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ABSTRACT 

 

Biometrics play an important role in enhancing efficiency and reliability of 

authentication systems. Face recognition is a non-intrusive type of biometric 

technique that can be used in security applications where individual controlled image 

acquisition is not possible such as crowd, airport, stadium etc. Significant efforts have 

been made by the researchers to improve accuracy and efficiency of face recognition 

system to meet the stringent needs of defense, security and high-tech commercial 

applications. For real-time face recognition system in a dynamic environment where 

the face database may change continuously and learning is a reemerging process, 

continuous calculation of Eigen values and vectors is a primary requirement. 

 

For a face recognition system, fast PCA is modified by incorporating Modified Gram-

Schmidt Orthogonalization (MGSO) for efficient Eigen values generation. An 

adaptive classifier is developed for modified fast PCA, which provides an optimum 

selection of leading Eigen vectors. Further, a technique is proposed using two 

dimensional data structure array to achieve the best combination of system variables 

for its improved accuracy.  

 

In a pattern recognition solution, it is important to acquire meaningful data by 

evaluating Eigen values which is one of the most computational intensive parts of the 

system. For hardware evaluation of Eigen values, coordinate rotation digital computer 

(CORDIC) based on Jacobi algorithm (CJA) is one of the best reported FPGA 

implementations. Contrary to CJA, Householder (HH) is considered an efficient 

method for Eigen solution. A co-design pipelined architecture is developed to 

implement HH by using FPGA. The accuracy of HH is further improved by 

evaluating square root using non-restoring algorithm. The proposed architecture 

demonstrated an improvement up to 30% in time and 10
-7

 decimal places in accuracy 

compared to CJA.  

 

MGSO applies normalization of vectors in its iterative orthogonal process. 

Normalization involves square root and other arithmetic operations. Hardware 

realization of the floating-point square root operation might be prohibitively 

expensive because of its complexity. Three architectures have been developed that 

employ fixed-point hardware for efficient implementation of normalization of vectors 

on an FPGA. The application dependent suitability of these architectures is evaluated 

by using four popular databases.  

 

High accuracy, with minimum decision time is a challenging task for a real-time face 

recognition system. PCA is a classical approach amongst the dimension-reduced 

feature extraction methods towards efficient recognition. However, PCA offers poor 

accuracy because it treats faces as global entities. The Local Preserving Projection 

(LPP) and Orthogonal Local Preserving Projection (OLPP) methods treat faces as 

combination of features; however, they are computationally intensive.  

 

A technique based on Frequency Distribution Curve (FDC) is developed which also 

preserves global as well as local features but it avoids matrix decomposition and other 
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high order computational matrix operations. A software implementation of the 

technique showed an improvement up to 14%, 1.9% and 1.7% for the Yale, ORL and 

PIE databases respectively with relatively reduced training sets compared to PCA, 

LPP and OLPP. 

 

FDC is formulated with a bias towards its hardware realization. An FPGA-based 

architecture has been developed by designing an adaptive pattern vector controller. 

This controller has the ability to detect high probability pattern vector for matching. 

The architecture performance is further improved by adopting parallelism which has 

demonstrated an improvement up to 80% compared to sequential operations. The 

system thus developed generally requires less than 200 ns to make a decision. 
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CHAPTER 1 

 
INTRODUCTION 

1.1 Introduction 

Biometric features, like those of fingerprints, iris and face, can be used for 

authentication purposes in defense, security and commercial applications. These are 

natural features associated with humans and are unique for every person. Biometric 

technologies can be broadly classified into intrusive, where an interruption is 

required, and non-intrusive. Intrusive biometric usually provides higher accuracy than 

the non-intrusive (Sonkamble 2005). On the other hand, non-intrusive biometrics are 

more acceptable in authentication process due to inherent ease of image acquisition 

associated with them.  

Face and voice recognition are non-intrusive biometrics. Face recognition is more 

flexible than voice recognition. But face acquisition process is complex because it 

needs better image quality with minimum variations due to change illumination 

conditions, head poses and facial expressions. Angle, scale and position variations to 

the nose, eyes, forehead, chin, cheek and mouth are undesired in a face image because 

the machine may perceive the changed face as a completely new face. 

Since face recognition is non-intrusive, an acquisition system usually acquire images 

from a reasonable distance. Distant images usually have many other unwanted objects 

in the frame resulting in the requirement of face detection before the recognition 

process. For the past two decades a lot of research has been carried out to improve the 
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accuracy of automated face recognition (Chellappa 1995, Daugman 1997, Pankanti 

2000, Pentland 2000, Martinez 2001, Zhao 2003, Xiaofei 2005). 

Machine based systems treat images as 2D matrices or 1D vectors. The size of an 

image matrix depends upon the image resolution. Accuracy of an image recognition 

system thus requires the development of complex algorithms involving 

computationally heavy matrix/vector operations, such as matrix inversion or matrix 

multiplication. Therefore, face recognition algorithms are computationally intensive 

in nature.  

Many algorithms have been developed to achieve low time-complexity using the 

concept of reduced face space (Chellappa 1995, Daugman 1997, Pankanti 2000, 

Pentland 2000, Martinez 2001, Zhao 2003, Shaknarovick 2004, Xiaofei 2005). 

Usually, original face space is reduced by a dimensionally reduction technique such 

as principal component analysis (PCA), that preserves most of the information of the 

original data and results in classification with reasonable accuracy. Real-time 

applications primarily require a time efficient algorithm with high accuracy, using 

small quantities of samples per subject. Hardware realization of such a system needs a 

co-design architecture with an optimal trade-off between time and power.  

Field programmable gate array (FPGA) implementation is a tradeoff between a 

general purpose and an application specific integrated circuit (ASIC) solution. FPGA 

offers flexibility near to a general purpose solution whereas its performance is closer 

to an ASIC (Zafar 2005). It allows dynamic architecture and run time 

reconfigurability. It is cost effective for customized applications and is commonly 

used for prototyping which can then be converted into an ASIC (Deschamps 2006). 
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However, end products containing FPGAs are now common. FPGAs are often 

employed to create time and power efficient designs in order to facilitate real-time 

portable applications. 

1.2 Biometric Technologies 

Biometric is a technique used for identification of a person. It is usually based on one 

or more physical and behavioral characteristics. The physical characteristics could be 

hand geometry, iris pattern, fingerprints, voice and face structure. Variation of 

fingerprints with age relates to behavioral characteristic of a person and pitch of voice 

is various for different people relates to physical characteristics of a person 

(Sonkamble 2005, Delac 2004).  

Broadly biometrics can be divided into intrusive and non-intrusive categories as 

shown in Figure-1.1. Intrusive type of biometrics needs interruption at the time of 

authentication like fingerprints verification or iris recognition. Interruption of each 

person for an authentication process is not practical in some situations like in a sports 

stadium. At the same time authentication is required for the security purposes. Voice 

and face recognition can be applied in a crowd without interruption. Voice 

recognition provides good results when voice signal is of good quality, but voice 

signal is not clear in a crowd. On the other hand, face images can capture in a crowd 

without interrupting them and then separate each face for recognition purpose. 

Therefore, face recognition can provide a reliable authentication process in a crowd 

without interruption.    
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Figure- 1.1 Classification of biometric technologies based on type of biometric feature used. 

  



5 

 

1.3 Face Recognition System 

A face recognition system should have the capacity of distinguishing a face among 

hundreds or thousands of other objects. Holistic face recognition starts after passing 

through three milestones.  

One is face detection, second is to construct a projection matrix and the third is 

feature extraction (Kim 2002) as shown in Figure-1.2. In Figure-1.2, system is divided 

into off-line and on-line layers. Off-line layer shows block level explanation of 

training process. Training process starts after image acquisition and then face 

detection is carried out.  

1.3.1 Face Detection 

Face detection is mentioned as second block from top in Figure-1.2. Face detection is 

primarily concerned with the existence of a face in the given frame. In face detection, 

the image region is classified into face region and non-face region. An ideal system 

should have high true positive (detection at face region) and low false positive 

(detection at non-face region) detection rate. Face detection algorithms are 

categorized into knowledge-based methods, feature invariant approaches, template 

matching method and appearance based methods (Juell 1996, Leung 1996). Face 

detection depends upon facial features, image orientation and image quality (Yang 

2002). One of the most famous works in face detection is that of Viola and Jones 

(Viola 2004) based on face/non-face learning of a number of weak classifier and then 

using AdaBoost for final classification. AdaBoost and its variants are the most 

commonly used face detection algorithms in commercial and practical systems. 

AdaBoost uses a small number of critical visual features of an image which provides a 
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fast face detection. Face detection is one of the mandatory pre-processing steps 

towards features extraction (Ming-Hsuan 2002). 

1.3.2 Learning  

In holistic algorithms, learning is a process of extracting the projection matrix from 

the training face images. A database of faces is first collected where each face is first 

pass through the first two steps of pre-process and detection. A subset of the database 

is chosen as training images such that it includes most of the variations of poses, 

illumination and age effect. The co-variance matrix of training images is calculated 

and the Eigen values and vectors are calculated as described by Turk et al (Turk 

1991).  Eigen vectors are the basis vectors or principal components of the projected 

face space. The projection matrix is constituted using the Eigen vectors corresponding 

to the highest Eigen values of the co-variance matrix as its rows. Eigen vectors are 

treated as extracted features of the given face space and Eigen vectors are used to 

construct a projection matrix. This projection matrix is used later for extraction of 

face features.  

For a better recognition result, system usually needs large number of features and 

higher dimension projected matrix. A large quantity of features requires a big storage 

space and probably more time for recognition.  

1.3.3 Extraction of Features  

Features are extracted by multiplying projection matrix to each test image and to face 

in the original face database. 
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1.3.4 Projected Database  

It is extracted from original face database after feature extraction of each image in the 

database. For recognition and comparison with test image this projected database is 

used. 

1.3.5 Recognition  

Extracted features are represented as data points usually in a face space. In general, 

recognition is based on a binary decision provided by a classifier. In classification 

process, input face image is projected into the extracted feature space. Projection 

matrix when multiplied with input face image gives a weight vector. 

Weight vector and projected database are used to calculate distances of the input 

image into the projected space. These distances are treated as an error. This error is 

compared with a defined threshold value and then to decide that test input image is 

recognized or not. 

Usually, classifier is a computationally intensive component of a face recognition 

system. On the other hand, it is responsible to provide decision within a limited time 

specifically for a real-time system.  

1.4 Real-Time Face Recognition System 

Figure- 1.3 represents a real-time face recognition. This figure is similar to Figure- 1.2 

except the co-design and cache blocks. A real-time system has to respond within a 

deadline. This deadline may be a few seconds in some scenario and a fraction of nano 

second in other situations. In fact, deadline depends upon application nature. But it is 
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well known that hardware implementation reduces the response time of a system. 

There are two possibilities in hardware implementation of a system. The first one is 

that of a complete system implemented on hardware. This implementation can lead to 

a relatively time efficient system, however, it might be an expensive solution for a 

portable system. Second possibility of implementation is to divide the algorithmic 

code into two sections; one for the computational intensive parts and second for the 

rest of the algorithm. Computational intensive parts are implemented on hardware 

layer and rest of the algorithm on software layer. Such partitioning of the algorithm 

into software and hardware sections lead to a co-design methodology whose general 

concept is shown in Figure-1.3.  

 

For design of dedicated hardware accelerator in a real-time system, the development 

cycle requires high density high performance reconfigurable media (Memik 2003) 

(Zafar 2005). FPGA is one of the best reconfigurable media for the development, 

validation and verification of an algorithm hardware accelerator (Kim 200, Saha 

2007). A hardware accelerator based FPGA generally implements computationally 

intensive part of an algorithm. 

Different vendors provide their own FPGA architectures. The basic architecture of 

FPGA consists of CLB, CIOB, interconnects to route signal between CLB and CIOB, 

master clock, BRAM and sometimes DSP units for multiplication and MAC 

operations (Brown 1996, Zafar 2005). 
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Figure- 1.2 A typical PC-based holistic face recognition invoking in dynamic environment. 
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1.5 Motivation 

The current security scenario of the world has put security related technologies like 

biometric based person identification into spot-light. Identification of a potential 

threat from within a crowd or a busy place needs use of non-intrusive biometric and 

really fast matching and recognition in real time. In such a dynamic security 

environment, like that of airport security or security in a public gathering, one 

important constraint on the system is that the face database is always changing and 

training is a continuous process. In such applications training, that includes 

calculation of high order matrices of the face vectors in face space and then 

calculating the Eigen values and Eigen vectors, is done alongside recognition and real 

time implementation of such computationally intensive training is required.  

Most of the pattern recognition applications, like face recognition where some type of 

decision is made, based on the given data, can be mapped on to a pattern recognition 

problem.  Real-time face recognition does not afford time delay in the algorithm’s 

computation and these applications require time-efficient systems (Kamal 2003, 

Marwedel 2006).  The first step to any pattern recognition solution is separating the 

meaningful data and this is accomplished through calculation of Eigen values 

(Yamada 2003).  

The accuracy of the Eigen value based system usually depends upon the number of 

Eigen vectors used for projection and feature extraction. On the other hand, increasing 

the Eigen vectors means increase in extracted features and increase in time. Therefore, 

suitable combination of Eigen vectors and decision time could be incorporated for a 

good face recognition system. 
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Figure- 1.3 An FPGA-based real-time face recognition system for dynamic environment. 
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The performance of a real-time system depends upon its accuracy, decision time, 

power dissipation and storage space. Storage space usually depends upon algorithmic 

types. Some algorithms generate high dimensional features space but it requires larger 

space. PCA generates a reduced features space for decision making. However, PCA 

has higher time complexity and lower accuracy. Fast PCA has reduced the time 

complexity but it has an instability issue especially for high resolution images. 

Therefore, some modification in fast PCA may be required to achieve a high accuracy 

with minimum decision time.  

In addition to decision time and storage space, power dissipation is another important 

issue for a real-time portable face recognition system. Power dissipation depends 

upon storage space for extracted features and FPGA resources which are required for 

algorithm realization. Co-design methodology could provide a better combination of 

execution time and power dissipation on FPGA. Thus, a novel FPGA-based 

architecture uses an algorithm needing small storage space and it provides decision in 

linear time complexity with high accuracy using reduced extracted space; thus could 

be a viable candidate for a real-time face recognition system. 

1.6 Objectives 

Efficient face recognition systems based on Eigen space and frequency distribution 

curve (FDC) matching technique have been developed. Hardware realization of these 

systems provides face recognition in real time. In this thesis, research objectives 

which have been achieved are: 

• Eigen values based efficient face recognition for a dynamic security 

environment.  
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� A method has been developed by using Modified Gram-Schmidt 

Orthogonalization (MGSO) for an efficient Eigen space. 

� The implementation of Householder method on FPGA by using co-

design pipelined architecture for efficient evaluation of Eigen values 

has been developed.  

• To avoid matrix decomposition and other high order computational matrix 

operations involved in Eigen values evaluation, a technique based on FDC has 

been demonstrated for efficient face recognition. 

� FDC is formulated with a bias towards its hardware realization. To 

improve its performance an adaptive pattern vector controller has been 

designed for in FDC architecture. 

� FDC based architecture performance was further improved by 

exploiting hardware parallel processing implementation. 

1.7 Thesis Organization 

Thesis is organized as follow: Chapter 2 presents a literature survey of face 

recognition algorithms and their real-time implementation on FPGA. Chapter 3 

describes an improvement in face recognition using modified fast PCA algorithm. In 

chapter 4, FPGA hardware is exploited for parallel execution of non-restoring 

algorithm. In this chapter, an evaluation of Eigen values for face recognition on 

FPGA is implemented. Chapter 5 presents efficient evaluation of vector normalization 

on FPGA. Chapter 6 is about a novel FDC technique for a face recognition on FPGA. 

Chapter 7 summarizes the contributed work and presents future directions of this 

research. 



14 

 

CHAPTER 2 

 
FACE RECOGNITION: AN OVERVIEW 

2.1 Introduction 

The ability to identify or verify the face of a person, using facial characteristics, by a 

machine is the objective of a face recognition system. In the initial phase of research, 

algorithms were developed which were inspired by human vision. In the second 

phase, a face was treated as an entity defined by the combination of features and their 

mutual relationships. Some algorithms were biased towards local and other towards 

global features. A hybrid of both had shown better results, however, they were 

computationally intensive.  

Face recognition algorithms can be broadly divided into two categories:  a) model-

based algorithms and b) appearance-based algorithms. Attempts have been made to 

develop algorithms related to both categories to achieve accurate results with 

minimum execution time (Middleton 2006, Cai 2006, He 2005, Moghaddam 1997, 

Liao 2007, Kim 2002). 

For a real-time face recognition system hardware implementation of such an 

algorithm is preferred. But an efficient hardware realization covers further at least two 

major milestones. First the algorithm should be developed by considering the 

hardware chip limitations. Second, hardware architecture should be designed to 

exploit parallelism to speed up the results. Pipelining and instruction level parallelism 

are the established hardware parallel processing techniques. But most of the time 

power dissipation aspect becomes a dominant issue in a high speed system. To get 
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optimum power dissipation, it is recommended that a portion of the algorithm, which 

is usually computationally intensive, should be implemented on hardware and the rest 

in software layer to achieve optimum combination of execution time and power 

dissipation. Such a co-design architecture could lead to develop a system having low 

recognition time with minimum power consumption. 

2.2 Face Algorithms Evolution  

Initially, face recognition algorithms have been treating face as an object, but it is an 

established fact that the success rate of these algorithms was very low (Tanaka 1993, 

Kalocsai 1994). The face recognition is different from object recognition because of 

the following six reasons (Biederman 1997):   

(i) There are many behavioral differences called configurable effects, which are 

related to local features of a face like nose or mouth. These features are not part 

of a non-face object.  

(ii) Viewpoint invariant: Different outer boundaries are recognized in case of 

objects while many faces may have the same outer boundaries. Therefore, the 

performance of algorithms for objects deteriorates for face recognition.  

(iii) Contrast and illumination effects make the face recognition complicated while 

the simple object recognition is not affected.  

(iv) Accessories on the face image like glasses and jewelry affect face recognition 

but object recognition provides almost same results with accessories.  

(v) Rotation in depth also relates only to face recognition.  

(vi) Rotation in plane also affects the recognition results of a face image.  
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By considering the features listed from (i) to (vi), it can be claimed that the face 

recognition is different from the object recognition and the preceding one is 

technically more demanding and complex. 

In the next phase of algorithms, scientists believed that machine recognition algorithm 

might work well if it was developed by keeping in mind the psychological process of 

an infant. Since 1970, psychophysics were assumed the perceptional significance in 

recognition, which mainly depended on the holistic structure of a face and sometimes 

perception depends upon a local feature like nose (Kelly 1970). However, 

perceptional rules would not handle the parameters which affect the facial 

characteristics (Bruce 1988, Shepherd 1981, Chellapa 1997, Ellis 1986). Later on, 

experimentally it had been shown that perceptional rules could not completely resolve 

a face recognition problem (Chellappa 1995) and the researchers then focused on 

finding the solution by formal methods.  

The initial development of formal methods (algorithms) had shown reasonably good 

recognition results; however, experiments were performed with simple data sets 

having minor variation in facial expression (Galton 1888). Darwin in 1972 developed 

an algorithm which performed well with variation in facial expressions and then in 

1973 Kanade researched on facial profile (Darwin 1972, Kanade 1977).  

When the development of algorithms was in its second phase, the concept of face 

detection had emerged (Chellapp 1995). First time in mid-1990s, face detection was 

treated separately when the face was segmented from the background using template 

matching by employing feature-based and neural network techniques (Chen 1995, Lin 
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1997, Sung 1997, Rowley 1998). It is worth mentioning that face detection is one of 

the preprocessing steps towards face recognition (Ming-Hsuan 2002). 

2.3 Classification of Algorithms 

Broadly, face recognition algorithms can be divided into either appearance-based or 

model-based algorithms as shown in Figure-2.1. Appearance-based methods are 

further divided into linear and non-linear transformation techniques (Lu 2003). A 

linear transformation projects face vectors into basis vectors and coefficient of 

projections are used to represent image faces (Swets 1996, Belhumeur 1997, Barlett 

1998). Whereas, a non-linear transformation represents an image as a data point in a 

high dimensional face space by considering the geometric structure of an image (Lu 

2003). On the other hand, model-based face recognition generates a model based on 

the prior knowledge of human face (Cootes 2001) and the detail of which is discussed 

below.  

2.3.1 Model-Based Methods  

Model-based techniques create a model based on the information gathered during 

extraction of features (Cootes 1995). Some extraction techniques concern with a 

single feature of a face e.g., an eye (Hallinan 1991) and the other is concerned with 

the distance between different features. The extraction of features usually 

accomplishes using edge detection, structural matching and template-based methods 

(Kelly 1970, Yuille1992). In template-based methods, every feature requires a 

specific template (Yuille 1992). For example, a separate template is used for nose 

while the mouth requires another. This shows that template-based methods have 

limitations which were addressed using active shape model (ASM) technique (Cootes 
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1995). Furthermore, to accommodate the texture variations, which were over looked 

by the conventional model-based techniques, Lanitis in 1995 and cootes in 2001 

presented flexible appearance models (FAM) and active appearance model (AAM) 

respectively (Lanitis 1995, Cootes 2001).  

The variation in lighting is another changeling issue of face recognition. Hidden 

Markov Model (HMM) was developed in 1960s and it was used first for speech 

recognition in 1970s. In 1990s it was used for face recognition and works well in 

varying light, facial expression, and orientation of a face image. The HMM uses rows 

of pixels to compute facial features (Nefian 1998, Samaria 1994, Samaria 1994a) and 

its prime purpose is to find hidden parameters by using Markov probability process. 

The combination of image height and overlapping parameters plays an important role 

in HMM. HMM provides 84% recognition with Oh = 10 and OL = 9 for ORL face 

database, where Oh is overlapping blocks and OL is overlapping height (Kim 2010). 

However, being probabilistic in nature HMM has high computational cost and may 

not provide an efficient solution for a real-time system.  

Features based graph matching technique using dynamic link architecture (DLA) 

gives better results than HMM (Okada 1998, Wiskott 1997, Buhmann 1990). Graph 

based models treat faces as a graph having nodes of facial features like a nose or an 

eye.  
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 Figure-2.1 Classification tree of face recognition algorithms. 
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The elastic bunch graph matching (EBGM) technique has shown improvement in face 

recognition with large size images (Wiskott 1997). EBGM uses DLA for finding 

neuron’s co-relations (Buhmann 1990, Lade 1993). The co-relations of neurons play a 

significant role in the formation of graph node in EBGM. The DLA also solves the 

syntactic relationships in neural networks and it generates a dynamic variable that 

adjusts syntactic weights dynamically (Lade 1993). These weights are significant in 

signal transmission which helps to generate neuron’s co-relations. Improvement has 

been reported in EBGM model technique using Gabor wavelets for variation in 

illumination, scaling, distortion and rotation (Manjunath 1992). However, Gabor 

wavelet is robust for small rotational angle (Manjunath 1992).  

Model-based techniques usually compute node and edge values of a graph using 

complex wavelet co-efficient. Another earlier effort in model-based technique is the 

area of three-dimensional (3D) modeling of a face (Gordon 1991). The 3D face model 

can be constructed using three face images of a person by morphable technique 

(Blanz 1999). A 90% success rate of 3D morphable technique for six subjects is 

reported by (Lu 2003, Zhang 2005).  

2.3.2 Appearance Based Methods 

Significant improvement in face recognition systems has been observed using 

appearance based methods (Rowley 1998, Sung 1997). Appearance-based methods 

are divided into linear and non-linear mapping techniques. 
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Linear Mapping: 

Linear mapping by definition reduces the image space to an efficient face space. PCA, 

independent component analysis (ICA), linear discriminant analysis (LDA), locally 

linear embedding (LLE), locality preserving projection (LPP) and orthogonal locality 

preserving projection (OLPP) are the main linear mapping techniques for face 

recognition (Lu 2003). PCA and FDA or LDA are holistic in nature while LPP and 

OLPP also consider the local details of an image (He 2005). PCA and Karhunen-

Loeve (KL) have the greatest strength of vector space reduction and interpretation 

(Kirby 1990, Sirovich 1987). In pattern recognition applications PCA is extensively 

used for the reduction of the computational space. In PCA, Eigen faces are first 

computed then each face is represented by a vector of specific weights. PCA has a 

minimum time complexity O (n
3
) for computing basis vectors. Eigen faces use PCA 

to compute first and second order dependence when distribution of input information 

is Gaussian. The Eigen approach was extended to Bayesian for the measurement of 

similarities amongst images, but Bayesian is stochastic and thus computationally 

intensive than PCA (Moghaddam 1997). Using PCA many image processing 

techniques have been developed and they are discussed in (Li 1999, Belhumeur 1997, 

Liu 2001, Swets 1996, Zhao 1998, Phillips 1998, Moghaddam 1997).  

ICA can extract independent components from dependent ones without prior 

knowledge of correlated elements like blind source separation (BSS) (Cardoso 1998). 

ICA computes first and second order dependency regardless of input distribution 

using Kurtosis maximization process (Daugman 1989, Field 1994, Bell 1997,  

Lewicki 2002). By involving higher order statistics, ICA provides better results than 

PCA when trained with a bigger data set and it maximizes the information transfer in 
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a more general form (Bartlett 1998, Draper 2003). However, ICA is a generalized 

form of holistic algorithm and it cannot display local properties perfectly especially 

for the local salient features having pixels with non-zero values. Although, ICA 

provides linear mapping yet its computation cost grows significantly with increasing 

image resolution (Dagher 2006). Furthermore, ICA axes are not orthogonal, thus it 

offers poor discriminating power within classes (Hu 2007).   

Fisherfaces usually performs better than ICA when the data of a class lies near a 

linear subspace and a small number of classes are involved (Hu 2007, Lu 2003). 

Fisherfaces uses LDA between classes/subjects (Hu 2007). LDA computes variance 

between and within the classes using original sample space (He 2005, Eleyan 2006). 

Projections between the classes can be deduced from within the class variance 

multiplied with corresponding Eigen values (Belhumeur 1997). Therefore, LDA has 

more time complexity and uses supervised learning, which is not advisable for a real 

time automatic system.  

LPP is an appearance based method used in face recognition which preserves local 

features using optimal linear function (He 2005). LPP uses approximate Eigen 

function to construct a manifold structure of a face. The face manifold structure is 

developed by using nearest-neighbor graph technique (He 2005). LPP generates low 

dimensional space for the evaluation of nearest-neighbor graph using objective 

function having normalization of vectors. Normalization of vectors on iteration makes 

the LPP a computationally intensive algorithm than PCA and LDA.    

On the other hand, LPP provides non-orthogonal basis function and such function 

may not reconstruct the original data accurately. Whereas, orthogonal LPP 
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constructed by adjacency graph provides better recognition than LPP (Cai 2006). A 

weight matrix is calculated by using adjacency graph to construct a Laplacian matrix 

which provides orthogonal space. However, computational cost of these higher order 

matrices makes the system slower than LPP.  

A recent work by Kussul based on permutation coding claims 99.9% recognition 

accuracy, but the technique was checked only for ORL face database which is not 

sufficient to demonstrate the validity of the concept (Kussul 2006). Another recent 

work reported 81% recognition efficiency by using one template matching and it was 

also tested on ORL database (Huang 2009).  

To improve the recognition time of a real-time system, low time complexity of an 

algorithm is one of the essential ingredients. Fast PCA improves the time complexity 

of PCA from O (n
3
) to O (n

2
) and also gives control to select number of leading Eigen 

vectors (Sharma 2007). Fast PCA uses Gram-Schmidt orthogonalization to evaluate 

Eigen vectors for a co-variance matrix. On the other hand, co-variance of an image 

having high resolution may affect the convergence behavior of Fast PCA (Sajid 

2009). Therefore, modification in Fast PCA could be useful task for an efficient real-

time system. 

 Non-Linear Mapping: 

The results are not impressive by linear mapping when general data sets are used 

because, these techniques calculate Euclidean structure in the face space, which fails 

to provide a successful face recognition if the images lie on a nonlinear sub manifold 

face space (Martinez 2001). The human face is a manifold entity in general and can be 

better treated by a non-linear mapping (Chang 2003). A lot of efforts have been made 



24 

 

to investigate the nonlinear manifold structure of a face (Roweis 2000, Seung 2000, 

Chang 2003). Kernel PCA (KPCA) and isometric mapping (ISOMAP) are the two 

famous nonlinear techniques which have shown relatively better results than existing 

linear techniques on specific crafted data sets (Belkin 2001, Tenenbaum 2000, Roweis 

2000, Kim 2002, Saul 2003).  

Non-linear mapping produces a big computational space even for a medium level 

input parameters. The recognition is then performed by using linear support vector 

machine (SVM) technique (Scholkopf 1996, Kim 2002).   

ISOMAP and KPCA work similarly to reduce high dimensional space in non-linear 

transformation. KPCA computes principal components in high dimensional feature 

space which relates to non-linear input variables. ISOMAP uses geodesic distances 

between data points and then uses Multi-Dimensional scaling to induce low 

dimensional manifolds (Yang 2003).  Since ISOMAP reconstructs basis vectors using 

geodesic metric, it would not provide optimal results for the classification of data 

points. 

Recent non-linear second order of modular transformation using LLE method was 

first introduced in 2000 (Roweis 2000). LLE enables preservation of local details of 

K-nearest neighbors, which best describes each data point within its vicinity using 

linear coefficients of transformation (Saul 2003). The technique shows good results 

when samples are large in number whereas, in a real-life, face recognition application, 

only few samples are available for an individual. 

In general, nonlinear transformations are computationally intensive compared to 

linear transformation commonly known as low dimensional transformation. Low 
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dimensional transformation has longest time era in research history as shown Table-

2.1. The table presents timeline, research contributors and their corresponding 

techniques pertaining to face recognition. Linear transformation offers small feature 

space compared to input space. Contrary to linear transformation, non-linear 

transformation manifolds the input space as defined by Mercer’s theorem, i.e., 

)().(),( yjsskk yj ϕϕ=  (Lu 2003).  

2.4 Hardware Based Face Recognition Systems 

It is a well established fact that a dedicated hardware based implementation of an 

algorithm is faster than its software based execution. Microsoft presented a processor 

based system which can handle two frames per second, when implemented on a 700 

MHz Intel or a 200 MIPS-strong ARM processor (Viola 2004). This recognition rate 

is considered slower for real world applications. Another hardware-based face 

recognition system using a artificial neural networks and Eigen faces is implemented 

on an analog ADSP-BF535 EZ-KIT device (Wei 2004). This system provides 

recognition with a maximum accuracy of 80%, consumes 36 m sec, and uses more 

than one MB of storage for each face. A multi-processor architecture is developed by 

Fatemi that included a smart camera and gave recognition in 4.3 m sec with 90% 

accuracy (Fatemi 2003).  
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Co-design methodology is considered a better technique for a real-time face 

recognition system. This could provide an optimal partitioning of an algorithm (Saha 

2007, Zaki 2004) for its hardware and software based implementation.  

The technique can provide an optimum combination of time and power parameters 

without compromising the accuracy of the algorithm. Such an implementation is 

expected to recognize faces on real time basis as required by an application and can 

be used in portable devices.   

2.5 Summary 

Model-based techniques inherit approximations in generation of graphs due to the 

prior information of the human face. Model-based methods are more error prone than 

appearance based methods. Linear holistic methods are suitable for efficient face 

recognition compared to feature-based methods, because they are able to reduce a 

computationally intensive image space to a reduced face space. But they need large 

number of sample images per subject for reasonable accuracy. Hybrid linear 

techniques again become computationally intensive since they generate feature space 

enriched with local and holistic information. Thus, an linear algorithm which could 

provide accurate face recognition in linear time scale using minimum sample images 

per subject could be a suitable candidate for a real-time system. 
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CHAPTER 3 

 
MODIFIED FAST PCA 

3.1 Introduction 

PCA is one of the basic holistic algorithms which has been used in many pattern 

classification applications, such as in face recognition and object identification 

(Martinez 2001, Xiaofei 2005, Zhao 2003, Chellappa 1995, Daugman 1997, Pankanti 

2000, Pentland 2000). PCA may also be used as a preprocessing step in other holistic 

techniques like fisher, linear discriminator, locality preserving projection (LPP) and 

orthogonal LPP (Zhao 2007). Its prime focus is to extract a low-dimensional feature 

space called as subspace from the original feature space by finding a suitable 

projection matrix. The projection matrix is made up of basis vectors of the subspace 

which are actually the Eigen vectors corresponding to largest Eigen values of the co-

variance matrix. While doing the dimensionality reduction, it tries to keep intact most 

of the original information of the data (Turk 1991). Eigen values are commonly 

calculated by employing the decomposition method (Sharma 2007). However, fast 

PCA, which is a variant of original PCA, uses Gram-Schmidt orgothonalization 

(GSO) method to evaluate Eigen values. It is worth mentioning that GSO based Eigen 

values calculation technique uses orthogonalization in low-dimensional space which 

is time-efficient because, it reduces complexity of decomposition from O (n
3
) to O 

(n
2
) (Sharma 2007, Sajid 2008-b, Sajid 2009-a).  

It has been demonstrated by many researchers that the use of orthogonalization for the 

extraction of feature vectors in face space produces better results compared to 

decomposition (Krisnamoorthy 2007-a, Krisnamoorthy 2007-b, Haifeng 2007) 
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because, it has better discriminating power. However, orthogonalization in GSO is 

sensitive towards rounding effects due to finite precision of a machine which may 

cause instability in fast PCA (Burden 1997, Giraud 2003, Sharma 2007, Sajid 2008-b, 

Sajid 2009-a).  

It has been demonstrated by numerous numerical experiments that GSO may produce 

a set of non-orthogonal vectors which may lead to a non-convergence state of fast 

PCA (Bjorck 1967, Bjorck 1996, Luc 2005). In modified Gram-Schmidt 

orthonormalization (MGSO) vectors are normalized prior to the orthogonalization 

process which minimizes the generation of non-orthogonal vectors. This property of 

MGSO could be used in fast PCA to overcome its instability for the evaluation of 

Eigen values.  

For a time-efficient decision support system, the selection of leading Eigen vectors 

(LEVs), which are generated by MGSO, is a critical task. Fast PCA has the capability 

to compute efficiently the desired number of LEVs, whereas decomposition continues 

till the diagonal of a decompose matrix is filled. Proper selection of LEVs plays an 

important role in maximizing the variance (Xiaofei 2005, Turk 1991, Simon 2008). It 

is reported that the variance defined by three LEVs, usually occupies more than 90% 

of the total space (Siwabessy 1999). Therefore, further inclusion of LEVs may not 

give considerable improvement in a face recognition system. However, the selection 

of optimum number of LEVs is not a trivial decision (Rzempoluch 1998, Liu 2000) 

and is dependent upon sample space and system reliability.  

It is an established fact that the first LEV occupies maximum portion of variance and 

the second LEV shares the second highest and so on (Rzempoluch 1998). In general, 
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the recognition accuracy in Eigen space is dependent upon number of LEVs used in 

reduced subspace (Simon 2008). However, the system performance starts saturating 

after a certain number of LEVs (Martinez 2001, Xiaofei 2005, Turk 1991). On the 

other hand, recognition/decision time of a system increases by increasing the number 

of LEVs. Thus, improvement in a system accuracy, within the permitted decision 

time, requires an optimum selection of LEVs.  

The accuracy of a face recognition system, apart from the optimum number of LEVs, 

also depends upon threshold value used to generate ROC curves. ROC curve is a 

graphical representation of FAR and FRR, which is used commonly to assess the 

performance of a face recognition system (Zhao 2003, Toole 2007, Yan 2007). To 

minimize the system error and to enhance its accuracy, it is imperative to know 

minimum error value on ROC for a given number of LEVs.  

In this chapter, fast PCA has been modified by incorporating MGSO to improve its 

stability and accuracy for a face recognition system. A technique has been developed 

to evaluate optimum number of LEVs by using modified fast PCA. Further, a 

mechanism is suggested to achieve the best combination of system variables for its 

improved reliability and accuracy. 

3.2 Principal Component Analysis (PCA) 

Let there be d training images, which are represented by the matrices dIII .....,,, 21  of 

order cr× each. To mild the lighting effects, each of these matrices is processed using 

( )
i

i

iii

i dm
s

dsmI
I +

×−
=′  where ,.....,,2,1 di =  mi is the mean, si is the standard 

deviation, dmi is the desired mean and dsi is the desired standard deviation (Mittal 
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2008). After preprocessing, matrices are converted into column vectors 
dJJJ ,.....,, 21

 

each of length rc. Let ∑
=

=
d

i

iJ
d

J

1

1
 and [ ]ddrc AAAAA ....321=× , where 

JJA ii −=  for di .....,,2,1= . Then the covariance matrix is .T

rcrc AAC =×  To find 

the significant Eigen vectors of C, ddL ×  is constructed as: AAL T=  where rcd <<  

(Turk 1991). Suppose dλλλ .......,,, 21  are the Eigen values (in descending order) of L 

corresponding to the Eigen vectors duuu ....,,, 21  respectively. The desired LEVs are 

then computed by employing the decomposition of square symmetric matrix L. 

3.2.1 Householder Method 

Numerically computed Eigen values by decomposition methods are more accurate 

than orthogonal methods but computationally intensive (Sharma 2007). 

Decomposition is considered a superior method as compared to Jacobi transformation 

for symmetric matrices (Press 1992, Golub 1992). There are many decomposition 

methods out of those Householder, (HH) is considered an efficient one for Eigen 

solutions because it terminates definitely after n-2 iterations, where n is the rank of an 

input symmetric matrix (Press 1992). The objective of Householder transformation is 

to reduce first a real symmetric matrix into tridiagonalization form. Then, 

tridiagonalization of a given symmetric drcA × matrix into Householder orthogonal 

matrix P requires a real vector w for the following computation: 

Let P = 1-2w.w
T
 where w.w

T
 is outer product and w

T
.w is inner product. Then 

P
2
 = (1-2w.w

T
). (1-2w.w

T
) 

P
2
 = 1- 4w. w

T
+ 4w(w

T
.w)w

T
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P
2
 = 1 

It means P=P
-1

, but P
T
=P, implies P

T
= P

-1
 proving orthogonality. 

It can be written � � 1 � � .��	  where H is scalar, u is any vector.  


 �  � |�|                                                                                                 …… Eq (3.1) 

Let x be a vector made up of first column of A. Then � � � � |�|�� be a vector, 

having e1 as a unit vector �1,0,� ,0�� . Then it is easy to prove that � � �|�|�� .This 

shows that in HH a matrix P acts on a given vector x and converts its elements to 

zeros except the first one. 

To reduce nnA ×  into the tridiagonal form, 

let �� � �. �. �,  where � �  1 � � ��
	 .  

Then, �� � �.�
	  . � . �1 � � ��

	 ) � � � ��� � ��� �  2 �. ��  
where  � ��.!

	   is a scalar and � � �.�
	 . 

Defining " � � �  �, we have �� � � � ". �� � �. "� .                            ..…. Eq (3.2) 

At m
th

 stage (m=1,2,….,n-2), the vector � is written as 

�� � #$%�, $%,$%&, � , $%,%', $%,%'� � √) , 0, � ,0*,  
where + � , � - � 1 � ,, , � 1,� ,3 and ) � �$%� 2 + �$% 2 + 3$%,%'� 4. 
Once ), �,
, �,  , ", �� are computed, Eigen vectors of A can be computed by 

applying the transformation 5 � ��. ��. � . �6'. 
Once all the P have been computed, the matrix Q is obtained by following recursive 

procedure: 

56' � �6' 

56'& � �6'&56' 
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7 
5 � 5�. 

Once a real symmetric matrix has been reduced into a tridiagonal form, its Eigen 

values can be found by Newton’s method. However, decomposition technique is more 

efficient than Newton’s method (Press 1992). Decomposition technique can be 

classified as: a) lower triangular decomposition as: b) upper triangular decomposition. 

The lower triangular decomposition of a matrix has smaller round-off affect than 

upper triangular matrix decomposition (Burden 1997). Therefore, lower triangular 

decomposition has been implemented in proposed architectures. 

3.3 Fast PCA  

Fast PCA has been proposed using GSO for the evaluation of Eigen values in O (n
2
) 

time where n is rank of co-variance matrix. The leading Eigen vector has been 

evaluated first and subsequently (h-1) Eigen vectors will be computed in a descending 

order (Sharma 2007).  

The algorithm computes leading Eigen values uses GSO. 

Step-1: h represents the number of leading Eigen vectors. 

Step-2: Compute the co-variance matrix AAC
T= and define a scalar p←1. 

Step-3: To populate an Eigen vector
ppΦ with randomly generated values between 0 

and 1. 

Step-4: Gram-Schmidt orthogonal process computes basis vectors as: 

  ( ) j

pp

ij

j

T

pppppp ΦΦΦ−Φ←Φ ∑
−

=

1

 

Step-5: Normalize the vector computed in previous step using norm2 
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Step-6: Go to step 3 in case ε<−ΦΦ+ )1( pp

T

ppabs   is failed. 

Step-7: Increment the value by one of p and go to step 2 until p = h. 

3.4 Limitation of Fast PCA in Face Recognition  

It has been shown in (Sharma 2007) that both PCA and fast PCA generate similar 

MSE and converge in finite iteration with the following condition: 

a) Epsilon or threshold value for the convergence condition is 0.01. 

b) Features vectors (d) of orthogonal space should be equal to 100. 

c) The value of h (principal components) should be 10. 

d) Matrix element should be less than 4000 pixels.  

By considering the aforementioned conditions fast PCA is used for face recognition. 

It has been observed that a fast PCA based face recognition system gives convergence 

for resolution 118 x 112 whereas, it fails to converge for high resolution images. 

Table-3.1 shows the non-convergence of fast PCA in face recognition for d=100 

samples images having pixels 3894. Non-convergence in fast PCA is addressed when 

iterations in GS process exceed 1000. These non-convergence conditions are 

highlighted with shaded cells in Table-3.1.  

The convergence criterion in fast PCA is based on the rule that dot products of 

orthogonal vectors, which are generated by GS process, should be unity (Anton 

2005). The products are calculated with current 899:�and previous 89 base vectors and 

its difference from unity is computed as  

      �899:�89 � 12                                                                                        …… Eq (3.3) 

For convergence condition, the value of Equation (3.3) should be less than the chosen 

value ε . It is observed that when variation in poses is less than six in the TS having 
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less than 100 images then Equation (3.3) approaches slowly to ε . This slow 

convergence is because of the stochastic and iterative nature of GS process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table-3.1 Limitation of Fast PCA  when Є = 0.01, varying dimensionalities whereas shaded 

cells show non-convergence conditions. 
 

 

 

 

 

Image Size h Faces / Object Single / Multi pose Max. IterationsTraining Images 

66 x 59 10 Faces Multi 10 all 

66 x 59 10 Faces Multi > 1000 10 

66 x 59 10 Faces Single > 1000 10,20 

66 x 59 10 Faces Three > 1000 10 

66 x 59 10 Object Single 11 10,20 

118x 122 10 Faces Muti 10 All 

118x 122 10 Faces Single > 1000 10,20 

118x 122 10 Faces Three > 1000 10,20 

118x 122 10 Object Single > 1000 all 
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In case of non-convergence, GS multiplies the co-variance matrix with the modified 

vector 899 and then checks the convergence condition. 

Whereas the initial values of 899 depend on the system random generation process. 

GS process tries to orthogonalize the current 899:�and previous 899  vectors until it is 

less than ε  which defines tolerance of the system. Ideally this tolerance should be 

zero, but practically the value of ε  varies according to the randomness of 899 in fast 

PCA and rounding effect in all sorts of other iterative processes (Burden 1997). 

3.5 Modification in Fast PCA 

The Fast PCA has been used GSO for the evcaluation of orthogonal basis vectors. 

However, Fast PCA is not suitable for face recognition because of unstability in the 

convergence step of the algorithm. Modified GSO is introduced for the stable 

evaluation of basis vectors for face recognition images having high resolution. The 

algorithm with MGSO is stated as: 

In this algorithm, the iteration counter is denoted by IC, the maximum number of 

allowed iterations by M and the number of non-zero columns of a matrix U by )(Uβ .  

Step (i)  Initialize a zero matrix U of the order of hd × . Set IC = 0, assign a 

positive integral value to M. Choose a sufficiently small tolerance 0>ε  

e.g. (10 
-2

). 

 

Step (ii) Update U as suggested in step (viii) (ignore this step while calculating 

the 1st leading Eigen vector). 

  

Step (iii) Randomly select a vector of size d. 

 

Step (vi) Normalization of oψ is computed as 
o

o

ψ

ψ
=ψ1  where oψ is 

Euclidian length norm of a vector. 

  

oψ
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Step (v) Compute 12 ψψ L= . 

 

Step (vi) For calculating the first leading Eigen vector, set 23 ψψ = , 

otherwise 

( )













−= ∑

=

)(

1

223

U

j

jj
T uu

β

ψψψ  where ju is the j
th

 column of U. 

 

Step (vii) Normalization of 32 ,ψψ are computed as 
2

2
2

3

3
4 ,

ψ

ψ
=ψ

ψ

ψ
=ψ  

where 2ψ and 3ψ  are Euclidian length norms of 2ψ and 3ψ

respectively. 

 

Step (viii) 

(a) If ,124
εψψ <−T  , go back to step (ii) and replace the 1st zero 

column of U by 4ψ .Then If there is a zero column in U repeat step 

(iii) to (viii) with a different choice of  in step (iii), otherwise go 

to step (x)  

(b) If ,124
εψψ ≥−T  go to step (ix). 

  

Step (ix) Update IC by IC=IC+1. if IC < M, then repeat step (v) to step (viii) 

with 
41 ψψ = in step (v), otherwise go back to step (iii). 

 

Step (x) Compute Eigen values of L by ULUT
. 

 

As discussed in (Turk 1991), jAu
 
are the Eigen vectors of C. Now define 

[ ]hrcxh

j

j
j tttTandhjfor

uA

uA
t ................,,3,2,1 21=== . 

Then collect the projection of each of the h leading Eigen vectors on iA  in a matrix 

hdW× as: 

( ) hjditAjiW j
T
i .....,,3,2,1&.....,,3,2,1;, === . 

oψ
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Let N be a column vector of length rc, representing an input image. Define three 

column vectors ND , NW , NV , and a number r as: 

JNDN −=                    ……  Eq (3.4) 

hjtDjW j
T

NN .....,,2,1;)()( ==                      ……  Eq (3.5) 

.,.....,3,2,1;)()( diWofcolumniWiV
Tth

NN =−=
              …… Eq (3.6) 

.)min()max( NN VVr −=                                ……  Eq (3.7) 

 

Suppose there are k input images kNNN ,......,, 21  and half of which are unknown. Each 

image is represented by a column vector of length rc. Repeat (3.4) to (3.5) for each 

kNNN ,......,, 21  image to get  

krrr ,......., 21 and let ].......[ 21 krrrR = . Calculate the mean of R and denote it by Z. Define 

pZZp = , where .02....,,2,,0 >′′′= hsomeforhhp                …… Eq (3.8) 

For each p, define a row matrix HP of length k, by  

......,,3,2,1

0

1
)(

kiwhere

otherwise

Zrif
iH

pi

p

=





 <

=

 

Associated with each p, define two numbers 
APRP FF & for any of the following two 

cases: 

Case-I: When k is even, 

RPF = Number of zeros in Hp(i); 
2

....,,2,1
k

i =  

APF = Number of ones in Hp(i); k
kk

i ,....,2
2

,1
2

++=  

Case-II: When k is odd, 

RPF = Number of zeros in Hp(i); 
2

1
.....,,2,1

−
=

k
i  
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APF = Number of ones in Hp(i); k
kk

i .....,,1
2

1
,

2

1
+

++
= . 

For each p, define a false rejection rate ( pFRR ) and a false acceptance rate ( pFAR ) as 

follows: 














×
+

×

=














×
−

×

=

oddiskif
k

F

eveniskif
k

F

FAR

oddiskif
k

F

eveniskif
k

F

FRR

AP

AP

p

RP

RP

p

,100
)1(

2

,100
2

,100
)1(

2

,100
2

 

Denote the sum of the above two by pS , i.e., 

 

.ppp FARFRRS +=
                                     ...… Eq (3.10)

 

For obvious reasons, accuracy of results depends upon h and p. We will now 

implement our scheme for different choices of h and p to select their optimum 

combination to achieve the required accuracy for a given time.
  

3.5.1 Optimization in Modified Fast PCA 

Let us assign different values to qi hhhh .....,,, 21= . To achieve global minima, pS has 

been simulated by using least square method. Denote the minimum value of iQby: 

qiQi .......,,2,1;)(min = and the value of p for which iQattains its minimum value by 

......,,2,1; qipi =  Suppose qii .....,,2,1; =τ , takes time in decision making when h takes 

values qihi .....,,2,1; = . Now write a matrix 4×qF  as follow: 

……  Eq (3.9) 
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[ ]τ)min( QPHF =                  …… Eq (3.11) 

Where, 

[ ] [ ] [ ]
[ ]Tq

T

q

T

q

T

q

QQQQ

andpppPhhhH

)min(.....)min()min()min(

,.....,.....,.....

21

212121

=

τττ=τ==
 

The following methodology provides optimum selection of h and p for a given time 

and accuracy constraints. 

(a)-Case-I:  

When the system is required to reach a decision in a time not exceeding ,*τ  

interchange different rows of F in such a way that the 4
th

 column of F is converted 

into ascending order. Denote the resulting matrix by 
1G . Let the first m entries of 

the 4
th

 column of 
1G not exceed .*τ Find the smallest of the first m entries of the 3

rd
 

column of 
1G . Let this be the n

th
 one ( )mn ≤ . Then the n

th
 entries of the 1

st
 and the 

2
nd

 columns of 
1G are the optimum choices of h and p respectively. If all the 

entries of the 4
th

 column of 
1

G are greater than ,*τ then the system cannot meet the 

requirements. In this case, the first entry of the first and the second columns of G1 

is the best choice of h and p respectively. 

 

(b)-Case-II:  

When the system has to make a decision subject to a maximum error ,*
Q

 

interchange the rows of F so that the 3
rd

 column of F is converted into the 

ascending order. Let the new matrix be denoted by
2G and also the first n entries of 

the third column of 
2G are .*

Q≤ Let m
th

 entry of the 4
th

 column of 
2G be the 

smallest of the first n
th

 entries of this column. In this case the m
th

 entries of the 1
st
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and the 2
nd

 column of 
2G represent optimum combination of h and p respectively. 

If none of the entries of the 3
rd

 column of G2 is less than or equal to ,*
Q then the 

first entry of the first and second columns of G2 is the best choice of h and p 

respectively. 

(c)-Case-III:  

Consider the case when the system is made to take a decision by comparing 

simultaneously the constraints discussed in (a) and (b). First apply (a) and denote 

the resulted values of h and p by a
h and a

p respectively and then apply (b) to get 

b
h and b

p . Denote the average of a
h and b

h by h and that of 
a

p and
b

p by p .The 

average h and p  represent optimum values of h and p. 

3.5.2 Modified Fast PCA Based System Architecture  

Architecture and data flow diagram of the proposed system illustrates storage and 

flow of data amongst various components of the system as shown in Figure-3.1. 

Architecture is divided into three layers. Covariance matrix and the desired number of 

LEVs are provided as inputs to MGSO module in the learning layer of the architecture 

to evaluate Eigen values. Eigen faces are then computed after extracting the feature 

vectors which are then stored in a DB.  

In an optimization layer, an adaptive classifier provides an initial p to the threshold 

balancer on the basis of Eigen faces and sample test images. After getting a new p 

from the threshold balancer, the adaptive classifier defines FAR, FRR, decision time 

and corresponding number of LEVs, which are subsequently stored in a database for 

simulation purposes. 
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Figure-3.2 A three layer architecture of face recognition based on modified Gram-Schmidt 

orthogonalization for optimum combination of decision time, minimum error rate 

and leading eigenvectors. 
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The sum of FAR and FRR (Sp) is plotted against p and the same is simulated by the 

least square fitting module to generate convex functions. Whereas, the minimizer 

provides minimum error by applying LSA on the generated convex functions. 

Maximum allowable time for recognition and/or minimum acceptable accuracy of a 

system is referred to as application constraints. On the basis of these constrains and by 

using a correction factor, the optimizer of Figure-3.1 provides best available h and p 

for a given application. Finally, in the testing layer on the basis of optimized h and p, 

features vectors are extracted and stored in DB. On the other hand, feature vectors of 

an input image are also extracted and compared with stored feature vectors. This 

enables the system to accept/reject an input image. 

3.6 Face Recognition with Modified Fast PCA 

The system is developed as shown in Figure-3.1. To perform different experiments of 

the proposed system and compare the results with the classical decomposition-based 

method requires various training sets. The data sets were designed of male and female 

having images of 270 x 300, 180 x 200 and 90 x 100 resolutions (Spacek 2008). There 

were small changes in the face position because these images have been acquired in 

speech mode with no variation in hair style.  

 Variation in lighting was also there. A total of 120 subjects with 20 images per 

subject having gray background with minor variation in head turn, tilt and slant were 

present. Out of 2400 images, 6 TSs 200, 160, 130, 100, 70, and 50 images were made.  
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3.7 Decomposition versus Modified Fast PCA 

It has been observed decomposition-based and modified Fast PCA systems response 

regarding accuracy, learning and decision time varies by varying the number of 

training images, their resolution and images per subject. To reveal this complexity, 

three testing sets namely TSH, TSM and TSL having image resolutions 270 x 300, 180 

x 200 and 90 x 100 respectively are made for time efficiency aspect. These testing 

sets relate to six training sets having properties as shown in Table 3.2. This table 

shows combination of samples per subject and number of leading Eigen values used 

for extracted features space.  

The time efficiency aspect has been demonstrated using 138 experiments by for the 

modified Fast PCA and 18 by using PCA decomposition based technique for 

comparison purposes. When the system does not recognize an image which belongs to 

the TS at testing phase, it is treated as a true error. And if the system gives positive 

decision for an image which does not relate to training subjects then it is noted as a 

false error. The time required by the system for the extraction of features vector is 

known as learning time while the time required for testing of 20 images is treated as 

decision time. Sum of these two time slots is considered as the total time required by 

the system. 

Figure-3.2 (a), (b) &(c) illustrates error rate which is the sum of true and false errors, 

decision and learning time of a PCA based system for the data set having resolution of 

images 270 x 300, 180 x 200 and 90 x 100 respectively. It is observed that the 

decision and the learning time both increases by increasing with the number of 

leading Eigen values, while the magnitude of error is inversely proportional to it. 
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(c) 

Figure-3.2 The resolution of training data sets are 90 x 100, 180 x 200 and 270 x 300, of 

PCA in (a), (b) and (c) respectively. 
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Examination of Figure-3.2 clearly shows that maximum difference in decision and 

learning time is 174.68 seconds, 71.96 seconds and 15.46 seconds for resolution of 

270 x 300, 180 x 200 and 90 x 100 respectively, the largest observed is for highest 

resolution having number of images in the TS. This difference decreases when the 

system uses less resolution with small TSs and it reaches to its minimum value when 

system employs 50 images in the TS having resolution of 90 x 100. Furthermore, 

Figure-3.2 (a) shows that the maximum accuracy of PCA based system is 95%. This 

accuracy can be achieved by proposed system with various combinations of leading 

Eigen values as shown in Figure-3.3, although decision and learning time is small for 

50 Eigen values. Similarly for TS having images 180 x 200 resolution as shown in 

Figure-3.4 and for 70 Eigen values in TS having images 90 x 100 resolution as shown 

in Figure-3.5.  

On the other hand, the decision and the learning time shown in Figure-3.4 reflect 

almost a linear relationship when compared to the decision and the learning time of 

image 270 x 300 and 90 x 100 resolutions as depicted in Figure- (3.3) & (3.5). The 

plot of the Figure-3.2 clearly demonstrates that all TSs touches the same accuracy as 

that of 180 x 200 resolutions. 

A comprehensive view of best possible combination of decision and learning time 

against accuracy of PCA and proposed system is shown in Table-3.3. The data of the 

table shows that for PCA, the accuracy remains the same for different TSs, whereas 

for proposed system number of LEVs plays a crucial role. Entries in Table-3.3 show 

best possible combination of the system variable.  
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Table-3.2 Training data sets showing samples per subject and LEVs for training. 
 

Data Set Name Total Image Sample per Subjects LEVs for Training 

S1 200 20 10 

S2 160 16 9 

S3 130 13 8 

S4 100 10 7 

S5 70 7 6 

S6 50 5 5 

 

 

 

 
 

Table-33 Decision and learning time varies with error rate associated with different image 
resolutions.  

 

IR Accu. % 

PCA_DT 

in sec 

PCA_LT 

in sec min. TS 

AFP_DT 

in sec 

AFP_LT 

in sec min. TS LEVs 

270 x 300 100 NA NA NA 14.938 52.984 100 100 

270 x 300 95 22.96 130.92 160 3.375 4.9531 50 20 

270 x 300 90 14.937 51.438 100 3.45 9.9531 100 20 

270 x 300 85 10.61 26.531 70 1.875 5.8281 130 10 

270 x 300 80 7.672 13.469 50 2.4066 9.3594 200 10 

180 x 200 95 19.094 51.125 160 2.5625 4.3281 50 50 

180 x 200 90 16.432 20.641 100 0.5 0.8125 100 10 

180 x 200 80 10.375 5.0313 50 0.4375 0.17188 50 3 

90 x 100 95 2.14 9.2344 160 0.6719 1.0469 70 40 

90 x 100 90 1.484 3.7813 100 0.234 0.48438 100 10 

90 x 100 80 1.1094 2.75 70 0.156 0.078125 50 3 
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Figure-3.3 For the resolution 270 x 300, of proposed system in (a),learning time (b) decision 

time (c) accuracy of the system against leading Eigen values respectively. 
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Figure-3.4 For the resolution 180 x 200, of proposed system in (a),learning time (b) decision 

time (c) accuracy of the system against leading Eigen values respectively. 
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Figure-3.5 For the resolution 90 x 100, of proposed system in (a), learning time (b) decision 

time (c) accuracy of the system against leading Eigen values respectively. 
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Decision and learning time increases by increasing the accuracy for both the systems 

whereas the rate of increase in decision and learning time of proposed system is 

sufficiently less than a conventional PCA system. The maximum difference of 

decision time in PCA and proposed system is about 16 seconds with 95% accuracy for 

100 images. 

PCA provides 95% accuracy for the three said resolutions involved. Whereas, in this 

discussion it requires a minimum 2.14 second for decision and 9.23 second for 

learning when it is trained by using 90 x 100 resolution. On the other hand, proposed 

system requires 1.04 second for decision and 0.6719 for learning, when proposed 

system is trained with 70 images and uses at 40 LEVs.  

 

Thus, the optimum selection of principal components and TS, proposed system gives 

efficient face recognition with PCA. In general, it has been demonstrated that 

proposed system provides time efficient decision for various image resolutions. 

Further, the technique provides a definite decision for a real-time face recognition 

system even for high resolution images. 

Over thirty combinations of training and testing data sets were designed for testing of 

accuracy of the decomposition-based method and the modified Fast PCA as shown in 

Figure-3.6. Selection of images in training and testing data sets were random to assess 

the effectiveness of the proposed technique.  

The test data sets had two categories of images. First category was associated with 

subjects who were present in the training data set but with different facial 

characteristics. The second category of images had subjects who were not present in 

the training data.  



52 

 

 

 

 

 

 

 

  Figure-3.6 Different combination of training and testing data sets. 
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Assuming that TS1 represents data set having 100 images, TS2 for 200 images and so 

on. Since each data set was constructed randomly from the image library thus, the 

probability of two data sets to be 100% identical is rare. On the other hand, Train1 

denotes training data set having 450 images and Train2 represents 225 images 

Based on the chosen testing and training data sets, six sub trees were constructed for 

different LEVs as illustrated in Figure-3.6. Experiments were then performed for each 

combination by employing both decomposition and the proposed techniques.  

A face which is not related to the training subjects and is recognized at verification is 

treated as false acceptance and its value divided by unknown is treated as FAR. 

Similarly, a face which is rejected while its subject is used for training is known as 

false rejection and its value divided by known tests is treated as FRR. In face 

recognition the same value of FAR and FRR is called EER which depends on the 

threshold value of the classifier. EER usually depicts MER of a system. But it is quite 

possible, in some cases, that the value of MER may be lower than EER. 

ROC curves for 225 and 450 training images are generated by applying Equation (3.9) 

as shown in Figure- (3.7) & (3.8) respectively. Both the figures clearly demonstrate 

that the proposed technique has relatively better MER than the decomposition 

method. The results of the experiments have been summarized in Table-3.4 and 

Table-3.5. Comparing the magnitude of MER and EER, it is evident that the proposed 

technique is significantly better than the decomposition method.  

By using Equation (3.10), the sum of FAR and FRR for various threshold values have 

been evaluated and shown in Figure-3.9. The plot also represents least square fitting 

of experimental data.  



54 

 

0 10 20 30 40

0

10

20

30

0

10

20

30

0

10

20

30

 False Acceptance Rate

 

 

LEV = 80

F
a
ls

e
 R

e
je

c
ti
o
n
 R

a
te

LEV = 70

 

 

F
a
ls

e
 R

e
je

c
ti
o
n
 R

a
te

Training = 225

 LEV = 60

 

F
a
ls

e
 R

e
je

c
ti
o
n
 R

a
te

 Decomp100

 Propose100

 Decomp200

 Propose200

 Decomp300
 Propose300

 Decomp400

 Propose400

 Decomp500

 Propose500

 

 

  

Figure-3.7 Comparison in false acceptance rate (FAR) vs false rejection rate (FRR) when 
system is trained with 225 images. Filled symbols represent decomposition 

method whereas empty symbols show the proposed technique. 



55 

 

0 10 20 30
0

10

20

30

0

10

20

30

0

10

20

30

40

  False Acceptance Rate

 LEV = 80

 

 

F
a
ls

e
 R

e
je

c
ti
o
n
 R

a
te

 

 

  LEV = 70

F
a
ls

e
 R

e
je

c
ti
o
n
 R

a
te

Training = 450 

  LEV = 60

 

F
a
ls

e
 R

e
je

c
ti
o
n
 R

a
te

 Decomp100
 Propose100

 Decomp200

 Propose200

 Decomp300

 Propose300
 Decomp400

 Propose400

 Decomp500

 Propose500

 

 

 

 

Figure-3.8 Comparison in false acceptance rate (FAR) vs false rejection rate (FRR) when 

system is trained with 450 images. Filled symbols represent decomposition method whereas 

empty symbols show the proposed technique. 
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Figure-3.9 Minimum error as a function of threshold value of the proposed system. Solid 

line represents the curve fitting by least square method. 
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The simulated curve has a convex profile which defines MER for a given number of 

LEVs. Whereas, MER variation as a function of LEVs for different threshold values 

is shown in Figure-3.10. The plot of Figure-3.10 (a) represents MER of a system 

designed by using the decomposition method with threshold value as a variable 

whereas, Figure-3.10 (b) represents the same for the proposed technique. The decision 

time as a function of LEVs proposed system is presented in Figure-3.11. 

Since the training sets involve 225 and 450 images, consequently the maximum Eigen 

vectors of the reduced covariance matrices are 225 and 450 for Train1 and Train2 

respectively (Turk 1991).  In the proposed system, LEVs are computed in descending 

order because in the proposed algorithm the subtracting term of step (vi) is minimum 

for the first leading Eigen vector and it increases for the upcoming Eigen vectors. It is 

observed that the first LEV is of the order of 11, second of the order of 10 and from 

three to eleven they are of the order of 9. Since for one combination of LEVs, there is 

an associated ROC curve, a range of ROC curves have been generated starting from 

1.4% to 40% of the total Eigen values.  It is observed that below 1.4% MER is 

unacceptably high and by increasing LEVs above 40% does not give a tangible 

improvement in the system performance. 

On the basis of generated ROC curves, MER, the value of p, decision time and 

number of LEVs are gathered, called offline mode of operation. It is observed that the 

magnitudes of FAR and FRR are reciprocal in nature, as shown in Figure- (3.6) & 

(3.7). Ideally, a point should exist on each ROC curve where both the errors (FAR & 

FRR) are the same and minimum. But most of the time, it is not the case. Therefore, 

MER is proposed to characterize a system.  
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Figure 3.10. Minimum error as a function of leading eigenvectors (a) for 

decomposition and (b) for the proposed system. 
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Figure-3.11 Variation of decision time against leading eigenvectors when 450 

images are used in training and 100 images in testing. 
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If there are more than one MERs, preference will be given to that MER which has 

lower FAR, to minimize the security risk of a recognition system.  

The magnitude of MER has got an inverse relationship with number of LEVs as 

evident from Figure-3.10. However, it is observed that MER saturates between 20% 

to 30% of LEVs. On the other hand, increasing the number of LEVs increases the 

decision time of a system.  

Thus, it is necessary to choose an optimum number of LEVs without compromising 

on the accuracy as well as on the decision time of a system. Further, it is observed that 

the value of p fluctuates for lower number of LEVs, but it stabilizes when the system 

includes approximately18% of LEVs. This once again suggests that an appropriate 

number of LEVs is required to define a stable system.  

From Figure-3.9 it is evident that MER of the proposed system occurs at p = 0.95. 

Examination of the figure revealed that both the global and the simulated minimum 

appear at the same value of p. But, the simulated minimum is slightly higher than the 

experimental one. Figure-3.12 shows a comparison between experimental and 

simulated MER as a function of LEVs. An important point to note is that both the 

curves show a similar profile, but with a finite difference. This demonstrates the 

validity of simulated data but, of course, with a finite error. To remove the error 

between the experimental and simulated characteristics following correction factor is 

proposed: ))((
1

∑
=

−
n

i

ii ETmeanceil  where n represents total data points, T theoretical 

and E experimental value at i
th

 point respectively. The proposed relationship works 

well for various training sets as shown in Figure-3.13. Furthermore, the observed root 



62 

 

mean square error, as calculated by (10), between the simulated and the experimental 

data for various LEVs (6-200) was less than 1.1. 

 

 

 

 

 

 

 

0.0 0.1 0.2 0.3 0.4 0.5
10

15

20

25

30

35

0

5

10

15

20

25

30

35

(b)

  Normalized Number of Leading Eigenvectors

 

 

M
in

im
u

m
 E

rr
o

r

 Experimental

 Simulated

(a)

 

 

 

M
in

im
u
m

 E
rr

o
r

 Experimental
 Simulated

 

Figure-3.13 Experimental and simulated data against normalized number of leading Eigen 

values (a) for training set of 450 images (b) for training set of 225 images. 
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Table-3.4 Comparison between decomposation and the proposed technique when system is 

trained with 225 images. 
 

LEV 70 Decomposition Proposed % Improvement 

Test Set MER EER MER EER MER ERR 

TS1 18 20 11 12 38.9 40.0 

TS2 21 24 16 17 23.8 29.2 

TS3 21 25 14 15 33.3 40.0 

TS4 21 25 14 14 33.3 44.0 

TS5 24 24 17 19 29.2 20.8 

 

 

 

 

 

 

 
Table-3.5 Comparison between decomposation and the proposed technique when system is 

trained with 450 images. 
 

 

 

 

 

 

 

 

 

 

  

.LEV 70 Decomposition Proposed % Improvement 

Test Set MER EER MER EER MER EER 

TS1 27 30 19 21 29.6 30.0 

TS2 24 27 18 21 25.0 22.2 

TS3 25 25 17 18 32.0 28.0 

TS4 21 21 12 13 42.9 38.1 

TS5 21 21 13 16 38.1 23.8 
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This value is well within acceptable error margin for a face recognition system. 

n

TE iadj

n

i

i

2

,

1

)( −∑
=                 …… Eq (3.12) 

 

In an online mode of operation, let F matrix be populated by the information based on 

Figure-3.6 & Figure-3.7 and assuming a maximum allowable decision time of an 

application is 0.3 seconds per frame. Then the system adaptively chooses h = 100, 

such that it provides decision in 0.25 second per frame with an accuracy of 92%, 

whereas a system defined by the same variable but using decomposition technique 

provides decision in 0.83 second/frame with an accuracy of 84%. 

 

3.8 Summary 

This chapter presents a new architecture to implement an optimized decision support 

system based on reduced dimensionality of covariance matrix in Eigen space. The 

leading components of reduced matrix are computed by using modified Gram-

Schmidt orthogonalization (MGSO). Use of MGSO in fast PCA has improved the 

convergence and accuracy of a face recognition system especially for high 

dimensional images. To optimize the performance of a face recognition system, 

receiver operating characteristics are simulated with least square fitting. Convex 

optimization is applied for optimum selection of system variables. It has been shown, 

by comparing the simulated and experimental data, that the root mean square error of 

the proposed system is less than 1.1. It is shown that the system is robust enough and 

it works reasonably well for images acquired under varying lighting conditions.  
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CHAPTER 4 

 
HOUSEHOLDER IMPLEMENTATION ON FPGA 

4.1 Introduction  

For hardware evaluation of eigenvalues, CORDIC-based Jacobi algorithm (CJA) is 

one of the best reported implementations on FPGA (Bravo 2006). Basically, CORDIC 

implements trigonometric functions in hardware which are commonly used to 

evaluate Eigen values (Bravo 2006, Ray 1998). However, CORDIC employs 

approximation in vector rotation to estimate trigonometric functions. On the other 

hand, Householder (HH) method uses square root instead of trigonometric function 

for the evaluation of Eigen values which made it more accurate than Jacobi algorithm 

(Press 1992, Golub 1996, Sajid 2010-b).  

Floating-point implementation of a square root is computationally intensive than its 

integer based implementation (Soderquist 1996, Soderquist 1997). Many modern 

microprocessors have high atency to throughput ratio (Kwon 2009). Floating-point 

square root accuracy is as good as that of an analytical solution (Wilkinson 1962, 

Ortega 1963, Burden 1997). However, floating point implementation requires more 

space on chip and consumes higher number of cycles for the same operation (Sajid 

2008-a, Oberstar 2007, Liao 2000). 

HH is considered an efficient method for eigen solutions, because it terminates 

definitely after n-2 iterations, where n is the size of an input symmetric matrix (Press 

1992). It is worth mentioning that the performance of HH for the evaluation of Eigen 
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values is biased towards the truncation of least significant digits during a looping 

process (Wilkinson 1962, Wilkinson 1965).  

It is an established fact that software based applications are slow but save system 

resources, whereas hardware based solution provides time efficient systems but may 

require resources beyond the maximum feasible limits. Thus, a co-design 

methodology could provide a cost and time effective solution for HH implementation 

on FPGA. Two FPGA based architectures have been proposed for efficient HH 

implementation. Performance of these architectures have been tested and analyzed by 

considering time, power and precision parameters. 

4.2 Householder on FPGA 

HH algorithm can be made time-efficient by employing an intelligent 

hardware/software co-design model (Pellerin 2003, Lee 2009). In this model, HH is 

divided into hardware and software processes. First in first out (FIFOs) buffers are 

used to facilitate the flow of data between different processes. Deadlock, which is a 

common problem in the implementation of a FIFOs-based steaming model, is avoided 

by adjusting the FIFOs length and communication modes. Communication modes 

could be blocking or non-blocking. In blocking mode, FIFO is compelled to produce 

output data in the same sequence as it was supplied. On the other hand, a non-

blocking mode does not ensure the sequence of data and may produce inaccurate 

results. Thus, blocking mode of FIFOs are used to implement HH. 

Two different architectures for the implementation of HH have been developed using 

VisualC, embedded development kit (EDK) and integrated software environment 
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(ISE). The performance of these architectures is then evaluated by using synthesis 

reports, data sheets and error analysis techniques (Shang 2002, Klein 2005). 

4.2.1 Floating Point Architecture  

Figure-4.1 shows a floating point architecture for the implementation of HH on 

FPGA. It is comprised of an application layer, a real-time operating system (RTOS) 

layer and a hardware layer. Image data producer (IDP), data consumer (DC) and 

Eigen values generator (EVG) are the software processes as evident from the 

architecture.  

IDP reads images stored in FPGA auxiliary memory and computes a co-variance 

matrix which is used by the EVG as an input data. The EVG customizes the HH 

according to the processor architecture, so that it can be translated into low level 

instructions by the RTOS.  

In this architecture, integer operations are computed by the processor itself, while the 

floating operations are directed to the floating point unit (FPU) as illustrated in the 

figure. This technique is adopted because ALU does not support floating operations. 

As per Xilinx technology, fabric core bus (FCB) is used to interface FPU with 

auxiliary processing unit (APU, APU 2007).   

It is obvious from Figure-4.1 that a modular approach has been adopted to implement 

HH on FPGA. It allows modification in HH at application level without requiring any 

change in the hardware. Further, the architecture ensures evaluation of Eigen values 

as per IEEE-754 standard of single precision (Kahan 1997).  

4.2.2 Fixed Point Architecture 
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Contrary to the approach discussed in Section 4.2.1, an architecture could be designed 

by implementing a significant portion of HH on hardware. In such an architecture, 

Eigen values can be generated by using hardware resources of FPGA. This process, 

by its very nature, will be time-efficient compared to the architecture shown in 

Figure-4.1. However, the design requires more resources and power, and may not be 

feasible for a portable system. Thus, a co-design methodology has been proposed. In 

this co-designed architecture computationally intensive part of HH is divided into two 

parts: a) software namely FxHH and b) hardware namely FxSqr as shown in Figure-

4.2. 

FxSqr in Figure-4.2 was first implemented by using ARM algorithm given in (ARM 

2009) for fixed point square root realization. It was noted ARM algorithm provides 

accurate answer for those integers whose square root is a whole number but for 

answer containing fraction its accuracy deteriorates. To overcome this bottleneck, the 

FxSqr was modified with non-restoring division algorithm (Piromsopa 2001) which 

provided an accuracy up to ten decimal places. 

Fixed-point hardware with appropriate software support is often used for the low-cost 

implementation of algorithms requiring floating-point operations. This alternative 

usually provides accuracy very close to that of floating-point hardware. Furthermore, 

the fixed-point accuracy heavily depends upon the operand values and how properly 

the q.n format for fixed-point operations is adjusted. Small or extremely large values 

for the operands may produce minor errors for complex operations due to the 

rounding up and the truncation of least significant digits (Wilkinson 1962, Ortega 

1963, Burden 1997). However, real-time portable applications emphasize time and 
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power efficient solutions since minor errors in the answer do not often affect the 

quality of the results significantly for relevant applications. 

The Newton-Raphson, SRT-redundant and non-restoring division techniques form the 

bases of the three main categories of algorithms used for the evaluation of the square 

root. The Newton-Raphson method has self-correcting capability and provides 

relatively better precision but requires an initial guess using a seed generator while it 

converges quadratically (Karp 1997). Furthermore, it is based on an iterative 

approximation technique which requires frequent multiplications so a pipelined 

implementation of Newton’s method requires large multipliers which may not be a 

feasible option. On the other hand, the SRT-redundant and non-redundant algorithms 

are both recursive in nature and their implementation is costly especially for higher 

order radices (Piromsopa 2001).  

Pipelining is usually adopted to make a system time efficient but requires extra effort 

to resolve timing and data hazards. Pipelined implementation of the square root using 

non-restoring algorithm and fixed-point arithmetic faces data dependence hazard 

(Sajid 2010-b). Then, a novel pipelined architecture has been presented to avoid data 

dependence hazards by employing a modified non-restoring division algorithm. This 

architecture shows a time and power efficient evaluation of the square root as 

compared to floating-point based architectures. 

4.2.2.1 Pipelining of Square Root 

In digital applications, pipelining is the most common parallel scheme used to 

improve the throughput. A complex task is divided into subtasks which are 

implemented independently in their respective execution stages.  
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Figure 4.1 HHM implementation on FPGA using floating point architecture. 
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Figure 4.2 Fixed point implementation of HHM using co-design architecture. 
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It is required that the output of each subtask become available to the subsequent unit 

as and when needed. A write-after-read (WAR) hazard may arise if a stage in a 

pipelined system tries to read data from a register written by an instruction that 

follows in program order. 

The non-restoring division technique can be used to evaluate the square root without 

restoring the remainder of a division (Mailloux 2007). It generates one bit of the result 

iteratively using two bits of data. Let D = DN DN-1…..D1 represent an N-bit radicand of 

an unsigned number. By using the non-restoring algorithm, the square root of D may 

be represented by Q = QN/2 QN/2-1….Q1 after the N/2
th

-iteration. The remainder R = 

R(N/2)+2 R(N/2)+1… R1 has (N/2)+2 bits. The relation among R, D and Q is R = D-Q
2
, 

where D is less than (Q+1)
2
 because R < 2Q+1. A functional block representation of 

the non-restoring based square root evaluation is given in Figure-4.3. The figure 

shows that there are only addition/subtraction and shift operations involved in the 

evaluation of the square root. 

The conventional non-restoring algorithm was implemented for XC2VP2 Xilinx 

FPGA and the results were simulated in Integrated Simulated Environment (ISE) 8.2 

and ModelSim 5.7 XE. Figure-4.4 shows the post layout simulation for a 2-stage 

pipelined implementation. Instability in the q2 signal representing Q2 was observed, 

which is associated with the fact that a register is receiving data from a stage while the 

next stage is trying to read the same register in the same clock cycle (this represents a 

WAR hazard). 
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a) Algorithm: 

To overcome this WAR hazard, we modified the design as shown in Figure-4.5. k is a 

variable related to the bit-width of the R and Q registers, as required by the algorithm. 

With this modification, the ‘if condition’ of the conventional version (Li 1997, 

Piromsopa 2001) has been replaced with a simple NOT gate. The shift operation, 

which is an integral part of the non-restoring algorithm, works well in the non-

pipelined implementation where only one Q register is required as shown in Figure-

4.3. 

In the proposed pipelined implementation, an arrangement has been made for the 

proper placement of bits in the Q register from different wires in the same clock cycle 

without a shift operation. This provides stable and correct data for subsequent stages 

in the pipeline without losing clock cycle. 

Figure-4.6 shows a conceptual flow of the pipelined implementation for the modified 

non-restoring algorithm. However, more Q registers for a pipelined implementation 

are required and their exact number depends upon the number of stages involved in 

the pipelined system. Two bits are fed to each stage from a D input register whose 

length is equal to N radicand bits. In stage-1, the two most significant bits (MSBs) are 

directly connected to M1 and there are no pipeline registers. In stage-2, there are three 

pipeline registers, five pipeline registers in stage-3, and so on. 

The circuitry associated with the M-modules of Figure-4.6 is shown in Figure-4.7. In 

this figure, Sn is a computing unit (ALU) and is labeled as S1 for stage-1, S2 for stage-

2, and so on. S1 gets the two LSB bits from the D register as its right operand, while 

the remaining bits of the left and right operands are initialized with one’s and zero’s 
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as shown in Figure-4.7; on the other hand, the LSB of the left operand of S2 is fixed as 

one whereas the remaining bits are fed from the previous stage of the pipeline. S1 is 

treated as a subtractor in stage-1 because its select bit is always low. S2 could be a 

subtractor or adder depending upon the select bit whose value is defined by the MSB 

of the R1 register. 

b) Architecture:  

To demonstrate the validity of the modified non-restoring realization, the concept in 

Figure-4.6 for N=32 was implemented on XC2VP2 and XC3S100 Xilinx devices. 

The software tools are ISE 8.2 and ModelSim 5.7 XE. For N = 32, the number of 

stages defining the pipeline architecture is 16. In Figure-4.6, Preg1&2 act as padding 

registers while the r2 receives data from stage-1. For n stages in the pipelined 

architecture, 2n-2 Preg registers are required plus a register rn which receives data 

from the previous stage, where n is the stage number. The rn register is primarily used 

to store partial results from the Qn-1 register of the previous stage and provides the 

same data to the Qn+1 register of the subsequent stage in the pipeline. Therefore, the 

WAR hazard, which is related to read and write timing the Q register in Figure-4.4, 

has been solved. 

To observe the operations in the proposed pipeline system, one stage at a time, 

consider Figure-4.7 with N=4. In the first clock cycle (T1) the two MSB bits of the D 

register are transferred into the LSB positions of the right operand of S1. The 

remaining k MSBs in the right operand of S1 are fixed to zeros.  
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Figure.4.5 Modified non-restoring algorithm for pipelined fixed-point based N-bit square root realization.  

Let D be an N-bit unsigned integer, Q be a k-bit unsigned integer and  R be a (k+2)-bit 

unsigned integer 

Declare R1=R2=......Rk and Q1=Q2=…..Qk=0  

// ( R and Q registers are initially filled with zeros to aviode the junk values). 

#Define Con = Concatenation (x,y)  

// (In HDL the bits of two variables x and y are concatenated using curly brackets by 

comma i.e. {x,y}) 

loop i=1:k 

   if (i=1)    

     Ri=Con(k zeros, D[N-2(i-1)-1:N-2(i-1)-2]) - Con(k+1 zeros,1), sel=0 

   else 

      sel = Ri-1[k-1] 

          if(sel=0) 

   Ri=Con(R(i-1)[k-1:0],D[N-2(i-1)-1:N-2(i-1)-2])– Con(Q(i-1),R(i-1) [k-1],1); 

                   Qi=Con(Q(i-1)[i-1:1], Ri
’
 [k+1]); 

          else  

   Ri=Con(R(i-1)[k-1:0],D[N-2(i-1)- 1:N-2(i-1)-2])+Con(Q(i-1) , R(i-1) [k-1],1); 

                   Qi=Con(Q(i-1)[i-1:1],  Ri
’
 [k+1]); 

    endif 

   endif 

endloop 
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The k as a variable is equal to half of the radicand bits and k+1 bits are concatenated 

with 1 for the left operand of S1. The result of the above operation is not immediately 

available from S1 to R1 because of the combinational delay in S1. After that delay, k+2 

bits from S1 are available in R1 but not placed in R1. Furthermore, the MSB of S1, after 

passing through an inverter, is available at Q1 during T1, but is not placed in Q1 

registers because the sequential units operate in a clock edge-triggered manner. 

Furthermore, in T1 the two LSBs from the input D register are transferred into the 

Preg(1) which is a part of stage-2. 

In T2, Preg.(2) receives data from Preg.(1), Q1 from the inverter and R1 from S1 which 

is available to S2 and ready for computation because S2 is a combinational unit. The 

LSB of the left operand for S2 is always high and its next bit is defined by the MSB of 

R1 (it determines addition or subtraction) after T2 (because data from Preg.(2)  is 

available to S2). 

In T3, S2 performs addition or subtraction and the pipeline register r2 receives data 

from Q1. Register r2 contains just one bit and is part of stage-2. In this cycle, data is 

not placed in R2 due to the delay in S2, and similarly data from r2 is not available to 

Q2. In T4, the final result will be computed and will become available in Q2 after 

receiving data from S2 and r2. 

Figure-4.8 shows a dry run of the proposed system. It explains the stage-wise changes 

in the R and Q registers per cycle, once the pipeline is filled. The answer is available 

at Q4 for 8-bit data. Similarly extending the same logic, the answer for a 32-bit 

radicand will be available in Q16.  
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Figure-4.9 (a&b) shows post layout results of non-pipelined and pipelined 

implementations of non-restoring algorithm on a Virtex2Pro (XC2VP2) device. 

Figure-7(c) represents once again pipelined implementation of the same algorithm on 

a Spartan3E (XC3S100) device. The post layout simulations shown in Figure-4.9 

were generated after the place-and-route process of the Xilinx tools. In this figure, 

data_in and data_out show the input and output data, respectively. To demonstrate the 

validity of the proposed system, hundreds of randomly selected radicand values for 

the evaluation of the square root were used in simulations. The same output from 

various Xilinx devices shows that the proposed architecture is device independent. 

The total latency of the system was evaluated for various devices. This latency of the 

modified non-restoring algorithm is about 118 ns whereas it is 135 ns on the 

Virtex2Pro for the classical version, as shown in Figure-4.9 (a). Therefore, the 

proposed system demonstrates a 13% improved latency with respect to the classical 

system. 

Table-4.1 shows time to evaluate a square root with non-pipelined and pipelined 

systems using Virtex2Pro from Xilinx and Flex from Altera. It is useful to consider 

power consumption along with the execution time because they are reciprocally 

dependent upon each other.  

Various performance metrics have been reported for the evaluation of FPGA-based 

square root systems, but they are not comparable (Thakkar 2006-a, Thakkar 2006-b). 

Throughput (the inverse of the clock period for the slowest pipelined stage) is used as 

a performance metric. The throughput of a pipelined system is dependent upon 

number stages. Thus, a system comprising on larger number of stages will require 

higher resources and as a result it will consume more power. 
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Figure.4.7 The details of the M1and M2 modules and their inter-connections. 
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Table-4.1 Throughput of non-pipelined (NP) and the proposed  

pipelined (PL) architecture. 
 

 

Time per square root evaluation 

(ns) 

Number of 

operations NP PL 

1.00E+00 1.60E+02 1.25E+02 

1.00E+01 1.60E+02 1.56E+01 

1.00E+02 1.60E+02 4.71E+00 

1.00E+03 1.60E+02 3.62E+00 

1.00E+04 1.60E+02 3.51E+00 

1.00E+05 1.60E+02 3.50E+00 

1.00E+06 1.60E+02 3.50E+00 

1.00E+07 1.60E+02 3.50E+00 

 

 

 

 

 

 

 

 

 

 

  

Figure-4.8 Dry run for an example using a 4-stage pipelined system (8-bit radicand). 
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Outputs 
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(a

) 

Outputs 

 
Input (b

) 

(c

) 

Figure-4.9 Post layout simulation of the proposed algorithm (a) using a non-pipelined architecture operating at 8 ns 

on the Virtex2Pro (b) using a pipelined architecture operating at approximately 3.5 ns on the Virtex2Pro (c) using a 

pipelined architecture at 5.63 ns on the Spartan3E. 
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Million floating-point operations per second per slice (MFLOPS/slice) is another 

relevant metric used to evaluate FPGA based systems. It is pertinent to mention that 

the power required by a slice of an FPGA is defined by its operating frequency 

(Shang 20020. Thus, the time and power consumption of a system are inter-related for 

the same FPGA. A benchmark is required which can provide time and power 

measures simultaneously. 

Table-4.2 illustrates a comparison based on power, execution time and number of 

stages engaged by an architecture reported in the literature (Li 1997, Promsopa 2001, 

Ronald 2004, Thakkar 2006-a, Wang 2003). For the proposed system, the power 

consumption was calculated using the Xpower utility (Xilinx 2010), whereas the time 

required for the same is measured from the post layout simulation. The last column of 

Table-4.2 was evaluated by using our proposed benchmark. The data in the fifth 

column represents the expression ,FSC ∗∗ where S is the number of slices, F is the 

maximum operating frequency, and C= 0.001475 or 0.001629 is a constant value 

related to power and deduced from the device data sheet for the Virtex2 and 

Spartan3E, respectively. The examination of Table-2 reveals that our proposed system 

produces the minimum value for FSC ∗∗  among all square root solutions. 

Furthermore, in comparison to (Thakkar 2006-a) the great advantage of our proposed 

pipelined system is that it yields a four-fold speedup; the 28-stage implementation of 

the former shows a 25% improved C*S*F product whereas its 59-stage solution 

almost doubles the consumption in comparison to our solution. 
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4.3 Error Analysis of Fixed Point Householder 

As per our best knowledge HH was never implemented on FPGA. It would be 

therefore, very pertinent to evaluate its error bound and compared it with report CJA 

error. To define error limits, an error analysis methodology discussed in (Ortega 1963, 

Wilkinson 1962), is used. Such a technique provides an error bound for an algorithm 

by considering perturbation in the evaluated data (APU 2007) whereas, a perturbation 

which is observed due to the rounding effect of an iterative process, depends upon the 

word-length of the machine (Ortega 1963, Wilkinson 1962). To develop an error 

bound relationship for fixed point implementation of HH on FPGA, let 
jλ  be the j

th
 

analytical eigenvalue whereas jfλ  and 
jrλ represent the same evaluated by employing 

floating and fixed point architectures, respectively. Then an estimate of error bound 

for j
th

 eigenvalue can be expressed as:  

where
jr

jrj

λ

λ−λ
 kj ,....,2,1=           ……….. Eq (4.1) 

By using triangular inequality, we can write  

21 ε+ε≤ε
λ

λ−λ
+

λ

λ−λ
≤

λ

λ−λ
OR

jr

jrjf

jr

jfj

jr

jrj

         ...……...Eq (4.2) 

where  

.,, 21

jr

jrjf

jr

jfj

jr

jrj

λ

λ−λ
≡ε

λ

λ−λ
≡ε

λ

λ−λ
≡ε    ……. Eq(4.3) 

Error analysis based on observations that 12,11 ,........, −= kAAAA  is a sequence of matrices 

computed by a machine having m word-length (Ortega 1963). Assuming that a matrix 

iA is computed from the same machine, such that 1+i
A and 1+iA  are its tridiagonal 

reduction matrices evaluated by using analytical and numerical techniques 
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respectively. And also if )()(
1 .....

i
k

i λ≥≥λ and )()(
1 .....

i
k

i λ≥≥λ  are the Eigen values of 1+i
A  

and 1+iA respectively, as in (Soderquist 1997), the perturbation theorem provides 

maximum rounding effect in j
th

 eigenvalue at (i+1)
th

 iteration as follows: 

 

,max )1()1(

i

i

jf

i

j
j

X≤λ−λ ++
 …… Eq (4.4) 

where )1(
)1(

+
+ −= i

ii AAX  for .2,...,2,1 −= ki  Substituting Eq. (4) into Eq. (3), 1ε  can be 

written as: 

1

2

1

1

)1()1(

1 max
+

−

=

+

++

λ
=

λ

λ−λ
=ε

∑
i

jf

N

i

i

i

jf

i

jf

i

j

j

X

          …………… Eq (4.5) 

4.4 Comparison with Jacobi Based CORDIC Algorithm 

The proposed architectures have been tested by using five input data sets of images at 

different resolutions. The performance of the architectures have been evaluated in the 

context of accuracy, time of execution and power consumption and then compared 

with CJA-based system.  

 

a) Accuracy : 

To calculate the accuracy of the proposed architectures, as discussed in Section-3, an 

experimental set up has been created on ML403 board with XC4VFX12 device. Five 

data sets, with twenty images in each set, were formulated to generate co-variance 

matrices. These co-variance matrices were distinct because they were generated using 

images of different resolutions (Spacek 2008). 

Table- 4.3 gives a comparison of first leading Eigen values calculated by using the 

proposed architectures and Matlab eig function for images of different resolutions. It 
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is evident from the table that the floating point architecture has precision equal to that 

of Matlab except for the image at 300 x 233 resolution, where a nominal error is 

observed. The last column of Table- 4.3 shows fixed point architecture error 

compared to Matlab. Although there is a small loss in accuracy, which could be 

ignored for a pattern recognition application (Siwabessy 1999) yet it is preferred 

because the architecture is inherently faster compared to floating point and PC based 

evaluation. For a 20 x 20 input matrix the observed error of fixed point architecture 

was 0.021% whereas, for a 16 x 16 matrix the reported error for CJA was 0.43% 

(Bravo 2006). Thus, our fixed point architecture is considerably accurate than CJA.  

Error bound of an algorithm is evaluated by considering perturbation in the evaluated 

data whereas, a perturbation which is observed due to the rounding effect of an 

iterative process, depends upon the word-length of a machine (Wilkinson 1962, 

Ortega 1963). If N and L represent maximum allowable iteration and machine word 

length respectively then according to Ortega the error bound of HH (
HHMε ) is 

 .*
)59628601.6(1

)59628601.6(
12/3

2/3

A
mNN

mNN
HHM 









−+−

−+
≤ε       …… Eq (4.6)

 

where 
1A  represents the matrix norm of a co-variance matrix A1. This norm could be 

either the Euclidian or ;. ;. Table- 4.4 is computed using Eq. (6) for N=20, m=2
L
, 

L=32 and Euclidian-norm of
1A .  

Paul et al. have evaluated the error bound of CJA ( CJAε ) for its fixed point 

implementation by using Wilkinson’s work given by (Wilkinson 1962, Paul 1995). 

)1(
2

2
)42(

2

1
2

1 −−
−≤ε

dN)N-1(
NCCJA

                .….. Eq (4.7) 
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 Table-4.3 Percentage error of proposed architectures with reference to Matlab based 

eigenvalues. 
 

Image First Leading Eigenvalue % Error 

resolutions Matlab Float Fixed Float Fixed 

112x87 2977474304 2977474304 2976270848 0 0.0404187 

118x 146 8385567744 8385567744 8386328576 0 0.0090731 

263x 204 16393589760 16393589760 16394962944 0 0.0083756 

300x 233 21360439296 21360447488 21351821312 3.835E-05 0.0403455 

376x 292 33547739136 33547739136 33550653440 0 0.008687 
 

 

 

 
 Table-4.4  Error bound of HHM for five image data sets  

using fixed-point architecture shown in Figure-4.2. 
 

Image Dimension Error 

122 x 87 7.20E-11 

188 x 146 1.20E-10 

263 x 204 1.69E-10 

300 x 233 1.93E-10 

376 x 292 2.41E-10 
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In Eq. (2) 2
(-d-1)

 is machine accuracy where d is digits length according to machine 

architecture. Taking N =20, C=5 and d=21 for a 64-bits machine architecture, the 

error bound of CJA, using Eq. (7), is evaluated as 6.36E-3. The worst error bound in 

Table- 4.4 is 2.41E-10 which is significantly better than 6.36E-6. This demonstrates 

that fixed point HH implementation, as discussed in Section-3 is better than CJA. 

b) Power Consumption : 

Power consumption by an FPGA is dependent upon the resources engaged by an 

architecture and its operating frequency (Shang 2002). To calculate the power 

dissipation of our architecture, experiments were performed on ML403 Xilinx board 

having Virtex4Fx device which has 5472 slices, 1094 Flip-flops, and 32 DSP units. 

The hard processor core of the FPGA was instantiated at 110 MHz. It was observed 

that floating architecture (Figure-4.1) occupied 1915 slices while fixed with 31 

rounding bits consumed 1970 slices for a 20 x 20 image data matrix.  

CJA implementation on Virtex II-Pro (XC2VP7) with 24 rounding bits for an 8 x 8 

image data matrix consumed 2512 slices. The slices used by proposed architectures 

were less than CJA, but both systems were using different Xilinx devices. It was 

investigated that XC2VP7 Xilinx device had 4928 slices containing 11088 logic cells. 

Whereas, XC4VFX12 Xilinx device had 5472 slices containing 12312 logic cells 

(Daempling 2010, Xilinx 2010). Thus number of logic cells per slice are constant for 

both Xilinx devices.  

The power consumed by CJA was then calculated and it was ~408 mw at 110 MHz 

operating frequency (Shang 2002). Whereas, power consumed by our floating and 

fixed architectures was ~283 mw and ~291 mw respectively as shown in Table- 4.5.   
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Table-4.5 Power and time estimation of floating and fixed architectures on Virtex4Fx. 

 

Performance Parameters 

Architectures 

Floating Fixed 

Resources 

Slices  1915  1970 

LUTs % 18 18.007 

Flipflops % 21 21.006 

Power dissipation (m watts) 283 291 

Execution 

Time 

Software (µsec) 29.46 13.14 

Hardware (nsec) 10 170  

Interconnects 3.6 3.6 

Total  (µsec)  33.07 16.91 
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In short, keeping in view the size of our data set and number of slices engaged by our 

architectures, one can comfortably claim that our proposed architectures are resource 

efficient compared to CJA. 

c) Execution Time : 

Execution time of HH consists of time consumed by a) software layers; b) hardware 

layers and c) interconnects. To calculate execution time of software layers Xilinx 

microprocessor debugger (XMD) tool was used. XMD provides low level machine 

instructions and the time required to execute these instructions can be calculated using 

PowerPC data sheets (IBM 2006, PPC 2005). It is observed that fixed point and 

floating architectures consumed 1446 and 3274 cycles with 13.14 µs and 29.46 µs 

respectively.  To calculate time for hardware layers, post layout synthesis report was 

used which gave 10 ns and 170 ns for floating and fixed point architectures 

respectively.  

In addition to hardware and software layers time, interconnects between different 

components in the co-design architecture also consume time which cannot be 

overlooked. Although these interconnects are implemented through hardware-based 

FIFOs, yet they consume ~9 ns for 32-bits data. And for a 20 x 20 matrix the time 

consumed by the interconnects is ~3.6 µs. Thus, the total execution time for fixed and 

floating architectures are ~16.91 µs and ~33.07 µs respectively as shown in Table- 

4.5. 

Bravo et al. demonstrated that CJA co-design implementation consumed 24.15µs for 

a 16 x 16 matrix (Bravo 2006). Our fixed point architecture, which is also based on 

co-design technology, consumed 16.91 µs  for a 20 x 20 matrix. Comparison of the 
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data revealed that our proposed fixed point architecture is at least 30% time efficient 

than CJA. 

Based on the results summarized in Table- 4.3, 4.4 & 4.5, one can conclude that fixed 

architecture, shown in Figure-4.2, provides a better implementation for the evaluation 

of Eigen values on FPGA.  

4.5 Summary 

Fixed three-layer architecture for the implementation of Householder algorithm on 

FPGA was presented. In most of the digital signal and image processing applications, 

Eigen values are integral part but computationally intensive. Recently, coordinate 

rotation digital computer (CORDIC) based Jacobi algorithm (CJA) has been used for 

the evaluation of Eigen values on FPGA. CORDIC uses trigonometric functions, 

counterpart of square root, for the evaluation of eigenvalues. However, CJA inherits 

some error in the eigenvalue’s evaluation even for a small symmetric matrix because 

CORDIC computes trigonometric functions by using vector rotation approximation. 

In this chapter, we present a new FPGA-based architecture to implement Householder 

(HH) method for the evaluation of Eigen values by employing non-restoring square 

root algorithm.  

The validity of the proposed architecture has been checked by using input data of 

images at different resolutions. Eigen values of the input matrices have been 

evaluated. The performance of the proposed architecture was gauged by comparing 

accuracy time consumed and power dissipation with its counterpart.  
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Our proposed architecture demonstrated an improvement up to 30% in time and 10
-7

 

decimal places in accuracy than CJA. The validity of the proposed architecture is 

checked by using five data sets for a real-time face recognition system. It could be a 

better choice for the Eigen values based face recognition system. 
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CHAPTER 5 

 
EFFICIENT EVALUATION OF VECTOR NORMALIZATION 

5.1 Introduction 

Eigen values are used for the extraction of features in a face recognition system. Their 

evaluation is time consuming but is an important part of a pattern recognition system 

(Niklas 2007, Stavros 2003). Decomposition and orthogonalization are the two main 

strategies to compute Eigen values. Orthogonalization is faster compared to 

decomposition (Sharma 2007) and it also provides better accuracy. However, it has 

convergence problem when the co-variance matrix is associated with high-resolution 

images. Modified Gram-Schmidt orthogonalization (MGSO) used in fast PCA solves 

the convergence issues but requires additional vector normalization (Sajid 2008-a). 

Normalization is an essential but time consuming part of MGSO and is applied 

iteratively. 

Normalization in addition to other arithmetic operations involves square root 

operations. A fixed-point square root operation is efficient than its floating-point 

counterpart, but conventionally it loses precision due to algorithmic complexity. For 

the sake of efficiency Piromsopa et al. have implemented non-restoring algorithms on 

FPGAs to meet stringent time requirements of a real time system (Piromsopa 2001).  

In face recognition Euclidian length normalization may provide more accurate results 

than norm2 (Sajid 2008-a, He 2005). Its time complexity is O (n logn), where n is the 

rank of a square matrix (Stavros 2003, Gavish 2006).  
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Normalization could be made more time efficient using a co-design process (Chin-

Chin 1996, Benkrid 2010). Co-design methodologies are employed to achieve trade-

offs among execution time and power consumption. In this chapter, three co-design 

architectures are presented by employing fixed-point operations, pipelining and 

instruction level parallelism (ILP) for vector and matrix normalization on FPGAs. 

Floating point operations are costly in hardware, especially the square root, since they 

use more chip resources and consume more cycles compared to integer operations 

(Sajid 2010-a, Oberstar 2007, Liao 2000, Yamin 1997, Peter 1996). Integer arithmetic 

by its very nature is resource and time efficient and its precision depends upon the 

chosen q.n format (Wilkinson 1962, Ortega 1963, Burden 1997). To select 

appropriately a q.n format, a debugger is employed, which provides an estimation of 

the operand ranges for various types of operations.  

5.2 Design Flow 

In Figure 5.1, a design flow of vector normalization is presented at abstract level. 

Step-1 of the design flow shows a block containing a normalization algorithm with 

input and output connectors. In this step a high level algorithmic verification is 

completed. Step-2 provides a low level detail of the algorithm including arithmetic 

operations, data structures and data movement. To ensure optimum utilization of the 

available resources, co-design methodology is normally used for the implementation 

of an algorithm, which is discussed in Step-3. In this step, time consuming parts of the 

algorithm are identified. Loop unrolling and pipelining of computationally intensive 

parts can lead to time efficient implementation, but may increase power dissipation. In 

Step-4 a trade-off between execution time and power dissipation is finalized by trying 

various combinations of hardware parallelism.  
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  Figure-5.1 Illustrate implementation of an algorithm using co-design 

methodology. 
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5.3 Architectures 

5.3.1 Embedded Processor Based— Archi-I 

Figure 5.2 shows three layers architecture for vector normalization on an FPGA. The 

application layer consists of a data producer (DP), a data consumer (DC) and a fixed-

point normalization unit (FxN). DP and DC are responsible of providing data to FxN 

block and getting it back from real-time operating system (RTOS) layer. FxN 

translates floating-point instructions into fixed-point integer instructions. In order to 

facilitate these interactions, two FIFO queues are involved. The hardware layer does 

not contain floating-point unit (FPU) because it targets fixed-point operations created 

by FxN. FPU has been avoided because it requires high FPGA resources and involve 

large number of machine cycles per operation. The architecture shown in Figure-5.2 

computes normalization without floating instructions. It is assumed that the proposed 

architecture should be time efficient than a software-based floating architecture (Sajid 

2010-a). Because, a pure software based floating-point implementation of an 

algorithm is much slower compared to its fixed-point hardware realization, therefore, 

an efficient hardware implementation of FxN unit is our primary objective. 

5.3.2 Dedicated Component Based — Archi-II  

Figure 5.3 presents our second architecture referred to as dedicated component based 

architecture. In this architecture, FxN block of Figure 5.2, was redesigned and labeled 

as IPNM. It was then integrated into the processor local bus (PLB) of the PowerPC 

core processor as IPFxN instead of integrating it with the On-chip peripheral bus 

(OPB) of the previous architecture. PLB is much faster than OPB because it is a 

native bus to the processor and operates at the master clock speed (IBM 2001).  
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Figure-5.2 A three layer architecture to achieve fixed-point vector 

normalization. 
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Figure-5.3 A three layer FPGA-based architecture for fixed point vector 

normalization. 
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IPFxN performs multiplication and add/subtraction operations similar to MAC 

(multiply-and-accumulate) operations. In addition to the MAC operations, division 

and square root operations are also required. The fixed-point square root (FxSqr) 

operation is not advisable to be implemented within IPFxN because it is a 

computationally intensive unit.  

On the other hand, nested hardware processes require stack memory for the call back 

function pointer. The alternative is to design FxSqr as a separate process and connect 

it through FIFOs with main component of IPFxN, as shown in Figure 5.3. This will 

remove the need of the stack memory and its associated controller. The stack memory 

may be a less expensive solution, but its management requires customization of the 

embedded core’s functionality.  

Thus, in this architecture, fixed-point normalization module is moved from the 

software layer (Figure 5.2) to the hardware layer as shown in Figure 5.3. This has 

increased slightly the consumed resource of the target FPGA. But, keeping in view 

the design strategy, it is assumed that it could significantly improve the execution 

time. The resources consumed by the hardware layer of Figure-5.3 could be reduced 

further by appropriately eliminating the processor core from the hardware layer. 

5.3.3 PC-Based Implementation— Archi-III  

Figure 5.4 presents our PC-based FPGA architecture without PowerPC embedded 

processor core. In this architecture, only the computational unit IPFxN is placed 

inside the FPGA device. The DC and DP are implemented in a C shell on the host 

machine and the PCI bus acts as the interface between DC and the FPGA. The 

execution time can be estimated using the following Equation: 
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Figure-5.4 PCI-based architecture for vector normalization wherein the data is 

provided by the host machine to a 32-bit fixed-point normalization unit defined in an 

FPGA. 
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>?@ � >	 � >%A � >9 � >B!                                                                              ......Eq (5.1) 

 Where >?@  is the execution time for normalization of a matrix or a vector, >	  is the 

time consumed by the host application, >%A is the time taken by the two ends of the 

hardware layer for data transfers,  >9 is the time consumed on the PCI bus and >B! is 

the time taken by the IP core. The IP core has the same design as in Figure 5.3.  The 

two ends in the hardware layer are: (a) the FPGA on the Annapolis Microsystems 

Wildstar II-PCI board with two Xilinx Virtex II XC2V6000-5 (b) the software 

controller at the PC OS side.  

The PCI bus operates at 133 MHz and can send 32-bit data in 8 ns for a matrix of rank 

20 (Wildstar-II). But usually the PCI bus takes more time due to some 

acknowledgement signals and possible packet loss overheads. It has been observed 

that >9 is about 6.4 µs for a square matrix of rank 20. The value of >	 dominates in 

Equation (5.1) for this architecture because the respective process executes in a C 

shell on the PC. This architecture uses minimum resources of the target FPGA 

because it does not require FIFOs and embedded core. The share of >	 value in 

Equation (5.1) will be reduced when number of normalization processes are in 

millions. 

5.4 System Performance and Comparative Analysis 

The precision of fixed-point normalization depends on the proper adjustment of 

decimal point operands/results in q.n format. Thus, the accuracy of normalization is 

dependent upon input data; however, it does not depend upon the implementation 

methods discussed in Section-5.3. To estimate the performance of the proposed 

architectures for a face recognition system, four popular databases have been selected 
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namely: Yale, ORL, FERET and CAS-PEAL databases (Yale2002, Face 2009, Wen 

2008, Phillips 2000). 

Yale faces database contains 165 images of 15 subjects, with 11 images per subject. 

These images have variation in illumination, including center light, left light and right 

light as shown in Figure 5.5. ORL database contains 400 images of 40 personnel with 

variations in facial expression, like open and closed eyes, smiling and non-smiling, 

with and without glasses as shown in Figure 5.6.  

Similarly CAS-PEAL is a Chinese faces database containing 99,594 images of 1040 

subjects. A total of nine cameras were used simultaneously to capture images across 

different poses, facial expressions, lighting and angles as shown in Figure 5.7. Finally 

FERET is a big faces database containing 14,126 images of 1199 subjects and a 

specimen from those is shown in Figure 5.8. 

The performance of the proposed architectures is estimated by evaluating accuracy, 

execution time and power consumption. A set of twenty randomly selected images 

from the four databases were tested. The images were selected having different 

resolutions i.e., 70x80, 128x192, 96x120 and 100x100 for the ORL, FERET, CAS-

PEAL and Yale databases respectively.  

To measure the accuracy RMS metric is used. As envisaged, the same accuracy was 

observed from the three proposed architectures, discussed in Section-5.3. Because 

error in fixed-point depends upon q.n format instead of implementation techniques. 

For reference, floating-point based normalization was performed using Matlab and it 

was then compared with the evaluated values obtained from the proposed 

architectures. The minimum and maximum RMS errors are shown in Figure 5.9.  

 



 

 

Figure-5.5 Sample images from Yale faces database.

Figure-5.6 Sample face images 

Figure-5.7 Sample images 

database. 

Figure-5.8
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5.5 Sample images from Yale faces database. 
. 

5.6 Sample face images from ORL database. 

Sample images from CAS-PEAL faces 

5.8 Sample images from FERET faces database. 



 

 

Figure-5.9 The minimum and maximum observed errors of four databases w.r.t. 

floating point values.
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9 The minimum and maximum observed errors of four databases w.r.t. 

floating point values. 
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The average histogram of gray levels for randomly selected images from the 

databases under discussion is shown in Figure 5.10. The highest frequency, as evident 

from Figure-5.10, is observed in FERET whereas, it is lowest in Yale. On the other 

hand, ORL and Yale have the smallest distribution of values in the central region than 

FERET and CAS-PEAL. Furthermore, their maximum frequency in central region is 

smaller than FERET and CAS-PEAL. On the other hand, the maximum frequency of 

gray levels in central region of ORL and Yale is approximately 60 and 50 

respectively. Whereas, it is 300 and 90 for FERET and CAS-PEAL respectively as 

shown in Figure 5.10.  

In normalization process the frequency values of gray levels, observed in an image, 

are summed and then used as a normalization factor. Database having higher 

normalization factor yield relatively lower error as evident from Fig 5.9 and 5.10. 

However, the error range for all the databases is of the order of 10
-3

, which is within 

acceptable margin for a face recognition system using MGSO (Giraud 2003). 

Table-5.1 shows the execution time and power dissipation comparison of our 

architectures presented in Section 5.3. The architectures were evaluated based on the 

FPGA resources required and the time taken to complete the normalization process. 

The power dissipation was estimated using Xilinx data sheets and the Xilinx XPower 

tool in the integrated simulation environment (ISE) (Shang 2002, Klein 2005). The 

execution time of software processes was noted using the Xilinx EDK tool (EDK 

2006). Whereas, the execution time of hardware processes like IPFxN was estimated 

using synthesis reports.  
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Table-5.1 represents a trade off amongst execution time, resource utilization and 

power dissipation for three architectures discussed in Sections 5.3.1, 5.3.2 and 5.3.3. 

Archi-1 cannot be materialized using piplining and ILP techniques because it uses a 

computing unit (FxN) which is implemented in the operating system shell. Whereas, 

Archi-II and Archi-III were tested for three possible implementations: a) pipelined; b) 

un-pipelined; and c) loop unrolling. 

The architecture employing pipelining and loop unrolling (PLU) techniques is usually 

time efficient.  It is observed that Archi-I, which is implemented without PLU, 

consumes 232.14 µs, whereas Archi-II with PLU takes 9.3 µs. But Archi-III with PLU 

takes 15073 µs, out of those 15064 µs are for data feeding. Thus, execution takes only 

9 µs. It is pertinent that execution time of Archi-III for large number of operation, as 

shown in Table 5.1 is significantly lower than Archi-I & II. Archi-III is 200 times 

faster than archi-I when 100 million operations are involved. 

Normalization in time MGSO typically comprises of data feeding time and execution 

time.  Average time in Table 5.1 is computed by using {(Ops * ET) + DFT} / Ops; 

where Ops is number of normalization processes, ET represents execution time for an 

operation and DFT is data feeding time. The data feeding time for Archi-I and Archi-

II is defined by the DC and DP component of the circuit whereas the same for Archi-

III is defined collectively by the PCI bus and the DC and DP units. It is pertinent to 

mention that the bandwidth of a PCI bus depends upon the host machine and it is 

much slower than the DC and DP units because it transfers data using PC1 connector. 

Whereas, DP/DC is transferring data by using on-chip FIFOs channels. Therefore, 

data feeding time of Archi-III is much higher than Archi-I&II.  
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But this data feeding time is once for a matrix regardless of its rank. Consider a 

matrix of randomly selected 200 images, it requires approximately 10
6
 normalization 

operations to complete MGSO process. Thus, for such a case, which is usually 

observed in image processing, there is not much difference in execution time of a 

normalization process by involving Archi-II&III with PLU. 

It is observed that Archi-II with PLU consumes 4641silices but Archi-III also with 

PLU requires 1794 slices because it uses off-chip PCI connector for data transferring 

and FPGA resources only for normalization process. Thus, power dissipation of 

Archi-III is 62% less than Archi-II. By considering the data of Table-5.1, one can 

conclude that Archi-III with PLU provides an optimal solution for FPGA-based 

normalization considering the accuracy, execution time and power consumption.  

5.5 Summary 

Three architectures employing fixed-point hardware for the implementation of vector 

normalization on an FPGA have been presented. These architectures were designed 

and analysed on the basis of accuracy, execution time and power consumption. The 

impact of pipelining and instruction level parallelism was studied as well using an 

architecture co-design methodology. The suitability of these architectures was 

evaluated based on the user requirements. It is demonstrated that the host-to-PCI 

based architecture provides an optimum combination of accuracy, processing time 

and power consumption. The PCI-based architecture for an image processing 

application provides over 200 times faster solution compared to the software-based 

solution and is 62% power efficient than the IP-based architecture. Furthermore, this 
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architecture provides an accuracy within 10
-3

 compared with their software-driven 

floating point counterpart.  
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CHAPTER 6 

 
FACE RECOGNITION USING GRAY LEVEL FREQUENCY 

DISTRIBUTION CURVE (FDC) 

6.1 Introduction 

Extensive research has been carried out in face recognition because of its potential 

use in defense, security and commercial applications (Belhumeur 1997, Zhao 2003, 

Huang 2009). It is a complex type of biometric due to its non-intrusive nature. 

Efforts have been made to mitigate the complexity of a non-intrusive environment 

using physiological characteristics of the human head, but with substantially reduced 

accuracy (Middleton 2006).  

Researchers classify face recognition algorithms into three catageries: a) holistic, b) 

feature-based and c) hybrid (Zhao 2003). The holistic category of algorithms 

considers face as a global entity; feature-based algorithms treat the face as a 

combination of features. It is an established fact that holistic algorithms are 

computationally more efficient than feature-based techniques (Zhao 2003, Zhang 

2005).  

PCA is a classical holistic method. It computes Eigen values in O (n
3
) time where n 

is the rank of a covariance matrix (Turk 1991). Its demonstrated accuracy is less than 

90% even if the system is trained with 50% images per subject (Cai 2006, He 2005).  

LDA is another holistic algorithm which normally provides accuracy better than 

PCA. LDA works better when the dimensionality of the transformed space is one 

less than the classes used in training. It requires 80% of the class as training images 
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(Hu 2007, Eleyan 2006). Its computational cost is higher than PCA because it uses 

PCA along with multivariable normal distribution of a co-variance matrix.  

FDA is another algorithm which works well with the reduced space and it uses LDA 

to optimize the sample data point projections (Belhumeur 1997, Eleyan 2006, 

Martinez 2001). However, both FDA and LDA use a global Euclidian structure 

which ignores the local face detail, thus, offering low accuracy.  

LPP is a recent feature-based method that approximates the Eigen function on the 

Laplace Beltrami operator and preserves the features by using a neighborhood graph 

technique (Cai 2006, He 2005, Hu 2007). It calculates a weight matrix using an 

objective function which is computed for each element of the associated matrix.  The 

neighborhood graph is a core part of the Laplacian faces but it is computationally 

intensive because each node has k edges, where k is the dimensionality of the 

reduced face space. Furthermore, the range of the neighborhood around original data 

points is defined by the number of Leading Eigen Values (LEV). But the selection of 

minimum LEVs is not addressed in LPP. At least O (n) additional time is required 

after space reduction using PCA. Thus, the computational cost of LPP is more than O 

(n
3
) and the maximum reported accuracy is less than 94% (He 2005).  

OLPP was developed in 2006 and it has improved LPP results using an orthogonal 

space because orthogonality usually provides better discriminating power in face 

recognition (Cai 2006, He 2005, Hu 2007). On the other hand, OLPP has further 

increased the computational cost and provided a maximum accuracy of 96.5% for the 

ORL database (Cai 2006). 
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Kussal’s work (Kussul 2006) based on permutation coding claims 99.9% recognition 

accuracy for ORL database. However, it uses half of the images for training and half 

for testing. This criterion of training and testing could not be applied for a real-time 

system.  

In this chapter a technique has been proposed which extracts global structural 

information by using gray level frequency distribution curve (FDC). The proposed 

FDC technique needs only one training image to provide reliable recognition within 

O (n
2
) time. Ninety-eight percent accuracy has been observed with the proposed 

technique for ORL and PIE databases, and 96.5% for Yale database.  

To improve the time efficiency, hardware realization of the proposed technique has 

been achieved by developing an FPGA based architecture, which provides recognition 

in less than 200 ns. Thus, the proposed FDC technique is a suitable candidate for 

reliable real-time face recognition systems.  

6.2 Overview of Reduced Space Methods 

Let us consider a set A of d sample/training images having n
2
 pixels each: assume 

that each image xi in A = {x1,x2,….,xd}, for i=1, 2, …, d, belongs to one of m classes 

{X1,X2,…,Xm}. Let us also consider a linear transformation mapping of an original 

d*n
2
-dimensional image space of A into a d-dimensional feature space as discussed 

below. 

6.2.1 Eigen Faces 
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In this technique the basis vectors are computed in the reduced dimensional space. 

They are denoted by CD  EFG H � 1,2,3… , J. These vectors are computed usually by 

tridiagonalization and subsequent decomposition of the co-variance matrix.  

The co-variance matrix is computed as K �  ���, and the basis vectors for d*d 

dimensions are computed instead of original space n
2
*n

2
, as 

  >D �  juA

L juA L  $,J >M�, N6OP � [ ]dttt ..........21  

Then, we collect the projection of each of the h leading Eigen vectors on each of iA  

in a matrix hdW × as follows: 

( ) hjditAjiW j
T
i .....,,3,2,1&.....,,3,2,1;, ===

. 

 

Let Q be a column vector of length n
2
, representing an input image. Define three 

column vectors RS, TS, US, as follows: 

RS � Q � V                                                                                                                     ……  

Eq (6.1) 

where V is the mean of the A matrix. The following equation represents the projected 

space and Equation (6.3) represents an error for an input image in the training image 

space. 

hjtDjW j

T

NN .....,,2,1;)()( ==
                                      ……  Eq 

(6.2)  

.,.....,3,2,1;)()( diWofcolumniWiV
Tth

NN =−=
                 ……  Eq 

(6.3)   

PCA arranges the given data into two classes and then PCA maximizes the variance 

for the two classes but it ignores local details in computing the variance. However, it 

has the minimum time complexity O (n
3
) for computing the basis vectors. 
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6.2.2 Fisher Faces 

Eigen faces maximize the class variance and ignore within class scattering. This 

limitation has been removed in LDA. Fisher faces use LDA to seek the direction of 

an efficient discrimination between classes (Hu 2007). LDA computes a variance 

between classes and a variance within class using the original sample space (He 

2005, Eleyan 2006). Fisher faces usually performs better when the data of a class is 

unimodal (Hu 2007).  

Let Vb and Vw be the variance between classes and within a class, respectively:   

UW X  ∑  Z%X� ��% � �2  ��% � �2�                                                                   ……  Eq (6.4) 

 U[X ∑  Z%X� ∑ 3\D% � �%4  3\D% � �%4�S]DX�                                                    ……  Eq (6.5) 

where QDis the number of images in a class m is the total number of classes and \D%   is 

the j
th

 sample in the i
th

 class. An optimal projection T^_�  to maximize the ratio of 

the determinant 
`a
b̀ is: 

T^_� � arg eZf@ ge
�`aeg

ge� b̀eg                                                                      ……  Eq (6.6) 

T^_� �  #T�,T,… . ,Th*,  T^_�  contains the h largest Eigen vectors. Projections 

between classes can be deduced from within the class variance multiplied with 

corresponding Eigen values (Belhumeur 1997). However, LDA uses supervised 

learning and emphasizes global structure because the denominator in Equation (6.6) 

is to be minimized whereas the numerator is to be maximized.  

6.2.3 Locality Preserving Projection (LPP) 
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LPP tries to preserve the local structure or geometry of an image in the sampled data. 

Let i% be the one-dimensional mapping of �%  (� j k�� ) and �i j k�i2 that 

provides the best preservation of the local structure in the underlying distribution. It 

can be obtained by:  

 [Z%6l� |k�� � k�i|| ;� � i; m n2                                                           .…..  Eq (6.7) 

Let o � � � i. Then, Equation (6.7) can be written as: 

 [Z%6l� |k�o|| ;o; m n2                                                                                ……  Eq (6.8) 

where k is a transformation matrix that can be treated as constant and defines a new 

indicator function Uij,as follows: 

p%D � q           ;�% � �; m n    F>M�Gk+r�s
� t                                                                       ……  Eq (6.9) 

Further, defining a diagonal matrix R%% �  ∑ p%DD  and using estimation theory to 

solve Equation (6.8): 

 E(z)�  P  �\R\� � \p\�2, where E is the estimation of a large number and z=x-y 

l�o2 �  P  \u\� , where L= D-U is a Laplacian matrix and the i
th

 column of matrix X 

is �%. 

6.2.4 Orthogonal Laplacian Faces 

Let $ v  wZ be a projective map. The locality function can be defined as follows: 

E�$2 �  f�x^x�ff�x_x�f                                                                                                ……  Eq 

(6.10) 

The orthogonal basis vectors $�,   $, $&, … . . , $y  can be found by minimizing Equation 

(6.10) with the constraint $y�$�X$y�$X $y�$&X…… �  $y�$y'�X 0. Where 
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$� � argfZ%6 $�
�\u\�$�$��\R\�$� 

$ � argfZ%6 $
�\u\�$$�\R\�$ 

: 

$y � argfZ%6 $y
�\u\�$y$y�\R\�$y 

This minimization has been accomplished with a Lagrange multiplier and with the 

additional constraint $y�\R\�$y � 1to get 

zy � $y�\u\�$y$y�\R\�$y  

6.3 FDC Faces 

Histogram features can be combined with kernel learning methods to obtain excellent 

results in face recognition (Phillips 2000, Gao 2007). Local binary pattern (LBP) is 

one of the histogram feature extraction techniques in spatial domain which can 

capture the geometry of a face object and can provide efficient face recognition 

(Ahonen 2006). Gabor pattern combined with LBP has shown great results in face 

recognition using FERET database (Zhang 2005-b). Recently, kernel learning of 

histogram of local Gabor phase pattern (K-HLGPP) based on Daugman technique 

has been used in iris and palm print recognition showed high accuracy in face 

recognition as well (Daugman 1993, Zhang 2008).    

Nearest neighbor classifier with chi-square/histogram intersection has also been used 

for face recognition (Barla 2003). Furthermore, Support Vector Machine (SVM) 

classifier uses Gabor wavelet (GW) to achieve positive results in recognition 
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(Belongie 2002). Another classifier, Bayesian is also used for face recognition 

(Martinez 2001, Moghaddam 1997, Duda 2001, Phillips 1998).   

None of the techniques mentioned in the preceding paragraphs demonstrated higher 

accuracy while consuming lesser time than O (n
2
) especially with few training 

images. In this research, we develop a new classifier based on cumulative frequency 

distribution by using standard variance vector (SVV). SVV acts as a template kernel 

and is represented as a graph for GMT.  

6.3.1 Classifier for FDC 

Figure-6.1 shows cumulative frequency against gray levels. The figure is ploted 

using three images of the same class and three images from different classes. It is 

observed that plots belonging to the same class have almost identical profile.  These 

plots can be divided into three distinct regions namely JI, J2 and J3 as shown in 

Figure 6.1.  These regions can be used to define three different threshold values 

corresponding to each region.  This should not increase the search time because each 

region is computed independently.  

Let N �  {��, �, …… , �Z| be a training set having m classes/columns. To mitigate 

the illumination effects, Mittal’s relation for normalization of test and train images 

was defined in Section 3.2 is used. Define a transformation h on T which computes 

the gray level distribution as follows: 

M 3�%D4 � ,%D , where i � 1,2, … ,- and H � 0,1,2, … ,255                      ……  Eq (6.11) 

We then normalize the distribution: 
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Figure-6.1 Shows distribution of gray levels for images of the same class 

compared with those images belong to different classes. 
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M,%D � 6�]��                                                                                              ……  Eq (6.12) 

where G� defines the resolution of an image. We accumulate the distribution as 

calculated in Equation (6.11) which provides a gradually increasing order of 

frequencies of gray level appearances. Whereas, each row of the normalized 

M, matrix represents a reference for the respective class.  

Let M> be a transformed vector obtained by applying Equation (6.11) and (6.12), 

which is subtracted from each row of the M, matrix to populate a vector M.    

 �%S � M,%D � M>SD,    where Q is the number of test images               ……  Eq (6.13) 

To maximize the variance between classes, each vector in Equation (6.13) is divided 

into three regions. Based on this concept the following objective function has been 

developed: 

 p%D � q      r>J��%S]�2 m n�$,J r>J��%S]O2 m n $,J r>J��%S]�2 m n&    otherwises
� t     

Where ε�,   ε,   ε&  v {0,1|          
  

The lengths j1, j2, and j3 as shown in Figure 6.1 have to be defined in such a way that 

the computed thresholds can be compared with n�,   n and  n&. It has been observed 

that j1�j3 m� j2 provides better results under the constraint H1 �  H2 � H3 � 255.  

6.4 Software Based System Performance  

Many experiments have been performed to evaluate the performance of the proposed 

technique. For this purpose, the most popular holistic as well as feature-based 

techniques; namely PCA, LDA, LPP, and OLPP, are selected for comparison. Eigen 

face (PCA) and Fisherface (PCA+LDA) are holistic techniques, whereas, 

……  Eq (6.14) 



 

 

123 

 

Laplacianface (PCA + LPP) and O-Laplacianface (LPP + orthogonality) belong to 

the set of feature-based techniques.  

Three popular face benchmark databases were used to validate the proposed 

technique. They are Yale. ORL, and PIE from the CMU databases (Yale 2002, Sim 

2003, ORL 2009).  

Yale database contains 165 images of 15 subjects and each image of a subject shows 

a different facial expression or situation involving smile, sadness, eyeglasses or flash, 

as shown in Figure-6.2.  

Train2, Train3, Train4 and Train5 represent the training sets from Yale database and 

contain a randomly selected set of 2, 3, 4 and 5 images per subject, respectively. All 

the remaining images are used for testing in the experiments. The false acceptance 

rate (FAR) and false rejection rate (FRR) were defined in Section 3.5 and they are 

used to measure the minimum error rate (MER). Furthermore, MER was discussed in 

Section 3.7 and is treated as error rate (ER) in this chapter. To remove stochastic 

errors, an average value of the error is reported. The number of dimensions is equal 

to the number of feature vectors used in an experiment.  

Figure-6.3 shows ER profiles of PCA, LDA, LPP, OLPP and the proposed technique 

for Yale database. The accuracy of PCA, LDA, LPP and OLPP increases by 

increasing the dimension of a given training set. The figure also shows that the 

accuracy for the same dimensionality improves, when the system is trained with 

large training sets.  For example, PCA shows ~55% and ~45% ER at 25 dim in 

Figure-6.3 (a) and 6.3(d), respectively.   
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Figure-6.2 Sample images of a subject from Yale face database. 

Figure-6.3 Error rates of PCA, LDA, LPP, OLPP and the proposed technique for Yale database. 
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Table-6.1 MER comparison of PCA, LDA, LPP, OLPP and the proposed technique 

for Yale database. 
 

Technique 
Training Set 

Train2 Train3 Train4 Train5 

PCA 56.5%(25) 51.1%(44) 47.8%(58) 45.2%(71) 

LDA 54.3%(9) 35.5%(13) 27.3%(14) 22.5%(14) 

LPP 43.5%(14) 31.5%(14) 25.4%(14) 21.7%(14) 

OLPP 44.3%(14) 29.9%(14) 22.7%(15) 17.9%(14) 

Proposed 3.5%(15) 3.5%(15) 3.61(12) 5.53%(15) 
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The ER curve for LDA is different than that of PCA, LPP and OLPP but is quite 

similar to that of proposed technique. The LDA accuracy initially improves with an 

increase in the dimensions, but after a certain dimensionality it becomes constant. 

This trend can also be seen in the proposed technique however the decline rate and 

the initial values of ER are different. On the other hand, LPP and OLPP show convex 

profiles and their curvature becomes deeper (more accurate) for larger training sets as 

shown in Figure-6.3 (c & d). Figure-6.3 clearly demonstrates that the proposed 

technique has the lowest ER for all training sets and is almost independent from 

dimensionality.   

Table 6.1 shows MER values calculated from Figure-6.3 for PCA, LDA, LPP, 

OLPP. It clearly demonstrates that the proposed technique provides significantly 

better accuracy relative to its counterparts. ORL face database contains 400 images 

of 40 subjects. These images have variations in facial expression, like open or closed 

eyes, with or without smile, and extra facial features like glasses etc. Furthermore, 

the images may show face tilting and/or rotation, as shown in Figure-6.4. The 

training sets are grouped as Train2, Train3, Train4 and Train5 that comprise 2, 3, 4 

and 5 randomly selected images per subject respectively. Experiments for each 

training set were performed while the remaining images of the database were used 

for testing.   

ER values for different training sets are shown in Figure 6.5, whereas, Table 6.2 

represents MER for the same database.  This once again demonstrated that the 

proposed technique is far better in accuracy than its counterparts.  The observed 
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MER for ORL database is better than Yale and it is almost independent of Training 

data set.  

PIE database contains 11,560 images of 68 subjects (Sim 2003). These images were 

captured using 13 cameras operating simultaneously with 21 flashes. They have low 

resolution and contain various facial positions and expressions effects as shown in 

Figure-6.6. 

Four training sets were randomly selected namely: Train5, Train10, Train20 and 

Train30 containing 5, 10, 20, and 30 images respectively. The remaining images 

were used for testing. Thus, our experiments involved exhaustive testing by 

employing a huge database and results are shown in figure-6.7. 

The same FAR and FRR error strategies were used to calculate ER. For Train2, PCA 

starts with a 100% error, then improves gradually and finally shows an MER of 

69.9% at 338 dim. Whereas, LDA rapidly improves its ER from 70% to 31.5% at 67 

dim. LPP and OLPP start with similar ER (about 40%) but OLPP improves rapidly 

and attains 21.4% ER, whereas, LPP reaches to 30% ER at 67 dim. It is observed that 

ER values improve by increasing images in the training sets.  

The ER 21.4% is the MER of OLLP with 108 dimensions and represents the 

minimum among PCA, LDA and LPP. On the other hand, the proposed technique 

starts with a 3.5% ER and reaches a 3.12% MER with 136 dimensions for PIE 

database as shown in Figure-6.7 and Table-6.3.  

The observed MER values for different training sets are shown in Table 6.3. The data 

of the table show that the proposed technique yields 3.12%, 3.12%, 8.74% and 

8.58% MER for dimensions 136, 272, 544 and 696, respectively.  
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Figure-6.4  Sample face images of a subject from ORL 

database. 

10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

40

10 20 30 40 50 60
0

5

10

15

20

25

30

35

10 20 30 40 50 60
0

5

10

15

20

25

30

(a)

Train2

 

 

E
rr

o
r 

R
a
te

 %

Dim

 PCA

 LDA

 LPP

 OLPP

 Propose

(b)

Train3

 

 

E
rr

o
r 

R
a
te

 %

Dim

 PCA

 LDA

 LPP

 OLPP

 Propose

(c)

Train4

 

 

E
rr

o
r 

R
a
te

 %

Dim

 PCA

 LDA

 LPP

 OLPP

 Propose

(d)

Train5

 

 

E
rr

o
r 

R
a
te

 %

Dim

 PCA

 LDA

 LPP

 OLPP

 Propose

Figure-6.5  Error rate of PCA, LDA, LPP, OLPP and the proposed technique for ORL 

database. 
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Figure-6.6 shows ten images per subject for two subjects from PIE database. 
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Figure-6.7 Error rates of PCA, LDA, LPP, OLPP and the proposed technique for PIE 

database. 
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Table-6.2 MER of PCA, LDA, LPP, OLPP and the proposed technique for ORL 

database. 

 
 

Technique 
Training Set 

Train2 Train3 Train4 Train5 

PCA 33.7%(78) 24.6%(119) 18%(159) 14.1%(199) 

LDA 28.9%(22) 15.8%(39) 10.5%(39) 7.75%(39) 

LPP 23.9%(39) 13.4%(39) 9.58%(39) 6.85%(40) 

OLPP 20.4%(40) 11.4%(39) 5.92%(48) 3.65%(59) 

Proposed 1.7%(40) 1.79%(40) 1.9%(40) 1.9%(40) 
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Table-6.3 MER of the PCA, LDA, LPP, OLPP and the proposed technique for PIE 

database. 

 
 

Technique 
Training Set 

Train2 Train3 Train4 Train5 

PCA 69.9%(338) 55.7%(654) 38.1%(889) 27.9%(990) 

LDA 31.5%(67) 22.4%(67) 15.4%(67) 7.77%(67) 

LPP 30.8%(67) 21.1%(134) 14.1%(146) 7.13%(131) 

OLPP 21.4%(108) 11.4%(265) 6.51%(493) 4.83%(423) 

Proposed 3.12%(136) 3.12%(272) 8.74%(544) 8.58%(696) 
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The table shows that the proposed technique’s performance deteriorated for Train4 

and Train5 at high dimensions.    

It can be observed, in general, that the ER for PIE database is higher than that of Yale 

and ORL databases. Because, PIE contains 170 different low-resolution images per 

person. Using Yale and ORL, the proposed technique outperforms regardless of the 

training set and dimensions.  For PIE, our technique provides better results with 

Train2 and Train3; with Train4 and Train5, it remained better for dimensions less than 

150 and 100 respectively, as shown in Figure-6.7 (c & d).  

There is a saturation point in relation to the dimensions after which our technique 

generates a larger ER. It is observed that this saturation point is reached earlier for a 

bigger training set. Thus, the proposed technique provides better results for smaller 

training sets with dimensions equal to the number of classes because the decision 

space created by our technique is based on cumulative frequency vectors. Whereas the 

Eigen space usually used by other techniques is based on basis vectors. 

The Eigen space provides better results  when including  more basis vectors while the 

proposed technique requires optimally  number of vectors equal to the number of 

classes (as for LDA). However, sometimes a minor improvement can be seen in the 

proposed technique by increasing the dimensions, like in Figure-6.7 (a) where its 

MER is 3.62% for 68 dimensions whereas its ER is 3.12% for 136 dimensions.  

Figure-6.3 and Figure-6.5 show the MER values of the proposed technique with 

training sets which are smaller in the cases of ORL and Yale as compared to PIE. The 

proposed technique performance is superior for small training set, ideally one, and 

dimensions equal to the number of classe to facilitate needs of a real-time System.  
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6.5 FPGA Based FDC System Architecture 

Our FDC-based three-layer architecture is shown in Figure-6.8. The feature extraction 

is a computationally intensive part but it is accomplished once, therefore, handled 

offline during pre-processing. This process produces PVs which are stored in the host 

machine. One PV is transferred at a time to the online layer either by PCI or by any 

other bus interface.  

The second layer of the architecture is used for online testing. The digital image, 

which is treated as a matrix of gray levels, requires substantial bandwidth when 

transferred to an FPGA. Such a bandwidth may not be available due to system 

constraints. For this reason, our approach is to convert the image matrix into one-

dimensional IPV which is subsequently transferred to an FPGA even using a low 

bandwidth data bay. The data is received by an FPGA buffer which directs this to the 

on-chip BRAM memory for FDC computation by using Equations (6.11) and (6.12). 

One PV from the pre-stored collection of PVs in the host RAM is transferred and 

compared with IPV.  The classifier as per Equations (6.13) to (6.14) determines 

statistically a possible match (binary decision). This process repeats for all PVs pre-

stored in the host RAM unless a true decision is made by the classifier. Our 

experiments show that on the average twelve iterations are needed for a successful 

recognition. The efficiency of the architecture was further improved (Figure-6.8) by 

introducing an adaptive classification technique for the pre-stored (training set based) 

PVs.  
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Figure-6.8 FDC-based face recognition architecture. 
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The enhanced architecture relies on a process that eliminates the need to test all the 

pre-stored PVs against the online produced IPV. The new architecture is shown in 

Figure-6.9. In this architecture, the Euclidian normalization length of a vector is used 

to calculate tags for pre-stored PVs. The objective is to minimize the number of false 

attempts by introducing the following algorithm in the host machine.       

 Algorithm for the controller to locate the most suitable PV for the incoming test 

image 
 

Step (1): Using the Euclidian normalization length formula 

� � �∑ �$�r��%2���%X� �� �   calculate tags for the stored PVs. 

Step (2): The computed tags for PVs are stored in a vector UZ � �D  , 
  kM�G�  1 � H � -  

Step (3): Apply step (1) for the test image and get a vector and subtract y from each 

element of UZ to generate a Euclidian length difference vector Diff_PV of 

dimension m. 

Step (4): Sort Diff_PV in ascending order and store the difference values with their 

indices in another array F_PV having dimension 2 x m.  

Step (5): The index associated to the first value in F_PV is used to send a PV having 

maximum probability to match with the IPV. If recognition is not 

successful, then choose the next value from F_PV and repeat this process 

until a successful recognition is attained. 

Step (6): Repeat steps 3 to 5 for each test image.  
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6.5.1 Adaptive Controller for FDC  

In Figure-6.9, the host layer has a tag vector, Vm of length m generated during step (2) 

of the above algorithm. In the online layer, two signals are introduced to control the 

next transfer of the PV from the host layer to the online layer. The signal TF_Fag has 

a true value for a matching and false otherwise (i.e., demanding the next PV). A true 

value for TF_Fag is also transmitted to the I/O buffer to get a new test image. 

Furthermore, for a true signal, a new ID_IPV is sent to the host layer. 

Simulation results in histogram form of the new algorithm using ORL database are 

shown in Figure-6.10. The column length indicates the frequency of successful 

attempts, whereas on the horizontal axis, corresponding PVs are shown. The first 

column in Figure-6.10 shows that ~190 test images will get a successful PV from the 

PV_controller within fifth iteration. And the average number of iteration required to 

get a successful PV to 7.7 from 20. Controller has improved the architecture originally 

conceived in Figure 6.8. Adaptive controller works in host layer, online layer 

performance is independent of the adaptive controller computational and storage cost. 

6.6 FDC Parallel Processing Architecture 

In Figure-6.11 a parallel processing architecture is formulated using ID_PV and Vm 

components. In this architecture, PV_controller is replaced with a new layer to attain 

PV classification. This layer has three major components, namely, Trained_PV; 

P_PV_controller and PV_Cache. Trained_PV represents the collection of PVs and 

P_PV_Controller has two extra components compared to the architecture shown in 

Figure-6.9. These components are circular FIFO and a k-dimensional array containing 

the sorted tags of PVs in the corresponding parallel processing modules.  
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 Figure-6.9 FDC-based face recognition architecture using adaptive controller. 
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Figure-6.10 Simulation results showing the high probability of success virus pattern vector 

for ORL database. 
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Figure-6.11FDC parallel processing face recognition architecture. 
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Circular FIFO is introduced in PV_Controller to handle the sequence of identification 

tags for incoming test images. It is ensured that k modules should get most suitable 

trained PVs from the controller layer which are stored in advance in PV_Cache area. 

The diamond block provides input to the OR gates for further processing after a 

successful match/recognition. This block generates a positive decision if the test 

image belongs to a person from the training database; otherwise, its feedback signal to 

the host machine requests the next appropriate PV. This block plays an important role 

in the parallel processing architecture using the PV_Cache area, as shown in Figure-

6.11.  

A true answer for the Boolean expression shown in Equation (6.14) means that the 

input image matches that particular PV; otherwise, the next appropriate PV has to be 

sent from PV_Cache to the online layer. PV_Cache holds the PVs according to the 

number of test images being under process in the online layer. PV_Cache will be 

flushed when a true signal is received from one of the OR gates.  

The horizontal modules in the online layer in Figure-6.11 depend upon the target 

FPGA resources, and the vertical elements determine the number of FPGAs on the 

target board. Therefore, the proposed parallel processing architecture is a modular and 

a robust reconfigurable system. The speed of the obtained architecture depends on the 

number of stages involved and by assuming a 10% overhead for new stages; the 

simulated performance of the proposed architecture is shown in Figure- 6.10.  
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Figure-6.12 Pipelining performance versus number of stages. 
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6.7 System Performance 

Table-6.4 shows the resource utilization data of our architecture shown in Figure- 6.8 

when implementing on a Xilinx Virtex5 FPGA device. The Xilinx 11.1 suite was used 

which includes the AccelDSP tool (AccelDSP 2008) with MATLAB files for 

floating-point verification. Pipelining in multipliers, adders and subtractors 

implementation further reduces the time but the resource consumption reaches 36% of 

the FPGA real estate.  

The Xilinx development tool provides two frequencies to design a system, one being 

the requested frequency and other the maximum frequency based on the circuit’s 

critical path after RTL implementation. The execution time for both the frequencies is 

shown in Table-6.5 using ORL database. The parallel processing architecture (Figure- 

6.11) shows an improvement up to 83 % compared to the architecture in Figure-6.8.  

Table-6.5 indicates a significant improvement in decision time of the proposed 

parallel processing architecture. Matching an input image with stored PVs takes 

~2527 (126 x 20) ns for non-parallel processing architecture because it needs on the 

average twenty iteration for matching. The number of iteration reduces to ~7 after 

introducing a controller in the architecture as shown in Figure- 6.10. Thus, 

architecture with controller reduces the decision time 2527 ns to 973 ns for matching. 

Three-stage parallel processing architecture with controller has achieved decision 

time ~421 ns. Figure- 6.12 shows that by increasing parallel processing stages the 

decision time reduces, but after nine stages it almost becomes constant.  
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Table-6.4 Resource utilization of proposed architecture using ORL database on 

Virtex5 (XC5VSX50T). 
 

Resources Quantities 

Slices 36% 

BRAM 1% 

Multipliers 15 

Adders 53 

Subtractors 47 

DSP units 19% 

 

 

Table-6.5 Performance of proposed architectures using ORL database on Virtex5 

(XC5VSX50T). 
 

Option Best Worst 

Frequency in MHz 188 100 

Data feeding time (ns) 118.72 224 

Hardware time (ns) 7.66 9.96 

Data out time (ns) 0.0053 0.01 

Time require for matching with a PV (ns) 126.38 233.97 

Total testing time without controller (ns) 2527.70 4679.4 

Total testing time using adaptive controller (ns) 973.16 1801.57 

Total testing time using parallel processing architecture (ns) 421.71 780.68 

Improvement with parallel processing architecture % (100-

(PA/WC)*100) 
83.316 83.316 

 

 

 

 

  

PA= Parallel processing architecture 
WC= Without controller  
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6.8 Summary 

Non-intrusive biometrics is a complex task, especially for face recognition because 

the input images are usually not well classified and managed. But it is probably the 

only automated way to detect a suspect. High accuracy with minimum decision time 

is a challenging job for real-time face recognition systems. Principal component 

analysis (PCA) is a classical approach amongst the dimension-reduced feature 

extraction methods. Its accuracy is poor because it treats faces as global entities. The 

local preserving projection (LPP) and orthogonal local preserving projection (OLPP) 

methods treat faces as combinations of features, in addition to dealing with global 

structures. LPP and OLPP do not provide a very high accuracy (in the range of 

~98%) even when using big training sets because the reduced space may downplay 

some critical information. 

We have proposed a face recognition technique which extracts global structural 

information and local details using gray level frequency distribution curve (FDC). 

The FDC provides better results for smaller training sets with dimensions equal to 

the number of classes. By using Yale, ORL and PIE databases, it has been 

demonstrated that the proposed technique is better both in terms of accuracy and 

time. The proposed technique is then implemented on FPGA using three layer 

architecture decision time 2.52 µs which is faster than a PC based recognition 

system. The architecture was further improved by designing an adaptive controller 

which gave 40% improvement relative to non-controller based architecture. 

Furthermore, the parallel processing architecture exploits the parallelism capabilities 

of FPGA devices, thus providing decision in less than 200 ns and making the system 

a good candidate for real-time face recognition. 
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CHAPTER 7 

 
CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

Biometric plays an important role in enhancing efficiency and reliability of an 

authentication system. Amongst the most common biometrics, fingerprints and iris 

recognitions are intrusive in nature, while voice and face recognitions are non-

intrusive types of biometrics. Significant efforts have been made by the researchers to 

improve accuracy and efficiency of a face recognition system to meet the stringent 

needs of defense, security and high-tech commercial applications. Face recognition 

systems commonly employ algorithms which provide reduced computational space 

and meaningful data in the form of Eigen values. 

In PCA Eigen values of a co-variance matrix are evaluated, and corresponding Eigen 

vectors are used to create an n-dimensional space, where n is the rank of a co-variance 

matrix. This n-dimensional space is less computational intensive than the original 

image space. Another important role of PCA is to maximize the variance in reduced 

feature space and thus it provides image classification by using few Eigen vectors.  

For real-time face recognition system in a dynamic environment where the face 

database may change and learning is a repetitive process, fast calculation of Eigen 

values and vectors is a primary requirement. Fast PCA has been proposed for efficient 

generation of Eigen values which improves the computational efficiency to O (n
2
) 

compared to normal decomposition method which gives the solution in O (n
3
) time. In 

fast PCA, however, non-convergence state may be observed especially, in those cases, 

where high resolution images are involved. This could be associated with GSO which 
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is used in fast PCA to evaluate Eigen value. To overcome this problem, fast PCA has 

been modified by incorporating MGSO to generate Eigen values for images including 

those at high resolutions.  

The accuracy of a PCA based face recognition system depends upon the performance 

of its classifier which improves by increasing the number of Eigen vectors involved in 

the decision making. However, increased Eigen vectors make the system 

computational intensive. Thus, an improved performance of a face recognition 

system, within requisite decision time, is dependent upon the optimum selection of 

Eigen values in a decision making process.  

Adaptive classifier has been developed for the modified fast PCA. This has the ability 

to tune itself by varying threshold value during learning process and select optimum 

number of LEVs. Further, a system variable searcher module has been designed using 

two dimensional data structure to achieve the best combination of system variables for 

its enhanced reliability and accuracy. The validity of the proposed system has been 

checked by varying Eigen vectors and training sets. The modified fast PCA 

demonstrated 8% improvement in accuracy and it was three times faster compared to 

decomposition based PCA. 

For Eigen values evaluation of a symmetric matrix, decomposition is believed to be a 

superior method compared to Jacobi transformation. There are many decomposition 

methods, out of those, Householder (HH) is considered an efficient one. This is 

primarily due to the fact that Householder evaluates square root by using non-

restoring algorithm instead of trigonometric functions. CORDIC-based Jacobi 



 

 

148 

 

algorithm (CJA) is one of the best reported FPGA implementation which provides 

Eigen values by involving trigonometric functions for square root evaluation. 

To achieve cost and time effective solution, HH was implemented by adopting a co-

design methodology. In this connection, a co-design pipelined architecture has been 

developed by employing fixed-point non-restoring algorithm instead of trigonometric 

functions. The proposed architecture demonstrated an improvement up to 30% in time 

and 10
-7

 decimal places in accuracy compared to CJA.  

Modified fast PCA uses MGSO which applies normalization of vectors in its iterative 

orthogonal process. Three architectures have been developed to achieve efficient 

normalization on an FPGA. The validity of these architectures is then demonstrated 

with ORL, PIE, FERET and CAS-PEAL databases. An analysis has been presented to 

show the suitability of an architecture for a given application. In all these 

architectures, a maximum observed error was 10
-3

 compared to their software-driven 

counterpart, when implemented in floating-point.  

High accuracy with minimum decision time is a challenging task for a real-time face 

recognition system. PCA is a classical approach amongst the dimension-reduced 

feature extraction methods towards efficient recognition. However, PCA offers poor 

accuracy because it treats faces as global entities. The local preserving projection 

(LPP) and orthogonal local preserving projection (OLPP) treat faces as combinations 

of features, in addition to dealing with global structures. A frequency distribution 

curve (FDC) technique has been developed which transforms linearly a high 

dimensional image space to 2-dimensional face space. FDC has the ability to preserve 

global along with major local face details and can still make a decision in 
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substantially reduced time, i.e., O (n
2
). This is associated with the fact that FDC 

avoids matrix decomposition and other high computational matrix operations and 

extracts features using pattern vector (PV). One or two training images per subject are 

sufficient for FDC to compute PVs. A software implementation of FDC showed an 

improvement up to 14%, 1.9% and 1.7% for the Yale, ORL and PIE face databases 

respectively compared to PCA, LPP and OLPP. 

FDC is formulated with a bias towards its efficient hardware realization. An FPGA-

based architecture has been developed by designing an adaptive PV controller. This 

controller has the ability to detect high probability PV for immediate matching instead 

of sequential thorough checking. The architecture performance was further improved 

by incorporating parallelism which demonstrated an improvement up to 80% 

compared to sequential architecture. The system thus developed requires less than 200 

ns to make a decision. 

7.2 Future work 

The proposed FDC matching technique divides the curve into three segments by 

treating it as Gaussian distribution. The decision about the length of these segments 

and their associated threshold values is not trivial. It has been observed that the 

threshold value varies considerably by changing image characteristics. On the other 

hand, a minor variation in the threshold value causes serious adverse effects on the 

recognition accuracy. It is an established fact that the threshold value is dependent 

upon the image characteristics like its resolution, illumination and posture etc.  
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It is suggested that an estimation technique like maximum likelihood, Cramer-Roa 

lower bound (CRLB) or Bayesian estimator (Kay 1993) may be applied on the 

proposed FDC technique to adjust the threshold as per image characteristics.  

Further, the storage space for PVs in FDC technique grows linearly by increasing 

subjects in the training set which may lead to an inefficient system. To overcome this, 

an adaptive PVs controller (APVC) has been designed in a reconfigurable hardware. 

APVC uses vector normalization of PVs to compute the probability associated with 

these vectors. The data thus acquired are used for the identification of a high 

probability PV which allows selective rather sequential matching. APVC has shown 

good results for small to medium data sets. However, its performance deteriorates 

with enhanced input data set. Since, Hidden Markov Model (HMM) is one of the best 

stochastic techniques to provide the next sequence of event based on the previous 

knowledge (Li 2000). It is, therefore, suggested that HMM may be used for the 

selection of high probability PVs.  

Fixed-point implementation of HH on FPGA provides a time-efficient solution for the 

evaluation of Eigen values. However, its accuracy and efficiency depends upon the 

selection of q.n format that varies with image characteristics. Therefore, an analysis 

for the trade-off between accuracy and efficiency could be a beneficial study for 

various image characteristics. This could provide an optimum combination between 

accuracy and efficiency for HH implementation. Furthermore, it is suggested that an 

adaptive controller (AC) might be designed which could provide a better adjustment 

for q.n format for changed image characteristics. It is expected that a system 

incorporating such an AC should further enhance the evaluation of Eigen values.             
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