the two concepts to define their shared information.

ShareGraSM(c1, c2) = Avg{IC(a)|a ε CommonDisjAnc(c1, c2)} (2.8)

Resnik similarity GraSM (SimResG) is equal to ShareGraSM. In (Eq 2.4) and

(Eq 2.6), SimRes is replaced with SimResG to compute SimJiangG and SimLinG

respectively. Couto et al. [7] defined their technique DiShIn, which is an improve-

ment in GraSM. DiShIn determines the disjunctive common ancestors from the

number of distinct paths from the concepts to their common ancestors.

2.1.7 Wang

Wang et al. compute semantic similarity without using information content [14].

They consider all ancestors of both the concepts to be compared, and then take
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common ancestors. The S-Value for GO term t related to term x (where t is an

ancestor of x), is defined as,

Sx(t) = 1 if t = x

Max{we ∗ Sx(t′)|t′εchildren of t} if t 6= x
(2.9)

Where we (edge weight) is a fraction (typically 0.8 or 0.6). Semantic value of a

GO term x is defined as,

SV (x) =
∑
tεTx

Sx(t) (2.10)

Where Tx is the set of all ancestor terms of x, including x itself. Wang similarity

between terms a and b is defined as,

Wang(a, b) =

∑
tεTa∩Tb Sa(t) + Sb(t)

SV (a) + SV (b)
(2.11)

Where Sa(t) is the S-value of term t related to term a and Sb(t) is the S-value of

term t related to term b.

2.1.8 AIC

Song et al. [15] proposed their measure based on aggregate information content

(AIC). They define the knowledge of a term t as the reciprocal of Information

Content(IC),

K(t) =
1

IC(t)
(2.12)

The semantic weight SW of a term t is defined as,
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SW (t) =
1

1 + e−k(t)
(2.13)

Then the semantic value SV of a term is computed by adding the semantic weights

of all the ancestor terms.

SV (x) =
∑
tεTx

SW (t) (2.14)

AIC similarity between term a and b is defined as

AIC(a, b) =

∑
tεTa∩Tb 2 · SW (t)

SV (a) + SV (b)
(2.15)

The weight of terms increases as we move upwards. The weight of root is highest

due to its lowest IC. This is because of Equation 2.12.

2.1.9 SSA

Alvarez and Yan [8] proposed a semantic similarity algorithm (SSA) that does not

depend upon external databases (annotations). SSA computes semantic similarity

purely from Gene Ontology. This implies that the similarity value between any

two GO terms will not change unless the Gene Ontology is revised.

SSA computes the semantic similarity between two GO terms t1 and t2 as:

SSA(t1, t2) =
spsim(t1, t2) + nca(t1, t2) + ld(t1, t2)

3
(2.16)

Where spsim is the similarity computed from the distance of the shortest path

between t1 and t2 in GO, nca is a score proportional to the depth of the nearest

common ancestor of t1 and t2, and ld is a similarity score between the definitions

of the two terms. The resultant value lies between 0 and 1.
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2.1.10 InteGO

Peng et al. [16] proposed a rank-based gene semantic similarity measure InteGO

(Integration of GO similarities) that integrates three existing measures. InteGO

maintains a background set of genes BG for each desired species that is used

to unify the similarity scores from different seed measures. BG is sufficiently

large, and unbiased, and it includes full range of similarity scores. Pre calculated

similarity scores for all seed measures are stored in a database. When the system

takes a gene set G as input the similarity scores of all the pairs in G and all the

pairs between G and BG are calculated using all seed measures and merged into

the database. If G is a subset of BG, the system outputs the results directly. All

the pairs in the database are sorted incrementally based on their similarity scores

and are ranked. The ranked similarity score RankSim(g1, g2,m) for genes g1 and

g2 is computed as

RankSim(g1, g2,m) =
2 · rm

|BG ∪G|2
(2.17)

Where rm is the rank of gene pair g1, g2 using seed measure m. InteGO provides an

adaptive mechanism to automatically select the appropriate integration method

from a set of available methods. Each method in the pool of available integration

methods is given a score so that the best method can be selected. InteGO provides

four integration approaches: minimum, maximum, mean and median. Users are

allowed to add their own integration method. To determine the best method, all

pair similarities in BG are computed based on each candidate integration method

and are systematically evaluated using biological data.

InteGO was tested on three model organisms with different levels of GO anno-

tation scale and complexity. EC numbers and protein sequences were adopted

as independent biological evidence. For demonstration, its results were compared

with three existing similarity measures: Yu, Schlicker and Wang. The authors

reported that taking the maximal ranks from all of the seed measures performs

the best.
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2.1.11 Mazandu and Mulder

Mazandu and Mulder [17] proposed a unified mathematical framework for all IC-

based semantic similarity measures and compared these methods based on theo-

retical parameters. They performed experimental evaluation of different correc-

tion factors and assessed the impact of different normalization approaches. They

compared various topology-based approaches and parent versus child based ap-

proaches. They used protein pairs from CESSM. To compute protein similarity

from term similarity, Best Match Average approach was used.

The authors found that GraSM approach improved the performance of the existing

methods. However, they observed that identifying disjunctive common ancestors

is computationally expensive, especially for a complex DAG. They find that con-

sidering only the parents or only children has negative impact on the computation

of IC and semantic similarity. They also observed that since the annotation based

approaches make use of annotation data, the similarity scores will be biased. Some

GO terms have more protein annotations than the others. This may be due to

research focus on these terms. But the annotation based approaches will treat

them like less specific terms, like those lying higher in the taxonomy.

2.1.12 GOSemSim

Yu et al. [18] developed a software package GOSemSim for computation of exist-

ing semantic similarity measures. GOSemSim is developed as a package for the

statistical computing environment R and is released under GNU General Pub-

lic License with Bioconductor project. The IC is computed from Bioconductor

annotation packages and is species specific. Five measures: Resnik, Lin, Jiang

Conrath, Schlicker and Wang were integrated in GOSemSim. User can select the

required method in parameter. GOSemSim provides six functions. The function

goSim, mgoSim, geneSim and clusterSim compute the semantic similarity among

GO terms, sets of GO terms, GO descriptions of gene products, and GO descrip-

tions of gene clusters respectively. Functions mgeneSim and mclusterSim compute
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the similarity matrix of a set of genes and gene clusters. The result of goSim is

between 0 and 1.

By mapping gene products to GO terms, the functions geneSim, mgeneSim, clus-

terSim, mclusterSim are used to compute semantic similarity between gene prod-

ucts. Species and gene id’s are required for this computation. The functions

mgeneSim, clusterSim and mclusterSim are designed for computations at large

scale.

2.1.13 Seco et al.

Seco et al. [19] proposed that IC computation based only on the hierarchical struc-

ture of concepts is better than that employing corpus analysis. They performed

experiments on WordNet Ontology. Their method is based on the assumption

that the taxonomy of WordNet ontology is built in a structured and meaningful

manner. The concepts with many hyponyms convey less information as compared

to leaf concepts. Since leaf concepts are the most specific in the taxonomy, they

convey maximum information. Therefore, the IC value of a WordNet concept can

be expressed as a function of the hyponyms it has.

IC(c) = 1− log(hypo(c) + 1)

log(maxwn)
(2.18)

Where function hypo(c) returns the number of hyponyms of c and maxwn is the

maximum number of concepts in the ontology. The information content decreases

monotonically as we traverse from a leaf node to root. Information content of root

will be 0.

They evaluated their IC measure by correlating the similarity computed by their IC

with human judgment. They found that their measure outperformed the previous

ones.
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2.1.14 Yang et al.

Yang et al. [20] proposed their similarity measure that takes into account the

descendant concepts in addition to ancestors concepts. The authors point out

that the descendant concepts should not be disregarded when measuring similarity

between non-leaf concepts. Their approach is based on downward random walks.

It can be used to improve the existing similarity measures. Suppose a term p has

four child terms c1, c2, c3 and c4, and a gene g is annotated with p. The method

adopts a reasoning which says that g is indirectly annotated with c1 with some

probability, say 0.2. similarly, g is assumed annotated with c2, c3 and c4 with a

probability, say 0.2 each. The combined probability is 0.8, not 1. The remaining

0.2 probability is for uncertainty, which is for unknown child of p, that may be

missing in the ontology due to our incomplete knowledge about the domain.

Now when one compares a gene annotated with p and another gene annotated with

a term x, there is 20% chance that a gene annotated with c1 is being compared.

This allows us to measure semantic similarity between c1 and x from the semantic

similarity between p and x, using a factor of 0.2. The idea is to decompose

the similarity of a parent with some concept, into the similarities of the children

with that concept. The method computes the random walk contribution to the

similarity. This contribution is finally combined with the similarity obtained by

a host measure, that may be any existing similarity measure. The host measure

only considers the taxonomy above the two concepts being compared, and the

random walk contribution only considers the taxonomy below them. The combined

similarity will have both the components, and thus, the host similarity measure

will be improved.

2.1.15 Bien et al.

Bien et al. [21] propose a bi-directional semantic similarity measure that includes

ancestors as well as descendant concepts. Since a child concept is a special case of

the parent concept, they assume that the semantics of a parent concept are union
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of the semantics of all its children. GO frequently contains multiple parents of

a child concept. Therefore, it is likely that two concepts being compared share

a common child concept. The authors argue that, in such case, the children are

also relevant to similarity measurement. In cases where concept pairs have same

ancestral topology, descendant topology may be quite different.

They extend Wang similarity measure to include the descendant concepts in ad-

dition to ancestors. They define the similarity as:

SBSV (tA, tB) =
α.Swang(tA, tB) + β.SDSV (tA, tB)

α + β
(2.19)

Where α is the number of total ancestors and β the number of total descendants

of tA and tB. Swang is the Wang’s similarity between the two concepts, which

is derived from ancestors, and SDSV is the descending semantic value, derived

from common descendants. Due to recursive dependence on common descendants,

SDSV is expected to impact comparisons between concepts that are high in the

hierarchy. However, terms may not have common descendants just because more

specific child concepts are not yet created. SBSV gives higher weight to SDSV

when terms are higher in the taxonomy, and less when they are lower in the

taxonomy. Total number of descendants β, complements the weakness of SDSV

by reducing the weight of SDSV when the terms have few descendants, with a

reduced chance of having common descendants, regardless of their similarity.

Swang is the Wang’s similarity between the two concepts, which is derived from

ancestors, and SDSV is the descending semantic value, derived from common

descendants. Due to recursive dependence on common descendants, SDSV is ex-

pected to impact comparisons between concepts that are high in the hierarchy.

However, terms may not have common descendants just because more specific

child concepts are not yet created. SBSV gives higher weight to SDSV when

terms are higher in the taxonomy, and less when they are lower in the taxonomy.
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To evaluate this measure, the authors explored the GO taxonomy to look for the

terms having highest discrepancies between the ascending and descending similar-

ities. They based their evaluation on comparison with sequence similarity. They

computed correlation coefficient for gene expression data, and showed that their

measure is better than the existing ones.

2.1.16 HRSS

Wu et al. [22] proposed an edge based similarity measure known as Relative

Specificity Similarity (RSS). The measure used both the taxonomy above the given

terms and that below the terms to compute similarity.

They defined distance between two concepts as the number of edges in the shortest

path from one concept to the other. The similarity has three components. The

first one is a measure of how specific the most recent common ancestor (MRCA)

of the concepts is. The second component is a measure of how general the two

concepts are, in terms of the minimum distance from the concepts to the leaves.

The third component is a measure of the local distance between the concepts and

MRCA.

After RSS, the authors proposed further improved measure called Hybrid Relative

Specificity Similarity (HRSS). For this measure, the conventional IC was used,

which is computed from annotations. They defined IC based specificity of MRCA

as the IC of MICA (Most Informative Common Ancestor. They defined IC based

generality of a concept as the distance between the concept and the most informa-

tive leaf nodes (MIL). They combine IC-based computations with the edge-based

computations of RSS to formulate the new measure HRSS.

They evaluated the new measure by the correlation with sequence similarity, using

CESSM data set. They also used protein-protein interactions for the evaluation.

They find that HRSS and simGIC measures outperform all other measures.
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2.1.17 GAP

Vafaee et al. [23] proposed a method called GAP (Gene functional Association

Predictor) for predicting gene functional associations. The measure enhances in-

formation gain from the gene annotations. The authors designed two types of

term similarity measures: data driven similarity and ontology based similarity. In

case the terms are identical, data driven similarity is defined as the inverse of the

frequency of the term. When the terms are different, the similarity is zero. The

reasoning behind this measure is that, two different features do not contribute to

the similarity between two objects, and if the objects share a common feature, it

contributes to their similarity depending upon how informative the feature is. The

informativeness of a term is determined from its inverse frequency in the data set

used. The data driven similarity is used when the features are not present in an

ontology.

When the features correspond to the concepts in an ontology, like GO, the other

type of similarity i.e. ontology based similarity is used. For this purpose, the idea

of the most informative common ancestor is used, like many previous studies. GAP

uses multiple semantic similarity measures. Authors propose two new concepts:

Leaves and Specificity-descendant.

The proposed Leaves measure defines information content of a concept c in terms

of the number of leaf concepts that descend from c. The specificity-descendant

information content is defined as

IC(t) = f(f1(depth(t)), f2(localdensity(t))) (2.20)

(Eq 2.20) Where f(f1,f2)= f1*f2. f1,f2 quantify the contribution of the depth and

local density and take into account all the descendant concepts of t.

f1(depth(t)) =
depth(t)

depth(v)maxvεdescendants(t)
(2.21)
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f2(localdensity(t)) =
maxterms

descendants(t)
(2.22)

Where maxterms is the total number of terms in the whole ontology. The similar-

ity between two genes is defined as the weighted sum of the gene feature scores.

To aggregate feature similarity scores into resultant gene similarity, two transfor-

mation strategies were used. In Decile-only aggregation, each feature similarity

is mapped to an integer h ε [1, 10] where the score is at the hth decile of the

sample. In Decile-weighted aggregation, a weighted sum is used where the weights

are decile values as described in Decile-only aggregation, and the scores are scaled

from 0 to 1.

To evaluate GAP’s performance, a set of human genes was randomly selected that

had some known interactions. GAP was then queried by those genes, and scores

were computed for the predicted interactions.

2.1.18 Santos et al.

Santos et al. [24] used Gene Ontology annotations to develop semantic-based

measures for the selection of druggable target proteins. They constructed sev-

eral binary vectors that represented protein drug targets retrieved from public

databases. Each vector was a set of 2700 binary descriptors, where each descrip-

tor represented an InterPro annotation. Some targets were used for training and

validation, and the rest were used to generate a representative vector space using

SVD. The similarity between a pair of drug targets was computed as the cosine of

the angle between the respective representing vectors on a reduced space. The sim-

ilarity relationships were analyzed with the help of clustering techniques available

in a software called Multi Experiment Viewer.

A similarity matrix was constructed from the values of the computed cosines, and

this matrix was used as input to the software. Hierarchical clustering algorithm

(HCL) was applied to the input, which produced a heatmap with the targets

reordered semantically.
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The results were compared with those produced by using sequence similarity, and

were found to be better. To find druggable candidates, other proteins were pro-

jected into the reduced space.

2.1.19 Measuring Semantic Similarity between Proteins

The semantic similarity measures generally find similarity between GO term pairs

by using the methods discussed in the previous section. To translate term similar-

ity into protein similarity, annotation data is used. Suppose we want to compute

similarity between proteins p1 and p2, assume p1 has a set G1 of GO terms anno-

tated to it, and p2 has a set G2, similarity between p1 and p2 will come from the

similarities between the GO terms of G1 and G2 by using a particular method.

Each term in the set G1 is compared with the each term in the set G2, and then

the aggregated similarity is computed by using one of the three ways.

In the first approach, the maximum of all term similarity scores (max approach)

would be the similarity between p1 and p2. The second approach takes average

of all term similarity scores (average approach) to determine the overall similarity

between p1 and p2. The third approach named as Best Match Average (BMA),

computes the maximum (best) similarity of each term in G1 with the each term in

G2 (named the best similarity set as G1-G2), and computes the average of G1-G2,

AvgG1-G2. Then computes the best similarity of each term in G2 with the each

term in G1 (named the best similarity set as G2-G1), and computes the average

of G2-G1, AvgG2-G1. Then the BMA is computed by taking the average of both

the measures (AvgG1−G2 + AvgG2−G1/2).

2.2 Correlation between Semantic Similarity and

Sequence Similarity

If two proteins are similar in sequence, one would expect that they would be

performing similar functions. This means that certain degree of correlation should
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exist between sequence similarity and semantic (function) similarity. However,

both processes and data used for the semantic similarity measurement may not be

accurate, resulting in some uncertainty.

There are multiple reasons for such correlation not being strong. One of them

is incompleteness of information. Annotation data is generally incomplete for

most proteins since it is very difficult to define all possible functions a protein

performs. Annotations are not uniform over proteins: some proteins are more

heavily annotated than others. Even the existing annotations may not be perfectly

accurate.

Many studies have applied the assumed good correlation between sequence simi-

larity and semantic similarity to evaluate novel semantic similarity measures. In

these studies, it is assumed that a better semantic similarity measure would have

better correlation with sequence similarity.

2.2.1 Lord et al.

Lord et al. [25] were the first to apply semantic similarity measures on GO and

proteins, and to evaluate the measures based on their correlation with sequence

similarity. They assumed that highly similar sequences should be highly semanti-

cally similar. They used average method to translate term similarity into protein

similarity. They reported a good correlation between sequence and semantic sim-

ilarity. The correlation was especially high in the molecular function GO aspect.

They also found protein pairs going against the correlation. They found that such

protein pairs lie in three categories. Polymorphic groups mean diverse classes of

protein are involved in the same process. Hyper variable protein families have

similar reasons as above. Mis-annotations mean some error in annotation, and

was responsible for half of the protein pairs.
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2.2.2 Louie et al.

Louie et al. [26] use the assumption of a good correlation between sequence sim-

ilarity and semantic similarity for prediction of protein function from sequence.

This is a well known problem in bioinformatics. The authors address particularly

the problem of overly specific function prediction using a statistical model based on

the relationship between sequence similarity and semantic similarity. The model

is based on sets of proteins with experimentally tested functions and measures of

function specificity and similarity.

Their experiments show almost exact function similarity when proteins have high

sequence similarity. They find small probability of function match when proteins

have low sequence similarity. They report that function similarity increases with

increasing sequence similarity, but shows considerable variation. The authors ap-

plied their model to a collection of proteins of unknown function and predicted

their function.

They created test and training data sets using single function proteins with IDA

evidence code (experimentally characterized). Proteins in each set were sequence

aligned with each other. The model predicts the function similarity between two

proteins when their sequence similarity is known.

2.2.3 Lee et al.

Lee et al. [27] review protein function prediction methods. There is a large number

of proteins having unknown functions. The experimental methods to determine

their functions are costly and time consuming. However, computational methods

to predict protein functions are effective. The most common approach for function

prediction is based on the knowledge that proteins with similar sequences generally

have similar functions. Since protein structures are mostly not known, sequence

based prediction appears to be most practical.
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To enhance the value of these methods, acquiring more experimental data and

validation procedures are important. It is therefore beneficial to compare and

analyze the results of various prediction methods. Meta-servers make it possible

by providing access to such methods. Improving these meta-servers, and providing

improved software environment would result in more powerful interfaces, which

would be helpful for researchers. Validation by independent sources will increase

the confidence of biologists on the predictions.

2.2.4 Joshi and Xu

Joshi and Xu [28] perform a study on the relationship between sequence similarity

and function similarity for proteins of four organisms. They work on probability

based on number of gene pairs sharing the same function at a certain GO index

level against the total pairs having any functions at that level. They report a

consistent correlation between the two types of similarity. They observe cases

where function similarity reaches very high even when sequence similarity is low.

They report that if two proteins have sequence similarity more than 70%, they

have about 90% probability to have the same biological process for index levels 1

to 8.

They study the behavior of annotations based on computational techniques as

compared to those based on experimental evidence. They observe a difference

between the quality of the two types of annotations, and infer that many annota-

tions based on computational techniques may be incorrect. Some of the incorrect

annotations may be caused by over extension of function details while inferring a

protein from a protein hit with a known function.

2.2.5 Anscombe

Anscombe [29] comments on the use of graphs as compared to correlation coeffi-

cient. Numeric calculations are exact in contrast to graphs, and may be helpful

in making concrete decisions. However, in many situations, numeric calculations
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may lead to incorrect conclusions. He gives convincing arguments, along with an

example as evidence.

The example includes four fictitious data sets, each having some (x, y) pairs.

Scatter plots of all four data sets are created. The data sets are constructed such

that a typical regression program gives the same output for all. In particular, the

Pearson’s correlation coefficient for each set is the same i.e., 0.8. However, when

we look at the scatter plots, they are quite different from each other. Some of them

have really good correlation between x and y while others are weakly correlated.

The example shows that, numerical values such as correlation coefficient, may

be misleading in many situations. It would be more appropriate that graphs are

also studied in addition to the correlation coefficient, so that various trends and

patterns can be observed. This is very relevant to our study of the relationship

between sequence similarity and function similarity.

2.2.6 Pesquita et al.

Pesquita et al. [30] conducted an evaluation of semantic similarity measures based

on the correlation between sequence similarity and semantic (function) similar-

ity. They reported that the relationship between protein sequence similarity and

function similarity is not linear. However, it can be approximated by a normal

cumulative distribution function. They reported that different semantic similar-

ity measures do not demonstrate significantly different behavior with respect to

correlation with sequence similarity. Therefore, other metrics such as resolution

may be used to evaluate the performance of semantic similarity measures. They

also found that average and maximum combination approaches are not suitable

for computation of protein similarity from term similarity.
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2.2.7 Other

Yang et al. [20] use the correlation between sequence similarity and function

similarity as one criterion to evaluate the performance of their technique, assuming

that a better performing measure should have better correlation coefficient with

sequence similarity.

2.3 Evaluation of Semantic Similarity Measures

Due to the presence of so many approaches and measurement methods for semantic

similarity, an important question is: how accurate each measure captures the

functional similarity between two GO terms, proteins or genes?

The selection of the approach to validate similarity measures is still a subject

of debate since no accepted standard and few comparative studies exist. There

are related measures, like sequence similarity and coexpression data, which may

be considered for the validation of semantic similarity methods. By correlating

semantic similarity with such measures it may be possible to determine how well

a measure captures the similarity in gene products.

The first assessment exercise was done by Lord et al. [25], who evaluated Resnik,

Lin, and Jiang Conrath measures by correlating them against sequence similarity,

and by using the average approach. They used Pearson’s correlation coefficient

as the evaluation criterion, and reported that it is highest for molecular func-

tion aspect of gene ontology. Resnik’s measure was reported to have the highest

correlation with sequence similarity, and accordingly, considered to be the best

measure.

Sevilla et al. [31] used gene coexpression data, and evaluated the same three mea-

sures using the maximum approach. They found that Resnik’s measure performs

best, and that the biological process aspect has the highest correlation with gene

coexpression.
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Couto et al. [13] evaluated the GraSM variation of these measures based on correla-

tion with sequence similarity. They used best-match average (BMA) combination

approach to compute protein similarity. They found the highest correlation with

Jiang and Conrath’s measure for biological process sub-ontology of GO.

Schlicker et al. [32] compared their measure with Resnik’s measure by viewing the

distribution of sequence similarity over semantic similarity, considering discrete

levels. They reported that their measure performed better, especially in distin-

guishing orthologous gene products from the gene products with other levels of

sequence similarity.

Lei et al. [33] evaluated several semantic similarity measures in an applica-

tion for predicting subnuclear location, using the multiclass classification results

(Matthews correlation coefficient) as the criterion. They compared Resnik’s mea-

sure with the simLP measure and found them not to be significantly different in

performance. They also tested several combination strategies for applying simLP

to gene product similarity and concluded that the sum of exact-matching term

pair similarities produced the best results.

Guo et al. [34] evaluated simUI, simLP, Resnik, Lin, and Jiang Conrath measures

on their ability to characterize human regulatory pathways. They reported that

Resnik’s measure performs the best.

Wang et al. [14] evaluated their measure against Resnik’s measure. They clustered

gene pairs by semantic similarity computed by their method, and compared the

resulting clusters with human perception. They reported that their measure is

closer to human expectations as compared to Resnik’s measure.

Pesquita et al. [30] conducted an evaluation of semantic similarity measures by

modeling their behavior as function of sequence similarity. They compared Resnik,

Lin, and Jiang Conrath measures using several combination approaches, and also

the group wise measures simUI and simGIC. They reported that the correlation

between semantic similarity and sequence similarity is not linear. They reported

that the best-match average (BMA) combination approach gives better results
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than the average and maximum approaches. They also found that the majority

of semantic similarity measures show identical behavior, and suggested that reso-

lution is better criterion for evaluation. They identified hybrid simGIC to be the

best method on the basis of resolution.

Mistry et al. [35] evaluated eleven measures: Resnik, Lin, and Jiang Conrath with

both the average and maximum approaches, three vector-based measures (cosine,

weighted cosine, and kappa), and TO and NTO. They studied correlation between

the measures and the correlation with sequence similarity. The TO measure was

found to have best correlation with sequence similarity.

Song et al. [15] evaluated their proposed measure AIC by comparing it with

Resnik, Jiang Conrath, Lin and Wang. They used correlation with gene expression

data as the evaluation criterion. They found AIC having the best correlation, and

therefore having the best performance. Table 2.1 gives a summary of evaluation

studies with their results.

What can be understood from these studies is that there is no agreement upon

the most accurate measure for comparing GO terms or gene products. Different

measures performed differently under different situations. A measure can be well

suited for one task but perform poorly for another. For instance, simUI was

found by Guo et al. to be the weakest measure for its ability to characterize

human regulatory pathways, while Pesquita et al. found it to be fairly good

when evaluated for correlation with sequence similarity. However, one result was

consistently found that pair wise measures using Resnik similarity outperform Lin

and Jiang Conrath measures.

There are arguments for and against various strategies used, and there is no gold

standard for evaluation of semantic similarity measures. Sequence similarity is

well known to be correlated to semantic similarity, but it is also well known that

there are gene products with similar function but different sequence.
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Table 2.1: Approaches used for evaluation of semantic similarity measures.

Study Name Evaluation Approach Methods Com-
pared

Result

Lord et al. Correlation with sequence
similarity

Resnik, Jiang
Conrath, Lin

Resnik identified as best

Sevilla et al. Correlation with gene co-
expression data

Resnik, Jiang
Conrath, Lin

Resnik identified as best

Couto et al. Correlation with sequence
similarity

Resnik, Jiang
Conrath, Lin
and their
GraSM vari-
ants

Jiang Conrath GraSM the
best

Schlicker et
al.

Correlation with sequence
similarity

Schlicker,
Resnik

Schlicker found better

Lei et al. Matthews correlation co-
efficient

Resnik, SimLP No significant difference

Guo et al. Ability to characterize hu-
man regulatory pathways

SimUI, SimLP,
Resnik, Lin,
and Jiang
Conrath

Resnik’s measure per-
forms best

Wang et al. Comparison with human
perception

Resnik, Wang Wang’s measure performs
better

Pesquita et
al.

Resolution of similarity
measures

Resnik, Lin,
Jiang Con-
rath, SimUI,
SimGIC

SimGIC performs best

Mistry et al. Correlation with sequence
similarity

Resnik, Lin,
Jiang Con-
rath, cosine,
weighted co-
sine, kappa,
TO, NTO

TO measure performs
best

Song et al. Correlation with gene ex-
pression data

Resnik, Jiang
Conrath, Lin,
Wang

AIC performs best
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Table 2.2: Similarity computed by existing methods.

Term1 Term2 Resnik GraSM Jiang GraSM Lin GraSM Wang

GO 0048308 GO 0048311 0.3 0.02 0.3 0.56

GO 0007005 GO 0051646 0.02 0.01 0.03 0.2

GO 0016043 GO 0071841 0.04 0.11 0.2 0.51

GO 0051179 GO 0051641 0.19 0.22 0.64 0.76

GO 0051179 GO 0051179 0.19 1 1 1

GO 0051641 GO 0051641 0.07 1 1 1

2.4 Critical Analysis of Existing Methods

2.4.1 Motivating Case Study

In order to analyze the existing methods, we take example taxonomy from Gene

Ontology as shown in Figure 1.1. We select four pairs of concepts making different

formations. Then we compute the similarity between them using the existing

methods (normalized in case of Resnik) and the computed similarities are shown

in Table 2.1.

We can observe that the similarity computed by these methods for same pairs of

GO terms is not consistent. Some methods give higher similarity than others, for

the same pairs.

We discuss limitations of various measures, and the need to develop new measure.

We divide the measures into two parts: old measures and recent measures.
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2.4.2 Old Measures

Resnik’s measure has distinct characteristics among all similarity measures. To

elaborate, let us take an example of a pair of GO terms GO:0051641-cellular local-

ization and GO:0051179-localization located near root (Figure 1.1). Resnik simi-

larity between these two terms is 0.19. The similarity of GO:0051179-localization

with itself is also 0.19, not 1. Lin gives 0.64 for the first comparison and 1 for the

second one. The reason for significantly low similarity value by Resnik is that the

terms are located near root, where Resnik drastically differs from other measures.

Let us now consider a taxonomy of store items as shown in Figure 2.1. Resnik sim-

ilarity between ‘food item’ and ‘food item’ is less than 100%. For other measures,

it is 100% because a concept is compared with itself. The logic behind Resnik

can be explained in real life: one food item can be dissimilar with another. This

factor should not be ignored when formulating similarity measures. Let us call

it Resnik Factor. Now we cannot say for sure that ‘food item’ is dissimilar with

‘food item’. It can be similar in some cases. In fact, some uncertainty is involved

in this comparison, and many other comparisons. It would be more appropriate

to say that concept ‘food item’ is similar to itself, subject to some uncertainty.

Further, apple is similar to apple with some (little) uncertainty.

From the point of view of semantic computing, the structure of ontology is more

relevant to measure similarity as compared to the instances or any external data.

However, most measures make use of annotation of gene products for this purpose.

Whether this external data should be used for computation of term similarity, is

another important issue that needs to be addressed. Suppose there are three

sibling terms a, b and c. The Resnik (and other IC-based measures) similarity

between a and b will change if more annotations of c are added. It is possible that

two distantly located concepts in ontology have higher Resnik similarity value as

compared to two sibling concepts because of too many annotations of the sibling

concepts.
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Figure 2.1: An example taxonomy of store items.

Lin’s similarity between two close terms located near root will be higher as com-

pared to Resnik similarity between the same two terms. Lin’s similarity of a term

with itself will be 1, whether the term is general or specific. Jiang Conrath sim-

ilarity measure too shows the same behavior. According to these two measures,

the similarity between ‘apple’ and ‘apple’, between ‘fruit’ and ‘fruit’, and between

‘food item’ and ‘food item’ is 100%. From one point of view, Lin and Jiang

Conrath appear to make correction in the Resnik’s measure. From other point

of view, they appear to eliminate a good characteristic of that measure. Taking

another example, similarity between ‘fruit’ and ‘baked item’ using Lin’s measure,

may be nearly same as that between orange and apple. This does not appear to

be consistent with the human judgment.

2.4.3 Recent Measures

The above issues were addressed by later similarity measures. There is a class of

measures that compute similarity from some values taken from all the ancestors of

the two terms. The contribution from common ancestors is divided by that from

all ancestors. SimUI uses number of ancestors, while simGIC uses IC of ancestors

as contribution, reducing the contribution from general terms. Wang reduces the

weight of ancestors by multiplying the weight of child concept by a fraction, for
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Figure 2.2: An example taxonomy of things.

example, 0.8. AIC, the most recent measure, assigns higher weights to ancestors,

with maximum weight for the root.

The above measures sound logical, with a clear advantage of handling complex

DAG structure of ontologies like Gene Ontology. The close concepts near leaves

will have more common ancestors than the uncommon ones, giving a high simi-

larity value due to a high numerator. Similar close concepts near root will have

less common ancestors and less similarity value. This addresses the issue with Lin

measure. There are few but quite significant issues which are not addressed by

the above measures, including the most recent ones. In the example taxonomy

of Figure 2.2, let us analyze how the similarity is measured by various methods.

Similarity between ‘Living thing’ and ‘Non-living thing’ will be 33% by SimUI due

to 1 common ancestor out of 3. Wang and AIC will count the common ancestor

‘Thing’ twice, raising the similarity to around 50%. Wang will reduce the contri-

bution of ‘Thing’ by a factor, e.g. 0.8, dropping the value to 44%. AIC will give

higher weight to ‘Thing’, raising the similarity above 50%. SimGIC will give zero

weight to ‘Thing’, bringing the similarity to 0. The semantics of the ontology,

and our knowledge about things suggest that living thing and non-living thing are

highly dissimilar.

Now we compare ‘Animal’ with ‘Man-made’ thing, having 1 common ancestor
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‘Thing’ (counted twice by Wang and AIC) out of 5. SimUI will give 20%, SimGIC

0%, while Wang will give somewhat less than 33%. AIC, with the highest weight

of ‘Thing’, will give more than 33%. We cannot prove which similarity value

is correct. The most effective tool we have is the logical reasoning, using the

principles of semantic computing. Root is the least specific concept in an ontology,

with information content of 0. Animal and man-made thing may not be given high

similarity for both being ‘things’.

SimGIC gives low similarity (in agreement with semantics) so far. However, when

we move down, it will change. It will give slightly less than 33% similarity between

‘Plant’ and ‘Animal’ due to the common ancestor ‘Living thing’. The similarity

will grow to above 50% one or two steps further down, for quite general siblings

in a large ontology.

The result of Resnik needs more analysis as it does not give 100% similarity to

same concepts, and has been often criticized for this. However, it has one feature

that may guide us to better design of a new similarity measure, called as ‘Resnik

factor’ earlier in this dissertation. Due to this factor, Resnik gives low (although

too low) similarity between Plant and Plant, and relatively high similarity between

Apple and Apple. This is not only logical, but may also be useful for some semantic

processing applications. For example, in protein comparison, if two proteins share

a general GO term, it should contribute less to their similarity, while sharing a

specialized term should contribute more.

We have analyzed why the similarity computed is not consistent across different

methods, i.e., there is a high degree of disagreement among them. This answers

research question 1 as given in section 1.1.
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2.5 Protein Sequence Similarity

Protein sequences frequently have some similarity among them depending upon

their relationship. Such similarity is due to common evolutionary origin. There-

for, measuring this similarity is important for the research on evolution. Com-

paring two sequences is not a simple string comparison. For example, sequences

ACCDEDD and EACCPTDEDE have quite significant similarity. To find out

similarity between them, the sequences should be aligned together such that ACC

of the first sequence matches with ACC of the second, and DED of first, with

DED of the second. To do this, gaps will be inserted in the first sequence before

ACC and before DED. Gaps will have penalty associated with them, reducing the

similarity value.

Not all matching amino acids contribute the same to the similarity of sequences. C

matching with C contributes more to the sequence similarity than A matching with

A. When there are mismatches, they generally result in the reduction of similarity

(negative contribution). However, this negative contribution also depends upon

the mismatching amino acids, and in some cases, it is actually positive contribution

(for example, comparison of D with E). This is because the amino acids are related

evolutionary. The overall similarity score is computed from the matching and non-

matching amino acids in the sequence alignment. The contribution of each match

and mismatch is determined from a scoring matrix. BLOSUM62, shown in Figure

2.3 is a commonly used scoring matrix. There are other scoring matrices including

BLOSUM50, BLOSUM80, PAM10, PAM50 and others.

Sequence similarity can be expressed as percent identity. A high sequence sim-

ilarity between two proteins is unlikely to exist just by chance. However, little

similarity may exist by chance. We say that two proteins have significant se-

quence similarity if their similarity is high to the extent that is unlikely to happen

by chance. This is crucial for research because the significant similarity will mean

the two proteins diverged from a common ancestor. In this context, alternative

methods have been developed to express similarity score.
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Figure 2.3: Blosum62 matrix.

Expect value (E) is a value that represents the number of proteins having a given

similarity (or higher) that one can expect by chance. It decreases exponentially

as the similarity score increases. E-value can be 10−6 or less for proteins having

significant similarity. P-value is the probability of finding a protein having given

similarity (or higher) by chance.

2.6 Conclusion

The similarity values computed are not consistent across various methods, and

considerable disagreement exists. Resnik’s measure has a unique feature that

properly treats general concepts, lowering their similarity. It makes logical use of

IC. Later measures removed some limitations of Resnik’s measure, but all of them,

including the most recent ones, miss this important feature. There is a need to

address the issues in the existing semantic similarity measures.

The relationship between protein sequence similarity and function similarity has

been explored. There are indications that a strong correlation exists between the

two. However, evidence exists that proteins with low sequence similarity have high



42

function similarity, and that the relationship is not linear. It is crucial that this

relationship be studied in more detail, since it is applied in the areas like prediction

of protein function, and evaluation of new similarity measures. There is a need

to check whether this correlation can be used for evaluation of semantic similarity

measures.

There is no agreed upon criterion to evaluate the correctness of semantic simi-

larity measures. Some authors evaluated semantic similarity measures using the

correlation with sequence similarity as the criterion. However, there is no strong

reason for this correlation to be used for evaluation.



Chapter 3

Proposed Methods

We propose two methods for computing semantic similarity: SemSim and SimEx-

act. SemSim is a general purpose method to measure semantic similarity between

concepts of ontology. It can be used for any ontology including Gene Ontology.

SimExact has a specific purpose: Finding similar proteins with high efficiency (fast

speed). This is crucial for many applications. However, it is not appropriate for

measuring semantic similarity between the terms of Gene Ontology.

3.1 Semantic Similarity Measure: SemSim

In order to correctly compare concepts of ontology, especially Gene Ontology, it

is necessary to resolve the issues discussed earlier. First of all, we would treat

the structure of ontology and annotation data separately. Annotations are not

integral part of ontology. In OWL, individuals or instances are not mixed with

ontology structure. Although protein or gene annotations are not the same as

instances, still they are databases external to Gene Ontology. Similarity between

two concepts of ontology should depend upon the structure of ontology rather

than external databases. Number of proteins annotated to a GO term determines

its uniqueness.

43
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There is a need to formulate a mechanism to compute Information Content and

similarity purely from the ontology structure. We define Ontology-based Informa-

tion Content ICont, which is computed in the same way as IC, except that the

frequency of leaf concepts is considered to be 1, rather than the number of anno-

tations. Therefore, ICont is independent of annotation data, and is solely based

on the ontology structure. For distinction, we denote IC as ICann which reminds

that it is based on annotations of proteins or genes.

Now we propose our method SemSim which addresses the above mentioned issues.

The initial part of this method uses Jaccard index like simUI and simGIC. Similar-

ity is a fraction in which numerator is computed from the common ancestors and

denominator from all ancestors of the two concepts. This way, the DAG structure

of ontology does not pose problems.

We define Ancestors+(c) as the union of Ancestors(c) and the concept c itself.

Ancestors+(c) = {c} ∪ Ancestors(c) (3.1)

The initial form (SemSimI) takes common ancestors of both concepts, sums up

their ICont, and divides this sum by the sum of ICont of all ancestors of both the

concepts.

SemSimI(c1, c2) =

∑
ICont(Cmn(c1, c2))∑
ICont(Cmb(c1, c2))

(3.2)

where

Cmn(c1, c2) = Ancestors+(c1) ∩ Ancestors+(c2)

Cmb(c1, c2) = Ancestors+(c1) ∪ Ancestors+(c2)

This is initial unadjusted form of SemSim, which has some issues to be addressed.

It does not take into account the annotation of proteins or genes. Similarity

between fruit and fruit (Figure 2.1) will be 1. Similarity between plant and animal

(Figure 2.2) will be slightly less than 0.33 (IC of thing being zero). This is low as
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compared to Lin, Wang and AIC, but still high in the context of the taxonomy.

Similarity between vertebrate and invertebrate will be near 0.5 because of two

common ancestors out of four, again too high for generalized concepts. Overall,

the similarity between two close generalized concepts will be high. So this form of

SemSim does not fully incorporate what we called Resnik Factor.

Our approach to deal with this factor is to introduce confidence level in addition to

similarity value. For example, the similarity between fruit and fruit is high, with

a low confidence level, and the similarity between orange and orange is also high,

with a higher confidence level. Two oranges are more likely to be similar than

two things which are only known to be fruits. The advantage of this approach

is that we can measure similarity using graphical methods, and confidence level

using some other measure like annotation-based Information Content.

We introduce two types of confidence levels, which can be combined together. The

concepts near root generally represent broad classes of things like ‘living thing’ and

‘non-living thing’, ‘natural thing’ and ‘man made thing’ etc. So they are different

from one another at very basic level, even if they are located close to each other.

If the concept is compared with itself, similarity should be high, but there is some

uncertainty. The first type of confidence level is a measure of specificity of the

concepts. This is computed from ICont.

Spec(c1, c2) =
ICont(c1) + ICont(c2)

2 ·MaxICont
(3.3)

where c1 and c2 are the two concepts to be compared, and MaxICont is the maxi-

mum ICont in the ontology. Specialized concepts have higher Information Content,

and higher confidence level, whereas generalized concepts have lower Information

Content and lower confidence level. Part-of relationship was not used for comput-

ing information content. The reason is that two items being part of an assembly

will be frequently different from each other. For instance, chair and computer are

part of an office, but are not similar.
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The second type of confidence level is a measure of uniqueness of a concept in

the context of annotations. A concept having thousands of protein annotations is

less unique as compared to a concept (GO term) having only few annotations. It

will be relevant only when using SemSim for comparing proteins or genes. When

a unique concept is compared with itself, it should give high similarity and high

certainty, but when we compare a less unique concept with itself, it should give

high similarity but less certainty. Uniqueness is computed from ICann.

Uniq(c1, c2) =
ICann(c1) + ICann(c2)

2 ·MaxICann
(3.4)

This system gives three values for a pair of concepts: similarity value, specificity

and uniqueness. In some situations, a single similarity value is required by the

client application. For this purpose, adjustment is applied on initial similarity

value. Adjustment factor Ajd is defined as

Adj = w1 · (1− Spec) + w2 · (1− Uniq) (3.5)

w1 and w2 are the weights (positive) given to the two types of confidence levels

respectively, such that w1 + w2 <= 1. Each weight will be set to 0 for no adjust-

ment and 1 for maximum adjustment, with their sum not exceeding 1. We define

SemSimA as

SemSimA = SemSimI(1− Adj) (3.6)

The adjustment reduces the similarity value of generalized concepts and the con-

cepts having many annotations. This adjusted similarity measure addresses the

above mentioned issues. In Figure 2.2, let us assume that the ICs of various

concepts are as shown in Table 3.1.

Then, the similarity between various generalized concepts will be as shown in

Table 3.2. Here, the weight w2 is set to zero, because uniqueness is not modeled in
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Table 3.1: Assumed ICs of concepts of Figure 2.3.

Thing 0

Living thing 1

Plant, Animal 2

Vertebrate, invertebrate 3

Table 3.2: Similarity between generalized concepts by SimSim A.

Concept 1 Concept2 w1 = 0 w1 = 0.4 w1 = 0.8 w1 = 1

Plant Animal 0.2 0.13 0.07 0.04

Vertebrate Invertebrate 0.33 0.24 0.15 0.1

Living thing Living thing 1 0.64 0.28 0.1

Vertebrate Vertebrate 1 0.72 0.44 0.3

the example. The heading shows various values of w1, which represents specificity.

It can be seen that the adjustment reduces the similarity between generalized

concepts by a factor proportional to the weight.

The unadjusted similarities of the pairs (Living thing, Living thing) and (Verte-

brate, Vertebrate) are both 1. Vertebrate is less likely to be dissimilar with another

vertebrate, while a living thing is more likely to be dissimilar with another living

thing. However, the low similarity or high dissimilarity of a concept with itself, es-

pecially for high weight, cannot be justified logically. Resnik measure also behaves

the same way, but this is not consistent with the reality.

To explain the issue, let us take an example of two person p1 and p2, who are

both IT professionals, working in banking applications, both play tennis, both are

young. Assume that all these characteristics have high specificity, and are shared

by p1 and p2. Our system based on SemSimA will give high similarity between

them. The overall similarity between two person is the average of (high) individual

similarity values resulting from the comparison of a special concept with itself. A
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new fact is registered in the system, saying both of them are Africans. Assume

that this characteristic is a general one. Now comparison of a general concept with

itself gives low similarity (using SemSimA or Resnik) due to small IC. This low

similarity value will be contributed to the overall similarity between two persons,

which is the average of individual similarities. Therefore, this new fact will drop

the overall similarity between p1 and p2.

This scenario applies to proteins where, instead of person, we have two proteins and

instead of common characteristics, we have common functions. We would consider

two proteins having common functions corresponding to special GO terms, and

therefore having high similarity. Assigning a new general GO term to both proteins

will drop their similarity. When two different concepts are compared, the above

adjustment will work fine for specialized as well as generalized concepts.

We define SemSimB which, instead of making a generalized concept dissimilar with

itself, gives 100% similarity, but lowers the confidence level Conf. For c1 6= c2,

SemSimB(c1, c2) = SemSimA(c1, c2), c1 6= c2 (3.7)

For c1 = c2 = c

SemSimB(c, c) = 1 (3.8)

Conf =
w1 · Spec+ w2 · Uniq

w1 + w2

(3.9)

Rather than returning a single value, this model returns two values: similarity and

confidence level. Confidence level determines how much certainty or uncertainty

is present in the similarity value, when a concept is compared with itself. In

case of two different concepts, there is no uncertainty. The client application will

process the result accordingly. When computing similarity between two proteins

using Best Match Average for example, weighted average of best matching pairs



49

Figure 3.1: A hypothetical ontology.

may be taken with Conf being used as weight. A generalized GO term common

in two proteins will contribute to their similarity rather than dissimilarity. For

maximum effect of specificity and uniqueness, both weights would be set to 0.5.

We recommend using SemSimB, unless the client application requires a single

similarity value.

Let us consider a hypothetical ontology shown in Figure 3.1. There is a chain of

descendents such that c1 is a thing, c2 is a c1, cr is a cr−1. Assume that ICs are,

root:0, c1:1, c2:2, c3:3, and so on. Ellipses mean further taxonomy of concepts.

Similarities computed by SemSim and existing methods between two pairs (a, b)

and (a, a) are listed in Table 3.3, assuming r is 6, depth of ontology is 12 (d=12)

and maximum IC in the ontology is 12. Lin, SimGIC, Wang and AIC compute

similarity regardless of the descendants of a and b. Normalized Resnik similarity

shown in parentheses, and SemSim are sensitive to the taxonomy below a and b.

SemSim returns two values: similarity and confidence (certainty). Since a and b

are general concepts in this example, SemSim gives low similarity between them.

It gives similarity=1 and confidence=0.58 for pair (a, a).
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Table 3.3: Similarity computed by SemSim and existing methods (r=6, Figure
3.1).

Pair Resnik Lin SimGIC Wang AIC SemSim

a, b 6(0.50) 0.86 0.6 0.76 0.91 (0.35, 1)

a, a 7(0.58) 1 1 1 1 (1, 0.58)

3.2 Protein Functional Similarity Method - SimEx-

act

To compute semantic similarity between two proteins, GO terms that annotate

these proteins are compared, and then the Best Match Average (BMA) of the term

similarities is taken. Protein pairs, especially those with high similarity, have some

common GO term annotations. A component of protein semantic similarity results

from the exact match between such GO terms. Most methods give a semantic

similarity of 1 when a GO term is compared with itself. To study this, we split

protein similarity into two components: the first one resulting from exact match,

and the second one resulting from partial match of GO terms. We define semantic

similarity measure SimBinary, that returns 1 for identical GO terms (exact match)

and 0 otherwise.

SimBinary(c1, c2) = 1 for c1 = c2, 0 for c1 6= c2 (3.10)

In Best Match Average, only the best matching term pairs are significant, and

all other term pairs are ignored. For each common term between two proteins,

the best match is exact match, and all other terms are ignored. Coming to the

second component, we compute semantic similarity using various methods, but

ignore the 1’s resulting from the comparison of identical GO terms. We therefore

define a fractional component of each measure that computes similarity only if it

is a fraction, and ignores the exact matching case of c1 = c2. SimResFrac, the

fractional component of Resnik is defined as:
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SimResFrac(c1, c2) = SimRes(c1, c2)for c1 6= c2, 0for c1 = c2 (3.11)

Fractional components of Jiang Conrath, Lin and other measures are computed

in the same manner. The purpose is to study each component of similarity in

isolation. We apply these variants as well as SimBinary to protein pairs by taking

BMA of the similarity values of individual term pairs, and therefore define the

following measures for protein comparison:

SimBinP (p1, p2) = BMA(SimBinary(ci, cj)∀ciεAnnot(p1), cjεAnnot(p2))

(3.12)

SimRFP (p1, p2) = BMA(SimResFrac(ci, cj)∀ciεAnnot(p1), cjεAnnot(p2))

(3.13)

SimBinP is SimBinary as applied to proteins p1 and p2, and Annot(pi) is the set

of concepts (GO terms) annotated to pi.

From initial experiments, it was hypothesized that the semantic similarity is

mainly influenced by common terms. We explored the possibility to exploit this

for high speed similarity computation applications. We computed SimBinP for

our data set, and observed its behavior as compared to other similarity measures.

SimBinary gives similarity of 1 for identical GO terms. If two proteins share a

common term, it will contribute 1 to their similarity, no matter how informative the

term is. Most existing measures work the same way. However, this means ignoring

the information content. Sharing a general term and sharing a specific term should

have different effects. We propose SimExact, which is enhanced form of SimBinary,

and is based on contribution from common terms between the proteins to be

compared. We combine ICont and ICann to get ICcomb.
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ICcomb(c) = w1 · ICont(c) + w2 · ICann(c)) (3.14)

Where w1 and w2 are weights given to two ICs respectively such that w1 +w2 = 1

In our experiments, w1=0.5, w1=0.5 was used, in which case combined IC is the

mean of two ICs. Two leaf GO terms, one having few annotations and the other

having many annotations will have same ICont, but the former will have higher

ICann than the latter.

SimExact makes an improvement in SimBinary. Instead of giving 1 for all matching

terms, SimExact discriminates general terms from specific terms. SimExact at

term level (SimEx) is defined as

SimEx(c1, c2) = ICcomb(c1) for c1 = c2, 0 for c1 6= c2 (3.15)

Now we define SimExact at protein level. MatchScore for proteins p1 and p2 is a

score based on the terms shared by the two proteins.

MatchScore(p1, p2) =
∑

tεTp1∩p2

ICcomb(t) (3.16)

MatchScore is based on number and IC of common terms rather than the percent-

age of common terms. An advantage of this scheme is that it handles the case of

under-annotated proteins. A pair having few but 100% common terms will have

lower score than a pair having many and 100% common terms. However, the effect

of uncommon terms is not counted so far. We define Penalty as a score based on

the uncommon terms in proteins p1 and p2

Penalty(p1, p2) =
∑

tε(Tp1∪Tp2)−(Tp1∩Tp2)

ICcomb(t) (3.17)

SimExact is then defined as
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SimExact(p1, p2) = MatchScore(p1, p2)− Penalty(p1, p2) (3.18)

SimExact has no definite upper and lower limits. It can be negative for very

dissimilar proteins, and can be more than hundred for proteins with many common

GO terms. It will make distinction between pairs all having 100% common terms,

but having different annotation strengths.

SimBinary and SimExact can be used to design high speed similarity computation

programs, especially, protein query answering programs. It can be safely assumed

that the similar proteins do have some common GO terms. When we are interested

in most similar proteins, common GO terms would not only be present, they would

be in majority. This can be used for formulation of efficient search algorithm. The

algorithm would only look for proteins that have GO terms common with the

query protein, rather than scanning the whole database. With the use of powerful

database queries, we can select the proteins similar to a query protein with an

order of high efficiency. Experiments are required to assess whether SimBinary

and SimExact can produce results with reasonable accuracy.

3.3 Implementation and Experimental Environ-

ment

We implemented Resnik, Jiang Conrath and Lin, which are relatively old measures,

and are referenced frequently in the literature. GraSM technique was applied on

these three measures. Thus we had Resnik GraSM, Jiang Conrath GraSM and

Lin GraSM in addition to the above three measures. We implemented two later

measures SimUI and SimGIC that are based on Jaccard index, and are suitable for

ontology having multiple parents. SimGIC, which is based on IC, was frequently

used in our experiments. We also need to experiment with latest measures. We

implemented two recent measures Wang and AIC. Thus we have 10 well known

measures implemented for our experiments.
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Table 3.4: Database table ‘TermPair’.

term1 term2 semsim simres simlin wang aic

GO:0000166 GO:0000287 0.015593 1.21927 0.210385 0.195372 0.401487

GO:0000166 GO:0003677 0.080613 2.66626 0.639772 0.500182 0.67147

GO:0000166 GO:0003785 0.017212 1.21927 0.164286 0.195372 0.401111

GO:0000166 GO:0005102 0.017268 1.21927 0.277177 0.267437 0.457796

GO:0000166 GO:0005515 0.017234 1.21927 0.339025 0.326116 0.495353

GO:0000166 GO:0005524 0.086848 4.73321 0.826889 0.46713 0.54415

GO:0000166 GO:0008022 0.022774 1.21927 0.18828 0.267437 0.45971

GO:0000166 GO:0017124 0.01992 1.21927 0.181942 0.225794 0.428496

Our implementation strategy was to integrate all relevant data into a single database.

We chose GO database as our primary database, created new tables, and added

new fields in the existing tables where required. This way, we were able to use the

power of SQL to process and retrieve the required data from a unified database.

Table 3.4 shows a table ‘TermPair’ that we added to this database. For comparing

two proteins, we need to compare m·n GO term pairs, where m and n are numbers

of GO term annotations of the proteins. Instead of throwing away the results

of term comparison, we save them in this table. On subsequent calls to term

comparison function, this table is searched. If the term pair exists in the table, its

results are reused rather than computed again. The table, which has more fields

than shown, is also used for the analysis of term similarity. In the same way, new

fields were added in the existing tables to save the values of IC, semantic weight

etc., so that these values are reused instead of computing them again.

We computed semantic similarity between protein pairs using Best Match Average

(BMA) approach. Sequence similarity was computed using BLOSUM62 matrix

and scores were divided by sequence length.
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3.4 Protein Query Algorithm/ Tool

To compute semantic similarity between two proteins having m and n annotations

respectively, m · n term comparisons are required. To process a query for proteins

similar to a given protein from the database of p proteins, p · n2 · g operations

would be required where n is the average annotations of a protein, and g is the

complexity of GO term similarity computation algorithm. This will be practically

too hard for applications.

Tradeoff between accuracy and speed: There is an obvious need for increased

speed of protein query processing. One possibility is to compromise on accuracy

and gain acceptable speed. The same is done in case of BLAST search. Of

course, the compromise on accuracy should be kept to a minimum. We design

a method for protein query processing based on SimBinary (or SimExact), with

an order of high speed. Our technique eliminates the need to visit every protein

in the database. The algorithm is shown in Figure 3.2. The loss of accuracy

is assessed experimentally. This method can be combined with state-of-the-art

semantic similarity methods where it is used as a pre-processor, to short list the

similar proteins for state-of-the-art method.

If there are t terms annotated with a protein, and r proteins annotated with a

term (on average), t ·r operations will be required to process the query. In general,

t and r are too small as compared to p, the number of proteins in the database.

The algorithm can be used in combination with state of the art similarity mea-

sures. In this scheme, our algorithm acts as a guide, and calls other similarity

measurement methods in a smart way, only for selected pairs. The modified algo-

rithm is shown in Figure 3.3. After computing similarity simpb using SimBinary,

it is checked against a preset threshold. If the similarity is more than threshold,

methods are called to compute similarities simpi by existing measures i, which

may be slow but more accurate. At the end, the result is sorted by simpu, the

similarity by measure u, selected by user.
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Figure 3.2: Algorithm for processing protein query using SimBinary

Let us determine the complexity of this algorithm. The algorithm needs to com-

pute the number of terms common in two proteins, and also the total number

of terms annotated with the proteins. This is determined from the database of

annotations. Assuming that the fields are indexed, reading from the database is of

logarithmic complexity. The algorithm involves database read operations propor-

tional to t.r where t is the number of terms annotated to a protein, and r is the

number of proteins annotated with a term. Each read operation has complexity

log(a) where a is the number of rows in the annotation database. Therefore, the

complexity of our algorithm is t · r · log(a).

The power of relational database technology can be exploited to implement the

algorithm. Let us consider the SQL given in Figure 3.4. This SQL is a complete

and efficient implementation of the algorithm. When SimExact is used instead of
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Figure 3.3: Modified algorithm for processing protein query

Figure 3.4: SQL implementation of protein query processing

SimBinary, ICont and ICann are also involved. The two ICs are computed and

saved in the database against each GO term, and this is done only once in the

start. The term table is then joined in the SQL. This affects the execution speed,

though not drastically.

We have developed our query tool in PHP and mySql, and it is available online at

www.datafurnish.com/protsem.php. After successful trial run, it can be provided
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as a unique service to the scientists working in this area. A screen shot is shown

in Figure 3.5. User enters a query protein id and clicks on the Submit button.

The proteins having high semantic similarity with the query protein are listed in

the lower part of the page, ranked according to their similarity.

The first column is protein id, the second one is protein name, and the third one

is the similarity (SimExact) with query protein. Id and name of the query protein

is displayed below the submit button. The similar proteins are retrieved in few

seconds, even faster than the state-of-the-art BLAST tools. User may want to run

a second query on one of the proteins in the result set displayed on the page. To

do this, he will simply click on the id of the desired protein in the list. To query

for some other protein, he will type its id in the text box and press the submit

button.

This page only gives SimExact, and is therefore fast. The user may opt to compute

similarity by other implemented methods. To do this, he checks the box labeled

‘compute full similarity’ located on the upper right part of the page. The tool now

computes similarity using other measures too. Because of SimExact acting as a

guide, the other measures are only computed on the selected pairs. This adds to

the efficiency to a large extent. Still the user experiences a considerable delay in

the response. The resulting page is shown in Figure 3.6.

Everything on this page is same as in the previous one, except that new column

are shown for SimGIC, Resnik, Lin and Jiang Conrath measures. Now user can

see and easily compare similarity values from multiple measures. The ranking is

still on SimExact. In future versions, the user will be allowed to choose another

measure for ranking.

3.4.1 Searching Protein Pairs

Processing all possible protein pairs is computationally expensive. SimBinary can

be used to identify protein pairs making interesting patterns. For example, we

can fix a window of interest on semantic similarity, and find large number of pairs
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Figure 3.5: Screen shot of protein query tool SemQuery showing SimExact
similarity

falling within that window. We applied this method to find large number of pairs

with semantic similarity between 0.8 and 1.

A useful outcome of this method is to identify the pairs, in large number, with

high disparity between sequence similarity and semantic similarity. These are the

pairs having semantic similarity near 1 and sequence similarity near 0.1, meaning

different sequences performing highly similar functions. Some of such pairs may

help identify annotation errors. An example is P02185 Myoglobin and P69891

Hemoglobin subunit gamma-1, having very high semantic similarity of 1 and very

low sequence similarity of 0.1. This may be due to some error or incomplete-

ness in annotations. Another example is P02239 Leghemoglobin-1 and P01958

Hemoglobin subunit alpha having high semantic similarity of 0.88 and very low

sequence similarity of 0.1.
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Figure 3.6: Screen shot of protein query tool SemQuery showing SimExact
and other similarities

3.4.2 Sequence-Semantic Conflict

Experiments indicated many protein pairs having low sequence similarity but high

semantic similarity. We propose formal method for identifying this conflicting

behaviour of proteins. Let us denote sequence similarity between proteins p1 and

p2 by seq(p1, p2) and semantic similarity between them by sem(p1, p2). We consider

protein triples (p0, p1, p2) where p0 is the reference protein, and each of p1 and p2

are compared with it. We define sequence-semantic conflict to exist if

(seq(p0, p1)− seq(p0, p2)) · (sem(p0, p1)− sem(p0, p2)) < 0 (3.19)

(seq(p0, p1)− seq(p0, p2)) · (sem(p0, p2)− sem(p0, p1)) < 0 (3.20)
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The expression on the left hand side of these equations will quantify the conflict.

The conflict will be significant if it is greater than a threshold t. SimBinary was

used to find triples with maximum conflict. The conflict could also be found

simply by searching for pairs having high semantic and low sequence similarity.

However, the above model is more convincing because it would show that one

protein is closer to p0 in a sequence-based query, while the other is closer in a

semantic-based query.

The strategy of this search algorithm is to start with the candidate pairs (p0, p1)

that lie on the upper left portion of a scatter plot between sequence similarity

and semantic similarity. That is, p1 has high semantic similarity but low sequence

similarity with p0. Once we find such pair, we use SimBinary to find candidates

for p2 such that p2 has relatively lower semantic similarity with p0. We compute

sequence similarity of p2 with p0 and test for conflict. If conflict is found, but its

magnitude is too small as compared to the maximum conflict found so far, the

candidate is dropped.

3.4.3 Similarity Inferred from Sequence Similarity

For some investigations, we measure similarity between GO terms inferred from

the sequence similarity of proteins that annotate the GO terms. To compare

terms t1 and t2, each protein that annotates t1 is compared with each protein

that annotates t2. All sequence similarity values thus obtained are averaged. The

average shows how similar the proteins corresponding to t1 and t2 are. We call it

similarity inferred from sequence similarity (SISS), defined below.

SISS(t1, t2) =

∑
piεP1,pjεP2 seq(pi, pj)

|P1XP2|
(3.21)

Where P1 is the set of proteins annotating t1, P2 is the set of proteins annotating

t2, and Seq is sequence similarity between two proteins. This should be useful for

some investigations on behavior of proteins.



Chapter 4

Comparison And Correlation

Between Similarity Measures

This chapter furnishes results of the experiments related with the existing semantic

similarity measures. Semantic similarity measures were compared to find out

agreement or disagreement between them. The measures were calibrated so that

the results can be interpreted in a better way. Correlation between sequence

similarity and semantic similarity was studied from different aspects.

4.1 Experiment 4.1: Distribution of Similarity

Measures

This experiment was done to see the distribution of the similarity values computed

by different methods. There may be a difference in the numeric value returned by

these methods. Then question arises, that how these values would be compared.

The distributions will help us to observe the pattern of similarities of different

methods. Then this pattern can be used to normalize the data of similarity mea-

sures in five different classes (very low, low, moderate, high and very high). This

calibration will help us to convert the quantitative measure of similarity into quali-

tative measure given by domain experts in their research papers and then compare

62
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the methods with the data by domain experts. Distributions of GO term similarity

can be different from those of protein similarity. This is because in BMA, which

is used for proteins, similarity values other than best match are not included.

Therefore, the experiment is performed first on GO terms and then on proteins.

Semantic similarity was computed for the GO term pairs of Dataset 1, using various

methods (Resnik GraSM, Lin GraSM, SimGIC, Wang, AIC), and the distribution

of the similarity was plotted (frequency of pairs against the similarity value). The

same was done for protein pairs of Dataset 1 using BMA. Figure 4.1 shows these

distributions for GO term pairs, where the similarity range (0 to 1) is divided into

10 bins. The columns represent the percentage of pairs that fall in the respective

bin. The graphs show quite different distributions for different methods. A high

frequency in low similarity bins was expected since being dissimilar, in general, is

a common case whereas being similar is a special case. That is, if we pick two GO

terms randomly, they would have high probability of being dissimilar.

Since the similarity values computed (or normalized) by the methods are between

0 and 1, the applications using these methods would interpret the values near 0

as very low, and those near 1 as very high. However, it can be observed from

the graphs that very low or very high may be different for different methods. A

similarity value, say 0.5, may not mean the same in every measure. Therefore, it

would be useful to calibrate each measure based on its distribution in the range

0 to 1. We propose a calibration in which the similarity values output by various

methods are mapped to 5 categories: very low, low, moderate, high and very high.

A frequency of less than 1% in a bin (Figure 4.1) is considered insignificant. Start-

ing from left, the first bin with significant frequency is mapped to very low, and

the next one to low. Similarly, the first bin from right with significant frequency

is mapped to very high, and the next one to high. The remaining bins in the

middle are mapped to moderate. Resnik GraSM is an exception, where frequency

is concentrated in four bins (0 to 0.4), which is equally divided into five categories.

The calibration is shown in Table 4.1, we call it GO calibration.
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Figure 4.1: Frequency distribution of GO term semantic similarity values for
various methods.

The distribution of similarity values for proteins is shown in Figure 4.2. Calibration

of similarity measures was done as explained above, which is shown in Table 4.2.

This calibration is useful when we compare semantic similarity computed by the

above methods with some independent evidence, especially when the evidence is

expressed qualitatively. For instance, protein pairs of Dataset 6 have evidence of

very high similarity according to Lesk and Chothia [20]. Protein pairs of Dataset

7 have evidence of very low similarity according to Trad et al. [21]. These very

low or very high similarities given by domain experts are qualitative measures.
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Table 4.1: GO calibration of semantic similarity measures.

Very low Low Moderate High Very high

Normal 0 to 0.1 0.1 to 0.2 0.2 to 0.8 0.8 to 0.9 0.9 to 1

Resnik G. 0 to 0.08 0.08 to 0.16 0.16 to 0.24 0.24 to 0.3 0.3 to 1

Lin G. 0 to 0.1 0.1 to 0.2 0.2 to 0.5 0.5 to 0.9 0.9 to 1

SimGIC 0 to 0.1 0.1 to 0.2 0.2 to 0.4 0.4 to 0.9 0.9 to 1

Wang 0 to 0.1 0.1 to 0.2 0.2 to 0.8 0.8 to 0.9 0.9 to 1

AIC 0 to 0.2 0.2 to 0.3 0.3 to 0.8 0.8 to 0.9 0.9 to 1

Table 4.2: Calibration of protein semantic similarity for various measures.

Very low Low Moderate High Very high

Normal 0 to 0.1 0.1 to 0.2 0.2 to 0.8 0.8 to 0.9 0.9 to 1

Resnik G. 0 to 0.2 0.2 to 0.3 0.3 to 0.6 0.6 to 0.7 0.7 to 1

Lin G. 0 to 0.3 0.3 to 0.4 0.5 to 0.8 0.8 to 0.9 0.9 to 1

SimGIC 0 to 0.1 0.1 to 0.2 0.3 to 0.8 0.8 to 0.9 0.9 to 1

Wang 0 to 0.4 0.4 to 0.5 0.5 to 0.8 0.8 to 0.9 0.9 to 1

AIC 0 to 0.5 0.5 to 0.6 0.7 to 0.8 0.8 to 0.9 0.9 to 1

To compare these quantitative measures with quantitative results of the similarity

measuring methods (Resnik, Lin, Jiang Conrath etc.), the calibration is essential.

4.2 Experiment 4.2: Correlation Between Simi-

larity Measures

This experiment was performed to explore whether different similarity measures

agree or disagree with one another. If various methods give significantly different

results, then there is a possibility that some or most of them have problems.

We study the correlation between semantic similarity measures at GO term level.
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Figure 4.2: Frequency distribution of protein semantic similarity for various
methods.

Semantic similarity was computed between GO term pairs of Dataset 1, and the

results of all the methods were compared. Each method is compared with all other

methods as shown in table 4.3.

Figure 4.3 shows only two scatter plots of these term pairs (due to limitations of

space, all the combinations are not shown): Wang against Resnik GraSM, and AIC

against SimGIC. The graphs show that the computed similarity is not consistent

across different methods. There are several pairs with low Resnik GraSM similarity

but high Wang similarity. SimGIC and AIC also show a considerable disagreement.
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Figure 4.3: Scatter plots of GO term similarities: Wang against Resnik
GraSM, AIC against SimGIC.

Table 4.3: Correlation between various semantic similarity measures.

Resnik G. Lin G. SimGIC Wang AIC

Resnik G. 1 0.86 0.79 0.69 0.62

Lin G. 1 0.88 0.82 0.75

SimGIC 1 0.9 0.81

Wang 1 0.97

AIC 1

Table 4.3 shows Pearson’s correlation coefficient between the results of various

methods. The experiment shows that there is significant disagreement between

different methods of semantic similarity measurement. Appendices A, B, C and D

list term pairs with high disagreement among different measures. This supports

results of our initial experiment and the reasoning given in Section 2.4. This also

answers the first part of research question 1 as given in section 1.1.
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4.3 Experiment 4.3: Rank Correlation Between

Similarity Measures

Different similarity values computed by various methods for same pairs may be

attributed to different scale and distribution used by these methods. If two simi-

larity measures rank the terms similar to a reference term in identical order, the

measures would be seen as compatible by most applications, even if the similarity

values are different. The experiment is carried out to explore this dimension, using

rank correlation coefficient.

In this experiment, we take a reference GO term r, find n most similar terms to

r, and rank them by their similarity to r using each method. The rank (1 for

most similar term, 2 for next, and so on) according to each method is saved in

the database, and this process is repeated for considerable number of reference

terms (Dataset 3). We observed that different methods rank the terms differently.

We compute Spearman’s rank correlation coefficient, which is equal to Pearson’s

correlation coefficient between the ranks of terms given by two methods. This

determines the agreement or disagreement between the methods, without being

sensitive to their scale or distribution. The Spearman’s rank correlation coefficients

between various methods are given in Table 4.4. Table 4.5 lists top 10 terms

similar to an example reference term GO:0000053 along with their similarity to

the reference term and the rank given by each method. The terms are sorted on

the average similarity given by all methods in descending order.

It can be seen from Table 4.4 and Table 4.5, that there is considerable disagreement

among the methods even on ranking of similar terms. This also answers the first

part of research question 1 as given in section 1.1.
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Table 4.4: Spearman’s rank correlation between similarity ranks given by
semantic similarity measures.

Resnik G. Lin G. SimGIC Wang AIC

Resnik G. 1 0.89 0.78 0.69 0.72

Lin G. 1 0.79 0.72 0.68

SimGIC 1 0.96 0.94

Wang 1 0.97

AIC 1

Table 4.5: Top ten terms similar to GO:0000053 with their similarity (rank).

Term Resnik G. Lin G. SimGIC Wang AIC

GO:0046418 0.263 (1) 0.312 (4) 0.754 (1) 0.891 (1) 0.956 (1)

GO:0000052 0.227 (5) 0.289 (14) 0.674 (2) 0.840 (2) 0.932 (3)

GO:0006600 0.227 (6) 0.287 (16) 0.673 (3) 0.840 (3) 0.932 (2)

GO:0050667 0.243 (3) 0.312 (3) 0.586 (8) 0.776 (7) 0.891 (8)

GO:0009066 0.193 (41) 0.292 (12) 0.618 (4) 0.784 (6) 0.907 (6)

GO:0009064 0.193 (40) 0.290 (13) 0.617 (5) 0.784 (6) 0.907 (5)

GO:0046442 0.245 (2) 0.295 (10) 0.602 (7) 0.768 (8) 0.878 (12)

GO:0006591 0.193 (39) 0.267 (27) 0.606 (6) 0.784 (4) 0.907 (4)

GO:0016259 0.227 (7) 0.277 (24) 0.556 (9) 0.752 (9) 0.892 (7)

GO:0006573 0.213 (24) 0.281 (21) 0.548 (10) 0.748 (12) 0.886 (11)

4.4 Experiment 4.4: Correlation Between Seman-

tic Similarity and Semantic Similarity

In this experiment, we study the relationship between protein semantic (function)

similarity and sequence similarity. This is required for answering RQ2. Some ear-

lier studies have reported that there is a significant correlation between the two
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measures. Some studies expected that as the accuracy of semantic similarity mea-

sures improves, this correlation will get stronger. Accordingly, it has been used for

evaluating the correctness of semantic similarity measures. There is also evidence

of protein pairs that deviate from this trend, and go against the expectation of a

significant correlation.

Semantic similarity and sequence similarity were computed for protein pairs of

Dataset 1 and Dataset 2. To show the relationship between the two types of

similarity, we make scatter plots, where sequence similarity is plotted along x-axis,

and semantic similarity along y-axis. Figure 4.4 shows scatter plots for Resnik,

Lin, SimGIC and AIC for Dataset 1. Pearson’s correlation coefficients for various

measures are: Resnik: 0.76, Lin: 0.67, SimGIC: 0.69, and AIC: 0.66.

All the graphs depict the absence of a significant correlation between the two

similarity measures. In Resnik graph, there are several points having low sequence

similarity and varying values of semantic similarity. Lin similarity shows a similar

behavior, with a large number of points clustering between 0.3 and 0.9 semantic

similarity and less than 0.2 sequence similarity. Wang and AIC graphs have the

similar formation as well, with a column of points from 0.4 to 1 semantic similarity

and low sequence similarity. Upper left region (1) in all graphs shows protein

pairs that have low sequence similarity but high semantic similarity. Lower right

region (2) is empty, indicating that there are no protein pairs with high sequence

similarity and low semantic similarity. Protein pairs in upper right region (3) have

high values of both sequence and semantic similarity.

Figure 4.5 shows the scatter plots of semantic similarity against sequence similar-

ity for SimGIC and Lin similarity measures for non-IEA annotations and protein

pairs of Dataset 2. Correlation coefficients are: SimGIC: 0.64, Lin: 0.62. It can be

observed from these graphs that proteins can have varying values of semantic sim-

ilarity for low values of sequence similarity. Similarly, varying values of sequence

similarity for high values of semantic similarity are also observed.

The Pearson’s correlation coefficient alone is not sufficient to explain the nature of

this relationship. It can be misleading if graphs are not studied carefully. Several
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Figure 4.4: Scatter plot of protein semantic similarity against sequence simi-
larity for Resnik, Lin, SimGIC and AIC for Dataset 1.

Figure 4.5: Scatter plots of SimGIC, Lin against sequence similarity for non-
IEA annotations.

graph formations are possible for a given value of correlation coefficient, say 0.7.

This is in agreement with the findings of Anscombe [33] who show the scatter plots

of 4 sets of data, each having Pearson’s correlation coefficient of 0.8. After looking

at the graphs, one can observe that some of them have really good correlation

while others are weakly correlated.
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Figure 4.6: Scatter plot of protein semantic similarity against sequence simi-
larity for SimBinP. Correlation: 0.72.

4.5 Experiment 4.5: Effect of Common GO Terms

This experiment was performed to investigate the effect of common GO terms on

the correlation between semantic similarity and sequence similarity. For common

terms, the semantic similarity measures compare a term with itself. This is a

simple comparison, where similarity is 1 for most methods. Dataset 1, Dataset 4

and Dataset 5 were used for various investigations in this experiment. Semantic

similarity between the pairs of these datasets was computed using various methods,

and plotted against sequence similarity. The scatter plot for SimBinP against

sequence similarity is shown in Figure 4.6.

SimBinP computes similarity of identical terms as 1 and all other terms as 0. The

result is quite surprising, since it exhibits a correlation similar to that of figure 4.4.

The correlation coefficient is 0.72, which is not very different from the previous

ones.

Figure 4.7 shows the scatter plot of SimGIC for protein pairs having zero common

GO terms (Dataset 4). Figure 4.8 shows the similar graph for protein pairs having

non-zero common GO terms (Dataset 5). Dataset 4 exhibits no correlation, while

Dataset 5 exhibits correlation of 0.69, comparable with Dataset 1. This shows that
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Figure 4.7: Scatter plot of SimGIC against sequence similarity for Dataset 4.
Correlation: 0.

the correlation is actually contributed by the 1’s resulting from the comparison of

a GO term with itself, which is due to the common terms.

To filter out the effect of exact match between GO terms, we computed semantic

similarity using SimResFrac, SimJiangFrac, SimLinFrac etc. Figure 4.9 shows the

scatter plots for SimJiangFrac (GraSM version) and that of SimAICFrac. Both

the graphs are flat, showing almost same semantic similarity pattern for the low-

est sequence similarity pairs and for the highest sequence similarity pairs. This

again shows that the correlation is actually contributed by the 1’s resulting from

the comparison of a GO term with itself, which is due to the common terms.

This suggests that the correlation is not a suitable criterion for the evaluation of

semantic similarity measures, because the similarity is computed between not ex-

actly same terms rather between somewhat different terms. This answers research

question 3 given in Section 1.1.

Clearly, SimBinary is not a precise similarity measure, and is an approximation.

The well known semantic similarity measures are far more precise than SimBinary

at term level. However, in the given system of Gene Ontology and protein anno-

tations, the term similarity values above 0 and below 1 do not seem to play a role

in improving the correlation between semantic similarity and sequence similarity.

This interesting behavior is further investigated in Chapter 6.
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Figure 4.8: Scatter plot of SimGIC against sequence similarity for Dataset 5.
Correlation: 0.69.

Figure 4.9: Scatter plot of Jiang Conrath Fractional, AIC Fractional against
sequence similarity .

4.6 Experiment 4.6: Correlation at Sub Ontol-

ogy Level

In this experiment, we compute the correlation for three sub ontologies of Gene

Ontology. This is required for investigation on RQ2 at sub ontology level. Semantic

similarity and correlation coefficient were computed for protein pairs of Dataset 1

for sub ontologies: molecular function, biological process and cellular component.

Table 4.6 shows the Pearson’s correlation coefficient between sequence similarity

and semantic similarity. The correlation coefficients are in the same range as

observed in previous experiments.
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Table 4.6: Pearson’s correlation coefficient between sequence similarity and
semantic similarity.

Molecular Function Biological Process Cellular Component

SimRes 0.579 0.671 0.677

SimLin 0.554 0.657 0.642

SimJC 0.642 0.749 0.731

SimResG 0.602 0.737 0.728

SimLinG 0.547 0.695 0.661

SimJCG 0.646 0.752 0.732

SimGIC 0.558 0.683 0.664

4.7 Discussion

The results show a weak or moderate correlation between semantic similarity and

sequence similarity. The results differ from some earlier studies assuming good cor-

relation between sequence and semantic similarities. Though Pearson’s correlation

coefficient is a commonly used indicator of such relationship, it hides fine details

about the formation of points on the 2-D space of a graph. A small increment in

the correlation coefficient may not mean an improvement in the performance of

similarity measurement method; it could be due to fluctuations.

All scatter plots show a strong bias towards cases with low sequence similarity.

There are more pairs with sequence similarity less than 0.2, and less pairs with

high sequence similarity. This was expected since the sequences would be similar

in special cases, while they would be generally dissimilar (i.e. there are few recent

paralogs). However, non-linearity can be clearly seen.

A careful observation of the scatter plots suggests that there are two separate

regions in the graphs, corresponding to two ranges of sequence similarity. Left re-

gion corresponds to sequence similarity values from 0 to 0.2, whereas right region

corresponds to the values from 0.2 to 1. In left region, semantic similarity varies

from 0.1 to 1 almost independent of sequence similarity. In contrast to left region
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where points appear vertically, right region has most points appearing horizon-

tally. In this region, semantic similarity remains high, showing some correlation

with sequence similarity. The graphs show that semantic similarity has its own

significance and uniqueness. Its characteristics are distinct from sequence similar-

ity. There are very few points showing high sequence similarity and low semantic

similarity. This means that if a protein has high sequence similarity with another

protein, it will most likely have high semantic similarity with it. In short, high

sequence similarity means probably high semantic similarity.

The points showing low sequence similarity but high semantic similarity represent

the missing results from a protein query to state of the art tools. This issue is

very important because most modern research in the area uses BLAST search tools

that are based on sequence similarity. In contrast to sequence similarity, which is

static, semantic similarity is dynamic. With new versions of Gene Ontology and

ever growing annotation knowledge, the semantic comparisons are expected to be

more meaningful.

We have thus answered research question 2 given in Section 1.1. Absence of

significant correlation can have different explanations.

The most convincing reason is that the nature of semantic similarity is distinct

from sequence similarity, and the two actually are not correlated. A point ap-

pearing near the upper left corner of the plot might move slightly down when the

similarity measure, annotations or GO improves, but one would not expect it to

move altogether to the lower left corner, even with the perfect tools and knowledge

resources. There are several indications in the literature, that proteins with dif-

ferent sequences can have similar functions. Moonlighting proteins, for example,

can switch between distinct functions. In convergent evolution process, proteins of

organisms, not closely related, may have independently evolved to perform similar

functions. Polymorphic protein systems consist of different proteins performing

same function [25]. Proteins having evolutionary relationships can have different

sequences, but similar functions. During divergent evolution, the sequences can

change and diverge from one another, while performing functions.
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Results of Experiment 4.5 have useful implications. Surprisingly, there is a good

contribution to correlation from common terms, and no contribution from uncom-

mon ones. Annotation problems are common in both datasets. Can we suspect

that GO relationships or semantic similarity measures are responsible for this?

While we guess that GO relationships are mostly free from errors, problem may

lie in the interpretation of these relationships, and converting them to numeric

values. For example, can it be guaranteed that all pairs of sibling terms across

GO will have uniform similarity? GO:0000024: maltose biosynthetic process, and

GO:0000025: maltose catabolic process are two sibling terms, having one common

and one distinct parent each. A similarity measure would yield high similarity

between them, while they are semantically opposite. To overcome such problems,

ontologies with rich semantics, and similarity measures capable of capturing these

semantics would be required.

Researchers have studied the role of protein domains in similarity. Thompson et

al. [36] find that structure similarity searches using domain boundaries based on

conserved sequence information may give us additional method to identify simi-

larities between proteins. This results in improvement in performance of structure

similarity searches.

Pathways can also be used in the context of protein similarity. Biological pathways

and networks are based on protein-protein interactions. Guo et al. [34] evaluated

semantic similarity measures on their ability to characterize human regulatory

pathways.



Chapter 5

Results Of Novel Similarity

Measures

It is important to assess the performance of our methods as compared to existing

methods, using some benchmark. As discussed in Chapter 2, there is no gold

standard for the evaluation of semantic similarity methods. Different studies have

used different approach for the evaluation, and the community does not appear

to agree on a single approach which we should use in our research. The most

commonly used approach is the correlation with sequence similarity, which is not

suitable as discussed earlier.

if, by some means, we can acquire set(s) of protein pairs with known functional

similarity, that can be used for the evaluation of semantic similarity methods.

The reliability of evaluation will depend upon how well the similarity within the

pairs is known. Our approach is to look for pairs having confirmed experimental

evidence of either very low or very high similarity. We took help of a biologist

and searched the published literature for protein pairs with reliable evidence of

functional similarity between them. We found one paper providing protein pairs

with very high similarity, and another providing pairs with very low similarity.

Thus we got protein pairs whose functional similarity is confirmed by domain

experts. We used these pairs for our evaluation experiments.

78
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Table 5.1: Globins having high secondary and tertiary structural similarity.

Id Name

P69905 Hemoglobin subunit alpha

P68871 Hemoglobin subunit beta

P01958 Hemoglobin subunit alpha

P02062 Hemoglobin subunit beta

P02185 Myoglobin

P02221 Globin CTT-I/CTT-IA

P02239 Leghemoglobin-1

P69891 Hemoglobin subunit gamma-1

P68080 Myoglobin

Assessing SimBinary and SimExact is not difficult, since their objective is to search

for proteins similar to a query protein in a minimum possible time. We perform

experiments with SemSim, SimBinary and SimExact and show their results in this

chapter. Results are traced for sample pairs using GO graphs and annotations.

5.1 Experiment 5.1: Evaluation Using Highly

Similar Proteins

This experiment is performed to evaluate our semantic similarity method SemSim.

Evaluating semantic similarity measures is difficult. No globally accepted criterion

exists for such evaluation. We found two studies that list proteins with evidence

of function similarity between them. Lesk and Chothia [9] discuss proteins that

have different sequence, but highly similar secondary and tertiary structure. They

identify nine globins that have high structure and function similarity. They are

listed in Table 5.1.
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Figure 5.1: Similarity between pairs of globins by various methods.

We performed this experiment based on evidence from Lesk and Chothia (Dataset

6). We measured function similarity between all possible protein pairs using Sem-

Sim and state-of-the-art semantic similarity methods. Figure 5.1 shows the graph

of similarity measured by various methods. Using normal calibration (Table 4.2),

SimGIC, Wang, AIC and SemSim give very high and high similarity between these

proteins, in agreement with the evidence given in the study. Resnik GraSM gives

lower similarity as compared to other measures, with no pair above 80%, and few

pairs below 60%.

5.2 Experiment 5.2: Evaluation Using Highly

Dissimilar Proteins

This experiment too is performed to evaluate our semantic similarity method Sem-

Sim. This experiment is based on the evidence from de Trad et al. [10] who devised

a protein comparison method that examines a protein sequence at different spa-

tial resolutions. They identified 8 protein pairs with dissimilar functions (Dataset

7). For example, Lysozyme and hemoglobin do not share any biological function,

which is very low function similarity. The graph of similarity values is shown in
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Figure 5.2: Similarity between protein pairs of Trad et al. by various methods.

Figure 5.2. SimGIC, Resnik GraSM and SemSim give very low similarity, in agree-

ment with the evidence given in the study. Wang and AIC give higher similarity

values.

5.3 Experiment 5.3: Evaluation With General

GO Terms

When a term is compared with itself, the similarity is generally 1. Protein pairs

frequently have terms common between them. The case of general terms (located

near root) is interesting. Resnik gives very low similarity when a general term

is compared with itself, while SimGIC, Wang and AIC give similarity value of 1.

To observe the behavior of various measures on generalized common terms, this

experiment is focused on such terms. Protein pairs of Dataset 8 were used for this

experiment.

Figure 5.3 shows the graph of similarities measured by various methods for these

pairs. AIC gives highest similarity, followed by Wang and then SimGIC. SemSim

and Resnik GraSM give lower similarity.



82

Figure 5.3: Similarity between protein pairs having generalized common
terms.

SemSim is the only measure that produces valid results according to the published

evidence and in case of general terms.

5.4 Experiment 5.4: Comparing SemSim With

Existing Measures

In this experiment, we compare SemSim with existing measures, and with sequence

similarity. We need to observe what difference SemSim makes as compared to ex-

isting methods. We also trace the reasons why SemSim differs with the existing

methods in each case, and if it is justified. Semantic similarity was computed for

GO term pairs of Dataset 1 using SemSim and the existing methods. SemSim sim-

ilarity was plotted against other measures, and against sequence similarity. Then

GO term pairs were picked from various regions of scatter plot for detailed inspec-

tion. These pairs were traced using Gene Ontology graphs to inspect whether the

computed similarity conforms to the semantics of the ontology. The GO graphs are

not shown due to the limitations of space. Finally, some protein pairs were picked

from the graphs of previous experiment, and their similarity was checked. With
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this exercise, we could also verify that our implementation of various methods is

free from programming errors.

Figure 5.4 shows scatter plot of GO term semantic similarity SemSim A against

Resnik GraSM. Figure 5.5 shows similar graph for SemSim B against Resnik

GraSM, the weights being w1 = 0.5, w2 = 0.5. SemSim A and SemSim B dif-

fer only when c1 = c2. In this case, SemSim A gives a fraction while SemSim B

gives 1, along with a confidence level. Wang and AIC give a flat value of 1 (with-

out confidence level) when c1 = c2. Figure 5.6 shows scatter plots for SemSim

A against Wang and Figure 5.7 for SemSim A against AIC. It can be seen that

SemSim A gives low similarity as compared to Wang and AIC in many cases.

Correlation with sequence similarity for SemSim A(w1=w2=0.3) is 0.77, and for

SemSim A (w1 = w2 = 0.5) it is 0.83. We used maximum weights (w1 = 0.5, w2 =

0.5) for SemSim B. The scatter plot is shown in Figure 5.8, and correlation is 0.84.

However, we do not rely on this correlation to validate SemSim. In Figure 5.6, we

inspected pairs from various regions of the graph. Table 5.2 lists 9 of such pairs

with semantic similarity values from various measures.

In the first row, there is not much difference among various measures, except

AIC giving a higher similarity. Manual inspection shows that the terms have

mostly uncommon ancestors, justifying low similarity. In the second row, Wang

gives higher similarity of 0.41, while AIC gives still higher value of 0.54. Manual

inspection of graph shows many uncommon ancestors, asking for a low semantic

similarity. Relatively higher value by Wang is because the common ancestors

contribute twice, and because the root may have considerable semantic value if

the terms are not too deep. Further higher value by AIC is because of root having

the highest weight of 1. The scenario of third row is the same as that of second

row.

In the fourth row, Wang gives similarity of 0.60 while AIC gives higher similarity

of 0.79. Manual inspection finds many uncommon ancestors, agreeing with the

measures giving low similarity. Fifth row also has the same scenario. The terms

of sixth row are GO:0003677-DNA binding and GO:0003723-RNA binding, which
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Figure 5.4: Scatter plot of SemSim A against Resnik GraSM.

Figure 5.5: Scatter plot of SemSim B against Resnik GraSM.

Figure 5.6: Scatter plot of SemSim A against Wang.
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Figure 5.7: Scatter plot of SemSim A against AIC.

Figure 5.8: Scatter plot of protein semantic similarity against sequence simi-
larity for SemSim B.

are generalized sibling terms, 4 levels below root. The low similarity computed

by Resnik GraSM and SemSim is close to human perception. These two measures

incorporate Resnik Factor, giving low similarity between close generalized concepts

(like plant and animal). In the seventh row, Wang gives 0.81 while AIC gives

a higher similarity of 0.90. SemSim gives a lower similarity of 0.21. Manual

observation shows that the terms are not far apart, with few uncommon ancestors.

However, the terms are general, falling near root. A high share in AIC value, and

a reasonable share in Wang is from the root being common ancestor of the two

terms. SimGIC yields a lower value of 0.31 because it gives zero weight to root,

and counts the common ancestors once. The low value by SemSim is due to the
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low IC of the terms, and low value by Resnik is due to low IC of the MICA.

In the eighth row, a term ‘Protein binding’ is compared with itself. All measures

except Resnik GraSM and SemSim A give similarity of 1. This is a general term,

having a small IC. Resnik GraSM gives a low similarity of 0.15, and it has a

reason for this, as discussed before. However, this may have adverse effect in some

applications since it may contribute to dissimilarity. SemSim, in its initial stage,

works like SimGIC, SimUI, Wang and AIC, yielding similarity of 1. In the later

stage, it computes confidence level according to the specificity and uniqueness.

SemSim A makes adjustment in the similarity and makes it 0.19, close to Resnik

GraSM. SemSim B (not listed in the table) returns similarity of 1 along with

confidence of 0.19, and lets the client application treat the two values.

In the ninth row too, a term is compared with itself, but this time the term is

more specific. Both Resnik GraSM and SemSim A now give higher similarity due

to the higher IC of the term. SemSim B gives similarity of 1 and confidence of

0.89. Resnik GraSM gives same value of 0.15 for row 7 and 8, although row 7 has

two different terms while row 8 has identical terms.

We also traced some protein pairs from the graphs of Figure 4.4, especially those

having sequence similarity not in line with semantic similarity. In these graphs,

there are pairs having low sequence similarity and high semantic similarity. We

want to trace the measurement to investigate whether this clash is due to some

weakness in the method, or it actually exists in the system. Some of the traced

pairs are listed in Table 5.3. The pair of first row is picked based on high disparity

between sequence similarity and SemSim B. Both proteins of this pair have exactly

same GO terms annotated to them. Therefore, similarity of 1 given by Wang, AIC

and SemSim B seems more logical as compared to SemSim A and Resnik GraSM.

It also shows that two proteins having low sequence similarity may have high

semantic similarity. The pair of second row is picked for high disparity between

sequence similarity and Wang similarity. The proteins have mix of common and

uncommon GO terms. Wang and AIC give similarity of 1 for common terms.

SemSim A and Resnik GraSM give low similarity for generalized common terms.
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Table 5.2: Similarity computed by SemSim and existing methods.

Term1 Term2 ResG JiangG Wang AIC GIC SSimA

GO:0051220 cytoplas-
mic sequestering of pro-
tein

GO:0050764 regulation
of phagocytosis

0.14 0.07 0.19 0.37 0.07 0.05

GO:0005739 mitochon-
drion

GO:0032839 dendrite
cytoplasm

0.07 0.09 0.41 0.54 0.09 0.05

GO:0097038 perin-
uclear endoplasmic
reticulum

GO:0005798 Golgi-
associated vesicle

0.10 0.06 0.42 0.56 0.13 0.07

GO:0009755 hormone-
mediated signaling
pathway

GO:0032886 regulation
of microtubule-based
process

0.14 0.07 0.60 0.79 0.15 0.09

GO:0004674 protein
serine/threonine kinase
activity

GO:0016361 activin re-
ceptor activity, type I

0.18 0.09 0.61 0.67 0.31 0.17

GO:0003677 DNA
binding

GO:0003723 RNA
binding

0.13 0.21 0.75 0.86 0.54 0.16

GO:0008022 protein C-
terminus binding

GO:0005515 protein
binding

0.15 0.15 0.81 0.90 0.31 0.13

GO:0005515 protein
binding

GO:0005515 protein
binding

0.15 1 1 1 1 0.19

GO:0071773 cellular re-
sponse to BMP stimu-
lus

GO:0071773 cellular re-
sponse to BMP stimu-
lus

0.79 1 1 1 1 0.89

SemSim B makes correction in SemSim A by giving similarity of 1 for common

terms, but reducing weight of generalized terms. For instance, a term GO:0003824-

catalytic activity is common between the two proteins. The term is generalized,

located one level below root. Wang and AIC give a flat similarity value of 1 for

comparison of this term with itself. Resnik GraSM and SemSim A give 0.09 and

0.08 respectively. SemSim B gives similarity of 1 and weight of 0.08. Rather

than decreasing overall similarity, this pair slightly increases it, like a course in an

academic transcript with 100% score but small weight (credits) slightly raises the

overall grade.

The pair of third row is picked for high disparity between sequence similarity and

Resnik GraSM. Again, the proteins have mix of common and uncommon terms.
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Table 5.3: Protein similarity computed by SemSim and existing methods.

Protein 1 Protein 2 Seq. ResG Wang AIC SSimA SSimB

P31347 Angiogenin Q8WN62 Angiogenin 0.40 0.50 1 1 0.58 1

P98194 Calcium-
transporting ATPase
type 2C member 1

Q03669 Sarcoplas-
mic/endoplasmic
reticulum calcium
ATPase 2

0.12 0.29 0.85 0.89 0.35 0.52

P45975 Histone-lysine
N-methyltransferase
Su(var)3-9

P38827 Histone-lysine
N-methyltransferase,
H3 lysine-4 specific

0.08 0.32 0.80 0.85 0.39 0.42

P50993 Sodium
/potassium-
transporting ATPase
subunit alpha-2

Q6PIE5 Sodium
/potassium-
transporting ATPase
subunit alpha-2

0.93 0.34 0.80 0.86 0.36 0.50

P48734 Cyclin-
dependent kinase
1

P06493 Cyclin-
dependent kinase
1

0.94 0.24 0.62 0.71 0.25 0.46

Q5RA62 TFIIH basal
transcription factor
complex helicase XPB
subunit

Q60HG1 TFIIH basal
transcription factor
complex helicase XPB
subunit

0.94 0.47 1 1 0.55 1

In the fourth row, proteins have quite high sequence similarity, but semantic simi-

larity by all methods is not much different from third row. The proteins have mix

of common and uncommon terms. One of the term pairs consists of GO:0055085-

transmembrane transport and GO:0006811-ion transport. These are generalized

sibling terms, three levels below root. Wang and AIC give high similarity for this

pair, while Resnik GraSM, SemSim A and SemSim B give low similarity due to

generality of the terms, as discussed earlier. The pair has 14 generalized com-

mon terms, having confidence level less than 0.5. In Resnik GraSM and SemSim

A, these contribute to dissimilarity whereas in Wang and AIC, they contribute

to similarity, but their generality is ignored. In SemSim B, they contribute to

similarity with low weight. Fifth row too shows high sequence similarity, but all

methods agree on low semantic similarity. Pair of sixth row is one of those pairs

that have high sequence similarity as well as high semantic similarity. Both pro-

teins are annotated to exactly same GO terms, like row 1. Result of Wang, AIC

and SemSim B is closer to reality than Resnik GraSM and SemSim A.
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5.5 Discussion

SimUI, SimGIC, Wang, AIC and SemSim have advantage over Resnik GraSM and

Jiang Conrath GraSM that they consider contribution of all common and uncom-

mon ancestors, and are therefore suitable for ontologies having DAG structure.

These methods represent a class of semantic similarity measures that are futur-

istic, and are widely accepted by researchers. SemSim and Resnik GraSM have

an edge over all other measures that they effectively distinguish the general terms

from specific terms. SemSim has a unique advantage of being a member of the

class of modern similarity measures, while retaining a good characteristic of the

original measure, Resnik.

It cannot be proved that a computed similarity between two GO terms or proteins

is correct. No standard benchmark is available for evaluation of similarity mea-

sures. We try to evaluate our method in best possible way. Experiment 5.1 and 5.2

show that the similarity computed by SemSim is in agreement with that reported

in the published literature. During inspection of the results, we did not find a case

where SemSim B similarity value appears to disagree with the taxonomy. Other

measures do disagree in one case or another. SemSim is the only measure that

produces valid results according to the published evidence. Results of SemSim are

close to reality in all cases. Especially, it treats the generalized concepts according

to the semantics of the domain. This answers research question 4 given in Section

1.1.

5.6 Experiment 5.5: Results of Protein Query

Tool

In this experiment, we assess the performance of protein query tool ProtQuery,

and the possible loss of accuracy in the methods used for it. This is required

for addressing RQ5. First, we compare SimBinP with Jiang Conrath GraSM,

the measure closest to SimBinP. Similarities were computed for protein pairs of
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Figure 5.9: Scatter plot of SimBinP against Jiang Conrath GraSM.

Dataset 1. Figure 5.9 shows the scatter plot of SimBinP against Jiang Conrath

GraSM. Although SimBinP is based on common terms only, the graph shows

that, its results are very close to Jiang Conrath GraSM. SimExact is also based on

common terms, and in addition, it makes use of Information Content to improve

the similarity measurement. Therefore, SimBinP and SimExact can be used for

protein query processing without significant loss of accuracy.

Figure 5.10 shows a bar graph of the time consumed by our tool in processing

protein queries. Most of the queries are processed in less than 8 seconds. Figure

5.11 shows similar graph when ‘Compute full similarity’ is checked. The time

consumed goes above 100 seconds, although the existing methods are applied

to few short-listed proteins. If these methods are applied on all proteins in the

database, the time consumed would jump to extreme high, not feasible for practical

use. This answers research question 5 given in Section 1.1.

5.7 Experiment 5.6: Searching Protein Pairs

This experiment demonstrates some further uses of our protein querying mecha-

nism. It can be used to identify protein pairs making interesting patterns. For

example, we can fix a window of interest on the scatter plot of Figure 4.6, and

find large number of pairs falling within that window. The graph of Figure 4.6 is
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Figure 5.10: Graph of time consumed for protein query processing.

Figure 5.11: Time consumed for protein query processing with full computa-
tion.

prepared from a dataset of protein pairs, which may be biased. The measurement

of similarities for large dataset requires intensive computation. Let us consider a

window with semantic similarity between 0.8 and 1, and sequence similarity be-

tween 0 and 1 (full range) and apply our method to find large number of pairs

within it. The results, containing 7,800 pairs, are plotted in Figure 5.12. The

method can find more pairs, maybe all possible pairs within the window. These,

and similar results, are useful in our analysis on behavior of proteins. For example

they verify the results of Figure 4.4 and Figure 4.6, that protein pairs with high

semantic similarity can have sequence similarity ranging from 0.1 to 1.
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Figure 5.12: Scatter plot of semantic similarity against sequence similarity
for searched pairs.

Another useful outcome of this method is to identify the pairs, in large number,

with high disparity between sequence similarity and semantic similarity. These

are the pairs having semantic similarity near 1 and sequence similarity near 0.1,

meaning different sequences performing highly similar functions. Some of such

pairs may help identify annotation errors. We identified such pairs in large number,

Table 5.4 lists 10 of them. More such pairs are listed in Appendix F. Appendix E

lists protein pairs with highest sequence-semantic conflict. This was not possible

without SimBinP and SimExact.

Going further, a large portion of Figure 4.4 and Figure 4.6, with sequence similarity

from 0.2 to 1 and semantic similarity from 0 to 0.6 is empty. The pairs in this

region might be non-existent or rare. We used the method to search for pairs

having semantic similarity ranging from 0.5 to 0.8 and full range of sequence

similarity. We found that such pairs exist, although not frequently. Among the

overall retrieved pairs, there are 2165 pairs inside a 0.2x0.2 square located at

the upper right corner i.e., with sequence similarity and semantic similarity both

between 0.8 and 1. There are 1179 pairs inside the square of same dimensions on

left side of this square, and only 158 pairs inside the square below the corner one.
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Table 5.4: Protein pairs having low sequence similarity and high semantic
similarity.

Protein 1 Protein 2 Seq Sem

P13043 Protein gvpD 1 Q8ZYR9 DNA repair and
recombination protein
RadA

0.07 1

P74503 KaiC-like protein 2 Q57702 DNA repair and
recombination protein
RadB

0.07 1

Q9HHT2 Protein gvpD 2 Q49593 DNA repair and
recombination protein
RadA

0.07 1

Q9WYK4 UPF0273 pro-
tein TM 0370

Q9HHT2 Protein gvpD 2 0.08 1

Q5B4H8 ATP-dependent
DNA helicase II subunit 2

P0CO50 ATP-dependent
DNA helicase II subunit 1

0.09 1

P08280 Protein RecA Q58754 UPF0273 protein
MJ1359

0.07 0.95

P03433 Polymerase acidic
protein

P03431 RNA-directed
RNA polymerase catalytic
subunit

0.09 0.97

Q75D34 Autophagy-
related protein 21

Q640T2 WD repeat
domain phosphoinositide-
interacting protein 3

0.08 0.95

Q7SG97 SVP1-like protein
2

Q75D34 Autophagy-
related protein 21

0.09 0.95

Q8ZTQ5 UPF0273 protein
PAE3143

Q89I84 Protein RecA 0.10 0.95



Chapter 6

Investigation and Discussion

We have found that semantic similarity has only weak correlation with sequence

similarity, and that too is due to the common terms. This interesting behavior of

proteins needs further investigation. We now attempt to find out the reasons for

the weak correlation and for the pattern of sequence-semantic graphs. In Figure

4.4, the points near origin, and those near top right corner (1, 1) are most obvious.

Any proteins picked randomly would most likely be unrelated both sequence wise

and semantic wise, falling near origin. Highly similar sequences are expected to

have similar functions, falling near point (1, 1). The points corresponding to

low sequence similarity but high semantic similarity were also expected to some

extent. Proteins having different sequences can have similar functions in some

cases. Convergent evolution, for instance, may result in such proteins. There are

no points corresponding to high sequence similarity but low semantic similarity,

which was also expected.

Some aspects of the graphs, however, need attention. As protein pairs exceed a

limit of 15% sequence similarity, they abruptly change behavior, and jump to very

high semantic similarity, rather than gradually changing the behavior. In the right

region, the increasing sequence similarity does not have effect on semantic simi-

larity. Semantic similarity measurement of GO terms is an active research area

in bioinformatics and semantic computing, and assumption of a good correlation

94
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between sequence and semantic similarities has been used for evaluation of simi-

larity measures. Therefore, absence of a strong correlation has significance. We

refer to this as the weak correlation issue. But the most interesting aspect is that

the term semantic similarity values above 0 and below 1 do not play significant

role in protein sequence-semantic graph, as depicted in Figure 4.5 and Figure 4.8.

One would not expect this. This is referred to as fractional similarity issue.

The reasons for the above facts are hypothesized to be one or more of the following:

1. Incorrect annotations

2. Incorrect, less precise or incomplete Gene Ontology structure

3. Weak method of semantic similarity measurement

4. Protein function, by nature, is independent of sequence, and a good corre-

lation does not exist in nature.

For further investigation, we measure similarity between GO terms inferred from

the sequence similarity of proteins that annotate the GO terms. The scatter plots

of Figure 4.4 and Figure 4.5 depend on the selection of protein pairs. Bias in this

dataset would lead to incorrect conclusions. We can pick GO terms with known

semantic similarity, particularly sibling leaf terms, and measure SISS between

them. Sibling leaf terms with SISS deviating too much from average would then

be identified as problematic.

Sequence similarity was computed as percentage, as it was done in previous chap-

ters. BLOSUM62 matrix was used for scoring. Alternative scoring matrices e.g.

PAM matrices can be used for measuring sequence similarity. Future works may

use probability (P-value) or expect (E-value) to represent sequence similarity.



96

6.1 Experiment 6.1: Investigation on Weak Cor-

relation

In this experiment, several pairs of sibling leaf GO terms were picked randomly,

and proteins annotating one term were compared with those annotating the other

(sibling term), without taking average. The individual sequence similarity scores

were saved in the database. This allowed us to observe the distribution of sequence

similarity of proteins annotated to sibling GO terms. The same computation was

done for pairs of distant (non-sibling, randomly picked) terms so that a comparison

can be made. Lastly, a similar computation was performed, comparing a term with

itself, i.e., proteins that annotate the same term being compared with one another.

In all these computations, a protein was never compared with itself.

Figure 6.1, Figure 6.2 and Figure 6.3 show these distributions. It should be noted

that a protein pair having some relationship with respect to the term considered,

would have other relationships with respect to other terms. In Figure 6.3 for

example, the proteins share one term, while they may annotate other terms, which

may be distant ones. In other words, two proteins sharing one term have some

semantic similarity, but may not be highly similar. Same reasoning is applicable

to proteins annotating sibling terms. So a peak at low sequence similarity is quite

expected in all three graphs. However, some considerable fraction of proteins

would be expected at high sequence similarity range in Figure 6.2 and Figure 6.3.

Graph of Figure 6.2 would be expected to be close to that of Figure 6.3, and far

from that of Figure 6.1, because sibling GO terms have high semantic similarity.

However, the graph of Figure 6.2 is very close to Figure 6.1. The average for

distant terms is 6.6%, for sibling terms 7%, and for same term 21%. This suggests

that only the terms common between proteins are significant in the context of this

study. This supports the results obtained from Figure 4.5 and Figure 4.8 with

more clarity and confidence.

The experiment does not involve a semantic similarity measure, so reason 3 should

not be responsible for the results. We can rule out reason 2 and reason 3 since the
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experiment involved sibling terms, whose semantic similarity can easily be assumed

to be high as compared to distant terms. Reason 4 seems to be the main reason

responsible for the pattern of Figure 4.4 and Figure 4.5 (weak correlation). The

first three reasons may cause slight displacement of points along y-axis. However,

it cannot be expected that the points appearing near upper-left corner, would

move altogether to lower-left corner, even if annotations, ontology and similarity

measure are perfect.

Our experiments suggest that protein function, by nature, is independent of se-

quence. This can be seen in the horizontal band of points in Figure 4.5. The points

correspond to protein pairs mostly having high function similarity, but sequence

similarity ranging from very low to very high. Gene duplication can result into

such proteins. Due to evolution, the sequences have changed, while the function

has remained the same. The pairs on the extreme left of this band correspond to

distant relatives. In case of paralogs, the function would also be dissimilar, but

such pairs may not be part of our dataset.

It is quite difficult to understand why the sibling terms have same effect as the

distant terms. Reasons for ineffectiveness of close terms are hypothesized to be

one or more of the following:

1. In Gene Ontology structure, close location of terms does not mean biological

similarity

2. Annotations are not precise enough to make distinction between close GO

terms

3. Proteins either perform same function or altogether different functions: per-

forming similar functions has no significance.

The first hypothesized reason is GO structure. Closely located terms may not

mean that they are biologically similar. Semantic similarity measures return high

similarity values for close terms e.g. sibling ones, and low similarity for distant

terms. The applications using these measures assume that closely located terms
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are biologically similar, and so are the proteins associated with them. The second

hypothesized reason is that annotations are not precise enough to map proteins

to accurate terms. We took average of a large number of pairs, and it is unlikely

that in all or most of cases, annotations were inaccurate. According to the third

reason, the ineffectiveness of close terms is inherent in the proteins. As discussed

earlier, when sequences get little similar, their semantic similarity jumps to very

high. At this level, proteins have mostly common terms. The only region where

proteins have uncommon terms corresponds to very low sequence similarity. This

suggests that reason 3 is responsible for ineffectiveness of close terms. In presence

of reason 3, it is difficult to assess reason 1 and 2.

SISS was computed between pairs of GO terms. In one experiment, each leaf

term of molecular function was compared with itself. The purpose was to see

if all terms behave uniformly or they have some diversity. Figure 6.4 shows bar

graph, and Figure 6.5 shows frequency distribution of these SISS values. It can

be observed that many terms have low SISS with themselves, meaning that each

term is annotated by diverse sequences, but some have higher values, meaning

annotation by similar sequences. The average SISS is 0.216.

Similar computation was repeated for non-leaf terms of molecular function to

compare the results with those of leaf terms. The average value is 0.177. The

lower average for the general terms was expected. However, this average is higher

than that of the sibling terms, which was unexpected.

6.2 Discussion

For sequence similarity below 0.15, semantic similarity varies from very low to

very high, independent of sequence similarity. When sequence similarity exceeds

0.15, Semantic similarity jumps to above 0.8. For sequence similarity ranging

from 0.15 to 1, semantic similarity remains above 0.8. The sequence-semantic

scatter plot mainly consists of a left vertical band and a top horizontal band

of points. Semantic similarity between proteins is mainly influenced by terms
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Figure 6.1: Distribution of sequence similarity scores between protein pairs
belonging to distant GO terms.

Figure 6.2: Distribution of sequence similarity scores between protein pairs
belonging to sibling GO terms.

common between them, and other terms do not play a role in the context of

correlation. Experiments were designed to explore such interesting behavior of

protein pairs, and to try to find reasons of such behavior. We suspected that this

could be attributed to weakness of GO structure or semantic similarity measures.

We have computed similarity between GO terms inferred from sequence similarity

(SISS), which helps explore some behaviors with more clarity and confidence. This

approach showed that proteins annotated to sibling GO terms have as different

sequences as those annotated to distant terms. This verified that the correlation
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Figure 6.3: Distribution of sequence similarity scores between protein pairs
sharing a common GO term.

Figure 6.4: Bar Diagram of SISS of leaf GO terms with themselves.

Figure 6.5: Distribution of SISS of leaf GO terms with themselves.
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only depend upon the terms common between proteins, and semantically close

terms do not play a role in it.

One thing is clear that errors in annotation, Gene Ontology structure, or semantic

similarity measures are not the primary reasons for weak correlation. The main

reason appears to be that such strong correlation does not exist in nature.

6.3 Research Questions Summary

Research questions given in Section 1.1 have been investigated and answered in

various parts of the dissertation, supported by the results of experiments. RQ1

is answered in Experiments 4.1, 4.2 and 4.3, where the results show disagreement

among the existing semantic similarity measures. RQ2 is answered in Experiment

4.4 and Experiment 4.6 where a weak correlation between semantic similarity and

sequence similarity is shown. It is revisited in Experiment 5.6. Taking advantage

of fast searching method, a large number of protein pairs have been shown, that

have high semantic similarity, while sequence similarity varying from very low to

very high. RQ3 is answered in Experiment 4.5. RQ4 is answered in best possible

way in Experiments 5.1, 5.2, 5.3 and 5.4 that show the results of SemSim. RQ5

is answered in Experiment 5.5 that gives results of protein query tool. Chapter

6 mainly investigates RQ6 with the help of Experiment 6.1. Table 6.1 gives the

relationship between research questions and experiments.
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Table 6.1: Relationship between research questions and experiments.

Experiment Research Question

Experiment 4.1 RQ1

Experiment 4.2 RQ1

Experiment 4.3 RQ1

Experiment 4.4 RQ2

Experiment 4.5 RQ3

Experiment 4.6 RQ2

Experiment 5.1 RQ4

Experiment 5.2 RQ4

Experiment 5.3 RQ4

Experiment 5.4 RQ4

Experiment 5.5 RQ5

Experiment 5.6 RQ2

Experiment 6.1 RQ6



Chapter 7

Conclusion

We have proposed calibration for semantic similarity measures. Experiments show

that the similarity values are not consistent across various methods, and there

is significant variability among them. Different similarity measures rank the GO

terms similar to a reference term in different order. We have shown that there is no

significant correlation between protein semantic similarity and sequence similarity.

If two proteins have high sequence similarity with each other, they will most likely

have high semantic similarity too. On the other hand, if two proteins have high

semantic similarity, they may or may not have high sequence similarity. The points

in the graphs corresponding to low sequence similarity but high semantic similarity

show that state of the art tools will miss some proteins while answering a similarity

query. The correlation coefficient depends only upon the number of common GO

terms in protein pairs, and the semantic similarity measurement method does not

influence it. Therefore, it may not be used for evaluation of semantic similarity

measures.

We have shown that Resnik gives too low whereas Lin, Wang and AIC give too

high similarity when comparing generalized terms, and the terms having many

protein annotations. Addressing these issues, a novel method SemSim is proposed,

and its results are reported. In the first step, similarity is computed without

involving annotations. Then the adjusted similarity is computed using specificity

and uniqueness of terms, giving them appropriate weights. SemSim addresses
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the limitations of the existing methods, and conforms to GO taxonomy better

than other methods. SemSim results are closer to domain expert’s judgment as

compared to other measures. SemSim A combines adjustment with similarity to

give a single similarity value, which will be required by some applications. SemSim

B returns two values: similarity and confidence level, and the decision of how to

treat them is left to the client application.

SimExact is suitable for searching semantically similar proteins in situations where

high speed is required. Although SimExact involves approximation, our experi-

ments show that it produces correct results. Using SimExact, a protein query tool

has been developed, and is available online. The tool finds proteins similar to a

query protein in less than 8 seconds. Simexact can be used in combination with

an existing similarity measure to short list candidate proteins on which the other

measure is applied. A sequence-semantic conflict frequently exists in the proteins.

SimExact is used to identify proteins that demonstrate such conflict.

We have attempted to find the reasons behind the weak correlation between se-

mantic similarity and sequence similarity, which could be due to annotation errors,

weakness of Gene Ontology or semantic similarity methods. We have shown that

proteins annotated to sibling GO terms have as different sequences as those anno-

tated to distant terms. Results and analysis suggest that a significant correlation

does not exist in nature.

Future works should refine the protein query tool based on SimExact. Tool for

pair wise semantic similarity based on SemSim should also be developed. Research

is suggested on protein pairs with very high functional similarity and very low

sequence similarity. What is the structural similarity of such interesting pairs

should also be investigated.
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Appendices

A. Term pairs with high disagreement among different measures

term1 term2 resg jcg ling GIC wang Aic ss0 ss5

GO:0000012 GO:0006281 0.17 0.06 0.27 0.88 0.96 0.98 0.9 0.65

GO:0006283 GO:0006289 0.19 0.06 0.29 0.91 0.96 0.98 0.9 0.72

GO:0006281 GO:0006284 0.17 0.08 0.32 0.91 0.96 0.98 0.89 0.62

GO:0006281 GO:0006289 0.17 0.08 0.32 0.91 0.96 0.98 0.9 0.6

GO:0006289 GO:0006281 0.17 0.08 0.32 0.91 0.96 0.98 0.9 0.6

GO:0097680 GO:0006303 0.22 0.05 0.28 0.9 0.95 0.98 0.91 0.8

GO:0006298 GO:0006281 0.17 0.08 0.32 0.91 0.96 0.98 0.9 0.59

GO:0006281 GO:0006302 0.17 0.08 0.34 0.92 0.96 0.98 0.91 0.58

GO:0070371 GO:0000165 0.21 0.06 0.32 0.9 0.96 0.98 0.9 0.7

GO:0005388 GO:0086039 0.23 0.06 0.32 0.91 0.95 0.98 0.92 0.65

GO:0007254 GO:0051403 0.24 0.06 0.35 0.93 0.96 0.99 0.93 0.76

GO:0016486 GO:0034230 0.24 0.05 0.29 0.87 0.96 0.98 0.89 0.78

GO:0016486 GO:0034231 0.24 0.05 0.29 0.87 0.96 0.98 0.89 0.78

GO:0006493 GO:0016266 0.22 0.06 0.32 0.9 0.95 0.98 0.91 0.67

GO:0032455 GO:0016486 0.24 0.05 0.3 0.88 0.96 0.98 0.89 0.77

GO:0006290 GO:0006289 0.17 0.05 0.23 0.81 0.92 0.97 0.82 0.67

GO:0006290 GO:0006301 0.17 0.05 0.23 0.81 0.92 0.97 0.82 0.67

GO:0000733 GO:0006259 0.16 0.07 0.27 0.81 0.94 0.97 0.82 0.55

GO:0006631 GO:0001676 0.18 0.08 0.32 0.88 0.95 0.97 0.87 0.52

GO:0006290 GO:0006302 0.17 0.05 0.24 0.82 0.92 0.97 0.82 0.65

GO:0043969 GO:0016573 0.27 0.06 0.35 0.93 0.96 0.99 0.94 0.75
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GO:0006342 GO:0030466 0.29 0.05 0.35 0.93 0.97 0.99 0.95 0.82

GO:0006631 GO:0033559 0.18 0.08 0.33 0.88 0.95 0.97 0.88 0.51

GO:0000729 GO:0006259 0.16 0.07 0.29 0.83 0.94 0.97 0.83 0.52

GO:0019369 GO:0019371 0.23 0.06 0.33 0.9 0.95 0.98 0.9 0.74

GO:0006493 GO:0006486 0.21 0.07 0.35 0.9 0.96 0.98 0.9 0.6

GO:0006486 GO:0006487 0.21 0.08 0.36 0.9 0.96 0.98 0.9 0.6

GO:0006342 GO:0030702 0.29 0.06 0.37 0.94 0.97 0.99 0.95 0.79

GO:0006284 GO:0006289 0.17 0.06 0.28 0.83 0.92 0.97 0.81 0.63

GO:0008380 GO:0000375 0.19 0.08 0.33 0.88 0.93 0.98 0.87 0.59

GO:0006284 GO:0006301 0.17 0.06 0.28 0.83 0.92 0.97 0.81 0.63

GO:0006289 GO:0006301 0.17 0.06 0.28 0.84 0.92 0.97 0.82 0.61

GO:0006396 GO:0008380 0.16 0.09 0.34 0.87 0.94 0.97 0.86 0.5

GO:0006342 GO:0006348 0.29 0.06 0.38 0.94 0.97 0.99 0.95 0.79

GO:0016070 GO:0010501 0.15 0.1 0.34 0.86 0.94 0.97 0.81 0.47

GO:0005789 GO:0030867 0.14 0.07 0.25 0.73 0.93 0.97 0.79 0.47

GO:0043629 GO:0043630 0.26 0.04 0.28 0.85 0.94 0.98 0.87 0.8

GO:0006310 GO:0006259 0.16 0.09 0.34 0.86 0.94 0.97 0.86 0.47

GO:0006284 GO:0006302 0.17 0.07 0.29 0.84 0.92 0.97 0.82 0.61

GO:0006289 GO:0006302 0.17 0.07 0.3 0.84 0.92 0.97 0.83 0.59

GO:0060389 GO:0006468 0.19 0.08 0.34 0.86 0.94 0.97 0.85 0.58

GO:0000183 GO:0006342 0.29 0.07 0.4 0.95 0.97 0.99 0.95 0.77

GO:0006281 GO:0006283 0.17 0.07 0.29 0.83 0.93 0.97 0.81 0.58

GO:0048478 GO:0043111 0.29 0.05 0.32 0.89 0.94 0.98 0.9 0.82

GO:0033540 GO:0006635 0.3 0.06 0.38 0.94 0.96 0.99 0.94 0.79

GO:0006379 GO:0090501 0.2 0.07 0.34 0.87 0.94 0.98 0.87 0.58

GO:0006470 GO:0035335 0.21 0.07 0.34 0.87 0.94 0.97 0.87 0.64

GO:0030702 GO:0030466 0.29 0.04 0.31 0.88 0.94 0.98 0.9 0.85

GO:0016573 GO:0043967 0.27 0.08 0.41 0.95 0.96 0.99 0.94 0.68

GO:0001682 GO:0008033 0.23 0.06 0.33 0.87 0.94 0.98 0.88 0.67

GO:0018108 GO:0007260 0.23 0.07 0.35 0.89 0.94 0.98 0.9 0.66

GO:0005789 GO:0033017 0.14 0.09 0.3 0.78 0.93 0.97 0.81 0.43
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GO:0006348 GO:0030466 0.29 0.05 0.32 0.88 0.94 0.98 0.9 0.85

GO:0006919 GO:0008635 0.29 0.07 0.43 0.96 0.97 0.99 0.96 0.78

GO:0032777 GO:0035267 0.21 0.07 0.33 0.87 0.92 0.98 0.88 0.56

GO:0005671 GO:0000123 0.18 0.07 0.32 0.83 0.93 0.97 0.82 0.47

GO:0000183 GO:0030466 0.29 0.05 0.33 0.89 0.94 0.98 0.9 0.84

GO:0030702 GO:0006348 0.29 0.05 0.33 0.89 0.94 0.98 0.9 0.82

GO:0006584 GO:0042414 0.23 0.05 0.29 0.81 0.93 0.97 0.82 0.67

GO:0008203 GO:0016125 0.21 0.07 0.33 0.85 0.93 0.97 0.84 0.59

GO:0006104 GO:0006637 0.21 0.06 0.29 0.8 0.93 0.96 0.81 0.59

GO:0000329 GO:0005774 0.16 0.09 0.33 0.81 0.93 0.97 0.8 0.43

GO:0006584 GO:0042415 0.23 0.05 0.3 0.83 0.93 0.97 0.82 0.66

GO:0030702 GO:0000183 0.29 0.05 0.34 0.89 0.94 0.98 0.9 0.81

GO:0046777 GO:0006468 0.19 0.1 0.4 0.89 0.94 0.97 0.87 0.52

GO:0032872 GO:0046328 0.24 0.09 0.42 0.92 0.95 0.98 0.92 0.62

GO:0010008 GO:0031901 0.16 0.09 0.34 0.82 0.93 0.97 0.81 0.45

GO:0010008 GO:0031902 0.16 0.09 0.35 0.83 0.93 0.97 0.82 0.44

GO:0000183 GO:0006348 0.29 0.06 0.36 0.9 0.94 0.98 0.9 0.81

GO:0016567 GO:0006513 0.21 0.08 0.35 0.86 0.92 0.97 0.87 0.61

GO:0006476 GO:0070846 0.25 0.05 0.32 0.83 0.93 0.97 0.86 0.72

GO:0007409 GO:0021955 0.26 0.06 0.36 0.89 0.92 0.97 0.9 0.67

GO:0006486 GO:0042125 0.22 0.06 0.31 0.82 0.93 0.96 0.84 0.61

GO:0005774 GO:0005765 0.16 0.11 0.38 0.85 0.93 0.97 0.83 0.4

GO:0006476 GO:0090042 0.25 0.06 0.33 0.84 0.93 0.97 0.86 0.71

GO:0050730 GO:0001932 0.18 0.1 0.38 0.85 0.93 0.97 0.87 0.45

GO:0006464 GO:0018149 0.18 0.08 0.34 0.8 0.93 0.97 0.84 0.46

GO:0034230 GO:0032455 0.24 0.04 0.26 0.78 0.91 0.96 0.8 0.77

GO:0034231 GO:0032455 0.24 0.04 0.26 0.78 0.91 0.96 0.8 0.77

GO:0046459 GO:0000038 0.18 0.05 0.25 0.75 0.89 0.95 0.75 0.57

B. Pairs of general terms with high disagreement among different measures

term1 term2 resg jcg ling GIC wang aic ss0 ss5
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GO:0006302 GO:0006281 0.17 0.08 0.34 0.92 0.96 0.98 0.91 0.58

GO:0005388 GO:0086039 0.23 0.06 0.32 0.91 0.95 0.98 0.92 0.65

GO:0000733 GO:0006259 0.16 0.07 0.27 0.81 0.94 0.97 0.82 0.55

GO:0006631 GO:0001676 0.18 0.08 0.32 0.88 0.95 0.97 0.87 0.52

GO:0006631 GO:0033559 0.18 0.08 0.33 0.88 0.95 0.97 0.88 0.51

GO:0000729 GO:0006259 0.16 0.07 0.29 0.83 0.94 0.97 0.83 0.52

GO:0006493 GO:0006486 0.21 0.07 0.35 0.9 0.96 0.98 0.9 0.6

GO:0006486 GO:0006487 0.21 0.08 0.36 0.9 0.96 0.98 0.9 0.6

GO:0006396 GO:0008380 0.16 0.09 0.34 0.87 0.94 0.97 0.86 0.5

GO:0016070 GO:0010501 0.15 0.1 0.34 0.86 0.94 0.97 0.81 0.47

GO:0005789 GO:0030867 0.14 0.07 0.25 0.73 0.93 0.97 0.79 0.47

GO:0006259 GO:0006310 0.16 0.09 0.34 0.86 0.94 0.97 0.86 0.47

GO:0006310 GO:0006259 0.16 0.09 0.34 0.86 0.94 0.97 0.86 0.47

GO:0006379 GO:0090501 0.2 0.07 0.34 0.87 0.94 0.98 0.87 0.58

GO:0005789 GO:0033017 0.14 0.09 0.3 0.78 0.93 0.97 0.81 0.43

GO:0032777 GO:0035267 0.21 0.07 0.33 0.87 0.92 0.98 0.88 0.56

GO:0005671 GO:0000123 0.18 0.07 0.32 0.83 0.93 0.97 0.82 0.47

GO:0006104 GO:0006637 0.21 0.06 0.29 0.8 0.93 0.96 0.81 0.59

GO:0000329 GO:0005774 0.16 0.09 0.33 0.81 0.93 0.97 0.8 0.43

GO:0006468 GO:0046777 0.19 0.1 0.4 0.89 0.94 0.97 0.87 0.52

GO:0010008 GO:0031901 0.16 0.09 0.34 0.82 0.93 0.97 0.81 0.45

GO:0010008 GO:0031902 0.16 0.09 0.35 0.83 0.93 0.97 0.82 0.44

GO:0021955 GO:0007409 0.26 0.06 0.36 0.89 0.92 0.97 0.9 0.67

GO:0005774 GO:0005765 0.16 0.11 0.38 0.85 0.93 0.97 0.83 0.4

GO:0050730 GO:0001932 0.18 0.1 0.38 0.85 0.93 0.97 0.87 0.45

GO:0006464 GO:0018149 0.18 0.08 0.34 0.8 0.93 0.97 0.84 0.46

GO:0007220 GO:0044267 0.15 0.08 0.29 0.71 0.92 0.96 0.7 0.44

GO:0000725 GO:0006281 0.2 0.09 0.38 0.85 0.93 0.97 0.84 0.54

GO:0032784 GO:0006355 0.21 0.1 0.42 0.87 0.95 0.98 0.88 0.5

GO:0004714 GO:0005009 0.22 0.07 0.36 0.83 0.93 0.97 0.85 0.52

GO:0005010 GO:0004714 0.22 0.07 0.36 0.83 0.93 0.97 0.85 0.52
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GO:0005006 GO:0004714 0.22 0.07 0.36 0.83 0.93 0.97 0.86 0.52

GO:0016266 GO:0006486 0.21 0.07 0.32 0.81 0.92 0.96 0.82 0.57

GO:0006475 GO:0006473 0.22 0.08 0.38 0.86 0.92 0.97 0.87 0.56

GO:0005790 GO:0005783 0.13 0.08 0.28 0.68 0.91 0.96 0.73 0.41

GO:0046459 GO:0001676 0.18 0.06 0.28 0.77 0.89 0.95 0.77 0.53

GO:0005783 GO:0005791 0.13 0.08 0.28 0.68 0.91 0.96 0.73 0.41

GO:0005783 GO:0016529 0.13 0.08 0.28 0.68 0.91 0.96 0.73 0.41

GO:0005007 GO:0004714 0.22 0.08 0.37 0.84 0.93 0.97 0.85 0.52

GO:0006464 GO:0043687 0.18 0.1 0.38 0.82 0.93 0.97 0.83 0.44

GO:0000717 GO:0006355 0.17 0.76 0.95 0.02 0.23 0.06 0.02 0

C. Pairs of specific terms with high disagreement among different measures

term1 term2 resg jcg ling GIC wang Aic ss0 ss5

GO:0043630 GO:0043629 0.26 0.04 0.28 0.85 0.94 0.98 0.87 0.8

GO:0048478 GO:0043111 0.29 0.05 0.32 0.89 0.94 0.98 0.9 0.82

GO:0030702 GO:0030466 0.29 0.04 0.31 0.88 0.94 0.98 0.9 0.85

GO:0030466 GO:0006348 0.29 0.05 0.32 0.88 0.94 0.98 0.9 0.85

GO:0000183 GO:0030466 0.29 0.05 0.33 0.89 0.94 0.98 0.9 0.84

GO:0030702 GO:0006348 0.29 0.05 0.33 0.89 0.94 0.98 0.9 0.82

GO:0030702 GO:0000183 0.29 0.05 0.34 0.89 0.94 0.98 0.9 0.81

GO:0034230 GO:0032455 0.24 0.04 0.26 0.78 0.91 0.96 0.8 0.77

GO:0034231 GO:0032455 0.24 0.04 0.26 0.78 0.91 0.96 0.8 0.77

GO:0030070 GO:0016486 0.24 0.05 0.29 0.78 0.93 0.96 0.81 0.71

GO:0007262 GO:0042991 0.33 0.05 0.38 0.88 0.93 0.97 0.89 0.81

GO:0032788 GO:0032789 0.16 0.04 0.17 0.6 0.83 0.94 0.62 0.6

GO:0002554 GO:0001820 0.3 0.05 0.34 0.83 0.92 0.96 0.84 0.76

GO:0030070 GO:0032455 0.24 0.04 0.26 0.71 0.88 0.94 0.74 0.7

GO:0007232 GO:0007231 0.36 0.06 0.43 0.85 0.94 0.97 0.86 0.77

GO:0006228 GO:0006241 0.4 0.06 0.45 0.89 0.94 0.97 0.9 0.82

GO:0016076 GO:0016077 0.26 0.04 0.28 0.74 0.86 0.94 0.76 0.71

GO:0042414 GO:0042415 0.23 0.05 0.27 0.7 0.86 0.94 0.7 0.61
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GO:0019276 GO:0097359 0.21 0.04 0.23 0.65 0.82 0.93 0.67 0.62

GO:0046638 GO:0051138 0.45 0.07 0.52 0.92 0.95 0.98 0.92 0.8

GO:0031156 GO:0031285 0.34 0.05 0.38 0.8 0.9 0.93 0.81 0.7

GO:0018242 GO:0018243 0.25 0.05 0.28 0.7 0.83 0.93 0.72 0.66

GO:0006060 GO:0051164 0.21 0.04 0.24 0.6 0.8 0.91 0.62 0.55

GO:0046398 GO:0097359 0.2 0.04 0.23 0.62 0.77 0.9 0.63 0.58

GO:0034065 GO:0031297 0.23 0.04 0.26 0.62 0.83 0.88 0.64 0.58

GO:0000348 GO:0000354 0.3 0.04 0.32 0.65 0.83 0.92 0.69 0.67

GO:0006703 GO:0006705 0.31 0.05 0.37 0.68 0.86 0.91 0.68 0.62

GO:0021860 GO:0021954 0.32 0.05 0.38 0.7 0.83 0.93 0.7 0.62

GO:0014002 GO:0014044 0.31 0.05 0.35 0.65 0.82 0.92 0.65 0.61

GO:0048709 GO:0014037 0.29 0.05 0.33 0.61 0.8 0.91 0.62 0.57

GO:0032470 GO:0032468 0.41 0.06 0.45 0.76 0.83 0.94 0.79 0.74

GO:0031154 GO:0031152 0.35 0.05 0.39 0.61 0.85 0.9 0.6 0.56

GO:0045401 GO:0045425 0.31 0.04 0.32 0.53 0.8 0.88 0.57 0.56

GO:0042063 GO:0001570 0.2 0.05 0.24 0.46 0.72 0.86 0.45 0.41

GO:0000038 GO:0032788 0.17 0.04 0.2 0.48 0.71 0.83 0.47 0.42

GO:0000038 GO:0032789 0.17 0.04 0.2 0.48 0.71 0.83 0.47 0.42

GO:0015014 GO:0006075 0.29 0.05 0.33 0.59 0.77 0.88 0.62 0.56

GO:0050653 GO:0006075 0.29 0.05 0.33 0.59 0.77 0.88 0.62 0.56

GO:0045401 GO:0045086 0.31 0.05 0.35 0.55 0.8 0.88 0.58 0.54

D. Pairs of identical terms with high disagreement among different measures

term1 term2 resg jcg ling GIC wang aic ss5 conf

GO:0016787 GO:0016787 0.15 1 1 1 1 1 1 0.16

GO:0016740 GO:0016740 0.15 1 1 1 1 1 1 0.15

GO:0005515 GO:0005515 0.15 1 1 1 1 1 1 0.18

GO:0043234 GO:0043234 0.18 1 1 1 1 1 1 0.15

GO:0016020 GO:0016020 0.18 1 1 1 1 1 1 0.22

GO:0016772 GO:0016772 0.18 1 1 1 1 1 1 0.2

GO:0003676 GO:0003676 0.18 1 1 1 1 1 1 0.23
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GO:0043231 GO:0043231 0.18 1 1 1 1 1 1 0.25

GO:0005737 GO:0005737 0.21 1 1 1 1 1 1 0.4

GO:0004871 GO:0004871 0.21 1 1 1 1 1 1 0.24

GO:0016818 GO:0016818 0.21 1 1 1 1 1 1 0.26

GO:0004872 GO:0004872 0.22 1 1 1 1 1 1 0.24

GO:0017111 GO:0017111 0.22 1 1 1 1 1 1 0.27

GO:0016021 GO:0016021 0.22 1 1 1 1 1 1 0.33

GO:0016491 GO:0016491 0.22 1 1 1 1 1 1 0.19

GO:0003677 GO:0003677 0.22 1 1 1 1 1 1 0.28

GO:0016301 GO:0016301 0.23 1 1 1 1 1 1 0.26

GO:0004888 GO:0004888 0.23 1 1 1 1 1 1 0.27

GO:0008233 GO:0008233 0.24 1 1 1 1 1 1 0.31

GO:0006810 GO:0006810 0.24 1 1 1 1 1 1 0.27

GO:0005634 GO:0005634 0.24 1 1 1 1 1 1 0.36

GO:0016773 GO:0016773 0.24 1 1 1 1 1 1 0.27

GO:0050896 GO:0050896 0.24 1 1 1 1 1 1 0.25

GO:0005886 GO:0005886 0.24 1 1 1 1 1 1 0.42

GO:0034641 GO:0034641 0.25 1 1 1 1 1 1 0.27

GO:0009058 GO:0009058 0.25 1 1 1 1 1 1 0.27

GO:0004672 GO:0004672 0.25 1 1 1 1 1 1 0.3

GO:0005102 GO:0005102 0.25 1 1 1 1 1 1 0.27

GO:0016887 GO:0016887 0.25 1 1 1 1 1 1 0.29

GO:0005887 GO:0005887 0.26 1 1 1 1 1 1 0.42

GO:0006139 GO:0006139 0.27 1 1 1 1 1 1 0.3

GO:0004518 GO:0004518 0.27 1 1 1 1 1 1 0.3

GO:0005829 GO:0005829 0.27 1 1 1 1 1 1 0.49

GO:0003723 GO:0003723 0.28 1 1 1 1 1 1 0.31

GO:0044281 GO:0044281 0.28 1 1 1 1 1 1 0.29

GO:0051246 GO:0051246 0.28 1 1 1 1 1 1 0.32

E. Sequence semantic conflict
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p0 p1 p2 p1 sem p2 sem p1 seq p2 seq

P49615 Q92643 P48609 0.94 0.16 0.4 0.78

P26439 Q12389 P49768 1 0.25 0.08 0.1

P26439 Q12389 Q64442 1 0.25 0.08 0.1

P26570 Q12389 Q9R101 1 0.29 0.08 0.1

P23578 P32639 Q96T60 0.87 0.17 0.06 0.1

P33431 Q08548 P36010 0.78 0.08 0.07 0.13

P40471 P36165 P36060 1 0.31 0.1 0.13

P25808 Q12389 Q12039 1 0.31 0.08 0.1

P23595 P32639 P36132 0.87 0.2 0.06 0.1

P23595 P32639 P53164 0.87 0.2 0.06 0.1

P23764 P32639 Q99LB2 0.87 0.2 0.06 0.11

P23595 P32639 P36132 0.87 0.2 0.06 0.1

P23764 P32639 Q99LB2 0.87 0.2 0.06 0.11

P23594 P32639 P53982 0.87 0.21 0.06 0.1

P23594 P32639 P36897 0.87 0.21 0.06 0.1

P23594 P32639 P28241 0.87 0.21 0.06 0.1

P28005 P41812 P42574 0.91 0.27 0.04 0.1

P23542 P32639 P53164 0.87 0.23 0.06 0.1

P23542 P32639 Q9WV60 0.87 0.23 0.06 0.1

P23542 P32639 P53164 0.87 0.23 0.06 0.1

P46964 P39007 Q00535 1 0.38 0.04 0.08

P23804 P32639 Q10743 0.87 0.25 0.06 0.11

P33609 Q08548 Q9JIL8 0.78 0.17 0.07 0.1

P53119 Q12464 P47912 0.78 0.17 0.05 0.09

P24529 Q07478 P41743 0.72 0.12 0.06 0.1

P32639 P23394 Q54CS9 0.87 0.27 0.06 0.09

P23394 P32639 P43405 0.87 0.27 0.06 0.09

P21954 P28834 P53598 0.87 0.27 0.09 0.11

P32639 P23394 Q54CS9 0.87 0.27 0.06 0.09

P23394 P32639 P67775 0.87 0.27 0.06 0.09
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P23394 P32639 Q6PIE5 0.87 0.27 0.06 0.08

P39007 P41543 Q5IGR6 0.9 0.3 0.08 0.1

P32657 P23394 Q9URU2 0.87 0.27 0.06 0.09

P32657 P23394 Q9URU2 0.87 0.27 0.06 0.09

P97494 P70428 Q9W3K5 0.73 0.15 0.13 0.29

P41812 P28005 Q12389 0.83 0.25 0.04 0.09

P48025 P39518 P42683 0.82 0.24 0.12 0.17

P27619 P54132 Q12852 0.67 0.09 0.08 0.1

P32383 Q99P84 A6QLJ0 0.69 0.12 0.07 0.09

P32383 Q99P84 P22735 0.69 0.12 0.07 0.09

P41743 P48439 P48734 0.83 0.27 0.08 0.12

P40376 P36165 P34099 1 0.45 0.1 0.2

P22413 Q1RMT1 Q12852 0.69 0.14 0.07 0.09

P22413 Q1RMT1 P38993 0.69 0.14 0.07 0.09

P22303 Q1RMT1 Q9NDJ2 0.69 0.14 0.07 0.09

P22147 Q1RMT1 Q9NDJ2 0.69 0.14 0.07 0.09

P22147 Q1RMT1 P32657 0.69 0.14 0.07 0.1

P22147 Q1RMT1 Q1RKN3 0.69 0.14 0.07 0.09

P22303 Q1RMT1 Q1RKN3 0.69 0.14 0.07 0.09

P22303 Q1RMT1 P32657 0.69 0.14 0.07 0.1

P42356 Q9UBF8 P34756 0.77 0.23 0.07 0.09

P32561 Q99P84 Q06151 0.69 0.15 0.07 0.1

P22830 Q1RMT1 Q13011 0.69 0.18 0.07 0.1

P22830 Q1RMT1 Q06651 0.69 0.18 0.07 0.11

P41543 P48439 P46985 0.83 0.33 0.08 0.11

P27695 P54132 Q4PIR3 0.67 0.17 0.08 0.1

P22735 Q1RMT1 P22543 0.69 0.19 0.07 0.1

P34575 P38859 P50440 0.67 0.17 0.08 0.11

P67775 Q04592 P23595 0.75 0.25 0.2 0.63

P22735 Q1RMT1 Q9Y6K1 0.69 0.19 0.07 0.1

P27695 P54132 Q9USN7 0.67 0.17 0.08 0.1
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P22735 Q1RMT1 Q9Y6K1 0.69 0.19 0.07 0.1

P38827 P36120 Q09811 0.67 0.18 0.08 0.1

P56523 Q54QQ1 Q9VH48 0.61 0.13 0.05 0.08

P38295 P36051 P41543 0.67 0.19 0.07 0.11

P22057 P29703 P53223 0.62 0.15 0.09 0.11

P22887 Q1RMT1 Q03114 0.69 0.22 0.07 0.11

P22887 Q1RMT1 P51166 0.69 0.22 0.07 0.08

P23196 Q1RMT1 P29466 0.69 0.22 0.07 0.09

P32603 Q9UEF7 Q9Y646 0.62 0.15 0.07 0.1

P32603 Q9UEF7 Q8VEB4 0.62 0.15 0.07 0.1

P22694 Q1RMT1 P36582 0.69 0.23 0.07 0.1

P22543 Q1RMT1 P36582 0.69 0.23 0.07 0.1

P23219 Q1RMT1 P25045 0.69 0.23 0.07 0.09

P22694 Q1RMT1 P54199 0.69 0.23 0.07 0.1

P22543 Q1RMT1 P54199 0.69 0.23 0.07 0.1

P22694 Q1RMT1 P36582 0.69 0.23 0.07 0.1

P23219 Q1RMT1 Q64FW2 0.69 0.23 0.07 0.09

P23219 Q1RMT1 Q8VHE9 0.69 0.23 0.07 0.09

F. Protein pairs with high semantic and low sequence similarity (maximum differ-

ence)

p0 p1 sem seq

P25808 P32892 1 0.1

P38112 Q06218 1 0.1

P32892 P25808 1 0.1

P36120 Q12389 1 0.1

P40308 P36165 1 0.1

P38112 P53734 1 0.1

P25808 P36120 1 0.1

P36120 P25808 1 0.1

P36120 P38112 1 0.11
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P38112 P36120 1 0.11

P36120 P53734 1 0.11

P32892 Q06218 1 0.11

P25808 Q06218 1 0.11

P47124 P50108 1 0.11

P32892 P36120 1 0.11

P36120 P32892 1 0.11

P36120 Q06218 1 0.11

P34163 Q07804 1 0.12

P32892 P53734 1 0.12

P25808 P38112 1 0.12

P38112 P25808 1 0.12

P32892 Q12389 1 0.12

P28005 P41812 0.91 0.04

P32892 P38112 1 0.14

P38112 P32892 1 0.14

P36120 P38719 0.92 0.08

P90648 P42527 0.93 0.1

P53734 Q06218 0.93 0.1

P53734 Q12389 0.93 0.1

P53734 P38112 0.93 0.1

P38112 P38719 0.92 0.1

P53734 P25808 0.93 0.1

P39007 P41543 0.9 0.08

P53734 P36120 0.93 0.11

P53734 P32892 0.93 0.12

P23394 P32639 0.87 0.06

P32639 P23394 0.87 0.06

P23394 Q9BUQ8 0.93 0.13

P46985 P50108 0.9 0.1

P47124 P46985 0.89 0.09
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P32639 Q9BUQ8 0.87 0.07

P28005 P38786 0.91 0.11

P56951 Q60524 1 0.21

P41812 P28005 0.83 0.04

P28241 P28834 1 0.21

P34218 P40963 0.87 0.08

P25045 P40970 0.94 0.18

P40970 P25045 0.94 0.18

P53734 P38719 0.86 0.1

P70428 Q16394 0.88 0.13

P39007 P46964 0.8 0.05

P41543 P48439 0.83 0.08

P29476 P29475 0.92 0.17

P40559 Q12271 0.86 0.12

P41543 P33767 0.83 0.1

P28834 P28241 0.94 0.21

P38929 Q9R0K7 0.86 0.13

P39007 P48439 0.8 0.07

P53115 Q12464 0.78 0.05

P39518 P47912 0.82 0.09

P32639 P53131 0.8 0.07

P40559 P50942 0.86 0.14

P39104 P42356 0.8 0.08

P32639 P24384 0.8 0.08

P39518 P30624 0.82 0.1

P23394 P24384 0.8 0.08

P38929 P98194 0.81 0.1

P38929 Q5R5K5 0.81 0.1

P38929 Q64566 0.81 0.1

P38929 P57709 0.81 0.1

P23394 P53131 0.8 0.09
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P46985 P47124 0.8 0.09

P33767 P41543 0.83 0.13

P33333 Q08548 0.78 0.07

P38929 Q03669 0.81 0.11

P47912 P39518 0.82 0.12

P42356 Q9UBF8 0.77 0.07

P41812 P38786 0.75 0.05

P53668 A2ASS6 0.75 0.06

P48609 Q00534 0.85 0.16

P53223 Q9JMF7 0.9 0.21

P41410 Q09811 0.77 0.09

P48609 P50582 0.77 0.09

P68181 A2ASS6 0.71 0.04

P53668 P24583 0.75 0.08

P36582 P36583 0.9 0.23

P24384 Q07478 0.72 0.06

P41543 P39007 0.75 0.09

P53668 Q02156 0.75 0.09

P41543 P46977 0.75 0.09

P33767 P48439 0.75 0.09

P38929 Q64578 0.76 0.11

P53668 P41743 0.75 0.09

P53115 Q60HG1 0.72 0.07

P53115 Q5RA62 0.72 0.07

P38929 Q92105 0.76 0.11

P53115 Q1RMT1 0.72 0.07

P24384 P53131 0.78 0.13

P40963 P34218 0.72 0.08

P51652 Q9Z0X1 0.71 0.08

P33767 P39656 0.75 0.11

P24384 Q9BUQ8 0.72 0.09
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P41903 P58137 0.78 0.15

P58137 P41903 0.78 0.15

P42881 Q9H3H5 0.8 0.17

P42881 Q5EA65 0.8 0.17

P36582 P41743 0.75 0.12

P53355 P28482 0.69 0.06

P87231 Q04149 0.74 0.11

P42881 P24140 0.8 0.17

P42527 P90648 0.72 0.1

P68181 P49841 0.71 0.09

P42881 Q9JK82 0.7 0.08

P53355 Q02156 0.69 0.07

P42881 Q5IGR7 0.7 0.08

P53096 Q9UBN7 0.69 0.07

P36165 Q12043 0.85 0.23

P41410 P53115 0.69 0.07

P32383 Q99P84 0.69 0.07

P42881 Q5IGR8 0.7 0.08

P42881 Q5IGR6 0.7 0.08

Q01887 Q01279 0.72 0.11
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