
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Load-Balanced Multi-Job

Scheduling For Heterogeneous

CPU-GPU Systems

by

Yasir Noman Khalid

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosphy

in the

Faculty of Computing

Department of Computer Science

2020

www.cust.edu.pk
www.cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Load-Balanced Multi-Job Scheduling For

Heterogeneous CPU-GPU Systems

By

Yasir Noman Khalid

(DCS143001)

Dr. Basel Katt, Associate Professor

Norwegian University of Science and Technology, Norway

(Foreign Evaluator 1)

Dr. Doğan Aydın, Associate Professor

Dumlupınar University, Kutahya, Turkey

(Foreign Evaluator 2)

Dr. Muhammad Aleem

(Thesis Supervisor)

Dr. Nayyer Masood

(Head, Department of Computer Science)

Dr. Muhammad Abdul Qadir

(Dean, Faculty of Computing)

DEPARTMENT OF COMPUTER SCIENCE

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2020

ii

Copyright c© 2020 by Yasir Noman Khalid

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

iii

Dedicated to the memory of my grandfather Falak Sher Khan Ghazni Khel

vii

List of Publications

It is certified that following publication(s) have been made out of the research

work that has been carried out for this thesis:-

1. Khalid, Y. N., Aleem, M., Prodan, R., Iqbal, M. A., & Islam, M. A.

(2018). E-OSched: a load balancing scheduler for heterogeneous multicores.

The Journal of Supercomputing, 74(10), 5399-5431.

2. Khalid, Y. N., Aleem, M., Ahmed, U., Islam, M. A., & Iqbal, M. A. (2019).

Troodon: A machine-learning based load-balancing application scheduler for

CPU–GPU system. Journal of Parallel and Distributed Computing, 132, 79-

94.

Yasir Noman Khalid

(DCS143001)

viii

Acknowledgements

Looking back at my journey through Ph.D. few people helped me a lot during my

Ph.D. Among them, first of all, I would like to express gratitude to my supervisor

Dr. Muhammad Aleem for his useful comments, suggestions, persistence and

thorough engagement through this doctorate thesis. He mentored me, challenged

and pushed me a lot to be the best researcher that I could be.

I am also grateful to Dr. Muhammed Arshad Islam and Dr. Muhammad Azhar

Iqbal for their support and guidance throughout the research process. Moreover,

I am highly indebted to Dr. Abdul Qadir, Dean Faculty of Computing, CUST for

his insightful suggestion during research seminars.

I would also like to acknowledge Dr. Shafiq ur Rehman and Usman Ahmed for

all the hours spent in the lab in problem-solving and discussions that broaden my

horizon. I am also grateful to all the members of Parallel Computing and Networks

(PCN) research lab especially Dr. Muhammad Ibrahim and Omaid Ghayyur for

their support during the doctorate studies.

I am very obliged to the Higher Education Commission (HEC) of Pakistan for

awarding me with a fully-funded scholarship to pursue my doctoral studies.

Finally, I am extremely grateful to my father for his support during my life. With-

out his support, none of this would have ever been possible.

ix

Abstract

Heterogeneous systems consisting of a Central Processing Unit (CPU) and a

Graphics Processing Unit (GPU) are prevalent nowadays. The advent of het-

erogeneous programming models such as Open Compute Language (OpenCL) has

made it possible to execute data-parallel applications on the GPU. As a result, de-

velopers are increasingly porting applications to OpenCL to accelerate application

execution. However, mapping all heterogeneous applications to the GPU creates

severe load imbalance across CPU and GPU in a multi-job scenario. This results

in longer execution time of jobs and lower system throughput.

This thesis is an attempt to resolve the load imbalance problem during scheduling

of applications in a heterogeneous environment. Among others, this thesis presents

a novel scheduling mechanism, named Enhanced OpenCL Scheduler (E-OSched)

that maps OpenCL applications on a heterogeneous system in a load-balanced

manner. Load balance is achieved by contemplating the computation requirements

of applications and processing power of heterogeneous processors in scheduling

decisions.

This thesis also examines the impact of applications’ device suitability in multi-job

scheduling on a heterogeneous CPU-GPU system. A machine learning-based appli-

cation classifier, called Troodon, has been developed that classifies each application

as either suitable for CPU execution or GPU execution. Furthermore, a speedup

predictor has also been developed that predict the speedup when an application is

executed on a suitable device in comparison to execution on a non-suitable device.

Load-balanced mapping of jobs to heterogeneous devices is ensured by adopting

the E-OSched scheduling mechanism.

A kernel fusion technique is also part of this thesis that increases GPU device

utilization by fusing kernels with small data size. A machine learning-based fusion

classifier has been developed that classifies jobs as either fusion suitable or fusion

unsuitable. Thereafter, a pair of fusion suitable kernels, producing the highest

speedup in comparison to their serial execution, are fused.

Contents

Author’s Declaration v

Plagiarism Undertaking vi

List of Publications vii

Acknowledgements viii

Abstract ix

List of Figures xiii

List of Tables xv

Abbreviations xvi

Symbols xviii

1 Overview 1

1.1 Scheduling on Heterogeneous Machines 3

1.2 Load-Balance in Heterogeneous Machines 3

1.3 Scheduling Challenges . 4

1.4 Thesis Objectives and Research Questions 6

1.5 Contributions . 8

1.6 Research Methodology . 10

1.7 Thesis Organization . 11

2 Background and Related Work 12

2.1 Background . 12

2.1.1 Heterogeneous Computing 12

2.1.2 OpenCL . 14

2.1.3 Scheduling techniques for heterogeneous systems 15

2.2 Related Work . 16

2.2.1 Scheduling Schemes for Heterogeneous Multi-cores 17

x

xi

2.2.2 Heterogeneous Scheduling Based on Prediction
Models . 25

2.2.3 Kernel Fusion Techniques 31

3 Resource-Aware Load-Balanced Scheduling for Heterogeneous Ar-
chitectures 35

3.1 Introduction . 35

3.2 Motivation . 38

3.3 OpenCL Scheduler (OSched) . 40

3.3.1 System Architecture . 40

3.3.2 OSched System Model . 43

3.3.3 OSched Algorithm . 46

3.3.4 Enhanced-OSched . 49

3.3.5 Scheduling Overhead . 50

3.4 Experiments and Results . 50

3.4.1 Scheduling Policies and Evaluation Metrics 51

3.4.2 Execution Performance . 54

3.4.2.1 Analysis of Adjustment Factor “α” 57

3.4.3 Average Execution Time . 58

3.4.4 Throughput Analysis . 59

3.4.5 Load Balance Analysis . 60

3.5 Conclusions . 61

4 Machine Learning based Multi-Job Scheduling 63

4.1 Introduction . 63

4.2 Case-Study: Incorporating Speedup Prediction in Scheduling 67

4.3 Troodon . 69

4.3.1 System Architecture . 69

4.3.2 System Model . 71

4.3.3 Troodon Algorithm . 76

4.3.4 Scheduling overhead . 78

4.3.5 Feature Extraction . 79

4.3.6 Feature Selection . 81

4.3.7 Model Description . 82

4.3.8 Troodon Usage Scenario . 85

4.4 Experiments and Results . 86

4.4.1 Scheduling Policies and Evaluation Metrics 87

4.4.2 Scheduling Results . 90

4.4.2.1 Average Execution Time 91

4.4.2.2 Throughput Analysis 92

4.4.2.3 Load Balance Analysis 93

4.4.2.4 Results Discussion 94

4.4.3 Prediction Models Discussion 95

4.4.4 Analysis of Selected Features Impact on Device Suitability
Model . 97

xii

4.4.5 Limitations . 97

4.5 Conclusions . 98

5 Role of Kernel Fusion to Improve Device Utilization 100

5.1 Introduction . 100

5.2 A Case-Study For Fusing Or Executing
Kernels Separately . 102

5.3 FusionCL . 104

5.3.1 System Architecture . 104

5.3.2 FusionCL System Model . 107

5.3.3 Kernel Fusion Mechanism 113

5.3.4 Prediction Models . 113

5.3.4.1 Feature Extraction and Selection 114

5.4 Experiments and Results . 116

5.4.1 Scheduling Policies And Evaluation Metrics 118

5.4.2 Scheduling Results . 120

5.4.3 Average Execution Time . 120

5.4.4 Throughput Analysis . 121

5.4.5 Load Balance Analysis . 122

5.4.6 Results Discussion . 122

5.4.7 Impact of Proposed Kernel Fusion Approach on GPU Exe-
cution Time . 123

5.4.8 Predictive Modeling Results 125

5.4.9 Scheduling overhead . 126

5.5 Conclusions . 126

6 Conclusions 128

6.1 Limitations . 129

6.2 Future Research Directions . 129

Bibliography 132

List of Figures

1.1 Research goals and research objectives 9

1.2 Proposed research methodology . 10

2.1 OpenCL platform model [11] . 14

2.2 OpenCL execution environment . 15

3.1 Execution of Bitonicsort - CPU vs. GPU 39

3.2 System Architecture of the OSched 41

3.3 OSched job scheduling Flowchart 42

3.4 Memory snapshot for concurrently executing jobs 48

3.5 Memory snapshot after optimization by the E-OSched 49

3.6 Execution time of scheduling heuristics for job pool using 04 CPU
cores and a GPU . 55

3.7 Execution time of scheduling heuristics for job pool using 02 CPU
cores and a GPU . 55

3.8 Execution time of scheduling heuristics for job pool using 01 CPU
cores and a GPU . 56

3.9 Application Execution profile . 58

3.10 Average Execution Time . 59

3.11 Throughput analysis . 60

3.12 Load balance without factor α . 60

3.13 Load balance after adjusting factor α (in OSched and E-OSched) . 61

4.1 Obtained speedup of GPU over CPU for different data sizes of Ma-
trix Multiplication . 67

4.2 Execution time of different scheduling schemes displaying the im-
pact of speedup prediction . 68

4.3 System Architecture of the Troodon 71

4.4 Static code feature extraction process 79

4.5 Correlation analysis of employed code features 82

4.6 Feature set ranking based on information gain 82

4.7 Training process of prediction models 83

4.8 Execution time of scheduling schemes for job pool 91

4.9 Average execution time of a job in the job pool 92

4.10 Throughput analysis . 92

4.11 Achieved load balance by scheduling schemes on System1 93

xiii

xiv

4.12 Achieved load balance by scheduling schemes on System2 94

4.13 ROC of Device suitability classifier 96

4.14 OpenCL kernel forecasting of speedup predictor 96

5.1 Speed-up achieved due to fused kernel execution over sequential
kernel executions . 103

5.2 Speed-up achieved for multiple data sizes when 2dconv and atax
kernels are fused . 103

5.3 System Architecture of the proposed kernel fusion based scheduling
scheme . 105

5.4 Flowchart of the FusionCL scheduling scheme 106

5.5 Kernel fusion process . 113

5.6 Training phase of Fusion speedup predictor and Fusion suitability
classifier . 114

5.7 Execution time of scheduling schemes for job pool 120

5.8 Average execution time of a job in the job pool 121

5.9 Throughput analysis . 121

5.10 Achieved load balance by scheduling schemes 122

5.11 Execution time of fused and separate kernels in (A). The execution
time of the fused kernel using the FusionCL scheme and random
fusion in (B) . 124

List of Tables

2.1 Summary of literature review techniques 29

3.1 Experimental setup . 51

3.2 Benchmarks along with input data sizes 52

4.1 Code Features Extracted for Training of the Device Suitability and
Speedup Prediction Models . 80

4.2 Tune parameters for device-suitability ML model 84

4.3 Tune parameters for relative speedup ML model 85

4.4 Experimental setup . 86

4.5 Benchmark applications and the employed input data sizes 88

5.1 List of extracted features . 115

5.2 Top Ranked Selected Features . 116

5.3 Experimental setup . 116

5.4 Benchmark applications and the employed input data sizes 117

5.5 Predictive modeling results . 125

xv

Abbreviations

AA Alternate Assignment

ANN Artificial Neural Network

CJQ CPU job queue

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

CuMAS CUDA Multi-Application Scheduling

DCT Discrete Cosine Transform

DS Device Suitability

E-OSched Enhanced OSched

FCFS First Come First Serve

FIFO First In First Out

FLOPS Floating Point Operations Per Second

FPGA Field Programmable Gate Array

FPR False Positive Rate

GJQ GPU job queue

GOPS Giga Operations Per Second

GPGPU General Purpose Programming on GPU

GPU Graphical Processing Unit

IR Intermediate Representation

ISA Instruction Set Architecture

ISG Input size guided

MIC Many Integrated Cores

MIMD Multiple Instruction Multiple Data

MKMD Multi Kernel on Multi Devices

xvi

xvii

ML Machine Learning

OpenCL Open Compute Language

OpenMP Open Multi Processing

OSched OpenCL Scheduler

pthreads POSIX threads

ROC Receiver Optimization Characteristics

SIMD Single Instruction Multiple Data

SVM Support Vector Machine

TBB Thread Building Block

TPOT Tree-based Pipeline Optimization Tool

TPR True Positive Rate

Symbols

α Adjustment factor

A Merge unsuitable job list

Acpu Set of CPU suitable jobs

Agpu Set of GPU suitable jobs

B Merge suitable job list

C Set of submitted jobs

C Combination of each job from B with every other job from B

CA Computational assessment module

Ceilingcpu Upper boundary for the number of jobs in Jcpu,

assigned to the CPU

Ceilinggpu(i) The upper boundary for the number of jobs from Jgpu,

assigned to ith GPU

CF Count of a code feature

CJQ CPU Job Queue

CRCi Computation requirement of a job ci

CRJ Computation requirement of a job

CScpu The computational share of CPU

CSgpu(i) The computational share of ith GPU

DS(ci) Device suitability of a job ci

F Set of 23 code features

GJQ GPU Job Queue

J Set of jobs after final arrangement in the job pool

Jcpu A subset of 1st q jobs from job pool J

xviii

xix

JCR Total computation requirement of all the jobs in J

Jgpu A subset of 1st r jobs from Jupdate

Jupdate A subset of J, formed by subtracting CJQ from J

JPgpu Final GPU job pool

KFE Kernel feature extractor module

MLDS Machine Learning based device suitability model

MLMS Machine learning based merged suitability classifier

MLMSP Machine Learning based Merge Speedup Predictor

MLSP Machine learning based speedup predictor

MS{Agpu} Merge suitability of jobs in Agpu

along with their predicted speedup

ℵ Set of code features count in the kernel code of a job

Nx Data size of a job x

Ny Data size of a job y

P Set of processors

PC The processing speed of a CPU

PG(i) The processing speed of ith GPU

PS Processing speed

Q A family of set in which each element is a set containing

elements from J

SP{xy} Predicted speedup when a pair of jobs (x and y) in B are merged

SPCi Speedup of a job ci on the suitable device

Tcpu The total processing speed of all processors

Chapter 1

Overview

In 1965, Gordon E. Moore observed that the number of transistors in an integrated

circuit has doubled every two years and this trend is set to continue for the next

ten years [1]. This observation is known as “Moore’s Law” and had held true for

40 years. As a result, software developers relied on the ever-increasing Central

Processing Speed (CPU) speed due to Moore’s Law to speed up execution of their

softwares. Newer applications requiring more compute-power were developed that

benefited from the growing clock speeds of new processors. Therefore, the develop-

ers relied on the hardware technology to speedup execution of compute-intensive

applications.

Towards the end of 2004, transistors growth on an integrated circuit began to stall

due to exponential power-consumption and heat dissipation. These problems oc-

curred due to increasing clock frequency with every new generation of processors.

To overcome these limitations, multi-core architectures were developed as a solu-

tion to problems faced by the single-core processors. In multi-core architecture,

multiple similar CPUs are packaged together on the same integrated circuit. In

this era, the architectural trend is to increase the cores of a single CPU or increase

number of CPUs in the system to meet the computation demands of applications.

The application developer can harness the full potential of multi-core architecture

by introducing parallelism in their applications [2].

1

Overview 2

In the contemporary era, application developers cannot rely solely on the pro-

cessor technology to speed up application execution. Instead, they have to re-

engineer and parallelize their applications to exploit available computing power of

multi-core processors. This gave rise to parallel programming paradigm where a

single application is partitioned into parallel portions each executing on a separate

processor-core. To parallelize application on multi-core CPUs, several frameworks

and compilers are available such as POSIX threads (pthreads) [3], OpenMP (Open

Multi Processing) [4], Intel’s Thread Building Block (TBB) [5]. These frameworks

usage have aided programmers to speedup the application’s execution.

However, the usage of parallel programming models is becoming increasingly insuf-

ficient to meet the execution performance demands of many scientific applications

due to physical limitations on increasing the number of cores. Moreover, multi-

core systems usage is progressively failing to meet the power and energy budget in

the data center and cloud environment. To overcome limitations of the multi-core

architecture, recent years have witnessed the emergence of heterogeneous systems

i.e., a computing system that consists of more than single kind of processor. Het-

erogeneous systems consist of a multi-core CPU and a co-processor. Co-processor

may be Graphical Processing Unit (GPU), Many Integrated Cores (MIC), Field

Programmable Gate Array (FPGA) etc. Among the co-processors, GPUs have

become an integral part of most heterogeneous systems. The usage of GPU in

heterogeneous systems ranges from general purpose computers to systems in data

centers and super computers. According to a recent survey conducted by the

TOP500 organization, 05 of the top 10 supercomputers include GPU in their sys-

tem [6]. GPUs are generally favored in the heterogeneous systems due to providing

high throughput for data parallel applications and excellent performance per watt

ratio [7].

Open Compute Language (OpenCL) [8] and Compute Unified Device Architecture

(CUDA) have become de facto industry standards to program GPUs for General

Purpose Programming on GPU (GPGPU). Among the two, OpenCL has emerged

as an industry standard to program heterogeneous devices. Due to its portable

Overview 3

nature as a single OpenCL application can be executed on many types of accel-

erators including GPUs, CPUs etc. [9], [10]. An OpenCL program comprises of

two parts, host program and kernel function. Supervision of kernel function exe-

cution on accelerator devices (i.e., CPU, GPU etc.) is the responsibility of a host

program that executes on a CPU device [11]. The kernel function deals with the

compute-intensive data-parallel code. Within an OpenCL program, buffer cre-

ation, data transfer, and kernel mapping to the devices are manually managed by

the application developer [12].

1.1 Scheduling on Heterogeneous Machines

Task scheduling is a non-trivial problem that requires best mapping of tasks to a

processor so that the overall execution time of applications is reduced [13]. The

scheduling decision becomes more difficult when dealing with a heterogeneous

(CPU-GPU) system in which each compute unit has different characteristics. CPU

has a limited number of powerful and complex cores that are generalized to execute

different types of applications efficiently whereas GPU contains a large number of

simplified cores that are mainly specialized to execute data-parallel portions of the

program. Therefore when scheduling applications on CPU-GPU system, hetero-

geneity of computing devices should be considered to effectively map computation

to processors. It should also be considered that while one application may enjoy

considerable speed-up on GPU than on CPU, another application’s performance

might degrade significantly if assigned to GPU while attaining speed-up on CPU.

Programmers normally assign tasks to either a CPU or a GPU that results in the

other processing-unit remaining idle during execution.

1.2 Load-Balance in Heterogeneous Machines

Load-balanced scheduling aims to maximize resource utilization and increase ma-

chine throughput while minimizing the execution time. Load balancing is usually

Overview 4

achieved by using mechanisms such as work stealing and work-sharing. In work

stealing, an idle core or processor (thief-device) acquires tasks from another pro-

cessor (victim-device with heavy-load) [14]. In work sharing, scheduler maintains

a centralized list of all pending tasks and idle resources (core or processor) to map

tasks to cores or processor [15].

Achieving a load-balanced schedule of jobs in heterogeneous machines (based on

CPUs and GPUs) is a challenging task [16] because of heterogeneous architecture,

varying clock-speed, identifying code-parallelism, and presence of multiple memory

levels. In a heterogeneous environment, an optimal load-balanced schedule of

tasks represents the assignment of tasks to both processors in such a way that

CPU and GPU complete their work at approximately the same time. Another

aspect of the load-balance is to look to minimize the idle time of a processor

during the program’s execution. A load-balancing mechanism should incorporate

architectural characteristics, data-transfer overheads, and application needs.

1.3 Scheduling Challenges

Scheduling of tasks to a processor is a NP-hard problem [17, 18] and therefore

it is difficult to optimally schedule tasks to a device in polynomial time. Task

scheduling becomes even more difficult when heterogeneous processors are involved

with vastly different characteristics [19].

The present trend that is prevalent in the field of heterogeneous computing is to

burden programmer with the scheduling of tasks. Programmers normally use the

default scheduling strategy i.e., assigning the parallel portion of a program (kernel)

to a GPU while CPU executes serial portion (kernel management) of a program.

This tendency has led to the following important observations.

1. Wastage of computing resources: CPU remains idle while all the com-

putation is performed by GPU although by using OpenCL, a program can be

executed on both CPU and GPU. This is wastage of precious CPU resources

Overview 5

which is consuming power and energy but performing no useful task [19–24].

Although kernels are normally developed to be optimally executed on GPU,

CPU can also provide good performance on kernels where little computation

is performed and data size is small. The reason is that today’s CPUs consist

of the multiple number of cores, have higher clock frequency, have efficient

cache hierarchy, and no data transfer overhead over PCIe interconnect (as

is the case for GPU), etc. In a job pool consisting of multiple kernels with

different computation and data requirement, this means that kernels with

small computation requirement and data size can be scheduled to CPU while

kernels with large computation requirement and data size can be scheduled

to GPU in order to reduce wastage of CPU resources.

2. Longer execution time (throughput): As computation is only per-

formed by GPU therefore, kernels in job pool takes a longer time to complete

execution. Using this scheduling strategy, favorable throughput cannot be

obtained from the system. Reason for this sub-optimal throughput is that

CPU is not taking any part in Job Pool execution. Therefore, there is need

for a scheduling strategy that can also schedule some kernels to CPU in order

to reduce the overall execution time of a Job Pool. Kernels that are offloaded

to CPU will be executed in parallel with kernels that are executed on GPU.

In this way throughput of the system can be increased significantly.

3. Load-balancing: Severe load imbalance is observed between CPU load and

GPU load due to CPU only management of the kernel execution on GPU

and taking no part in the actual computation. The idle time that CPU spent

while waiting for GPU to complete kernels execution is not desirable. Ideally,

a scheduler is required that can schedule kernels to both CPU and GPU in

such a way that both processors can complete processing at the same time.

In this way energy consumption and heat dissipation due to idling processor

are reduced but, more importantly, the execution time of Job Pool will also

be reduced significantly [25, 26].

Overview 6

4. Application device suitability: Due to architectural differences between

a CPU and GPU, some applications are better suited (i.e., have lower ex-

ecution time) for CPU execution while others are better suited for GPU

execution. Applications possessing a high level of task parallelism, high

data transfer overhead, etc. perform better on CPU whereas applications

having a high level of data-parallelism are better suited to GPU execution.

If an application scheduler is unaware of the device suitability of an applica-

tion, it may assign CPU suitable application to the GPU and GPU suitable

application to the CPU. This will result in longer execution time of the job

pool [27, 28].

Keeping in view above mentioned observations, it is clear that there is a need of

a scheduler that can minimize execution time of job pool through load-balancing.

If such a scheduler is developed, it will result in significant decrease in wastage of

computational resources. Moreover, a load balancing scheduler will also lead to

not only energy and power savings but also decrease in heat dissipation [29].

1.4 Thesis Objectives and Research Questions

While there is an abundance of scheduling schemes that have been discussed in the

literature for assignment of tasks on heterogeneous CPU-GPU architecture, there

is a shortage of scheduling schemes that considers job pool of kernels from different

applications [19, 30]. Primary goal of scheduling schemes mentioned in literature

is to split data of a single kernel between CPU and GPU in order to minimize exe-

cution time. To the best of my knowledge, only [27, 31] have discussed scheduling

issues relating to job pool of OpenCL applications. Therefore, the first objective

is to develop a scheduling scheme for a job pool of OpenCL applications

that can map job to heterogeneous devices in a load-balanced manner.

Some applications are inherently suitable for CPU execution while others produce

speedup when executed on a GPU due to architectural differences between a CPU

Overview 7

and a GPU. A smart job pool scheduler has to decide on the device suitability

of an application from a job pool. Machine learning can be used to characterize

applications into CPU suitable and GPU suitable using application code features.

Therefore, the second objective is to develop a scheduling scheme that can

map jobs in a device suitable way while maintaining load balance across

CPU and GPU considering speedup achieved by a job on the suitable

device.

Applications that are mapped to a GPU device assumes control of all the resources

of the GPU. When a kernel is executed on a GPU with smaller data size, there

is wastage of GPU resources because the kernel cannot keep all the GPU cores

busy during its execution. Such resource wastage can be reduced if a GPU can be

shared among two kernels. This will also result in decreasing the execution time

of the job pool. However, some applications execution speedup when they share a

GPU while others slowdown the application execution while sharing a GPU. An

efficient job scheduler has to decide on which GPU mapped application can share

the GPU resource to speed up their execution. Therefore, the third objective of

the thesis is to develop a resource sharing mechanism between two GPU

mapped kernels while maintaining load-balance across heterogeneous

devices. The above-mentioned thesis objectives are used to achieve the goals of

reducing job pool execution time, increasingload balance across CPU and GPU,

and increasing system throughput. The research objectives of the thesis are sum-

marized in a concise and coherent way below.

Research questions

1. How to develop a load-balancing job scheduler for a heterogeneous system?

2. How to reduce memory contention for two concurrently executing jobs?

3. How much performance gain can be achieved by device suitable mapping of

jobs on the heterogeneous system?

Overview 8

4. How to fuse a pair of OpenCL kernels to increase GPU device utilization

and reduce job pool execution time?

1.5 Contributions

In Chapter 3 the OSched scheduling heuristic that maps user jobs from a job

pool in a load balanced manner to either a CPU or a GPU is presented. Load

balance is achieved by contemplating the computation requirement of each job

and computation power of each heterogeneous processor. The results show that

the OSched reduces job pool execution time, increases system throughput while

achieving load balance across CPU and GPU. Moreover, an enhancement to the

OSched scheduling heuristic named as the E-OSched was also proposed in Chapter

3. The E-OSched further improves the results of the OSched by minimizing the

memory contention in the main memory due to concurrently executing jobs. This

contribution answers the research question 1 and research question 2 that were

presented in section 1.4 of chapter 1.

Contribution (Chapter 3): Khalid YN, Aleem M, Prodan R, Iqbal MA, Islam

MA. E-OSched: a load balancing scheduler for heterogeneous multicores. The

Journal of Supercomputing. 2018 Oct 1;74(10):5399-431.

Chapter 4 presented the Troodon which is a machine learning based job sched-

uler, built on top of the E-OSched that considers device suitability of job during

scheduling decisions. Device suitability of a job is determined using a machine

learning based job classifier. The Troodon maps CPU suitable jobs to the CPU

and GPU suitable jobs to the GPU while maintaining load balance across both

the CPU and GPU. The results show that the Troodon reduces the execution time

by 282% and 38% when compared to base-line scheduling heuristic and state-of-

the-art scheduling heuristics respectively. This contribution answers the research

question 3 that was presented in section 1.4 of chapter 1.

Overview 9

Contribution (Chapter 4): Khalid YN, Aleem M, Ahmed U, Islam MA, Iqbal

MA. Troodon: A machine-learning based load-balancing application scheduler for

CPU–GPU system. Journal of Parallel and Distributed Computing. 2019 Jun 8.

Chapter 5 presented the kernel fusing FusionCL scheduler that is built on top of

the Troodon. The proposed scheduler reduces the execution time of the job pool

by increasing GPU device occupancy through kernel fusing. A machine learning

based kernel fusing classifier is used to decide on the pair of the kernel functions

that, when fused together, will produce speedup over their serial execution.

OSched

E-OSched

Troodon

FusionCL

Reduced Memory Contention

- Device Suitability
- Speedup Prediction

- Resource Sharing
- Speedup Prediction

Jo
b

 P
o

o
l

O
b

j
1

O
b

j
2

O
b

j
3

- Resource Aware
- Job Computation Req.

- Load Balance
- Reduced Exec. time
- Increased throughput

GOALS

Figure 1.1: Research goals and research objectives

The experimental results show that the FusionCL reduces job pool execution time

by 1.08X when compared to the state-of-the-art while maintaining load balance

across both the CPU and the GPU. This contribution answers the research ques-

tion 4 that was presented in section 1.4 of chapter 1. The research objectives,

research goals and thesis contributions are presented in Figure 1.1.

Overview 10

1.6 Research Methodology

The research methodology of this thesis is similar to the one presented in [32].

This research was started with the goal of finding scheduling solutions for job

placement in heterogeneous systems. In this regard, a systematic literature review

(Chapter 3) was conducted that included research articles from top conferences

and journals from the field of parallel computing. The reviewed conferences include

IPDPS [33], SC [34], ISC [35], PACT [36], PPOPP [37], Euro-par [38], GPGPU

[39], ICPP [40], ICPADS [41] whereas journal list include TACO [42], JPDC [43],

TPDS [44], Super Computing [45], IJPP [46], Parallel Computing [47] etc. From

literature review, it was observed that there is lack of scheduling schemes that

deal with mapping of a job pool of heterogeneous jobs on a CPU-GPU systems

(problem awareness).

Literature Review
Research

Objectives

Proposed Solution

Experimental
Design

Conclusions

Problem Awareness Research Questions

Experimentation

T
e

xt

Evaluation

T
e

xt

Gap Analysis

Text

D
e

sig
n

in
g

S

o
lu

tio
n

T
e

xt

Preliminary Studies

Result Analysis

Figure 1.2: Proposed research methodology

This observation was used to design research objectives and formulate research

questions (Section 1.4). Comprehensive solutions were designed to answer the

research questions (Section 3.3, Section 4.3, Section 5.3). Experimental design was

developed to test the validity of the proposed solution. In the end, experiments

Overview 11

were performed to prove the viability of the proposed solution (Section 3.4, Section

4.4, Section 5.4) to the research questions posed in Section 1.4. The overview of

the adopted research methodology is presented in the Figure 1.2.

1.7 Thesis Organization

The thesis is divided into further five chapters. Chapter 2 introduces the necessary

concepts used to accomplish the goals of this thesis. Moreover, a detailed scrutiny

of the prior work related to job scheduling on heterogeneous systems is also part

of this chapter.

In Chapter 3, the discussion is about the development of a load-balanced schedul-

ing mechanism for a job pool of applications. Load-balance across a CPU and GPU

is achieved by considering the processing requirement of the jobs and processing

capabilities of heterogeneous devices.

Chapter 4 is focused on the use of machine learning in classifying jobs according

to the device suitability. After jobs’ classification, CPU suitable jobs are mapped

to the CPU whereas GPU suitable jobs are mapped to the GPU. Load-balance is

achieved by adapting the scheduling mechanism, presented in Chapter 3, to the

device suitability problem that is tackled in Chapter 4.

In Chapter 5, a resource sharing mechanism is introduced that enable two applica-

tions to share a GPU for their execution. Machine learning is used to classify jobs

as fusion suitable or fusion unsuitable. Thereafter, the best candidates, among all

fusion suitable jobs are fused to increase the GPU device utilization. Furthermore,

the scheduling mechanism, presented in Chapter 4, is adapted to the GPU device

utilization problem that is presented in Chapter 5.

Chapter 6 provides concluding remarks about the research performed in this thesis.

Moreover, a number of future research aspects are also provided for researchers to

explore.

Chapter 2

Background and Related Work

This chapter presents the background knowledge that is necessary to familiarize

the reader about the research conducted in this thesis. Moreover, the prior research

work related to job scheduling on heterogeneous machines is also presented in this

chapter.

2.1 Background

This section introduces the tools and techniques that are used by the research com-

munity to address the challenges related to scheduling in heterogeneous systems.

Particular emphasis has been laid to introduce OpenCL, heterogeneous computing

and an introduction to the classification of scheduling techniques that are used to

map jobs in heterogeneous systems.

2.1.1 Heterogeneous Computing

Heterogeneous computing is a type of parallel computing can be defined as com-

puting performed on systems consisting of more than one type of compute devices

[31]. Heterogeneous systems can be further subdivided into single Instruction Set

Architecture (ISA) and multiple ISA systems and are described below.

12

Background and Related Work 13

Single ISA Heterogeneous Systems

Heterogeneous systems that consist of a processor that has same ISA but operate

at different clock frequencies can be labeled as single ISA heterogeneous systems.

An example of such processors is Qualcomm Snapdragon 855 [48] that is an octa-

core processor and consist of three types of ARM-based processing cores [49],[50].

1. 1 x 2.84GHz based on Cortex A76.

2. 3 x 2.42GHz based on Cortex A76.

3. 4 x 1.8GHz based on Cortex-A55.

As these processors are mostly used in mobile platforms, they are optimized to

give better energy efficiency to increase battery life and provide energy efficiency.

In these systems, cores are not optimized to perform specific kind of tasks i.e.,

compute-parallel or data-parallel tasks.

Multiple ISA Heterogeneous Systems

Heterogeneous systems that consist of processors with compute cores possessing

different ISAs can be labeled as multiple ISA heterogeneous systems. The different

ISA compute cores can be integrated on the same die (i.e., AMD Radeon E2-7110)

[51] or can be connected through PCIe bus (i.e., systems consisting of a discrete

GPU). Typically, heterogeneous ISA systems consist of a multi-core CPU and

many-core GPU that is used as a co-processor to accelerate the execution of a

data-parallel application. Mostly, CPUs are better suited to perform latency-

sensitive tasks and incorporate architectural advances such as branch-prediction,

out-of-order execution, and super-scalar capabilities [52]. Moreover, each CPU

core is organized in a MIMD (Multiple Instruction Multiple Data) ways and are

optimized to perform compute-parallel tasks.

Whereas, many-core GPUs are more suited to perform data-parallel and throughput-

sensitive tasks [52] due to the inherent massive multi-threading capabilities [53].

Background and Related Work 14

The GPU cores are organized in a SIMD (Single Instruction Multiple Data) ways

and are optimized to perform data-parallel tasks.

Among the two, heterogeneous ISA systems are widely used by the scientific com-

munity to accelerate the execution of applications [11, 54]. The focus of this

research is on multi-ISA heterogeneous system that consists of a CPU and one or

more GPUs.

2.1.2 OpenCL

Open Compute Language(OpenCL) [8] has emerged as an industry standard to de-

velop data-parallel applications for heterogeneous multi-/many-core architectures.

The OpenCL platform model consists of a host (which is always a CPU) and one

or more compute devices (which may also be a CPU or a GPU or any other ac-

celerator) as shown in Figure 2.1. Each compute device consists of one or more

compute units which are further divided into one or more processing elements.

Figure 2.1: OpenCL platform model [11]

Major vendors in the computer hardware industry such as Intel [55], AMD [56], and

NVIDIA [57], etc., support OpenCL platform. A CPU in the OpenCL execution

Background and Related Work 15

model as depicted in Figure 2.2. A CPU always executes the serial portion of an

OpenCL program (known as the host). The host manages the overall execution

of an OpenCL program. Its tasks include identifying possible devices for kernel

execution, preparing data for transfer to OpenCL devices, creating and managing

command queues etc. Moreover, creating and launching threads on a compute

device is also performed by the host. The data-parallel portion (known as the

kernel) is executed on a compute-device. The compute device can be on a CPU,

a GPU, a FPGA, or any other supported accelerator device.

CPU GPU AcceleratorCPU

Host Kernel

OpenCL App

Figure 2.2: OpenCL execution environment

2.1.3 Scheduling techniques for heterogeneous systems

There are a plethora of techniques that are concerned with the scheduling of tasks

on heterogeneous systems. These techniques can be broadly divided into three

categories: static, dynamic, and hybrid. The above-mentioned three techniques

along with their advantages and disadvantages are discussed in the subsequent

subsections.

Static Scheduling

In static scheduling techniques, task mapping is performed before runtime and is

fixed during the execution. Static scheduling is suitable when amount of work

Background and Related Work 16

to be performed or data to be processed is known apriori. Its advantages are

simplicity and low scheduling-overhead. Major disadvantages of this technique

are that optimal task partitioning and scheduling cannot be done before execution

because of applications’ characteristics and data characteristics (at compile time)

are unknown.

Dynamic Scheduling

In dynamic scheduling, task mapping to a compute-unit is done at runtime. The

major advantage of dynamic task scheduling is that decision to map the task is

more favorable (considering the runtime attributes of the application and ma-

chine). Scheduling decisions can be adjusted during the execution of a program.

Major cons of this scheduling are the increased complexity and higher scheduling

overhead.

Hybrid Scheduling

Hybrid scheduling techniques incorporates both static and dynamic approaches

for scheduling tasks. The hybrid technique takes advantage of both static and

dynamic techniques. As the first step, generally, offline profiling (static) is used

to extract program features, which are employed in scheduling decisions. Purpose

of offline profiling is to reduce dynamic scheduling overhead. The major objective

of this technique is to minimize load imbalance to improve the overall application

performance.

2.2 Related Work

This section details the related work specific to task/job scheduling in hetero-

geneous systems. Section 2.2.1 presents scheduling techniques for heterogeneous

Background and Related Work 17

multi-core machines. Section 2.2.2 presents the use of machine learning for schedul-

ing purpose in heterogeneous machines. finally, Section 2.2.3 presents kernel fusion

techniques to improve GPU device utilization.

2.2.1 Scheduling Schemes for Heterogeneous Multi-cores

Currently there exists a plethora of scheduling techniques for heterogeneous multi-

core machines [17, 58–64]. Some of these [59–62] have split either a single appli-

cation kernel among CPUs and GPUs or have attempted to schedule a pool of

applications [63–65] to minimize the overall execution time of the jobs and to

improve the device utilization.

In [66], authors presented Choose-between-Accelerate-the-fastest-and-Best-fit (CAB)

and Greedy-Increase (GrIn). The CAB is a mathematical model that consider per-

formance and energy constraints for favorable task scheduling on a heterogeneous

multi-core system. GrIn algorithm is an implementation of the general case of

CAB mathematical model. According to the authors, each application program

consists of a set of tasks (both serial and parallel). First, minimum and maximum

throughput for each task type (for all the heterogeneous processors) is calculated

using the CAB model. The tasks consuming minimum system energy and having

minimum Energy Delay Product for a processor represents the highest throughput

for that processor. The GrIn scheduling algorithm then assigns a task (using a

greedy approach) to a processor in order to maximize system throughput. This

research is analogous to our work for considering processing speed of processors;

however, memory contention aspect has been ignored.

In [61], a system named Qilin for programming heterogeneous devices has been

presented. At first, the Qilin system partitions the kernel data into two parts,

which are further mapped onto CPU and GPU devices. The Qilin stores the exe-

cution performance of an application in a database. Afterwards, the Qilin uses the

previously stored execution performance data of a certain application to project

current execution performance to form scheduling decisions accordingly. In the

Background and Related Work 18

case of any hardware changes in the system, the Qilin initiates a new training

session for altered hardware configuration. In contrast to Qilin, our scheduling

algorithm does not require offline profiling and code change of the OpenCL appli-

cations.

In [67], a profiling-based kernel scheduling method is proposed in which, an off-line

profiling has been performed to obtain execution time and data dependencies of

an OpenCL kernel. Afterwards, a greedy algorithm has been employed to schedule

the kernel on a computing device (i.e., CPU or GPU) that has resulted in the least

executions time with no dependency violations. However, the proposed algorithm

only schedules kernels of a single application. Whereas, our proposed scheduler

does not require off-line code profiling and assigns pool of jobs to CPUs and GPUs.

StarPU [68] is a run time system that provides a unified execution environment for

executing numerical kernels on heterogeneous architectures. The StarPU adopts

simple scheduling policies for tasks distribution on heterogeneous architecture.

The employed Greedy policy (priority based) assigns a task to a processor as soon

as it becomes idle. The tasks get executed based on their priority preference

(i.e., high priority task will be executed first). No-prior policy [68] is same as

greedy; however, it does not consider task priority while assigning a task to the

processor. The employed Ws-policy also assigns task greedily that rely on work-

stealing principle. In w-rand policy, each worker-device (i.e., processor) is assigned

an acceleration factor. A task is assigned to that worker-device whose probability

is proportional to acceleration factor ratio. In heft-tm policy, a task is assigned

to a computing unit which minimizes the task’s execution time (considering the

already assigned tasks on that compute unit). The StarPU’s scheduling policies

only consider numeric kernels (such as Matrix Multiplication, LU decomposition)

while our proposed scheduling heuristic is capable to schedule different application

kernels and employing multi-GPU configurations.

In [62], a run time system has been proposed that schedules legacy kernels (com-

pute intensive part of applications) on a heterogeneous machine considering both

the execution history and data-transfer overheads. Authors have proposed a run

Background and Related Work 19

time system that intercepts function calls of a kernel and schedules them on either

a CPU or a GPU. Our proposed approach is distinguished as compared to the

scheduler presented in [62] in terms of no overhead of offline profiling. Moreover,

our proposed scheduler is capable of scheduling several data-parallel applications

as compared to the single application scheduling approach adopted by [62].

HDSS [69] scheduling mechanism improves the execution time of a kernel via parti-

tioning the workload between CPU and GPUs. Initially, profiling phase is utilized

to learn the computing power of each processor by assigning a small number of loop

iterations to it. In adaptive phase, remaining loop iterations are then assigned to

each processor according to their processing speed. As a result, the HDSS mech-

anism ensures a load-balanced execution on heterogeneous machines. In contrast

to the HDSS, our approach does not require job splitting and code change.

In [70], a runtime system has been proposed that allocates OpenCL based data-

parallel tasks to a CPU or a GPU. In this system, a kernel is divided into several

tasks. Afterwards, a profiler is employed to record the execution time of the

scheduled tasks against each processor. Whenever a task arrives for execution, it

is scheduled to either a CPU or a GPU device based on the stored performance

profile. However, this system requires profiling and code changes which is not the

case with our approach.

The algorithm presented in [26] divides a workload (based on a single kernel) into

chunks and schedule the chunks to either a CPU or a GPU. The scheduler [26]

starts with the assignment of uniform small-sized chunks for each device. The

chunk sizes are increased/decreased exponentially according to the previous exe-

cutions of those chunks. In such a way, the faster computing devices are loaded

with larger sized chunks and slower devices are loaded with small sized chunks

which ensure a good load balance. In contrast to this approach, our scheduler is

memory-contention aware that ensures lower execution time along the load bal-

anced execution.

In [64], Estimated Execution Time of an application is used to decide allocation to

a CPU or a GPU. This technique requires a training period in which the execution

Background and Related Work 20

history of an application is observed. When an application arrives for execution,

it is mapped to a device which is capable to complete the job earlier. Application

completion time is estimated by considering the total execution time of the appli-

cation and the execution time of the prior scheduled application on that device.

In contrast, our proposed schedule does not require offline profiling. Moreover,

our proposed technique supports multi-device configuration which is not provided

by this heuristic [64].

In [17], historical run time data is used to schedule an application to a suitable

device that can execute the job earlier. If that suitable device is busy executing

other applications then the application is scheduled on a slower device. In con-

trast to this approach, our proposed scheduler is capable of employing multi-GPU

configurations.

In [71], authors proposed an algorithm that schedules applications on heteroge-

neous multi-cores by considering the system specifications, the historical run time

data, and current system state. In contrast to this approach, our scheduler consid-

ers both the computational requirements of an application and computing capa-

bilities of devices. Moreover, our proposed approach schedules pool of applications

ensuring a load-balanced, memory contention free execution.

In [72], three different scheduling algorithms have been proposed. Two algorithms

are based on different variants of First Free and First Come First Serve heuristics.

The third algorithm assigns tasks to a processor via considering the execution

history. The performance history is then harnessed to predict waiting time for a

task on a certain processor. On the other hand, our proposed scheduler minimizes

the memory contention issue and does not require code changes.

In [73], an off-line prediction model is proposed to dynamically partition tasks

between a CPU and a GPU. Machine learning techniques, based on Artificial

Neural Network (ANN), are used to derive prediction model for task partitioning

using the Insieme [74] run time system. This model depends on static code features

(e.g., OpenCL built-in functions) and dynamic input sensitive features (e.g., data-

transfer size of the split-able buffer) for training phase. The Principal Component

Background and Related Work 21

Analysis procedure is then used to further optimize the task partitioning. After

that, the partitioned tasks are assigned to CPU and GPU for execution. In contrast

to this approach, our proposed scheduler does not require data-splitting and off-

line training.

In [75], authors presented a Single Kernel Multiple Data scheduling heuristics

that employs splitting of a kernel across all available devices. For partitioning,

the data represented by the ND Range is flattened and its subset is assigned to

each computing device. The partial subset of results are obtained and merged in

a seamless manner to produce the output. To ensure load-balanced distribution

across multiple heterogeneous devices, the execution speed and data transfer cost

to each device are considered. However, our proposed scheduler does not require

data-splitting and is capable of scheduling a pool of jobs considering both the

application and device’s computing requirements.

In [76], authors presented an OpenCL run time system called FluidiCL that is

capable of distributing and executing an OpenCL program using both CPU and

GPU devices. This scheme does not require any prior offline training. It au-

tomatically handles data-transfers and results aggregation without involving the

programmer. For data-distribution, the n-dimensional ND Range of a work group

is flattened and used as a unit of allocation for execution. A kernel mapped on

a GPU device starts executing the flattened work group from one end while on

a CPU device a sub-kernel starts executing another part of the work group. In

contrast to this approach, our proposed scheduler is capable of executing multi-

ple jobs simultaneously (using CPUs and GPUs) providing a better application

response time.

In [60], authors presented a two-phase scheduling algorithm named Multi Ker-

nel on Multi Devices (MKMD) to schedule multiple kernels of an application. In

the first phase, a kernel is assigned to that device which minimizes its execution

time and data-transfer cost. In the second phase, a kernel is split into sub-kernels

and rescheduled to heterogeneous processors to improve device utilization. The

MKMD heuristic builds a regression model for each kernel considering different

Background and Related Work 22

input sizes and device mappings. The regression model is then used to decide

whether a kernel should be split or mapped fully on a certain compute device.

However, our proposed scheduler does not split kernels across heterogeneous de-

vices and does not require offline profiling.

In [77], two scheduling strategies are proposed to partition the kernel workload

between a CPU and a GPU. In naive profiling step, a small portion of work is

assigned to both CPU and GPU device and the execution performance of both

devices is analyzed. Afterwards, the collected profiling data is utilized for further

jobs assignments. On the other hand, our scheme does not require kernel splitting

and can efficiently schedule pool of kernel jobs.

In [27], authors presented a machine learning based task scheduling scheme to

schedule multiple kernels from different programs. The focal aspect of this tech-

nique is to enhance the system throughput and decrease the average turnaround

time. The distinguishing factor of this scheme is that authors have contemplated

scheduling of multiple OpenCL applications on a heterogeneous platform. It con-

siders (a) static code features such as a number of instructions, load/store op-

erations etc., and (b) run time features such as input size, etc. Using both the

static/dynamic features and a predictive model the data-parallel programs are cat-

egorized into high and low speedup. The high speed-up programs are scheduled on

a GPU device and the low speed-up programs are scheduled on a CPU. In contrast

to this technique, our proposed scheduler assigns OpenCL kernels considering both

the application’s computing requirements and the device’s computing capabilities.

In [78], a dynamic scheduling scheme is presented for applications that are char-

acterized by (a) generalized loop reduction and (b) structured grid computation.

These applications consist of data-parallel loops, which are divided into chunks.

These chunks are further divided into chunk-lets, which is a basic unit of assign-

ment to a CPU or a GPU. Using the FCFS assignment, a CPU is assigned a

single chunk-let at a time while several chunk-lets are combined and assigned to a

GPU. Employing this methodology, the faster computing devices (such as GPUs)

are allocated with more tasks as compared to the slower computing devices (i.e.,

Background and Related Work 23

CPUs). This task-mapping scheme ensures a good load-balance across computing

devices. In contrast to the proposed scheduling technique [78], our scheme does

not require kernel splitting and is used to schedule pool of jobs.

In [79], a two-phase scheduling scheme called CAP is proposed for heterogeneous

parallel machines. In the first phase, a static partitioning method is used to

distribute a small portion of workload equally to both a CPU and a GPU. The

execution time of the assigned workload is analyzed. Considering the execution

time of the previous assignment, the amount of work is increased twofold on the

faster device. The scheduling using increased workload is performed until the

variance between current and previous executions becomes less than a predefined

threshold. In the second phase, the remaining workload is divided among compute-

devices according to the sampling performed in the first phase. In contrast to this

scheme, our proposed scheduler does not require prior analysis phase.

In [31], a machine learning based heuristic is proposed that employs OpenCL

code-features (such as instructions, blocks, math functions) to determine device

suitability. Moreover, certain code-features (e.g., branch ratio, data size, etc.)

are utilized to determine whether to schedule a kernel in isolation (to a GPU) or

to combine it with other kernels to improve execution performance. In contrast,

our proposed scheduler considers devices’ computing capabilities to balance the

load of job pool and a memory contention free execution of multiple data-parallel

applications. Maat [22] library distributes a single kernel workload across hetero-

geneous devices in a load balanced manner. Maat includes a set of load balancing

techniques: (a) static where each device is assigned workload according to its com-

puting power; (b) dynamic where the workload is divided into equal sized packages

and assigned to the free devices; (c) guided method is used to reduce the synchro-

nization points (required during dynamic method); and (d) adaptive method is

based on [26] that divides workload in small chunks and assign them to devices

to determine execution time of data on each device. The adaptive method assigns

the rest of the data to devices statically according to the ratio of the obtained ex-

ecution time. The proposed technique differs from our technique as it is oblivious

Background and Related Work 24

to device-suitability and is not applicable to multiple OpenCL workloads mapped

on a different device (executing concurrently).

In [80], a hybrid scheduling approach is presented that schedules a job in a load bal-

anced manner on a heterogeneous CPU-GPU system. In the two-phase scheduling

technique, first (i.e., static phase) partition ready OpenCL kernels are developed

from the original kernel for mapping on different heterogeneous computing devices.

The execution time of partition ready kernels is noted and then in the dynamic

phase, the granularity of partitioned kernels is adjusted in order to achieve load

balance (for iterative kernel execution). In contrast to our proposed scheduling

scheme (i.e., Troodon) it does not consider device suitability and speedup predic-

tion for the scheduling decisions. In [81], a scheduling mechanism named E-OSched

is presented as a run time system that achieves near optimal device utilization

through load balanced execution of the job pool. Using the E-OSched, first, the

processing requirements of all jobs in a job pool are determined and jobs are sorted

in ascending order (shortest sized jobs first) of the processing requirements. Jobs

requiring low processing are scheduled to CPU and the high processing require-

ment jobs are mapped to the GPU device. Jobs mapping to CPU and GPU is

performed according to the ratio of the device’s computational power. In contrast

to our proposed scheduling mechanism, the E-OSched does not consider the de-

vice suitability and relative speedup for scheduling which may result in important

performance losses.

In [82] and [83], the authors suggest that a user-defined command queue mapping

to the computing device is not efficient and requires a thorough understanding

of the heterogeneous architecture and the kernel characteristics. To relieve the

programmer from the burden of mapping command queues to devices, the authors

proposed an extension (named MultiCL) to OpenCL API that decouple command

queue from devices. Using MultiCL, the programmer is only concerned with devel-

oping parallel applications and scheduling of command queues to devices is han-

dled by MultiCL. MultiCL supports two global scheduling policies for command

queues—device mapping: 1) Round Robin, and 2) Autofit. In Round Robin-based

command queue scheduling, the tasks are mapped on the next available device.

Background and Related Work 25

In Autofit, an optimal device for a command queue is decided using static device

profiling, dynamic kernel profiling, and dynamic device mapping. The approaches

presented in [82] and [83] are more suitable for task-parallel workload whereas our

proposed approach is appropriate for data-parallel workloads too.

Choi et al. in [64] highlight the importance of the device selection for attaining a

good performance in a heterogeneous multicore machine. The authors presented an

execution estimation-based model that requires execution history of applications

for training. A new task is scheduled for a device that could complete the job

earlier. The total execution time of the application (on that device) and the

execution time of the currently executing application are used to estimate finish

time of the new application. In contrast, our proposed model use device suitability

and relative speedup for mapping jobs to most appropriate devices.

In summary, most of the contemporary state-of-the-art techniques are either con-

cerned with the single kernel based scheduling or limited to the scheduling of

certain kinds of applications. Most of them require an off-line training or profil-

ing along with some code change. To the best of our knowledge, there does not

exist any technique that emphasizes on the load-balanced scheduling of job pool

without requiring profiling and off-line training. Considering all aforementioned

deficiencies, our proposed scheduling heuristic contemplates both the computa-

tional requirements of a job, computing capabilities of the device, and memory

contention-free mapping of OpenCL jobs.

2.2.2 Heterogeneous Scheduling Based on Prediction

Models

Machine Learning (ML) based application scheduling is considered one of the

powerful tool for optimizing parallel programs execution [27, 58, 63, 73]. The ML

prediction model is first trained using past experiences and then the trained ML

model exhibits an adaptive behavior (appropriate mapping) for different comput-

ing platforms and applications.

Background and Related Work 26

In [58], int operations, float operations, barriers, work items etc., based code fea-

tures have been extracted from OpenCL kernels during the compilation time.

These extracted features are passed to machine learning based predictive model

SVM (Support Vector Machine) to form scheduling decisions i.e., whether to map

a kernel to a CPU, GPU or to partition the kernel among available computing

devices. In contrast to our proposed work, the authors in this study presented a

scheduling algorithm for scheduling a single OpenCL kernel across heterogeneous

devices; whereas, our proposed approach is employed to schedule job pool of appli-

cations. This work has further been extended by [84], wherein a machine learning

based scheduling approach is proposed. It works on the basis of branch divergence

(i.e., if else statements) for accurate job scheduling. Authors have emphasized

that the branch divergence plays a critical role in application execution; therefore,

this code feature should be employed while building a machine learning model for

the scheduler. They proposed the scheduler based on offline profiling and training

phase with the input of the extracted code-features. In contrast to their proposed

scheduler, our technique does not require offline profiling and training. However,

it has not ensured load-balanced scheduling of tasks.

Grewe et al. in [58], proposed an ML-based partitioning scheme for OpenCL

programs. At the compile time, the model extracts the static code features (i.e.,

int operations, float operations, barriers etc.). After that, pre-trained ML model

(based on Support Vector Machine) is utilized to predict whether to map a kernel

to a CPU, to GPU or to partition the kernel among available computing devices.

The trained model for GPU predicted with an accuracy of up to 91% and up to 95%

accuracy for CPU related predictions. In contrast, our proposed ML scheduling

model not only predicts device suitability but also relative speedup gain for the

available computing devices.

In [73], Kofler et al. proposed an Artificial Neural Network (ANN) based pre-

diction model. The main concept implemented in this model is to dynamically

partition the given task between a CPU and a GPU. Authors use Insieme [74]

source-to-source compiler to translate a single-device kernel code into multi-device

kernel code. The feature set includes static code features (i.e., scalar int operations,

Background and Related Work 27

vector float operations, etc.) and dynamic input based sensitive features (such as

Data size of the split-able buffer, etc.). The partitioning of the task is further

improved using Principal Component Analysis. In contrast to this approach [73],

our proposed scheduling mechanism maps job pool of heterogeneous applications

considering the optimal or most suited device for mapping the compute kernel.

Troodon [65] is a machine learning based multi-job scheduler for heterogeneous

systems. The Troodon [65] is built on top of the E-OSched [81] and include

device suitability (i.e., CPU suitable or GPU suitable) classification of jobs and

speedup prediction in the scheduling decisions. The Troodon [65] first classifies

each submitted job as CPU suitable or GPU suitable. At the same time, the

Troodon [65] also predict the expected speedup gain when a job is executed on a

suitable device. All the CPU suitable and GPU suitable jobs are then separately

sorted according to speedup. Thereafter, the E-OSched [81] scheduling mechanism

is used to map jobs to suitable device for execution.

In [27], Wen et al. argue that in order to get increased system throughput and

decreased turnaround time, there is a need to determine device-suitability of dif-

ferent applications for scheduling. The authors trained an ML-based model using

code feature (i.e., number of control instructions, float operations, int operations

etc.) and run time features (i.e., output size, global work size etc.). The trained

ML prediction model maps high-speedup tasks (compute kernels) to GPU device

whereas low-speedup tasks are mapped to a CPU device. The support vector

machine (employing a radial base kernel) is used for developing the prediction

modeling. In addition to the device-suitability, our proposed scheduling scheme

also considers predicted speedup of an application when executed on a suitable

device.

Gregg et al. in [15] emphasized that the mapping of applications to a faster device

(i.e., GPU only) mostly leads to a load imbalance problem. Moreover, slower com-

puting resources (i.e., CPUs) remain mostly underutilized which cause excessive

contention on the faster devices. Therefore, the authors suggest that by mapping

Background and Related Work 28

some tasks to slower device results in increased system throughput. Task map-

ping to the slower device is decided based on historical run time data. Whenever

a faster device is busy executing a task, the slower device is utilized by mapping

an arriving task. In contrast to this scheduling policy, our proposed technique

considers both the devices’ computing power and applications’ processing speed

for task mapping.

In [63], Wen et al. argue that improving GPU utilization by executing OpenCL

kernels concurrently can lead to improved performance. Authors in [63], proposed

a decision tree based ML prediction model to determine whether an application

kernel required to be scheduled separately on a GPU or it should be combined

with other compute kernels to improve GPU utilization. The feature set used for

the predictive model includes features such as compute instruction ratio, memory

instruction ratio, etc. in addition to the static (i.e., number of load/store op-

erations, blocks, control instructions) and dynamic (i.e., input and output size)

features of [27]. In the first step, the prediction model separates OpenCL kernels

into CPU and GPU suitable classes. Next, for the GPU suitable kernels, it is pre-

dicted whether or not to merge two GPU kernels to improve GPU utilization. In

contrast, our proposed scheduler considers the device’s computing capabilities and

applications’ processing requirements to schedule tasks in a load balanced man-

ner. Table 2.1 demonstrates the summary of all the scrutinized state-of-the-art

techniques presented in Section 2.2.1 and Section 2.2.2.

Please note that in Table 2.1 RF is used as an abbreviation for Random Forest,

GB for Random Forest, SVM for Support Vector Machine, DT for Decision Tree,

RS for Runtime System, API for Application Programming Interface, MW for

Middle Ware, NA for Information Not Available respectively. These abbreviations

are used for summarization in Table 2.1.

Background and Related Work 29

Table 2.1: Summary of literature review techniques

[R
e
fe

re
n

c
e
]y

e
a
r

A
tt

ri
b

u
te

s

S
ch

e
d

u
li

n
g

T
y
p

e

J
o
b

A
ll

o
c
a
ti

o
n

L
o
a
d

B
a
la

n
c
in

g

R
e
so

u
rc

e
-A

w
a
re

Im
p

le
m

e
n
ta

ti
o
n

D
a
ta

S
iz

e
C

o
n

si
d

e
ra

ti
o
n

M
u

lt
i-

G
P

U
S

u
p

p
o
rt

C
o
d

e
F
e
a
tu

re
E

x
tr

a
c
ti

o
n

M
a
ch

in
e

L
e
a
rn

in
g

U
sa

g
e

(t
e
ch

n
iq

u
e
)

D
e
v
ic

e
A

ffi
n

it
y

S
p

e
e
d

u
p

P
re

d
ic

ti
o
n

[65]2019 Static
Job

Pool
Yes Yes RS Yes Yes Yes Yes

(RF

&

GB)

Yes Yes

[81]2018 Static
Job

Pool
Yes Yes RS Yes Yes No No No No

[66]2017 Static
Job

Pool
Yes Yes RS No No No No No No

[84]2016 Static
Single

job
No No RS Yes No No No No No

[61]2009 Dynamic
Single

job
Yes Yes API Yes No No No No No

[67]2012 Dynamic
Single

job
No Yes RS No No No No No No

[68]2011 Dynamic
Single

job
Yes Yes API No NA No No No No

[62]2010 Dynamic
Single

job
No No RS Yes No No No No No

[69]2013 Dynamic
Single

job
Yes Yes API No No No No No No

[70]2011 Dynamic
Single

job
Yes Yes Lib Yes Yes No No No No

[26]2013 Dynamic
Single

job
Yes Yes RS No Yes No No No No

Background and Related Work 30

Table 2.1 Summary of literature review techniques

[R
e
fe

re
n

c
e
]y

e
a
r

A
tt

ri
b

u
te

s

S
ch

e
d

u
li

n
g

T
y
p

e

J
o
b

A
ll

o
c
a
ti

o
n

L
o
a
d

B
a
la

n
c
in

g

R
e
so

u
rc

e
-A

w
a
re

Im
p

le
m

e
n
ta

ti
o
n

D
a
ta

S
iz

e
C

o
n

si
d

e
ra

ti
o
n

M
u

lt
i-

G
P

U
S

u
p

p
o
rt

C
o
d

e
F
e
a
tu

re
E

x
tr

a
c
ti

o
n

M
a
ch

in
e

L
e
a
rn

in
g

U
sa

g
e

(t
e
ch

n
iq

u
e
)

D
e
v
ic

e
A

ffi
n

it
y

S
p

e
e
d

u
p

P
re

d
ic

ti
o
n

[64]2013 Dynamic
Single

job
No Yes RS No No No No No No

[71]2010 Dynamic
Single

job
No Yes RS No No No No No No

[72]2009 Dynamic
Job

Pool
Yes No RS No No No No No No

[73]2013 Dynamic
Single

job
No No RS Yes Yes No No No No

[75]2013 Dynamic
Single

job
Yes Yes MW Yes Yes No No No No

[22]2016 Hybrid
Single

job
Yes Yes Lib No Yes No No No No

[80]2016 Hybrid
Single

job
Yes No RS No No No No No No

[58]2011 Static
Single

job
No No RS Yes No Yes Yes

(SVM)

No No

[82]2015 Hybrid
Single

job
No Yes RS No Yes No No No No

[83]2016 Hybrid
Single

job
No Yes RS No Yes No No No No

[17]2011 Dynamic
Job

Pool
Yes Yes RS Yes No No No No No

[60]2015 Dynamic
Single

job
Yes No Lib Yes No No No No No

Background and Related Work 31

Table 2.1 Summary of literature review techniques

[R
e
fe

re
n

c
e
]y

e
a
r

A
tt

ri
b

u
te

s

S
ch

e
d

u
li

n
g

T
y
p

e

J
o
b

A
ll

o
c
a
ti

o
n

L
o
a
d

B
a
la

n
c
in

g

R
e
so

u
rc

e
-A

w
a
re

Im
p

le
m

e
n
ta

ti
o
n

D
a
ta

S
iz

e
C

o
n

si
d

e
ra

ti
o
n

M
u

lt
i-

G
P

U
S

u
p

p
o
rt

C
o
d

e
F
e
a
tu

re
E

x
tr

a
c
ti

o
n

M
a
ch

in
e

L
e
a
rn

in
g

U
sa

g
e

(t
e
ch

n
iq

u
e
)

D
e
v
ic

e
A

ffi
n

it
y

S
p

e
e
d

u
p

P
re

d
ic

ti
o
n

[77]2014 Dynamic
Single

job
Yes Yes RS No No No No No No

[27]2014 Hybrid
Job

Pool
No No RS Yes No Yes Yes

(SVM)

Yes No

[63]2017 Hybrid
Job

Pool
No No RS Yes No Yes Yes

(DT)

Yes No

In summary, most of the related work is limited to a specific type of application or

perform scheduling of a single OpenCL kernel. Moreover, several other research

efforts require code splitting and profiling of the applications. Techniques pertain-

ing to the scheduling of job pool of applications are either oblivious to processing

speed of computing resources (i.e., CPU and GPU) or do not consider device-

suitability or predicted speedup in scheduling decisions.

2.2.3 Kernel Fusion Techniques

There is extensive work that has been conducted regarding task scheduling on

heterogeneous multi-cores. Some of these schemes [59, 69] employ data-splitting

mechanisms (between CPU and GPU devices) while the other focus on a shared

usage of CPU and GPU device in multi-job scenario [63, 64, 81]. Due to the lack

of operating system’s support for GPUs, in the recent years, some researchers [85,

Background and Related Work 32

86] have focused on sharing GPU device among multiple concurrently executing

applications.

In [87], it is observed that the concurrent execution of multiple kernels often does

not produce significant speed-up. due to contention-based execution. Some of the

reasons are device contention, serialization (i.e., kernels are launched concurrently,

however, in reality, are executed sequentially) due to lack of enough GPU resources

for the kernel execution, serialization due to memory transfer, serialization due to

long executing kernels, etc. To overcome the above-mentioned issues, the authors

proposed a mechanism named Elastic Kernels. First, the kernels which are to be

executed concurrently are transformed into a single (named as Elastic) kernel using

source-to-source transformation. The transformed kernel also decouples physical

resource-allocation from thread blocks of the original kernels. Afterward, the

authors proposed scheduling techniques such as Median and Equal that decide on

the number of GPU resources which can be assigned to each thread block of the

original kernels.

In [63], Wen et al. argue that improving GPU utilization by executing OpenCL

kernels concurrently can lead to improved performance. Authors in [63] proposed

a decision tree based ML prediction model to determine whether an application

kernel required to be scheduled separately on a GPU or combined with other com-

pute kernels to improve GPU utilization. The feature set used for the predictive

model includes features such as compute instruction ratio, memory instruction ra-

tio, etc. in addition to the static (i.e., number of load/store operations, blocks,

control instructions) and dynamic (i.e., input and output size) features of [27]. In

the first step, the prediction model separates OpenCL kernels into CPU and GPU

suitable classes. Next, for the GPU suitable kernels, it is predicted whether or not

to merge two GPU kernels to improve GPU utilization. In contrast, our proposed

scheduler uses expected to speed up achievable due to merged execution of the

kernels to achieve load balance between heterogeneous processors.

MaxPair [85] is a kernel merging technique that uses graph based method to

decide whether to merge two kernels or execute them separately. Distinct kernels

Background and Related Work 33

represent nodes whereas the edges between kernels represent the speed-up that

can be achieved by kernel merging. The proposed technique is different from

other kernel merging techniques which generally uses a greedy approach to find

a suitable candidate for merging. Whereas, MaxPair adopts maximum matching

pair algorithm to find the best candidate for merging that can produce the highest

speed-up.

In [88], the authors present the accelOS, a portable and transparent runtime and

Just-In-Time compiler that share GPU resources among two kernels without ker-

nel merging. This is done by determining the workgroup requirements of multiple

executing kernels that need to share GPU resources and then dynamically reduces

work of each concurrently executing kernel so that all kernels can be executed con-

currently executed on GPU and each kernel have an equal share of GPU resources.

To improve GPU resource utilization through concurrent kernel execution, a run-

time system named as kernelet is presented in [86]. The kernelet dynamically

divides a kernel into sub-kernels (named as slices). Afterward, a markov chain

based performance model is used to co-schedule kernel slices which complement

one another (i.e., co-scheduling slices from a compute intensive and memory in-

tensive kernels). Afterward, a greedy algorithm is used to co-schedule those slices

of the selected kernels that produce the highest performance gain according to the

developed system model (Markov chain based).

In [89], a concurrent kernel execution method that is focused on improving energy

efficiency through concurrent kernel execution is proposed. Similarly to [86], the

kernel is divided into multiple slices. Now for every possible pair of concurrent

kernels and their slices ratio GOPS (Giga Operations Per Second)/watt, and the

corresponding frequency of GPU, is estimated using Neural Network. This process

is also repeated for sequential executions of the kernels. Then, the kernel pair with

highest energy improvement is scheduled to GPU. If there is no pair of kernels that

provide energy improvement then kernels are executed using FIFO policy.

In [90], the authors argue that data transfer between CPU and GPU should also

be considered when using GPU as a shared resource for executing multiple kernels.

Background and Related Work 34

For this purpose, authors present CUDA Multi-Application Scheduling (CuMAS)

which considers PCI-e uplink and PCI-e downlink along with GPU as a shared re-

source. In contrast to GPU space sharing (for concurrently executing kernels), the

proposed scheduling scheme allows only use of one of the three shared resources

i.e., PCI-e uplink, GPU, or PCI-e downlink to overlap execution with data trans-

fers. CuMAS uses profiling and timing models to estimate kernel execution time

and data transfer time of a kernel. On the basis of execution time and data trans-

fer time information, the CuMAS scheduler decides how to reorder the execution

of CUDA applications in task queue so that their data transfer and execution time

can be overlapped.

In summary, there is a lack of scheduling heuristics that use predictive modeling

to determine fusion suitability of a pair of OpenCL kernels while ensuring load

balance across heterogeneous devices. To the best of our knowledge, this research

is the first effort that uses machine learning based predictive modeling to deter-

mine fusion suitability of jobs and the predicted speedup attainable due to fused

execution. Moreover, the proposed approach is also able to a high degree of load

balance during the job pool’s execution on heterogeneous devices.

Chapter 3

Resource-Aware Load-Balanced

Scheduling for Heterogeneous

Architectures

3.1 Introduction

To execute compute-intensive applications, the dependence on a single proces-

sor does not play a consequential role in maintaining high speedup execution.

Over the past few years, the paradigm of the single-core era is gradually be-

ing shifted towards multi-/many-core devices such as heterogeneous processing

devices ranging from smartphones [91] to super-computers [92]. Heterogeneous

processing devices are generally equipped with a general-purpose multi-core CPU

and a many-core GPU. Recent advances in computer architecture have modeled

the GPUs immensely programmable and proficient to conduct general-purpose

computing. GPUs are basically deemed to be extremely efficient in terms of high

speedup execution of those scientific applications that involve an excessive amount

of parallel computations [93], [94]. To program GPUs, OpenCL [8] has emerged

as an industry standard. Due to its portable nature, OpenCL applications can

be executed on many types of accelerators including GPUs, CPUs etc. [9], [10].

35

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 36

An OpenCL program comprises of two parts, host program and kernel function.

Supervision of kernel function execution on accelerator devices (i.e., CPU, GPU

etc.) is the responsibility of a host program that executes on a CPU device [11].

The kernel function deals with the compute-intensive data-parallel code. Within

an OpenCL program, buffer creation, data transfer, and kernel mapping to the

devices are manually managed by the application developer [12].

The conventional scheduling mechanisms adhere to employ GPUs for the execution

of compute kernel whereas the host execution is performed by the CPU device

[63]. Such scheduling strategies originate certain problems, for instance, CPU

remains idle and underutilized during the kernel execution phase that increases the

program execution time and further cause the load imbalance. Over the past few

years, the research community is eagerly focused to overcome the aforementioned

issues via splitting a compute-kernel to utilize the CPU and GPU simultaneously

within a heterogeneous machine [58], [68], [67], [84], [62], [69]. The simultaneous

utilization of both CPU and GPU devices for execution often results in load-

balanced execution, better device utilization, and reduced execution time.

The mainstream usage of multi-core heterogeneous machines stipulates to employ

a scheduling support to efficiently utilize the computing resources and to reduce

the overall execution time of the compute-intensive applications [27]. Moreover, in

a data-center or Cloud computing environment, dependence on central scheduler

rather than application developer plays a more significant role in improving the

resource utilization and reducing the execution time for the job-pool [95]. Single

job-based scheduling strategies are not appropriate for the scenarios where several

jobs are being submitted by different users. The single-job scheduling techniques

are often specific job-oriented and employ kernel profiling and splitting to utilize

both CPUs and GPUs. In addition to the application code change, devising a

generic single job-based scheduling technique is a difficult task. Moreover, the

results returned from the split kernels must be accurately combined to produce

the correct results. Machine learning based scheduling strategies devised for a

1In this research job terminology is used to define an OpenCL application that consists of a
host program and kernel functions.

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 37

job pool require kernel profiling to assign a kernel to that device on which a job

will be executed faster [27], [63]. Moreover, other scheduling schemes [17], [64]

require the provenance of execution of the applications to decide the appropriate

device for particular application to enhance overall throughput of job-pool. Most

of the job pool scheduling schemes [17, 27, 63, 72] require extensive offline profiling

to schedule kernels. Furthermore, these scheduling schemes do not consider load

balancing as a major factor to decrease the execution time of the job pool [17,

63, 64]. Therefore, there should be a job scheduler for data-parallel compute-

intensive applications that does not require application code change, balances the

load across the employed heterogeneous computing devices to reduce the execution

time of the job-pool, to increase throughput, and to improve device utilization.

Therefore, an OpenCL Scheduler (OSched) that considers jobs’ computing require-

ment, processing capabilities of the devices, and jobs’ data size to balance load

across the heterogeneous computing devices is presented in this chapter. The load

balanced execution by the OSched results in reduced execution time of the job

pool, maximized throughput, and increased resource utilization. In general, the

applications with lower computation requirements are scheduled to slower pro-

cessing devices and vice versa. Moreover, a certain compute device (a CPU or a

GPU) is assigned with computations according to its computing capability while

maintaining a load-balance within the heterogeneous multi-core machine. The

load-balance assignment of jobs ensures the reduced execution time for the job

pool, higher throughput, and better device utilization. Moreover, an enhance-

ment of the proposed OSched scheduler named Enhanced OSched (E-OSched) is

also designed to further reduce the execution time (of the job pool) and increase

the throughput via mitigation of memory contention.

In a more coherent way, the contributions of the proposed scheme are as follow:

1. Two novel scheduling schemes OSched and E-OSched, performing resource-

aware assignment of data-parallel jobs on CPUs and GPUs to reduce make-

span time for the job pool, to increase throughput, to increase device uti-

lization, and to reduce the memory contention.

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 38

2. Mathematical modeling of the proposed OSched and E-OSched algorithms.

3. Experimental evaluation to justify the concept of the proposed OSched and

E-OSched algorithms in terms of load-balanced execution with lower exe-

cution time, higher throughput, and improved utilization of the computing

resources.

4. Implementation and performance comparison of OSched and E-OSched with

the base-line and the state-of-the-art scheduling schemes, which certainly

indicates the addressed challenges associated with forthcoming scheduling

issues.

5. Significant scrutinization of contemporary state-of-the-art that provides a

comprehensive outline to understand the shortcomings of the existing schedul-

ing heuristics.

The rest of the chapter is organized as follows. Section 3.2 presents a multi-

job execution scenario on a heterogeneous system to highlight the motivation for

this research. The proposed methodology is detailed in Section 3.3. Section 3.4

presents the experimental setup, the experimented scheduling policies, the evalu-

ation metrics, and the experimental results. Section 3.5 concludes the chapter.

3.2 Motivation

CPU executes data-parallel application much slower than GPU due to low level

of parallelism. On the other hand, applications with the small data foot-prints

get efficiently executed on a CPU device as compared to a GPU device due to

the higher data-transfer overhead, under utilization of GPU resources, and small

computation to communication ratio.To highlight the discussed scenario, Figure

3.1 shows the execution of Bitonic sort application from AMD [56]. Bitonic sort

application has been executed using 09 different input data-sizes and application

is mapped to both CPU and GPU separately.

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 39

0

5

10

15

20

25

30

35

40

45

50

55

Array Size (number of values)

CPU

GPU

Figure 3.1: Execution of Bitonicsort - CPU vs. GPU

Figure 3.1 shows that with small data-size (less number of values to be sorted)

the CPU and the GPU based executions have exhibited the similar performances.

Whereas with the increased data-size, the execution time of the CPU based ap-

plication has increased exponentially, while the GPU based execution has shown

a linear increase in the execution time. As shown in Figure 3.1, for the largest

data-size (i.e., 268435456 values) the GPU based execution has resulted in 05× re-

duced execution time as compared to the CPU based execution of the application.

Therefore, such heterogeneous scheduler should be designed that maps the small

data-sized jobs on CPUs while the jobs having large data-size should be mapped

on GPUs. In addition to that, the load-balance factor should not be ignored at all

so that all the employed devices (i.e., CPUs and GPUs) accomplish the execution

of assigned job within the approximately same time duration. A load-balanced

and application suited mapping (small jobs on CPUs and large on GPUs) often

results in reduced execution time for the job pool, improved resource utilization,

and higher throughput.

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 40

3.3 OpenCL Scheduler (OSched)

The OSched assigns jobs to CPUs and GPUs in such a way that load is balanced

across the employed computing devices. It maps jobs in a load-balanced manner

by contemplating the computational requirement of a job and processing capabil-

ities of a device. All the submitted jobs are arranged in the job pool according

(smaller size first) to their computational requirements, which splits the pool into

two segments, first half contains less computational intensive jobs and second half

comprises of jobs requiring high computation power. In OSched, the jobs involving

low computational requirements (i.e., first pool segment) tends to be mapped to

a CPU (having low computing power) while the jobs having high computational

requirements (second pool segment) are scheduled to a GPU device. Each device

(either a CPU or any GPU) is assigned the pool segment considering its com-

putational share or capability. This load balanced mapping of jobs ensures least

execution time of the job pool, higher throughput, and improved device utilization.

3.3.1 System Architecture

The OSched based scheduling system comprises of three layers: 1) Hardware layer,

2) System Software layer, and 3) the OSched scheduler. This hierarchical structure

is presented in 3.2. The hardware layer is the bottom-most layer that contains

a heterogeneous multi-core machine based on CPUs and GPUs. At top of the

hardware layer is the System Software layer that consists of Operating System

and OpenCL Run time [11]. The OSched scheduler is at the topmost layer of the

heterogeneous system. The user of a system submits varying sizes jobs (depicted

by the different sized circles in 3.2). Afterwards, the computational requirements of

each submitted job is calculated by harnessing the job’s computational complexity,

for instance, a matrix multiplication job completion will require 2N3 operations

to complete, where N is a dimension of the square matrix. All the submitted

jobs are arranged in the job pool in ascending order (smaller size first) of their

computational requirements. The Resource Manager (shown in Figure 3.2) is

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 41

responsible for extraction of hardware resource information (i.e., processors detail)

of the machine. The Processing Speed of a processor (which may consist of multiple

computing cores), measured in FLOPS2, is calculated using following equation [96]:

Processing speed = number of cores× cycles

seconds
× flops

cycles

where, number of cores represents total cores of a processor, cycles/second rep-

resents clock frequency of a core (in Hz), and flops represent total number of

floating point operations performed.

GPU
1

Main Memory
GPU

Memory

Resource
Manager

Job Scheduler

GJQn

Device
Selection

Computation
EstimatorUser

OSched

Hardware
Layer

Jobs

System
Software

Layer

 CPU
1

CPU
m

Multi -Core Processor

PCIe

CJQ

GPU
n

GPU
Memory

Operating System

OpenCL Runtime

GJQ1

Figure 3.2: System Architecture of the OSched

The Job scheduler divides the job-pool into CPU job queue (represented as CJQ

in 3.2) and GPU job queues (represented as GJQ1 to n). The reason for single CJQ

is that OpenCL, by default, considers a CPU (even if there are multiple CPUs) as

a single device. The decision of the job-pool division (into CJQ and GJQ1 to n)

and device selection is determined pursuant to the computational requirements

of jobs and the computing power of each processor. After that, the jobs from

2FLOPS = Floating Point Operations Per Second

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 42

CJQ and GJQ1 to n are assigned to the respective processor for execution (based

on First In First Out (FIFO)).

The complete mechanism of OSched is illustrated in Figure 3.3. The first step

involves calculation of computational requirement (of jobs) and computing power

of devices. Next, the CPU computational share (depicted as CScpu in Figure 3.3) is

calculated. The first segment of the pool (consisting of smaller jobs) is allocated to

a CPU and the second segment (larger jobs) is allocated to GPUs. First, the CPU

based scheduling is performed by mapping m−1 jobs (where m represents the last

job that can be assigned to the CPU) such that all the mapped jobs’ computing

requirement is less than or equal to the CPU’s computational share. The mth job

is mapped to the CPU only if the CPU’s computational share is higher than the

mapped m− 1 jobs’ computing requirements.

Start

Compute requirements
estimation of jobs in job pool

System processing
speed Calculation

Calculate CPU
share of

computation

Computation
requirement of 1st m
jobs ≤ CScpu + 2/3 of

CRJm

Assign 1st m jobs to
CPU

Assign 1st m-1 jobs
to CPU

Remove CPU
assigned jobs from

jobpool

Last GPU

Assign Jpool to
GPU (i)

Calculate GPU(i) share of
compuation

Computation
requirement of 1st m
jobs�≤��CSgpu(i)+ 2/3 of

CRJm

End

Assign 1st m jobs to
GPU(i)

Assign 1st m-1 jobs
to GPU(i)

Remove GPU(i) assigned
jobs from jobpool

Yes

No

Yes

No

Yes No

Job execution in
LIFO manner

E-OSched

Figure 3.3: OSched job scheduling Flowchart

In addition to that, the CPU’s share must not exceed CPU’s total computational

requirement after adding 2/3rd computational requirements of mth job (to the

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 43

CPU’s share). Once all the jobs of the first segment are mapped to CPU, these

jobs are removed from the job pool. Subsequently, the GPUs job assignment

phase commences in a similar fashion. The exception is for last GPU (GPUn or

only GPU device on the machine) in a heterogeneous machine wherein all the

remaining jobs of the pool are assigned to it. The dotted rectangle (depicted in

Figure 3.3) represents an optimization (discussed in Section 3.3.4) to the basic

OSched heuristic.

3.3.2 OSched System Model

This section presents the mathematical model of the OSched system. Concerning

jobs execution in job pool J, where J = {J1, J2, . . . , Jk|CRJi ≤ CRJi+1} is a set

of k jobs, in a sorted order, with respect to the computation requirement of a job

(represented as CRJ). To assign jobs to processors, let P = {P1, P2, . . . , Pm |

PSi ≤ PSi+1} be a set of m processors, in sorted order with respect to the

processing speed (PS).

In order to determine job assignment to a CPU and GPUs, total computation

requirement (JCR) of all the jobs in J and total processing speed of all processors

(TCP) are required, which are listed in the following equations:

JCR =
n∑

i=1

CRJi (3.1)

TCP =
m∑
i=1

PSi (3.2)

where, m represents the processing speed of m computing devices (a multi-core

CPU and GPUs). From Eq. 3.1 and Eq. 3.2, the computational share of CPU

(CScpu), which is the portion of computation that is assigned to a CPU from JCR,

can be calculated by using the formula given in Eq. 3.3.

CScpu =

(
Pc

TCP

× JCR

)
− α (3.3)

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 44

where Pc represents processing speed of a CPU and α is the adjustment factor

to balance the load across CPU and GPUs. The value of PC is calculated using

the processing speed formula given in Section 3.3.1. The value of α is obtained

empirically and is explained in Section 3.4.2.1.

From Eq. 3.3, to determine jobs that are assigned to CJQ, let Jcpu = {J1, J2, . . . , Jq}

be a subset of 1st q jobs from job pool J. Here Ceilingcpu is required to represent

the upper boundary for number of jobs in Jcpu, which are assigned to CPU. The

value of Ceilingcpu is calculated as the sum of CScpu and 2/3rd of computation

requirement of qth job (CRJq):

Ceilingcpu = CScpu +
2

3
CRJq (3.4)

where, the ratio 2/3 in Eq. 3.4 ensures that qth job should be mapped to CPU only

if most of its computation (i.e., 2/3) falls within the limit of CScpu. Mapping the

qth job to CPU (whose 2/3rd part can be accommodated within the CPU share)

will cause a minor load imbalance as compared to mapping the job to a GPU.

This value is also computed empirically and is best suited to balance load across

CPU and GPU(s).

Using Eq. 3.4, the number of jobs that are assigned to CJQ is given by:

CJQ =

Jcpu
∑q

i=1CRJi ≤ Ceilingcpu

Jcpu − Jq
∑q

i=1CRJi > Ceilingcpu

(3.5)

After job assignment to CJQ, another set Jupdate is formed by subtracting CJQ

from J :

Jupdate = J \ CJQ = {job | job ∈ J ∧ job 6∈ CJQ} (3.6)

Similarly, for job assignment to GJQ(s), Eq. 3.1 and Eq. 3.2 are used to calcu-

late CSgpu(i), which represents the computational share of ith GPU. CSgpu(i) is

calculated by the relationship given below:

CSgpu(i) =

(
PG(i)

TCP

× JCR

)
+
α

g
(3.7)

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 45

where PG(i) represents the processing speed of ith GPU and g is the number of

GPUs in the system. The PG(i) is calculated using the processing speed formula

given in Section 3.3.1. From Eq. 3.7, to determine jobs that are assigned to

GJQ(i), let Jgpu = {J1, J2, . . . , Jr} be a subset of 1st r jobs from Jupdate. Here

Ceilinggpu(i) represents the upper boundary for number of jobs from Jgpu, which

are assigned to ith GPU. It is equal to the sum of CSgpu(i) and 2/3rd of computation

requirement of rth job (CRJr) and is represented mathematically as:

Ceilinggpu(i) = CSgpu(i) +
2

3
CRJr (3.8)

where, the 2/3 CRJr represents a majority computing part of the rth job (similar

to the explanation related to qth job in Eq. 3.4).

Using Eq. 3.8, the number of jobs that are assigned to GJQ(i), for ith GPU given

by:

GJQ(i) =

Jgpu

∑r
i=1CRJi ≤ Ceilinggpu(i)

Jgpu − Jr
∑r

i=1CRJi > Ceilinggpu(i)

Jupdate i == g

(3.9)

After job assignment to GJQ(i), the set Jupdate will be updated by subtracting

GJQ(i) from Jupdate.

Jupdate = Jupdate \GJQ(i) = {job | job ∈ Jupdate ∧ job 6∈ GJQ(i)} (3.10)

After the completion of jobs assignment to CJQ and GJQ(s), a family of sets

Q = {CJQ,GJQ1, GJQ2, ..., GJQg} over J is obtained. The output set Q is

governed by the constraints given in Eq. 3.11, Eq. 3.12, and Eq. 3.13.

∅ 6∈ Q (3.11)

Eq. 3.11 ensures that CPU job-set and GPU(s) job-sets in Q cannot be an empty

set ∅.

∪A∈Q A = J (3.12)

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 46

Eq. 3.12 specifies that union of all member set (of Q) is equal to job pool J.

(∀A,B ∈ Q)A 6= B ⇒ A ∩B = ∅ (3.13)

Eq. 3.13 stipulates that intersection for all non-equivalent member sets (A and B)

of Q would be an empty set ∅.

3.3.3 OSched Algorithm

Algorithm 3.1 presents the detailed steps for the proposed scheduling mechanism

OSched. First of all, JCR and TCP are initialized. Next step is to calculate the

values of JCR and TCP . The value of α is calculated in order to compute CPCPU .

Afterwards, CJACPU the computation requirement of jobs assigned to CPU is

initialized. Subsequently, the number of jobs which are assigned to CJQ are

determined. The value of Jupdate is calculated by subtracting CJQ from J. For

job assignment to ith GPU, first CSgpu(i) is calculated CJAgpu(i), which is the

computation requirement of jobs assigned to ith GPU. Next, CJAgpu is initialized.

Afterwards, the number of jobs that are assigned to GJQ(i) is determined and

Jupdate is updated by subtracting GJQ(i) from Jupdate.

For the execution of an OpenCL application, the required data to be computed is

first stored in main memory buffers. After that, these data buffers are transferred

to the device memory (CPU or GPU memory), where all the computations have

to be performed. The multiple large data buffers lead to contention in main

memory which slows down the data transfer (from main memory to the device

memory); moreover, this also slows down the execution of the OpenCL job on

CPU device. Let’s consider an example, where two OpenCL jobs e.g., Matrix

Multiplication (MM) and Discrete Cosine Transform (DCT) (taken from the AMD

benchmark12 suit [56]) are concurrently being executed as shown in Figure 3.4.

Total available main memory on the machine is 08 GBs represented with memory

12Benchmarks are used here to evaluate the scheduling policies. The hardware setup that
is used to evaluate scheduling policies has remained constant for all the evaluated scheduling
policies.

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 47

Algorithm 3.1: OSched job scheduling algorithm

Input :

i A job pool J in which jobs are sorted in increasing order of computation
requirement

ii List of CPU and GPU(s) in the system that is sorted in increasing order of
processing speed

Output:

i All jobs in job pool are assigned to CPU and GPU(s) for execution

1 INITIALIZE JCR ← 0

2 INITIALIZE TCP ← 0

3 for i=1 to Total Jobs do

4 ADD JCR+ = CRJi

5 end

6 for i=1 to Total Processors do

7 ADD TCP+ = PSi

8 end

9 CALCULATE α = (4.12/100)× JCR

10 CALCULATE CScpu = ((PC/TCP)× JCR)− α
11 INITIALIZE CJACPU ← 0

12 /* CJACPU = Computation Requirements of CPU Jobs */

13 for i=1 to qth job from job pool do

14 ADD CJACPU+ = CRJi

15 if CJACPU ≤ CSCPU + 2/3(CRJi) then

16 ASSIGN CJQ ← Ji

17 end

18 end

19 CALCULATE Jupdate = J - CJQ

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 48

Algorithm 3.1: OSched job scheduling algorithm (Continued...)

20 for i=1 to Total GPUs do

21 CALCULATE CSgpu(i) = ((PG(i)/TCP)× JCR) + (α/TotalGPUs)

22 INITIALIZE CJAgpu(i)← 0
23 // CJAgpu(i) = Computation Requirements of ith GPU Jobs

24 for i=1 to rth job from Jupdate do

25 CALCULATE CJAgpu(i) += CRJi

26 if CJAgpu(i) ≤ CSgpu(i) + 2/3 (CRJi) then

27 ASSIGN GJQ(i) ← Ji

28 end

29 if i = Total GPUs then

30 ASSIGN GJQ(i) ← Jupdate

31 end

32 SUBTRACT Jupdate -= GJQ(i)

33 end

34 end

footprint rectangle, where each sub-part of the rectangle represents 100MBs of

capacity. For MM application, each square matrix is of size 12512 × 12512 float

elements (requiring approximately 600 MBs of storage). Therefore, the storage

space required for data is 1.8 GBs with additional 1.8 GBs for data-buffer. The

memory requirements for the three matrices are represented as red-colored area.

Matrix A

Matrix B

Matrix C

Buff_Matrix A

Buff_Matrix B

Buff_Matrix C

DCT

Buff_DCT

Matrix
Multiplication

Figure 3.4: Memory snapshot for concurrently executing jobs

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 49

The yellow-colored area shows the memory requirement for the DCT application

(for an image size of 15000 × 15000) wherein each image buffer will require 900

MBs of memory (total 1.8 GBs of memory). Additional to the execution of a

large OpenCL application, the main memory also contains other operating sys-

tems services etc., which originates the issue of memory contention and degrade

the execution performance of the application. To mitigate the memory contention

problem, an extension to OSched named as Enhanced-OSched (E-OSched) is pro-

posed for scheduling data-parallel applications.

3.3.4 Enhanced-OSched

Enhanced OSched (E-OSched) further refines the performance of the OSched by

overcoming memory contention problem (highlighted in the previous section). The

E-OSched commences the execution of CPU job queue (CJQ) with the smaller job

first and the GPU job queue (GJQ) with the larger job first.

Matrix�A

Matrix�B

Matrix�C

Buff_Matrix�A

Buff_Matrix�B

Buff_Matrix�C

Bitonic�Sort

�Buff_Bitonic�Sort

Matrix�
Multiplication

Figure 3.5: Memory snapshot after optimization by the E-OSched

The induced job selection mechanism results in mitigating the memory contention

problem. Figure 3.5 shows an example schedule (by the proposed E-OSched)

wherein largest size job (e.g., Matrix Multiplication) from GJQ is scheduled along

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 50

the smallest size job (e.g., Bitonic sort) from the CJQ. The employed scheduling

heuristic is depicted in Figure 3.3 (as a dotted rectangle labeled E-OSched).

3.3.5 Scheduling Overhead

The scheduling overhead of both OSched and E-OSched scheduling heuristics is

O(N2) as they have to sort N jobs according to computation requirements and

then map the jobs to CPU and GPU in a load-balanced manner. The scheduling

overhead is negligible for the proposed scheduling schemes and amounts to few

milliseconds. Moreover, as there is no data transfer involved during scheduling,

both OSched and E-OSched heuristics do not incur communication cost.

3.4 Experiments and Results

The employed experimental setup consists of a heterogeneous multi-core machine.

For experimentations, 18 data-parallel applications from five different benchmark

suits are used such as AMD [56], Parboil [97], Polybench [98], and Rodinia [99].

The benchmark applications (shown in Table 3.2 are executed using several prob-

lem sizes resulting in a job pool of 182 jobs. The problem sizes for applications

in the job pools were generated using Monte Carlo simulation by following the

methodology presented in [100, 101].

Moreover, some applications (i.e., Matrix Transpose from [56]) have problem size

constraints which were preserved during problem size generation e.g., Matrix

Transpose can only be executed for the problem size that is equal to power of

2. All jobs in the job pool are independent and are non-preemptive. Moreover,

processing cores within a processor (i.e., CPU and GPU) are considered homoge-

neous in this study. All the experiments are conducted 05 times and results are

reported in the form of their average. The specifications of the employed machine

are presented in Table 3.1.

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 51

Table 3.1: Experimental setup

Device CPU GPU

Model Intel Core i5-4460 Nvidia GeForce GTX 760

Base Clock 3.2 GHz 0.980 GHz

Boost Clock 3.4 GHz 1.033 GHz

Total Cores 4 1152 (CUDA cores)

Memory 8 GB 2 GB

Processing Speed

(Single Precision)

409.6 GFLOPS3 2257.9 GFLOPS

Operating System Ubuntu 16.04 LTS

OpenCLSDK Intel SDK for

OpenCL2016

CUDA 8.0

Compiler GCC 5.4.0 Nvcc

3.4.1 Scheduling Policies and Evaluation Metrics

For evaluation, five scheduling techniques (listed below) have been employed:

1. All On CPU: all jobs are assigned to a CPU device for execution. It is a

naive heuristic act as a baseline for performance comparison.

2. All On GPU: all jobs are scheduled on a GPU device. This scheduling

scheme indicates that programmers generally prefer GPUs only for execution

of all the compute-intensive applications that lead to poorer utilization of

the other computing devices such as CPU.

3. Work item guided: this heuristic [27] first sorts jobs according to kernel’s

size of global work-items. Next, CPU commences execution from job with

3The processor contains 04 cores. Each core ticks 3.2 × 109 times per second and is capable
of performing 32 floating point operations per cycle. Therefore, 4 × 3.2 × 109 × 32 = 409.6
GFLOPS

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 52

the lowest number of global work items whereas GPU starts execution with

the highest number of global work items.

4. Input size guided: In this scheme [27], jobs are sorted in ascending order in

the task-queue according to data (number of bytes) required to be transferred

among a CPU and a GPUs. CPU starts execution of the task queue from the

top of the sorted queue while GPU computes tasks from end of the sorted

task queue (largest jobs first).

5. Machine Learning based Task (MLT) scheduling: The heuristic pre-

sented by [27], is based on machine learning based classification that employs

the static code features (such as instructions, math functions, barriers etc.)

and dynamic run time features (such as local work size, global work size,

input data size etc.) to determine device suitability of OpenCL kernels.

Table 3.2: Benchmarks along with input data sizes

Benchmark

Suits

Data Parallel Applica-

tions

Input Data Size Total

Ver-

sions

AMD

Matrix Multiplication 786,432—7,077,888 3

Binomial Options 32,768—131,072 3

Bitonic Sort 32,768—16,777,216 9

Fast Walsh Transform 8,192—204,800 14

Matrix Transpose 32,768—67,108,864 7

Discrete Cosine Transfor-

mation

2,097,152—943,718,400 17

Floyd Warshall 262,144—6,553,600 3

Polybench

3MM (3 Matrix Multiplica-

tions)

7,000,000—10,080,000 2

GEMM (Matrix-multiply

C=alpha.A.B+beta.C)

750,000—12,000,000 5

GESUMMV (Scalar, Vector

and Matrix Multiplication)

8,012,000—

1,800,180,000

17

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 53

Benchmark

Suits

Data Parallel Applica-

tions

Input Data Size Total

Ver-

sions

MVT (Matrix Vector Prod-

uct and Transpose)

4,016,000—900,240,000 17

ATAX (Matrix Transpose

and Vector Multiplication)

4,012,000—900,180,000 17

2MM (2 Matrix Multiplica-

tions)

5,000,000—12,800,000 2

2DCONV (2D Convolution

kernel)

2000000—

1,568,000,000

17

3DCONV (3D Convolution

kernel)

1,000,000—

1,728,000,000

17

Parboil 3D Stencil Operations 2,097,152—67,108,864 2

Rodinia BFS (Breadth First Search) 43,963—592,428,022 14

Own De-

veloped

Matrix-Vector Multiplica-

tion

4,202,496—

1,514,299,392

16

For performance evaluation, the following performance metrics were considered:

1. Execution time: The execution time depicts the time consumed in the

execution of all jobs of the job pool. The smaller value of the execution time

is an indication of better results.

2. Throughput: represents the number of jobs completed per unit time. The

higher value of throughput manifest the better results.

3. Average time (of a job): is defined as an average amount of time taken

by a job (of a job pool) to complete its execution. The lower average time

exhibits the improved performance.

4. Load balance: Load balance is a distribution of workload among CPU and

GPUs in the form that both computing devices accomplish the execution of

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 54

the assigned workload within the approximately same time duration. Load

balance has been calculated as a percentage of the difference between execu-

tion times of all the jobs mapped on a CPU and a GPU device. The lower

value of this metric shows a more load-balanced execution.

3.4.2 Execution Performance

In this section, the execution time of all the scheduling heuristics is presented. The

execution time of each scheduling heuristic was recorded with varying number of

CPU cores (i.e., 1, 2 and 4 cores) to analyze its impact on the execution time.

Moreover, analysis of adjustment factor α is also presented in this section.

Figure 3.6 presents execution time-based results (using 4 CPU cores and the GPU

device) of the proposed and the other scheduling heuristics. These results spec-

ify that the E-OSched and the OSched have outperformed all other scheduling

heuristics in terms of the execution time of job pool (mentioned in Section 3.4.1).

As compared to the baseline scheduling (i.e., All On CPU), the OSched and the

E-OSched consumes 2.03× and 2.01×s lower execution time respectively. For the

GPU based execution of the job pool (i.e., All On GPU), the OSched, and E-

OSched consume 1.70× and 1.71× times reduced execution time. The E-OSched

consumes 6.25% reduced execution time as compared to the input size guided

scheduling heuristic [27] (as shown in Figure 3.6). As compared to the input size

guided heuristic [27], the proposed E-OSched consumes 7.35% reduced execution

time. As compared to the work-item guided scheduling heuristic [27], the OSched

and E-OSched consume 5.16% and 6.25% reduced execution time respectively.

The OSched consumes 2.54% less execution time for the job pool execution as

compared to the scheduling heuristic of MLT [27]. Moreover, the E-OSched fur-

ther improves the execution time and results in 3.51% reduced execution time as

compared to the heuristic of MLT [27]. Figure 3.7 presents the execution time

based results (using 02 CPU cores and the GPU device) for the proposed and the

other scheduling heuristics. As compared to the All On CPU and All On GPU

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 55

scheduling schemes, the OSched reduce execution time by 2.05× and 1.6× re-

spectively whereas the E-OSched consumes 2.1× and 1.7× lower execution time

respectively.

0

25

50

75

100

125

Scheduling Heuristics

Figure 3.6: Execution time of scheduling heuristics for job pool using 04 CPU
cores and a GPU

The OSched and the E-OSched consume 1.07× and 1.09× reduced execution time

respectively as compared to the input size guided scheduling heuristic [27]. As

compared to the work-item guided scheduling heuristic [27], the OSched and E-

OSched consume 1.07× and 1.05× reduced execution time respectively.

0

25

50

75

100

125

Scheduling Heuristics

Figure 3.7: Execution time of scheduling heuristics for job pool using 02 CPU
cores and a GPU

When compared to the state-of-the-art scheduling scheme MLT [27], the reduction

in execution time by the OSched and the E-OSched is 1.04× and 1.02× respec-

tively.

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 56

Next, the execution time based results (using 01 CPU cores and the GPU device)

for the proposed and the other scheduling heuristics (as shown in Figure 3.8). The

results show that All On CPU and All On GPU scheduling schemes are outper-

formed by the OSched by respectively consuming 1.6× and 1.4× less execution

time. Similarly, the E-OSched reduces execution time by 1.64× and 1.17× respec-

tively when compared to All On CPU and All On GPU scheduling schemes. The

OSched and the E-OSched reduce execution time by 1.1× and 1.13× respectively

in comparison to the input size guided scheduling heuristic [27]. Reduction in

execution time is by 1.11× and 1.13× respectively when compared to work-item

guided scheduling heuristic [27]. When compared to the state-of-the-art schedul-

ing scheme MLT [27], the reduction in execution time by the OSched and the

E-OSched is 1.04× and 1.02× respectively. The OSched and the E-OSched, when

compared to the MLT [27] scheduling scheme, respectively consumes 1.05× and

1.08× less execution time.

0

35

70

105

140

Scheduling Heuristics

Figure 3.8: Execution time of scheduling heuristics for job pool using 01 CPU
cores and a GPU

The execution time based results (Figure 3.6 — Figure 3.8) show that the OSched

and the E-OSched consistently produce better result (in terms of the execution

time) as compared to the other employed scheduling heuristics. The reduced exe-

cution time consumed by the proposed OSched and E-OSched scheduling heuristics

are due to the load balanced execution of the job pool (as evident in the further

results in this section). An interesting phenomenon observed during the experi-

mentation is that when the number of CPU cores is reduced from 04 to 02, the

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 57

execution time of all the employed scheduling schemes increases slightly (3%–7%

higher). However, when CPU cores are further reduced to 01, a significant increase

in terms of the execution time is noticed (up to 53%). The increased execution

time (for 02 CPU cores) results due to the less number of available CPU cores

and the majority of the execution load is mapped on the GPU device. However,

when the CPU cores are reduced to only 01 core, the execution time of the job

pool increases significantly as the only CPU core is now responsible to execute

the assigned workload (according to its processing capability) in addition to the

execution of the host programs (of all the concurrently executing applications). As

shown in Figure 3.6 — Figure 3.8, the execution time based results for All On GPU

scheduling scheme remain almost similar with varying CPU cores. The reason for

the similar attained execution time (by the All On GPU scheduling scheme) is

that it only utilizes GPU device for execution and no job pool related load in

mapped on CPU.

3.4.2.1 Analysis of Adjustment Factor “α”

The host program of an OpenCL application (mapped either on a CPU or a GPU)

is always executed on a CPU device. The execution of the host programs on a

CPU device causes a certain execution overhead during the concurrent executions

of OpenCL applications. Due to this overhead, the CPU based execution of a

kernel often suffers from increased execution time. Figure 3.9 shows an execution

profile of different OpenCL programs mapped on a GPU device. It is evident

from Figure 3.9 that the CPU has to spend a non-negligible time in the execution

of the host program. An adjustment factor α overcomes this overhead and the

induced load imbalance via off-loading a fraction of computations from CPU to

GPU device. The value of α depends on the time spent by the CPU only for the

execution of the host programs of a job pool; therefore, it is difficult to specify the

exact value of α to achieve 100% load balance. The value of α is calculated by

considering the mean execution time (of host programs only) of different OpenCL

applications in the job pool.

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 58

0

1

2

3

4

5

6

7

OpenCL Programs

Total Time Kernel Time Host Time

Figure 3.9: Application Execution profile

Therefore, a factor α with 4.12% of JCR is introduced for the proposed scheduling

heuristic (as shown in Algorithm 3.1). To adjust the host program execution

overhead (on a CPU device), α percentage of the computational load is deducted

from the CPU’s share and added to the GPU that results in very favorable load-

balance.

3.4.3 Average Execution Time

In this section, average execution time of a job (using 04 CPU cores and a GPU)

are reported. Figure 3.10 shows the average execution time of a job against seven

scheduling heuristics. As compared to the All On CPU scheduling, the proposed

OSched and the E-OSched result in 101.27% and 103.88% reduced execution time

(for a single job) on average respectively. The OSched and the E-OSched consume

on average 70.92% and 73.13% reduced execution time respectively as compared

to the All on GPU scheduling. As compared to the input size guided heuristic

[27], the OSched and the E-OSched consume on average 6.7% and 8.09% reduced

execution time respectively. The OSched and the E-OSched consume on average

5.75% and 7.11% reduced execution time respectively as compared to the work-

item guided [27] scheduling. As compared to the MLT [27] scheduling, the OSched,

and the E-OSched consume on average 3.19% and 4.53% reduced execution time

respectively.

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 59

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700

Scheduling Heuristics

Figure 3.10: Average Execution Time

3.4.4 Throughput Analysis

For throughput analysis, the scheduling heuristic of MLT proposed by [27] is

considered as a baseline and all other scheduling heuristics were evaluated against

the achieved throughput of MLT. Figure 3.11 presents the attained throughput of

the schedulers (using 04 CPU cores and a GPU device) as compared to the base-

line heuristic [27]. The E-OSched and OSched achieve the highest throughput as

compared to the baseline (2.45% and 3.51% improved throughput respectively)

and the other scheduling heuristics. The proposed schedulers OSched and E-

OSched attain 5.02% and 6.08% higher throughput respectively as compared to the

work-item guided heuristic [27]. As compared to the input size guided scheduling

[27], the OSched and the E-OSched attain 6.03% and 7.07% improved throughput

respectively. The OSched and the E-OSched attain 42.25% and 43.31% higher

throughput respectively as compared to the All On GPU scheduling. As compared

to the All On CPU scheduling, the OSched and the E-OSched attain 51.4% and

52.46% improved throughput respectively.

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 60

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Scheduling Heuristics

Greater than baseline

Less than baseline

Figure 3.11: Throughput analysis

3.4.5 Load Balance Analysis

To demonstrate the effectiveness of factor α, this section presents load balance

analysis achieved by the OSched and the E-OSched scheduling heuristics with

and without adjusting α. Figure 3.12 presents the load balance achieved by the

proposed schedulers OSched and E-OSched without adjusting factor α.

0 7 14 21 28 35 42 49 56 63 70
Job Pool Execution Time

GPU CPU

Figure 3.12: Load balance without factor α

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 61

With the adjusted α, the load balance attained by the OSched and E-OSched is

presented in Figure 3.13. The results presented in Figure 3.12 and Figure 3.13

are obtained using 04 CPU cores and a GPU device. Figure 3.12 shows that the

load imbalance is 23% and 20.5% for the OSched and the E-OSched respectively

(without adjusting overhead factor α).

After the introduction of α (Figure 3.13), load imbalance decreases to 2.7% and

1.9% for the OSched and the E-OSched respectively and results in a significant

decrease in execution time of job pool. When compared to the load imbalance

induced by work-item guided [27] scheduling heuristic, the OSched and the E-

OSched reduce load imbalance by 2.3% and 3.1% respectively. The OSched and the

E-OSched reduce load imbalance by 1.97% and 2.68% respectively when compared

to load imbalance induced by input size guided [27] scheduling heuristic. When

compared to MLT [27], reduction in load imbalance is up to 0.15% and 0.95%

respectively.

0 7 14 21 28 35 42 49 56 63
Job Pool Execution Time (Seconds)

GPU CPU

Figure 3.13: Load balance after adjusting factor α (in OSched and E-OSched)

3.5 Conclusions

This work focuses on two novel scheduling schemes named OSched and E-OSched

to ensure the load balancing of compute-intensive applications on heterogeneous

Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures 62

multi-cores. These schedulers perform the resource-aware assignment of jobs while

contemplating the job requirements and processing capabilities of the employed

computing devices (i.e., CPUs and GPUs). The performance evaluation of exper-

iments has revealed that OSched has significantly maintained a balanced load on

the employed computing devices, minimized the job-pool make-span, maximized

throughput, and maximized the resource utilization than the base-line (CPU or

GPU only) and the state-of-the-art scheduling heuristics. Moreover, the E-OSched

has further enhanced the execution performance via incorporation of main mem-

ory contention factor. The experimental evaluation shows that the execution time

was reduced by 70.92% and 73.13% respectively as compared to the base-line

scheduling heuristics. As compared to the state-of-the-art scheduling heuristics,

the OSched and E-OSched have reduced the execution time by 6.7% and 8.09%,

respectively. The OSched and E-Osched both have improved the throughput by

51.4% and 52.46%, respectively than the base-line heuristics. The OSched and

E-OSched have achieved 6.03% and 7.07% higher throughput, respectively. As

most of the today’s large compute-clusters and supercomputers are based on het-

erogeneous computing nodes4 that requires a load balanced scheduling mechanism

to map jobs across a variety of the computing devices considering the device capa-

bilities. The OSched and E-OSched will aid greatly to schedule compute-intensive

data-parallel jobs in a load balanced manner to reduce execution time, to improve

system throughput, and to increase device utilization. The future intention is

to extend the E-OSched scheduler for CPU/GPU cluster based on multi-machine

configurations.

4https://www.top500.org/lists/2017/11/

Chapter 4

Machine Learning based

Multi-Job Scheduling

4.1 Introduction

Heterogeneous systems based on CPUs and GPUs are becoming mainstream due

to disparate processing and performance capabilities of these multi-core architec-

tures [102]. Mostly, CPUs are better suited to perform latency-sensitive tasks

and incorporate architectural advances such as branch-prediction, out-of-order ex-

ecution, and super-scalar capabilities [51]. Whereas, many-core GPUs are more

suited to perform data-parallel and throughput-sensitive tasks due to the inher-

ent massive multi-threading capabilities [52]. In order to harness the parallelism

and computing capabilities of CPUs and GPUs, application developers must focus

on exploiting the computing capabilities and architectural characteristics of these

devices such as executing applications’ serial code on a CPU device, while the

parallel and compute-intensive code on GPUs.

Mostly, the application developers schedule compute-intensive part of the applica-

tions on GPUs and serial or less compute-intensive code on a CPU device. Using

GPUs only for compute-intensive code and CPU for serial execution leaves CPU

mostly idle and a GPU device overloaded [103]. This results in underutilization of

63

Machine Learning based Multi-Job Scheduling 64

CPU and a longer execution time for the executing application. Optimal utiliza-

tion of CPU-GPU heterogeneous systems is, in itself, a challenging task. There are

several research efforts in recent years that address the issue of device underuti-

lization in a heterogeneous system. The research techniques in [22, 60, 67, 80] split

the OpenCL kernel between a CPU and a GPU resulting in improved execution

time and a balanced workload across the heterogeneous devices. However, these

techniques [22, 60, 67, 80] consider splitting of the OpenCL kernel(s) of a single

application on a CPU and a GPU device.

Due to the increased programmability of heterogeneous CPU-GPU systems, there

is a paradigm shift from mapping a single OpenCL application to a computing-

device towards scheduling of diverse OpenCL applications on heterogeneous sys-

tems [27]. Furthermore, user application scheduling on heterogeneous devices in a

Cloud environment should be managed by a central scheduling module instead of

a user-controlled mapping [95]. The reason is that the application programmers

are mostly inclined to map application kernels to faster devices (i.e., GPUs) that

cause imbalanced work-distribution. In addition to that, the device suitability5

of an application should also be considered in scheduling decisions. While one

application may be suitable for GPU-based execution, another application may be

suitable for CPU-based execution. Therefore, a heterogeneous application sched-

uler should ensure efficient utilization of both CPU and GPU devices and also

consider the device-suitability in the scheduling decisions. Furthermore, in order

to induce load balance across CPUs and GPUs, speedup prediction-based mapping

could result in better performance for the scheduled applications. In fact, most

of the applications developed using OpenCL are suited to a GPU-based execu-

tion and scheduling only using device-suitability aspect will result in an imbalance

mapping of the jobs to CPUs and GPUs. To mitigate this issue, the low speedup

jobs (suitable for a GPU device) can be shifted to a CPU (incurring minimal per-

formance penalty) to improve load balance in a heterogeneous multi-core machine.

This scheduling strategy will lead to reduced execution time for the applications

and load-balanced distribution of workload or job pool. There are several research

5In this research device suitability of an application means that the application executes faster
on the device to which it is suitable. Device may be a CPU or a GPU.

Machine Learning based Multi-Job Scheduling 65

efforts (i.e., [17, 27, 58, 81]) that target scheduling of job pool on heterogeneous

multi-core machines. However, these techniques are either oblivious to device-

suitability of an application [17, 64] or do not consider speedup prediction for the

scheduling decisions [27, 63].

In the previous chapter, the E-OSched application scheduler was introduced that

maps the job pool of OpenCL applications to the heterogeneous computing devices

in a load-balanced manner. The E-OSched attains a load-balanced execution by

considering jobs’ processing requirements when assigning it to either a CPU or

a GPU device. Jobs with low computation requirements are assigned to a CPU

whereas the higher computation requirement-based jobs are mapped to a GPU

device. The jobs are mapped according to the computing capabilities of the devices

(such as CPUs and GPUs) that results in a near optimal balanced schedule. A

limitation of the E-OSched is that it does not consider the device-suitability and

speedup-factor (of jobs) aspects while making the scheduling decisions [27, 63, 104,

105].

To fill this gap, this chapter presents Troodon6 a novel machine learning-based

scheduling mechanism build on top of the E-OSched that assigns jobs to comput-

ing devices (CPUs and GPUs) considering both the device suitability and speedup

factor while maintaining a load balanced execution across the devices. Initially,

the Jobs exhibiting device suitability to CPU are mapped to a CPU device while

the jobs exhibiting device suitability to GPU are mapped to the GPU device.

Afterward, the E-OSched scheduling heuristics is adapted to include predicted

speedup7 during job mapping decisions i.e., low speedup jobs from the potentially

over-utilized devices are transferred towards the under-utilized devices. More-

over, the resource-aware scheduling according to the computing capabilities of the

devices is induced by the E-OSched to provide a load balanced mapping of jobs.

Multiple benchmark suits [56, 97–99] have been used to train the prediction model.

6Troodon is proclaimed as world’s most intelligent dinosaur specie possessing considerably
large brain size in proportion to its body size.

7Speedup of a job on a suitable device = Execution time of a job on a slower device/execution
time of a job on faster device

Machine Learning based Multi-Job Scheduling 66

The aim of the diversified training (based on the several types of benchmark appli-

cations) of the model is to attain more accurate speedup prediction. Experimental

results (presented in this chapter) show that the Troodon improves the execution

time up to 20% when compared to the state-of-the-art scheduling heuristics.

In particular, following are the contributions that have been made in this chapter:

• In-depth analysis of the state-of-the-art scheduling mechanisms for hetero-

geneous machines to identify the merits and demerits of several existing

heuristics.

• Development of a machine learning -based classifier to decide a job’s suit-

ability for a particular multi-core processor.

• Development of a machine learning-based relative speedup predictor of a job

on heterogeneous computing devices.

• A novel and accurate (due to usage of diverse benchmarks to increase predic-

tion accuracy) machine-learning based scheduling heuristic for heterogeneous

multi-cores that considers device-suitability, speedup-factor, and computing

capabilities of the devices for scheduling and execution of a job pool in a

load-balanced manner.

• Empirical investigation and comparison of the proposed scheduling technique

with state-of-the-art scheduling heuristics from literature, demonstrating sig-

nificant improvement in execution time, throughput, and load balance.

The rest of the chapter is organized as follows. Section 4.2 presents a motivation

case-study to highlight the significance of this research. The detailed methodology

of the Troodon scheduling heuristic is presented in Section 4.3. The experimental

setup, evaluation parameters, obtained results, and discussions are presented in

Section 4.4 along with the limitations of the proposed scheduling heuristic. In the

end, Section 4.5 concludes this chapter.

Machine Learning based Multi-Job Scheduling 67

4.2 Case-Study: Incorporating Speedup Predic-

tion in Scheduling

Most of the data-parallel applications attain a higher speedup for the GPU-based

execution while there are some applications (such as Breadth First Search, Dot

product, etc.) that perform inadequately on GPUs [27, 63]. Additionally, the

same application may attain varying performance (on the faster device) for differ-

ent input data-sizes. Consider the obtained speedup in Figure 4.1 when Matrix

Multiplication [56] is executed with different data sizes on a CPU and a GPU

device. The employed experimental setup for this experiment is mentioned in Sec-

tion 4.4. The Y-axis displays the obtained relative speedup of GPU over CPU

for Matrix Multiplication whereas the X-axis shows the number of elements in a

matrix. It can be observed that when the data size for an application is varied,

the speedup likewise changes too. The variation in the speedup is mainly due to

the memory alignment issue, a number of threads launched on each core.

2

2.5

3

3.5

4

4.5

Sp
ee

du
p

(G
PU

 o
ve

r
CP

U
)

Matrix size (Number of elements)

Figure 4.1: Obtained speedup of GPU over CPU for different data sizes of
Matrix Multiplication

Therefore, job scheduling policy should not only consider jobs’ device suitability

but also the potential speedup that a job (with a particular data-size) attains

when executed on a suitable device. The reason for speedup consideration is that

if all jobs are assigned on the basis of device suitability, then the vast majority of

Machine Learning based Multi-Job Scheduling 68

applications are allocated to GPU (as stated in Section 4.1) that results in load

imbalance and less favorable execution time for a job pool. To highlight the im-

pact of device suitability and load balance, Figure 4.2 shows an execution example

using three scheduling scenarios (i.e., device-suitability based, GPU only, and an

Oracle heuristic) of a job pool (based on 06 OpenCL applications, where 04 i.e.,

Matrix Multiplication, Bitonic Sort, Monte Carlo Asian DP, Black Scholes are

GPU-suited while the 02 applications such as GEMM and Matrix-Vector Multipli-

cation are CPU suited). In a Device suitability-based scheduling, a job is assigned

to a device on which it could execute faster. The GPU-Only scheduler represents

the execution of jobs by employing only GPU devices. The third scheduling (men-

tioned in Figure 4.2) labeled as Oracle represents a mapping of jobs on a suitable

device. In addition to that, for a load balanced execution lower speedup jobs are

transferred from an over-loaded device (i.e., GPU) to an under-utilized computing

device (such as CPU). Figure 4.2 shows that the Oracle-based scheduling attains

approximately 2× and 3.5× performance improvements in execution time as com-

pared to Device Suitability and GPU-Only scheduling schemes, respectively.

0

15000

30000

45000

60000

75000

90000

105000

Device-Suitablity GPU-Only Oracle
Scheduling Schemes

Figure 4.2: Execution time of different scheduling schemes displaying the
impact of speedup prediction

From Figure 4.1 and Figure 4.2, it can be concluded that an unprecedented

scheduling policy can be designed if the device suitability, speedup factor, and

a load balanced execution is considered. The scheduling mechanism based on the

Machine Learning based Multi-Job Scheduling 69

key aspects will result in higher device utilization, lower execution time (for the

job pool), and a higher speedup.

4.3 Troodon

A scheduler named Troodon is presented that is capable to assign jobs to CPUs and

GPUs in a load balanced manner while taken into consideration the job processing

requirement, device suitability, and predicted performance on a certain computing

device. Jobs suited to CPU device are classified and labeled as CPU-Suitable

while those suited to GPU based execution are classified as GPU-Suitable. All

jobs are then organized in a job-pool according to the device suitability. The

jobs in the job-pool are then sorted according to the predicted speedup. A load

balance scheduling is achieved by considering the jobs’ processing requirements

and devices’ computation capabilities. The device computational capabilities are

incorporated by calculating the computing share for each device (i.e., CPUs and

GPUs) with respect to the available workload to be scheduled. The job pool of

the OpenCL applications is then scheduled strictly adhering to the limits of device

computing share that ensures a load balanced mapping of OpenCL jobs or compute

kernels to the suitable devices. The device suitability and load balanced mapping

of jobs produces lower execution time of the job pool, maximized throughput, and

higher device utilization.

4.3.1 System Architecture

The overall scheme of the Troodon scheduling heuristic is presented in Figure 4.3.

Light gray colored shapes represent the major component of the current study.

Users submit OpenCL applications and the Computational Assessment module

assess computational requirements of each submitted job (using the computational

complexity and the input data sizes provided by the user e.g., for an N×N matrix,

a matrix multiplication job completion will require 2N3 operations). At the core

Machine Learning based Multi-Job Scheduling 70

of the Troodon system lies the kernel feature extractor, device suitability classifier,

speedup predictor, and CPU-GPU job pools. The Kernel Features Extractor com-

ponent extracts 23 OpenCL kernel code-features (details of the feature extraction

process and the extracted code features are provided in Section 4.3.5) of each sub-

mitted OpenCL job. Extracted code features along with the input data-size of a

job are then provided to the Device Suitability Classifier module which classifies

and labels the submitted jobs according to the device suitability (a potential best

performing device for that job i.e., a CPU or a GPU). After that, the Speedup Pre-

dictor component takes the input of the labeled OpenCL jobs (classified by the

Device Suitability Classifier), extracted code features, and input data size to pre-

dict the jobs’ speedup relative to the other device (a non-suitable device for that

application classified by the Device Suitability Classifier). Section 4.3.7 presents

a detailed discussion of the Device Suitability Classifier and the Speedup Predic-

tor modules. Each application is then stored according to the Device suitability

in a separate CPU or GPU job pools. Next, the CPU job pool is sorted in the

descending order (based on the predicted relative speedup) and the GPU job pool

is sorted in the ascending order of the predicted jobs’ speedups. These two job

pools (i.e., for CPU and GPU) are then combined to form a collective job pool

for the scheduling. To map jobs in a load balanced manner, the E-OSched [81]

scheduling mechanism has been employed. E-OSched starts mapping jobs of the

job pool to both the CPU and GPU devices. Jobs at the top of the job pool (i.e.,

CPU suited with a high predicted speedup) are mapped to the CPU device while

the jobs at the bottom of the job pool (Jobs suited to a GPU device having a

high predicted Speedup) are mapped to GPU device. The E-OSched mechanism

continues assigning jobs in this manner until a device load reaches the ratio of the

load calculated for that device by the E-OSched. After that, all remaining jobs

that are suited to a particular device are mapped to the non-suitable device. CPU

and GPU jobs sorting in descending and ascending order respectively guarantee

that jobs, after a device has reached its assigned computation load, mapped to a

non-suitable device are the ones possessing lowest predicted speedup on the suit-

able device. In this way, the minimum penalty is incurred by mapping jobs to a

Machine Learning based Multi-Job Scheduling 71

non-suitable device while ensuring load-balanced execution of the job pool.

User

OpenCL
Applications

Kernel Feature
Extractor

Input Data

Device Suitability
Classifier

Code Features

Input Size

Suitability?

CPU-Suitable Pool GPU-Suitable Pool

CPU GPU

Computational
Assessment

Job Pool

CPU- Suitable
 pool

GPU- Suitable
pool

High

Low

High

Low

E-Osched
Scheduler

OpenCL Runtime

Operating System

System Software layer

Multi-core Processor

CPU
m

CPU
1 . . .

Main Memory

GPU
n

GPU
1

GPU
Memory

GPU
Memory

PCIe

. . .

Figure 4.3: System Architecture of the Troodon

4.3.2 System Model

In this section, a mathematical model for the proposed Troodon scheduling mech-

anism is presented. The system model of the E-OSched [81] has been adapted to

the scenario represented in this study where jobs are mapped to a heterogeneous

system using machine learning-based device-suitability classification and speedup

prediction model.

Consider C = {c1, c2, ..., cm} be a set of m submitted jobs that are required to be

scheduled on a heterogeneous system (consisting of a CPU and multiple GPUs). In

order to schedule a job, it is required to extract code features F = {F0, F1, . . . , F22}

(mentioned in Table 4.3) from the kernel code of each job ci in C. The job ci in

C is provided as an input to the Kernel Feature Extractor (KFE) to determine

Count of each code feature (CFi) (i.e., the number of times a code feature occur

Machine Learning based Multi-Job Scheduling 72

in the kernel code of a job) in the kernel code of the job. This relationship is

represented by Eq. 4.1:

Ci
KFE−−−→ ℵ (4.1)

where ℵi = {CF0, CF1, . . . , CF22} represents the count of each code-feature in

ci. Next step is to determine the device suitability of ci using Machine Learning

based Device Suitability (MLDS) model. For this purpose, ℵi for ci is provided as

an input to the MLDS which classify ci as either suitable to CPU execution or

suitable to ith GPU execution. This relationship is represented in Eq. 4.2:

ℵi
MLDS−−−−→ DS(ci)|(DS(ci) = CPU) ∨ (DS(ci) = GPU(i)) (4.2)

where DS(ci) represents Device Suitability of ci. Next, the speedup prediction of ci

on the suitable device is obtained using Machine Learning-based Speedup Predictor

(MLSP). In this regard, ℵi, DS(ci) and N (where N represents input size of ci)

are provided as an input to MLSP . The output of MLSP is the Speedup of ci on a

suitable device (SPCi) where the suitable device may be either a CPU or GPU(i).

This relationship is represented in Eq. 4.3:

ℵi ∧DS(ci) ∧N
MLSP−−−−→ SPCi (4.3)

Moreover, to balance the load across a CPU and GPU(s), computation requirement

of each job ci (in terms of Flops) is estimated using Computational Assessment

(CA) module. The job ci is provided as an input to the CA and it estimates

Computational Requirement of ci (CRCi). This relationship is represented by Eq.

4.4.

Ci
CA−−→ CRCi (4.4)

After determining DS(ci), SPCi, and CRCi of all jobs in C, mapping of jobs

to compute devices is performed. For this purpose, consider Acpu be a sub-

set of C jobs from C displaying device suitability to CPU, such that Acpu =

Acpu(1), Acpu(2), . . . , Acpu(m) | SPAcpu(i) ≤ SPAcpu(i+ 1) in sorted order with re-

spect to predicted speedup (higher speedup first) of ith job (SPAcpu(i)). Moreover,

Machine Learning based Multi-Job Scheduling 73

let Agpu(i) = {Agpu(i)(1), Agpu(i)(2), . . . , Agpu(i)(n) | SPAgpu(i)(j) ≤ SPAgpu(i)(j +

1)} be a subset of n jobs from C displaying device suitability to the ith GPU,

in sorted order with respect to speed up (lower speed up first) of the jth job

(SPAgpu(i)(j)). Acpu and Agpu are concatenated together to create the final job

pool J of m+ n jobs which is given by the following equation:

J = Acpu||Agpu = {Acpu(1), Acpu(2), ..., Acpu(m)||Agpu(1), Agpu(2), ..., Agpu(n)}

(4.5)

From Eq. 4.5

J = {Acpu(1), Acpu(2), ..., Acpu(m), Agpu(1), Agpu(2), ..., Agpu(n)} (4.6)

To adhere to E-OSched terminology, members of set J in Eq. 4.6 are renamed as:

J = {J1, J2, ..., Jp, Jp+1, Jp+2, ..., Jq} (4.7)

where

J1 ⇒ Acpu(1)

Jp ⇒ Acpu(m)

Jp+1 ⇒ Agpu(1)

and

Jq ⇒ Agpu(n)

In order to determine job assignment to a CPU and GPUs, total computation

requirement (JCR) of all the jobs in J and total processing speed of all processors

(TCP) are required, which are listed in following equations:

JCR =
n∑

i=1

CRJi (4.8)

TCP =
m∑
i=1

PSi (4.9)

Where there are m processors in the heterogeneous system (a multi-core CPU and

GPUs). From Eq. 4.8 and Eq. 4.9, the computational share of CPU (CScpu),

Machine Learning based Multi-Job Scheduling 74

representing the portion of computation that is assigned to a CPU from JCR, can

be calculated by using the formula given in Eq. 4.10.

CScpu =

(
Pc

TCP

× JCR

)
− α (4.10)

Where Pc represents the processing speed of a CPU and α is the adjustment factor

to balance the load across CPU and GPUs. The value of α is obtained empirically

and is explained in the Section 3.4.2.1 of the previous chapter.

From Eq. 4.10, to determine jobs that are assigned to CPU Job Queue (CJQ),

let Jcpu = J1, J2, . . . , Jq be a subset of 1st q jobs from job pool J. Here Ceilingcpu

is required to represent the upper boundary for a number of jobs in Jcpu, which

are assigned to CPU. The value of Ceilingcpu is calculated as the sum of CScpu and

1/3rd of computation requirement of qth job (CRJq):

Ceilingcpu = CScpu +
1

3
CRJq (4.11)

Where the ratio 1/3 in Eq. 4.11 ensures that qth job should be mapped to CPU

only if some part of its computation (i.e., 1/3) falls within the limit of CScpu.

Mapping the qth job to CPU (whose 1/3rd part can be accommodated within the

CPU share) will cause a minor load imbalance as compared to mapping the job

to a GPU.

Using Eq. 4.11, the number of jobs that are assigned to CJQ is given by:

CJQ =

Jcpu
∑q

i=1CRJi ≤ Ceilingcpu

Jcpu − Jq
∑q

i=1CRJi > Ceilingcpu

(4.12)

After job assignment to CJQ, another set Jupdate is formed by subtracting CJQ

from J :

Jupdate = J \ CJQ = {job | job ∈ J ∧ job 6∈ CJQ} (4.13)

Similarly, for job assignment to GJQ(s), Eq. 4.8 and Eq. 4.9 are used to calcu-

late CSgpu(i), which represents the computational share of ith GPU. CSgpu(i) is

Machine Learning based Multi-Job Scheduling 75

calculated by the relationship given below:

CSgpu(i) =

(
PG(i)

TCP

× JCR

)
+
α

g
(4.14)

Where PG(i) represents the processing speed of ith GPU and g is the number of

GPUs in the system. From Eq. 4.14, to determine jobs that are assigned to

GJQ(i), let Jgpu = {J1, J2, . . . , Jr} be a subset of 1st r jobs from Jupdate. Here,

Ceilinggpu(i) represents the upper boundary for a number of jobs from Jgpu, which

are assigned to ith GPU. It is equal to the sum of CSgpu(i) and 1/3rd of computation

requirement of the rth job (CRJr) and is represented mathematically as:

Ceilinggpu(i) = CSgpu(i) +
1

3
CRHr (4.15)

where the 1/3 CRJr represents a majority computing part of the rth job (similar

to the explanation related to qth job in Eq. 4.11). Using Eq. 4.15, the number of

jobs that are assigned to GJQ(i), for ith GPU given by:

GJQ(i) =

Jgpu

∑r
i=1CRJi ≤ Ceilinggpu(i)

Jgpu − Jq
∑r

i=1CRJi > Ceilinggpu(i)

Jupdate i == g

(4.16)

After job assignment to GJQ(i), the set Jupdate will be updated by subtracting

GJQ(i) from Jupdate.

Jupdate = Jupdate \ CJQ(i) = job | job ∈ Jupdate ∧ job 6∈ GJQ(i) (4.17)

After the completion of jobs assignment to CJQ and GJQ(s), a family of sets

Q = {CJQ,GJQ1, GJQ2, ..., GJQg} over J is obtained. The output set Q is

governed by the constraints given in Eq. 4.18, Eq. 4.19, and Eq. 4.20.

∅ 6∈ Q (4.18)

Machine Learning based Multi-Job Scheduling 76

Eq. 4.18 ensures that CPU job-set and GPU(s) job-sets in Q cannot be an empty

set ∅.

∪A∈Q A = J (4.19)

Eq. 4.19 specifies that union of all member set (of Q) is equal to job pool J.

(∀A,B ∈ Q)A 6= B ⇒ A ∩B = ∅ (4.20)

Eq. 4.20 stipulates that intersection for all non-equivalent member sets A and B

of Q would be an empty set ∅.

4.3.3 Troodon Algorithm

Pseudo-code for the Troodon scheduling mechanism is presented in Algorithm 4.1.

The kernel-code of each job is provided as an input to the KFE module to extract

code-features. The extracted code features are then provided to the MLDS module

to determine device-suitability of the job. The output of KFE, MLDS along with

N (input size of the job ci) are used to determine the speedup of the job (on the

suitable device) using MLSP module. Moreover, CRJ of the job is also determined

using the CA module. Thereafter, Acpu [] and Agpu [] are sorted and concatenated

together to form J which is used for job mapping to the computing devices (i.e.,

CPU or GPU).

Next, the E-OSched scheduling mechanism has been adapted to map jobs to CPU

or GPU(s). First of all, JCR and TCP are initialized. Next, the values of JCR and

TCP are calculated for the purpose of determining total computation-requirement

of all jobs in the job pool and total processing speed of all processors in the

system, respectively. The value of α is calculated in order to compute CScpu that

is followed by the initialization of CJAcpu (the computation requirement of jobs

assigned to CPU). Subsequently, the number of jobs which are assigned to CJQ

are determined. The value of Jupdate is calculated by subtracting CJQ from J.

For job assignment to ith GPU, first CSgpu(i) is calculated and CJAgpu(i), which

is the computation requirement of jobs assigned to ith GPU is initialized. The

Machine Learning based Multi-Job Scheduling 77

number of jobs that are assigned to GJQ(i) is determined and Jupdate is updated

by subtracting GJQ(i) from Jupdate.

Algorithm 4.1: Troodon job scheduling algorithm

Input :

i A job pool C

ii List of CPU and GPU(s) sorted in increasing order of processing speed

Output:

i All jobs in the job pool are assigned to CPU and GPU(s) for execution

1 for i=1 to Total Jobs do

2 ℵ[CF0, CF2, ..., CF22]← KFF (ci)

3 DS(ci)←MLDS(ℵi[CF0, CF2, ..., CF22)

4 if DS(ci) = CPU then
5 Acpu[]← ci
6 end

7 else
8 Agpu[]← ci
9 end

10 end

11 SPCi ←MLSP (ℵi[CF0, CF2, ..., CF22], DS(ci), Ni)

12 CRCi ← CA(ci)

13 SORT Acpu[] in Descending Order according to SPCi // SPCi ≥ SPCi+1

14 SORT Agpu[] in Ascending Order according to SPCi // SPCi ≤ SPCi+1

15 J [J1, J2, ..., Jn] = Acpu[] CONCATENATE Agpu[]

16 JCR ← 0

17 TCP ← 0

18 for i=1 to Total Jobs do
19 JCR = JCR + CRJi
20 end

21 for i=1 to Total Processors do
22 TCP = TCP + PSi

23 end

24 α = (4.223/100)× JCR // α′s value is obtained empirically

25 CSgpu = ((Pc/TCP)× JCR)− α

Machine Learning based Multi-Job Scheduling 78

Algorithm 4.1: Troodon job scheduling algorithm (Continued...)

25 INITIATE CJAcpu ← 0

26 /* CJAcpu = Computation Requirements of CPU Jobs */

27 for i=1 to qth job from job pool do
28 CJAcpu = CJAcpu + CRJi

29 if CJAcpu ≤ CScpu + 1/3(CRJi) then
30 CJQ← Ji
31 end

32 end

33 Jupdate = J − CJQ
34 for i=1 to Total GPUs do
35 CSgpu(i) = ((PG(i)/TCP)× JCR) + (α/TotalGPUs)
36 INITIATE CJAgpu(i)← 0 /* CJAgpu = Computation Requirements of

Jobs that are assigned to ith GPU */

37 for j=1 to rth job from Jupdate do
38 CJAgpu = CJAgpu + CRJi
39 if CJAgpu ≤ CSgpu(i) + 1/3(CRJi) then
40 GJQ(i)← Ji
41 end

42 if i = Total GPUs then
43 GJQ(i)← Jupdate
44 end

45 end

46 Jupdate = Jupdate − CJQ(i)

47 end

4.3.4 Scheduling overhead

The scheduling overhead of the Troodon scheduling heuristic is O(N2) as it uses

the E-OSched scheduling scheme for job scheduling. However, the Troodon also

performs additional steps of feature extraction, device suitability classification, and

speedup prediction before job scheduling. The training phase of the device suit-

ability classifier and the speedup predictor took 10–12 hours. During deployment,

the overhead of feature extraction, device suitability classification, and speedup

prediction, in our case, amounts to 15–20 milliseconds which is negligible when

compared to the overall execution time of the job pool. Similar to the E-OSched

Machine Learning based Multi-Job Scheduling 79

heuristic, as there is no data transfer involved during scheduling, Troodon does

not incur communication cost.

4.3.5 Feature Extraction

To extract the OpenCL kernel code-features, a static code analyzer has been

developed8. The extracted code-features are then used to train the device-suitability

machine learning classifier. However, all the available code-features (i.e., 23 in to-

tal and mentioned in Table 4.1) are not of equal importance in classifying device

suitability of a kernel and speedup prediction. Therefore, selected features were

identified to be used in device suitability classification and speedup prediction.

The feature selection process is detailed in section 4.3.6. The extracted code-

features are similar to the feature set of [27, 63] but are greater in number. The

activities performed for the code-feature extraction are depicted in Figure 4.4 that

comprises of Clang [106] front compiler, Intermediate Representation formation,

LLVM [106] Passes, and Static Analyzer. The description of each phase is provided

below.

Figure 4.4: Static code feature extraction process

An OpenCL kernel is compiled (using Clang frontend compiler) to make sure that

the kernel code is error-free. The Clang LLVM parser is used to extract code-

features based on LLVM Intermediate Representation (IR). For extraction of the

undetected code-features (by Clang LLVM frontend compiler), a python-based

script has been developed and used to extract the remaining code features (such

as loop-count and iterations of each loop, etc. as shown in Table 4.1). The ML-

based Device suitability classifier and Speedup predictor were trained (offline). In

8The static code analyzer is publicly available at the following link:
https://github.com/Troodon-Scheduler/StaticCodeAnalyzer

Machine Learning based Multi-Job Scheduling 80

addition to the OpenCL kernel code features, the data-size feature is also provided

for the training purpose to the Speedup predictor.

Table 4.1: Code Features Extracted for Training of the Device Suitability and
Speedup Prediction Models

No. Feature Name No. Feature Name

1 Data Size 13 Total number of Addition (Float

Datatype) instruction

2 Total number of Return state-

ment

14 Total number of Addition (Inte-

ger Datatype) instruction

3 Total number of Control State-

ment

15 Total number of Subtraction

(Float Datatype)

4 Total number of Allocation in-

struction

16 Total number of Subtraction

(Integer Datatype)

5 Total number of Load Instruc-

tions

17 Total number of Function Call

instruction

6 Total number of Store Instruc-

tions

18 Total number of Functions

7 Total number of Multiplication

(Float Datatype) Operation

19 Total number of Blocks

8 Total number of Addition (Inte-

ger Datatype) Instruction

20 Total number of Instructions

9 Total number of Multiplication

(Integer Datatype) Instruction

21 Total number of Float Opera-

tion

10 Total number of Division (Float

Datatype) instruction

22 Total number of Integer Opera-

tion

11 Total number of Division (Inte-

ger Datatype) instruction

23 Total number of Loop Opera-

tion

12 Total number of Condition

Check instruction

Machine Learning based Multi-Job Scheduling 81

4.3.6 Feature Selection

The motivation for using a smaller number of features (for predictive models) is

to reduced overfitting issues, improved accuracy, and decreased training time of

the algorithms. In this chapter, two feature-selection techniques i.e., correlation

analysis and tree-based feature selection has been employed. The correlation anal-

ysis provides an indication of the relative change between the two features. If a

change in a feature’s value causes a change in other feature’s value too then the

features are referred to as co-related [107]. The features are referred to as positively

co-related if the change of values is in the same direction (i.e., increased or de-

creased) for both features. The features are denoted as negatively co-related if the

change of one feature’s value causes an inverse change in another feature’s value.

The correlation analysis is very crucial for the selection of useful training features

because employing highly correlated features do not help the predictive model to

achieve good prediction accuracy. The tree-based estimators i.e., Random forest

can be used to compute feature importance, which in turn can be used to discard

irrelevant features based on information gain [108]. Figure 4.5 shows that the

features “1:Datasize”, “7:Total number of Multiplication (float datatype) opera-

tions”, “16-Total number of subtraction(Integer datatype) instruction”, “13-Total

number of addition (Float datatype) instructions”, “17-Total no of function call

instructions”, “9-Total number of multiplication (Integer datatype) Instructions”,

“23-Total number of loop operations”, and “21-Total number of float operation”

has the smaller positive or a negative correlation with all the other employed fea-

tures which are ranked as top features by the tree-based feature selection method

(shown in Figure 4.6). With the analysis of the correlation matrix and ranking of

features, it is concluded that the features “6-Total number of Store Instructions”,

“2-Total number of Return statement”, “18-Total number of Functions”, “4- To-

tal number of Allocation instruction”, and “11-Total number of Division (Integer

Datatype) instruction” exhibit low or no contribution to the output class (of the

two ML models); therefore, these features were omitted from the training of the

models.

Machine Learning based Multi-Job Scheduling 82

Figure 4.5: Correlation analysis of employed code features

The selected code-features cover most of the computation and communication

events of OpenCL kernels and are very useful in accurately classifying jobs ac-

cording to device suitability and predicting obtainable speedup on suitable device.

However, if jobs that are not suitable for data-parallelism are mapped to OpenCL

then the device suitability classifier and speedup predictor may suffer from degra-

dation in prediction accuracy.

Figure 4.6: Feature set ranking based on information gain

4.3.7 Model Description

To build device suitability classifier and speedup predictor models, a 3-step mecha-

nism based on a supervised machine learning approach was performed. (i) Gener-

ation of diverse training data, (ii) Prediction models’ training, and (iii) Prediction

model’s deployment. 42 OpenCL applications from mainstream benchmark suits

(i.e., AMD [56], Polybench [98], Rodinia [99], and Parboil [97]) are used to build

Machine Learning based Multi-Job Scheduling 83

a diverse training data. Kernel-codes from these benchmarks are provided to a

static code analyzer which extracts the code-features in a first step. The reduced

set of features are provided to the ML models for training purpose. Figure 4.6

depicts the complete feature extraction process used for training (shown in Figure

4.7) of the ML models.

To train device suitability classifier and speedup predictor, it is required to label

training OpenCL kernels and the extracted code-features. Therefore, the output

class for device suitability model was found by executing each application on a

CPU and a GPU device. The execution time for each OpenCL kernel is noted for

both the CPU and GPU devices. The device that produces the lower execution

time is labeled as a suitable device for that kernel. Similarly, all the applications

in the training set are labeled as CPU and GPU suited considering the lower

execution time for a certain device.

Figure 4.7: Training process of prediction models

For the relative speedup predictive model. The execution time of a kernel on

a slower device is divided by the execution time of the same kernel on a faster

device to obtain the relative speedup of the faster device (selected device) as

compared to the slower device (non-selected device). It is also observed that a

large number of the high-performance computing OpenCL applications are more

suitable for a GPU based execution as compared to a CPU based execution. This

Machine Learning based Multi-Job Scheduling 84

observation leads us to the issue of class imbalance [109] (due to a significantly

smaller number of the training samples (OpenCL kernels suitable for CPU based

execution). To mitigate the data-imbalance problem, SMOTE [109] was employed

which is a python toolbox to handle imbalanced data. Moreover, in this research,

a Tree-based Pipeline Optimization Tool (TPOT) [110] (based on an evolutionary

algorithm) is used to design and optimize the machine-learning pipelines. TPOT

was employed to boost the classification accuracy of the machine-learning models.

Table 4.2: Tune parameters for device-suitability ML model

Methods Hyper Tuning Parameters

Feature Se-

lection

1- Correla-

tion Anal-

ysis

2- Tree Based Feature Selection

Nystroem
Gamma Kernel n components

0.65 Laplacian 8

Zero Count Count the number of features having zero value

MaxAbs

Scaler

Scale each feature by its maximum absolute value.

Random

Forest

Calssifier

bootstrap criterion max

features

min

samples

leaf

min

samples

split

n esti-

mators

False entropy 0.6 2 15 100

The labeled data (i.e., CPU or GPU) is provided to the TPOT classification class

to determine the device suitability. Furthermore, the speedup category labeled

data is provided to the TPOT regression class to predict the potential relative

speedup on a suitable device as compared to the unsuitable computing device.

Both the TPOT classes return hyper-tuned models for both types of data (as

shown in Table 4.2 and Table 4.3).

Machine Learning based Multi-Job Scheduling 85

Table 4.3: Tune parameters for relative speedup ML model

Methods Hyper Tuning Parameters

Polynomial

Features

Degree Include bias Interaction

only

2 False False

Standard

Scaler

Standardize features by removing the mean and scaling to unit

variance.

Gradient

Boosting

Regressor

n esti-

mator

Learning

rate

Max

depth

loss

100 0.1 1 ls

4.3.8 Troodon Usage Scenario

Troodon can be used in a data center and Cloud environment where multiple user

jobs are mapped to a single node. The service provider’s requirement is to execute

user jobs using a minimum number of resources while providing acceptable service

quality. The user will provide a job pool of applications to the system along with

OpenCL source code, input data sizes and computational requirements of each job.

The Troodon will produce a schedule that will execute user submitted job pool in

the least amount of time. Furthermore, the user can also analyze multiple aspects

of each submitted job i.e., device suitability of a job and predicted speedup of a

job when executed on a suitable device. In the case of a homogeneous cluster in

a data center, the machine learning modules of the Troodon will be trained once

and then deployed on all machines. In the case of a heterogeneous data center

environment, the machine learning modules of the Troodon have to be trained on

each architecturally different type of machine. Moreover, the Troodon can also be

used in user systems to schedule general-purpose applications that are developed

in OpenCL to take advantage of the acceleration provided by GPUs [111].

Machine Learning based Multi-Job Scheduling 86

4.4 Experiments and Results

We evaluated our approach on 02 separate CPU-GPU heterogeneous systems

names as System1 and System2 respectively. Both the systems host Ubuntu 16.04

Linux operating system.

Table 4.4: Experimental setup

System1 System2

Device CPU (i5

4550)

GPU1

(GTX

760)

CPU (i5

4550)

GPU1

(GTX

760)

GPU2

(GT

740)

Architecture Haswell Kepler Haswell Kepler Kepler

Base Clock 3.2 GHz 0.980 GHz 3.2 GHz 0.980

GHz

0.993

GHz

Boost Clock 3.4 GHz 1.033 GHz 3.4 GHz 1.033

GHz

NA

Total Cores 4 1152

(CUDA

cores)

4 1152

(CUDA

cores)

384

(CUDA

cores)

Memory 8 GB 2 GB 8 GB 2 GB 2 GB

Bandwidth 25.6 GB/s 192.2

GB/s

25.6 GB/s 192.2

GB/s

192.2

GB/s

Performance

(Single Pre-

cision)

409.6

GFLOPS

2257.9

GFLOPS

409.6

GFLOPS

2257.9

GFLOPS

762.6

GFLOPS

OpenCL

SDK

Intel

SDK for

OpenCL

2016

CUDA 8.0 Intel

SDK for

OpenCL

2016

CUDA

8.0

CUDA

8.0

Compiler GCC 5.4.0 Nvcc GCC 5.4.0 Nvcc Nvcc

Moreover, Intel SDK for OpenCL with GCC 5.4.0 was used for CPU compilation

Machine Learning based Multi-Job Scheduling 87

and CUDA 8.0 with Nvcc was used for GPU compilation. The specifications

of the employed machines are presented in Table 4.4. For experimentations, 17

benchmark applications that belong to 4 mainstream benchmark suits are used.

The benchmarks are executed using several problem sizes resulting in a job pool

of total of 199 jobs (as shown in Table 4.5. All the experiments are conducted 10

times and mean values are reported.

4.4.1 Scheduling Policies and Evaluation Metrics

We compared our approach against the following seven scheduling techniques:

1. CPU-Only: All jobs are dispatched to a CPU device for execution. It is a

naive heuristic that forms a baseline for performance comparison [112].

2. GPU-Only: All jobs are dispatched to a GPU device for execution. This

scheduling scheme indicates that programmers generally tend to map compute-

intensive applications on GPUs that mostly leads to under-utilization of the

other available computing devices such as CPU [112].

3. Alternate Assignment (AA): In AA based scheduling [64], all jobs are

added in a random order in the job pool. The jobs are assigned alternately

to a CPU and a GPU (or any other available device). The AA scheduling

policy is used to show that assigning each processor almost equal number

of jobs without considering jobs’ device suitability results in less favorable

execution and lower throughput of the job pool;

4. Input size guided (ISG): In this scheduling scheme [27], jobs are sorted

in ascending order of the data size. CPU starts execution of the task queue

from the top of the sorted queue (smallest job first) while the GPU computes

tasks from the end of the sorted task queue (executing the largest job first).

Moreover, the ISG scheduling heuristic is unable to utilize more than one

GPU in a multi-GPU setup. Therefore, the negative effect of not utilizing

all the GPUs in the system is highlighted.

Machine Learning based Multi-Job Scheduling 88

5. Device Suitability (DS): All jobs are assigned to a device on which a job

has shorter execution time i.e., CPU suitable jobs are assigned to a CPU and

GPU suitable jobs are assigned to a GPU. As the vast majority of OpenCL

applications are well suited for GPU based execution, the DS scheduling

scheme is used to show that mapping jobs using device suitability only will

result in severe load-imbalance between a CPU and a GPU;

6. Wen et al.: The scheduling heuristic of [27] is based on machine learn-

ing based classification that employs both the static code features (such as

instructions, math functions, barriers, etc.) and dynamic runtime features

(such as local work size, global work size, input data size, etc.) to determine

device suitability of OpenCL kernels;

7. E-OSched: This scheduling algorithm [81] first sorts job pool in ascending

order (smaller sized jobs first) considering the jobs’ computational require-

ments. The jobs from one end of the job-pool (smaller size jobs having lower

computational requirement) are assigned to a CPU device whereas the jobs

from the other end of the job pool (jobs having higher computation require-

ments) are assigned to a GPU device. Jobs assignment to a CPU and GPUs

are carried out in a resource-aware manner considering the proportion of the

computing power provided by the devices.

Table 4.5: Benchmark applications and the employed input data sizes

Benchmark

Suits

Applications Input Data

Size

Total

Ver-

sions

AMD Matrix Multiplication 1,769,472—

12,582,912

3

Binomial Options 32,768—

294,912

9

Bitonic Sort 32,768—

268,435,456

13

Machine Learning based Multi-Job Scheduling 89

Benchmark

Suits

Applications Input Data

Size

Total

Ver-

sions

Fast Walsh Transform 8,192—

221,184

17

Matrix Transpose 131,072—

536,870,912

6

Discrete Cosine Transformation 2,097,152—

1,887,436,800

17

Floyd Warshall 524,288—

25,690,112

6

Polybench 3MM (3 Matrix Multiplications) 7,000,000—

17,920,000

3

GEMM (Matrix-multiply

C=alpha.A.B+beta.C)

3,000,000—

27,000,000

5

GESUMMV (Scalar, Vector and

Matrix Multiplication)

8,012,000—

1,800,180,000

17

MVT (Matrix Vector Product

and Transpose)

4,016,000—

900,240,000

17

ATAX (Matrix Transpose and

Vector Multiplication)

4,012,000—

900,180,000

17

2MM (2 Matrix Multiplications) 5,000,000—

45,000,000

5

2DCONV (2D Convolution ker-

nel)

2000000—

1,568,000,000

17

3DCONV (3D Convolution ker-

nel)

1,000,000—

1,728,000,000

17

Rodinia BFS (Breadth First Search) 39,360—

327,141,488

14

Own Devel-

oped

Matrix-Vector Multiplication 4,202,496—

1,514,299,392

16

Machine Learning based Multi-Job Scheduling 90

For the performance evaluation, the following performance metrics were consid-

ered:

1. Execution time: execution time exhibits the time consumed in the com-

putation of all jobs. The results have been reported with the confidence level

of 95% while in the discussion of the results and geometric mean (Geo Mean)

have been compared.

2. Throughput: represents the number of jobs completed per unit time. Dur-

ing the discussion of the result, Geo Mean has been used to compare the

employed scheduling heuristics.

3. Average time (of a job): is defined as an average amount of time taken

by a job (of a job pool) to complete its execution. Average time results have

been compared using the Geo Mean. The reported results have a confidence

level of 95%.

4. Load balance: Load balance is a distribution of job pool among the com-

puting devices (i.e., CPU and GPUs) such that all the processing devices ac-

complish the execution of the assigned jobs within the approximately same

time duration. Load balance is calculated using the formula in Eq. 4.21.

The higher value of this metric shows a more load-balanced execution.

%age load balance = 100−
((

1−
Execution time of fastestprocessor assigned jobs

Execution time of slowest processor assigned jobs

)
× 100

)
(4.21)

Where Execution time of the slowest processor assigned jobs represents Execution

time of the job pool.

4.4.2 Scheduling Results

Figure 4.8 presents the execution time-based results of the proposed and the other

scheduling schemes. These results show that the proposed scheduling mechanism

Machine Learning based Multi-Job Scheduling 91

named Troodon outperforms all the other scheduling schemes in terms of the

execution time of the job pool (presented in Section 4.4.1). As compared to the

baseline scheduling (i.e., CPU-Only), the Troodon scheduling scheme consumes

182% lower execution time. The Troodon scheduling heuristic consumes 108%

reduced execution time as compared to the GPU-based execution of the job pool

(i.e., GPU-Only). The Troodon scheduling heuristic consumes 78%, 65%, and

41% reduced execution time as compared to the DS, ISG [27], and AA scheduling

schemes, respectively as shown in Figure 4.8. As compared to the state-of-the-art

scheduling heuristics such as Wen et al. [27] and E-OSched [81], the proposed

scheduling scheme further improves the execution time by consuming 38% and

10% reduced execution time, respectively.

0

15

30

45

60

75

90

105

120

135

150

Troodon E-Osched Wen et al. AA ISG DS GPU-Only CPU-Only

Scheduling Schemes

1 GPU 2 GPU Geo Mean

Figure 4.8: Execution time of scheduling schemes for job pool

4.4.2.1 Average Execution Time

Figure 4.9 shows the average execution time-based results for the complete exe-

cution of the job pool. As compared to the CPU-Only and GPU-Only scheduling

heuristics, the proposed heuristic Troodon results in 2.85 times and 2.1 times re-

duced average execution time (for a job), respectively. As compared to the DS,

ISG [27], and AA scheduling schemes the proposed scheme Troodon consume on

average 1.8, 1.67, and 1.41 times reduced execution time, respectively.

Machine Learning based Multi-Job Scheduling 92

0

100

200

300

400

500

600

700

800

Scheduling Schemes

System1 System2 Geo Mean

Figure 4.9: Average execution time of a job in the job pool

As compared to Wen et al. [27], and E-OSched [81] scheduling, the proposed

scheduling scheme Troodon consumes on average 1.40 and 1.10 times reduced

execution time, respectively.

4.4.2.2 Throughput Analysis

For throughput analysis, a state-of-the-art scheduling heuristic proposed by Wen et

al. [27] was considered as a baseline. Figure 4.10 presents the attained throughput

of all the other schedulers as compared to the base-line scheduling heuristic [27].

Figure 4.10: Throughput analysis

Machine Learning based Multi-Job Scheduling 93

The proposed Troodon scheduler achieves the highest throughput as compared to

the baseline (i.e., 40% higher throughput). The Troodon scheduler attains 10%

higher throughput as compared to the E-OSched [81]. As compared to the DS, ISG

[27], and AA, the Troodon scheduler attains 80%, 66%, and 41% higher through-

put, respectively. As compared to the CPU-Only and GPU-Only scheduling mech-

anisms, the Troodon attains 185% and 110% improved throughput, respectively.

4.4.2.3 Load Balance Analysis

System1: Figure 4.11 presents the load balance analysis of the proposed and the

other scheduling heuristics for System1. As shown in Figure 4.11, the Troodon

heuristic achieves a load balance of 98.4%. When compared to the load balance

achieved by DS and AA, the Troodon attains more load balance up to 79.7% and

27.8%, respectively. As compared to the ISG [27] heuristic, the Troodon scheduler

induces a slight load imbalance of 0.8%.

0 10 20 30 40 50 60 70 80 90

Troodon

E-Osched

Wen et. al

ISG

AA

DS

Execution time of all the assigned jobs (seconds).

GPU CPU

Figure 4.11: Achieved load balance by scheduling schemes on System1

However, the ISG [27] scheduling heuristic results in longer execution time as com-

pared to the Troodon because it does not considers device suitability for schedul-

ing. As compared to the E-OSched [81] and Wen et al. [27], the proposed scheduler

Troodon attains up to 1.7% and 1.5% improved load balance, respectively.

Machine Learning based Multi-Job Scheduling 94

System2: The load balance analysis of the Troodon and other scheduling schemes

for System2 is presented in Figure 4.12. The ISG [27] and Wen et al. [27] have not

been used for load balance analysis on System2 as these scheduling heuristics are

designed to use only one GPU during job pool execution. The proposed Troodon

scheduling heuristic achieves a load balance of 94.33% which is approximately

equal (1% improved load balance) to the load balance achieved by the E-OSched

[81]. The Troodon achieves 373% and 13% more load balance when compared to

the DS and AA scheduling heuristics.

0 10 20 30 40 50 60 70 80 90

Troodon

E-Osched

AA

DS

Execution time of all the assigned jobs (sec)

GPU2

GPU1

Figure 4.12: Achieved load balance by scheduling schemes on System2

4.4.2.4 Results Discussion

Experimental results (presented in Figures 4.8 — 4.12) show that the proposed

scheduling mechanism Troodon outperforms all the other scheduling schemes with

respect to execution time (for complete job pool), average job execution, through-

put, and load balance performance.

Metrics on employed System1 and System2. The improved performance of the

proposed Troodon scheduling heuristic is due to the inherent 2-tier scheduling ap-

proach. First, all the jobs (in the job pool) are categorized according to the device

suitability. In order to improve load balance, jobs with low potential speedup are

Machine Learning based Multi-Job Scheduling 95

transferred from the overloaded job queues of the devices to the job queues of the

device having a smaller number of jobs (as compared to the potential comput-

ing capability of the devices). The load balanced and a device suited application

mapping by the proposed Troodon scheduling heuristic results in reduced execution

time (for the job pool), higher system throughput, and higher device utilization as

compared to state-of-the-art heuristics. The state-of-the-art scheduling schemes

such as ISG [27] and E-OSched [81] are unaware of the device suitability of the ap-

plications resulting in decreased performances as compared to the Troodon. The

AA scheduling mechanism [64] is oblivious to device-suitability of the jobs and

because of the inherent fair-scheduling mechanism causes slower devices (such

as CPUs) overloaded with more computational load and faster devices (such as

GPUs) with less amount of computational work. The scheduling heuristic pro-

posed by Wen et al. [27] considers the device suitability to map jobs on devices,

however, it does not employ a load balancing mechanism to evenly distribute the

workload across the computing devices.

4.4.3 Prediction Models Discussion

To train Device Suitability and Speedup predictor classifiers, a tool named Scikit-

learn [108] was used. To train the Device Suitability classifier, 10-fold cross-

validation technique was used. The split ratio approach [113] is employed to train

the Speedup predictor machine learning model. To build the Speedup prediction

model, 80% of the data is used for the training purpose and 20% of the data for

testing. The evaluation parameters such as average precision, average recall, and

mean Receiver Optimization Characteristics (ROC) are calculated to evaluate the

accuracy of the trained classifiers (i.e., device suitability and speedup predictor).

ROC depicts the ratio of the True Positive Rate (TPR) against the False Positive

Rate (FPR) for different thresholds of the data employed in classification. The

mean ROC curve for Device Suitability Classifier is shown in Figure 4.12. Mean

ROC curve for the device suitability classifier is 0.92, however, the precision-recall

curve of class 0 (i.e., CPU device) is 0.98 whereas for the class 1 (i.e., for GPU

Machine Learning based Multi-Job Scheduling 96

device) is 0.97. The F-measure score of the device suitability model is 0.94. The

curve (black for Class 1 (GPU) and green for Class 0 (CPU)) in Figure 4.13 is

closer to the Y-axis and the top border that signifies the higher correct detection

decisions by the ML models for device suitability.

Figure 4.13: ROC of Device suitability classifier

This result also signifies that a higher TPR is observed with very low FPR. The

high value of F-measure exhibits the fact that the machine learning model is

capable of making fine distinctions. The high recall value represents that the

correctly predicted class occurrences are very high.

Figure 4.14: OpenCL kernel forecasting of speedup predictor

Machine Learning based Multi-Job Scheduling 97

Figure 4.14 presents the relative speedup results obtained using the ML-based

Speedup predictor model and the actual attained speedup value in the experi-

ments. It is evident (from Figure 4.14) that the speedup predictor model attained

impressive results with 2.52 mean square error (for 25 randomly selected OpenCL

kernels). These results highlight that the trained ML models for the device suit-

ability and speedup prediction produce accurate prediction results.

4.4.4 Analysis of Selected Features Impact on Device Suit-

ability Model

After analyzing the statistics for each extracted code feature, some interesting facts

have been highlighted about the role of a code feature in the Device Suitability

model. It has been observed that the Device Suitability model tends to classify

applications having low value for “Data-size” feature as CPU Suitable whereas

the high value for “Data-size” feature are mostly classified as GPU Suitable. The

reason is that a higher amount of data parallelism leads to better execution time

performance on a GPU. Furthermore, when the input data size of an application’s

kernel is small, the speedup achieved due to GPU execution may be degraded

due to data transfer overhead to/from GPU. The occurrence of features “Total no

of Addition Integer instruction”, “Total no of Addition Integer instruction” and

“Total no of Multiplication Integer Instruction” tends to be low in case of GPU

Suitable classified applications. Kernels in which there is a higher occurrence of

features “Total no of Control Statement”, “Total no of Loop”, and “Total no

of Condition Check instruction” are classified as CPU Suitable by the Device

Suitability classifier. This leads to the conclusion that the application’s kernel in

which there is more branch divergence tends to be suitable for CPU execution.

4.4.5 Limitations

Scheduling with the Troodon heuristic requires that either computation require-

ment of all the submitted jobs are known beforehand or can be estimated using the

Machine Learning based Multi-Job Scheduling 98

computational complexity formula. The Troodon also requires source code of the

kernel/s of the submitted job in order to extract static code features. Moreover,

the Troodon has been developed for a single node heterogeneous system (consist-

ing of a CPU and one or more GPUs) and currently not applicable to a cluster

of heterogeneous compute nodes. However, the Troodon can be easily extended

for scheduling on multiple compute nodes by incorporating features such as data

transfer delay from one node to another, hardware features, bandwidth, latency,

etc.

4.5 Conclusions

This chapter presents Troodon, a novel application scheduler for CPU-GPU het-

erogeneous system to map data-parallel applications in a load balanced manner.

In contrast to the state-of-the-art, the Troodon scheduler is based on a machine-

learning model to gauge the applications’ device-suitability, potential speedup (of

applications on certain computing devices), and incorporate these in the scheduling

decisions to map application in load balanced manner. The Troodon scheduling

heuristic results in reduced execution time of the applications and higher system

throughput. It has been evaluated that larger input data size plays an influen-

tial role in declaring a job as GPU-suitable by the Troodon. However, the high

occurrence of arithmetic operations (e.g., addition instruction and multiplication

instruction) and control statements in source code are influential in classifying a

job as CPU-suitable. Moreover, the load balanced scheduling mechanism further

improves the device utilization and system throughput. The Troodon scheduler

was evaluated using several benchmarks and a large pool of OpenCL application

(i.e., 199). As compared to the baseline scheduling schemes (i.e., CPU or GPU

only), the Troodon scheduler consumed up to 2.82 times less time to execute the

applications on average. As compared to the state-of-the-art scheduling heuristics,

the Troodon consumes up to 38% reduced execution time on average. Moreover, in

terms of system throughput, device utilization, and load balance the Troodon has

Machine Learning based Multi-Job Scheduling 99

outperformed the other scheduling heuristics. The overall improvement in the sys-

tem’s performance due to the Troodon scheduling heuristic indicates that accurate

machine learning based classification and prediction can play an important role

in scheduling decisions. Furthermore, there are certain code features that play a

significant role in device suitability of an application. In the future, it is intend to

extend the scheduler to incorporate remote devices (over the network) to employ

a cluster of heterogeneous devices for the execution of data-parallel applications

in heterogeneous computing machines.

Chapter 5

Role of Kernel Fusion to Improve

Device Utilization

5.1 Introduction

An OpenCL application consists of a host and kernel code. The host-code is

always executed on the CPU and manages overall execution of an OpenCL ap-

plication whereas the device-code consists of data-parallel part of the application

and can be executed on any supported processor. Programmers tend to map their

OpenCL applications to GPUs to obtain speed-up due to huge parallelism avail-

able in GPUs. With an increasing number of ported OpenCL applications, there

is a need for a scheduler that can map compute kernels of multiple OpenCL ap-

plications (i.e., a job pool of submitted applications) on heterogeneous CPU-GPU

systems in a load balanced manner. Such a job scheduler should take kernel map-

ping decisions considering the appropriateness of devices and applications needs

to attain improved execution performance and higher job execution throughput

(resulting in better device utilization too). Moreover, due to contrasting archi-

tectural differences between a CPU and a GPU, some jobs are better suited to

GPU-based execution whereas others are better suited for CPU-based execution

[114, 115].

100

Role of Kernel Fusion to Improve Device Utilization 101

In our previous work [65], a heterogeneous job scheduler named Troodon was de-

veloped that maps jobs to a CPU or GPU devices considering the device suitability

and expected speed-up gain attainable on a certain computing device. Moreover,

load balance is achieved between CPU and GPUs by considering jobs processing

requirements and computing capabilities of a processor (e.g., CPU or GPU). The

results indicated that the Troodon is able to reduce the execution time of the

job pool by 38% while at the same time increasing the system throughput when

compared to the state-of-the-art scheduling heuristics.

With an increasing number of applications being ported to GPUs, accelerators

(i.e., GPUs) should be utilized as a shared compute-resources possibly executing

multiple small compute kernels to improve device utilization and device occupancy

[116, 117]. However, the proposed OpenCL scheduler in Chapter 4 (i.e., Troodon)

lacks such an ability. To address this issue (which the Troodon lacks), a novel

machine learning based scheduling technique named as FusionCL is presented in

this chapter. FusionCL fuses kernels of two different OpenCL applications to

increase GPU occupancy during job pool execution. Similar to Troodon, the

proposed scheduler first predicts the device suitability for jobs in the job pool

and the potential speed-up the job may attain on a certain device. Moreover, a

machine learning based classifier has been developed that predicts whether merging

two specific kernels or executing them separately will produce better speed-up.

For all the candidate kernels, the classifier chooses the best candidate kernel that

may result in greater speed-up. The experimental results show that the proposed

scheduling heuristic reduces execution time and increase throughput by 8% and

9%, respectively when compared to the state-of-the-art scheduling mechanisms.

In particular, the following contributions are made in this work:

1. A machine learning based kernel merging classifier that predicts the fusion

suitability of OpenCL kernels.

2. Selection of best pair of kernels for fusion among all the candidate kernels

Role of Kernel Fusion to Improve Device Utilization 102

3. Development of speedup predictor that predicts the relative speed up that

can be attained due to fused execution.

4. Experimental evaluation of the FusionCL scheduling heuristics with the re-

sults showing that the FusionCL outperforms all other scheduling heuristics

in terms of employed performance parameters.

The rest of the chapter is organized as follows. Section 5.2 presents a motivation

case-study to highlight the significance of this research. The detailed methodology

is presented in Section 5.3. The experimental setup used to verify the methodology,

results and discussions are presented in Section 5.4 whereas this chapter concludes

with Section 5.5.

5.2 A Case-Study For Fusing Or Executing

Kernels Separately

Some kernels achieve speed-up when they are fused while some of the OpenCL

kernels may perform inadequately after fusion. The poor performance of the fused

kernels can be attributed to the contention for the shared resources i.e., streaming

cores, GPU memory bandwidth, etc. This fact has been highlighted in Figure

5.1 which presents the achieved relative speed-up of the fused kernels (over their

sequential executions, represented as baseline). The experimented applications (in

Figure 5.1) are taken from the Polybench benchmark suite. The X-axis depicts the

kernels that were fused together whereas the Y-axis presents the relative speed-up

of the fused kernel execution. The results show that some of the kernels attain

speed-up due to kernel fusion whereas some suffer significant slow-down. This

motivates us to device a machine learning model capable to predict potential

speedup (or slow-downs) for the fused kernels. Moreover, this experiment reveals

that the fusion decision is also affected by the input data size of the two kernels.

For some data sizes, the fused kernels can attain speed-up while for other data

sizes the performance can suffer causing slow-downs.

Role of Kernel Fusion to Improve Device Utilization 103

0

0.5

1

1.5

2

2.5

Merged Kernels

Figure 5.1: Speed-up achieved due to fused kernel execution over sequential
kernel executions

Figure 5.2 presents the speed up performance of the two kernels 2dconv and atax

employing different data-sizes. The Y-axis value greater than one shows the at-

tained speed-up whereas the value less than one shows slow-down. Figure 5-2

shows that speed-up of 2.17X is attained for a data size of 135360 whereas, for

data size 1053696, a slow-down of 6X is deteriorated. This highlights the fact that

a scheduler should be able to decide, on the basis of data size, when to fuse two

kernels and when to execute them separately.

0

0.5

1

1.5

2

2.5

Data Size

Figure 5.2: Speed-up achieved for multiple data sizes when 2dconv and atax
kernels are fused

Role of Kernel Fusion to Improve Device Utilization 104

5.3 FusionCL

FusionCL scheduler that is built on top of the Troodon scheduler is presented in

this section. The FusionCL decides whether to fuse kernels of a pair of OpenCL

applications or execute them separately to increase the occupancy of the GPU

device. The overall goal is to reduce the execution time of the job pool through load

balancing and increasing GPU occupancy. The FusionCL scheduler uses Troodon

[65] scheduling scheme to determine device suitability of a job and relative speedup

that is attainable when the job is executed on the suitable device. The GPU

suitable jobs are then passed to the fusion classifier to decide whether fusing two

GPU suitable jobs (to increase device occupancy) or executing them separately will

produce speedup. Both the CPU and GPU suitable jobs are then combined in the

job pool. Subsequently, the jobs are mapped to heterogeneous devices (i.e., CPU

and GPUs) on the basis of jobs’ computing requirement and devices’ processing

speed. The E-OSched scheduling heuristics is used to ensure the load balanced

execution of jobs on the heterogeneous devices. The load-balanced execution of

jobs results in increasing throughput of the system.

5.3.1 System Architecture

The FusionCL scheduler’s working is presented in Figure 5.3. Multiple users sub-

mit their job to the system. The Feature Extractor tool extracts code features

(labeled as F1, F2, . . . , Fn in Figure 5.3) from each of the submitted user jobs.

The extracted code features along with the data size of the user job are submit-

ted to the Device Suitability Classifier which decides on the job’s suitability to

either CPU or GPU. Moreover, the Device Suitability Classifier also determines

the speedup that is obtained by the user job when it is executed on the suitable

device (as compared to the non-suitable device). The job is then inserted into

either CPU Suitable or GPU Suitable Jobs queues according to the predicted de-

vice suitability. At the heart of the FusionCL system are the Fusion Classifier

and the Fusion Speedup Predictor. The Fusion Classifier determines whether the

Role of Kernel Fusion to Improve Device Utilization 105

GPU suitable jobs will benefit (in terms of execution time) from fusing kernels of

a pair of jobs or will be better off when executed separately. The GPU suitable

jobs that are better suited to be executed separately are inserted into Separate

Kernel GPU jobs whereas the jobs that are candidates for fusion are passed to

the Kernel Fusion Tool. After kernels fusion, the fused kernel jobs are inserted

into the Fused Kernel GPU jobs. Jobs in the Separate Kernel GPU jobs list and

Fused Kernel GPU jobs list are sorted according to the predicted speedup in their

respective job lists (smallest speedup first). The two job lists are concatenated

together in the GPU Job Queue. Thereafter, jobs from the CPU Suitable Jobs are

inserted at one end of the Job Pool whereas jobs from the GPU Job Queue are

inserted at the other end of Job Pool. The E-OSched [81] scheduling mechanism

is then employed to map jobs from the Job Pool to either CPU or GPU device in

a load balanced manner.

Users Jobs

Device Suitability
Classifier

CPU/GPU

Data Size

Separate/Merge Classifier

Kernel Merge Tool

Merge

Candidate Data
Size

Merged Kernel GPU Jobs

Separate Kernel GPU Jobs

GPU Job Pool

E-OSched
Low

High

Low

High

Separate

Merge Speed-up Predictor
Proposed

Work

Troodon

Feature Extractor

Feature Extractor

Computational
Assessment

Figure 5.3: System Architecture of the proposed kernel fusion based schedul-
ing scheme

Role of Kernel Fusion to Improve Device Utilization 106

The flowchart of the FusionCL scheduler is presented in Figure 5.4. First of all,

the computation requirement of each user job is estimated and its code features

are extracted. Next step is to classify jobs according to their device suitability.

CPU suitable jobs are inserted into CPU suitable list and GPU suitable jobs are

inserted into GPU suitable list. The extracted code features and data size of

each job from CPU job list are used to determine the expected speedup that each

job will obtain when executed on CPU in comparison to job’s execution on the

GPU. Subsequently, all the jobs in CPU job list are sorted in descending order of

expected speedup (highest speedup first). The same process is also repeated for

all the jobs in the GPU job list.

Start

Extract
computation

requirement of
each kernel

Extract code
features from

each kernel

Classify kernel
according to

device
suitability using
code features

Insert into CPU
suitable list

CPU
Suitable?

Determine
speedup due to
CPU execution

over GPU
execution

Sort jobs
according to

speedup
(highest

speedup first)

Insert into GPU
suitable list

Determine
speedup due to
GPU execution

over CPU
execution

Sort jobs
according to

speedup
(highest

speedup first)

Determine the
kernels that will

benefit from
merging

Merge
benefit?

Insert kernel
into separate

job list

Insert kernel
into merged job

list

Select two
kernels that will
produce highest
speedup when

merged
together

Merge the two
kernels

Insert the
kernel into

merge job list

Concatenate
the separate

and merge job
lists to from

GPU job pool

Concatenate
the CPU

suitable job list
and GPU job
pool to from
the job pool

Use the E-
Osched

heuristics to
map jobs to

CPU and GPU
for execution

Yes

No

No

Yes

End

Sort the merge
job list

according to
speedup
(lowest

speedup first)

Data size

Figure 5.4: Flowchart of the FusionCL scheduling scheme

In addition to the steps mentioned above, some additional steps are performed on

the jobs in the GPU job list. Extracted code features are used to determine the

kernels that will produce speedup when fused with another kernel. The kernels

that would benefit from fused execution are inserted into the fused job list while

kernels that would not benefit from fused execution are inserted into separate job

list. Using extracted code features and input data size, speed up for all kernel pairs

Role of Kernel Fusion to Improve Device Utilization 107

is determined. Thereafter, the kernel pair providing highest speedup are fused and

the process is repeated until all the candidate kernels are fused. Afterward, the

fused kernel pairs are sorted in ascending order of speed up (lowest speedup first)

and concatenated with the separate job list to produce GPU job pool. Finally,

CPU suitable list and GPU job pool are concatenated together to for job pool.

The E-OSched scheduling mechanism is then used to map all the jobs in the job

pool to a heterogeneous CPU-GPU system in a load balanced manner.

5.3.2 FusionCL System Model

This section details the system model for the FusionCL scheduling scheme. Troodon

system model [65] was adapted to represent the scenario where machine learning

based kernel fusion classifier has been employed to identify each pair of GPU suit-

able kernels that produce the highest speedup (over FIFO based kernels execution)

when fused together.

Consider C = {c1, c2, . . . , cm} be a set of m submitted jobs that are required to be

scheduled on a heterogeneous system (consisting of a CPU and a GPU). In order

to schedule a job, it is required to extract code features (23 employed features,

presented in Table 5.2) F = {F0, F1, . . . , F22} from the kernel code of each job ci

in C. The job ci in C is provided as an input to the Kernel Feature Extractor

(KFE) to extract code features and determine Count of each code feature (CFi)

(i.e., the number of times a code feature occur in the kernel code of a job). This

relationship is represented by Eq. 5.1:

Ci
KFE−−−→ ℵ (5.1)

Where ℵi = {CF0, CF1, . . . , CF22} represents the count of each code-feature in

ci. Next step is to determine the device suitability of ci using Machine Learning

based Device Suitability (MLDS) model. For this purpose, ℵi for ci is provided as

an input to the MLDS which classify ci as either suitable to CPU execution or

Role of Kernel Fusion to Improve Device Utilization 108

suitable to GPU execution. This relationship is represented in Eq. 5.2:

ℵi
MLDS−−−−→ DS(ci) | (DS(ci) = CPU) ∨ (DS(ci) = GPU) (5.2)

where DS(ci) represents Device Suitability of ci. Next, the speedup prediction of ci

on the suitable device is obtained using Machine Learning-based Speedup Predictor

(MLSP). In this regard, ℵi, DS(ci) and N (where N represents input size of ci)

is provided as an input to MLSP . The output of MLSP is the Speedup of ci on a

suitable device (SPCi) where the suitable device may be either a CPU or a GPU.

This relationship is represented in Eq. 5.3:

ℵi ∧DS(ci) ∧N
MLSP−−−−→ SPCi (5.3)

Moreover, to balance the load across a CPU and a GPU, computation requirement

of each job ci (in terms of Flops) is estimated using Computational Assessment

(CA) module. The job ci is provided as an input to the CA and it estimates

Computational Requirement of ci (CRCi). This relationship is represented by Eq.

5.4.

Ci
CA−−→ CRCi (5.4)

Once DS(ci), SPCi, and CRCi of all jobs in C is determined, all the jobs are gath-

ered into two subsets of C i.e., Acpu and Agpu. Acpu is a subset of m jobs from C dis-

playing device suitability to CPU, such that Acpu = {Acpu(1), Acpu(2), . . . , Acpu(m)

|SPAcpu(i) ≤ SPAcpu(i + 1)} in sorted order with respect to predicted speedup

(higher speedup first) of ith job (SPAcpu(i)). Similarly, Agpu = {Agpu(1), Agpu(2)

, . . . , Agpu(n) | SPAgpu(j) ≤ SPAgpu(j+ 1)} be a subset of n jobs from C display-

ing device suitability to the GPU, in sorted order with respect to speed up (lower

speed up first) of the jth job (SPAgpu(j)).

Next step is to determine the fusion suitability of the jobs in Agpu. For this

purpose ℵi and N of all the jobs in Agpu are passed to the Machine Learning based

Fusion Suitability (MLFS) classifier that classifies the jobs in Agpu as either Fusion

Role of Kernel Fusion to Improve Device Utilization 109

suitable FS(Agpu) or Fusion unsuitable. This classification is presented in Eq. 5.5:

∀i ∈ Agpu(ℵ ∧N)
MLFS−−−−→ (Agpu)(FS(Agpu) = TRUE

∨ FS(Agpu) = FALSE) (5.5)

Thenceforth, all the jobs with fusion suitability equal to FALSE are accumulated

in the Fusion Unsuitable Job List (A) while all the jobs with fusion suitability

equal to TRUE are accumulated in the Fusion Suitable Job List (B) as presented

in Eq. 5.6 and Eq. 5.7:

A = ∀i ∈ Agpu ∧MS(Agpu) = FALSE (5.6)

B = ∀i ∈ Agpu ∧MS(Agpu) = TRUE (5.7)

All the jobs in A are sorted according to speedup (lowest speedup job first) whereas

jobs in B are passed on to the Machine Learning based Fusion Speedup Predictor

(MLFSP) to predict the speedup when each pair of jobs (x and y) in B are fused

(SP(x×y)) for data sizes Nx and Ny respectively. This relationship is presented in

Eq. 5.8:

C = ∀x,y ∈ B, (x ∧Nx) ∧ (y ∧Ny)
MLFSP−−−−→ SP (x× y) (5.8)

Where, x = 1, 2, 3, . . . , n and y = 1, 2, 3, . . . , n. Now C contains a combination of

all jobs from B with every other job from B along with their predicted speedup.

All the elements (i.e., fused candidate jobs) in C are then sorted according to

predicted speedup (highest speedup first).

Now, the first entry in C consists of two jobs (i.e., job j and job k) that produce the

highest speedup when they are fused together. Therefore, the two jobs are fused

together using Kernel Fuser and are removed from the sorted C. This relationship

is presented by Eq. 5.9:

∀i ∈ C,C(i)
KernelFuser−−−−−−−→ ˆ(C(i)) (5.9)

where, i = 1, 2, 3, . . . , n and C(i)=SP(x×y). Moreover, all the entries in C that

Role of Kernel Fusion to Improve Device Utilization 110

contain either of the two jobs x or y are removed from the list. This process

is repeatedly performed until all the jobs in C have been fused. All the fused

jobs in C are sorted according to speedup (lowest speedup first). A and C are

concatenated together to create Final GPU job pool (JPgpu) as presented in Eq.

5.10:

JPgpu = A‖C = {A(1), A(2), ..., A(e)‖C(1), C(2), ..., C(f)} (5.10)

To adhere to the Troodon terminologies, all the members of set JPgpu in Eq. 5.10

are renamed as:

JPgpu = {Agpu(1), Agpu(2), ..., Agpu(m), Agpu(m+ 1), Agpu(m+ 2), ..., Agpu(n)}

(5.11)

where

Agpu(1)⇒ A(1),

Agpu(m)⇒ A(e)

Agpu(m+ 1)⇒ C(1)

and

C(f)⇒ Agpu(n)

Finally, Acpu and JPgpu are also concatenated together to create a job pool J of

m+ n jobs which is given by the following equation:

J = Acpu‖JPgpu = Acpu(1), Acpu(2), ..., Acpu(m)‖Agpu(1), Agpu(2), ..., Agpu(n)

(5.12)

from Eq. 5.12

J = {Acpu(1), Acpu(2), ..., Acpu(m), Agpu(1), Agpu(2), ..., Agpu(n)} (5.13)

To adhere to E-OSched terminologies, all members of set J in Eq. 5.13 are renamed

as:

J = {J1, J2, ..., Jp, Jp+1, Jp+2, ..., Jq} (5.14)

Role of Kernel Fusion to Improve Device Utilization 111

where

J1 ⇒ Acpu(1),

Jp ⇒ Acpu(m),

Jp+1 ⇒ Agpu(1),

and

Jq ⇒ Agpu(n)

In order to determine job assignment to the CPU and the GPU, total computation

requirement (JCR) of all the jobs in J and total processing speed of all processors

(TCP) are required, which are listed in following equations:

JCR =
n∑

i=1

CRJi (5.15)

JCR =
m∑
i=1

PSi (5.16)

where there are m processors in the heterogeneous system (a multi-core CPU and

a GPU). From Eq. 5.15 and Eq. 5.16, the computational share of CPU (CScpu),

representing the portion of computation that is assigned to a CPU from JCR, can

be calculated by using the formula given in Eq. (5-17)

CScpu =

(
Pc

TCP

× JCR

)
− α (5.17)

where, PC represents the processing speed of a CPU and α is the adjustment factor

to balance the load across CPU and GPUs. The value of α is obtained empirically

and is explained in section 3.4.2.1.

From Eq. 5.17, to determine jobs that are assigned to CPU Job Queue (CJQ),

let Jcpu = J1, J2, . . . , Jq be a subset of 1st q jobs from job pool J. Here Ceilingcpu

is required to represent the upper boundary for a number of jobs in Jcpu, which

are assigned to CPU. The value of Ceilingcpu is calculated as the sum of CScpu

and 1/3rd of computation requirement of qth job (CRJq):

Ceilingcpu = CScpu +
1

3
CRJq (5.18)

Role of Kernel Fusion to Improve Device Utilization 112

where, the ratio 1/3 in Eq. 5.18 ensures that qth job should be mapped to CPU

only if some part of its computation (i.e., 1/3) falls within the limit of CScpu.

Mapping the qth job to CPU (whose 1/3rd part can be accommodated within the

CPU share) will cause a minor load imbalance as compared to mapping the job

to a GPU.

Using Eq. 5.18, the number of jobs that are assigned to CJQ is given by:

CJQ =

Jcpu
∑q

i=1CRJi ≤ Ceilingcpu

Jcpu − Jq
∑q

i=1CRJi > Ceilingcpu

(5.19)

After job assignment to CJQ, another set Jupdatee is formed by subtracting CJQ

from J :

Jupdate = J \ CJQ = job | | job ∈ J ∧ job 6∈ CJQ (5.20)

After job assignment to CJQ is performed, all the remaining jobs in Jupdate are

assigned to GJQ for execution on the GPU.

After the completion of jobs assignment to CJQ and GJQ, a family of sets Q =

CJQ,GJQ over J is obtained. The output set Q is governed by the constraints

given in Eq. 5.21, Eq. 5.22, and Eq. 5.23.

∅ 6∈ Q (5.21)

Eq. 5.21 ensures that CPU job-set and GPU job-set in Q cannot be an empty set

∅

∪A∈Q A = J (5.22)

Eq. 5.22 specifies that union of all member set (of Q) is equal to job pool J.

(∀A,B ∈ Q)A 6= B ⇒ A ∩B = ∅ (5.23)

Eq. 5.23 stipulates that intersection for all non-equivalent member sets (A and B)

of Q would be an empty set ∅.

Role of Kernel Fusion to Improve Device Utilization 113

5.3.3 Kernel Fusion Mechanism

The kernel fusion process is depicted in Figure 5.5. The standard process as de-

scribed by [63, 87] was used for kernel fusion. As shown in Figure 5.5, there are

two kernels i.e., Kernel 1 and Kernel 2 that belong to two different applications

i.e., Application 1 and Application 2 respectively. The fused kernel was developed

by merging the arguments of Kernel 1 and Kernel 2. Furthermore, the code of

both kernals has been combined in the Fused Kernel. However, code of Kernel 1

and Kernel 2 are separated by a condition inside the Fused Kernel. If the condi-

tion is true Kernel 1 code will be executed otherwise Kernel 2 code’s execution

will be performed. In this way device utilization of the GPU is improved during

the execution of data parallel applications with small input data size by sharing

resources between kernels of two different applications.

Kernel_1(B1,B2, ,Bn)

{
 Kernel2 code
}

Kernel_1(A1,A2, ,Am)

{
 Kernel1 code
}

 Fused_Kernel(A1,A2, ,Am,B1,B2, ,Bn)

{
 if condition=TRUE
 Kernel1 code
 else
 Kernel2 code
}

Application 1 Kernel Application 2 Kernel

Fused Kernel

Figure 5.5: Kernel fusion process

5.3.4 Prediction Models

The classification model developed to classify jobs as fusion suitable or fusion

unsuitable is an extreme gradient boosting [118] whereas the prediction model de-

veloped to predict the relative speedup of a pair of fused kernels over their serial

execution is an extreme gradient boosting regressor. The training phase of predic-

tion models is presented in Figure 5.6. For training, each pair of fusion candidates

Role of Kernel Fusion to Improve Device Utilization 114

jobs (i.e., the kernel codes of OpenCL programs) is fused and executed to obtain

the fusion-based execution time. Meanwhile, the pair of Fusion Candidate jobs

are also executed serially. On the basis of fusion and serial execution time, it is

decided whether the pair of the fusion candidates are Fusion-suitable or Fusion-

unsuitable jobs. The relative speedup of Fusion-suitable jobs is obtained using the

formula presented in Eq. 5.24.

FusionSpeedup(A,B) =
Execution T ime of A and B after fusion

Exection time of A + Exection time of B
(5.24)

where A and B are a pair of kernels that are candidates for fusion.

Fusion-unsuitable jobs

Fusion-suitable jobs

Fusion suitability
classifier

Feature vector

F1
F2
.
.
.

Fn

F=

C1 … Cm

Code features

Relative speedup

Training run
 Fusion Candidates

</>
---..---…--

</>
---..---…--

</>
---..---…--

Fusion speedup predictor

Run time features

Figure 5.6: Training phase of Fusion speedup predictor and Fusion suitability
classifier

Concurrent to the training runs of programs, their Code features and Runtime

features are extracted. The feature vector along with the relative speedup infor-

mation is used to develop the Fusion speedup predictor. Similarly, Feature vector

together with the Fusion-suitable class/label is used to develop the Fusion suit-

ability classifier.

5.3.4.1 Feature Extraction and Selection

We have used a similar feature extraction process as proposed by the Troodon [65].

LLVM compiler tool chain [106] and its front-end Clang are used to extract code

Role of Kernel Fusion to Improve Device Utilization 115

features from OpenCL kernel code. A list of all the extracted features is presented

in Table 5.1.

Table 5.1: List of extracted features

No. Features Name No. Features Name

1 Data Size 13 Total number of Addition (Float

Datatype) instruction

2 Total number of Return state-

ment

14 Total number of Addition (Inte-

ger Datatype) instruction

3 Total number of Control State-

ment

15 Total number of Subtraction

(Float Datatype)

4 Total number of Allocation in-

struction

16 Total number of Subtraction

(Integer Datatype)

5 Total number of Load Instruc-

tions

17 Total number of Function Call

instruction

6 Total number of Store Instruc-

tions

18 Total number of Functions

7 Total number of Multiplication

(Float Datatype) Operation

19 Total number of Blocks

8 Total number of Addition (Inte-

ger Datatype) Instruction

20 Total number of Instructions

9 Total number of Multiplication

(Integer Datatype) Instruction

21 Total number of Float Opera-

tion

10 Total number of Division (Float

Datatype) instruction

22 Total number of Integer Opera-

tion

11 Total number of Division (Inte-

ger Datatype) instruction

23 Total number of Loop Opera-

tion

12 Total number of Condition

Check instruction

From the list of extracted features, only those features were used that have high

information gain. The motivation behind using a selected features (for predictive

Role of Kernel Fusion to Improve Device Utilization 116

models) is that it helps to reduced overfitting issues, improved accuracy, and

decreased training time of the algorithm. The list of selected features in addition

to their information gain is provided in Table 5.2.

Table 5.2: Top Ranked Selected Features

Rank No. Feature Name Information

Gain

1 1 Data Size 0.447328

2 9 Total no of Multiplication (Integer) Instruc-

tion

0.082088

3 19 Total no of Blocks 0.074392

4 17 Total no of Function Call instruction 0.067998

5 20 Total no of Instructions 0.0524

6 3 Total no of Control Statement 0.041888

5.4 Experiments and Results

We evaluated the FusionCL scheduling approach on a heterogeneous system that

consists of an Intel Core i5-4460 CPU and an Nvidia GeForce GTX 760 GPU.

Table 5.3: Experimental setup

Device CPU GPU

Architecture Haswell Kepler

Base Clock 3.2 GHz 0.980 GHz

Boost Clock 3.4 GHz 1.033 GHz

Total Cores 4 1152 (CUDA cores)

Memory 8 GB 2 GB

Memory bandwidth 25.6 GB/s 192.2 GB/s

Performance (Single

Precision)

409.6 GFLOPS 2257.9 GFLOPS

OpenCL SDK Intel SDK for OpenCL 2016 CUDA 8.0

Role of Kernel Fusion to Improve Device Utilization 117

The specifications of the employed experimental setup are presented in Table 5.3.

The operating system of the host machine for experimental setup is Ubuntu 16.04.

All the programs that are used for experimentation were compiled using gcc 5.4.0.

The experiments are conducted using 15 benchmarks from mainstream benchmark

suits and other scientific applications. All the applications are executed with

several input sizes to create a job pool of 236 program instances. Table 5.4 presents

the benchmark programs along with their benchmark suits.

Table 5.4: Benchmark applications and the employed input data sizes

Benchmark

Suits

Applications Input Data

Size

Total

Ver-

sions

AMD

Matrix Multiplication 1,769,472—

12,582,912

3

Binomial Options 32,768—

294,912

9

Bitonic Sort 32,768—

268,435,456

13

Fast Walsh Transform 8,192—

221,184

17

Matrix Transpose 131,072—

536,870,912

6

Discrete Cosine Transformation 2,097,152—

1,887,436,800

17

Floyd Warshall 524,288—

25,690,112

6

Polybench

3MM (3 Matrix Multiplications) 7,000,000—

17,920,000

3

GEMM (Matrix-multiply

C=alpha.A.B+beta.C)

3,000,000—

27,000,000

5

GESUMMV (Scalar, Vector and Ma-

trix Multiplication)

8,012,000—

1,800,180,000

17

Role of Kernel Fusion to Improve Device Utilization 118

Benchmark

Suits

Applications Input Data

Size

Total

Ver-

sions

MVT (Matrix Vector Product and

Transpose)

4,016,000—

900,240,000

17

ATAX (Matrix Transpose and Vector

Multiplication)

4,012,000—

900,180,000

17

2MM (2 Matrix Multiplications) 5,000,000—

45,000,000

5

2DCONV (2D Convolution kernel) 2000000—

1,568,000,000

17

3DCONV (3D Convolution kernel) 1,000,000—

1,728,000,000

17

Own Devel-

oped

Matrix-Vector Multiplication 4,202,496—

1,514,299,392

16

5.4.1 Scheduling Policies And Evaluation Metrics

This section details the scheduling schemes that were used for comparison with

the FusionCL scheduler.

1. CPU-Only: As the name suggests, all incoming jobs are mapped to a CPU

for execution. This scheduling scheme is used to provide a baseline which

must be improved by a scheduling scheme to be considered for evaluation

[112].

2. GPU-Only: Similarly to CPU-Only scheduling heuristics, all jobs are

mapped to a GPU for execution. Use of this scheduling heuristics presents

the general tendency of the programmers to map all their jobs to the faster

device (i.e., GPU) resulting in severe load imbalance across a CPU-GPU

heterogeneous system.

Role of Kernel Fusion to Improve Device Utilization 119

3. Alternate Assignment (AA): Jobs are assigned alternately to a CPU

and a GPU [64] in the order in which the jobs arrive. The AA scheduling

policy is used to show that naive assignment of jobs to a CPU and a GPU

results in under-utilization of heterogeneous devices.

4. First Come First Serve (FCFS): In this scheduling scheme, jobs are

assigned to the device in the order of their arrival. When one device finish

execution of its job, the next non-assigned job in the arrival queue is assigned

to that device.

5. E-OSched : This scheduling algorithm [81] first sorts job pool in ascending

order (smaller sized jobs first) considering the jobs’ computational require-

ments. The jobs from one end of the job-pool (smaller size jobs having lower

computational requirement) are assigned to a CPU device whereas the jobs

from the other end of the job pool (jobs having higher computation require-

ments) are assigned to a GPU device. Jobs assignment to a CPU and GPUs

are carried out in a resource-aware manner considering the proportion of the

computing power provided by the devices.

For the performance evaluation, the following performance metrics were consid-

ered:

1. Execution time: execution time exhibits the time consumed in the com-

putation of all jobs.

2. Throughput: represents the number of jobs completed per unit time.

3. Average time (of a job): is defined as an average amount of time taken

by a job (of a job pool) to complete its execution.

4. Load balance: Load balance is a distribution of job pool among the com-

puting devices (i.e., CPU and GPUs) such that all the processing devices

accomplish the execution of the assigned jobs within the approximately same

time duration. Load balance is calculated by using the following formula:

Role of Kernel Fusion to Improve Device Utilization 120

100−
(∣∣∣∣ExecutiontimeofCPUassignedjobs− ExecutiontimeofGPUassignedjobs

ExecutiontimeoftheJobpool

∣∣∣∣× 100

)
(5.25)

The higher value of this metric shows a more load-balanced execution.

5.4.2 Scheduling Results

The execution time-based results of the FusionCL and alternative scheduling

schemes are depicted in Figure 5.7. It can be observed from Figure 5.7 that the

FusionCL scheduling scheme outperforms the baseline scheduling schemes (i.e.,

GPU-Only and CPU-Only) by consuming 73% and 183% less execution time, re-

spectively. When the execution time of the FusionCL approach is compared with

alternative scheduling schemes that use both CPU and GPU for the execution of

jobs (i.e., E-OSched, FCFS, and Alternate Assignment) the reduction in execution

time is 8%, 17%, and 41%, respectively.

0

8

16

24

32

40

Proposed
Approach

E-OSched FCFS Alternate
Assignment

GPU-Only CPU-Only

Scheduling Schemes

Figure 5.7: Execution time of scheduling schemes for job pool

5.4.3 Average Execution Time

The experimental results based on the average execution time of a job in the

job pool are depicted in Figure 5.8. The FusionCL scheduling scheme consumes

1.73X and 2.83X less average execution time than the GPU-Only and CPU-Only

scheduling heuristics, respectively (see Figure 5.8). As compared to the E-OSched,

Role of Kernel Fusion to Improve Device Utilization 121

FCFS, and AA scheduling heuristics, the FusionCL scheme reduces average exe-

cution time by 1.08X, 1.17X, and 1.41X, respectively (as illustrated in Figure 5.8).

0

30

60

90

120

150

180

Proposed
Approach

E-OSched FCFS Alternate
Assignment

GPU-Only CPU-Only

Scheduling Schemes

Figure 5.8: Average execution time of a job in the job pool

5.4.4 Throughput Analysis

The throughput results of the FusionCL approach and other scheduling heuristics

are presented in Figure 5.9. The achieved throughput by FCFS was considered as

a baseline of 1 for throughput analysis.

0.4

0.6

0.8

1

1.2

FusionCL E-OSched Alternate
Assignment

GPU-Only CPU-Only

Th
ro

ug
hp

ut
 (w

.r.t
 FC

FS
)

Scheduling Schemes

Greater than FCFS

Less than FCFS

Figure 5.9: Throughput analysis

The bars above the baseline illustrates better results than the baseline whereas the

bars below the baseline illustrates degraded results (as compared to the baseline).

Role of Kernel Fusion to Improve Device Utilization 122

The FusionCL scheduling heuristics and the E-OSched are the only scheduling

heuristics that produce better results than the baseline. The FusionCL scheme

and the E-OSched improve the throughput by 1.17X and 1.08X, respectively when

compared to the baseline. The AA, GPU-Only, and CPU-Only only produce

0.83X, 0.68X and 0.41X of the throughput produced by the baseline.

5.4.5 Load Balance Analysis

Figure 5.10 illustrates the results of load balance analysis of the FusionCL scheme

and other scheduling heuristics. The FusionCL scheduling heuristics achieves a

load balance of 92.1% as can be noticed from Figure 5.10. The attained load

balance of the FusionCL scheduler is 4% and 8% less than E-OSched and FCFS,

respectively. However, the attained load balance of the FusionCL scheduler is 36%

more than the load balance attained by AA scheduling mechanism.

0 4 8 12 16 20

Proposed
Approach

E-OSched

Alternate
Assignment

FCFS

Time (sec)

GPU

CPU

Figure 5.10: Achieved load balance by scheduling schemes

5.4.6 Results Discussion

Experimental results (presented in Figures 5.7—5.10) highlights the FusionCL ap-

proach’s superior performance in comparison to all other scheduling schemes with

Role of Kernel Fusion to Improve Device Utilization 123

respect to the performance metric presented in Section 5.4.1. Accurate classifica-

tion and fusion of fusion suitable kernels, to increase GPU occupancy, is the main

reason for the improved performance by the FusionCL approach. Furthermore,

identification of the best pair of kernels for fusion results in a speedup of fused

pair of kernels of over their serial execution. This results in a decreased execution

time of the job pool as is evident from the analysis performed in the subsequent

section.

The state-of-the-art approach E-OSched [81] is oblivious to the device suitability

of each job resulting in less favorable job mapping to heterogeneous devices. More-

over, the E-OSched executes GPU mapped jobs serially whereas the FusionCL ap-

proach fuse a pair of kernels to increase GPU occupancy. This results in a further

reduction in the job pool’s execution time and an increase in system throughput.

5.4.7 Impact of Proposed Kernel Fusion Approach on GPU

Execution Time

The impact of kernel fusion on GPU execution time is visualized in Figure 5.11

(A). The X-axis presents the scheduling schemes whereas the Y-axis represents

the execution time (in seconds) of GPU mapped jobs that have been identified

as Fusion suitable. The FusionCL approach represents the scheduling scheme

for this research. Each pair of kernels that have been identified by the machine

learning-based predictor as fusion suitable and will produce the highest speedup

among all the Fusion candidates are fused together. Afterward, the fused kernels

are sorted according to speed up (highest speedup first) and are mapped to the

GPU device. The FCFS scheme represents the kernels that are identified as fusion

suitable but are executed serially in the order of their arrival. The results show

that the FusionCL approach consumes 2.23× times reduced execution time when

compared to the separate execution of the Fusion suitable kernels.

The impact of the FusionCL approach on selecting the Fusion suitable kernels and

best fusion suitable kernel pair (i.e., the kernel pair that will produce the highest

Role of Kernel Fusion to Improve Device Utilization 124

speedup over their serial execution) is presented in Figure 5.11 (B). The X-axis

presents the scheduling schemes whereas the Y-axis represents the execution time

(in seconds) of all GPU mapped jobs. Random fusion scheduling scheme presents

the scenario in which all the GPU assigned jobs are randomly fused. The results

depicted in Figure 5.11 (B) indicate that the FusionCL approach outperforms the

random fusion technique by consuming 2.23× reduced execution time.

The results in Figure 5.11 shows that kernel fusion is a promising technique for

reducing execution time of a job pool by improving GPU occupancy. However,

true identification of fusion suitable kernels is vital for achieving reduced execution

time of GPU mapped jobs.

0

4

8

12

16

20

24

28

32

Proposed
Approach

FCFS

Scheduling schemes

(A)

0

4

8

12

16

20

24

28

32

Proposed
Approach

Random fusion

Scheduling schemes

(B)

Figure 5.11: Execution time of fused and separate kernels in (A).
The execution time of the fused kernel using the FusionCL scheme and random

fusion in (B)

Moreover, it is also important to identify the best pair of kernels for fusion among

fusion suitable kernels. The FusionCL approach is able to accurately classify

kernels as fusion suitable and fusion unsuitable kernels while also identifying the

best pair for fusion among fusion suitable kernels. This results in a considerable

reduction in execution time while using the FusionCL approach.

Role of Kernel Fusion to Improve Device Utilization 125

5.4.8 Predictive Modeling Results

It is pertinent to describe the prediction accuracy of our machine learning models

(i.e., kernel fusion classifier and fusion speedup predictor) in order to gain knowl-

edge of the effect of the developed prediction models on the achieved experimental

results. An accuracy of 0.98 was achieved for the kernel fusion classifier whereas

fusion speedup predictor achieves an R square of 0.96. The accuracy measures

of the prediction models are presented in Table 5.5. The use of TPOT [110] for

the selection of machine learning algorithm for prediction was vital in achieving

better results. Moreover, an extensive dataset of 2100 programs from multiple

benchmarks, was prepared to train the machine learning model.

Table 5.5: Predictive modeling results

Model Precision Recall F-measure R Square Mean square

Kernel fu-

sion classi-

fier

0.97 0.99 0.98 - -

Fusion

speedup

predictor

- - - 0.966 0.011

Precision and Recall Impact on Scheduling Accuracy

Precision measures the relevant results (exactness of the prediction) rather than

irrelevant results and recall measures the sensitivity of the most relevant results

(completeness of the prediction). Precision and recall are convenient to be com-

bined into a single metric called F1 score [119]. The F1 score is the harmonic mean

of precision and recall. The harmonic means gives more weight to lower values

as compared to the regular mean. The F1 measure is widely known metrics that

estimate the entire prediction system performance by combining the precision and

recall [120]. The scale of the F1 measure is 1.0: perfect prediction, 0.9: excellent

prediction, 0.8: good prediction, 0.7: mediocre prediction, 0.6: poor prediction,

Role of Kernel Fusion to Improve Device Utilization 126

0.5: random prediction, and less than 0.5: poor prediction [120]. If the percent-

age value of precision and recall were lower for fusion suitability classifier, then

applications that are not most suitable for fusion would have been fused. Such

a fusion would have resulted in longer job pool execution time and lower system

throughput. The fusion suitability classifier will only get a high F1 score if both

precision and recall are high. As mentioned in the 5.4, the recall is 0.99 and preci-

sion is 0.97 that leads to F1 score is 0.98. The achieved F1 score suggests that the

fusion suitability is able to predict best fusion candidate kernels with very high

accuracy which leads to lower execution time and higher system throughput for

the FusionCL scheduling heuristic.

5.4.9 Scheduling overhead

The scheduling overhead of the FusionCL scheduling heuristic is O(N2) as it is

built on top of the Troodon. However, the FusionCL also performs additional

steps of fusion suitability classification, and fusion speedup prediction, and kernel

fusion before using the Troodon for job scheduling. The training phase of the

fusion suitability classifier and the speedup predictor took 10–12 hours. During

deployment, the overhead of fusion suitability classification, and fusion speedup

prediction, and kernel fusion, in our case, amounts to 35–50 milliseconds which is

negligible when compared to the overall execution time of the job pool.

5.5 Conclusions

The increasing integration of GPUs in computing systems have made GPU a vi-

able alternative to CPU for the execution of data-parallel applications. However,

concurrent execution of applications (GPU sharing between kernels) is not sup-

ported by today’s GPUs. This may result in wastage of GPU resources when an

application with a small data size is executed on a GPU. To solve this problem,

a kernel fusion mechanism is presented in this chapter that fuses a pair of kernels

Role of Kernel Fusion to Improve Device Utilization 127

to increase GPU occupancy and reduce GPU resource wastage. Furthermore, a

machine learning based model has been developed that identifies a pair of kernel

such that fusing them will produce maximum speed up over their serial execution.

The experimental evaluation shows that the FusionCL kernel fusion mechanism

reduces execution time by 2.83X when compared to a baseline scheduling scheme.

When compared to state-of-the-art, the reduction in execution time is 1.08X. In

the future, it is intended to develop a machine learning based mechanism that can

also predict the percentage of GPU resources (i.e., compute-cores) that should be

assigned to each fused pair of the kernel for efficient utilization of GPU resources.

Chapter 6

Conclusions

The contemporary era in the field of computing belongs to the heterogeneous ar-

chitectures. Devices ranging from smart phones to super computers are using

co-processors for the execution of user applications. GPU is the most widely

used co-processor due to architectural advancements that enables it to acceler-

ate the execution of data-parallel applications. Moreover, GPU also offer better

performance-per-watt than the general purpose CPU. OpenCL has become an in-

dustry standard to program heterogeneous applications that can be executed on

either a CPU or a GPU. Scheduling of OpenCL application, to either a CPU or

a GPU in a load balanced manner is a challenging task which is the focus of this

thesis.

This thesis tackles the problem of how to schedule a job pool of applications on

a heterogeneous system in a load balanced manner. The E-OSched solves this

problem by considering the computation power of jobs and processing power of

heterogeneous processors in the scheduling decisions. However, it was observed

that the execution time of the job pool can be further reduced if jobs are mapped

to devices according to jobs’ device suitability. The Troodon solves this problem by

including job’s device suitability in the scheduling decisions. The results obtained

by the Troodon shows that a job/task scheduler for heterogeneous systems should

include device suitability prediction in scheduling decisions. Furthermore, device

utilization of the GPU can be increased if a GPU can be shared between two kernels

128

Conclusions 129

that cannot occupy all GPU resources when executed separately. GPU sharing

among a pair of the kernel functions will not only increase the GPU occupancy but

also reduce the job pool’s execution time. The FusionCL scheduler uses a novel

kernel fusion mechanism enabling a pair of the kernel to use a GPU concurrently.

FusionCL shows that there is an urgent need for support of operating system

services on the GPU.

6.1 Limitations

Following are some of the limitations of the work proposed in this thesis.

1. A limitation of the scheduling heuristics proposed in this thesis is that the

computation requirement of all the jobs in the job pool should be known

before jobs mapping to the heterogeneous devices is performed.

2. There shouldn’t be any data dependence between kernels that belong to

different programs.

3. In this research, it is assumed that all the jobs arrive at the same time.

4. Kernel fusion can only be performed on kernels that belongs to two different

jobs.

6.2 Future Research Directions

This section discusses a list of possible research directions that can be used to

further the work presented in this thesis.

1. Job scheduling using execution time predictions for dynamic job

arrival: As stated previously, for research in this thesis, it is assumed that

all the job arrives at the same time. However, the schedulers presented in

the work can be modified to include dynamic job arrival time in scheduling

Conclusions 130

decisions. Machine learning can be used to predict the job completion time

for all devices considering its current load. Thereafter, the newly arrived

job can be assigned to the device that will execute the job in lest amount of

time.

2. Job priority and preemption: Due to lack of operating system support

on the GPU, jobs are executed on the GPU in the order in which they arrive

(i.e.,FIFO). This can lead to unnecessary delay in the execution of prioritized

jobs. Therefore, the proposed work of this thesis can be enhanced to include

a mechanism that allows for assigning priorities to the incoming jobs.

3. Using integrated GPU job execution: In the scheduling heuristics,

presented in Chapter 4 and Chapter 5, it was assumed that the heterogeneous

system consist of only discreet GPU i.e., GPUs that are connected to the

CPU through PCIe bus. However, nowadays all heterogeneous systems also

consist of an integrated GPU (i.e., GPU exist with the CPU on the same

die). The integrated GPU use portion of main memory as GPU memory

and do not involve communication cost that is inherent in the use of discrete

GPU. Applications that are better suited GPU execution but suffer from

communication cost due to data transfer to/from the discrete GPU can be

executed on the integrated GPU to further reduce the execution of the job

pool.

4. Transformation of OpenCL kernel code to make it better suit-

able for CPU execution: OpenCL applications are functionally portable

but are not performance portable i.e., an OpenCL application developed for

GPU will execute seamlessly on a CPU (functionally portable) but will not

produce similar results to an OpenMP implementation of the application.

Therefore, CPU suitable OpenCL applications can be transformed for CPU

execution so that it executes faster on CPU when compared to the default

implementation. For this purpose, the use of vector instructions that are

provided in OpenCL can be used to take advantage of SIMD lines present

in a CPU core.

Conclusions 131

5. Job data size impact on the performance of proposed scheduling

heuristics: The job pools used in this study consist of multiple types of

job sizes (i.e., relative small, medium and large data sizes). Therefore, in

the future it is intended to analyze the performance of proposed scheduling

heuristics on job pools that consist of jobs of one type of data sizes e.g.,

only small data size jobs and also to design working principles about how

job could be labeled as small, medium, and large data size job. Moreover,

it is also planned to perform the scalability study on the performance of

proposed scheduling heuristics w.r.t job pool types.

Bibliography

[1] G. E. Moore, “Cramming more components onto integrated circuits,

reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.”

IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33–35, Sep.

2006.

[2] J. Parkhurst, J. Darringer, and B. Grundmann, “From single core to

multi-core: Preparing for a new exponential,” in Proceedings of the

2006 IEEE/ACM International Conference on Computer-aided Design, ser.

ICCAD ’06. New York, NY, USA: ACM, 2006, pp. 67–72. [Online].

Available: http://doi.acm.org/10.1145/1233501.1233516

[3] D. R. Butenhof, Programming with POSIX Threads. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 1997.

[4] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-

memory programming,” IEEE Computational Science and Engineering,

vol. 5, no. 1, pp. 46–55, Jan 1998.

[5] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-core

Processor Parallelism, ser. O’Reilly Series. O’Reilly Media, 2007. [Online].

Available: https://books.google.ad/books?id=tR2cAgAAQBAJ

[6] “Top 500 super computer list,” https://www.top500.org/lists/2018/11/, ac-

cessed: 2019-01-12.

[7] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “Gpus

and the future of parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17,

Sep. 2011.

132

http://doi.acm.org/10.1145/1233501.1233516
https://books.google.ad/books?id=tR2cAgAAQBAJ
https://www.top500.org/lists/2018/11/

Bibliography 133

[8] “Opencl - the open standard for parallel programming of heterogeneous sys-

tems,” https://www.khronos.org/opencl/, accessed: 2017-01-03.

[9] S. Rul, H. Vandierendonck, J. D’Haene, and K. De Bosschere, “An

experimental study on performance portability of opencl kernels,” in

Application Accelerators in High Performance Computing, 2010 Symposium,

Papers, 2010, p. 3. [Online]. Available: http://saahpc.ncsa.illinois.edu/

papers/paper 2.pdf

[10] X. Yan, X. Shi, L. Wang, and H. Yang, “An opencl micro-benchmark suite for

gpus and cpus,” The Journal of Supercomputing, vol. 69, no. 2, pp. 693–713,

Aug 2014. [Online]. Available: https://doi.org/10.1007/s11227-014-1112-2

[11] A. Munshi, “The opencl specification,” in 2009 IEEE Hot Chips 21 Sympo-

sium (HCS), Aug 2009, pp. 1–314.

[12] E. Sun, D. Schaa, R. Bagley, N. Rubin, and D. Kaeli, “Enabling task-level

scheduling on heterogeneous platforms,” in Proceedings of the 5th Annual

Workshop on General Purpose Processing with Graphics Processing Units,

ser. GPGPU-5. New York, NY, USA: ACM, 2012, pp. 84–93. [Online].

Available: http://doi.acm.org/10.1145/2159430.2159440

[13] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on

multi/many-core systems: Survey of current and emerging trends,” in

Proceedings of the 50th Annual Design Automation Conference, ser. DAC

’13. New York, NY, USA: ACM, 2013, pp. 1:1–1:10. [Online]. Available:

http://doi.acm.org/10.1145/2463209.2488734

[14] V. T. Ravi, W. Ma, D. Chiu, and G. Agrawal, “Compiler and

runtime support for enabling generalized reduction computations on

heterogeneous parallel configurations,” in Proceedings of the 24th ACM

International Conference on Supercomputing, ser. ICS ’10. New York,

NY, USA: ACM, 2010, pp. 137–146. [Online]. Available: http:

//doi.acm.org/10.1145/1810085.1810106

https://www.khronos.org/opencl/
http://saahpc.ncsa.illinois.edu/papers/paper_2.pdf
http://saahpc.ncsa.illinois.edu/papers/paper_2.pdf
https://doi.org/10.1007/s11227-014-1112-2
http://doi.acm.org/10.1145/2159430.2159440
http://doi.acm.org/10.1145/2463209.2488734
http://doi.acm.org/10.1145/1810085.1810106
http://doi.acm.org/10.1145/1810085.1810106

Bibliography 134

[15] H. Topcuoglu, S. Hariri, and Min-You Wu, “Performance-effective and low-

complexity task scheduling for heterogeneous computing,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260–274, March

2002.

[16] I. Galindo, F. Almeida, and J. M. Bad́ıa-Contelles, “Dynamic load

balancing on dedicated heterogeneous systems,” in Proceedings of the

15th European PVM/MPI Users’ Group Meeting on Recent Advances

in Parallel Virtual Machine and Message Passing Interface. Berlin,

Heidelberg: Springer-Verlag, 2008, pp. 64–74. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-87475-1 14

[17] C. Gregg, M. Boyer, K. Hazelwood, and K. Skadron, “Dynamic heteroge-

neous scheduling decisions using historical runtime data,” in Workshop on

Applications for Multi-and Many-Core Processors (A4MMC), 2011.

[18] A. Gamatié, X. An, Y. Zhang, A. Kang, and G. Sassatelli, “Empirical

model-based performance prediction for application mapping on multicore

architectures,” Journal of Systems Architecture, vol. 98, pp. 1 – 16,

2019. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S1383762118306465

[19] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous computing

techniques,” ACM Comput. Surv., vol. 47, no. 4, pp. 69:1–69:35, Jul. 2015.

[Online]. Available: http://doi.acm.org/10.1145/2788396

[20] K. Ma, X. Li, W. Chen, C. Zhang, and X. Wang, “Greengpu: A holistic

approach to energy efficiency in gpu-cpu heterogeneous architectures,” in

2012 41st International Conference on Parallel Processing, Sep. 2012, pp.

48–57.

[21] S. Mittal, “A survey of architectural techniques for DRAM power

management,” International Journal of High Performance Systems

Architecture (IJHPSA), vol. 4, no. 2, pp. 110 – 119, 2012. [Online].

Available: https://hal.archives-ouvertes.fr/hal-01104430

http://dx.doi.org/10.1007/978-3-540-87475-1_14
http://www.sciencedirect.com/science/article/pii/S1383762118306465
http://www.sciencedirect.com/science/article/pii/S1383762118306465
http://doi.acm.org/10.1145/2788396
https://hal.archives-ouvertes.fr/hal-01104430

Bibliography 135

[22] B. Pérez, J. L. Bosque, and R. Beivide, “Simplifying programming

and load balancing of data parallel applications on heterogeneous

systems,” in Proceedings of the 9th Annual Workshop on General

Purpose Processing Using Graphics Processing Unit, ser. GPGPU ’16.

New York, NY, USA: ACM, 2016, pp. 42–51. [Online]. Available:

http://doi.acm.org/10.1145/2884045.2884051

[23] M. P. Robson, R. Buch, and L. V. Kale, “Runtime coordinated heterogeneous

tasks in charm++,” in 2016 Second International Workshop on Extreme

Scale Programming Models and Middlewar (ESPM2), Nov 2016, pp. 40–43.

[24] D. Gerzhoy, X. Sun, M. Zuzak, and D. Yeung, “Nested mimd-

simd parallelization for heterogeneous microprocessors,” ACM Trans.

Archit. Code Optim., vol. 16, no. 4, Dec. 2019. [Online]. Available:

https://doi.org/10.1145/3368304

[25] Z. Wang, L. Zheng, Q. Chen, and M. Guo, “Cpu+gpu scheduling

with asymptotic profiling,” Parallel Computing, vol. 40, no. 2,

pp. 107 – 115, 2014, special issue on programming models and

applications for multicores and manycores. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0167819113001415

[26] M. Boyer, K. Skadron, S. Che, and N. Jayasena, “Load balancing in a

changing world: Dealing with heterogeneity and performance variability,” in

Proceedings of the ACM International Conference on Computing Frontiers,

ser. CF ’13. New York, NY, USA: ACM, 2013, pp. 21:1–21:10. [Online].

Available: http://doi.acm.org/10.1145/2482767.2482794

[27] Y. Wen, Z. Wang, and M. F. P. O’Boyle, “Smart multi-task scheduling for

opencl programs on cpu/gpu heterogeneous platforms,” in 2014 21st Inter-

national Conference on High Performance Computing (HiPC), Dec 2014,

pp. 1–10.

http://doi.acm.org/10.1145/2884045.2884051
https://doi.org/10.1145/3368304
http://www.sciencedirect.com/science/article/pii/S0167819113001415
http://www.sciencedirect.com/science/article/pii/S0167819113001415
http://doi.acm.org/10.1145/2482767.2482794

Bibliography 136

[28] D. Lustig and M. Martonosi, “Reducing gpu offload latency via fine-grained

cpu-gpu synchronization,” in 2013 IEEE 19th International Symposium on

High Performance Computer Architecture (HPCA), Feb 2013, pp. 354–365.

[29] S. Mittal and J. S. Vetter, “A survey of methods for analyzing and improving

gpu energy efficiency,” ACM Comput. Surv., vol. 47, no. 2, pp. 19:1–19:23,

Aug. 2014. [Online]. Available: http://doi.acm.org/10.1145/2636342

[30] S. Mittal, “A survey of techniques for approximate computing,” ACM

Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, Mar. 2016. [Online]. Available:

http://doi.acm.org/10.1145/2893356

[31] Y. Wen, “Multi-tasking scheduling for heterogeneous systems,” The Univer-

sity of Edinburgh, 2017.

[32] V. K. Vaishnavi and W. Kuechler, Design Science Research Methods and

Patterns: Innovating Information and Communication Technology, 2nd Edi-

tion, 2nd ed. USA: CRC Press, Inc., 2015.

[33] “International parallel and distributed processing symposium,” http://www.

ipdps.org/, accessed: 2020-01-05.

[34] “Super computing,” http://supercomputing.org/, accessed: 2020-01-05.

[35] “International conference on supercomputing,” https://www.ics-conference.

org/, accessed: 2020-01-05.

[36] “International conference on parallel architectures and compilation tech-

niques,” https://dl.acm.org/conference/pact, accessed: 2020-01-05.

[37] “Symposium on principles and practice of parallel programming,” https:

//dl.acm.org/conference/ppopp, accessed: 2020-01-05.

[38] “International european conference on parallel and distributed computing,”

https://2020.euro-par.org/, accessed: 2020-01-05.

[39] “General purpose processing using gpus,” https://dl.acm.org/conference/

gpgpu, accessed: 2020-01-05.

http://doi.acm.org/10.1145/2636342
http://doi.acm.org/10.1145/2893356
http://www.ipdps.org/
http://www.ipdps.org/
http://supercomputing.org/
https://www.ics-conference.org/
https://www.ics-conference.org/
https://dl.acm.org/conference/pact
https://dl.acm.org/conference/ppopp
https://dl.acm.org/conference/ppopp
https://2020.euro-par.org/
https://dl.acm.org/conference/gpgpu
https://dl.acm.org/conference/gpgpu

Bibliography 137

[40] “International conference parallel processing,” https://dl.acm.org/

conference/icpp, accessed: 2020-01-05.

[41] “International conference on parallel and distributed systems,” https://

ieeexplore.ieee.org/xpl/conhome/1000534/all-proceedings, accessed: 2020-

01-05.

[42] “Transactions on architecture and code optimization,” https://dl.acm.org/

journal/taco, accessed: 2020-01-05.

[43] “Journal of parallel and distributed computing,” https://www.journals.

elsevier.com/journal-of-parallel-and-distributed-computing, accessed: 2020-

01-05.

[44] “Transactions on parallel and distributed systems,” https://www.computer.

org/csdl/journal/td, accessed: 2020-01-05.

[45] “The journal of super computing,” https://link.springer.com/journal/11227,

accessed: 2020-01-05.

[46] “International journal of parallel programming,” https://www.springer.

com/journal/10766, accessed: 2020-01-05.

[47] “Parallel computing,” https://www.journals.elsevier.com/

parallel-computing, accessed: 2020-01-05.

[48] “Snapdragon 855 mobile platform — qualcomm,” https://www.qualcomm.

com/products/snapdragon-855-mobile-platform, accessed: 2019-06-27.

[49] “Qualcomm snapdragon 855 specs deep dive,” https://www.

androidauthority.com/qualcomm-snapdragon-855-912505/, accessed:

2019-06-29.

[50] “E2-7110 with radeontm r2 graphics — amd,” https://www.amd.com/en/

product/5951, accessed: 2019-06-27.

[51] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,

N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,

https://dl.acm.org/conference/icpp
https://dl.acm.org/conference/icpp
https://ieeexplore.ieee.org/xpl/conhome/1000534/all-proceedings
https://ieeexplore.ieee.org/xpl/conhome/1000534/all-proceedings
https://dl.acm.org/journal/taco
https://dl.acm.org/journal/taco
https://www.journals.elsevier.com/journal-of-parallel-and-distributed-computing
https://www.journals.elsevier.com/journal-of-parallel-and-distributed-computing
https://www.computer.org/csdl/journal/td
https://www.computer.org/csdl/journal/td
https://link.springer.com/journal/11227
https://www.springer.com/journal/10766
https://www.springer.com/journal/10766
https://www.journals.elsevier.com/parallel-computing
https://www.journals.elsevier.com/parallel-computing
https://www.qualcomm.com/products/snapdragon-855-mobile-platform
https://www.qualcomm.com/products/snapdragon-855-mobile-platform
https://www.androidauthority.com/qualcomm-snapdragon-855-912505/
https://www.androidauthority.com/qualcomm-snapdragon-855-912505/
https://www.amd.com/en/product/5951
https://www.amd.com/en/product/5951

Bibliography 138

and P. Dubey, “Debunking the 100x gpu vs. cpu myth: An evaluation

of throughput computing on cpu and gpu,” in Proceedings of the 37th

Annual International Symposium on Computer Architecture, ser. ISCA

’10. New York, NY, USA: ACM, 2010, pp. 451–460. [Online]. Available:

http://doi.acm.org/10.1145/1815961.1816021

[52] B. A. Hechtman and D. J. Sorin, “Exploring memory consistency for

massively-threaded throughput-oriented processors,” in Proceedings of the

40th Annual International Symposium on Computer Architecture, ser. ISCA

’13. New York, NY, USA: ACM, 2013, pp. 201–212. [Online]. Available:

http://doi.acm.org/10.1145/2485922.2485940

[53] S. Chilingaryan, E. Ametova, A. Kopmann, and A. Mirone, “Balancing load

of gpu subsystems to accelerate image reconstruction in parallel beam tomog-

raphy,” in 2018 30th International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD), Sep. 2018, pp. 158–166.

[54] M. Shen and G. Luo, “Corolla: Gpu-accelerated fpga routing based on

subgraph dynamic expansion,” in Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, ser. FPGA

’17. New York, NY, USA: ACM, 2017, pp. 105–114. [Online]. Available:

http://doi.acm.org/10.1145/3020078.3021732

[55] “Intel sdk for opencltm applications,” https://software.intel.com/en-us/

intel-opencl, accessed: 2017-10-31.

[56] “App sdk,” http://developer.amd.com/tools-and-sdks/opencl-zone/

amd-accelerated-parallel-processing-app-sdk/, accessed: 2017-01-05.

[57] “Cuda toolkit,” https://developer.nvidia.com/cuda-toolkit, accessed: 2017-

01-05.

[58] D. Grewe and M. F. P. O’Boyle, “A static task partitioning approach for

heterogeneous systems using opencl,” in Compiler Construction, J. Knoop,

Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 286–305.

http://doi.acm.org/10.1145/1815961.1816021
http://doi.acm.org/10.1145/2485922.2485940
http://doi.acm.org/10.1145/3020078.3021732
https://software.intel.com/en-us/intel-opencl
https://software.intel.com/en-us/intel-opencl
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
https://developer.nvidia.com/cuda-toolkit

Bibliography 139

[59] J. Lee, M. Samadi, Y. Park, and S. Mahlke, “Skmd: Single kernel

on multiple devices for transparent cpu-gpu collaboration,” ACM Trans.

Comput. Syst., vol. 33, no. 3, pp. 9:1–9:27, Aug. 2015. [Online]. Available:

http://doi.acm.org/10.1145/2798725

[60] J. Lee, M. Samadi, and S. Mahlke, “Orchestrating multiple data-parallel

kernels on multiple devices,” in 2015 International Conference on Parallel

Architecture and Compilation (PACT), Oct 2015, pp. 355–366.

[61] C. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on hetero-

geneous multiprocessors with adaptive mapping,” in 2009 42nd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), Dec

2009, pp. 45–55.

[62] M. Becchi, S. Byna, S. Cadambi, and S. Chakradhar, “Data-

aware scheduling of legacy kernels on heterogeneous platforms with

distributed memory,” in Proceedings of the Twenty-second Annual ACM

Symposium on Parallelism in Algorithms and Architectures, ser. SPAA

’10. New York, NY, USA: ACM, 2010, pp. 82–91. [Online]. Available:

http://doi.acm.org/10.1145/1810479.1810498

[63] Y. Wen and M. F. O’Boyle, “Merge or separate?: Multi-job scheduling

for opencl kernels on cpu/gpu platforms,” in Proceedings of the General

Purpose GPUs, ser. GPGPU-10. New York, NY, USA: ACM, 2017, pp.

22–31. [Online]. Available: http://doi.acm.org/10.1145/3038228.3038235

[64] H. J. Choi, D. O. Son, S. G. Kang, J. M. Kim, H.-H. Lee,

and C. H. Kim, “An efficient scheduling scheme using estimated

execution time for heterogeneous computing systems,” The Journal of

Supercomputing, vol. 65, no. 2, pp. 886–902, Aug 2013. [Online]. Available:

https://doi.org/10.1007/s11227-013-0870-6

[65] Y. N. Khalid, M. Aleem, U. Ahmed, M. A. Islam, and M. A.

Iqbal, “Troodon: A machine-learning based load-balancing application

scheduler for cpu–gpu system,” Journal of Parallel and Distributed

http://doi.acm.org/10.1145/2798725
http://doi.acm.org/10.1145/1810479.1810498
http://doi.acm.org/10.1145/3038228.3038235
https://doi.org/10.1007/s11227-013-0870-6

Bibliography 140

Computing, vol. 132, pp. 79 – 94, 2019. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0743731518306841

[66] Z. Chen and D. Marculescu, “Task scheduling for heterogeneous multicore

systems,” ArXiv, vol. abs/1712.03209, 2017.

[67] O. E. Albayrak, I. Akturk, and O. Ozturk, “Effective kernel mapping

for opencl applications in heterogeneous platforms,” in Proceedings of the

2012 41st International Conference on Parallel Processing Workshops, ser.

ICPPW ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp.

81–88. [Online]. Available: http://dx.doi.org/10.1109/ICPPW.2012.14

[68] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu:

A unified platform for task scheduling on heterogeneous multicore

architectures,” Concurr. Comput. : Pract. Exper., vol. 23, no. 2, pp.

187–198, Feb. 2011. [Online]. Available: http://dx.doi.org/10.1002/cpe.1631

[69] M. E. Belviranli, L. N. Bhuyan, and R. Gupta, “A dynamic self-scheduling

scheme for heterogeneous multiprocessor architectures,” ACM Trans.

Archit. Code Optim., vol. 9, no. 4, pp. 57:1–57:20, Jan. 2013. [Online].

Available: http://doi.acm.org/10.1145/2400682.2400716

[70] A. P. D. Binotto, C. E. Pereira, A. Kuijper, A. Stork, and D. W.

Fellner, “An effective dynamic scheduling runtime and tuning system for

heterogeneous multi and many-core desktop platforms,” in Proceedings

of the 2011 IEEE International Conference on High Performance

Computing and Communications, ser. HPCC ’11. Washington, DC,

USA: IEEE Computer Society, 2011, pp. 78–85. [Online]. Available:

http://dx.doi.org/10.1109/HPCC.2011.20

[71] C. Gregg, J. Brantley, and K. Hazelwood, “Contention-aware scheduling of

parallel code for heterogeneous systems,” in 2nd USENIX workshop on hot

topics in parallelism, HotPar, Berkeley, CA, 2010.

[72] V. J. Jiménez, L. Vilanova, I. Gelado, M. Gil, G. Fursin, and

N. Navarro, “Predictive runtime code scheduling for heterogeneous

http://www.sciencedirect.com/science/article/pii/S0743731518306841
http://www.sciencedirect.com/science/article/pii/S0743731518306841
http://dx.doi.org/10.1109/ICPPW.2012.14
http://dx.doi.org/10.1002/cpe.1631
http://doi.acm.org/10.1145/2400682.2400716
http://dx.doi.org/10.1109/HPCC.2011.20

Bibliography 141

architectures,” in Proceedings of the 4th International Conference on High

Performance Embedded Architectures and Compilers, ser. HiPEAC ’09.

Berlin, Heidelberg: Springer-Verlag, 2009, pp. 19–33. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-92990-1 4

[73] K. Kofler, I. Grasso, B. Cosenza, and T. Fahringer, “An automatic input-

sensitive approach for heterogeneous task partitioning,” in Proceedings of

the 27th International ACM Conference on International Conference on

Supercomputing, ser. ICS ’13. New York, NY, USA: ACM, 2013, pp.

149–160. [Online]. Available: http://doi.acm.org/10.1145/2464996.2465007

[74] “Insieme compiler project,” http://www.insieme-compiler.org/, accessed:

2017-09-07.

[75] J. Lee, M. Samadi, Y. Park, and S. Mahlke, “Transparent cpu-

gpu collaboration for data-parallel kernels on heterogeneous systems,”

in Proceedings of the 22Nd International Conference on Parallel

Architectures and Compilation Techniques, ser. PACT ’13. Piscataway,

NJ, USA: IEEE Press, 2013, pp. 245–256. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=2523721.2523756

[76] P. Pandit and R. Govindarajan, “Fluidic kernels: Cooperative execution

of opencl programs on multiple heterogeneous devices,” in Proceedings

of Annual IEEE/ACM International Symposium on Code Generation and

Optimization, ser. CGO ’14. New York, NY, USA: ACM, 2014, pp. 273:273–

273:283. [Online]. Available: http://doi.acm.org/10.1145/2581122.2544163

[77] R. Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C. Hu, and

K. Pingali, “Adaptive heterogeneous scheduling for integrated gpus,” in

Proceedings of the 23rd International Conference on Parallel Architectures

and Compilation, ser. PACT ’14. New York, NY, USA: ACM, 2014, pp.

151–162. [Online]. Available: http://doi.acm.org/10.1145/2628071.2628088

[78] V. T. Ravi and G. Agrawal, “A dynamic scheduling framework for emerging

heterogeneous systems,” in Proceedings of the 2011 18th International

http://dx.doi.org/10.1007/978-3-540-92990-1_4
http://doi.acm.org/10.1145/2464996.2465007
http://www.insieme-compiler.org/
http://dl.acm.org/citation.cfm?id=2523721.2523756
http://dl.acm.org/citation.cfm?id=2523721.2523756
http://doi.acm.org/10.1145/2581122.2544163
http://doi.acm.org/10.1145/2628071.2628088

Bibliography 142

Conference on High Performance Computing, ser. HIPC ’11. Washington,

DC, USA: IEEE Computer Society, 2011, pp. 1–10. [Online]. Available:

https://doi.org/10.1109/HiPC.2011.6152724

[79] Z. Wang, L. Zheng, Q. Chen, and M. Guo, “Cap: Co-scheduling based

on asymptotic profiling in cpu+gpu hybrid systems,” in Proceedings

of the 2013 International Workshop on Programming Models and

Applications for Multicores and Manycores, ser. PMAM ’13. New

York, NY, USA: ACM, 2013, pp. 107–114. [Online]. Available: http:

//doi.acm.org/10.1145/2442992.2443004

[80] P. Huchant, M.-C. Counilh, and D. Barthou, “Automatic opencl task adap-

tation for heterogeneous architectures,” in Euro-Par 2016: Parallel Process-

ing, P.-F. Dutot and D. Trystram, Eds. Cham: Springer International

Publishing, 2016, pp. 684–696.

[81] Y. N. Khalid, M. Aleem, R. Prodan, M. A. Iqbal, and M. A. Islam,

“E-osched: a load balancing scheduler for heterogeneous multicores,” The

Journal of Supercomputing, vol. 74, no. 10, pp. 5399–5431, Oct 2018.

[Online]. Available: https://doi.org/10.1007/s11227-018-2435-1

[82] A. M. Aji, A. J. Peña, P. Balaji, and W.-c. Feng, “Automatic command

queue scheduling for task-parallel workloads in opencl,” in Proceedings

of the 2015 IEEE International Conference on Cluster Computing, ser.

CLUSTER ’15. Washington, DC, USA: IEEE Computer Society, 2015,

pp. 42–51. [Online]. Available: https://doi.org/10.1109/CLUSTER.2015.15

[83] A. M. Aji, A. J. Peña, P. Balaji, and W. chun Feng, “Multicl:

Enabling automatic scheduling for task-parallel workloads in opencl,”

Parallel Computing, vol. 58, pp. 37 – 55, 2016. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167819116300357

[84] A. Ghose, S. Dey, P. Mitra, and M. Chaudhuri, “Divergence

aware automated partitioning of opencl workloads,” in Proceedings

of the 9th India Software Engineering Conference, ser. ISEC ’16.

https://doi.org/10.1109/HiPC.2011.6152724
http://doi.acm.org/10.1145/2442992.2443004
http://doi.acm.org/10.1145/2442992.2443004
https://doi.org/10.1007/s11227-018-2435-1
https://doi.org/10.1109/CLUSTER.2015.15
http://www.sciencedirect.com/science/article/pii/S0167819116300357

Bibliography 143

New York, NY, USA: ACM, 2016, pp. 131–135. [Online]. Available:

http://doi.acm.org/10.1145/2856636.2856639

[85] Y. Wen, M. F. O’Boyle, and C. Fensch, “Maxpair: Enhance

opencl concurrent kernel execution by weighted maximum matching,”

in Proceedings of the 11th Workshop on General Purpose GPUs, ser.

GPGPU-11. New York, NY, USA: ACM, 2018, pp. 40–49. [Online].

Available: http://doi.acm.org/10.1145/3180270.3180272

[86] J. Zhong and B. He, “Kernelet: High-throughput gpu kernel executions

with dynamic slicing and scheduling,” IEEE Trans. Parallel Distrib.

Syst., vol. 25, no. 6, pp. 1522–1532, Jun. 2014. [Online]. Available:

http://dx.doi.org/10.1109/TPDS.2013.257

[87] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving gpgpu

concurrency with elastic kernels,” in Proceedings of the Eighteenth

International Conference on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS ’13. New York,

NY, USA: ACM, 2013, pp. 407–418. [Online]. Available: http:

//doi.acm.org/10.1145/2451116.2451160

[88] C. Margiolas and M. F. P. O'Boyle, “Portable and transparent

software managed scheduling on accelerators for fair resource sharing,” in

Proceedings of the 2016 International Symposium on Code Generation and

Optimization, ser. CGO ’16. New York, NY, USA: ACM, 2016, pp. 82–93.

[Online]. Available: http://doi.acm.org/10.1145/2854038.2854040

[89] Q. Jiao, M. Lu, H. P. Huynh, and T. Mitra, “Improving gpgpu

energy-efficiency through concurrent kernel execution and dvfs,” in

Proceedings of the 13th Annual IEEE/ACM International Symposium

on Code Generation and Optimization, ser. CGO ’15. Washington,

DC, USA: IEEE Computer Society, 2015, pp. 1–11. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2738600.2738602

http://doi.acm.org/10.1145/2856636.2856639
http://doi.acm.org/10.1145/3180270.3180272
http://dx.doi.org/10.1109/TPDS.2013.257
http://doi.acm.org/10.1145/2451116.2451160
http://doi.acm.org/10.1145/2451116.2451160
http://doi.acm.org/10.1145/2854038.2854040
http://dl.acm.org/citation.cfm?id=2738600.2738602

Bibliography 144

[90] M. E. Belviranli, F. Khorasani, L. N. Bhuyan, and R. Gupta, “Cumas:

Data transfer aware multi-application scheduling for shared gpus,” in

Proceedings of the 2016 International Conference on Supercomputing, ser.

ICS ’16. New York, NY, USA: ACM, 2016, pp. 31:1–31:12. [Online].

Available: http://doi.acm.org/10.1145/2925426.2926271

[91] “Samsung galaxy s8+ - full phone specifications,” http://www.gsmarena.

com/samsung galaxy s8+-8523.php, accessed: 2017-07-10.

[92] D. Rohr, S. Kalcher, M. Bach, A. A. Alaqeeliy, H. M. Alzaidy, D. Es-

chweiler, V. Lindenstruth, S. B. Alkhereyfy, A. Alharthiy, A. Almubaraky,

I. Alqwaizy, and R. B. Suliman, “An energy-efficient multi-gpu super-

computer,” in 2014 IEEE Intl Conf on High Performance Computing

and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety

and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst

(HPCC,CSS,ICESS), Aug 2014, pp. 42–45.

[93] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.

Phillips, “Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.

879–899, May 2008.

[94] M. Aleem, R. Prodan, and T. Fahringer, “Scheduling javasymphony

applications on many-core parallel computers,” in Proceedings of the 17th

International Conference on Parallel Processing - Volume Part I, ser.

Euro-Par’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 167–179.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2033345.2033365

[95] A. Lösch, T. Beisel, T. Kenter, C. Plessl, and M. Platzner, “Performance-

centric scheduling with task migration for a heterogeneous compute

node in the data center,” in Proceedings of the 2016 Conference on

Design, Automation & Test in Europe, ser. DATE ’16. San Jose,

CA, USA: EDA Consortium, 2016, pp. 912–917. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2971808.2972018

http://doi.acm.org/10.1145/2925426.2926271
http://www.gsmarena.com/samsung_galaxy_s8+-8523.php
http://www.gsmarena.com/samsung_galaxy_s8+-8523.php
http://dl.acm.org/citation.cfm?id=2033345.2033365
http://dl.acm.org/citation.cfm?id=2971808.2972018

Bibliography 145

[96] R. Dolbeau, “Theoretical peak flops per instruction set: A tutorial,” J.

Supercomput., vol. 74, no. 3, pp. 1341–1377, Mar. 2018. [Online]. Available:

https://doi.org/10.1007/s11227-017-2177-5

[97] “Impact: Parboil benchmarks, 2007,” http://impact.crhc.illinois.edu/

parboil/parboil.aspx, accessed: 2017-01-05.

[98] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,

“Auto-tuning a high-level language targeted to gpu codes,” in 2012 Innova-

tive Parallel Computing (InPar), May 2012, pp. 1–10.

[99] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,

and K. Skadron, “Rodinia: A benchmark suite for heterogeneous

computing,” in Proceedings of the 2009 IEEE International Symposium

on Workload Characterization (IISWC), ser. IISWC ’09. Washington,

DC, USA: IEEE Computer Society, 2009, pp. 44–54. [Online]. Available:

https://doi.org/10.1109/IISWC.2009.5306797

[100] A. Hussain, M. Aleem, A. Khan, M. A. Iqbal, and M. A. Islam, “Ralba: a

computation-aware load balancing scheduler for cloud computing,” Cluster

Computing, vol. 21, no. 3, pp. 1667–1680, 2018.

[101] A. Hussain and M. Aleem, “Gocj: Google cloud jobs dataset for distributed

and cloud computing infrastructures,” Data, vol. 3, no. 4, p. 38, 2018.

[102] M. A. Dávila Guzmán, R. Nozal, R. Gran Tejero, M. Villarroya-

Gaudó, D. Suárez Gracia, and J. L. Bosque, “Cooperative cpu, gpu,

and fpga heterogeneous execution with enginecl,” The Journal of

Supercomputing, vol. 75, no. 3, pp. 1732–1746, Mar 2019. [Online].

Available: https://doi.org/10.1007/s11227-019-02768-y

[103] B. Pérez, E. Stafford, J. L. Bosque, and R. Beivide, “Energy efficiency of

load balancing for data-parallel applications in heterogeneous systems,” J.

Supercomput., vol. 73, no. 1, pp. 330–342, Jan. 2017. [Online]. Available:

https://doi.org/10.1007/s11227-016-1864-y

https://doi.org/10.1007/s11227-017-2177-5
http://impact.crhc.illinois.edu/parboil/parboil.aspx
http://impact.crhc.illinois.edu/parboil/parboil.aspx
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1007/s11227-019-02768-y
https://doi.org/10.1007/s11227-016-1864-y

Bibliography 146

[104] Z. Wang, D. Grewe, and M. F. P. O’boyle, “Automatic and portable

mapping of data parallel programs to opencl for gpu-based heterogeneous

systems,” ACM Trans. Archit. Code Optim., vol. 11, no. 4, pp. 42:1–42:26,

Dec. 2014. [Online]. Available: http://doi.acm.org/10.1145/2677036

[105] H. Dreuning, R. Heirman, and A. L. Varbanescu, “A beginner’s guide to

estimating and improving performance portability,” in High Performance

Computing, R. Yokota, M. Weiland, J. Shalf, and S. Alam, Eds. Cham:

Springer International Publishing, 2018, pp. 724–742.

[106] “The llvm compiler infrastructure project,” https://llvm.org/, accessed:

2018-03-02.

[107] J. Brownlee, “Naive bayes classifier from scratch in python,” Machine Learn-

ing Mastery, vol. 31, 2018.

[108] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,

J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach.

Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1953048.2078195

[109] G. Lemâıtre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A python

toolbox to tackle the curse of imbalanced datasets in machine learning,”

J. Mach. Learn. Res., vol. 18, no. 1, pp. 559–563, Jan. 2017. [Online].

Available: http://dl.acm.org/citation.cfm?id=3122009.3122026

[110] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, “Evaluation

of a tree-based pipeline optimization tool for automating data science,” in

Proceedings of the Genetic and Evolutionary Computation Conference 2016,

ser. GECCO ’16. New York, NY, USA: ACM, 2016, pp. 485–492. [Online].

Available: http://doi.acm.org/10.1145/2908812.2908918

[111] S.-K. Shekofteh, H. Noori, M. Naghibzadeh, H. S. Yazdi, and H. Fröning,

“Metric selection for gpu kernel classification,” ACM Trans. Archit. Code

http://doi.acm.org/10.1145/2677036
https://llvm.org/
http://dl.acm.org/citation.cfm?id=1953048.2078195
http://dl.acm.org/citation.cfm?id=3122009.3122026
http://doi.acm.org/10.1145/2908812.2908918

Bibliography 147

Optim., vol. 15, no. 4, pp. 68:1–68:27, Jan. 2019. [Online]. Available:

http://doi.acm.org/10.1145/3295690

[112] V. T. Ravi, M. Becchi, W. Jiang, G. Agrawal, and S. Chakradhar,

“Scheduling concurrent applications on a cluster of cpu-gpu nodes,” in

Proceedings of the 2012 12th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (Ccgrid 2012), ser. CCGRID ’12.

Washington, DC, USA: IEEE Computer Society, 2012, pp. 140–147.

[Online]. Available: https://doi.org/10.1109/CCGrid.2012.78

[113] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT

Press, 2012.

[114] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,

and Y. N. Patt, “Improving gpu performance via large warps

and two-level warp scheduling,” in Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-

44. New York, NY, USA: ACM, 2011, pp. 308–317. [Online]. Available:

http://doi.acm.org/10.1145/2155620.2155656

[115] W.-M. Hwu, C. Rodrigues, S. Ryoo, and J. Stratton, “Compute

unified device architecture application suitability,” Computing in Science

and Engg., vol. 11, no. 3, pp. 16–26, May 2009. [Online]. Available:

https://doi.org/10.1109/MCSE.2009.48

[116] H. Wang, F. Luo, M. Ibrahim, O. Kayiran, and A. Jog, “Efficient and fair

multi-programming in gpus via effective bandwidth management,” in 2018

IEEE International Symposium on High Performance Computer Architec-

ture (HPCA), Feb 2018, pp. 247–258.

[117] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee,

S. W. Keckler, M. T. Kandemir, and C. R. Das, “Anatomy of gpu

memory system for multi-application execution,” in Proceedings of the

2015 International Symposium on Memory Systems, ser. MEMSYS ’15.

http://doi.acm.org/10.1145/3295690
https://doi.org/10.1109/CCGrid.2012.78
http://doi.acm.org/10.1145/2155620.2155656
https://doi.org/10.1109/MCSE.2009.48

Bibliography 148

New York, NY, USA: ACM, 2015, pp. 223–234. [Online]. Available:

http://doi.acm.org/10.1145/2818950.2818979

[118] G. Ridgeway, “The state of boosting,” Computing Science and Statistics,

pp. 172–181, 1999.

[119] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and Tensor-

Flow: Concepts, tools, and techniques to build intelligent systems. O’Reilly

Media, 2019.

[120] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation of

machine learning classifiers for mobile malware detection,” Soft Computing,

vol. 20, no. 1, pp. 343–357, 2016.

http://doi.acm.org/10.1145/2818950.2818979

	Author's Declaration
	Plagiarism Undertaking
	List of Publications
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Overview
	1.1 Scheduling on Heterogeneous Machines
	1.2 Load-Balance in Heterogeneous Machines
	1.3 Scheduling Challenges
	1.4 Thesis Objectives and Research Questions
	1.5 Contributions
	1.6 Research Methodology
	1.7 Thesis Organization

	2 Background and Related Work
	2.1 Background
	2.1.1 Heterogeneous Computing
	2.1.2 OpenCL
	2.1.3 Scheduling techniques for heterogeneous systems

	2.2 Related Work
	2.2.1 Scheduling Schemes for Heterogeneous Multi-cores
	2.2.2 Heterogeneous Scheduling Based on Prediction Models
	2.2.3 Kernel Fusion Techniques

	3 Resource-Aware Load-Balanced Scheduling for Heterogeneous Architectures
	3.1 Introduction
	3.2 Motivation
	3.3 OpenCL Scheduler (OSched)
	3.3.1 System Architecture
	3.3.2 OSched System Model
	3.3.3 OSched Algorithm
	3.3.4 Enhanced-OSched
	3.3.5 Scheduling Overhead

	3.4 Experiments and Results
	3.4.1 Scheduling Policies and Evaluation Metrics
	3.4.2 Execution Performance
	3.4.2.1 Analysis of Adjustment Factor ""

	3.4.3 Average Execution Time
	3.4.4 Throughput Analysis
	3.4.5 Load Balance Analysis

	3.5 Conclusions

	4 Machine Learning based Multi-Job Scheduling
	4.1 Introduction
	4.2 Case-Study: Incorporating Speedup Prediction in Scheduling
	4.3 Troodon
	4.3.1 System Architecture
	4.3.2 System Model
	4.3.3 Troodon Algorithm
	4.3.4 Scheduling overhead
	4.3.5 Feature Extraction
	4.3.6 Feature Selection
	4.3.7 Model Description
	4.3.8 Troodon Usage Scenario

	4.4 Experiments and Results
	4.4.1 Scheduling Policies and Evaluation Metrics
	4.4.2 Scheduling Results
	4.4.2.1 Average Execution Time
	4.4.2.2 Throughput Analysis
	4.4.2.3 Load Balance Analysis
	4.4.2.4 Results Discussion

	4.4.3 Prediction Models Discussion
	4.4.4 Analysis of Selected Features Impact on Device Suitability Model
	4.4.5 Limitations

	4.5 Conclusions

	5 Role of Kernel Fusion to Improve Device Utilization
	5.1 Introduction
	5.2 A Case-Study For Fusing Or Executing Kernels Separately
	5.3 FusionCL
	5.3.1 System Architecture
	5.3.2 FusionCL System Model
	5.3.3 Kernel Fusion Mechanism
	5.3.4 Prediction Models
	5.3.4.1 Feature Extraction and Selection

	5.4 Experiments and Results
	5.4.1 Scheduling Policies And Evaluation Metrics
	5.4.2 Scheduling Results
	5.4.3 Average Execution Time
	5.4.4 Throughput Analysis
	5.4.5 Load Balance Analysis
	5.4.6 Results Discussion
	5.4.7 Impact of Proposed Kernel Fusion Approach on GPU Execution Time
	5.4.8 Predictive Modeling Results
	5.4.9 Scheduling overhead

	5.5 Conclusions

	6 Conclusions
	6.1 Limitations
	6.2 Future Research Directions

	Bibliography

