
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Numerical Simulation of Mixed

Convective Nanofluid Flows in a

Square Cavity

by

Khalid Mehmood

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Computing

Department of Mathematics

www.cust.edu.pk
www.cust.edu.pk
khalidmath79@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


 

Numerical Simulation of Mixed Convective 

Nanofluid Flows in a Square Cavity 

By 
 

Khalid Mehmood 

(PA133001) 

 

Dr. Fatma Ibrahim 

Technische Universität Dortmund 

Fakultät für Mathematik Lehrstuhl 

Dortmund, Germany 

(Foreign Evaluator No. 1) 

 

Dr. Hakan F. Öztop 

Department of Mechanical Engineering, 

Firat University, Elazig, Turkey 

(Foreign Evaluator No. 2) 

 

Dr. Muhammad Sagheer 

(Thesis Supervisor) 

 

Dr. Muhammad Sagheer 

(Head, Department of Mathematics) 

 

 

Dr. Muhammad Abdul Qadir 

(Dean, Faculty of Computing) 

 

Department of Mathematics 

Capital University of Science & Technology 

Islamabad 
 



i

Copyright c© 2018 by Khalid Mehmood

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.



ii

To my teachers and family









Acknowledgements

First of all, I express my gratitude to Almighty Allah (SWT), the merciful, the

compassionate and the creator of the whole universe, on the completion of my

PhD studies. It was not possible for me without His blessings upon me. I offer

my humblest words of thanks to the Holy Prophet Hazrat Muhammad (Peace be

upon him) who is forever a torch of guidance for the humanity.

This is great opportunity for me to express my feelings of love and gratitude

to my teacher and supervisor Prof. Dr. Muhammad Sagheer for he remained a

constant source of inspiration to me. I am highly impressed by his nice behaviour,

cooperation and kindness. I deeply appreciate for his guidance, encouragement,

advice, ideas, and invaluable support, throughout the duration of this thesis.

A lot of appreciation is extended to Dr. Shafqat Hussain, Associate professor

for his devotion, commitment, dedication and help during this project. He pro-

vided me the opportunity to learn the method that finally lead to this thesis. He

patiently introduced me the basic knowledge of the topic and always helped me

whenever I needed. His keen scientic insights were indispensable for this thesis

and will always be a source of inspiration for my future career.

I am also grateful to the Vice Chancellor of the university and the Dean of the

faculty of Computing for providing the best research facilities and conducive en-

vironment for study at CUST.

I gratefully acknowledge the funding source that made my Ph.D work possible.

I was funded by the Higher Education Commission of Pakistan. I am deeply in-

debted to my parents, my wife and other family members. Without their love,

prayers, time and guidance, it would not be possible for me to complete this task.

Last but not the least, my sincere thanks goes to my friends Mr. Muhammad

Bilal, Mr. Yasir Mehmood, Mr. Tanvir Sajid and Mr. Sajid Shah for very good

company and entertainment activities in free hours at the university.

v



vi

List of Publications

1. S. Hussain, K. Mehmood, M. Sagheer, MHD mixed convection and entropy

generation of water-alumina nanofluid flow in a double lid driven cavity with

discrete heating, Journal of Magnetism and Magnetic Materials, pp. 140-

155, vol. 419, 2016.

2. S. Hussain, S. Ahmed, K. Mehmood, M. Sagheer, Effects of inclination angle

on mixed convective nanofluid flow in a double lid-driven cavity with discrete

heat sources, International Journal of Heat and Mass Transfer, pp. 847-860,

vol. 106, 2017.

3. K. Mehmood, S. Hussain, M. Sagheer, Mixed convection in alumina-water

nanofluid filled lid–driven square cavity with an isothermally heated square

blockage inside with magnetic field effect: Introduction, International Jour-

nal of Heat and Mass Transfer, pp. 397-409, vol. 109, 2017.

4. K. Mehmood, S. Hussain, M. Sagheer, MHD mixed convection in alumina-

water nanofluid filled square porous cavity using KKL model: Effects of non-

linear thermal radiation and inclined magnetic field, Journal of Molecular

Liquids, pp. 485-498, vol. 238, 2017.



vii

Abstract

The aim of this thesis is to investigate the mixed convective nanofluid flow in the

square cavities with different physical effects. Initially, the influence of the cavity

inclination angle on the mixed convective nanofluid flow in a double lid-driven

cavity shall be considered. Then the magnetohydrodynamics mixed convective

nanofluid flow and entropy generation in a double lid-driven square cavity with

discrete heating will be examined. Furthermore, the mixed convection in nanofluid

filled lid-driven square cavity with an isothermally heated square blockage inside

with magnetic field effect will also be analysed. At the end, the mixed convective

nanofluid flow in a lid-driven square porous cavity using the Ko-Kleinstreuer-Li

model considering the effect of thermal radiation and inclined magnetic field will

be discussed. In all the discussed problems, the governing nonlinear partial dif-

ferential equations are solved by the Galerkin finite element method in space and

the fully implicit Crank-Nicolson scheme in time. The discretized systems of non-

linear equations are linearized by means of Newton’s method and the associated

linear subproblems are solved with the help of Gaussian elimination method. The

effect of physical parameters on the fluid flow has been investigated and discussed

in detail by means of streamlines, isotherms and plots. The optimization of the

thermodynamic efficiency of a system is today’s requirement. The entropy gener-

ation reduces this efficiency, therefore, it becomes necessary to reduce the entropy

generation. To do this, one has to carefully measure the entropy generation in

a process. Due to this motivation, calculation of entropy generation due to heat

transfer, fluid friction and magnetic field has also been taken into account in some

part of the study along with other physical effects.
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Chapter 1

Introduction

1.1 Introduction

In fluid dynamics, heat transfer over mixed convective flow inilid-driven cavities is

one of theimost extensively studied problem by researchers and industrialists due

to its growing practical applications. A lot of problems arising in industry can be

simulated using cavity due to its simple geometry. In orderito enhance the heat

conductivity of base fluids like water, ethylene glycol, oil, etc., modern techniques

have been adopted. First of all, Choi [1] contributed in this field by introducing

the nanofluids. Later on, many researchers have utilized nanoparticles to study

heat transfer mechanism [2–17]. In the last two decades, numerous scientists

have participated a lot to solve the heat transfer problems in cavities filled with

nanofluids experimentally, analytically as well as numerically.

1.1.1 Mixed Convection in Cavities

Mixed convection inicavities has beenistudied by many researchers due to its nu-

merous applications including electronic instruments cooling, iheat exchangers,

chemical reactors, solaricollectors, heating and cooling of buildings. Sourtiji et al.

[18] investigated heat treansfer in mixed convective Al2O3-waterinanofluid flow in

1
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a ventilated cavity. It isiobserved that heat transfer increases withian increase

inithe values of Reynolds number, Richardson number and nanoparticle ivolume

fraction. Teamah et al. [19] have investigated laminar mixed convection in shallow

inclined cavities using numerical simulation. They showed the influence of cavity

inclination on the flow, thermal and mass fields foriinclination angles rangingifrom

0◦ to 30◦. Ahmed et al. [20] examined the mixed convectionifrom a discrete

heatisource in enclosures withitwo adjacent movingiwalls and fillediwith micropo-

lar nanofluid. It was noticed that average Nusseltinumber along the heatisource

decreases as the heat sourceilength increases while it increases whenithe solid

volume fraction increases. Sheremet and Pop [21] analyzed the mixed convec-

tioniin a lid-driven square cavityifilled byia nanofluid using Buongiorno’s mathe-

maticalimodel. They foundithat Richardsoninumber and the moving parameter

play a dominant role inithe transfer of heat andimass and other flow charac-

teristics within a cavity. Sheikholeslami et al. [22] conducted numerical study

on MHD free convective alumina-water nanofluid flow taking into account ther-

mal radiation and observedithe enhancement in the average Nusseltinumber with

Rayleigh number, nanoparticlesivolume fraction and radiation parameter while

it declined with a growth in Hartmann number and viscous dissipation parame-

ter. In another study, Sheikholeslami [23] utilized Ko-Kleinstreuer-Li formulation

simulating the nanofluid flow in a porous channel. KKL correlation was applied

to calculate the effectiveithermal conductivity andiviscosity of nanofluid. Sheik-

holeslami and Rashidi [24] considered the influence of spaceidependent magnetic

fieldion free convectioniof Fe3O4-water nanofluid. Mixed convective flow inian in-

clined squareienclosure saturated with a nanofluid was discussed by Abu-Nadaiand

Chamkha [25] with the conclusion that the Richardsoninumber plays a vital role

in heat transfer process and flow properties inside an enclosure. Also, it was

anticipated that substantial heat transfer could be enhanced due to existence of

nanoparticlesiand this would be attained by inclinationiof cavity at different val-

ues of Ri. Mixed convectioniin an inclineditwo sided lid-drivenicavity filled with

nanofluid utilizing two-phase mixtureimodel was propounded by Alinia et al. [26].

It was observed that augmentation of SiO2 nanoparticles enhances more heat
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transfer as comparediwith pure fluid and inclination angle affects a lot on the flow

characteristics at high Richardson number. Sivasankaran et al. [27] considered a

lid-driven inclined cavity with discrete heating and found that more transfer of

heat was observed at cavity inclination angle of γ = 30◦. Mixed convectioniof

Cu-water nanofluid in aniinclined lid-driven cavity utilizing the latticeiBoltzmann

method was investigated by Karimipour et al. [28] and it was found that move-

ment of cavity lid at Ri = 0.1 has more effects on nanofluid than that of Ri = 1.

Also, introducing 4% of Cu-nanoparticles in the baseifluid increases 50% of average

Nusselt number for inclination angles of cavity ranging from 0◦ to 90◦ at Ri = 0.1

and Re = 100. Larger concentration of nanoparticles increases the average Nus-

selt number faintly at Ri = 1 for inclination angle equal to 0◦ but it enhances

rapidly average Nusselt number for inclination angle γ = 90◦. Das and Tiwari [29]

numerically examined the problem of mixed convection of differentiallyiheated en-

closure saturated with Cu-water nanofluid and their conclusion showed thatithe

average Nusselt numberiincreases significantly withithe augmentation of nanopar-

ticles volumeifraction keeping Richardson number at unity. Subdani et al. [30]

numerically investigatedithe flow and heat transferiin a square cavityifilled with

alumina-water nanofluid, with a heat sourceiat the bottomiwall. In their study,

enhancement in heat transfer was observed with increasing Reynolds number for

constant Rayleigh number and heatisource placed at the centre of the bottom

wall. Ailid driven enclosure saturated with nanofluid was investigated numeri-

cally for the mixed convection by Muthtamilselvan et al. [31] and found that

fluidiflow and heat transfer were affected both by the aspect ratio ofithe cavity

and nanoparticles volume fraction. A similar study was performed numerically

for natural convection by Ho et al. [32] in a two-dimensional cavity. Their study

revealed that heat transferiin a cavity wasienhanced due to augmentation in the

concentration of copper-water nanoparticles at some fixed Grashof number. Nat-

ural convectiveiheat transfer inia cavity saturated with alumina-water nanofluid

using numerical simulation was performed by Khanafer et al. [33]. It was seen

that the heat transfer increases or decreases due to the model that was used for
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viscosity and thermal conductivity of the nanofluid. Mahmoudi et al. [34] nu-

merically studiedithe mixed convection flow in a vented square cavity fillediwith

copper-water nanofluid. The special criteria they adopted was the consideration

of inlet and outlet ports to configure at four different places. They observed their

influence onithe flow and heat transfer and it was noticed that Reynolds number,

Richardsoninumber and nanoparticles volumeifraction have significant effect on

the numerical characteristic of the flowifield. Furthermore, they noticed thatithe

the flow fields and the temperature idistribution inside the cavity iwere dependent

on the location of the inlet and outlet.

1.1.2 Magnetohydrodynamics

The effect of magneticifield on convective heatitransfer in aicavity was extensively

investigated by many researchers [35–43]. Shirvan et al. [44] iinvestigated the ef-

fectiof magnetic field ion mixed convective heatitransfer in a ventilated square cav-

ity. It is worthy noted that the heatitransfer rate decreases withian increase in the

Hartmann number. Malvandi and Ganji [45] discussed free convectioniin a cavity

saturated with alumina-water nanofluid with magnetic field effect. Observation in-

dicates that magnetic field increases the slip velocity and the velocity gradientinear

the wall but reduces the heat transfer rate. Mixed convectioniof shear-thinning

fluids inia cavity with MHD was investigated by Kefayati [46]. For an electrically

conducting fluid, the influence of Lorentz force is to inhibit convection flow by re-

ducing the fluid velocity so that the existence of external magnetic field becomes

an active technique in manufacturing industries. Orientation and strength of mag-

netic field play a vital role in the behavior of flow. Appliedimagnetic field influences

theisuspended particles and reshuffles theiriconcentration in theifluid which effec-

tively changes the heat transfericharacteristics of the flow. Mixed convection inia

porous cavity with MHD effect using numerical approach was examined by Mo-

han and Satheesh [47]. Analysis shows that MHD effect plays an important role

in the dynamics of temperature and concentration which depend on the aspect

ratio and Hartmann number. Elshehabey and Ahmed [48] have investigated MHD
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effect on mixed convection inia cavity saturated with a nanofluid. It was shown

that inclined magnetic field cease the fluid flow. Selimefendigil and Chamkha [49]

analyzed the MHD mixed convective, non-Newtonian power law fluid in a cavity

with an uneven bottom wall considering the impact of an inclined magnetic field

and found that the natural convection plays a vital role for a shear-thinning fluid.

Sheremet et al. [50] considered ai wavy-walled cavity saturated with ainanofluid

under the influence of magnetic field. It has been perceived that the average Nus-

seltinumber at vertical ihot wavy wall isian increasing function of the magnetic

field inclination angle γ for 0 < γ < π/2 and decreasing for π/2 < γ < π.

1.1.3 Isothermal Blockage Inside a Cavity

Heat transfer in a cavity with one or more obstacles inside has drawn the attention

of many researchers in the last decade. Esfe et al. [51] discussed the mixed con-

vective nanofluid flow in an enclosure with a hot obstacle inside. Their conclusion

showed that the nanofluididescends downward along theiright wall, moves horizon-

tally above the obstacle to the left corner of the cavity along the bottom wall and

then moves upward and forms an eddy inside the cavity. Increasing the Richardson

number, clockwise rotating vortex becomes larger due to the effect of the obstacle.

Islam et al. [52] examined the mixediconvection in ailid driven cavity with an

isothermal block inside and found that for any size of blockage kept at random

place in a cavity, the average Nusselt number changes only when the Richardson

number exceeds the order of 1. For Richardson number more than 1, average

Nusselt number increases speedily. Moreover, optimal situation for heat transfer

was acquired to maintain the block at theitop left and bottom right corneriof the

cavity. Öztop et al. [53] considered the fluid flow dueito combined convection in

lid driven enclosure havingia circular body. It was indicated that the circular body

played a role of control parameter for the heat and fluid flow. Billah et al. [54]

iinvestigated the mixed convection in a lid-driven cavity with aiheated circular hol-

low cylinder and found that the heat transfer and fluid flow are strongly dependent

on the diameter of the hollow cylinder. Considerable influence of cylinder on the
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flow for the cases of forced, mixed and natural convection was observed. For the

fixed Richardson number, cylinder augmented the heat transfer with increasing

diameter. Mehrizi et al. [55] analyzed the mixed convection in a ventilated cavity

with hot obstacle considering the influence of nanofluid and outlet port location.

They have shown that the heatitransfer enhanced withiincreasing the nanopar-

ticles volume fraction for various Richardson numbers and outlet port positions.

Moreover, an augmentation in the Richardson number caused to change the main

flow direction from top to bottom of the obstacle. Rahman et al. [56] examined

the magnetohydrodynamic mixediconvection and Jouleiheating in a lid driven cav-

ityihaving aisquare block inside and observed that the flowifield and temperature

profile mainly depend on the magneticiparameter, Joule heating parameteriand

size of theiinner block for the mixediconvection regime. Khanafer and Aithal [57]

discussed the mixed convectioniflow and heat transferiin a lididriven cavity with a

circular cylinder. It was observed that the optimaliheat transfer results could be

obtained while placing theicylinder near theibottom wall for different Richardson

numbers.iFor natural and mixed convection,ithe average Nusselt number increases

withian increase inithe radius of the cylinder for various Richardson numbers. Se-

limefendigil and Öztop [58] considered the MHD mixediconvection in ainanofluid

filled lididriven square enclosure with airotating cylinder inside and their conclu-

sion showed that the heat transfer enhancement for Ri = 10 was 17% more than

that for Ri = 1. A numericalistudy on the mixed convectioniin a lididriven cavity

with a circular cylinder hasibeen conducted by Zheng et al. [59]. They showed

that the fluid flow and heat transfer characteristics in the cavity strongly depend

on the position of the circular cylinder as well as on the relative magnitude of the

forced convection and the natural convection caused by the movement in the top

wall of the cavity and the heating at the hot bottom wall, respectively.
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1.1.4 Porosity

Mixed convective heat transfer in porous media has attractedia lot of researchers

due to its demanding applications in science and engineering including civil, chem-

ical and mechanical engineering. Heat exchangers [60], boilers [61], oil and gas

flowing in reservoirs [62], water filtration [63], ground-water flows [64], transfer

of drugs in tissues [65], fuel cells [66], packed-bed energy storage systems [67],

thermal insulation [68, 69] and fluidized beds [70] are some examples out of many

applications. One can found comprehensive discussion on the the heat and mass

transfer in porous media in the books [71–73]. Sheremet and Pop [74] investigated

natural convective nanofluid flow in a porous cavity and unveiled that the average

Nusselt number and Sherwood number amplify with an increase in the buoyancy

ratio parameter. Chamkha and Ismael [75] examined the natural convection in

the porous enclosure saturated with nanofluid and found that the Nusselt number

increases as thickness of porous layer reaches a certain critical value and after

that it is reduced. Ahmed et al. [76] considered the MHD and viscous dissipation

effects on the mixed convective flow in a porous cavity and observed that the av-

erage Nusselt number increases with an augmentation in the viscous dissipation

and Darcy number. Rashad et al. [77] discussed the free convective nanofluid flow

in a porous cavity considering the effect of magnetic field and internal heat gen-

eration. More study on nanofluid saturated porous cavity can be consulted in the

literature [78–88].

1.1.5 Entropy Generation

Entropy is defined as the degree of disorder in a closed but varying system, a

system in which transfer of energy takes place in one direction only. Entropy

generation that signifies the amountiof irreversibility inia process is theicriteria

for the performanceiof the engineering machinery. Thermodynamic efficiency of a

system is reduced due to entropy generation. Entropy analysis tells us the part

of the physical modelior system in which energy is dissipated to a greater extent.
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Basics to minimize the entropy generation was examined by Bejan [89]. Proto-

typical structure of heat transfer procedure in various industries is acquired with

an accurate measurement of entropyigeneration since iticlarifies waste of energy

in a process. Hence, entropyigeneration is examined in the mixed convection of

pureiand nanofluid [90–100]. Hajialigal et al. [101] discussed the influence of mag-

netic field on the mixed convection and entropy generation in nanofluid saturated

with three dimensional microchannels. It is highlighted that the entropy gener-

ation reduces with a growth in the magnetic field strength and the solid volume

fraction. Mehrez et al. [102] investigated the impact of MHD on the transfer of

heat and entropy generation in a cavity filled with nanofluid. It was found that

an augmentation in the nanoparticles volume fraction results an enhancement in

the average Nusselt number and entropy generation. It depends mostly on the

strength and inclination angle of the magnetic field. Kefayati [103] has considered

simulation of the power-law fluids with Soret and Dufour effects in an inclined

porous cavity. Observations show that the entropy generation declines with an

enhancement in the inclination angle from 40◦ to 80◦. Mixed convection and en-

tropyigeneration in a trapezoidal enclosure filled with nanofluid considering the

influence ofimagnetic field were conducted by Aghaei et al. [104]. It was shown

that the influence of fluid friction on entropy generation is negligible. Entropy is

mostly generatedidue to the heatitransfer. Selimefendigil and Öztop [105] investi-

gated the impact of heat generation and magnetic field in a cavity saturated with

nanofluid. It was noticed that the heat transfer reduces due to the existence of

different obstacles. Entropy analysis of the MHD pseudo-plastic nanofluid flow

through a vertical porous channel with convective heating was discussed by Das et

al. [106]. It was found that the temperature of the fluid enhances with increasing

Eckert number, thermal conductivity parameter and Biot number. Also, an in-

crease in the power-law index caused the entropy generation rate to decline. Main

source of entropy and heat transfer irreversibility was the channel wall.
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1.2 Thesis Contributions

In thisithesis, numerical simulation of mixed convective alumina-waterinanofluid

flow in a double lid driven square cavity hasibeen executed. The Galerkiniweighted

residual finiteielement method has been utilized for spatialidiscretisation and the

Crank-Nicolson implicitischeme is applied foritemporal discretisation. Initially, we

consider the influenceiof cavity inclination angle on the mixediconvective nanofluid

flow in a doubleilid-driven cavity. Then the magnetohydrodynamics mixed con-

vective nanofluid flow and entropyigeneration in a double lid-driven squareicavity

with discrete heating was examined. Furthermore, the mixed convectioniin a

nanofluidifilled lid-drivenisquare cavity with aniisothermally heated square block-

age inside with magneticifield effect has been analyzed. At the end, the mixed con-

vective nanofluid flow inia lid-driven squareiporous cavity using Ko-Kleinstreuer-

Li model considering the effectiof thermal radiation and inclined magneticifield

was discussed. Furthermore, the behaviour of the averageiNusselt number, the

entropyigeneration due to heat transfer, fluidifriction, magneticifield, the total

entropyigeneration, average temperature, kineticienergy and Bejan number have

beeniinvestigated under theiinfluence of differentiphysical parameters like Reynolds

number, Richardsoninumber, Hartmanninumber, Eckertinumber, Darcyinumber,

nanoparticles volumeifraction, cavity inclinationiangle, magneticifield inclination

angle, porosityiand thermaliradiation parameter and discussed physically inidetail

by meansiof streamlines, isothermsiand plots.

All the computations during the preparation of this thesis are performed by us-

ing the finite element solver package FEATFLOW. The FEATFLOW is a general

purpose open source FEM software package particularly for the simulations of the

CFD problems. A brief introduction can be found at http://www.featflow.de.
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1.3 Thesis Outline

This thesis is further subdivided in the following way.

The basic governing equations, discretization techniques and solution method-

ology have been discussed in Chapter 2.

The effect ofithe inclination angleion the mixed convective nanofluid flow in a

double lid-driven cavity has been discussed in Chapter 3. The contents of this

chapter are published.

MHDimixed convective alumina-water nanofluidiflow and entropy generationiin

a lid drivenisquare cavity is presented in Chapter 4. The contents of this chapter

are published.

Mixediconvective alumina-water nanofluidiflow in a lid-driven squareicavity with

an isothermally heated square blockage inside under the influence of magnetic field

effect has been considered in Chapter 5. The contentsiof this chapteriare pub-

lished.

MHD mixed convection in alumina–water nanofluid filled square porous cavity

using KKL model considering the effects of non-linear thermal radiation and in-

clined magnetic field has been elaborated in Chapter 6. The contents of this

chapter are published.

The whole analysis has been concluded in Chapter 7.



Chapter 2

Governing Equations and

Discretization Techniques

In this chapter, we briefly discuss the basic laws governing the mathematical mod-

els discussed in this thesis. Since the entropy generation will be calculated in the

forthcoming study, therefore the entropy generation and its principles have also

been listed. The finite element method has been explained by taking an example

of an unsteady heat equation along with semi-discretizations in space and time.

Furthermore, the mixed finite element method has also been discussed.

2.1 Fundamental Laws

2.1.1 Law of Conservation of Mass

“The continuity equation or the law of conservation of mass [107] is written as

∂ρ

∂t
+∇.(ρV) = 0, (2.1)

11
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where ρ is density and V is the velocity of fluid. For incompressible fluids, the

above equation can be expressed in the following way

∇.V = 0. (2.2)

2.1.2 Law of Conservation of Momentum

The mathematical expression for law of momentum is

ρ
DV

Dt
= ∇.τ + ρb. (2.3)

The Cauchy stress tensor for an incompressible flow is −pI + S in which p is the

pressure, I is the identity tensor, S is the extra stress tensor, b is the body force

and D
Dt

is the material time derivative. The Cauchy stress tensor and the velocity

field are

τ =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 , (2.4)

V = [u(x, y, z), v(x, y, z), w(x, y, z)] , (2.5)

where σxx, σyy and σzz are the normal stresses, τxy, τxz, τyx, τyz, τzx and τzy

are shear stresses and u, v, w are the velocity components along the x, y and

z-directions respectively. Eq. (2.3) in scalar form yields

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
=
∂(σxx)

∂x
+
∂(τxy)

∂y
+
∂(τxz)

∂z
+ ρbx, (2.6)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
=
∂(τyx)

∂x
+
∂(σyy)

∂y
+
∂(τyz)

∂z
+ ρby, (2.7)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
=
∂(τzx)

∂x
+
∂(τzy)

∂y
+
∂(σzz)

∂z
+ ρbz, (2.8)
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where bx, by and bz show the components of body force along the x, y and z-axes,

respectively. The above equations for two-dimensional flow become

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
=
∂(σxx)

∂x
+
∂(τxy)

∂y
+ ρbx, (2.9)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
=
∂(τyx)

∂x
+
∂(σyy)

∂y
+ ρby, (2.10)

2.1.3 Equation of Heat Transfer

According to first law of thermodynamics, the heat transfer equation is

ρ
dε

dt
= τ.L−∇.q + ρrh, (2.11)

where ε = CpT is the internal energy, Cp is the specific heat, T is the temperature,

L = ∇V is the velocity gradient, q = −k∇T is the heat flux, k is the thermal

conductivity and rh is the radiative heating. The above equation in the absence

of radiative heating is

ρCp
dT

dt
= τ.∇V + k∇2T.” (2.12)

2.2 Magnetohydrodynamics

The magnetohydrodynamics isithe study of the magneticiproperties of an electri-

cally conducting fluid. The field of MHD was introduced by the Swedish plasma

physicist and the Nobel Laureate Hannes Alfvén. The basic perception of MHD

is that an electromagnetic force exertsian influence not only on theiflow of con-

ductingifluid but it also changes itself underithe influence of theiflow. In general,

the system of equations illustrating the movement of the conducting fluid in the

presence of an external magnetic field, is composed of the Navier-Stokes and the
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Maxwell equations [108]. The Navier-Stokes equationiof motion including electro-

magnetic bodyiforce (Lorentz force) F = j×B is

∂V

∂t
+ (V.∇) V = −1

ρ
∇P + ν∇2V +

1

ρ
(j×B) . (2.13)

The continuity equation for incompressible fluids is

∇.V = 0. (2.14)

The Ohm’s law for slowly moving medium (medium velocity should be much

smaller than the velocity of light) in a magnetic field is

j = σ(E + V ×B). (2.15)

The Maxwell equations are

∂B

∂t
= −(∇× E), (2.16)

j =
1

µ
(∇×B)− ε∂E

∂t
, (2.17)

∇.B = 0, (2.18)

∇.E =
ρ

ε
. (2.19)

Here V is the fluid velocity, σ is the electrical conductivity, E is an electric field,

P is the pressure, ν is the kinematic viscosity, B is the magnetic induction, ρ is

the density, j is an electric current. The Eq. (2.13) illustrates the movement of

a conductingifluid in the magneticifield and includes the force of pressure gradi-

ent ∇P , iviscosity ν∇2V, inertial force (V.∇) V and Lorentz force j × B onithe

element of movingimedium. The existence of a Lorentz force inithe conducting

fluid dueito the interaction ofithe current j with the magneticifield B, shows the

majoridifference between the hydrodynamics and the magnetohydrodynamics.
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2.3 Principle of Entropy Generation

The concepts ofientropy and irreversibility, derived from the secondilaw of ther-

modynamics, were introduced by the German physicist Rudolf Clausius in 1856.

According toithe second lawiof thermodynamics, theientropy of a closed system al-

ways increases with the time. It is constant in the case when a process is reversible

or in equilibrium. The enhancement in the entropy elucidates the irreversibility

of the natural processes.

Entropy is the thermodynamic characteristics just like pressure and temperature.

The changes in a closed system subject to entropy are expressed by the ratio Q/T ,

where Q is net heat transfer and T is temperature. Entropy increases as T de-

creases or Q increases. In a reversible process, a small increase in the entropy (dS)

of a system is defined as a ratio of the small transfer of heat (δQ) to a closed sys-

tem divided by the common temperature (T ) of the system and the surroundings

which supply the heat, i.e.,

dS =
δQ

T
. (2.20)

Eq. (2.20) is valid for an ideal, closed and reversible process. For an actually

possible small process in an isolated system, the second law requires that the

above equation changes to an inequality given by

dS >
δQ

T
. (2.21)

2.4 The Finite Element Method

The finite element method is utilized for the spatial discretization of the problems

considered in this thesis. Initially, this method was used to solve the elasticity and

structural mechanics problems but these days it has become very beneficial for

the solution of partial differential equations arising in the fluid mechanics, solid

mechanics and engineering. In this mathematical technique, the original strong

form of the partial differential equations is transformed to variational or weak form
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by multiplying with a weight (or test) function and integrating over the domain.

We will apply Galerkin weightediresidual finite elementimethod in the subsequent

work.

2.4.1 Weighted Residual Formulation

We explain the weightediresidual finite element method with theihelp of a two

dimensional, steady, linear problem

Lu. = .f ini Ω, (2.22)

u. = .0 on ∂Ω, (2.23)

with Ω ⊂ R2 and L isithe Laplacian operator. The function u is defined as

u : Ω→ R and if the solution u is an exact, then the residual R(u) = Lu− f = 0,

otherwise R(ũ) 6= 0 for an approximate solution ũ ≈ u. Our target is to search for

a function uh that forces residual equal to zero by a suitable function [109]. The

Eq. (2.22) is in strong form. In finite element method we suppose the integral form

also known as the weak or variational form of Eq. (2.22). First, the equation is

multiplied by an appropriate test function w and then integrated over the domain

Ω to obtain ∫
Ω

(Lu− f)w dΩ = 0, for all w ∈ W, (2.24)

where W is the test space. Applying the Green’s theorem to Eq. (2.24) and

incorporating the boundary condition, we have

a(u, iw) =

∫
Ω

fiw dΩ, for alli w ∈ W, (2.25)

where

a(u,w) =

∫
Ω

(
∂u

∂x

∂w

∂x
+
∂u

∂y

∂w

∂y

)
dΩ, for all w ∈ W, (2.26)

is the bilinear form. We say that a(., .) is a bilinear form on V ×V if a : V ×V → R,

i.e., a(u,w) ∈ R for u, w ∈ V . Let us assume that the function u be approximated
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by the trial function uh ∈ Uh of the form

uh ≈
N∑
j=1

cjφj ∈ Uh, (2.27)

where Uh, cj, φj are the finite dimensional trial space, unknown coefficients (to be

determined) and basis functions, respectively. We must also replace the infinite di-

mensional test space W by a finite dimensional test space Wh ∈ W . Moreover, the

computational domainiis subdivided into a number of non-overlappingielements.

Finite dimensional test space can be expressed as

wh ≈
N∑
i=1

diψi ∈ Wh, (2.28)

where ψi are basis functions from the test space. Incorporating the approximate

solutions in Eqs. (2.25) and (2.26), these can be rewritten as

a(uh, wh) =

∫
Ω

(
∂uh
∂x

∂wh
∂x

+
∂uh
∂y

∂wh
∂y

)
dΩ =

∫
Ω

fwh dΩ. (2.29)

Our target is to compute cj where basis functions are predefined. The expres-

sion (2.29) holds for all possible choices of di, i = 1, 2, ..., N . Thus the unknown

coefficients cj for the approximate solution uh can beidetermined by solvingithe

following systemiof equations

N∑
j=1

cja(φj, ψi) =

∫
Ω

fψi dΩ, ∀ i = 1, 2, ..., N. (2.30)

There exist several methods of weighted residuals that depend on the choice of ψi

for example the collocation method and the least square method. If one selects

ψi = φi, this method is known as standard Galerkin method and the same method

is utilized in this work.
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2.4.2 The Unsteady Heat Equation

We consider an unsteady two dimensional heat equation, i.e.,

∂u

∂t
−
(
∂2u

∂x2
+
∂2u

∂y2

)
= f in Ω. (2.31)

The scaler unknown u is a function of both space and time variables and u : Ω→ R

with Ω ⊂ R2. The time domain is taken as [0, T ] that is further divided into N

subintervals [tk−1, tk], k = 1, 2, ..., N such that 0 = t0, tk−1 < tk and tN = T . The

time step is represented by ∆t = tk − tk−1, k = 1, 2, ..., N . To obtain a solution

at an initial time step on the full domain, an initial conditioniand two boundary

conditionsiare required. After multiplying Eq. (2.31) by the test (weight) function

w and integrating by parts, we get

∫
Ωe

(
∂u

∂t
w +

∂u

∂x

∂w

∂x
+
∂u

∂y

∂w

∂y

)
dΩ =

∫
Ωe

fwdΩ + B.T. (2.32)

Here, B.T. represents the boundary integral term. The Eq. (2.32) is the variational

or weak form of the problem (2.31). For solution, we apply the method of lines in

which semi-discretiation of space is performed first to obtain a systemiof ordinary

differential iequations, then the semi-discretiation in time is employed to get an

algebraic system of equations.

2.4.3 The Semi-discretization in Space

The approximate solution over an element can be given by

ue(x, y, t) =
NEN∑
j=1

uj(t)ξj(x, y) (2.33)
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Substituting the approximate solution into the weak form, we get

∫
Ωe

[(
NEN∑
j=1

∂uj
∂t

ξj

)
w +

(
NEN∑
j=1

uj
∂ξj
∂x

)
∂w

∂x
+

(
NEN∑
j=1

uj
∂ξj
∂y

)
∂w

∂y

]
dΩ

=

∫
Ωe

fwdΩ + B.T. (2.34)

Utilizing the Galerkin finite element method, we choose a weight function w =

ξi(x, y) to get the following ith equation of the elemental system

∫
Ωe

[(
NEN∑
j=1

∂uj
∂t

ξj(x, y)

)
ξi +

(
NEN∑
j=1

uj
∂ξj
∂x

)
∂ξi
∂x

+

(
NEN∑
j=1

uj
∂ξj
∂y

)
∂ξi
∂y

]
dΩ

=

∫
Ωe

fξidΩ + B.T. (2.35)

Taking the summation sign outside of the integral

NEN∑
j=1

[∫
Ωe

ξjξidΩ

]
∂uj
∂t

+
NEN∑
j=1

[∫
Ωe

(
∂ξj
∂x

∂ξi
∂x

)
+

∫
Ωe

(
∂ξj
∂y

∂ξi
∂y

)
dΩ

]
uj

=

∫
Ωe

fξidΩ + B.T. (2.36)

Theifinal equation can beiexpressed in theifollowing compact form

[M e]{u̇e}+ [Ke][ue] = {F e}, (2.37)

where ue is the nodal unknown vector and {u̇} represents the time derivative for

the unknown. M e, Ke and F e are the mass matrix, stiffness matrix and force

vector at an element level, respectively. For the sake of brevity, the boundary

integral Be is included in F e. Following is the global system that is obtained after

assembling the local (element level) system

[M ]{u̇}+ [K][u] = {F}. (2.38)
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2.4.4 The Semi-discretization in Time

Figure 2.1: Time domain discretization.

The Eq. (2.38) is not a system of simple algebraic equations but it is a setiof

ordinary differentialiequations due to presence of the time derivative term. For

time discretization, we assume the time domain given by the Figure 2.1. Initial

condition gives the solution at zeroth time level k = 0. The solution is obtained

at the next time level utilizing the information at a previous time level. Here, tk

represents the present time level where the solution is known and tk+1 is the next

time level where we want to find the solution. ∆t is the time step between the both

time levels k and k+1. For simplicity, we will assume ∆t to be constant for the full

domain although it can be considered to vary with time for increasing efficiency.

For discretization of the time dependent problems, following three schemes are

frequently used

• Crank-Nicolson method

• Backward Euler method

• Forward Euler method

Since Crank-Nicolson method is utilized in this thesis therefore it becomes impor-

tant to discuss some details of it.

2.4.4.1 The Crank-Nicolson Scheme

Following formulation serves as a base for this scheme

{u̇k+1}+ {u̇k}
2

=
{uk+1} − {uk}

∆t
+O(∆t)2. (2.39)
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It has an accuracy of order two and it is somewhat an average of forward and

backward difference schemes. For its derivation, we write Eq. (2.38) for both time

level k and k + 1 in the following way

[M ]
{uk+1} − {uk}

∆t
+ [K]k{u}k = {F}k, (2.40)

[M ]
{uk+1} − {uk}

∆t
+ [K]k+1{u}k+1 = {F}k+1. (2.41)

After multiplying these equations by 1/2, adding them, using Eq. (2.39) to dis-

cretize the time derivative terms and rearranging them, we obtain the following

form

{u}k+1 =

(
[M ] +

∆t

2
[K]k+1

)−1 [(
[M ]− ∆t

2
[K]k

)
{u}k + {u}k

+
∆t

2
({F}k + {F}k+1)

]
. (2.42)

2.5 Mixed finiteiElement Method

The mixed finiteielement method is utilized to obtain approximate solutions for

coupled partial differential equations with more than one unknowns, simultane-

ously. We wantito find the velocity, temperature and pressure from our governing

equations, at the same time. So, the mixed finiteielement method is employed

to solve the system ofiequations. Here, we require different finite element spaces

for various unknowns. To ensure the convergence of the solution, these different

spaces are interrelated in such a way that the famous discrete inf-sup condition,

i.e., the Ladyzhenskaya-Babuŝka-Brezzi (LBB) condition given in expression (2.43)

is satisfied [110, 111], i.e.,

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖V ‖qh‖Q
≥ γ. (2.43)
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We have solved the governing equations of Chapter 3 in space by the noncon-

forming Stokes element Q̃1/Q0 while the problems of the Chapters 4, 5 and 6 in

space are solved by the conforming Stokes element Q2/P
disc
1 . A brief description

of these finite element pairs is given in the following subsections.

2.5.1 The Nonconforming Stokes Element Q̃1/Q0

When the finite element space is not a subspace of the solution space, this approach

is called nonconforming. This is a recently established nonconforming rectangular

element [112]. The shape function consists of four terms as [1, x, y, x2 − y2] and

there exists its four mean values along the edges of the rectangle. Let Th beithe

regular decomposition ofithe domain Ω ⊆ Rn into iquadrilaterals respectively hex-

ahedrons denotediby T , where theimesh parameter h > 0 describesithe maximum

diameteriof the elements of Th. By ∂Th, we denote theiset of all (n − 1)-faces Γ

of theielements Ti ∈ iTh. Theifamily Th is assumed to satisfyithe usual uniform

shapeicondition. Accordingly, the genericiconstant c used belowiis always inde-

pendentiof h. In definingithe parametric rotated multilinear element,ione uses the

unitin-cube (withiedge parallel toithe coordinate axes)ias a referenceielement T .

Forieach T ∈ Th, let ψT : T̂ → T beithe corresponding n-lineari1− 1 transforma-

tion. Weiset

Q̃1(T )i = i{q ◦ ψ−1
T : q ∈ spani(1, xi, xi+1, x

2
i − x2

i+1, i = 1, ..., n)}. (2.44)

The parametricirotated multilinear element hasia nonparametric counter part.iFor

any elementiT ∈ Th,ilet {ξi} denote a coordinate system which is obtained by

connectingithe center pointsiof any twoiopposite (n−1)-facesiof T . Since theimesh

family Th isiuniformly regular,ithe linear transformation betweeni{xi} and the

Cartesian system {ξi} isibounded independentlyiof h. Onieach T ∈ Th,iwe set

Q̃1(T ) = {q ◦ ψ−1
T : q ∈ span(1, ξi, ξi+1, ξ

2
i − ξ2

i+1, i = 1, ..., n)}. (2.45)

The Q0 element consists of a quadrilateral with constant interpolation.
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2.5.2 The Conforming Stokes Element Q2/P
disc
1

The domainiis discretized into a number ofinon-overlapping quadrilateral elements

Ωn, n ∈ N. The biquadratic elementQ2 [113] is defined on each quadrilateral with 9

degrees of freedom as shown in Figure 2.2. Moreover, we use a reference coordinate

system (ξ, η) for the construction of local shape function on the physical element.

Now, we define a bilinear mapping between the physical and reference element by

Gn : Ω̃n → Ωn. The inverse mapping G−1
n : Ωn → Ω̃n is applied to get back to the

physical coordinate system (x, y). Figure 2.2 demonstrates both the physical and

reference coordinate systems. The value of shape function on each node is defined

by

φ̃j(x̃i) = δij =

 1 if j = i

0 if j 6= i,

where x̃i ∈ Ω̃n denotes the ith node in Ω̃n. These nine shape functions are bi-

quadratic polynomials and can be expressed by {1, ξ, η, ξη, ξ2, η2, ξ2η, ξη2, ξ2η2}

where −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1. Then, the space Q2(Ωn) on the physical

element is defined by

Q2(Ωn) = {h ◦G−1
n : h ∈ spani{1, x, y, xy, x2, y2, x2y, xy2, x2y2}} (2.46)

Figure 2.2: Mapping between biquadratic physical and reference element.

The discontinuous P1 finite element space contains piecewise polynomials which

are discontinuous across the boundaries that are common to the other element.
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Three degrees ofifreedom exist at the centre of each element as shown in Figure 2.3.

In mapped approach, the shape function on the reference element can be expressed

in the following way

φ̃1(ξ, η) = 1,

φ̃2(ξ, η) = ξ,

φ̃3(ξ, η) = η.

The space P1(Ωn) on the physical element, is defined by

P1(Ωn) = {h ◦G−1
n : h ∈ span{1, x, y}}. (2.47)

Figure 2.3: Mapping between discontinuous P1 physical and reference element.



Chapter 3

MixediConvective Nanofluid Flow

in a Cavity

3.1 Introduction

In this chapter, numerical simulations areiperformed to examine the effect of in-

clination on the heat transfer of Al2O3–water nanofluid for mixediconvection flow

in a partially heated double lididriven inclined cavity. Twoiheat sources are af-

fixed at some portion of the bottom wall ofithe cavity while the remaining part

of this wall is considered as adiabatic. The moving vertical wallsiand the top

walliare kept at constant cold temperature. Buoyant force is responsible for the

flow along with two moving vertical walls. The governing equations are discretized

with the help of finite elementimethod in space and the Crank-Nicolson in time.

Newton’s method isiutilized to linearize the system of nonlineariequations and the

associated linearisystem is solvediby the Gaussian elimination imethod in each

time level. Numerical results are presentediand analyzed by meansiof streamlines,

isotherms, tables and some useful plots. Impact of emerging parameters on the

flow, in specific ranges such as Reynolds number (1 ≤ Re ≤ 100), Richardson

number (0.01 ≤ Ri ≤ 10), nanoparticle volumeifraction (0 ≤ φ ≤ 0.04) as well

as inclination angle of cavity (0◦ ≤ ψ ≤ 45◦) are investigated and findings are

25
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exactly of the same order as that of the previously performed analysis in the lit-

erature. Calculations of average Nusselt number, average temperature, average

entropyigeneration due toiheat transfer and fluidifriction and kinetic energy are

the main focus of this chapter. This study is organised in the following way: Sec-

tion 3.2 illustrates the problem configuration. Section 3.3 contains information

about space and time discretizations of the governing equations, the numerical

method, code validation and grid independence test. Results based on the numer-

ical simulation have been elaborated in Section 3.4. Finally, conclusion has been

drawn in Section 3.5.

3.2 ProblemiFormulation

3.2.1 The Problem Configuration

Figure 3.1: Schematicidiagram ofithe physical model.

We consider a lid driven square cavity inclined at an angle ψ and filled with

nanofluid that is unsteady and incompressible. Two heat sources are fixed along
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Physical properties H2O Al2O3

ρ (kgim−3) 997.1 3970
Cp i(J kg−1K−1) 4179 765
k i(W m−1 K−1) 0.613 25
β (K−1) 21× 10−5 1.89× 10−5

dp (nm) - 47

Table 3.1: Thermo-physicaliproperties of wateriand alumina [37].

the wall at the bottom at constant temperature (see Figure 3.1). L represents the

width of the cavity, while Th isithe prescribed constant hot temperature,iTc is the

constant cold temperature. Distance of heat sources from both the side walls is the

same. It is assumed that the slipping effect between any two phases is negligible.

Viscousidissipation in theienergy equation is neglected [93, 96]. Nanoparticles

used during this study have certain thermo-physical properties [114–116] that are

tabulated in Table 3.1. Density variation is taken into consideration by using the

Boussinesq approximation which is apparent as the buoyancy force.

3.2.2 TheiGoverning Equations

Governing equations oficontinuity, momentumiand energy [37] under the above-

mentioned assumptions are given by

∂u

∂t
.+ .u

∂u

∂x
.+ .v

∂u

∂y
. = .− 1

ρnf

∂p

∂x
.+ .

µnf
ρnf

(
∂2u

∂x2
.+ .

∂2u

∂y2

)
.

+ .
(ρβ)nf
ρnf

g(T − Tc). sinψ, (3.1)

∂v

∂t
.+ .u

∂v

∂x
.+ .v

∂v

∂y
. = .− 1

ρnf

∂p

∂y
.+ .

µnf
ρnf

(
∂2v

∂x2
.+ .

∂2v

∂y2

)
.

+ .
(ρβ)nf
ρnf

g(T − Tc). cosψ, (3.2)

∂u

∂x
.+ .

∂v

∂y
. = .0, (3.3)

∂T

∂t
.+ .u

∂T

∂x
i+ iv

∂T

∂y
. = .αnf

(
∂2T

∂x2
.+ .

∂2T

∂y2

)
. (3.4)



28

3.2.3 The Dimensionless Governing Equations

Problem variables regarding the non-dimensional form are implemented asifollows

X. = .
x

L
, Y . = .

y

L
, U. = .

u

Vw
, V . = .

v

Vw
, θ. = .

T − Tc
Th − Tc

, P =
p

ρnfV 2
w

, τ =
tVw
L
,

Re =
VwL

νf
, Gr =

gβ∆TL3

ν2
f

, P r =
νf
αf
, Ri =

Gr

Re2
, ST = s

T 2
0L

2

kf (Th − Tc)2
,

where Vw, νf , αf and β are imposed lid velocity, kinematic viscosity, thermal

diffusibility andithe coefficient of thermaliexpansion of nanofluid, respectively.

Dimensionless governingiequations could be given as follows

∂U

∂τ
+ U

∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+Ri

ρf
ρnf

(
1− φ+

ρsβsφ

ρfβf

)
(sinψ)θ, (3.5)

∂V

∂τ
+ U

∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+Ri

ρf
ρnf

(
1− φ+

ρsβsφ

ρfβf

)
(cosψ)θ, (3.6)

∂U

∂X
.+ .

∂V

∂Y
. = .0, (3.7)

∂θ

∂τ
.+ .U

∂θ

∂X
.+ .V

∂θ

∂Y
. = .

αnf
αf

1

RePr
.

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
. (3.8)

Associated with the problem, the boundary conditions are given by

U. = .0, V . = .− 1, θ. = .0, for. X = 0, .1 and. 0. ≤ .Y . ≤ .1,

U. = .0, . V . = .0, . θ = 0,. for. 0. ≤ .X. ≤ .1 and. Y . = .1,

U. = .V . = .0, .θ. = .1. for.

 0.2. ≤ .X. ≤ .0.4,

0.6≤ X ≤0.8 and Y = 0,

U. = .V . = .0, .
∂θ

∂Y
= 0 for.


0 ≤ X ≤0.2,

0.4≤ X ≤0.6 and Y = 0,

0.8≤ X ≤ 1.
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3.2.4 The Effective Nanofluid Properties

The effectiveidensity, thermalidiffusivity, specific heat and theicoefficient of ther-

mal expansion ofithe nanofluid [114, 115] could be expressed as follows

ρnf . = .(1− φ).ρf + φρp, (3.9)

αnf . = .
knf

(ρCp)nf
, (3.10)

(ρCp)nf . = .(1− φ).(ρCp)f .+ .φ(ρCp)p, (3.11)

(ρβ)nf . = .(1− φ).(ρβ)f .+ .φ.(ρβ)p. (3.12)

The Brownianimotion has considerable influence on the thermal conductivity of

the nanofluid. Koo and Kleinstreuer [117] proposed the following model for effec-

tive thermal conductivity

keff = kstatic + kBrownian, (3.13)

kstatic = kf

[
1 +

3 (kp/kf − 1)φ

(kp/kf + 2)− (kp/kf − 1)φ

]
, (3.14)

where kp, kf are the thermal conductivities of the solid nanosized particles and pure

fluid, respectively, kstatic isithe static thermaliconductivity basedion the Maxwell

[118] model, and kBrownian is the thermal conductivity proposed by the KKL model,

given by

kBrownian = 5× 104φρf (Cp)f

√
κbT

ρpdp
g′(T, φ, dp), (3.15)

where the empirical function g′ for the Al2O3-water nanofluid can be given by

g′(T, φ, dp) = (a1 + a2 ln(dp) + a3 ln(φ) + a4 ln(φ) ln(dp) + a5 ln(dp)
2) ln(T )

+ (a6 + a7 ln(dp) + a8 ln(φ) + a9 ln(dp) ln(φ) + a10 ln(dp)
2), (3.16)

with the coefficients ai(i = 1, 2, ..., 10) being tabulated in Table 3.2. Koo and

Kleinstreuer [119] further proposed the following model for the effective viscosity
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due to micromixing in suspensions

µeff = µstatic + µBrownian = µstatic +
kBrownian

kf
× µf
Prf

, (3.17)

where µstatic = µf/(1 − φ)2.5 is theiviscosity of the nanofluid as given byithe

Brinkman model [120]. Also, by incorporating the interfacial thermal resistence

Rf = 4 × 10−8m2K/W, the original kp in Eq. (3.14) is replaced by kp,eff in the

form

Rf +
dp
kp

=
dp

kp,eff
. (3.18)

Coefficients values Al2O3-water
a1 52.813488759
a2 6.115637295
a3 0.6955745084
a4 0.041745555278
a5 0.176919300241
a6 -298.19819084
a7 -34.532716906
a8 -3.9225289283
a9 -0.2354329626
a10 -0.999063481

Table 3.2: The coefficients values of alumina-water nanofluid [22].

3.2.5 The EntropyiGeneration

The entropyigeneration due to various physical sources can beiwritten as follows:

s =
knf
T 2

0

[(
∂T

∂x

)2

+

(
∂T

∂y

)2
]

+
µnf
T0

[
2

((
∂u

∂x

)2

+

(
∂v

∂y

)2
)]

+

[
µnf
T0

(
∂u

∂y
+
∂v

∂x

)2
]
, (3.19)

where T0 = Th+Tc
2

. The dimensionless entropy generation obtained from Eq. (3.19)

is given as follows:
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ST =
knf
kf

[(
∂θ

∂X

)2

+

(
∂θ

∂Y

)2
]

+ χ
µnf
µf

[
2

((
∂U

∂X

)2

+

(
∂V

∂Y

)2
)]

+ χ
µnf
µf

[(
∂U

∂Y
+
∂V

∂X

)2
]
, (3.20)

where χ isithe irreversibility factori. It isiexpressed in the following

χ =
µfT0

kf

(
Vw

Th − Tc

)2

. (3.21)

Let us write

ST = SHT + SFF , (3.22)

where

SHT =
knf
kf

[(
∂θ

∂X

)2

+

(
∂θ

∂Y

)2
]
. (3.23)

Here

SFF = χ
µnf
µf

[
2

((
∂U

∂X

)2

+

(
∂V

∂Y

)2
)

+

(
∂U

∂Y
+
∂V

∂X

)2
]
, (3.24)

where SHT and SFF represent the non-dimensional entropyigeneration due to the

heat transfer and fluidifriction, respectively. Integrating Eq. (3.20) yields the

dimensionless average entropy generation ST,avg that could be given as follows

ST,avg =
1

ϑ

∫
STdϑ = SHT,avg + SFF,avg. (3.25)

Here, total volume of the nanofluid is represented by ϑ, SHT,avg and SFF,avg are

respectively the dimensionless average entropyigeneration for heatitransfer and

fluid friction.
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3.2.6 Calculation of the Nusselt Number

To determine the heat transfer characteristics, we are interested in computing

localiand average Nusseltinumber on both of the discrete heat sources. Local

Nusselt number on each of the heat sources is given by

Nu =
hnfL

kf
, (3.26)

where hnf is the heatitransfer coefficient formulated as

hnf i = i
q

Th − Tc
. (3.27)

Here q isithe wall heatiflux per unitiarea given by

qi = i− knf
(Th − Tc)

L

∂θ

∂Y

∣∣∣∣
Y=0

. (3.28)

As a result,

Nu = −knf
kf

(
∂θ

∂Y

)
, (3.29)

Nuavg,S1 =

∫ 0.4

0.2

Nu dX, and Nuavg,S2 =

∫ 0.8

0.6

Nu dX. (3.30)

The overall surface average Nusselt number can be calculated asNuavg,S1+Nuavg,S2.

3.3 The Numerical Approach

3.3.1 Spatialiand Temporal Discretization

The system of coupled non-linear partial dierential equations together with given

boundary conditions have been discretized numerically by the finite element for-

mulation. The numerical procedure used to solve the governing equations for the

present work is based on the Galerkin weighted residual method in which we have

used the nonconforming Stokes element Q̃1/Q0, where Q̃1 element is utilized for
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the velocity and temperature and Q0 element is used for the pressure (see 2.5 for

detail). The variational or weak form of the governing Eqs. (3.5) - (3.8) is given

in the following:

∫
Ω

∂U

∂τ
w dΩ +

∫
Ω

(
U
∂U

∂X
+ V

∂U

∂Y

)
w dΩ = −

∫
Ω

∂P

∂X
w dΩ

+
1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ω

(
∂2U

∂X2
+
∂2U

∂Y 2

)
w dΩ

+Ri
ρf
ρnf

(
1− φ+

ρsβsφ

ρfβf

)
(sinψ)

∫
Ω

θw dΩ , (3.31)∫
Ω

∂V

∂τ
w dΩ +

∫
Ω

(
U
∂V

∂X
+ V

∂V

∂Y

)
w dΩ = −

∫
Ω

∂P

∂Y
w dΩ

+
1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ω

(
∂2V

∂X2
+
∂2V

∂Y 2

)
w dΩ

+Ri
ρf
ρnf

(
1− φ+

ρsβsφ

ρfβf

)
(cosψ)

∫
Ω

θw dΩ, (3.32)∫
Ω

(
∂U

∂X
.+ .

∂V

∂Y
.

)
q dΩ = .0, (3.33)∫

Ω

∂θ

∂τ
.w dΩ +

∫
Ω

.

(
U
∂θ

∂X
.+ .V

∂θ

∂Y
.

)
w dΩ

= .
αnf
αf

1

RePr
.

∫
Ω

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
w dΩ . (3.34)

Now, the infinite dimensional trial spaces U , V , θ and P are approximated by Uh,

Vh, θh and Ph, respectively. Moreover, the infinite dimensional test spaces W and

Q are approximated by the finite dimensional test spaces Wh and Qh, respectively,

in such a way that

wh ∈ Wh ⊂ H1(Ω) =

{
s : Ω→ R :

∫
Ω

|s(x)|2dx <∞,
∫

Ω

|s′(x)|2dx <∞
}
,

qh ∈ Qh ⊂ L2(Ω) =

{
g : Ω→ R :

∫
Ω

|g(x)|2dx <∞
}
.

After the finite dimensional approximation the Eqs. (3.31) - (3.34) takes the form,

given as follows:

∫
Ω

∂Uh
∂τ

wh dΩ +

∫
Ω

(
Uh
∂Uh
∂X

+ Vh
∂Uh
∂Y

)
wh dΩ = −

∫
Ω

∂Ph
∂X

wh dΩ
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+
1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ω

(
∂2Uh
∂X2

+
∂2Uh
∂Y 2

)
wh dΩ

+Ri
ρf
ρnf

(
1− φ+

ρsβsφ

ρfβf

)
(sinψ)

∫
Ω

θhwh dΩ, (3.35)∫
Ω

∂Vh
∂τ

wh dΩ +

∫
Ω

(
Uh
∂Vh
∂X

+ Vh
∂Vh
∂Y

)
wh dΩ = −

∫
Ω

∂Ph
∂Y

wh dΩ

+
1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ω

(
∂2Vh
∂X2

+
∂2Vh
∂Y 2

)
wh dΩ

+Ri
ρf
ρnf

(
1− φ+

ρsβsφ

ρfβf

)
(cosψ)

∫
Ω

θhwh dΩ, (3.36)∫
Ω

(
∂Uh
∂X

.+ .
∂Vh
∂Y

.

)
qh dΩ = .0, (3.37)∫

Ω

∂θh
∂τ

.wh dΩ +

∫
Ω

.

(
Uh

∂θ

∂X
.+ .Vh

∂θh
∂Y

.

)
wh dΩ

= .
αnf
αf

1

RePr
.

∫
Ω

(
∂2θh
∂X2

+
∂2θh
∂Y 2

)
wh dΩ . (3.38)

Using the FEM approximation Uh(τ,X, Y ) =
N∑
j=1

Uj(τ)ξj(X, Y ), Vh(τ,X, Y ) =

N∑
j=1

Vj(τ)ξj(X, Y ), θh(τ,X, Y ) =
N∑
j=1

θj(τ)ξj(X, Y ) and Ph(X, Y ) =
K∑
j=1

Pjηj(X, Y )

are the trial functions, similarly wh =
N∑
i=1

wi ξi and qh =
K∑
i=1

qi ηi are the test

functions. By the Galerkin finite element model for a typical element Ωe, the

Eqs. (3.35) - (3.38) are transformed into the following system:

∫
Ωe

∂Uj
∂τ

ξjξidΩe + Uj

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe = Pj

∫
Ωe

ηj
∂ξi
∂X

dΩe

+
1

Re

ρf
ρnf

1

(1− φ)2.5
Uj

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe

+Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
sinψθj

∫
Ωe

ξjξidΩe, (3.39)∫
Ωe

∂Vj
∂τ

ξjξidΩe + Vj

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe = Pj

∫
Ωe

ηj
∂ξi
∂Y

dΩe

+
1

Re

ρf
ρnf

1

(1− φ)2.5
Vj

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe

+Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
cosψθj

∫
Ωe

ξjξidΩe, (3.40)

Uj

∫
Ωe

∂ξj
∂X

ηi dΩe + Vj

∫
Ωe

∂ξj
∂Y

ηi dΩe = 0, (3.41)
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∫
Ωe

∂θj
∂τ

ξjξidΩe + θj

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe

=
1

RePr
θj

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe. (3.42)

Theifinal system can beiexpressed in theifollowing comprehensive form:

[Me]{u̇e}+ [Ke][ue] = {Fe}, (3.43)

[Me]{u̇e}+


[K11

ji ] [K12
ji ] [K13

ji ] [K14
ji ]

[K21
ji ] [K22

ji ] [K23
ji ] [K24

ji ]

[K31
ji ] [K32

ji ] [K33
ji ] [K34

ji ]

[K41
ji ] [K42

ji ] [K43
ji ] [K44

ji ]


︸ ︷︷ ︸

Ke


{U}

{V }

{P}

{θ}


︸ ︷︷ ︸

ue

=


{F 1}

{F 2}

{F 3}

{F 4}


︸ ︷︷ ︸

Fe

, (3.44)

where

[Me] =


[M11

ji ] [M12
ji ] [M13

ji ] [M14
ji ]

[M21
ji ] [M22

ji ] [M23
ji ] [M24

ji ]

[M31
ji ] [M32

ji ] [M33
ji ] [M34

ji ]

[M41
ji ] [M42

ji ] [M43
ji ] [M44

ji ]

 (3.45)

In the above expression (3.45), [Me] is the elemental block mass matrix in which

all the block matrices are zero except [M11
ji ] = [M22

ji ] = [M44
ji ] = M =

∫
Ωe
ξjξi dΩe

where the variation of i and j depends on the choice of the basis function and

the geometric element considered. Furthermore, {u̇e}, Ke, ue and Fe in the

expression (3.44) are said to be the time derivative vector for the nodal unknowns,

the stiffness block matrix, the block solution vector for the nodal unknowns and

the right hand side block vector at an element level, respectively. For the sake of

brevity, the boundary integral is also included in Fe. In stiffness block matrix,

K11
ji =

1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ωe

((
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
+

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

))
dΩe,

K22
ji =

1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ωe

((
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
+

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

))
dΩe,
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K44
ji =

αnf
αf

1

RePr

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe +

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe ,

K14
ji = −Ri ρf

ρnf

(
1− φ+

ρsβsφ

ρfβf

)
sinψ

∫
Ωe

ξjξi dΩe ,

K24
ji = −Ri ρf

ρnf

(
1− φ+

ρsβsφ

ρfβf

)
cosψ

∫
Ωe

ξjξi dΩe,

K13
ji = −

∫
Ωe

ηj
∂ξi
∂X

dΩe,

K23
ji = −

∫
Ωe

ηj
∂ξi
∂Y

dΩe,

K31
ji =

∫
Ωe

∂ξj
∂X

ηidΩe,

K32
ji =

∫
Ωe

∂ξj
∂Y

ηidΩe,

K12
ji = K21

ji = K33
ji = K34

ji = K41
ji = K42

ji = K43
ji = 0,

U =
N∑
j=1

Ujξj, V =
N∑
j=1

Vjξj.

The above system (3.44) involves the nodal unknowns ue and the time dependent

terms {u̇e}. Time discretization of the nodal unknowns still remains to do. Time

discretization has been performed by utilizing the Crank-Nicolson method (see 2.4

for detail). We have utilized Q̃1/Q0, for space discretization (see 2.5 for detail).

After discretization in space and time, we obtain an algebraic system of nonlinear

equations. Integration regarding eachiterm of theseiequations is performed byi

Gaussian quadrature method. Then implementation of boundary conditions is

carried out and the linear algebraic equations are obtained from nonlinear equa-

tions by using the iterative Newton method. Some tolerance value is prescribed

to see the optimised minimum difference of the current values of the variables to

the previous iteration values by achieving the convergence of the solution of an it-

erative scheme. In other words, the adopted criterion to stop the iterative scheme

could be given as follows∣∣∣∣Γn+1 − Γn

Γn+1

∣∣∣∣ ≤ 10−6, (3.46)

where U , V , P or θ are denoted by a general variable Γ. Superscript n represents

the iteration number in the above expression. Finally, these linear equations are
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computed by the Gaussian elimination method in each time level.

3.3.2 Code Validationiand Grid IndependenceiTest

Code validation has been presented in Table 3.3 for the mixed convection flow.

Code validation has also been performed for free convection results published in

the literature, given in Table 3.4, for various computed variables and the results

have an excellent agreement for both of the cases. Furthermore, the comparison

of our results with those of Ghaffarpasand [121] has also been demonstrated by

Figure 3.2. Grid independentisolution for the problem is achieved through the

gridirefinement study and results for average Nusselt number have been given

iniTable 3.5 for Re = 100, Ri = 10, φ = 0.04, ψ = 15◦ together with the numberiof

elements #EL and the total numberiof all space degreesiof freedom #DOFs which

are needed to represent the discrete velocity/temperature and pressure solution

with respect to the used discretization. A uniform grid at level ` = 9 with #EL =

65536 is utilized for all the simulations in this chapter.

Figure 3.2: Code validation of streamlines (above row) and isotherms
(bottom row) contours of present study (right column) to that of Ghaf-

farpasand [121] (left column).
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Re 100 400 1000

Nuavg Present study 2.03 4.07 6.58

Malleswaran and Sivasankaran [122] – 4.08 6.48

Sheremet and Pop [123] 2.05 4.09 6.70

Saha et al. [124] 2.01 3.97 6.28

Abu-Nada and Chamkha [125] 2.09 4.16 6.55

Sharif [126] – 4.05 6.55

Iwatsu et al. [127] 1.94 3.84 6.33

Table 3.3: Comparisoniof theipresent results withithose of [122–127].

Rayleigh number 103 104 105 106

Umax Present work 3.649 16.179 34.707 64.823

Moumni [128] 3.650 16.178 34.764 64.835

Kuzink et al. [129] 3.636 16.167 34.962 64.133

Dixit and Babu. [130] 3.652 16.163 35.521 64.186

De vahil Davis. [131] 3.649 16.178 34.730 64.630

Djebail et al. [132] 3.634 16.134 34.662 64.511

Markatos and Pericleous [133] 3.544 16.180 35.730 68.810

Ymax Present work 0.810 0.820 0.850 0.850

Moumni [128] 0.813 0.827 0.854 0.854

Kuzink et al. [129] 0.809 0.821 0.854 0.860

Dixit and Babu. [130] 0.812 0.828 0.855 0.849

De vahil Davis. [131] 0.813 0.823 0.855 0.850

Djebail et al. [132] 0.813 0.825 0.852 0.852

Markatos and Pericleous [133] 0.832 0.832 0.857 0.872

Nuavg Present work 1.118 2.245 4.522 8.826

Moumni [128] 1.117 2.244 4.521 8.824

Kuzink et al. [129] 1.117 2.246 4.518 8.792

Dixit and Babu. [130] 1.121 2.286 4.546 8.625

De vahil Davis. [131] 1.118 2.243 4.519 8.800

Djebail et al. [132] 1.115 2.226 4.508 8.713

Markatos and Pericleous [133] 1.108 2.201 4.430 8.754

Table 3.4: Comparison of the present results with those of [128–133].
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` #EL #DOFs Nuavg,S1 Nuavg,S2

4 64 496 1.13763 0.51621

5 256 1888 2.33642 1.27791

6 1024 7360 4.25657 3.54305

7 4096 29056 4.68552 4.04080

8 16384 115456 5.38090 4.62415

9 65536 460288 5.55777 4.78706

10 262144 1838080 5.56164 4.79133

Table 3.5: Results of grid independence test for Al2O3-water nanofluid.

3.4 Results and Discussion

We have considered a cavity saturated with alumina-water nanofluid along with

two heat sources, both of the same length, located symmetrically from the side

walls at the bottom. Figure 3.3 illustrates the impact of Re on the contours of

streamlines and isotherms for nanofluid saturated with alumina nanoparticles in a

square cavity with Ri = 10, ψ = 15◦ and φ = 0.04. It can be observed that for low

Re, the flow is symmetric in the whole cavity. Enhancement in Reynolds number

more than 10 causes the shear forces to increase due to moving walls that creates a

disturbance in symmetry. Moreover, the eddies become increasingly large and are

pushed down to the area near side vertical moving walls. One can observe from

isotherm plots that at Re = 1, the contours are uniformlyidistributed and paral-

lelito the twoiheat sources pointing that conduction isithe dominant procedure for

transfer of heat in the cavity. Increasing the Re causes strong thermal plumes to

be formed that move to the side walls and tilt to the left heat source indicating

dominant convection of heat in the cavity.

In Figure 3.4, impact of Ri on streamlines and isotherms with Re = 100, γ = 15◦

and φ = 0.04 is shown. For mixed convection case, i.e., Ri = 1 symmetric counter

rotating vortices are observed indicating that buoyancy forces and shear forces
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have equal effect on the flow in the cavity. Increasing the Ri more than 1 favors

the natural convection case due to which the symmetry of counter rotating cells

vanishes and strength ofithe buoyancy force iincreases which leads too the interac-

tion oof the sheariand buoyancy forces atihigh Reynoldss numbers, i.e., Re = 100.

As one increases the Richardson number, the strength of streamlines also grows

that is evident from the scale affixed to the right side of each figure. Moreover,

with a rise in Richardson number, the isotherms are slightly pushed down towards

the bottom tilting to left side wall due to inclination indicating more heat transfer

because of left heat source.

Figure 3.5 represents impact of nanoparticles volume fraction on isotherms and

streamlines with Re = 100, Ri = 10 and γ = 15◦. As long as the streamlines are

concerned, two counter-rotating vortices of same magnitude can be observed in the

cavity. Moreover, additioniof nanoparticles to base fluid reduces theistrength of

flow field dueito density augmentation.iIncreasing inisolid volumeifraction causes

aidecrease in the intensityiof buoyancyiand,ihence, the flowiintensity. Thus, the

fluid moves slower inithe cavity in theipresence of nanoparticles. Isotherm plots

show a thermal plume in the middle of the cavity for φ = 0.01. Augmenting the

nanoparticles volume fraction, thickness of this plume starts increasing and be-

comes maximum for φ = 0.04 that indicates a growth in heatitransfer inithe cavity.

Effect of inclination angle γ on streamlines and isotherms with Ri = 10, Re = 100

and φ = 0.04 is depicted in Figure 3.6. For γ = 0◦ symmetric counter rotating

vortices of equal magnitudes are formed. Augmentation in inclination angle γ dis-

turbs the symmetry of the vortices. Hence, larger and stronger vortices are formed

in theileft side ofithe cavity. As long as isotherms are concerned, for γ = 0◦ a main

vertical thermal plume in the middle of the cavity is noticed. Increasing γ main

vertical thermal plume thickens and tilts to the left side of the cavity.

Variation ofiaverage entropyigeneration dueito heat transfer,ifluid friction, aver-

age temperature and kinetic energy with respect to inclination of cavity for pure
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fluid (φ = 0) and nanofluid (φ = 0.04) have been depicted in Figures 3.7-3.14.

It has been noticed that presence of nanoparticles has significant effect on the

physical properties of fluid. For both of the cases of pure fluid and nanofluid, en-

tropyigeneration due toiheat transfer SHT , entropyigeneration due toifluid friction

SFF , average temperature and kinetic energy diminish with increasing inclination

angle γ but for the case of nanofluid, increase in scale of these properties has been

observed.

Effect of cavity inclination angles on average Nusselt number of left heat source

and right heat source has been demonstrated in Figures 3.15 and 3.16. It is no-

ticed that average Nusselt number of both the heat sources is same with no cavity

inclination. As the cavity inclination angle is increased from 15◦ to 45◦, average

Nusselt number due to left heat source increases while gradual reduction has been

observed due to right heat source. Enhancement in Nusselt number because of the

left heat source is due to density variation of the nanofluid.
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Figure 3.3: Streamlines and isotherms contours for different Re.



43

R
i.

=
.0
.0

1
R
i.

=
.1

R
i.

=
.5

R
i.

=
.1

0

Figure 3.4: Streamlines and isotherms contours for different Ri.
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Figure 3.5: Streamlines and isotherms contours for different φ.
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Figure 3.7: Variation ofiaverage entropyigeneration due toiheat transfer asia
function of ψ.
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Figure 3.8: Variation of average entropy generation due to heat transfer as a
function of ψ.
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Figure 3.9: Variation ofiaverage entropyigeneration dueito fluid friction as a
function of ψ.
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Figure 3.10: Variation ofiaverage entropyigeneration due toifluid friction as
aifunction of ψ.
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Figure 3.11: Variation of averageitemperature as aifunction of ψ.
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Figure 3.12: Variationiof average temperature asia function of ψ.
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Figure 3.13: Variation of kinetic energy as a function of ψ.
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Figure 3.14: Variation of kinetic energy as a function of ψ.
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3.5 Closing Remarks

We have numericallyi investigated the heat ttransfer of Al2O3-water nanofluids in

two dimensional mixed convection flows in a partially heatedd two-sided lididriven

cavity. At the lower wall ofithe cavity, two heat sources are fixed and vertically

moving walls and top wall are kept cool at constant temperature. Buoyancy force

along with two moving vertical walls is responsible for the flow. First, problem

iis formulated and then solved by the Galerkin finite eelement method. In this

method, we have used the nonconforming Stokes element Q̃1/Q0, where Q̃1 ele-

ment is for the velocity and temperature and Q0 element for pressure. Effects

of pertinent parameterss such aas Re, Ri, φ and ψ on the flow are investigated

and findings are exactly of the same order as those of the previously performed

analysis. This study can be concluded as follows.

1. An augmentation in the nanoparticles volumeifraction and Richardsoninumber

causes a significant increase in the heat transfer.
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2. An increase in the inclination angle diminishes the entropyigeneration dueito

the heat transfer SHT , fluidifriction SFF , average temperature and kinetic

energy.

3. An increase in the Richardson number Ri causes an enhancement in the

entropy generation and kinetic energy.

4. An increase in the inclination angle causes to increase the average Nusselt

number due to the left heat source while an opposite behavior has been

observed for the right heat source.



Chapter 4

MHD Mixed Convective

Nanofluid Flow with Entropy

Generation

4.1 Introduction

In this chapter, the mixed convective Al2O3-water nanofluid flow inia partially

heated square double lid drivenicavity along with the entropy generation under

the influenceeof inclined magnetic field is numerically investigated. Two heat

sources are affixed at some portion of theibottom wall ofithe cavity while the

remaining part of this wall is considered as an adiabatic. The moving vertical

walls and the top wall are kept at constant cold temperature. Buoyant force is

responsible for the flow along with the two moving vertical walls. The govern-

ing eequations are discretized inispace using the LBB-stable finite element pair

Q2/P
disc
1 which leads to 3rd and 2nd order accuracy in the L2-norm for the veloc-

ity/temperature and pressure, respectively and the fully implicit Crank-Nicolson

scheme of 2nd order accuracy is utilized for the temporal discretization. New-

ton method is utilized to linearize the system of nonlinear equations and associ-

ated linear system is solved by the Gaussian elimination method in each time

51



52

level. Numerical results areipresented and analyzed by meansiof the stream-

lines,iisotherms, tables and some useful plots. The impacts of emerging parameters

on the flow, in specific ranges such asiReynolds numberi(1 ≤ Re ≤ 100), Richard-

son number (1 ≤ Ri ≤ 50), Hartmaninumber (0 ≤ Ha ≤ 100),isolid volume frac-

tioni(0 ≤ φ ≤ 0.2) as well as the angles of inclined magnetic field (0◦ ≤ γ ≤ 90◦)

are investigated and the findings are found to be exactly of the same order as those

of the previously performed analysis. Calculation of theiaverage Nusselt number,

the average entropyigeneration due toiheat transfer, fluid friction and magnetic

field, totalientropy generation, Bejan number and kinetic energy are the main fo-

cus of study in the present chapter. This study is organised in the following way.

Section 4.2 illustrates the problem configuration. Section 4.3 contains information

about space and time discretizations of the governing equations, the numerical

method, code validation and grid independence test. Results based on the nu-

merical simulation have been elaborated in Section 4.4.iFinally, the conclusion has

beenidrawn in Section 4.5.

4.2 Problem Formulation

4.2.1 The Problem Configuration

We consider a lididriven square cavity fillediwith nanofluid and two heatisources

along the wall at the bottom at constant temperature (see Figure 4.1). The

width of the cavity has been denoted by L, while Th isithe prescribed constant

hotitemperature, Tc isithe constant cold temperature of the walls and ceiling and

eS1 = eS2 = L/5 is the dimensional length of the heat sources. The distance of

the sources from both of the side walls is exactly the same. Insulation is pro-

vided to those parts of the bottom that are not active. Cavity iis saturated

withiAl2O3-water nanofluid.iIt is also assumed that the slipping effect between

any two phases is negligible. The Joule heatingiand viscous dissipationiare as-

sumedito be neglected. Furthermore, theiinduced magnetic fieldiis assumed toibe

negligible as compared with the external magneticifield [93, 96]. Nanofluid used
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during this study has certain thermo-physical properties [38] that are tabulated in

the Table 4.1. Density variation is taken into consideration by using the Boussinesq

approximation which is apparent as the buoyancy force.

Physical Properties Water Alumina
ρ (Kgm−3) 997.1 3970

Cp (JKg−1K−1) 4179 765
k (Wm−1K−1) 0.613 40

β (K−1) 21× 10−5 0.85× 10−5

σ (Ωm)−1 0.05 1× 10−10

Table 4.1: Thermo-physicaliproperties of wateriand alumina

Figure 4.1: Schematicidiagram ofithe physical model.

4.2.2 TheiGoverning Equations

Governing equationsiof continuity, momentumiand energy [37] under the above-

mentioned assumptions are written as follows

∂u

∂t
.+ u

∂u

∂x
+ .v

∂u

∂y
. = .− 1

ρnf

∂p

∂x
.+ .

µnf
ρnf

(
∂2u

∂x2
.+ .

∂2u

∂y2

)
+ .

σnfB
2
0

ρnf

(
v sin γ cos γ − u sin2 γ

)
, (4.1)
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∂v

∂t
.+ .u

∂v

∂x
.+ .v

∂v

∂y
. = .− 1

ρnf

∂p

∂y
.+ .

µnf
ρnf

(
∂2v

∂x2
+
∂2v

∂y2

)
.+ .

(ρβ)nf
ρnf

g(T − Tc)

+
σnfB

2
0

ρnf

(
u sin γ cos γ − v cos2 γ

)
, (4.2)

∂u

∂x
.+ .

∂v

∂y
. = .0, (4.3)

∂T

∂t
.+ .u

∂T

∂x
.+ .v

∂T

∂y
. = .αnf

(
∂2T

∂x2
+
∂2T

∂y2

)
. (4.4)

4.2.3 The Dimensionless Governing Equations

Problem variables implemented regarding the non-dimensional form are asffollows.

X. = .
x

L
, Y . = .

y

L
, U. = .

u

Vw
, V . = .

v

Vw
, θ. = .

T − Tc
Th − Tc

, P . = .
p

ρnfV 2
w

, τ . = .
tVw
L
,

Re =
VwL

νf
, Gr =

gβ∆TL3

ν2
f

, P r =
νf
αf
, Ha = B0L

√
σf
µf
, ST = s

T 2
0L

2

kf (Th − Tc)2
.

Dimensionlessigoverning equations are reduced asifollows

∂U

∂τ
.+ .U

∂U

∂X
.+ .V

∂U

∂Y
= .− ∂P

∂X
.+ .

1

Re

ρf
ρnf

1

(1− φ)2.5
.

(
∂2U

∂X2
.+ .

∂2U

∂Y 2

)
+

ρf
ρnf

σnf
σf

Ha2

Re

(
V sin γ cos γ − U sin2 γ

)
, (4.5)

∂V

∂τ
.+ .U

∂V

∂X
.+ .V

∂V

∂Y
. = .− ∂P

∂Y
.+ .

1

Re

ρf
ρnf

1

(1− φ)2.5
.

(
∂2V

∂X2
.+ .

∂2V

∂Y 2

)
+Ri

ρf
ρnf

(
1− φ.+ .

ρsβs
ρfβf

φ

)
θ.+ .

ρf
ρnf

σnf
σf

Ha2

Re

(
U sin γ cos γ − V cos2 γ

)
, (4.6)

∂U

∂X
.+ .

∂V

∂Y
. = .0, (4.7)

∂θ

∂τ
.+ .U

∂θ

∂X
.+ .V

∂θ

∂Y
. = .

αnf
αf

1

RePr

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
. (4.8)

Associated with the problem, the boundary conditions could be given as follows.

.U. = .0, . V = −1, . θ = 0, for. X = .0, 1 . and 0. ≤ Y . ≤ 1

U = 0, .V = 0, θ = 0, .for 0. ≤ X. ≤ 1 . and Y = 1

U. = .V . = .0, θ = 1 for.

 0.2 ≤ X ≤ 0.4,

0.6 ≤ X ≤ 0.8 and Y = 0,
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U. = .V . = .0, .
∂θ

∂Y
= 0 for


0 ≤ X ≤ 0.2,

0.4 ≤ X ≤ 0.6 and Y = 0

0.8 ≤ X ≤ 1

4.2.4 The Effective Nanofluid Properties

The effective density,ithermal diffusivity,ielectrical conductivity, specific heat and

the coefficient of thermaliexpansion ofithe nanofluid [37, 134] are given as follows.

ρnf = (1− φ)ρf + φρp, (4.9)

αnf =
knf

(ρCp)nf
, (4.10)

σnf = σf .

[
1 +

3.(σ − 1)φ

(σ + 2).− (σ − 1).φ

]
, σ = .

σp
σf

(4.11)

(ρCp)nf . = (1− φ).(ρCp)f .+ φ(ρCp)p, (4.12)

(ρβ)nf = (1− φ)(ρβ)f + φ(ρβ)p. (4.13)

The nanofluid thermal conductivity is computed by the following model [114].

.
knf
kf

= .
kp + .2kf − 2φ.(kf − kp)
kp + 2kf .+ φ.(kf − kp)

, (4.14)

where kp and kf are the thermal conductivities of dispersed nanoparticles and pure

fluid accordingly. By the help of Brinkman model [120], the effective dynamic

viscosity is calculated as follows:

µnf =
µf

(1− φ)2.5
. (4.15)
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4.2.5 The EntropyiGeneration

The entropyigeneration due to various physical sources can be written as follows:

s =
knf
T 2

0

[(
∂T

∂x

)2

+

(
∂T

∂y

)2
]

+
µnf
T0

[
2

((
∂u

∂x

)2

+

(
∂v

∂y

)2
)

+

(
∂u

∂y
+
∂v

∂x

)2
]

+
σnfB

2
0

T0

(u sin γ − v cos γ)2 , (4.16)

where T0 = Th+Tc
2

. The dimensionless entropy generation obtained from Eq. (4.16)

is given as follows:

ST =
knf
kf

[(
∂θ

∂X

)2

+

(
∂θ

∂Y

)2
]

+ χ
µnf
µf

[
2

((
∂U

∂X

)2

+

(
∂V

∂Y

)2
)]

+ χ
µnf
µf

[(
∂U

∂Y
+
∂V

∂X

)2
]

+ χHa2σnf
σf

(U sin γ − V cos γ)2 , (4.17)

where

ST = SHT + SFF + SMF , (4.18)

SHT =
knf
kf

[(
∂θ

∂X

)2

+

(
∂θ

∂Y

)2
]
, (4.19)

SFF = χ
µnf
µf

[
2

((
∂U

∂X

)2

+

(
∂V

∂Y

)2
)

+

(
∂U

∂Y
+
∂V

∂X

)2
]
, (4.20)

SMF = χHa2σnf
σf

(.U sin γ.− V cos γ.)2 . (4.21)

Here SHT , SFF and SMF represent the non-dimensional entropyigeneration dueito

heat transfer, fluidifriction and magnetic field, respectively. In Eq. (4.17), χ is.the

irreversibility factor..It is expressed.as follows:

χ =
µfT0

kf

(
Vw

Th − Tc

)2

. (4.22)
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Integrating the Eq. (4.17) yields the dimensionless average entropy generation Savg

that could be given as follows:

Savg =
1

ϑ

∫
STdϑ = SHT,avg + SFF,avg + SMF,avg. (4.23)

Here, the total volume of the nanofluid is represented by ϑ. Moreover, SHT,avg,

SFF,avg and SMF,avg areirespectively the dimensionless average entropyigeneration

for heat transfer, fluid friction and magnetic field. An important dimensionless

number regarding the entropy is the Bejaninumber that is defined asithe ratio

of entropyigeneration due to heat transferito the total entropyigeneration which

could be written as follows:

Be =
SHT
ST

.

The Richardson number Ri = Gr
Re2

in the mixed convection is used to show the

significance of the free convection related to the forced convection. It might be

noticed that the free convection phenomena are studied for Ri > 10, mixed con-

vection effects can be visualised for Ri = 1 and influence of forced convection can

be observed for Ri < 0.1.

4.2.6 Calculation of the Nusselt number

To determine the heat transfer characteristics, we are interested to compute the

local and the average.Nusselt number on both of the discrete heat sources. Lo-

caliNusselt numberion each of the heat sources could be given as follows.

Nu =
hnfL

kf
, (4.24)

where hnf is the heatitransfer coefficient with

hnf =
q

Th − Tc
, (4.25)
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where q isithe wall heatiflux per unitiarea with

q = −knf
(Th − Tc)

L

∂θ

∂Y

∣∣∣∣
Y=0

, (4.26)

Nu = −knf
kf

(
∂θ

∂Y

)
, (4.27)

Nuavg,S1 =

∫ 0.4

0.2

Nu dX and Nuavg,S2 =

∫ 0.8

0.6

Nu dX. (4.28)

4.3 The Numerical Approach

4.3.1 Spatialiand Temporal Discretization

The system of coupled non-linear partial dierential equations together with given

boundary conditions have been discretized numerically by the finite element for-

mulation. The numerical procedure used to solve the governing equations for the

present work is based on the Galerkin weighted residual method in which we have

used the higher order Stokes element Q2/P
disc
1 , where Q2 element is utilized for

the velocity and temperature and P disc
1 element is used for the pressure (see 2.5 for

detail). The variational or weak form of the governing Eqs. (4.5) - (4.8) is given

in the following:

∫
Ω

∂U

∂τ
.w dΩ +

∫
Ω

(
.U
∂U

∂X
.+ .V

∂U

∂Y

)
w dΩ = .−

∫
Ω

∂P

∂X
.w dΩ

+ .
1

Re

ρf
ρnf

1

(1− φ)2.5
.

∫
Ω

(
∂2U

∂X2
.+ .

∂2U

∂Y 2

)
w dΩ

+
ρf
ρnf

σnf
σf

Ha2

Re

(
sin γ cos γ

∫
Ω

V w dΩ− sin2 γ

∫
Ω

Uw dΩ

)
, (4.29)∫

Ω

∂V

∂τ
.w dΩ + .

∫
Ω

(
U
∂V

∂X
.+ .V

∂V

∂Y
.

)
w dΩ = .−

∫
Ω

∂P

∂Y
.w dΩ

+ .
1

Re

ρf
ρnf

1

(1− φ)2.5
.

∫
Ω

(
∂2V

∂X2
.+ .

∂2V

∂Y 2

)
w dΩ

+Ri
ρf
ρnf

(
1− φ.+ .

ρsβs
ρfβf

φ

)∫
Ω

θ.w dΩ
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+ .
ρf
ρnf

σnf
σf

Ha2

Re

(
sin γ cos γ

∫
Ω

Uw dΩ− cos2 γ

∫
Ω

V w dΩ

)
, (4.30)∫

Ω

(
∂U

∂X
.+ .

∂V

∂Y
.

)
q dΩ = .0, (4.31)∫

Ω

∂θ

∂τ
.w dΩ + .

∫
Ω

(
U
∂θ

∂X
.+ .V

∂θ

∂Y
.

)
w dΩ

= .
αnf
αf

1

RePr

∫
Ω

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
w dΩ. (4.32)

Now, the infinite dimensional trial spaces U , V , θ and P are approximated by Uh,

Vh, θh and Ph, respectively. Moreover, the infinite dimensional test spaces W and

Q are approximated by the finite dimensional test spaces Wh and Qh, respectively,

in such a way that

wh ∈ Wh ⊂ H1(Ω) =

{
s : Ω→ R :

∫
Ω

|s(x)|2dx <∞,
∫

Ω

|s′(x)|2dx <∞
}
,

qh ∈ Qh ⊂ L2(Ω) =

{
g : Ω→ R :

∫
Ω

|g(x)|2dx <∞
}
.

After the finite dimensional approximation the Eqs. (4.29) - (4.32) takes the form,

given as follows:

∫
Ω

∂Uh
∂τ

.wh dΩ +

∫
Ω

(
.Uh

∂Uh
∂X

.+ .Vh
∂Uh
∂Y

)
wh dΩ = .−

∫
Ω

∂Ph
∂X

.wh dΩ

+ .
1

Re

ρf
ρnf

1

(1− φ)2.5
.

∫
Ω

(
∂2Uh
∂X2

.+ .
∂2Uh
∂Y 2

)
wh dΩ

+
ρf
ρnf

σnf
σf

Ha2

Re

(
sin γ cos γ

∫
Ω

Vhwh dΩ− sin2 γ

∫
Ω

Uhwh dΩ

)
, (4.33)∫

Ω

∂Vh
∂τ

.wh dΩ + .

∫
Ω

(
Uh
∂Vh
∂X

.+ .Vh
∂Vh
∂Y

.

)
wh dΩ = .−

∫
Ω

∂Ph
∂Y

.wh dΩ

+ .
1

Re

ρf
ρnf

1

(1− φ)2.5
.

∫
Ω

(
∂2Vh
∂X2

.+ .
∂2Vh
∂Y 2

)
wh dΩ

+Ri
ρf
ρnf

(
1− φ.+ .

ρsβs
ρfβf

φ

)∫
Ω

θh.wh dΩ

+ .
ρf
ρnf

σnf
σf

Ha2

Re

(
sin γ cos γ

∫
Ω

Uhwh dΩ− cos2 γ

∫
Ω

Vhwh dΩ

)
, (4.34)∫

Ω

(
∂Uh
∂X

.+ .
∂Vh
∂Y

.

)
qh dΩ = .0, (4.35)
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∫
Ω

∂θh
∂τ

.wh dΩ + .

∫
Ω

(
Uh
∂θh
∂X

.+ .Vh
∂θh
∂Y

.

)
wh dΩ

= .
αnf
αf

1

RePr

∫
Ω

(
∂2θh
∂X2

+
∂2θh
∂Y 2

)
wh dΩ. (4.36)

Using the FEM approximation Uh(τ,X, Y ) =
N∑
j=1

Uj(τ)ξj(X, Y ), Vh(τ,X, Y ) =

N∑
j=1

Vj(τ)ξj(X, Y ), θh(τ,X, Y ) =
N∑
j=1

θj(τ)ξj(X, Y ) and Ph(X, Y ) =
K∑
j=1

Pjηj(X, Y )

are the trial functions. Similarly wh =
N∑
i=1

wi ξi and qh =
K∑
i=1

qi ηi are the test

functions. By the Galerkin finite element model for a typical element Ωe, the

Eqs. (4.33) - (4.36) are transformed into the following system:

∫
Ωe

∂Uj
∂τ

ξjξidΩe + Uj

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe = −Pj

∫
Ωe

ηj
∂ξi
∂X

dΩe

+
1

Re

ρf
ρnf

1

(1− φ)2.5
Uj

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe

+
ρf
ρnf

σnf
σf

Ha2

Re

(
sin γ cos γVj

∫
Ωe

ξjξidΩe − sin2 γUj

∫
Ωe

ξjξidΩe

)
, (4.37)

Uj

∫
Ωe

∂ξj
∂X

ηidΩe + Vj

∫
Ωe

∂ξj
∂Y

ηidΩe = 0, (4.38)∫
Ωe

∂Vj
∂τ

ξjξidΩe + Vj

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe = −Pj

∫
Ωe

ηj
∂ξi
∂Y

dΩe

+
1

Re

ρf
ρnf

1

(1− φ)2.5
Vj

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe

+Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
θj

∫
Ωe

ξjξidΩe

+
ρf
ρnf

σnf
σf

Ha2

Re

(
sin γ cos γUj

∫
Ωe

ξjξidΩe − sin2 γVj

∫
Ωe

ξjξidΩe

)
, (4.39)∫

Ωe

∂θj
∂τ

ξjξidΩe + θj

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe

=
1

RePr
θj

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe. (4.40)

Theifinal system can beiexpressed in theifollowing comprehensive form

[Me]{u̇e}+ [Ke][ue] = {Fe}, (4.41)
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[Me]{u̇e}+


[K11

ji ] [K12
ji ] [K13

ji ] [K14
ji ]

[K21
ji ] [K22

ji ] [K23
ji ] [K24

ji ]

[K31
ji ] [K32

ji ] [K33
ji ] [K34

ji ]

[K41
ji ] [K42

ji ] [K43
ji ] [K44

ji ]


︸ ︷︷ ︸

Ke


{U}

{V }

{P}

{θ}


︸ ︷︷ ︸

ue

=


{F 1}

{F 2}

{F 3}

{F 4}


︸ ︷︷ ︸

Fe

, (4.42)

In the expression (4.43), [Me] is the elemental block mass matrix in which all

the block matrices are zero except [M11
ji ] = [M22

ji ] = [M44
ji ] = M =

∫
Ωe
ξjξi dΩe

where the variation of i and j depends on the choice of the basis function and

the geometric element considered. Furthermore, {u̇e}, Ke, ue and Fe in the

expression (4.42) are said to be the time derivative vector for the nodal unknowns,

the stiffness block matrix, the block solution vector for the nodal unknowns and

the right hand side block vector at an element level, respectively. For the sake of

brevity, the boundary integral is also included in Fe.

[Me] =


[M11

ji ] [M12
ji ] [M13

ji ] [M14
ji ]

[M21
ji ] [M22

ji ] [M23
ji ] [M24

ji ]

[M31
ji ] [M32

ji ] [M33
ji ] [M34

ji ]

[M41
ji ] [M42

ji ] [M43
ji ] [M44

ji ]

 (4.43)

In stiffness block matrix,

K11
ji =

1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ωe

((
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
+

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

))
dΩe

+
ρf
ρnf

σnf
σf

Ha2

Re

(
sin2 γ

∫
Ωe

ξjξidΩe

)
,

K12
ji = − ρf

ρnf

σnf
σf

Ha2

Re

(
sin γ cos γ

∫
Ωe

ξjξidΩe

)
,

K21
ji = − ρf

ρnf

σnf
σf

Ha2

Re

(
sin γ cos γ

∫
Ωe

ξjξidΩe

)
,

K22
ji =

1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ωe

((
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
+

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

))
dΩe

+
ρf
ρnf

σnf
σf

Ha2

Re

(
cos2 γ

∫
Ωe

ξjξidΩe

)
,
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K44
ji =

αnf
αf

1

RePr

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe +

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe,

K24
ji = −Ri ρf

ρnf

(
1− φ+

ρsβsφ

ρfβf

)∫
Ωe

ξjξi dΩe,

K13
ji = −

∫
Ωe

ηj
∂ξi
∂X

dΩe,

K23
ji = −

∫
Ωe

ηj
∂ξi
∂Y

dΩe,

K31
ji =

∫
Ωe

∂ξj
∂X

ηidΩe,

K32
ji =

∫
Ωe

∂ξj
∂Y

ηidΩe,

K14
ji = K33

ji = K34
ji = K41

ji = K42
ji = K43

ji = 0,

U =
N∑
j=1

Ujξj, V =
N∑
j=1

Vjξj.

The above system (4.42) involves the nodal unknowns ue and the time dependent

terms {u̇e}. Time discretization of the nodal unknowns still remains to do. Time

discretization has been performed by utilizing the Crank-Nicolson method (see

2.4 for detail). We have utilized Q2/P
disc
1 for space discretization (see 2.5 for

detail). After discretization in the space and time, we obtain an algebraic system

of nonlinear equations. Integration of eachiterm of these eequations is performed

bby Gaussian quadrature imethod. Then the implementation of the boundary

conditions is carried out and the linear algebraic equations are obtained from

nonlinear equations using the iterative Newton method. Some tolerance value

is prescribed to see the optimized minimum difference of the current values of

the variables to the previous iteration values by achieving the convergence of the

solution of an iterative scheme. In other words, the adopted criterion to stop the

iterative scheme could be given as follows.∣∣∣∣Γn+1 − Γn

Γn+1

∣∣∣∣ ≤ 10−6, (4.44)

where U , V , P or θ are denoted by a general variable Γ. Superscript n represents

the iteration number in the above expression. Finally, these linear equations are

computed by the Gaussian elimination method in each time level.
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4.3.2 Code Validationiand Grid IndependenceiTest

Code validation has been performed for free convection results published in the

literature and given in Table 3.4 of chapter 3, for various computed variables.

Code validation has also been presented in Table 3.3 for mixed convection flow in

the section 3.3.2 of Chapter 3 and the results have an excellent agreement for both

of the cases. Grid independentisolution forithe problem is achieved through the

grid refinement study and resultsifor average Nusselt number have been giveniin

Table 4.2 for Re = 100, Ri = 20, φ = 0.2, Ha = 50, γ = 15◦. It is obvious that

gridiindependence is attained withia grid of size 256× 256 in X and Y directions.

Therefore, all the following simulations are performed by this grid resolution. All

the results are produced and presented on a grid of size 256× 256.

` #EL #DOFs Nuavg,S1 Nuavg,S2

4 64 1059 1.46797 1.78793

5 256 4035 2.95710 3.59910

6 1024 15747 3.50279 4.31398

7 4096 62211 3.28871 4.13362

8 16384 247299 3.34808 4.20865

9 65536 986115 3.59976 4.49398

10 262144 3938307 3.66390 4.57513

Table 4.2: Result of grid independence test

γ Nuavg,S1 Nuavg,S2

0◦ 5.9842 5.9842

15◦ 5.7885 6.0696

30◦ 5.5760 6.0097

45◦ 5.5492 5.9303

60◦ 5.6903 5.9481

75◦ 5.9020 6.0110

90◦ 6.0165 6.0165

Table 4.3: Effectiof magnetic field inclinationiangle γ on Nusseltinumber
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4.4 Resultsiand Discussion

Mixediconvection flow ofAl2O3-water nanofluid in aisquare double lid-drivenicavity

with inclined magnetic field, discrete heating and entropy generation is numeri-

cally investigated. The numerical results are acquired for Reynolds number Re

= 1, 10, 50, 100, Richardson numbers Ri = 1, 5, 10, 20, 50, nanoparticle volume

fraction φ = 0, 0.05, 0.10, 0.15, 0.20, Hartman numbers Ha = 0, 50, 75, 100 and

inclination angles of magnetic field γ ranging from 0◦ to 90◦ with a difference of

15◦. The assumed Prandtl number of pure fluid is 6.2. Standard values of Re,

Ri, φ, Ha and γ are taken as 100, 20, 0.2, 50 and 0◦, respectively unless these are

mentioned.

Impact of magnetic field inclinationiangle on average Nusseltinumber is portrayed

in Table 4.3. It is observed that at γ=0◦,90◦, heat transfer due to left heater S1

and right heater S2 is same. Heat transfer decreases due to left heat source for γ

ranging from 0◦ to 45◦ and then it enhances for γ = 60◦ − 90◦. Similarly, transfer

of heat declines due to right heat source for γ ranging from 15◦ to 45◦ and then

it amplifies for γ = 60◦ − 90◦. Infact, heat transfer reduces as magnetic field is

applied close to the heat source and opposite behavior is shown when magnetic

field occurs beyond the heat source.

Figure 4.2 shows the impact of Reynolds number Re = 1, 10, 50, 100 on isotherms

and streamlines foricavity saturated with Al2O3-water inanofluid for Ri = 20, φ =

0.2, Ha = 50, γ = 0◦. It can be seen the symmetry of flow from the counter

rotation of cells of same value for the given Re in the cavity. Augmenting the

value of the Re, the swirls become larger and are propelled to the left and right

verticle walls. Isotherms show that for small value of Re, theicontours are equally

distributed iand symmetrical to the discrete heatisources. This indicates that

conductioniplays a governing role for the transfer of heat in cavity. Also, enhance-

ment in Re causes to push the cold fluid to the bottom wall which results in the

form of convective cooling. Thus a significant change can be observed in isotherms.
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The influence of Ri on isotherms and streamlines is depicted in Figure 4.3. For

Ri = 1, the streamlines are symmetrically distributed to the vertical midline in the

cavity. Increasing the Ri, counter rotating cells are becoming larger and moving

to cold vertical side walls due to increase in buoyancy forces. Moreover, increase

in the Ri causes the isotherms to expand to the side moving vertical walls. This

indicates the augmentation in the temperature gradients.

Effectsiof inclined magnetic ffield on the flow and thermal configuration for in-

clination angles 0◦, 30◦, 60◦ and 90◦ in the form of streamlines and isotherms are

depicted in Figure 4.4. It is observed that for γ = 0◦, streamlines are more clus-

tered in the middle of the cavity with counter rotation of cells of same value. The

iisotherms, particularly inithe central portion,ii.e.,iaway from theiboundaries, ex-

hibit appreciable eeffects ofithe convection currents. When inclination angle γ is

increased from 30◦ to 60◦, isotherms are more affected as compared to the stream-

lines and they change significantly. The streamlines are being to distort from their

original shape and the cluster of streamlines is shifted to right vertical wall and in

isotherms the main vortex is tilted to the right vertical wall. Finally, for γ = 90◦,

in isotherms, a straight upward plume arises in the center of the cavity expanding

to the side vertical moving walls. It indicates the maximum heat flow occurs in

the center ofithe cavity.

Impact of nanoparticle volumeifractions on streamlines and isotherms is illustrated

by Figure 4.5. Enhancement in the rate of heatitransfer from discrete heatisources

by increasing the nanoparticle volume fraction at constant Re and Ri is noticed.

The effect is more amplified on isotherms as compared to streamlines. It is worthy

noted that the thickness of plumes, that rise from heat source in isotherms for

φ = 0.2, is more enhanced as compared to φ = 0.05.

Effect of Reynolds numberion Nusselt number, entropy generation and Bejan

nnumber with different nanoparticle volumeifraction is shown in Figures 4.6-4.11.
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It is observed that Nusselt number Nu, entropyigeneration due toiheat transfer

SHT , entropy generation dueito fluid friction SFF , entropyigeneration due to mag-

neticifield SMF , total entropy igeneration ST and Be increase with an increase

in Re and φ. This increase in entropy generation is mostly dueito heat transfer.

Fluidifriction and magnetic field play a little role for enhancement of entropy gen-

eration.

In Figures 4.12-4.17, effectiof Richardson number Ri on Nusseltinumber, entropy

generation and Bejan number with different magnetic field strength Ha is dis-

played. It is noticed that with an increase in Ri, the values of Nu and SHT

increase but foria fixed valueiof Ri and increasing the Ha, the values of Nu and

SHT decrease gradually. Entropyigeneration dueito friction SFF decreases with

an increase in Ri but foria fixed value iof Ri and increase iin Ha result a gradual

increase in SFF . The value of SMF increases withian increase in Ri and Ha. ST in-

creases with an increase in Ri while for a fixedivalue of Ri, total entropyigeneration

ST decreases with an increase in Ha. Be increases with an increase in Ri while

for a fixed value of Ri, Bejan number Be gradually decrease with an increase in Ha.

Effect of Richardsoninumber on Nusseltinumber, entropy generation and Bejan

number with different nanoparticle volumeifraction is shown in Figure 4.18-4.23.

It isiobserved that Nusselt number Nu, entropyigeneration due to heat transfer

SHT , entropy generation due to fluid friction SFF , entropyigeneration due to mag-

neticifield SMF , total entropy generation ST and Be increase with an increase in

Re and φ. It is commendable that increase in entropyigeneration is mostly dueito

heat transfer.

In Figure 4.24-4.29, effect of Reynoldsinumber Re on Nusseltinumber, entropy

generation and Bejan number with different magnetic field strength Ha is dis-

played. It is noticed that with an increase in Re, the values of Nu and SHT also

increase but for a fixed value of Re and increasing the Ha, the values of Nu and

SHT decrease gradually. Entropy generation due to friction SFF increases withian
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increase iin Re and Ha. The value of SMF increases withian increase iin Re

and Ha. ST increases with an increase in Re while for aifixed value of Re, total

entropyigeneration ST decreases with an increase in Ha. Be increases with an

increase in Re while foria fixed valueiof Re, Bejan number Be gradually decrease

with an increase in Ha.

In Figure 4.30-4.33, effectiof Reynolds numberRe, RichardsoninumberRi, nanopar-

ticle volume fraction φ and Hartman number Ha on kinetic energy is exhibited.

One can observe that kinetic energy is enhanced with an increase in Re from 1 to

100 while for a fixed value of Re, it is decreased gradually with an increase in Ha

from 0 to 100. For Richardson numbers ranging from 1 to 50, Kinetic energy is

increasing gradually while for a fixed value of Ri, it decreases with an increase in

Ha. If we observe the behavior of kinetic energy versus φ for various values of Re

and Ri, we see that kinetic energy is enhanced for increasing values of Re, Ri and

φ.
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Figure 4.5: Streamlines and isotherms for different φ.
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Figure 4.6: Effectiof Reynolds number oniaverage Nusseltinumber with differ-
ent nanoparticle volume fraction.
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Figure 4.7: Effectiof Reynolds number on entropyigeneration dueito heat
transfer with different nanoparticleivolume fraction.
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Figure 4.8: Effect of Reynolds number onientropy generation dueito fluid
friction with different nanoparticleivolume fraction.
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Figure 4.9: Effect of Reynolds number on entropyigeneration due to mag-
neticifield with different nanoparticle volume fraction.
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Figure 4.10: Effect of Reynolds number on total entropy generation due to
magnetic field with different nanoparticle volume fraction.
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Figure 4.11: Effectiof Reynolds number on Bejan number with different
nanoparticleivolume fraction.
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Figure 4.12: Effectiof Richardson number oniaverage Nusselt number with
different Hartmann number.
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Figure 4.13: Effect of Richardson number on entropy generation dueito
heatitransfer with different Hartmann number.
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Figure 4.14: Effect of Richardson number on entropy generation due to fluid
friction with different Hartmann number.
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Figure 4.15: Effectiof Richardsoninumber on entropyigeneration dueito mag-
netic field with different Hartmann number.
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Figure 4.16: Effect of Richardson number on total entropyigeneration due to
magneticifield with different Hartmann number.
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Figure 4.17: Effect of Richardson number on Bejan number with different
Hartmann number.



76

0 0.05 0.1 0.15 0.2

3

4

5

6

7

8

9

φ

N
u

a
v

g

 

 

Ri = 1
Ri = 5
Ri = 10
Ri = 20
Ri = 50

Figure 4.18: Effect of Richardson number on averageiNusselt number with
differenti nanoparticle volumeifraction.
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Figure 4.19: Effect of Richardson number on entropyigeneration dueito heat
transfer with different nanoparticleivolume fraction.
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Figure 4.20: Effect of Richardson number on entropy generation due to fluid
friction with different nanoparticle volume fraction.
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Figure 4.21: Effect of Richardson number on entropyigeneration dueito mag-
netic field with different nanoparticle volume fraction.
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Figure 4.22: Effect of Richardson number on total entropy generation due to
magnetic field with different nanoparticle volume fraction.
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Figure 4.23: Effect of Richardson number on Bejan number with different
nanoparticle volume fraction.
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Figure 4.24: iEffect of Reynolds number on averageiNusselt number with
different Hartmann number.
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Figure 4.25: Effect of Reynolds number on entropy generation due to heat
transfer with different Hartmann number.
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Figure 4.26: Effect of Reynolds number on entropy generation due to fluid
friction with different Hartmann number.
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Figure 4.27: Effect of Reynolds number on entropy generation due to magnetic
field with different Hartmann number.
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Figure 4.28: Effect of Reynolds number on total entropy generation due to
magnetic field with different Hartmann number.
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Figure 4.29: Effect of Reynolds number on Bejan number with different Hart-
mann number.
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Figure 4.30: Effect of Reynolds number on kinetic energy with different Hart-
mann number.
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Figure 4.31: Effect of Richardson number on kinetic energy with different
Hartmann number.
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Figure 4.32: Effect of Reynolds number on kinetic energy with different
nanoparticle volume fraction.
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Figure 4.33: Effect of Richardson number on kinetic energy with different
nanoparticle volume fraction.

4.5 Closing Remarks

In the present analysis, the mixed convective alumina-water nanofluidiflow in a

double lid drivenicavity with discrete heating in the presence of an inclined mag-

netic field along with the entropy generation is investigated. The fluid motion is

due to the buoyancy force along with the two moving vertical walls. Spatial dis-

cretization was carried out using the higher order finite element pair Q2/P
disc
1 and

the fully implicit Crank-Nicolson is utilized for the temporal discretization. The

governing system of nonlinear equations is linearized with the help of Newton’s

methodiand the associated lineari subproblems are solvedi by using the Gaus-

sian elimination method. Impacts of the emerging parameters on the fluid flow,

temperature idistribution and heatitransfer have been computed iand analyzed.

Moreover, SHT , SFF , SMF , ST , Be and the kinetic energy have been calculated.

The main findings are as follows.

• With an increase in Ri, the values of Nu and SHT also increase but for a

fixed value of Ri and increasing the Ha, gradual decline in Nu and SHT is

observed.

• Total entropy generation ST and Be augment with an increase in Re and φ.
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• The SFF declines withia growth in Ri whilei for aifixed value ofi Ri and

increase iin Ha, a gradual reduction in SFF is observed.

• The SFF increases with an augmentation in Re and Ha.

• The Bejan number Be increases with an enhancement in Re while for a fixed

value of Re, Bejan number Be gradually decreases with an increase in Ha.

• The kinetic energy iincreases with an iincrease in Re,iRi, and φ whereas iti

reduces for the iincreasing values of Ha.



Chapter 5

MHD Mixed Convective

Nanofluid Flow Withian

Isothermally HeatediSquare

Blockage Inside a Cavity

5.1 Introduction

In this chapter, mixed convection inialumina-water nanofluidifilled lid-driven square

cavityiwith an isothermallyiheated square blockage insideiwith magneticifield ef-

fect has been examined. All the walls of the cavity are at rest except the top wall.

A square blockage with isothermal heating is placed at the centre of the cavity.

The vertical side walls are adiabatic and the bottom wall is kept at some hot tem-

perature. Flow is generated due to motion of the top wall and buoyancy forces that

are produced in the cavity due to temperature gradient. The governingiequations

are discretized inispace using the Galerkin finite element method and time dis-

cretization is performed using the Crank-Nicolson scheme. Newton’s method is

used to cope with discretized nonlinear systems of equations and the Gaussian

elimination method has been applied to solve the associated linear subproblems

83
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in each nonlinear iteration at each time level. Analysis has been performed on nu-

merical results in the form of streamlines, isotherms, tables and some useful plots.

Influence of emerging parameters on the flow, in specific ranges such asiReynolds

numberi(1 ≤ Re ≤ 200), Richardsoninumber (0.01 ≤ Ri ≤ 10), Hartmanninumber

(0 ≤ Ha ≤ 100), Eckertinumber (0 ≤ Ec ≤ 0.01) as well as nanoparticles volume

fraction (0 ≤ φ ≤ 0.2) are investigated and findings are very closely comparable

to the previous analysis for the special cases in the literature. Calculations of the

average Nusselt number, the entropy generation as well as the average temperature

in the cavity will be our focus of interest in this chapter. This study is organised

in the following way. Section 5.2 illustrates the problem configuration. Section 5.3

contains information about space and time discretizations of the governing equa-

tions, the numerical method, code validation and grid independence test. Results

based on the numerical simulation have been elaborated in Section 5.4. .Finally,

conclusion has been drawniin Section 5.5.

5.2 Problem Formulation

5.2.1 The Problem Configuration

The geometry ofithe present problemiis shown in Figure 5.1. It displays a lid

driven square cavity ofiwidth L containing alumina-water nanofluid. An isother-

mally heated square blockage with an average temperature of both top cold and

bottom hot walls and of width equal to L/4 is placed in the middle of the cav-

ity [135]. Top walliis moving toithe right with constantispeed U0, other walls are

at kept at rest. Vertical side wallsiare adiabatic and bottom wall isimaintained at

hot temperature Th. Flow is produced in the cavity due to temperature gradient

and movement of the top wall. The nanofluidiis Newtonianiand incompressible.

Flow isiconsidered toibe unsteady, two dimensionaliand laminar. A uniform mag-

neticifield ofistrength B0 is applied inithe x-direction. Inducedimagnetic field gen-

erated byithe motion ofian electrically conductingifluid is assumed to be negligible
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as comparedito the appliedimagnetic field [136]. The baseifluid and solid nanopar-

ticles areiin thermal equilibrium. Slipping effect between any two phases, radiation

effects and viscousidissipation in the energy equation are neglected [93, 96, 137].

Standard Boussinesq model isiused to approximate the densityiin buoyancy term

while theiother thermo-physical properties [114–116] ofithe nanofluidiare assumed

to be constant (see Table 5.1).

Physical properties H2O Al2O3

ρ (kg m−3) 997.1 3970
Cp (J kg−1K−1) 4179 765
k (W m−1 K−1) 0.613 40
β (K−1) 21× 10−5 0.85× 10−5

σ (Ω m)−1 0.05 1× 10−10

Table 5.1: Thermo-physicaliproperties of wateriand alumina.

Figure 5.1: Schematicidiagram ofithe physical model.

5.2.2 The Governing Equations

Governingiequations [37] canibe written as follows:

∂u

∂t
.+ .u

∂u

∂x
.+ .v

∂u

∂y
. = .− 1

ρnf

∂p

∂x
.+ .

µnf
ρnf

(
∂2u

∂x2
.+ .

∂2u

∂y2

)
, (5.1)



86

∂v

∂t
.+ .u

∂v

∂x
.+ .v

∂v

∂y
. = .− 1

ρnf

∂p

∂y
.+ .

µnf
ρnf

(
∂2v

∂x2
.+ .

∂2v

∂y2

)
.+ .

(ρβ)nf
ρnf

g(T − Tc).

− .σnfB
2
0

ρnf
v, (5.2)

∂u

∂x
.+ .

∂v

∂y
. = .0, (5.3)

∂T

∂t
.+ .u

∂T

∂x
.+ .v

∂T

∂y
. = .αnf

(
∂2T

∂x2
.+ .

∂2T

∂y2

)
.+ .

σnfB
2
0

(ρCp)nf
v2. (5.4)

5.2.3 The Dimensionless Governing Equations

To convert the governingiequations in dimensionlessiform, following variablesiare

used

X. = .
x

L
, Y . = .

y

L
, U. = .

u

U0

, V . = .
v

U0

, θ. = .
T − Tc
Th − Tc

, P =
p

ρnfU2
0

, Re. = .
U0L

νf
,

Gr. = .
gβ(Th − Tc)L3

ν2
f

, τ . = .
tU0

L
, Ha. = .B0L

√
σf
µf
, P r. = .

νf
αf
, Ri. = .

Gr

Re2
,

ST . = .
sT 2

0L
2

kf (Th − Tc)2
, Ec. = .

U2
0

(Cp)f (Th − Tc)
,

where U0, νf , αf and β are imposed lid velocity, kinematic viscosity, thermal

diffusibility and theicoefficient of thermaliexpansion respectively of nanofluid, g

isithe gravitationaliacceleration.

Dimensionless governingiequations could be given as follows:

∂U

∂τ
.+ .U

∂U

∂X
.+ .V

∂U

∂Y
. = .− ∂P

∂X
.+ .

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2U

∂X2
.+ .

∂2U

∂Y 2

)
, (5.5)

∂V

∂τ
.+ .U

∂V

∂X
.+ .V

∂V

∂Y
. = .− ∂P

∂Y
.+ .

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2V

∂X2
.+ .

∂2V

∂Y 2

)
+Ri

ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
θ.− . ρf

ρnf

σnf
σf

Ha2

Re
V, (5.6)

∂U

∂X
.+ .

∂V

∂Y
. = .0, (5.7)

∂θ

∂τ
.+ .U

∂θ

∂X
.+ .V

∂θ

∂Y
. = .

αnf
αf

1

RePr

(
∂2θ

∂X2
.+ .

∂2θ

∂Y 2

)
.

+ .
Ha2Ec

Re

σnf
σf

(ρCp)f
(ρCp)nf

V 2. (5.8)
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The boundary conditionsiare given in the following way:

At the top wall : U = 1, V = 0, θ = 0,

At the bottom wall : U = 0, V = 0, θ = 1,

At the left and right walls : U = 0, V = 0,
∂θ

∂X
= 0,

At the blockage inside : U = 0, V = 0, θ = 0.5

5.2.4 The Effective Nanofluid Properties

The effective density,ithermal diffusivity,ielectrical conductivity, specific heat andithe

coefficient of thermal expansioniof the nanofluid are the same as given in the sec-

tion 4.2.4 of Chapter 4.

5.2.5 The Entropy Generation

The entropy generation due to various physical sources can be written as follows:

s =
knf
T 2

0

[(
∂T

∂x

)2

+

(
∂T

∂y

)2
]

+
µnf
T0

[
2

((
∂u

∂x

)2

+

(
∂v

∂y

)2
)

+

(
∂u

∂y
+
∂v

∂x

)2
]

+
σnfB

2
0

T0

v2, (5.9)

where T0 = Th+Tc
2

. The dimensionless entropy generation obtained from Eq. (5.9)

is given as follows:

ST =
knf
kf

[(
∂θ

∂X

)2

+

(
∂θ

∂Y

)2
]

+ χ
µnf
µf

[
2

((
∂U

∂X

)2

+

(
∂V

∂Y

)2
)]

+ χ
µnf
µf

[(
∂U

∂Y
+
∂V

∂X

)2
]

+ χHa2σnf
σf

V 2, (5.10)

where χ is the irreversibility factor that is given by

χ =
µfT0

kf

(
U0

Th − Tc

)2

. (5.11)
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Let us write

ST = SHT + SFF + SMF , (5.12)

where

SHT =
knf
kf

[(
∂θ

∂X

)2

+

(
∂θ

∂Y

)2
]
. (5.13)

Here

SFF = χ
µnf
µf

[
2

((
∂U

∂X

)2

+

(
∂V

∂Y

)2
)

+

(
∂U

∂Y
+
∂V

∂X

)2
]
, (5.14)

SMF = χHa2σnf
σf

V 2, (5.15)

where SHT , SFF and SMF represent the non-dimensionalientropy generation dueito

heatitransfer, fluidifriction andimagnetic field, respectively. Integrating Eq. (5.10)

yields the dimensionless average entropy generation ST,avg that could be given as

follows

ST,avg =
1

ϑ

∫
STdϑ = SHT,avg + SFF,avg + SMF,avg. (5.16)

Here, ϑ denotes total volume of the nanofluid. Bejan number is given by

Be =
SHT
ST

. (5.17)

5.2.6 Calculation of the Nusselt number

Local Nusseltinumber and average Nusseltinumber are given by

Nu = −knf
kf

(
∂θ

∂Y

) ∣∣∣∣
Y=0,1

, (5.18)

Nuavg =

∫ 1

0

Nu dX. (5.19)
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5.3 The Numerical Approach

5.3.1 Spatialiand Temporal Discretization

The system of coupled non-linear partial dierential equations together with given

boundary conditions have been discretized numerically by the finite element for-

mulation. The numerical procedure used to solve the governing equations for the

present work is based on the Galerkin weighted residual method in which we have

used the higher order Stokes element Q2/P
disc
1 , where Q2 element is utilized for

the velocity and temperature and P disc
1 element is used for the pressure (see 2.5 for

detail). The variational or weak form of the governing Eqs. (5.5) - (5.8) is given

in the following:

∫
Ω

∂U

∂τ
.w dΩ +

∫
Ω

(
.U
∂U

∂X
.+ .V

∂U

∂Y

)
w dΩ = .−

∫
Ω

∂P

∂X
.w dΩ

+ .
1

Re

ρf
ρnf

1

(1− φ)2.5
.

∫
Ω

(
∂2U

∂X2
.+ .

∂2U

∂Y 2

)
w dΩ, (5.20)∫

Ω

∂V

∂τ
.w dΩ + .

∫
Ω

(
U
∂V

∂X
.+ .V

∂V

∂Y
.

)
w dΩ = .−

∫
Ω

∂P

∂Y
.w dΩ

+ .
1

Re

ρf
ρnf

1

(1− φ)2.5
.

∫
Ω

(
∂2V

∂X2
.+ .

∂2V

∂Y 2

)
w dΩ

+Ri
ρf
ρnf

(
1− φ.+ .

ρsβs
ρfβf

φ

)∫
Ω

θ.w dΩ− . ρf
ρnf

σnf
σf

Ha2

Re

∫
Ω

V w dΩ, (5.21)∫
Ω

(
∂U

∂X
.+ .

∂V

∂Y
.

)
q dΩ = .0, (5.22)∫

Ω

∂θ

∂τ
.w dΩ + .

∫
Ω

(
U
∂θ

∂X
.+ .V

∂θ

∂Y
.

)
w dΩ

= .
αnf
αf

1

RePr

∫
Ω

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
w dΩ

+ .
Ha2Ec

Re

σnf
σf

(ρCp)f
(ρCp)nf

∫
Ω

V 2w dΩ . (5.23)

Now, the infinite dimensional trial spaces U , V , θ and P are approximated by Uh,

Vh, θh and Ph, respectively. Moreover, the infinite dimensional test spaces W and

Q are approximated by the finite dimensional test spaces Wh and Qh, respectively,
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in such a way that

wh ∈ Wh ⊂ H1(Ω) =

{
s : Ω→ R :

∫
Ω

|s(x)|2dx <∞,
∫

Ω

|s′(x)|2dx <∞
}
,

qh ∈ Qh ⊂ L2(Ω) =

{
g : Ω→ R :

∫
Ω

|g(x)|2dx <∞
}
.

After the finite dimensional approximation, the Eqs. (5.20) - (5.23) takes the form,

given as follows:

∫
Ω

∂Uh
∂τ

.wh dΩ +

∫
Ω

(
.Uh

∂Uh
∂X

.+ .Vh
∂Uh
∂Y

)
wh dΩ = .−

∫
Ω

∂Ph
∂X

.wh dΩ

+ .
1

Re

ρf
ρnf

1

(1− φ)2.5
.

∫
Ω

(
∂2Uh
∂X2

.+ .
∂2Uh
∂Y 2

)
wh dΩ, (5.24)∫

Ω

∂Vh
∂τ

.wh dΩ + .

∫
Ω

(
Uh
∂Vh
∂X

.+ .Vh
∂Vh
∂Y

.

)
wh dΩ = .−

∫
Ω

∂Ph
∂Y

.wh dΩ

+ .
1

Re

ρf
ρnf

1

(1− φ)2.5
.

∫
Ω

(
∂2Vh
∂X2

.+ .
∂2Vh
∂Y 2

)
wh dΩ

+Ri
ρf
ρnf

(
1− φ.+ .

ρsβs
ρfβf

φ

)∫
Ω

θh.wh dΩ

− . ρf
ρnf

σnf
σf

Ha2

Re

∫
Ω

Vhwh dΩ, (5.25)∫
Ω

(
∂Uh
∂X

.+ .
∂Vh
∂Y

.

)
qh dΩ = .0, (5.26)∫

Ω

∂θh
∂τ

.wh dΩ + .

∫
Ω

(
Uh
∂θh
∂X

.+ .Vh
∂θh
∂Y

.

)
wh dΩ

= .
αnf
αf

1

RePr

∫
Ω

(
∂2θh
∂X2

+
∂2θh
∂Y 2

)
wh dΩ

+ .
Ha2Ec

Re

σnf
σf

(ρCp)f
(ρCp)nf

∫
Ω

V 2
hwh dΩ . (5.27)

Using the FEM approximation Uh(τ,X, Y ) =
N∑
j=1

Uj(τ)ξj(X, Y ), Vh(τ,X, Y ) =

N∑
j=1

Vj(τ)ξj(X, Y ), θh(τ,X, Y ) =
N∑
j=1

θj(τ)ξj(X, Y ) and Ph(X, Y ) =
K∑
j=1

Pjηj(X, Y )

are the trial functions. Similarly wh =
N∑
i=1

wi ξi and qh =
K∑
i=1

qi ηi are the test

functions. By the Galerkin finite element model for a typical element Ωe, the

Eqs. (5.24) - (5.27) are transformed into the following system:
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∫
Ωe

∂Uj
∂τ

ξjξi dΩe + Uj

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe = −Pj

∫
Ωe

ηj
∂ξi
∂X

dΩe

+
1

Re

ρf
ρnf

1

(1− φ)2.5
Uj

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe, (5.28)∫

Ωe

∂Vj
∂τ

ξjξi dΩe + Vj

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe = −Pj

∫
Ωe

ηj
∂ξi
∂Y

dΩe

+
1

Re

ρf
ρnf

1

(1− φ)2.5
Vj

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe

+Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
θj

∫
Ωe

ξjξi dΩe −
ρf
ρnf

σnf
σf

Ha2

Re
Vj

∫
Ωe

ξjξi dΩe, (5.29)

Uj

∫
Ωe

∂ξj
∂X

ηi dΩe + Vj

∫
Ωe

∂ξj
∂Y

ηi dΩe = 0, (5.30)∫
Ωe

∂θj
∂τ

ξjξi dΩe + θj

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe

=
1

RePr
θj

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe

+
Ha2Ec

Re

σnf
σf

(ρCp)f
(ρCp)nf

Vj

∫
Ωe

V ξjξi dΩe. (5.31)

Theifinal system can beiexpressed in theifollowing comprehensive form:

[Me]{u̇e}+ [Ke][ue] = {Fe}, (5.32)

[Me]{u̇e}+


[K11

ji ] [K12
ji ] [K13

ji ] [K14
ji ]

[K21
ji ] [K22

ji ] [K23
ji ] [K24

ji ]

[K31
ji ] [K32

ji ] [K33
ji ] [K34

ji ]

[K41
ji ] [K42

ji ] [K43
ji ] [K44

ji ]


︸ ︷︷ ︸

Ke


{U}

{V }

{P}

{θ}


︸ ︷︷ ︸

ue

=


{F 1}

{F 2}

{F 3}

{F 4}


︸ ︷︷ ︸

Fe

, (5.33)

where

[Me] =


[M11

ji ] [M12
ji ] [M13

ji ] [M14
ji ]

[M21
ji ] [M22

ji ] [M23
ji ] [M24

ji ]

[M31
ji ] [M32

ji ] [M33
ji ] [M34

ji ]

[M41
ji ] [M42

ji ] [M43
ji ] [M44

ji ]

 (5.34)
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In the above expression (5.34), [Me] is the elemental block mass matrix in which

all the block matrices are zero except [M11
ji ] = [M22

ji ] = [M44
ji ] = M =

∫
Ωe
ξjξi dΩe

where the variation of i and j depends on the choice of the basis function and

the geometric element considered. Furthermore, {u̇e}, Ke, ue and Fe in the

expression (5.33) are said to be the time derivative vector for the nodal unknowns,

the stiffness block matrix, the block solution vector for the nodal unknowns and

the right hand side block vector at an element level, respectively. For the sake of

brevity, the boundary integral is also included in Fe. In stiffness block matrix,

K11
ji =

1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ωe

((
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
+

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

))
dΩe,

K22
ji =

1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ωe

((
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
+

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

))
dΩe,

+
ρf
ρnf

σnf
σf

Ha2

Re

∫
Ωe

ξjξidΩe,

K42
ji = −Ha

2Ec

Re

σnf
σf

(ρCp)f
(ρCp)nf

∫
Ωe

V ξjξi dΩe,

K44
ji =

αnf
αf

1

RePr

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe +

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe ,

K24
ji = −Ri ρf

ρnf

(
1− φ+

ρsβsφ

ρfβf

)∫
Ωe

ξjξi dΩe ,

K13
ji = −

∫
Ωe

ηj
∂ξi
∂X

dΩe ,

K23
ji = −

∫
Ωe

ηj
∂ξi
∂Y

dΩe ,

K31
ji =

∫
Ωe

∂ξj
∂X

ηidΩe ,

K32
ji =

∫
Ωe

∂ξj
∂Y

ηidΩe ,

K12
ji = K21

ji = K14
ji = K33

ji = K34
ji = K41

ji = K43
ji = 0,

U =
N∑
j=1

Ujξj, V =
N∑
j=1

Vjξj.

The above system (5.33) involves the nodal unknowns ue and the time dependent

terms {u̇e}. Time discretization of the nodal unknowns still remains to do. Time

discretization have been performed utilizing the Crank-Nicolson method (see 2.4

for detail). We have utilized Q2/P
disc
1 for space discretization (see 2.5 for detail).
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After discretization in the space and time, we obtain an algebraic system of nonlin-

ear equations. Integration regarding eachiterm of theseiequations is performediby

the Gaussian quadrature method. Then the implementation of boundary con-

ditions is carried out and linear algebraic equations are obtained from nonlinear

equations using the iterative Newton’s method. Some tolerance value is prescribed

to see the optimized minimum difference of the current values of the variables to

the previous iteration values by achieving the convergence of the solution of an it-

erative scheme. In other words, the adopted criterion to stop the iterative scheme

could be given as follows∣∣∣∣Γn+1 − Γn

Γn+1

∣∣∣∣ ≤ 10−6, (5.35)

where U , V , P or θ are denoted by a general variable Γ. Superscript n represents

the iteration number in the above expression. Finally, these linear equations are

computed by the Gaussian elimination method in each time level.

5.3.2 CodeiValidation and Grid IndependenceiTest

Code validation has been performed for free convection results published in the

literature and given in Table 3.4 of chapter 3, for various computed variables.

Code validation has also been presented in Table 3.3 for mixed convection flow

in the section 3.3.2 of Chapter 3 and the results have an excellent agreement for

both of the cases. In addition, code validation has been provided in Table 5.2 for

a particular case of isothermal blockage in a cavity and results are found to agree

with [138]. Grid convergence test is performed for average Nusselt number and

given in Table 5.3 for Re = 100, φ = 0.2, P r = 6.2, Ha = 25, Ec = 0.0001 together

with the number of elements (#EL) and the total number of all space degrees of

freedom (#DOFs) which are needed to represent the discrete velocity, temperature

and pressure solution with respect to the used discretization. A uniform grid at

mesh level ` = 8 with #EL = 65536 isifound toimeet theirequirements of bothithe

grid independencyistudy andithe computational timeilimits. Furtherirefinement
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ofigrids produce noisignificant changes. However, finerigrids may be consideredifor

higherivalues of Reynolds or Richardson number.

Eccentricity (0, 0)
Nuavg Ri Present Islam et al. [138]

0.1 5.5317 5.6118
1 5.5684 5.6935
10 7.9029 7.9083

Table 5.2: Comparisoniof the presentiresults withithose of Islam et al. [138]

` #EL #DOFs Nuavg(Ri = 1) Nuavg(Ri = 10)

3 64 1056 4.459971 7.081795

4 256 4032 5.138374 8.390714

5 1024 15744 5.508233 9.150767

6 4096 62208 5.674757 9.534331

7 16384 247296 5.741560 9.719424

8 65536 986112 5.774757 9.814020

9 262144 3938304 5.780689 9.810275

Table 5.3: Results of grid independence test for alumina-water nanofluid.

5.4 Resultsiand Discussion

Inithis work,imixed convectioniin alumina-water nanofluid filledilid drivenisquare

cavityiwith aniisothermally heatedisquare blockageiinside with magneticifield ef-

fect has been examined. In the whole study standard values (Re = 100, Ri =

10, φ = 0.2, Ha = 25, Ec = 0.0001, P r = 6.2) have been taken unless these are

mentioned. We have considered three cases including the forced convection, the

mixed convection and the free convection.

Figure 5.2 demonstrates the influence of Hartmanninumber on istreamlines and

iisotherms for forced convection case (Ri = 0.1). Magnetic field is applied par-

allel to x-axis. In the absenceiof magnetic field (Hai = i0) clockwise rotating
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vortex with its centre above the blockage nearithe right top corner ofithe cavity

has been noticed. Streamlines are more densely distributed near the top moving

wall that indicates the region of higher fluid velocity whereas coarse distribution

of streamlines has been observed away from the top moving wall. When mag-

netic field strength is increased up to Ha = 25, flow circulation is reduced that

indicates a decrease in fluid velocity and more of the streamlines occur near the

top moving wall and above the central block. When magnetic field strength is

increased up to Ha = 50 and Ha = 100, all the streamlines are restricted to the

small area near the top moving wall and above the central blockage that indicate

a reduction in the fluid flow in the cavity. In fact, the Lorentz force is gener-

ated in opposite direction of flow due to the existence of the magnetic field. For

Ha = 0, isotherms are clustered near the hot bottom wall and around isothermal

blockage that indicate the high temperature gradient in that region. Due to shear

forces, isotherms are moved towards top of the left adiabatic wall. Hence, thermal

boundary layer occurs in this region. When strength of magnetic field is increased

up to Ha = 100, a slight change has been observed in isotherms behavior. The

diagonal lines from bottom of the right adiabatic wall to the top of left adiabatic

wall gradually become parallel to the bottom hot wall.

Figure 5.3 depicts the effect of Hartmann number on streamlines and isotherms

for mixed convection case (Ri = 1). In this case, buoyancy-induced flow due to

hot bottom wall or isothermal blockage and shear-driven flow due to top moving

wall play an equal role in the fluid flow and temperature distribution in the cavity.

For Ha = 0, more streamlines (compared to forced convection case) are densely

distributed around the central block that show buoyancy also play its role this

time. Moreover, weak circulation region is observed in the centre of rotating vor-

tex above the block. When strength of magnetic field is increased up to Ha = 25,

number of coarsely distributed streamlines around the block is less (compared to

Ha = 0) but is more as compared to forced convection regime. It indicates a

reduction in the fluid flow in the cavity due to application of magnetic field. For

the case of Ha = 50 and Ha = 100, streamlines are clustered to the top wall and



96

are restricted to a small area showing more decrease in fluid velocity in the cavity.

Isotherms behavior slightly changes as compared to the case of forced convection.

Figure 5.4 displays the impact of Hartmann numbers on streamlines and isotherms

for natural or free convection regime (Ri = 10). In this case buoyancy-driven flow

is dominant over shear-driven flow. For Ha = 0, streamlines are almost equally

distributed and are slightly stretched diagonally to the top right corner due to

movement of the top wall. This indicates that fluid flow occurs due to bottom hot

wall. Moreover, weak circulation of rotating vortex is observed in the centre of the

cavity around the central blockage that shows reduction in fluid flow in this area.

When magnetic field strength is enhanced up to Ha = 25, weak circulating centre

of clockwise rotating vortex has been shifted to the area above the blockage that

shows a decrease in fluid velocity. For Ha = 50, coarse distribution of streamlines

around the left, right and bottom of the blockage has been observed. Similarly,

more streamlines are squeezed to the area near the top wall above the blockage

for the case of Ha = 100 indicating that most of the fluid flow occurs in this

region. Isotherms are densely distributed near the hot bottom wall and around

isothermal blockage. This indicates high temperature gradient and development

of thin boundary layer over the hot wall and blockage surfaces.

Figure 5.5 demonstrates the influence of Richardson number on streamlines and

isotherms for Eckert number 10−2 . For Ri = 0.01, shear forces are dominant in

the cavity and streamlines are mostly restricted to the area near the top moving

wall above the central blockage. Increasing Ri up to 1, shear forces and buoyancy

forces contribute equally thus more streamlines can be seen near the bottom wall.

Enhancing Ri from 1 to 10, fluid movement has been observed throughout the

whole cavity around the central blockage due to free convection. Isotherms move

diagonally from the bottom of right adiabatic wall to the top of left adiabatic

wall and become clustered around the central isothermal blockage for forced con-

vection regime (Ri = 0.1). For mixed convection mode (Ri = 1), isotherms are

clustered near the bottom hot wall. For free convection case (Ri = 10), most of
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the isotherms become parallel to the hot bottom wall due to dominating buoyancy

forces.

Effectiof Eckert numberion average Nusseltinumber, average temperature, average

entropyigeneration due to heatitransfer and averageitotal entropy generation has

been demonstrated by Figures 5.6-5.9. Since we have selected very small variation

of Eckert number therefore mild effect has been observed in all of the convection

regimes for Ec = 10−4, 10−3 and 10−2. Variation is almost same for the case of

B0 = 0, i.e. , Ec = 0 to that of Ec = 10−4, so this is not shown in Figures 5.6-5.9.

A slight decrease in average Nusseltinumber with an increaseiin Eckert number

has been noticed in Figure 5.6. Eckert number generates an enhancement in

average temperature of the cavity that can be visualized from Figure 5.7. Aver-

age entropyigeneration due toiheat transfer and averageitotal entropy generation

increase with a growth in Eckert number as depicted in Figures 5.8 and 5.9, re-

spectively.

Figures 5.10-5.13 delineate the effect of Hartmann number on average Nusselt

number, entropyigeneration due to heatitransfer, Bejan numberiand kinetic en-

ergy with Re = 1, 10, 100, 200. It is evident from Figure 5.10 that increase in

magnetic field strength causes to decrease in average Nusselt number. This is due

to the fact that movement of buoyancy-induced flow slow down and shear forces

becomes dominant by the application of magnetic field. In fact, Lorentz forces

have resistance against thermal buoyancy forces. Influence of magneticifield inten-

sity on average entropyigeneration due toiheat transfer, Bejan numberiand kinetic

energy has been illustrated by Figures 5.11-5.13, respectively. All these quantities

reduce with a rise in the strength of magnetic field.

For optimum utilization of energy, it becomes important to better understand

different convection modes in the cavity. Here, effect of threeiconvection modes

namely forcediconvectioni(Rii = i0.1), mixediconvection i(Rii = i1) and free con-

vection (Rii = i10) on various emerging parameters as a function of Hartmann
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number has been illustrated in Figures 5.14-5.21. It can be viewed from Fig-

ure 5.14 that average Nusseltinumber decreases withian increase in magnetic field

strength for different Richardson number. Average temperature in the cavity is

augmented with a growth in Hartmann number as ellucidated by Figure 5.15.

Average entropyigeneration dueito heatitransfer, fluidifriction andimagnetic field

have been portrayed by Figures 5.16, 5.17 and 5.18, respectively. Average en-

tropyigeneration dueito heat transfer declines by the application of magnetic field.

Entropyigeneration dueito fluidifriction is increased for forced and mixed convec-

tion cases whereas in natural convection regime, increasing Ha from 0 to 50, it

decreases then starts increasing beyond Ha = 50. Entropy generation due to

magnetic field is enhanced monotonically for small values of Richardson number

(Ri = 0.1, 1) but for natural convection case (Ri = 10), it amplifies up to Ha = 50

then starts decreasing for higher magnetic field strength. Average total entropy

generation and Bejan number gradually decrease with an augmentation in mag-

netic field strength that can be visualized from Figures 5.19 and 5.20, respectively.

By comparing the Figures 5.16 and 5.19 quantitatively, one can see that average

entropyigeneration due toiheat transfer and averageitotal entropy generation have

almost same magnitudes. Hence, it can be deduced that irreversibility is mostly

generated due to heatitransfer. Fluid friction and magneticifield play a little role

in total irreversibility in the cavity. Kinetic energy declines with an increase in

the intensity of magnetic field as shown in Figure 5.21.

Effect of Eckert number on average Nusselt number and kinetic energy as a func-

tion of nanoparticles volume fraction has been illustrated by Figures 5.22 and

5.23, respectively. It is examined that average Nusselt number and kinetic energy

increase with an augmentation in nanoparticles volume fraction but with an en-

hancement in Eckert both have opposite behaviors, i.e., average Nusselt number

decrease whereas kinetic energy amplifies. Figures 5.24 and 5.25 demonstrate the

effect of nanoparticles volume fraction as a function of Eckert number on average

temperature and average total entropy generation, respectively. It is found that

both quantities augment with a growth in Eckert number.
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Figure 5.6: Variation ofiaverage Nusselt number asia function of Eckert num-
berifor different Richardson numbers.
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Figure 5.7: Variation ofiaverage temperature asia function of Eckert number
for different Richardsoninumbers.
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Figure 5.8: Variation ofiaverage entropy generation dueito heat transfer asia
function of Eckertinumber for different Richardsoninumbers.
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Figure 5.9: Variationiof average total entropyigeneration asia function of Eck-
ert number for different Richardson numbers.
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Figure 5.10: Variation of averageiNusselt number asia function of Hartmann
numberifor different Reynolds number.
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Figure 5.11: Variation ofiaverage entropy generation dueito heat transfer asia
function of Hartmann numberifor different Reynolds number.
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Figure 5.12: Variation of Bejaninumber as aifunction of Hartmann number
for different Reynolds number.
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Figure 5.13: Variation of kinetic energy asia function of Hartmann numberifor
different Reynolds number.
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Figure 5.14: Variation ofiaverage Nusselt number asia function of Hartmann
numberifor different Richardson numbers.
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Figure 5.15: Variation ofiaverage temperature asia function of Hartmann num-
berifor different Richardson numbers.
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Figure 5.16: Variation ofiaverage entropy generation dueito heat transfer asia
function of Hartmann number foridifferent Richardson numbers.
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Figure 5.17: Variation of average entropyigeneration due to fluid friction asia
function of Hartmann number for different Richardson numbers.
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Figure 5.18: Variation ofiaverage temperature asia function of Eckert num-
berifor different Richardsoninumbers.
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Figure 5.19: Variation ofiaverage entropy generation dueito magnetic field
asia function of Hartmann number for different Richardson numbers.
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Figure 5.20: Variationiof Bejan number asia function of Hartmann number
for different Richardson numbers.
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Figure 5.21: Variation of kinetic energy as a function of Hartmann number
for different Richardson numbers.
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Figure 5.22: Variation ofiaverage Nusselt number asia function of nanoparti-
cles volumeifraction.
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Figure 5.23: Variation of kinetic energy asia function of nanoparticles volume
ifraction.
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Figure 5.24: Variation ofiaverage temperature asia function of Eckertinumber.
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Figure 5.25: Variation ofiaverage total entropyigeneration asia function of
Eckert number.

5.5 Closing Remarks

In the present analysis, the mixediconvection inialumina-water nanofluidifilled lid

driven square cavity with an isothermallyiheated square blockage insideiwith mag-

neticifield effect has been examined. The top moving wall and buoyancy force are

responsible for motion of fluid. The Galerkin finiteielement method is usedifor
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space discretization and the Crank-Nicolson is utilized for the time discretiza-

tion. Newton’s methodihas beeniused to linearize theigoverning system of nonlin-

ear equations and the Gaussian elimination method is applied to solve the linear

subproblems. The computations have been performed to observe influence of per-

tinent parameters on the heat transfer, temperature distribution and the fluid

flow. The main findings of this chapter can be given as follows.

1. The streamlines strength in the whole cavity declines and in the proxim-

ity of the bottom hot wall, the isotherms becomeiless concentrated withian

amplification in the Hartmann number.

2. A reduction in the average Nusseltinumber and an augmentation in the av-

erage entropy generation dueito the heat transfer, average total entropy gen-

eration and average temperature have been observed with an increment in

Eckert number.

3. An increase in average temperature in the cavity has been noticed with an

augmentation in the Eckert number and magnetic field strength.

4. A decline in the average Nusseltinumber, average entropyigeneration due to

the heat transfer, Bejan number and kinetic energy has been perceived with

an increase in the magnetic field strength.

5. An increase in the average Nusselt number and kinetic energy has been

examined with aniincrease in the nanoparticles volumeifraction.



Chapter 6

MHD Mixed Convective

Nanofluid Flow in a Porous

Cavity

6.1 Introduction

This chapter examines the influence of non-linear thermal radiation and inclined

magneticifield on the mixed convection inia square porous cavity. Here, the cav-

ity is saturatediwith alumina–waterinanofluid. The Darcy-Brinkman-Forchheimer

model has been used to formulate governing differential equations. After trans-

forming equations to dimensionless form, these are solvediby utilizing the weighted

residualiGalerkin finiteielement method. Latest KKL model is employed forithe

evaluation of effective thermaliconductivity and dynamiciviscosity of nanofluid.

The effect of pertinent parameters in specific ranges such as Richardson number

i(0.01 ≤ Ri ≤ 100), radiation parameter (0 ≤ Rd ≤ 5), temperature ratio param-

eter (1.1 ≤ Nr ≤ 1.4), inclined magnetic field parameter (0◦ ≤ γ ≤ 90◦), Darcy

number (10−6 ≤ Da ≤ 10−3), porosity parameter (0.2 ≤ ε ≤ 0.8) and volume

fraction of solid particles (0 ≤ φ ≤ 0.04) has been studied and presented inithe

formiof streamlines, isothermsiand plots. Moreover, kinetic energy and average

111



112

temperature have also been taken into account for better understanding the flow

philosophy. It is found that the radiation parameter, temperature ratio parameter,

Darcy number and porosity parameter augment the heat transfer, kinetic energy

and average temperature while inclined magnetic field parameter in the selected

aforementioned ranges declines the heat transfer due to the hot bottom wall. This

study is organised in the following way. Section 6.2 illustrates problem configu-

ration. Section 6.3 contains information about the space and time discretizations

of the governing equations, the numerical method, code validation and grid inde-

pendence test. Results based on the numerical simulation have been elaborated

in Section 6.4.iFinally, conclusion has been drawniin Section 6.5.

6.2 Problem Formulation

6.2.1 The Problem Configuration

The flow model under consideration (see Figure. 6.1) consists of twoidimensional

square porous cavity fillediwith alumina-water nanofluid. The bottomiwall ofithe

cavity is hot with dimensional temperature Th and theitop wall has been kept

at cold temperature Tc while both of the vertical walls are adiabatic and moving

with velocity Vw in opposite directions. Shear forces due to vertical moving walls

and buoyancy forces due to the hot bottom wall are responsible for the fluid

movement. The porous medium is considered to be homogenous and isotropic.

Baseifluid and nanoparticles areiin thermal equilibriumiand there exists noislip

velocity between them. Fluid is assumed to be Newtonianiand incompressible. The

flow is designated as steady and laminar. Joule heating, viscous dissipation and

internal heat generation are neglected in the energy equation. Thermo-physical

properties (see Table 6.1) of water and alumina are invariant except for density

that is evaluated through Boussinesq approximation.
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Physical properties H2O Al2O3

ρ (kg m−3) 997.1 3970
Cp (J kg−1K−1) 4179 765
k (W m−1 K−1) 0.613 40
β (K−1) 21× 10−5 1.89× 10−5

σ (Ωm)−1 0.05 1× 10−10

ds (nm) - 47

Table 6.1: Thermo-physicaliproperties of wateriand alumina.

Figure 6.1: Schematicidiagram ofithe physical model.

6.2.2 The Governing Equations

Governingiequations of continuity,imomentum andienergy under the above-mentioned

assumptions are given by

ρnf
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+ .(ρβ)nfg(T − Tc).− .
1.75ρnf√
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2

(√
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(6.2)

∂u
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)
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)
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Applying Rosseland approximation [139] for the radiation and expanding T 4 as

in Taylor series about Tc just like T 4 ≈ 4TT 3
c − 3T 4

c and neglecting higher order

terms, thermal radiation terms can be expressed by

qrx = − 4σ∗
3aR

∂T 4

∂x
= −16σ∗

3aR
T 3∂T

∂x
, (6.5)

qry = − 4σ∗
3aR

∂T 4

∂y
= −16σ∗

3aR
T 3∂T

∂y
. (6.6)

The above Eqs. (6.5) and (6.6) are non-linear in T .

6.2.3 The Dimensionless Governing Equations

Following variables are utilized to transform the system into dimensionless form

X =
x

L
, Y =

y

L
, U =

u

Vw
, V =

v

Vw
, θ =

T − Tc
Th − Tc

, P =
p

ρnfU2
0

, Da =
K

L2
,

Rd =
4σ∗T

3
c

aRα
, Re =

VwL

νf
, Gr =

gβ∆TL3

ν2
f

, P r =
νf
αf
, Ha = B0

√
σnfK

µnf
,

Ri =
Gr

Re2
, Nr =

Th
Tc
.

The dimensionless governing equations are reduced as follows:

1

ε2

(
U
∂U

∂X
.+ .V

∂U

∂Y

)
. = .− ∂P

∂X
.+ .

1

εRe

µnf
ρnfνf

(
∂2U

∂X2
.+ .

∂2U

∂Y 2

)
+

ρf
ρnf

σnf
σf

Ha2

Re

(
V sin γ cos γ.− .U sin2 γ

)
− µnf
ρnfνf

1

ReDa
U.
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− . 1.75
√

150Daε
3
2

(√
U2.+ .V 2

)
U, (6.7)

1

ε2

(
U
∂V

∂X
.+ .V

∂V

∂Y

)
. = .− ∂P

∂Y
.+ .

1

εRe

µnf
ρnfνf

(
∂2V

∂X2
.+ .

∂2V

∂Y 2

)
+Ri

ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
θ.

+ .
ρf
ρnf

σnf
σf

Ha2

Re

(
U sin γ cos γ.− .V cos2 γ

)
− µnf
ρnfνf

1

ReDa
V .

− . 1.75
√

150Daε
3
2

(√
U2.+ .V 2

)
V, (6.8)

∂U

∂X
.+ .

∂V

∂Y
. = .0, (6.9)

U
∂θ

∂X
.+ .V

∂θ

∂Y
. = .

1

RePr

αnf
αf

km
knf

(
∂2θ

∂X2
.+ .

∂2θ

∂Y 2

)
.

+ .
Rd

RePr

(
(1.+ . (Nr.− .1) θ)3)( ∂2θ

∂X2
.+ .

∂2θ

∂Y 2

)
. (6.10)

Associated with the problem, the boundary conditions are given by

At the top wall : U = 0, V = 0, θ = 0,

At the bottom wall : U = 0, V = 0, θ = 1,

At the left wall : U = 0, V = −1,
∂θ

∂X
= 0,

At the right wall : U = 0, V = 1,
∂θ

∂X
= 0.

6.2.4 The Effective Nanofluid Properties

The thermal diffusivity, effective density, coefficient of thermal expansion, specific

heat and electrical conductivity of the nanofluid [20, 140] could be expressed as

follows

ρnf = (1− φ)ρf + φρp, (6.11)

αnf =
knf

(ρCp)nf
, (6.12)

(ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)p, (6.13)



116

(ρβ)nf = (1− φ)(ρβ)f + φ(ρβ)p, (6.14)

σnf = σf

[
1 +

3(σ − 1)φ

(σ + 2)− (σ − 1)φ

]
, σ =

σp
σf
. (6.15)

The Brownian motion has considerable influence on the thermal conductivity of

the nanofluid. Koo and Kleinstreuer [141] proposed the following model for effec-

tive thermal conductivity.

kstatic = kf

[
1 +

3 (kp/kf − 1)φ

(kp/kf + 2)− (kp/kf − 1)φ

]
, (6.16)

keff = kstatic + kBrownian, (6.17)

where kp and kf are the thermal conductivities of solid nanosized particles and

pure fluid, respectively, kstatic isithe static thermali conductivity basedion Maxwell

model [45] and kBrownian is the thermal conductivity proposed by KKL model and

given by

kBrownian = 5× 104φρf (Cp)f

√
κbT

ρpdp
g′(T, φ, dp), (6.18)

where empirical function g′ for the Al2O3-water nanofluid can be given by

g′(T, φ, dp) = (a1 + a2 ln(dp) + a3 ln(φ) + a4 ln(φ) ln(dp) + a5 ln(dp)
2) ln(T )

+ (a6 + a7 ln(dp) + a8 ln(φ) + a9 ln(dp) ln(φ) + a10 ln(dp)
2). (6.19)

The coefficients ai(i = 1, 2, ..., 10) are tabulated in Table 6.2. Koo and Klein-

streuer [119] further proposed following model for the effective viscosity due to

micromixing in suspensions.

µeff = µstatic + µBrownian = µstatic +
kBrownian

kf
× µf
Prf

, (6.20)

where µstatic = µf/(1− φ)2.5 isithe viscosity ofinanofluid,igiven by Brinkman [44].

Also, by incorporating the interfacial thermal resistence Rf = 4 × 10−8m2K/W,
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the original kp in Eq. (6.16) is replaced by kp,eff in the form

Rf +
dp
kp

=
dp

kp,eff
. (6.21)

Effective heaticapacity and effective thermaliconductivity ofithe porous medium

Coefficient values Al2O3-water
a1 52.813488759
a2 6.115637295
a3 0.6955745084
a4 0.041745555278
a5 0.176919300241
a6 -298.19819084
a7 -34.532716906
a8 -3.9225289283
a9 -0.2354329626
a10 -0.999063481

Table 6.2: The coefficient values of Al2O3-water nanofluid [22].

are calculated from the relations [71, 72] given by

(ρCp)m = (1− ε)(ρCp)p + ε(ρCp)nf , (6.22)

km = (1− ε)kp + εknf . (6.23)

We used the glass fibers to simulate the porous medium [142, 143].

6.2.5 Calculation of the Nusselt number

Local and average Nusselt number at the hot bottom wall are given by

Nu = −knf
kf

(
1 +RdNr3

)( ∂θ
∂Y

) ∣∣∣∣
Y=0,1

, (6.24)

Nuavg =

∫ 1

0

Nu dX. (6.25)
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6.3 The Numerical Approach

6.3.1 The Spatial Discretization

The system of coupled non-linear partial dierential equations together with given

boundary conditions have been discretized numerically by the finite element for-

mulation. The numerical procedure used to solve the governing equations for the

present work is based on the Galerkin weighted residual method in which we have

used the higher order Stokes element Q2/P
disc
1 , where Q2 element is utilized for

the velocity and temperature and P disc
1 element is used for the pressure (see 2.5

for detail). The variational or weak form of the governing Eqs. (6.7) - (6.10) is

given in the following:

1

ε2

∫
Ω

(
U
∂U

∂X
.+ .V

∂U

∂Y

)
.w dΩ = .−

∫
Ω

∂P

∂X
.w dΩ

+ .
1

εRe

µnf
ρnfνf

∫
Ω

(
∂2U

∂X2
.+ .

∂2U

∂Y 2

)
w dΩ

+
ρf
ρnf

σnf
σf

Ha2

Re

(
sin γ cos γ.

∫
Ω

V w dΩ− . sin2 γ

∫
Ω

Uw dΩ

)
− µnf
ρnfνf

1

ReDa

∫
Ω

U.w dΩ

− . 1.75
√

150Daε
3
2

∫
Ω

(√
U2.+ .V 2

)
Uw dΩ, (6.26)

1

ε2

∫
Ω

(
U
∂V

∂X
.+ .V

∂V

∂Y

)
.w dΩ = .−

∫
Ω

∂P

∂Y
.w dΩ

+ .
1

εRe

µnf
ρnfνf

∫
Ω

(
∂2V

∂X2
.+ .

∂2V

∂Y 2

)
w dΩ

+Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)∫
Ω

θ.w dΩ

+ .
ρf
ρnf

σnf
σf

Ha2

Re

(
sin γ cos γ.

∫
Ω

Uw dΩ− . cos2 γ

∫
Ω

V w dΩ

)
− µnf
ρnfνf

1

ReDa

∫
Ω

V .w dΩ

− . 1.75
√

150Daε
3
2

∫
Ω

(√
U2.+ .V 2

)
V w dΩ, (6.27)∫

Ω

(
∂U

∂X
.+ .

∂V

∂Y
.

)
q dΩ = .0, (6.28)
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∫
Ω

(
U
∂θ

∂X
.+ .V

∂θ

∂Y
.

)
w dΩ = .

1

RePr

αnf
αf

km
knf

∫
Ω

(
∂2θ

∂X2
.+ .

∂2θ

∂Y 2

)
.w dΩ

+ .
Rd

RePr

∫
Ω

(
(1.+ . (Nr.− .1) θ)3)( ∂2θ

∂X2
.+ .

∂2θ

∂Y 2

)
w dΩ .

(6.29)

Now, the infinite dimensional trial spaces U , V , θ and P are approximated by Uh,

Vh, θh and Ph, respectively. Moreover, the infinite dimensional test spaces W and

Q are approximated by the finite dimensional test spaces Wh and Qh, respectively,

in such a way that

wh ∈ Wh ⊂ H1(Ω) =

{
s : Ω→ R :

∫
Ω

|s(x)|2dx <∞,
∫

Ω

|s′(x)|2dx <∞
}
,

qh ∈ Qh ⊂ L2(Ω) =

{
g : Ω→ R :

∫
Ω

|g(x)|2dx <∞
}
.

After the finite dimensional approximation the Eqs. (6.26) - (6.29) takes the form,

given as follows:

1

ε2

∫
Ω

(
Uh
∂Uh
∂X

.+ .Vh
∂Uh
∂Y

)
.wh dΩ = .−

∫
Ω

∂Ph
∂X

.wh dΩ

+ .
1

εRe

µnf
ρnfνf

∫
Ω

(
∂2Uh
∂X2

.+ .
∂2Uh
∂Y 2

)
wh dΩ

+
ρf
ρnf

σnf
σf

Ha2

Re

(
sin γ cos γ.

∫
Ω

Vhwh dΩ− . sin2 γ

∫
Ω

Uhwh dΩ

)
− µnf
ρnfνf

1

ReDa

∫
Ω

Uh.wh dΩ

− . 1.75
√

150Daε
3
2

∫
Ω

(√
U2
h .+ .V 2

h

)
Uhwh dΩ, (6.30)

1

ε2

∫
Ω

(
Uh
∂Vh
∂X

.+ .Vh
∂Vh
∂Y

)
.wh dΩ = .−

∫
Ω

∂Ph
∂Y

.wh dΩ

+ .
1

εRe

µnf
ρnfνf

∫
Ω

(
∂2Vh
∂X2

.+ .
∂2Vh
∂Y 2

)
wh dΩ

+Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)∫
Ω

θh.wh dΩ

+ .
ρf
ρnf

σnf
σf

Ha2

Re

(
sin γ cos γ.

∫
Ω

Uhwh dΩ− . cos2 γ

∫
Ω

Vhwh dΩ

)
− µnf
ρnfνf

1

ReDa

∫
Ω

Vh.wh dΩ
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− . 1.75
√

150Daε
3
2

∫
Ω

(√
U2
h .+ .V 2

h

)
Vhwh dΩ, (6.31)∫

Ω

(
∂Uh
∂X

.+ .
∂Vh
∂Y

.

)
qh dΩ = .0, (6.32)∫

Ω

(
Uh
∂θh
∂X

.+ .Vh
∂θh
∂Y

.

)
wh dΩ = .

1

RePr

αnf
αf

km
knf

∫
Ω

(
∂2θh
∂X2

.+ .
∂2θh
∂Y 2

)
.wh dΩ

+ .
Rd

RePr

∫
Ω

(
(1.+ . (Nr.− .1) θh)

3)(∂2θh
∂X2

.+ .
∂2θh
∂Y 2

)
wh dΩ .

(6.33)

Using the finite element approximation Uh(X, Y ) =
N∑
j=1

Ujξj(X, Y ), Vh(X, Y ) =

N∑
j=1

Vjξj(X, Y ), θh(X, Y ) =
N∑
j=1

θjξj(X, Y ) and Ph(X, Y ) =
K∑
j=1

Pjηj(X, Y ) are the

trial functions. Similarly wh =
N∑
i=1

wi ξi and qh =
K∑
i=1

qi ηi are the test functions. By

the Galerkin finite element model for a typical element Ωe, the Eqs. (6.30) - (6.33)

are transformed into the following system:

1

ε2
Uj

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe = −Pj

∫
Ωe

ηj
∂ξi
∂X

dΩe

+
1

εRe

µnf
ρnfνf

Uj

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe

+
ρf
ρnf

σnf
σf

Ha2

Re

(
sin γ cos γVj

∫
Ωe

ξjξidΩe − sin2 γUj

∫
Ωe

ξjξidΩe

)
− µnf
ρnfνf

1

ReDa
Uj

∫
Ωe

ξjξi dΩe

− 1.75
√

150Daε
3
2

Uj

∫
Ωe

(√
U U + V V

)
ξjξi dΩe, (6.34)

1

ε2
Vj

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe = −Pj

∫
Ωe

ηj

(
∂ξi
∂Y

)
dΩe

+
1

εRe

µnf
ρnfνf

Vj

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe

+Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
θj

∫
Ωe

ξjξidΩe

+
ρf
ρnf

σnf
σf

Ha2

Re

(
sin γ cos γUj

∫
Ωe

ξjξidΩe − sin2 γVj

∫
Ωe

ξjξidΩe

)
− µnf
ρnfνf

1

ReDa
Vj

∫
Ωe

ξjξidΩe

− 1.75
√

150Daε
3
2

Vj

∫
Ωe

(√
U U + V V

)
ξjξi dΩe, (6.35)
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Uj

∫
Ωe

∂ξj
∂X

ηi dΩe + Vj

∫
Ωe

∂ξj
∂Y

ηi dΩe = 0, (6.36)

θj

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe

=
1

RePr

αnf
αf

km
knf

θj

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe

+
Rd

RePr
θj

∫
Ωe

(
1 + (Nr − 1)(θ)

)3
(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe. (6.37)

Theifinal system can beiexpressed in theifollowing comprehensive form

[Ke][ue] = {Fe}, (6.38)


[K11

ji ] [K12
ji ] [K13

ji ] [K14
ji ]

[K21
ji ] [K22

ji ] [K23
ji ] [K24

ji ]

[K31
ji ] [K32

ji ] [K33
ji ] [K34

ji ]

[K41
ji ] [K42

ji ] [K43
ji ] [K44

ji ]


︸ ︷︷ ︸

Ke


{U}

{V }

{P}

{θ}


︸ ︷︷ ︸

ue

=


{F 1}

{F 2}

{F 3}

{F 4}


︸ ︷︷ ︸

Fe

, (6.39)

where Ke, ue and Fe are said to be the stiffness block matrix, the block solution

vector and the right hand side block vector at an element level, respectively. For

the sake of brevity, the boundary integral is also included in Fe. In stiffness block

matrix,

K11
ji =

1

εRe

ρf
ρnf

1

(1− φ)2.5

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe +

µnf
νnfρnf

1

ReDa

∫
Ωe

ξjξidΩe

+
1

ε2

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe +

1.75
√

150Daε
3
2

∫
Ωe

(√
U U + V V

)
ξjξidΩe ,

K22
ji =

1

εRe

ρf
ρnf

1

(1− φ)2.5

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe +

µnf
νnfρnf

1

ReDa

∫
Ωe

ξjξidΩe

+
1

ε2

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe +

1.75
√

150Daε
3
2

∫
Ωe

(√
U U + V V

)
ξjξidΩe,

K12
ji = − ρf

ρnf

σnf
σf

Ha2

Re

(
sin γ cos γ

∫
Ωe

ξjξidΩe

)
,

K21
ji = − ρf

ρnf

σnf
σf

Ha2

Re

(
sin γ cos γ

∫
Ωe

ξjξidΩe

)
,

K44
ji =

αnf
αf

1

RePr

∫
Ωe

(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe +

∫
Ωe

(
Uξi

∂ξj
∂X

+ V ξi
∂ξj
∂Y

)
dΩe ,
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+
Rd

RePr

∫
Ωe

(
1 + (Nr − 1)(θ)

)3
(
∂ξj
∂X

∂ξi
∂X

+
∂ξj
∂Y

∂ξi
∂Y

)
dΩe,

K24
ji = −Ri ρf

ρnf

(
1− φ+

ρsβsφ

ρfβf

)∫
Ωe

ξjξi dΩe,

K13
ji = −

∫
Ωe

ηj
∂ξi
∂X

dΩe ,

K23
ji = −

∫
Ωe

ηj
∂ξi
∂Y

dΩe ,

K31
ji =

∫
Ωe

∂ξj
∂X

ηidΩe ,

K32
ji =

∫
Ωe

∂ξj
∂Y

ηidΩe ,

K14
ji = K33

ji = K34
ji = K41

ji = K42
ji = K43

ji = 0,

U =
N∑
j=1

Ujξj, V =
N∑
j=1

Vjξj and θ =
N∑
j=1

θjξj.

We have utilized Q2/P
disc
1 for space discretization (see 2.5 for detail). After dis-

cretization in space, we obtain an algebraic system of nonlinear algebraic equa-

tions. Integration regarding eachiterm of these equationsiis performed by Gaussian

quadrature method. Then implementation of boundary conditions is carried out

and linear algebraic equations are obtained from nonlinear equations utilizing it-

erative Newton method. Some tolerance value is prescribed to see the optimised

minimum difference of the current values of the variables to the previous iteration

values by achieving the convergence of the solution of an iterative scheme. In other

words, the adopted criterion to stop the iterative scheme could be given as follows∣∣∣∣Γn+1 − Γn

Γn+1

∣∣∣∣ ≤ 10−6, (6.40)

where U , V , P or θ are denoted by a general variable Γ. Superscript n represents

the iteration number in the above expression. Finally, these linear equations are

computed by the Gaussian elimination method.
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6.3.2 CodeiValidation and GridiIndependence Test

Code validation has been performed for free convection results published in the

literature and given in Table 3.4 of chapter 3, for various computed variables.

Code validation has also been presented in Table 3.3 for mixed convection flow in

the section 3.3.2 of Chapter 3 and the results have an excellent agreement for both

of the cases. Code has also been validated graphically with that investigated by

Moumni et al. [144] as shown in Fig. 6.2. Grid independent study is executed by

considering the uniform grids at different computation levels for average Nusselt

number with Re = 100, Ri = 1 and Ri = 10, φ = 0.04, γ = 0◦, ε = 0.6, Rd =

1, Ha = 25, Da = 0.1, Nr = 1.1. First, coarsest grid containing one element at

level ` = 1 is considered, then level ` = `+ 1 is obtained by dividing each element

into four new elements by joining the opposite midpoints. Table 6.3 suggests that

average Nusselt number values for mesh level ` = 9 and ` = 10 are almost the

same. It indicates that further increase in mesh level merely boosts computational

cost and there will be no significant effect on results. Therefore, all the simulations

have been carried out at mesh level ` = 9.

Figure 6.2: Code validation of streamlines (above row) and isotherms (bottom
row) contours of present solver (right column) to that of Moumni et al. [144] (left

column) for Re = 50, Ri = 20 and φ = 0.2.
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` #EL #DOFs Nuavg(Ri = 1) Nuavg(Ri = 10)
4 64 1059 4.959023 8.079592
5 256 4035 6.382236 9.232417
6 1024 15747 5.988722 8.418373
7 4096 62211 5.750869 7.838208
8 16384 247299 5.379401 7.285173
9 65536 986115 5.181349 6.979336
10 262144 3938307 5.116674 6.918256

Table 6.3: Results of grid independence test for alumina-water nanofluid.

6.4 Results and Discussion

Numerical simulation has been accomplished on mixed convective alumina-water

nanofluid filled porous square cavity considering the effect of non-linear thermal

radiation and inclined magnetic field. In the whole study, considered standard

parameters are Re = 100, Ri = 1, Ha = 25, φ = 0.04, γ = 0◦, Rd = 1, Nr =

1.1, Da = 10−3, ε = 0.6 unless mentioned, otherwise.

Effect of radiation parameter on streamline maps for Ri = 0.01, 1 and 100 has

been demonstrated by Figure 6.3. Streamlines show almost the same pattern for

small Richardson numbers, i.e., Ri = 0.01 and Ri = 1, two weak rotating cells

along vertical walls are observed in these cases. Increasing the Richardson num-

ber up to Ri = 100, deeper flow activity in the cavity is induced due to dominant

buoyancy forces which carries more energy from the hot bottom wall, thus caus-

ing significant changes in flow behavior. When radiation parameter is gradually

increased from Rd = 0 to Rd = 5, maximum absolute stream function value in-

creases that is more pronounced for the case of Ri = 100. In this situation, weak

rotating vortices eventually coalesce into a single vortex in the middle of the cavity

indicating higher fluid velocity in the cavity.

Impact of radiation parameter on isotherm maps for Ri = 0.01, 1 and 100 has

been portrayed by Figure 6.4. Isotherms show nearly the same behavior for small
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Richardson numbers. Initially, for low radiation parameter, isotherms with large

magnitude occur in the right bottom and lines with small values exist in the top

left corner of the cavity. Isotherms with intermediate values seem to travel diag-

onally from left bottom to top right vertex of the cavity. With an increase in the

radiation parameter up to Rd = 5, isothermal lines are distributed uniformly that

indicates dominance of conduction in the cavity.

Influence of Darcy number on streamline contours for Ri = 0.01, 1 and 100 has

been elaborated by Figure 6.5. Initially, for Da = 10−6, Ri = 0.01 and Ri = 1,

two parabolic shaped rotating eddies appeared near the vertical adiabatic walls

due to their movement in the opposite direction. An increase in Darcy number

up to 10−3 causes in reduction in the resistance of fluid friction that results in the

form of higher fluid velocity (ψmax = 0.0034) in the cavity. Moreover, for the case

of Ri = 100 and low Darcy numbers, two weak rotating vortices near the verti-

cal walls appeared that are eventually combine into a central main vertex in the

middle of the cavity, with an increase in Darcy number up to Da = 10−3. This in-

dicates an increase in fluid velocity due to decline in fluid friction resistance. This

fact is also evident from maximum stream function values, i.e., ψmax = 0.0150.

Impact of Darcy number on isotherm contours for Ri = 0.01, 1 and 100 has

been manifested by Figure 6.6. Isotherm sketches appear to be almost the same

for Ri = 0.01 and Ri = 1 whereas significant variation has been observed for

Ri = 100. For Da = 10−6, Ri = 0.01 and Ri = 1, isotherms are nearly parallel

to hot bottom and top cold horizontal walls that are uniformly distributed indi-

cating conduction in the cavity. Increasing Da, gradual slight variation has been

noticed by transforming conduction to convection flow regime for low Richardson

numbers. But for Ri = 100 and Da = 10−3, thin thermal boundary layer is seen

along the bottom hot and top cold walls. In this case, isotherms in the vicinity of

adiabatic vertical walls become almost parallel to the walls.

Effect of porosity parameter on streamline and isotherm maps for Ri = 0.01, 1, 100
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has been shown by Figures 6.7 and 6.8. As long as streamlines are concerned, for

Ri = 0.01,Ri = 1 and ε = 0.2, initially, two weaker eddies along opposite vertical

adiabatic walls appear. As porosity parameter increases, strength of these eddies

starts increasing slightly and becomes maximum for ε = 0.8 that is also evident

from maximum stream function value, ψmax = 0.0183. Significant growth in max-

imum stream function value moves from low value of porosity to high porosity

value. Slight variation in isotherm patterns is observed for Ri = 0.01 and Ri = 1

for fixed value of porosity parameter but significant changes occur for Ri = 100.

Increase in porosity gradually converts conduction to convection flow behavior.

Average Nusselt number is a decreasing function of magnetic field inclination angle

as illustrated by Figure 6.9. Moreover, nanofluid with φ = 0.04 has the capability

to transfer more heat in the cavity as compared to base fluid with φ = 0. Effect

of radiation parameter on average Nusselt number has been shown in Figure 6.10

and observed that heat transfer enhances with an increase in radiation parame-

ter that is more highlighted for Ri = 10 and (φ = 0.04). As a consequence of

non-linear thermal radiation, an emerging control temperature ratio parameter

Nr arises that increases heat transfer due to hot bottom wall as portrayed by

Figure 6.11. Darcy number relates directly to the permeability of porous medium.

Higher Darcy number penetrates powerful penetration that results in the form of

higher heat transfer rate. This is also evident from Figures 6.12 and 6.13 that

average Nusselt number is an increasing functions of Darcy number and porosity

parameter and this increment is more pronounced for the case of nanofluid with

φ = 0.04. This enhancement in heat transfer becomes more pronounced for free

convective flow regime (Ri = 10). Kinetic energy slightly rises with magnetic

field inclinaton angle for small Richardson number but interestingly it decreases

for Ri = 10 as exhibited by Figure 6.14. From Figure 6.15, kinetic energy is an

increasing function of radiation parameter for free convection dominated regime

(Ri = 10) and for pure fluid (φ = 0) whereas kinetic energy is almost constant

for mixed and forced convection flows. Kinetic energy augments with porosity

parameter and Darcy number as shown by Figures 6.16 and 6.17, respectively.
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The plots for Ri = 0.01 and Ri = 1 overlap each other to show the same behav-

ior. Furthermore, it is witnessed from mentioned sketches that kinetic energy has

greater value at higher Darcy number (Da = 0.001) due to less contribution from

non-linear inertial drag in the momentum equations.

Influence of different physical parameters on average temperature has been pre-

sented in Figures 6.18-6.21. Average temperature in the cavity declines for forced

convection (Ri = 0.01) and mixed convection (Ri = 1) regimes with magnetic

field inclination angle whereas interestingly, it slightly increases for free convective

flows (Ri = 10) at γ = 60◦ and γ = 90◦ that can be noticed from Figure 6.18.

Moreover, average temperature due to nanofluids is less than pure fluids. Average

temperature in the cavity is an increasing function of thermal radiation parameter

as can be inferred from Figure 6.19. Average temperature increases linearly with

temperature ratio parameter that is illustrated by Figure 6.20. From Figure 6.21,

average temperature increases with porosity parameter.
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Figure 6.12: Effect of Richardson number on average Nusselt number at the
bottom hot wall due to Darcy number.
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Figure 6.13: Effect of Richardson number on kinetic energy due to porosity
parameter.
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Figure 6.16: Effect of Richardson number on kinetic energy due to porosity
parameter.
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Figure 6.18: Effect of Richardson number on average temperature as a func-
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Figure 6.21: Effect of Richardson number on average temperature as a func-
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6.5 Closing Remarks

In this study, numerical simulation has been performed on the mixed convective

alumina-water nanofluid filled porous square cavity considering the effects of non-

linear thermal radiation and inclined magneticifield. The governingiequations are

solved through the Galerkin finite element method. The streamlines, isothermsiand

some important plots are sketched in order to explore the influence of pertinent

parameters on the flow. Some significant points of the present investigation may

be summarized as follows

• For a fixed value of Richardson number, an increase in maximum stream

function value has been observed with a rise in porosity parameter and Darcy

number that is more pronounced for dominant free convective flows.

• An augmentation in maximum stream function value has been noticed with

a growth in thermal radiation parameter as well, for free convection flows.

• The amplification in the heat transfer has been observed with an extension

in Darcy number, solid volume fraction, porosity, radiation and temperature

ratio parameters.
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• A reduction in average Nusselt number has been explored with an increase

in magnetic field inclined angle.

• More heat transfer has been seen as a function of Darcy number, porosity,

temperature ratio, radiation and magnetic field inclination parameters for

the case of nanofluid with φ = 0.04 as compared to the pure fluid φ = 0.

• The kinetic energy and the average temperature are increasing functions of

Darcy number, thermal radiation and porosity parameter but interestingly

pure fluid with φ = 0 has greater values for average temperature and kinetic

energy as compared to nanofluid with φ = 0.04.

• The average temperature is almost constant up to γ = 30◦, further increment

in magnetic field inclined angle results a decline in average temperature for

forced and mixed convective regimes whereas opposite behavior has been

inspected for free convection flows.

• An augmentation in the inclined magnetic field angle results a slight increase

in kinetic energy for forced and mixed convection cases whereas opposite

response is observed for free convective flow regime.



Chapter 7

Conclusioniand Future Work

7.1 Introduction

In thisithesis, numerical simulation of mixed convective alumina-waterinanofluid

flow in a double lid driven square cavity is executed. Initially, we considered

the influenceiof cavity inclination angle on the mixediconvective nanofluid flow

in a doubleilid-driven cavity. Then the magnetohydrodynamics mixed convective

nanofluid flow and entropyigeneration in a double lid-driven squareicavity with dis-

crete heating was examined. Furthermore, the mixed convection in nanofluidifilled

lid-driven square cavity with aniisothermally heated square blockage inside with

magneticifield effect is analyzed. At the end, the mixed convective nanofluid flow

in a lid-driven squareiporous cavity using the KKL model considering the effectiof

thermal radiation and inclined magneticifield was discussed. Furthermore, the be-

haviour of the averageiNusselt number, the entropyigeneration due to heat trans-

fer, fluidifriction, magneticifield, the total entropyigeneration, the average temper-

ature, kineticienergy and Bejan number have beeniinvestigated under theiinfluence

of differentiphysical parameters like Reynoldsinumber, Richardsoninumber, Hart-

manninumber, Eckertinumber, Darcyinumber, nanoparticles volumeifraction, cav-

ity inclinationiangle, magneticifield inclination angle, porosityiand thermal radia-

tion parameter. The whole study can be concluded in the following remarks.
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7.2 The Concluding Remarks

• With an increase in the buoyancy forces, an augmentation in the heat trans-

fer and the entropyigeneration due to heatitransfer is observed.

• The total entropyigeneration and the Bejaninumber enhance withian increase

in the Reynolds numberiand the nanoparticle volumeifraction.

• The entropyigeneration dueito the fluid friction declines with a rise in the

buoyancy forces.

• The entropyigeneration due to the fluid friction grows with an increment in

the Reynolds number and magnetic field strength.

• Bejan number increases with a rise in the Reynolds number.

• The kinetic energy increases with an increase in the Reynolds number, Richard-

son number and nanoparticle volume fraction whereas it reduces for the in-

creasing values of the magnetic field.

• An augmentation in the nanoparticles volume fraction causes a significant

increase in the heat transfer.

• An increase in the cavity inclination angle diminishes the entropyigeneration

due toiheat transfer,ifluid friction, average temperature and kinetic energy.

• An increase in the inclination angle causes to increase the heat transfer due

to the left discrete heat source while an opposite behavior is observed for the

right discrete heat source.

• A reduction in the average Nusselt number and an augmentation in the

average entropy generation due to the heat transfer, the average total entropy

generation and the average temperature are observed with an increment in

the Eckert number.

• An increase in the average temperature in the cavity has been noticed with

an augmentation in the Eckert number and magnetic field strength.
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• A decline in the heatitransfer, the entropyigeneration dueito the heat trans-

fer, Bejan number and the kinetic energy is perceived with an increase in

the magnetic field strength.

• An increase in the heat transfer is seen with a growth in the thermal radi-

ation parameter that is more pronounced for the case of nanofluid and free

convective flow regime.

• For a fixed value of the Richardson number, an increase in the maximum

stream function value is observed with a rise in the porosity parameter and

the Darcy number that is more pronounced for dominant free convective

flows.

• An augmentation in the maximum stream function value is noticed with a

growth in the thermal radiation parameter as well, for free convection flows.

• A magnification in the heat transfer is observed with a rise in the Darcy

number, solid volume fraction, porosity, radiation and temperature ratio

parameters.

• A reduction in the heat transfer is explored with an increase in the magnetic

field inclined angle.

• More heat transfer is seen as a function of Darcy number, porosity, temper-

ature ratio, radiation and magnetic field inclination parameters for the case

of nanofluid as compared to the pure fluid.

• The kinetic energy and the average temperature are increasing functions

of the Darcy number, thermal radiation and porosity parameter but inter-

estingly pure fluid has greater values for the average temperature and the

kinetic energy as compared with the nanofluid.

• The average temperature is almost constant up to the magnetic field incli-

nation angle γ = 30◦, further increment in the magnetic field inclined angle

results a decline in the average temperature for forced and mixed convective

regimes whereas an opposite behavior is inspected for free convection flows.
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• An amplification in the inclined magnetic field angle results a slight increase

in the kinetic energy for forced and mixed convection cases whereas an op-

posite response is observed for free convective flow regime.

7.3 Future Work

We have considered the viscous, laminar, Newtonian and incompressible fluid in a

square lid-driven cavity. A lot of work can be done in this direction by considering

the non-Newtonian fluid. Turbulent flow regime can also be considered. A list of

some possible problems out of many is given in the following.

• Entropy generation in the non-Newtonian fluids can be considered with dif-

ferent effects.

• Double diffusion phenomenon along with the entropy generation can be in-

vestigated with various physical effects.

• Effect of porosity can be examined considering the entropy generation.
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