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Abstract

High Performance Computing (HPC) is becoming ever more significant research

tool in modelling complex scientific problems. Being large-scale nature, scheduling

techniques are key to effectuate the execution in Cloud environment at the lowest

possible cost without the need of owing any physical infrastructure. Meanwhile,

the provision of high-performance computing by employing fewer resources with

a cap on financial constraints is also emerging as an appealing research area in

Cloud. While constructing Cloud datacenters, we should not only adopt to the

best suitable software and hardware practices, but also have to keep a close eye

on datacenter operations, energy consumption, scalability, security, technological

innovation, fault tolerance, and many other issues. In addition, the resources

should be utilized in an efficient manner along with considering the wisdom of

general framework of Cloud scheduling.

In this thesis, a computation-aware load balancing scheme known as Resource-

Aware Load Balancing Algorithm (RALBA) is proposed for scheduling compute-

intensive, independent, and non-preemptive jobs on a compute Cloud. Using

RALBA, the HPC workload can be distributed in a load-balanced manner guaran-

teeing improved resource utilization. RALBA scheme is designed with the inten-

tion to contemplate the total computing capabilities (i.e., computing powers) of

Virtual Machines (VMs) and the computing requirements of the submitted HPC

workload, which provides a load-balanced schedule with improved utilization of

virtual computing resources and ultimately that of underlying physical machines

in Cloud datacenters. RALBA scheme is evaluated on varying workload composi-

tions (i.e., using several synthetic and benchmark scientific datasets) by employing

different computing environments (i.e., heterogenous computing machines). The

performance outcomes of RALBA have revealed that it provides substantial im-

provement against traditional and state-of-the-art scheduling algorithms in terms

of makespan, throughput, and resource utilization. Moreover, the potential of eight

state-of-the-art algorithms against RALBA is investigated in terms of makespan

and resource utilization in amalgamation with machine-level load balancing using



xi

nine different instances of two benchmark scientific datasets (i.e., employing jobs

heterogeneity) on seven different computing architectures The empirical examina-

tion endorsed that RALBA produces a better load-balanced schedule ensuring to

release all the computing resources within almost similar quantum of time, which

effectuate the Cloud Service Providers (CSPs) to reduce the execution delays ef-

fecting the next batch of Cloud jobs.

In addition, the HPC datasets are increasingly becoming more pertinent when

executing resource allocation, and load balancing techniques for an eagle-eyed

examination of efficacy and performance on Cloud. However, a real Cloud dataset

is hard to acquire for such purpose due to users’ data confidentiality and policies

maintained in SLAs by Cloud service providers. Therefore, a new dataset known as

Google Cloud Jobs (GoCJ) is also proposed in this dissertation as an alternative to

benchmark workloads for scheduling and resource provisioning in a compute Cloud.

The GoCJ dataset is realistic dataset generated using Monte Carlo simulation

considering the real workload as perceived in Google cluster traces.

SLA standardizes the assumptions and responsibilities of both the Cloud users

and CSPs that acts as a roadmap to the successful implementation of Cloud ser-

vices. Therefore, an extension of RALBA is also presented in the form of SLA

and Resource-Aware Load Balancing Algorithm (SLA-RALBA) for heterogeneous

Cloud, which is a cost-efficient and computation-aware load balancing technique.

The empirical results evidently revealed that SLA-RALBA provides improved bal-

ance between execution time and cost by guaranteeing a drastic improvement in re-

source utilization on Cloud as compared to existing cost-efficient SLA-techniques.
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Chapter 1

Introduction

This chapter presents the background and general architecture of Cloud comput-

ing. Further, it presents the motivation, summarizes the key contributions, and

the organization of dissertation.

1.1 Cloud Computing

Cloud computing envisions computing in the form of services provided as a utility

computing over the Internet [2]. In 2006, Eric Schmidt (CEO of Google) envisioned

the term Cloud as a business model for service provisioning to the customers over

the Internet. Luis M. Vaquero et al. defined Cloud as [3] ”Clouds are a large pool of

easily usable and accessible virtualized resources (such as hardware, development

platforms and/or services). These resources can be dynamically reconfigured to

adjust to a variable load (scale), allowing also for an optimum resource utilization.

This pool of resources is typically exploited by a pay-per-use model in which

guarantees are offered by the Infrastructure Provider by means of customized

Service Level Agreements (SLAs)”.

Further in September 2011, National Institute of Standards and Technology (NIST)

provided a more implicit definition [4] as “Cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable

1
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computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort

or service provider interaction”. The Cloud model is comprised of five essential

characteristics [4] as follows:

1. On-demand self-service: the user can unilaterally provision the comput-

ing capabilities as needed without human interaction with service providers;

2. Broad network access: the computing capabilities are made available over

the network through a standard mechanism;

3. Resource pooling: the computing resources are pooled to serve in a multi-

tenant model with different physical and virtual resources dynamically as-

signed as per user demand,

4. Rapid elasticity: the computing capabilities can be elastically provisioned

and released to scale up and down rapidly as required by the user, and

5. Measured service: Cloud automatically control the resource usage by

leveraging a metering capability providing transparency both for provider

and consumer of the utilized services.

Based on capabilities and services being offered to the users, the Cloud model

comprises three service offerings into a hierarchy of as-a-service terms [5, 6]. Fig.

1.1 presents the architecture of Cloud computing showing the resources managed

at each layer of the Cloud model and with relevant examples. These three well-

known models of Cloud services are:

1. Software-as-a-Service: It provides access to online software applications

over the web enabling users instead of installing and maintaining locally on

the computer system. i.e., Salesforce.com [7], DropBox [8], Google Drive [9]

and facebook [10] etc.

2. Platform-as-a-Service: It provides services in the form of an environment

in which the developers and programmers can easily code and deploy the
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Figure 1.1: Cloud Computing Architecture [6].

Cloud applications with the ability to scale automatically without estimating

the resource capacity of the applications. i.e., Google App Engine [11], and

Microsoft Azure [12] etc.

3. Infrastructure-as-a-Service: It provides computing resources in the form

of virtual machine that comprises predefined CPU, storage, bandwidth, and

memory capacity with a varying prices for different application requirements

[5]. In addition to virtual machines, this model provides the network and

storage infrastructures to users. Amazon EC2 [13], OpenStack [14], GoGrid

[15], and Flexiscale [16] are some of the major Infrastructure-as-a-Service

Cloud providers.

Cloud is composed of four deployment models [4]; 1) Private Cloud infrastructure

is exclusively used by a single organization comprising multiple users, 2) Commu-

nity Cloud is exclusively used by a specified community of users from different

organizations who share common concerns and objectives, 3) Public Cloud is pro-

visioned for open use by general public, and 4) Hybrid Cloud is comprised of two

or more Cloud infrastructures (i.e., private, public, or community).
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1.1.1 Virtualization on Cloud

Clouds computing is comprised of an additional layer of virtualization as compared

to Grid computing [1]. The virtualization provides an execution, management, and

hosting environment for application services offered by Cloud. The virtualization

technology is an effective platform for the in-time need-based provisioning, ad-

ministration, and management of resources. The physical resources are provided

to the user through virtualization in the form of virtual machines. The services

on a compute Cloud are a combination of several registered computing, storage,

memory, and bandwidth resources collected in the form of VMs.

Fig. 1.2 shows the abstraction layer of Cloud computing that comprises system

accessibility, virtual instance, and physical instance layers of Cloud. The system

accessibility layer provides a user-friendly interface to Cloud users for interaction

and submission of the HPC jobs on Cloud. The physical instance layer is comprised

of host machines, storage servers, and other networking infrastructure in the Cloud

datacenters. These resources are provisioned to Cloud users through virtualization.

The VMs are hosted on physical computing machines in the datacenters and the

virtualization made it possible to reallocate the VMs to physical machines based on

the changing workload in a dynamic manner. Datacenters have a highly dynamic

and versatile number of resources; therefore, the VMs may dynamically be adapted

as per need to achieve better performance with improved resource utilization.

However, the load balancing should be ensured by proper mapping of physical

resources to virtual machines for better resource usage [17].

1.2 Scheduling on Compute Cloud

Scheduling is a mapping mechanism that comprises of tasks submission to comput-

ing resources for execution and the selection of appropriate resources. Scheduling

in Cloud computing is generally performed at two levels; one is the mapping of

VM to physical machines and the second is mapping of jobs to VMs. The objec-

tive of job scheduling is to accomplish high throughput with minimal completion
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Figure 1.2: Cloud Computing System Architecture.

time and high resource utilization. One important aspect in the job scheduling

is to maintain the load balancing to maximize the resource utilization and min-

imize the execution time without affecting the Cloud services. Load balancing

in Cloud is a way to distribute workloads among computing resources to achieve

optimal resource utilization. It is the distribution of workload among resources by

avoiding the resources to be loaded with more workload than the other being idle

or assigned with lesser jobs for execution. Load balancing ensures the consistent

load distribution by reducing the total average time needed for the completion of

workload execution. There are many metrics used to determine the performance

of load balancing and job scheduling algorithms. These are scalability, resource
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utilization, response time, throughput, migration time, makespan, and scheduling

overhead associated. In the Cloud environment, scheduling is employed at two

levels, as shown in Fig. 1.2:

1. VM scheduling is concerned with the mapping of virtual machines to phys-

ical hosts in a Cloud data-center (i.e., virtual instance layer to physical in-

stance layer mapping); and

2. Job scheduling is concerned with the assignment of Cloud jobs to virtual

machines (i.e., Cloudlet instances to virtual instance layer mapping, where

Cloudlet represents a user job in Cloud environment [1]).

Cloud scheduling strategies could be classified as either static or dynamic.

1.2.1 Dynamic Scheduling

The dynamic strategies consider the current state of computing resources while

dispatching the workload. These strategies work according to dynamic changes in

the state of computing resources. Generally, a status table is maintained to store

the states of the Cloud resources.

A few of dynamic schedulers witnessed in literature review are Elastic Cloud Max-

Min (ECMM) [18, 19] and Enhanced Bee Colony algorithm [20]. A dynamic

scheduling technique generally relies on the run-time parameters to schedule jobs

in a best-effort and greedy manner. The dynamic strategies can be classified

into two types: online and batch [21]. Online dynamic strategies deal with the

scheduling of a single job, whereas the batch dynamic scheduling strategies are

concerned with the mapping of a batch of jobs. Moreover, job schedulers can be

categorized as preemptive and non-preemptive algorithms. In case of preemptive

algorithms, a specific job is either being processed by computing resources or

being queued for execution maybe reassigned to the other compute resources for

its completion. On the other hand, the non-preemptive algorithm assigns a specific

job to computing resources on its arrival and is not considered for reassignment.
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1.2.2 Static Scheduling

A static strategy produces jobs to VMs mapping in advance and executed at once.

Therefore, the computing resources along with its properties are known in advance.

The main advantage of these algorithms is their ability to generate high-quality

schedules by making global pre-calculation and comparisons of different solutions

before choosing the best suited one [5].

Some of the prominent static algorithms are Opportunistic Load Balancing (OLB)

[22–24], Min-Min [25–27], Max-Min [18, 25, 28], Resource-Aware Scheduling Algo-

rithm (RASA) [29, 30], Sufferage [25, 31] and Minimum Completion Time (MCT)

[24, 25, 32] strategies.

1.2.3 Static Scheduling Challenges

Scheduling techniques are very crucial in attaining the benefits offered by Cloud.

There are several prominent Cloud scheduling algorithms [22–25, 29–39] presented

in the literature. However, the selection of an appropriate scheduler according to

a given environment (i.e., jobs and computing machines heterogeneity) to achieve

desired scheduling objectives (such as reduced makespan, higher throughput, etc.)

is a challenging task. Since each heuristic contains different underlying assump-

tions; therefore, a precise comparison cannot be made. Therefore, the scrutiny

and empirical examination of state-of-the-art scheduling algorithms need to be

conducted on the same test-bed with instances of similar benchmark datasets to

identify the potential strengths and weaknesses of the scheduling algorithms.

Most of the static scheduling algorithms produce a good turnaround time and ir-

refutable QoS, while many producing a very poor resource utilization. Minimum

Execution Time (MET) algorithm [24, 25] assigns jobs to the resource producing

shortest execution time for every job regardless of currently assigned workload to

the resource. MET produces a severe load-imbalance in the computing system

and directly not applicable in Cloud environment. Using Random Selection (RS)

[31, 33], Round Robin (RR) [31, 33, 34] and OLB [23, 24, 33] techniques, most of
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the resources remain idle that results in a very poor makespan and resource uti-

lization due to its simple scheduling without considering the resource-awareness.

The MCT [25, 32, 40], Min-Min [22, 25, 38, 41] and Max-Min [18, 25, 30, 41] are

comparatively better than the MET [24, 25], RR [31, 33, 34], RS [31, 33] and OLB

[23, 24, 33] algorithms. Min-Min performs better for small-size jobs and may cause

delays in the execution of large-size jobs. However, Min-Min overloads the faster

VMs with more number of small-size jobs while the slower VMs are assigned with

fewer number of large-size jobs. In contrary, Max-Min [18, 25, 30, 41] resolves the

problem by favouring large-size jobs and avoiding its longer response time. Be-

haviour of these algorithms badly affects the resource utilization on Cloud system.

Sufferage algorithm calculates the sufferage-value that results in higher scheduling

overhead while producing better resource utilization. Different variants of Min-

Min [22, 25, 38, 41] and Max-Min [18, 25, 30, 41] techniques are designed in the

form of RASA [29, 30, 42], Task-Aware Scheduling Algorithm (TASA) [39, 43], Load

Balance Improved Min-Min (LBIMM) [37], User-Priority-Aware Load Balance Im-

proved Min-Min (PA-LBIMM) [37], Skewness-Based Min-Min Max-Min (SBM2)

[28], Proactive Simulation-Based Scheduling and Load Balancing (PSSLB) [44],

and Proactive Simulation-Based Scheduling and Enhanced Load Balancing (PS-

SELB) [44] etc. in the literature. In addition, SLA-MCT [45], SLA-Min-Min [45],

Profit-MCT [45], and Profit-Min-Min [45] are also found in the review of existing

state-of-the-art. These algorithms provide the desired scheduling either with the

objective of improved makespan or minimal execution cost. However, most of the

techniques do not provide a commendable load balance and resource utilization in

Cloud.

1.3 Scheduling Objectives

The scheduling algorithms work based on some performance measures that are

known as scheduling objectives. Various scheduling objectives are harnessed to

determine the performance of job scheduling algorithms. The scheduling objec-

tives could be either CSP or Cloud user oriented. The scheduling objectives desired
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by CSP in different scheduling strategies are known as the CSP oriented objec-

tives such as makespan minimization [46–48], workload maximization, throughput

[49, 50], energy consumption minimization [49, 51], VM utilization maximization

[50, 52], maximization of reliability [46, 48], VM migration [53, 54], and server

consolidation [55, 56] etc. On the other hand, the scheduling objectives desired

by Cloud users for their workload execution are known as Cloud user-oriented

scheduling objectives such as execution time minimization [46, 57], cost minimiza-

tion [46, 48, 57], achieving deadline constraints [21, 49, 58], and response time

minimization [59–61] etc. A few scheduling objectives are briefly described as

follows.

Makespan:

Time taken by a compute Cloud to finish the execution of a complete batch of

Cloud user jobs is known as makespan. The workload submitted by a Cloud

user could be a workflow (i.e., collection of inter-dependents jobs) or collection

of independent jobs. The scheduling algorithms are designed to either minimize

makespan or defining a time limit for execution of workload, mentioned in SLAs.

Execution Cost:

The Cloud users pay for leasing the VM resources on a compute Cloud, being pay-

as-you-go infrastructure. Execution cost is the agreed cost paid by a Cloud user for

successful completion of computing services. The most common QoS parameter in

Cloud is to minimize the execution cost and meet the user-defined deadline. This

objective is considered in scheduling algorithms either by minimizing its value or

meeting user-defined constraint on the cost, mentioned in SLAs [5].

Execution Time:

The amount of time taken by computing resources to execute a specified job is

known as the execution time of a job. The sum of the execution time of all jobs in

a workload is the total execution time of that workload on the computing system.

VM Utilization:
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Idle time-slots within leased VMs in a Cloud often results in waste of money (as

the resources paid for are not utilized). Generally, the idle time of VMs is not

desired and should be minimized to increase the VMs utilization. The higher VM

utilization will benefit the Cloud users in terms of cost, and execution time, while

the CSPs in terms of profit, energy consumption, and optimal resource utilization.

Server Consolidation:

It is an approach for the efficient usage of physical machines (by keeping less num-

ber of machine active) and to lessen operational cost in CDCs. The virtualization

technology in Cloud allows the consolidation of multiple HPC applications into

virtual machines to be hosted on a single or multiple physical server. Therefore,

the scheduling strategies (i.e., for VMs to Physical Machines (PMs) allocations)

consider the server consolidation as a part of the scheduling objectives.

Deadline Constraints:

Cloud users submit either compute, memory or bandwidth-intensive HPC jobs

with or without the defined-deadline in Cloud. The scheduling algorithms are de-

veloped to address such user-defined deadlines (i.e., as per SLAs) for the workload

execution as a scheduling objectives.

Workload Maximization:

The scheduling algorithms are developed to address the workload maximization

as one of the scheduling objectives. Workload maximization refers to the more

amount of work done (i.e., the number of dependents such as workflows or inde-

pendent jobs executed) by a computing system.

1.4 Datasets

Datasets are becoming increasingly more pertinent when executing the perfor-

mance assessment of Cloud-scheduling, resource-allocation, and load-balancing

algorithms used for eagle-eyed examination of efficiency and performance in a
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real-world Cloud. A minor change in the behavior and nature of the dataset is

reflected in the performance of scheduling and resource-allocation policies. Assess-

ing the scheduling and allocation policies on Cloud infrastructures under a varying

load and system size is a challenging problem. Real Cloud workload is hard to

acquire for performance analysis and investigation due to the users’ data confi-

dentiality and policies maintained by CSPs [62]. Therefore, the publicly available

real Cloud dataset will significantly encourage other researchers to compare and

benchmark their applications using an open-source benchmark. In addition, using

real testbeds limits the experiments to the scale of the testbed. Hence, testing the

accuracy performance with real-world datasets is crucial in the field of research,

and synthetic data does not realistically represent an actual dataset [63]. The most

appropriate alternative is to make the investigation in a simulation environment

with a load of varying behavior in the Cloud environment. For Cloud computing

research, it is valuable to formulate and ensure a widespread availability of realistic

datasets that show how resourcefully the Cloud addresses the user requirements.

Based on the analysis of large-scale Google cluster traces of 29-days, a new bench-

mark GoCJ dataset [62] is proposed and presented in Chapter 3.

1.5 Motivation

Distributed computing comprises a plethora of heterogeneous resources intercon-

nected over network to meet the requirements of diversified High-Performance

Computing (HPC) applications [64]. Cloud computing is a business-oriented con-

cept and a paradigm of scalable, heterogeneous, and distributed high performance

computing vowed to deliver on-demand utility computing to users over the Inter-

net [65, 66]. The computing resources are allocated in the form of virtual machines

deployed on physical host machines-based Cloud Data Centers (CDC). The CDCs

are generally over-provisioned to guarantee high service-availability and Quality of

Service (QoS) computing [67]. These QoS contracts are formally negotiated and

self-proclaimed in the form of SLAs to guarantee the user requirements related to
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execution time and cost constraints [68, 69]. However, inefficient resource alloca-

tion adversely affects resource utilization in Cloud and causes load imbalance that

originates the problems of data and computing skewness, resulting in the straggler

[70]. The stragglers are slow running jobs that can run up to 8 times slower than

the median job on a production cluster that may increase the execution time of the

other jobs up to 47% [71, 72]. In the case of stragglers in workload distribution,

some of the computing resources remain idle or underutilized while waiting time

increases for the jobs mapped on the busy machines. An increasing amount of

stragglers in CDC diminishes the revenue of Cloud Service Providers (CSPs) in

terms of execution gain [45]. A CDC provides virtualization for pragmatic resource

management to enhance the system throughput and to reduce the computational

cost and energy consumption [73].

Virtualization endures the Virtual Machine (VM) migration to meet the increas-

ing demands in Cloud computing by relocating VMs on host machines in CDC.

The VM migration accomplishes diverse objectives such as load-balancing on host

machines, energy-aware scheduling, and fault tolerance etc. Typically, live VM

migration technique [74] is employed to reduce the downtime of the overloaded

VMs. However, it is a memory and cost-intensive process [75]. Consequently,

different techniques [26, 76–78] have been proposed to mitigate the memory and

energy consumption issues for VM migration. However, the VM migration per-

sistently invades computing performance unless amalgamated with efficient tech-

niques [67]. To mitigate these apprehensions and eludes the VM migration, the

load balance in workload distribution should be incorporated in Cloud scheduling

[26, 75–78]. Clouds are capable to provide an excellent solution to address the

ever-increasing computation and storage demands of large scientific HPC appli-

cations. To attain good computing performances, mapping of Cloud jobs to the

compute resources is a very crucial process. Today, several efficient Cloud schedul-

ing heuristics [18, 24–26, 28, 31, 37, 38, 41, 44, 79] are available; however, selecting

an appropriate scheduler for the given environment (i.e., considering the jobs and

machines heterogeneity) and scheduling objectives (such as minimized makespan,

higher throughput, increased resource utilization, load balanced mapping, and
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minimal execution cost etc.) is a challenging task. According to a survey [80],

approximately 1.6 million tons of additional CO2 emission are caused only due

to the idle computing resources within the CDC. Moreover, the idle computing

resources cost additional 19 billion dollars in terms of the consumed resources and

energy cost. An idle and underutilized host machine in Cloud still consumes up

to 70% of the energy required by an active machine [80].

In general, scheduling is deemed as a significant, challenging, and quintessential

part of Cloud known as an NP-complete problem [24, 81–84] and particularly it

must be addressed to achieve efficient, fair, and starvation-free performance in

HPC environment. In general, the low scheduling overhead of static strategies

adheres them to outperform over the dynamic scheduling strategies [40, 85, 86].

In addition, static scheduling algorithms avoid VM migration to prevent commu-

nication overheads to reduce the execution delays [87]. In addition, most of the

static techniques produce admirable turnaround time and irrefutable QoS because

of the pre-ensured availability of computing resources for the workload execution

[33]. On the other hand, static algorithms usually suffer from poor resource utiliza-

tion in case of resource oblivious mapping of workload [85]. Improper workload

distribution in Cloud computing causes longer execution and more energy con-

sumption due to which most of the scheduling heuristics are not efficient enough

to harness the full capacity of available computing resources.

The users usually desire to find an immediate response time, the shortest possible

execution time, and the lowest possible cost for the HPC applications on Cloud.

On the other hand, CSPs require resources utilization on its maximum possible

capacity with more revenue generation. Therefore, a crucial aspect of scheduling

is to map Cloud jobs in a load balanced manner to reduce the makespan of a job

pool (batch of submitted Cloud jobs). The load balanced mapping refers to a

distribution of jobs (among VMs) so that all the VMs accomplish the execution

of the assigned workload approximately in same time duration. Importantly, a

balanced load ensures higher system throughput, lower execution time, and im-

proved resource utilization for a job pool. Efficient job scheduling mostly increases

the user’s satisfaction, and improves the system utilization. Since each algorithm
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contains different underlying assumptions; therefore, a precise comparison is a

tedious task. In this regard, we empirically scrutinize and experimentally com-

pared state-of-the-art static scheduling heuristics employing the similar computing

setups using both the synthetic and other Cloud benchmark workloads.

In this thesis, the workloads used for empirical-based investigation is referred to

a collection of independent, non-preemptive, and compute-intensive jobs that are

submitted on Cloud. Unlike workflows, the jobs in these workloads are without

inter-job data dependencies.

1.5.1 Research Questions

State-of-the-art scheduling techniques and strategies are empirically investigated

to provide the scheduling of jobs on VMs in Cloud computing. Primarily, this

section describes four broad research questions addressed in this thesis:

1. How to formulate and make a benchmark dataset publicly available for Cloud

computing that reflects the jobs-size behavior of a real Cloud?

2. How to ensure efficient provisioning of computing resources and job execution

with improved throughput and minimal makespan?

3. How to minimize the load imbalance in workload distribution to guarantee

an improved resource utilization on a compute Cloud?

4. How to ensure improved resource utilization in SLA-aware (cost-efficient)

scheduling on a compute Cloud?

1.6 Research Contributions

In light of the motivation and challenges outlined in the previous sections, the ma-

jor research contributions of this PhD dissertation are summarized and presented

as follows:
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1. A critical analysis and synthesis of several existing static Cloud scheduling

algorithms to identify the pros and cons of these techniques. In-depth per-

formance analysis (in terms of turnaround time, resource utilization, and

throughput) and empirical assessment of the existing static scheduling algo-

rithms using two synthetic and one benchmark GoCJ realistic workloads is

provided using CloudSim simulator [1]. This empirical investigation identify

the potential research directions that could assist the scientific community

to cope with the challenges pertaining to the static scheduling algorithms

for Cloud computing (It has been discussed in detail in Section 2.5.4.);

2. A benchmark GoCJ dataset is proposed that provides a reflection of real

workload behaviour as perceived in Google cluster traces [88–93] and MapRe-

duce logs [92] from the M45 supercomputing cluster (Section 3.1 elaborates

this in detail.);

3. A novel load balancing scheduler (named RALBA) to schedule pool of non-

preemptive, compute-intensive, and independent Cloud jobs that produces

reduced makespan, increased resources utilization, and higher throughput

(The detail of RALBA can be found in Section 3.2 and Section 5.1.);

4. In-depth empirical investigation (using CloudSim simulator) to critically

contemplates the performance analysis of 9 prominent static scheduling al-

gorithms (including the proposed RALBA technique) using 9 instances of

two benchmark datasets (i.e., GoCJ [62, 94], and Heterogeneous Computing

Scheduling Problem (HCSP) instances [24, 95]) using different computing

architectures [1] (Section 5.2 elaborates this in detail.);

5. Cost-efficient and resource-aware scheduler for SLA-based compute-intensive,

non-preemptive, and independent jobs that produces an improved balance

among execution time, execution cost, and resource utilization. The SLA-

RALBA performance is evaluated compared to the state-of-the-art SLA-

aware scheduling algorithms using two benchmark GoCJ [62, 94] and HCSP

[24, 95] datasets (The detail of SLA-RALBA can be found in Section 3.3 and

Section 5.3.).
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Table 1.1: Research Contributions.

Problem Contribution Features
Research
Question - 1

GoCJ Dataset
[62]

- Benchmark dataset for Cloud Computing.
- Workload behavior based on the real Google
cluster traces of 29-days.
- Publically available on Mendeley Repository
and MDPI Data journal in the Supplementary
Materials.

Research
Question - 2
and
Research
Question - 3

RALBA
Scheduler [50]

- Resource-aware scheduling.
- Provides Load-balanced scheduling with im-
proved resource utilization.
- Provides improved load balancing at
machine-level during workload execution.
- Provides job scheduling with improved
makespan and increased throughput.

Research
Question - 4

SLA-RALBA
Scheduler [96]

- Resource-aware and SLA-aware scheduling.
- Provides cost-efficient job scheduling with
improved resource utilization.
- Provides scheduling with improved balance
among resource utilization, execution cost and
execution time.

Table 1.1 shows the association of research questions and contributions in this

thesis along with the features of each research contribution. While, Table 1.2

presents the mapping of publications (made out of research work carried out for

this thesis) against research contributions.

1.7 Thesis Organization

The core chapters of this thesis are structured as shown in Fig. 1.3. The chapters

of the thesis are organized as follows:

Chapter 2 presents the literature review by providing a critical analysis of the

state-of-the-art Cloud scheduling algorithms, SLA-aware Cloud scheduling algo-

rithms, and the existing datasets in the literature. The chapter presents a detailed

empirical investigation to highlight the research issues in Cloud computing.
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Table 1.2: Mapping Publications on Research Contributions.

Journal Research Contribution
Computing and In-
formatics [97]

This publication presents the empirical investigation con-
ducted to evaluate ten existing scheduling algorithms and
to highlight the research gaps in Cloud Computing.

MDPI Data [62] This publication proposes and presents a new GoCJ
dataset based on real workload behavior (Google clus-
ter traces [88–91, 93]).

Cluster Computing
[50]

This publication proposes and presents a novel resource-
aware scheduler known as RALBA that provides im-
proved resource utilization.

IEEE Access [52] This publication presents a rigorous investigation of ex-
isting eight scheduling algorithms against RALBA in
terms of machine-level load balancing and resource uti-
lization in Cloud Computing.

The Journal of Su-
percomputing [96]

This publication proposes and presents a novel SLA and
resource-aware scheduler known as SLA-RALBA that
provides a drastic increased in resource utilization, while
providing improved balance between execution time and
cost.

Chapter 3 is dedicated to propose a new benchmark dataset in the form of a GoCJ

dataset for distributed and Cloud computing. A novel resource-aware scheduling

mechanism (i.e., RALBA scheduler) that is capable of mapping users jobs in Cloud

environment in a balanced manner is proposed and presented. A second novel cost-

efficient and resource-aware scheduling mechanism (i.e., SLA-RALBA scheduler)

that provides jobs to virtual machines mapping with an improved balance among

execution time, cost and resource utilization is proposed and described. In addi-

tion, the system architecture algorithms and complexity of proposed algorithms

are presented.

Chapter 4 presents the experimental environments (simulation setup and VMs

composition in computing environment) and the datasets employed in conducting

the experimentation of RALBA, VM-level investigation of RALBA as compared
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Figure 1.3: Thesis Organization.

to the existing stat-of-the-art scheduling algorithms, and in the experimental eval-

uation of SLA-RALBA against state-of-the-art SLA-aware scheduling.

Chapter 5 is dedicated to present the performance analysis of RALBA in terms

of makespan, throughput, and resource utilization. The Chapter presents the em-

pirical investigation of 09 scheduling algorithms including RALBA (i.e., using the

instances of two benchmark datasets) in terms of resource utilization, in addi-

tion to a new performance metric i.e., VM-level load balancing. The performance

evaluation of SLA-RALBA is presented in terms of makespan, throughput, and

resource utilization using 15 instances of two benchmark datasets with additional

consideration of execution cost.

Chapter 6 concludes the thesis, summarizes the findings, and provides directions

for future work.



Chapter 2

Literature Review and Empirical

Investigation

This chapter presents the literature review and provides a comprehensive under-

standing of the inherited mechanism of state-of-the-art algorithms by conducting

an empirical investigation of ten renowned Cloud scheduling techniques. The

experiments are conducted using three datasets: 2 synthetics and 1 benchmark

datasets.

2.1 Overview

Compute Cloud comprises a distributed set of HPC machines to stipulate on-

demand computing services to remote users over the Internet. Clouds are capable

enough to provide an optimal solution to address the ever-increasing computation

and storage demands of large scientific HPC applications. To attain good com-

puting performances, mapping of Cloud jobs to the compute resources is a very

crucial process. In the current are, several efficient Cloud scheduling algorithms

are available, however, selecting an appropriate scheduler for the given environ-

ment (i.e., jobs and machines heterogeneity) and scheduling objectives (such as

19
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minimized makespan, higher throughput, increased resource utilization, load bal-

anced mapping, etc.) is still a difficult task. In this chapter, we consider ten

important scheduling algorithms (i.e., OLB, PSSLB, PSSELB, MCT, Min-Min,

LBIMM, Max-Min, RASA, RASA, and Sufferage) to perform an extensive empir-

ical study to insight the scheduling mechanisms and the attainment of the major

scheduling objectives. This study assumes that the Cloud job pool consists of a

collection of independent and compute-intensive tasks that are statically sched-

uled to minimize the total execution time of a workload. The experiments are

performed on CloudSim simulator using two synthetic and one benchmark GoCJ

[62, 94] workloads. This empirical study presents a detailed analysis and insights

into the circumstances requiring a load balanced scheduling mechanism to improve

overall execution performance in terms of makespan, throughput, and resource

utilization. The outcomes have revealed that the Sufferage and TASA algorithms

produce minimum makespan for the Cloud jobs. However, these two scheduling

algorithms are not efficient enough to exploit the full computing capabilities of

Cloud virtual machines.

In an empirical analysis, Syed Hamid Hussain Madni et al. provides the investi-

gation of First Come First Serve (FCFS), MET, MCT, Min-Min, Max-Min, and

Sufferage scheduling algorithms [25]. Based on their analysis, Syed Hamid Hus-

sain Madni et al. concluded that the hybridization of these techniques may result

in more improved results and overcome the limitations of each other to achieve

the optimization of task scheduling in Cloud computing [25]. Therefore, in this

research work, some hybridized scheduling techniques (i.e. RASA [29, 30], TASA

[39], LBIMM [37, 44], PSSLB [44], and PSSELB [44] algorithms) are also con-

sidered for performance investigation of resource utilization in cloud computing.

Fig. 2.1 shows ten scheduling algorithms; where the techniques on the tail of each

arrow are the modified and hybridized techniques based on the scheduling tech-

niques directed by the arrow symbols (i.e., the mechanism of RASA is based on

Max-Min and Min-min, the mechanism of TASA is based on Sufferage and Min-

Min, LBIMM is the modified version of Min-Min, PSSLB is the modified versions

of Max-Min, and PSSELB is the modified version of PSSLB technique). In this
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Figure 2.1: Hybridization of Cloud Scheduling Algorithms.

study, we consider the following assumptions for the empirical-based comparison

of the employed scheduling heuristics. One such assumption is that a workload

is referred to as a collection of independent and compute-intensive tasks (without

inter-task data dependencies). The mapping of these tasks is performed statically

to minimize the scheduling overhead and to evade job migrations [24]. This empir-

ical study provides a detailed analysis of the scheduling algorithms and insights of

the scheduling mechanisms where a higher throughput and reduced execution time

is attained; however, a considerable room of improvement is observed in terms of

resource utilization. We argue that the existing state-of-the-art static schedul-

ing heuristics should address the load-balancing issue to attain exquisite resource

utilization. Near-Optimal resource utilization will produce higher throughput,

reduced execution time (for the Cloud job pool), and energy efficient execution.

In summary, we present an analysis of the resource utilization of virtual resources

in terms of workload distribution among all the VMs. The empirical investigation

reveals that most of the scheduling algorithms are not efficient enough to exploit
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the full computing capabilities of Cloud virtual machines. This empirical study

has highlighted various pressing research gaps that must be overcome to improve

the scheduling performance and to reduce cost at Cloud service provider level.

Major contributions presented in this chapter are:

1. A critical analysis and synthesis of existing datasets in the literature to

identify the the pros and cons of each dataset and realize the need for a

new benchmark dataset that should publicly be available for Cloud research

community;

2. A critical analysis and synthesis of existing state-of-the-art static Cloud

scheduling algorithms to identify the pros and cons of each algorithm;

3. A critical analysis and synthesis of existing SLA-aware static Cloud schedul-

ing algorithms to identify the pros and cons of each algorithm;

4. In-depth performance analysis (in terms of turnaround time, resource utiliza-

tion, and throughput) and empirical assessment of existing static scheduling

algorithms using two synthetic datasets and one realistic benchmark dataset

for Cloud and distributed computing [62];

2.2 Existing Datasets

The developers of resource-allocation and scheduling algorithms share test datasets

(i.e., benchmarks) to enable each other to compare the performance of newly de-

veloped algorithms. However, mostly it is hard to acquire real Cloud datasets

due to the users’ data confidentiality issues and policies maintained by CSP [62].

Accessibility of large-scale test datasets, depicting the realistic high-performance

computing requirements of Cloud users, is very limited. The existing datasets

(i.e., HCSP [24, 95], and Task Execution Time Modeling (TETM) [98] Instances)

are publicly available for research purposes and these datasets are based on vary-

ing task and machine heterogeneity. However, the compositions of the job sizes
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Table 2.1: Summary of Existing Datasets.

Feature Description
HCSP In-
stances [24]

HCSP instances is a standardized benchmark-based on a range-
based method to produce ETC matrices with a variation of
heterogeneity in the tasks to be executed and machines in the
system. Likewise, small size HCSP instances (up to 1024 tasks
and 32 machines) are provided to direct download, while for the
larger instances a generator program along with the seeds used
for the random number generator (execute the generator pro-
gram using the correspondent seeds to replicate the instances)
is provided.

TETM In-
stances [98]

To simulate a heterogeneous computing environment, a
coefficient-of-variation-based technique to produce ETC matri-
ces with a variation of heterogeneity in the tasks to be executed,
and computing machines in the distributed system is presented.
The model is capable of generating the dataset to evaluate the
performance of scheduling heuristics. It generates a dataset re-
flecting the required task and machine heterogeneity; however,
the TETM dataset does not reflect the realistic workload be-
havior i.e., the workload behavior on Google cluster traces or
real compute Cloud etc. Similar to GoCJ, any number of tasks
can be created with the TETM method.

GWA-T
traces [99]

The dataset contains the performance metrics of 1750 VMs
from distributed datacenters of Bitbrains, which is a service
provider of hosting and business computation. The clients of
Bitbrains are many major banks, credit card operators, and
insurers etc. GWA-T traces focus on performance metrics of
VMs; however, the GoCJ exhibits the jobs sizes and behaviors
in a workload.

Facebook
Hadoop
Workload
[100]

The workload is based on Hadoop traces on 600 machine cluster
on Facebook spans over 6 months duration from May 2009 to
October 2009 containing 1 million jobs. The jobs in the work-
load are recorded with submit time and inter-job submit gap
parameters.

in these datasets are not derived from any real cluster or Cloud workload. Fur-

thermore, there are some publicly available real workload traces (such as Google

cluster traces [101], Yahoo cluster traces [102], Facebook Hadoop workload [100],

OpenCloud Hadoop workload [103], Eucalyptus IaaS Cloud Workload [104], and

GWA-T traces [99], etc.); however, most of these require pre-processing and in-

depth low-level details to be regenerated and used for experimentation. The HCSP

instances and TETM dataset are used in research work [91–93]. However, HCSP
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and TETM datasets are not based on compute-traces of any real Grid or Cloud

system. Similarly, GWA-T traces exhibit the performance metrics of VMs in the

datacenters instead of jobs behavior. Some existing datasets (i.e., HCSP [95],

TETM [98], and GWA-T instances [99]) are tabulated in Table 4.2.

2.3 Cloud Scheduling Algorithms

This section presents the state-of-the-art Cloud scheduling and SLA-aware Cloud

scheduling heuristics which are found in the existing literature.

2.3.1 State-of-the-art Cloud Scheduling Algorithms

In this section, the working of state-of-the-art static Cloud scheduling heuristics

(i.e., RS [31–33], RR [31, 34], MCT [25, 35], OLB [23, 24, 33], Min-Min [23, 32,

36, 37], LBIMM [37, 44], Max-Min [22–24], Sufferage [23, 31, 38], RASA [29, 42],

PSSLB [44], PSSELB [44], and TASA [39]) are is delineated below.

RS scheduling allocates jobs to VMs without considering the current load of

VMs [31–33]. RS has a minimal scheduling overhead, simple implementation,

and low complexity compared to other static Cloud scheduling algorithms [34].

However, RS arbitrarily assigns a job to a randomly selected VM. However, the

unfair scheduling mechanism employed by RS may lead to the selection of an over-

loaded VM that could cause the load-imbalance, low resource utilization, and a

long waiting time for the submitted jobs [31, 32].

RR scheduling mechanism distributes Cloud jobs over the available VMs in a

circular order [31, 34]. The equitable scheduling of RR results in a mapping of

an almost equal number of jobs to VMs regardless of the job sizes [31, 34]. RR

has minimal scheduling overhead as compared to the other scheduling techniques

[31, 32, 79]. However, the assignment of small jobs to the faster resources and

large jobs to the slower resources originates the longer makespan, poor resource

utilization, and load imbalance [32, 79].
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OLB algorithm [23, 24, 33, 34] assigns each job, in an arbitrary order, to the

next available machine regardless of considering the job’s execution time on that

particular machine. OLB is a simple scheduling scheme having low scheduling

overhead and complexity. A major scheduling objective of the OLB scheme is to

make all the Cloud machines as busy as possible [24]. However, OLB scheduling

algorithm mostly results in poor makespan because it is not resource-aware.

MCT technique assigns the candidate job to a VM producing minimum comple-

tion time for it [22, 24, 33, 38]. The current load of a VM is employed to iden-

tify appropriate VM for assignment of the job [24, 32]. At each scheduling step,

MCT algorithm has to scan all the available VMs to find the machine producing

minimum completion time for a candidate job that causes significant scheduling

overhead. On the other hand, the MCT algorithm produces improved makespan

and resource utilization compared to RR and RS techniques [35]. Another concern

of the MCT is that it assigns more jobs to faster VMs that leads to load imbalance

[22, 79, 105].

Min-Min algorithm is based on the MCT mechanism [24, 29, 35, 38]. The func-

tionality of this algorithm follows two steps; firstly, the earliest finish time of all

jobs is determined by considering all VMs. In the second step, the job with the

minimum earliest finish time is selected and assigned to the concerned VM. On

each scheduling decision, the ready time of the candidate VM is updated and this

process continues until all the jobs have been scheduled on the VMs. Min-Min

heuristic favors small-sized jobs (i.e., schedule first) and penalizes (i.e., resulting in

delayed response time) large-sized jobs [32, 105, 106]. Min-Min often results in low

resource utilization for a job pool based on fewer large-sized jobs [22, 31, 35]. More-

over, Min-Min overloads faster VMs with small-sized jobs, while the slower VMs

are allocated with fewer but large-sized jobs that lead to load imbalance. There-

fore, the large-sized jobs mapped on slower VMs often results in longer makespan

[26].

Max-Min has a resemblance to Min-Min. Both algorithms have a divergent job

selection policy but the functionality of both algorithms is almost identical. In
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Max-Min, the first step is identical to Min-Min but in the second step, the job

with the maximum earliest finish time is selected and assigned to the concerned

VM [23, 38]. On each scheduling decision, the ready time of the VM is updated and

the process is repeated until all the jobs have been scheduled. Max-Min favors

larger jobs by producing minimum completion time; on the other hand, Max-

Min penalizes smaller size jobs [23, 27, 33, 106]. Moreover, Max-Min produces

load imbalance for a job pool with larger size jobs [27, 84]. To avoid longer

response time (for the larger jobs), Max-Min scheduling heuristic selects larger

jobs to be executed early [31, 35]. Max-Min heuristic mostly performs better in

the scenario when there are a large number of small-sized jobs with a few larger size

jobs [37, 38]. The inherent mechanism of both Max-Min and Min-Min heuristics

adversely affects the resource utilization in Cloud (as evident in our experimental

results presented in Section 2.5).

Sufferage algorithm [28, 34, 79] computes the sufferage-value for each job by

finding the difference between its MCT and the second MCT (higher than the first

MCT) generated by any VM. The job with the largest sufferage-value is assigned

to the VM producing minimum completion time for it. Sufferage produces minimal

makespan; but it has a consequential scheduling overhead due to a large number of

calculations (to compute sufferage-value) in each scheduling decision [50]. Mostly,

Sufferage produces minimal makespan compared to RS, RR, MCT, Min-Min, and

Max-Min [29, 34].

RASA [27, 106] contemplates Min-Min and Max-Min alternatively to utilize the

merits of both algorithms. RASA was originally proposed for Grid computing.

First, RASA develops a job-related resource-matrix that contains the completion

time of each job on all the resources. For the mapping of a first job, Min-Min

algorithm is employed if numbers of jobs are odd; otherwise, Max-Min is used for

mapping the jobs. After that, all the remaining jobs are scheduled using one of

the two algorithms (i.e., Min-Min and Max-Min) alternatively. RASA provides

fair scheduling for both large and small size jobs [27, 29, 34] . On the other hand,

RASA generates load imbalance [31] and penalizes smaller jobs if the workload

contains a large number of big jobs [23, 45].
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TASA favors the smaller jobs in one scheduling step using Min-Min and finds an

appropriate VM for the job by using Suffrage in the second scheduling step [39].

In most of the cases, TASA generates better makespan and resource utilization as

compared to other scheduling techniques such as Min-Min, Max-Min, RASA and

OLB [39].

LBIMM [37, 44] allocates jobs to VMs based on Min-Min technique in the first

phase. In the next phase, LBIMM finds the smallest job on the most loaded VM

and determines its completion time on the other VMs. After that, the minimum

completion time of that job is compared with makespan. If the minimum com-

pletion time is less than the makespan, the job is allocated to that new VM and

the ready time of both VMs are modified. This procedure is repeated for the next

smallest job on the most loaded VM too. The process is repeated until there is

no other VM that has the completion time for the smallest job on the heavily

loaded VM as compared to makespan. This technique shares a load of heavy VMs

with the idle or under-utilized VMs. LBIMM produces better makespan and load

balancing than Min-Min algorithm.

PSSLB and PSSELB [44] are proposed to assign the large-sized jobs to the ma-

chines that can execute them faster than the other computing machines. PSSLB

finds the matrix (i.e., each row has a completion time of a specified job on all ma-

chines) of completion time of each job on each machine. The matrix is sorted in a

way that the last column stores minimum completion time for each job. Therefore,

the longest job on the last column is selected and assigned to a machine producing

minimum completion time for it.

PSSELB [44] is the modified version of PSSLB that produces a load balanced

schedule. The largest job among the unallocated jobs is assigned to the machine

using PSSLB, and completion time of this job is considered as a pivot. After

that, the jobs that produce equal to or minimum completion time (i.e., on other

machines) than the pivot are iteratively determined and assigned to the concerned

machines (i.e., producing MCT for a job equal to or minimum than the pivot

value). Next, the largest job is assigned to the concerned machine using PSSLB,
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and the pivot is updated with the completion time of the largest job. Again, the

jobs with MCT on other machines (i.e., except the machine with last largest job

assigned) that is equal to or less than the pivot are determined and assigned to the

concerned machine. This scheduling procedure is repeated until all the unallocated

jobs are assigned to machines in the same way.

SBM2 technique is proposed by Panda et al. [28] for scheduling of skewed size

workload on Grid. If the dataset contains a large number of shorter jobs with a

few longer jobs then the dataset is referred to as positively skewed. On the other

hand, if the dataset is comprised of a large number of longer jobs with a few shorter

jobs then the dataset is known as negatively skewed [28]. SBM2 computes the

skewness of the workload in each scheduling decision. Min-Min is employed if the

workload is negatively skewed; otherwise, Max-Min is adopted for the scheduling

of a positively skewed workload. PA-LBIMM algorithm is proposed in [37].

PA-LBIMM categorizes both the jobs and resources in VIP and normal classes.

First, the VIP jobs are scheduled on VIP resources using Min-Min. After that,

PA-LBIMM schedules normal jobs on all resources using Min-Min.

Table 2.2 presents the summary of strengths and weaknesses of the scheduling

algorithms in the literature.

2.3.2 SLA-Aware Cloud Scheduling Algorithms

To date, various studies have been conducted that focus on budget, user priorities,

execution time, response time, deadline, and SLA-violations as QoS requirements

for Cloud resource provisioning and scheduling.

Garg, Saurabh Kumar, et al. proposed Mixed Workload-Aware Policy (MWAP)

[85] that is an admission control and scheduling to enhance the resource utilization

and profit of Cloud datacenters guaranteeing the QoS needs of Cloud users as per

SLA with auto-scaling support. MWAP used Artificial Neural Network to forecast

the future computing utilization of in the datacenters. Philipp Leitner et al. pro-

posed SLA-aware scheduling technique to reduce the expenses on Cloud resources
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Table 2.2: Summary of Cloud Scheduling Algorithms.

Algorithms Strengths Weaknesses
RS [31–33] Minimal scheduling overhead

[79], low complexity [34],
Poor resource utilization [31,
32], load-imbalance [31, 32]

RR [31, 34] Fairness in scheduling [31,
79], minimal overhead [22, 34]

Generally poor makespan
[33], load-imbalance [32, 79]

OLB [22–24] Low complexity, Minimal
overhead, keep machines
busy [24, 25, 32]

Poor resource utilization [34],
load-imbalance [34]

MCT [24, 25, 32] Improved makespan than
OLB [24], machine-aware
scheduling [26]

Load-imbalance [22, 38],
overloads faster VMs

MinMin [25–27] Favors smaller jobs [29, 42],
reduced makespan for smaller
jobs [32, 33]

Overloads faster VMs with
smaller Jobs [29], penalize
larger jobs.

LBIMM [37, 44] Improved makespan and re-
source utilization than Min-
Min [37]

A few smaller jobs are penal-
ized while rescheduled [37]

PA-LBIMM [37] Improved makespan for VIP
jobs [37], priority-aware
scheduling

Penalize normal jobs due to
VIP jobs, relatively increased
makespan than Min–Min [37]

MaxMin [18, 25,
28]

Favors larger jobs [33, 107],
reduced makespan for larger
jobs [106].

Penalize smaller jobs [39],
load-imbalance for job pool
with more larger jobs [29].

RASA [29, 30] Fair treatment of larger and
smaller jobs [31].

Penalize smaller jobs in
dataset with more larger
jobs [26]

Sufferage
[25, 31]

Improved makespan than
MCT, Min-Min, and Max-
Min [18], job allocation to
appropriate VM [106].

High scheduling overhead
due to sufferage-value calcu-
lation [23].

TASA [39] Improved makespan than
Max-Min, Min-Min and
RASA [39].

Load balancing is not consid-
ered [39].

PSSLB [44] Reduces completion and
response time for larger
jobs [44]

Penalizes smaller jobs [44]

PSSELB [44] Improved makespan than
PSSLB [44]

Load-imbalance compared to
PSSLB [44]

SBM2 [28] Fair treatment for posi-
tively and negatively skewed
dataset, low makespan than
Min–Min and Max–Min [28]

Heap of calculation in finding
positive and negative skew-
ness in each scheduling step
[28], Load-imbalance
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and loss incurred as SLA-violations in an IaaS Cloud [108]. This cost-efficient

technique ensures to reduce the cost consumption of CSP on resource manage-

ment of the Cloud. Alrokayan et al. proposed a cost and SLA-aware Branch and

Bound for a Pruned tree (BBPruned) [109] technique for big data analytics. The

BBPruned allocates Cloud resources for scheduling of MapReduce tasks with a

budget and deadline constraints without SLA-violation. Sharma et al. presented

Kingfisher [106] that is a cost-efficient framework to offer the effectual provision of

elasticity on Cloud to optimize the incurred cost. Kingfisher supports single appli-

cation provisioning while ignoring the SLA and mixed workload. Lenzini proposed

Aliquem (Active list queue method) that is an implementation of Deficit Round-

Robin (DRR) scheduling to guarantee the significant tradeoff between latency and

fairness with low complexity of DRR [36]. Aliquem proves its efficacy against

the counterpart Pre-Order DRR and Smoothed DRR implementation scheduling

techniques.

Execution-MCT allocates a job to VM producing minimum completion time for it

[24, 25, 33, 38, 95]. On each scheduling decision, the current load of a VM is con-

sidered to identify an appropriate VM for the allocation of a candidate job [24, 32].

The VM producing minimum completion time for a job is selected and assigned to

it. The execution-MCT overloads the faster VMs as compared to slower VMs that

results in load imbalance [22, 79]. Execution-Min-Min heuristic operates on the

scheduling mechanism of execution-MCT [35, 37, 38] that works in two schedul-

ing steps. In the first step of scheduling decision, the earliest completion time of

every job is calculated bearing in mind all VMs in the computing system. Then,

the job with the minimum of these completion times is identified and allocated

to the concerned VM. Execution-Min-Min favors smaller jobs and penalizes larger

jobs [32, 106]. The execution-Min-Min introduces a load imbalance by overloading

faster VMs with smaller jobs [24, 50]. PA-LBIMM categorized the jobs and com-

puting machines into VIP and normal classes [37]. The jobs of the former class

are allocate to VIP machines using Execution-Min-Min. Afterward, jobs of the

latter class are scheduled on all computing machines using Execution-Min-Min.

Profit-MCT [45, 110] and Profit-Min-Min [45, 84] work based on execution cost
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1 

  

Example of SLA-2 Job with w1 = 0.3 and w2 = 0.7 values for Job—VM mapping 1 

 VM-1 VM-2 VM-3 

Execution time  Execution time  Execution time  

Job  22 8 15 

Weighted value 22/45 = 0.49 8/45 = 0.18 15/45 = 0.34 

 
Execution Cost  Execution Cost  Execution Cost  

Job  2 8 6 

Weighted value 2/16 = 0.13 8/16 = 0.5 6/16 = 0.38 

 
Weighted sum  Weighted sum  Weighted sum 

Weighted Sum 0.49*0.3 + 0.13*0.7 

= 0.23 

0.18*0.3 + 0.5*0.7 

= 0.40 

0.34*0.3 + 0.38*0.7 

= 0.36 

 2 

despite of execution time. The scheduling mechanism of Profit-MCT and Profit-

Min-Min are identical to Execution-MCT and Execution-Min-Min, respectively;

with a difference of its objective function that is the minimization of execution

time in the former heuristics and the minimization of execution cost in the lat-

ter heuristics. On each scheduling step, the jobs are assigned to the VM that

executes it with the minimum execution cost. Profit-MCT and Profit-Min-Min

overload the VMs with the least execution cost and result in a load-imbalance by

avoiding to utilize the other VMs. SLA-Min-Min and SLA-MCT are proposed in

[45] are based on common SLA to form a balance between overall execution time

and cost. SLA-Min-Min and SLA-MCT use three types of SLA-levels; minimiza-

tion of execution time, cost and both for the submitted workload. SLA-1 jobs

prefer to be executed with minimal execution time, SLA-3 prefer to be executed

with minimal execution cost and the SLA-2 desires to be executed with a balance

between both execution time and cost. Let there is SLA-2 job that has execution

time 22, 8, and 15 seconds on VM1, VM2, and VM3, respectively. Similarly, job1

has execution cost 2, 8, and 6 unit cost on VM1, VM2, and VM3, respectively.

For SLA-02 jobs, the weight values for both execution time and execution cost

will be 0.5 (i.e., w1 = w2). But different weight values may also be given by the

user of the SLA jobs. For SLA jobs with weight values for execution time and

execution cost, SLA-MCT finds the sum of execution time and cost over all VMs.

The execution time and cost is normalized by dividing with corresponding sum

values. Then, it finds the weighted sum by multiplying the normalized execution
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Table 2.3: Summary of Static SLA-Aware Cloud Scheduling Algorithms.

Algorithms Strengths Weaknesses Complexity
SLA-MCT [45] Cost-efficient schedul-

ing, single phase
scheduling to balance
between execution time
and cost [45].

Poor resource utiliza-
tion, load-imbalance
[45].

O(M.N)

SLA-Min-Min
[45]

Cost-efficient schedul-
ing, two-phase schedul-
ing to balance between
execution time and cost
[45].

Poor resource utiliza-
tion, load-imbalance
[45].

O(M.N2)

Profit-MCT
[45, 110]

Cost-efficient schedul-
ing [45].

Overloads VMs with
least execution cost
[45], poor resource
utilization.

O(M.N)

Profit-Min-Min
[45, 84]

Cost-efficient schedul-
ing [45].

Overloads VMs with
least execution cost
[45], poor resource
utilization.

O(M.N2)

time and execution cost value with the corresponding weighted value given by the

user for the job. The example of SLA-2 job with w1 = 0.3 and w2 = 0.7 values

for Job-VM mapping is presented as above. The VM-1 has smaller weighted sum

0.23 for SLA-2 Job, so the job is scheduled on VM-1. However, SLA-1 jobs are

scheduled on VM producing minimum completion time and SLA-3 jobs are sched-

uled on VM producing minimum cost value. Table 2.3 presents insight summary

of the existing SLA-aware algorithms in the literature.

2.4 Job Scheduling Objectives

Cloud computing provides feasibility to gain access to large-scale and high-speed

resources without establishing their own computing infrastructure to execute HPC

applications. However, from the past several years, the efficient utilization of re-

sources on a compute Cloud has become a prime interest of the scientific com-

munity. One of the major causes behind inefficient resource utilization is the

imbalance distribution of workload in a distributed computing. It is not only an
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optimal solution to schedule the independent jobs on machines solely based on

the execution time, throughput and average resource utilization ratio; instead, the

machine-level load balancing must also be considered to effectuate the usage of

the full capacity of computing power in a Cloud system. The existing state-of-

the-art contains various Cloud scheduling heuristics that employ load balancing

and resource utilization. Alaei and Safi-Esfahani [44] proposed and designed a

reactive/proactive scheduling framework that merely relies on prior knowledge

pertaining to tasks for a load balanced scheduling. Chen et al. [37] introduced

LBIMM and PALBIMM heuristics based on a Min-Min algorithm. LBIMM and

PA-LBIMM allocate the jobs to VMs based on the priorities of users and recon-

sidering the heavily loaded VMs in the scheduling process. This strategy ensures

an increased throughput, optimal resource allocation, and decreased average com-

pletion time of all jobs. Muhammed et al. [32] proposed Max-Average heuristic

that harnesses the Max-Min as a baseline and produces a standard solution with

load balanced schedule. The two heuristics are designed by Chauhan [111]: QoS

Guided Weighted Mean Time-Min (QWMTM) andQoS Weighted Mean Time Min-

Min Max-Min Selective (QWMTS). The QWMTM and QWMTS consider the QoS

weight-index to perform scheduling on the grid based on the criterion of time aver-

age. The QWMTM scheduling is based on Min-Min and QWMTS that considers

the merits and demerits of the Min-Min and Max-Min for scheduling by reflecting

network bandwidth as a QoS parameter. Panda and Jana [45] presented SLA-

MCT and SLA-Min-Min heuristics for load balanced scheduling for heterogeneous

Cloud computing. The SLA-MCT and SLA-Min-Min are based on MCT and Min-

Min techniques, respectively. Both of these techniques consider the execution time

and cost as SLA parameters. The outcomes of the study reported a significant

balance between makespan and gain costs of the computing services. Mao et al.

[18] proposed a load balancing technique based on the Max-Min by maintaining a

task status table to predict the real-time load of VMs in the Cloud.

Table 2.4 presents a few scheduling heuristics and the different performance as-

pects/scheduling objectives employed by the contemporary state-of-the-art. In

the literature, Elzeki et al. [22], Mohialdeen [34], Hussain et al. [50], and Li,
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Table 2.4: Common Scheduling Objectives in Literature.

Research studies Scheduling objectives
HSGA [64] Makespan, load balancing rate, failure factor,

speedup.
RALBA [50] Throughput, makespan, ARUR.
RePro-Active [44] Throughput, makespan, ARUR.
Max-Average [32] Makespan, ARUR.
QWMTM [38] Makespan, ARUR, load balancing level.
MCT [38, 50, 52] Throughput, makespan, ARUR.
Min-Min [37, 50] Makespan, ARUR, AVIPCT, AORDCT.
Max-Min [18, 50] Throughput, makespan, ARUR.
Sufferage [31, 50] Makespan, percent load imbalance ration.
RASA [29, 50] Throughput, makespan, ARUR.
TASA [39, 50] Throughput, makespan, ARUR.
SLA-MCT [45] Makespan, ARUR, gain cost, penalty cost.
SLA-Min-Min [45] Makespan, ARUR, gain cost, penalty cost.
LBIMM [37] Makespan, ARUR, AVIPCT, AORDCT.
PA-LBIMM [37] Makespan, ARUR, AVIPCT, AORDCT.
ECMM [18] ATRTR, ATPT.

Bo, et al. [38] conducted a comparative analysis of several scheduling heuristics

employing different scheduling objectives (in the form of performance parameters

expressed in Table 2.4). Further, it is witnessed that most of the researchers

[22, 32, 37, 44, 45, 50, 111] employed ARUR as a performance factor to enhance

the resource utilization attained by scheduling heuristics [37, 44, 50, 52, 75].

2.5 Job Scheduling - An Empirical Investigation

The empirical investigation of stat-of-the-art Cloud scheduling is conducted [97]

using renowned CloudSim simulator with two synthetic and one GoCJ benchmark

datasets and presented as follows. The evaluation parameters used in this investi-

gation are makespan, throughput and ARUR.

2.5.1 Simulation Setup

Evaluation of scheduling and resource allocation policies on a real Cloud (with a

varying load and system size) is a challenging problem. The use of real testbeds
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Table 2.5: Configuration of Simulation Environment

Parameters Details
Simulator/Version CloudSim version 3.0.2.

Power of Host Machines 04 Dual-core, and 26 Quad-core
Power of each core 4000 MIPS
Total Host Machines 30 Host Machines

Total VMs 50 Virtual Machines

Total Cloudlets 100, 150, 200, 250, 300, 350, 400, 450, 500, 550,
600, 650, 700, 750, 800, 850, 900, 950, 1000

restricts the experiments to the scale of the test environment. Cloud computing

model is based on a pay-per-use model, thus repeatable experiments on real Cloud

may incur a high monetary cost. Therefore, an ideal alternative to evaluate re-

source management related Cloud policies is to use a simulation environment that

enables Cloud developers to conduct experiments by employing the desired and

varying configurations related to computing infrastructure and dataset (i.e., Cloud

jobs). In this work, we use a renowned Cloud simulator called CloudSim [1]. A

user job is represented as Cloudlet in CloudSim and the job’s size (computational

requirement) is measured in terms of Million Instructions (MIs) [1]. Similarly, the

computing power of a VM is measure in terms of Million Instructions Per Second

(MIPS) in CloudSim simulator [1]. We perform the simulation-based experiments

on a machine equipped with Intel Core i3-4030U Quad-core processor (having 1.9

GHz clock speed) and 04 GB of main memory. Liu and Cho characterizes the

computing machines and workloads on a Google cluster and found that 93% of

the machines are fairly homogeneous on Google cluster with approximately 6%

of the machines are found with a greater computing capability [88]. Using the

characteristics of the real computing machines (found in Liu and Cho’s study [88])

we build an experimental setup for empirical evaluation. Table 2.5 illustrates the

configuration details of the employed simulation environment. Fig. 2.2 presents

the overall statistics of the employed VMs with computing powers in terms of

Million Instructions Per Second (MIPS).
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Figure 2.2: VMs in Experimental Datacenter.

2.5.2 Employed Datasets

In this empirical work, one GoCJ benchmark dataset [62] and two synthetic

datasets are used for the performance assessment of scheduling algorithms in

simulation-based experimentation. The detail of proposed benchmark GoCJ dataset

is presented in Chapter 3. Fig. 2.3 presents the ratios and sizes of Cloudlets distri-

bution in GoCJ workload in terms of percentage and MIs, respectively. We studied

the literature [107, 112, 113] to generate two synthetic datasets containing fix-sized

jobs. Mehdi et al. [107] conducted the experimentation of a genetic scheduler with

heterogeneous VMs (1.0 GHz to 4.0 GHz speed) to execute up to 100 Cloudlets.

In another work, Mehdi et al. [112] have examined the Cloud scheduling using

100 VMs (computing power of 1.0 GHz, 2.0 GHz, 2.5 GHz, and 3.0 GHz) to ex-

ecute up to 500 Cloudlets. Behzad et al. [113] presented a comparative analysis

of different scheduling algorithms by using 7000 and 15000 jobs with a varying

number of CPUs (i.e., 04 to 64 processors). In addition, it is evident in the litera-

ture [88, 92] that workloads are usually positively skewed (having fewer number of

larger jobs and large number of smaller jobs). Following two synthetic workloads

are formulated for the empirical investigation existing scheduling algorithms.

The synthetic-I workload is created with five fixed-size Cloudlets (see Fig. 2.4).

The majority of Cloudlets (i.e., 75% of the Cloudlets in synthetic-I workload)
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Figure 2.3: Composition of GoCJ Dataset.

complete execution within 02 seconds and a small tail of the Cloudlet distribu-

tion execute up to 45 seconds (i.e., 15% of the Cloudlets run for 15 seconds and

5% of the Cloudlets run for 45 seconds, respectively). The fixed-sizes of tiny,

small, medium, large and extra-large cloudlets in the synthetic-I dataset are 200,

1000, 5000, 15000, and 45000 MIs, respectively. Similarly, the synthetic-II work-

load is generated using a random number generation mechanism by employing

five Cloudlet-size ranges (see Fig. 2.4). The majority of Cloudlets (i.e., 85% in

synthetic-II workload) are of short size and a small tail of the Cloudlet distribution

completes execution within 45 seconds (i.e., 10% of the Cloudlets run for 10 sec-

onds and 5% of the Cloudlets run for 45 seconds, respectively). The cloudlet-size

ranges of tiny, small, medium, large, and extra-large cloudlets are 1–200, 800–1200,

1800–2500, 7000-10000, and 30000–45000 MIs, respectively.

2.5.3 Analysis and Discussion

Three performance metrics are measured for ten existing Cloud scheduling al-

gorithms and presented for experimental evaluation i.e., makespan, ARUR, and

throughput.

Makespan-based Investigation
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Figure 2.4: Composition of Synthetic Workloads.

Term makespan is used to represent the completion of all the Cloudlets execu-

tion of a workload. The smaller value of makespan represents a better execution

performance. The makespan is mathematically expressed as follows:

Makespan = max
∀j=1,2,3,...,M

(VM CTj) (2.1)

where, M represents the total number of VMs (which is 50 in our experiments,

shown in Table 2.5) and VM CTj is the completion time of a specific VMj by

executing its assigned Cloudlets. VM CTj is computed as:

VM CTj =

Nj∑
i=1

Cloudleti.MI

VMj.MIPS
(2.2)

where, Cloudleti.MI represents the size of Cloudleti in terms of MIs, VMj.MIPS

is the computing power of VMj in terms of MIPS and Nj represents the total

number of Cloudlets assigned to VMj. Fig. 2.5 shows the makespan results of

10 scheduling heuristics for Synthetic-I, Synthetic-II, and GoCJ workloads. For

more clarity, the average makespan (i.e., separately for synthetic-I, synthetic-II,

and GoCJ workloads) of all the experiments using a different number of Cloudlets

is calculated as follows:
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Avg Makespan =

∑NE
i=1 Makespani

NE
(2.3)

where, NE represents the number of experiments performed for each scheduling

heuristics (i.e., using specified workload) and Makespani represents the makespan

of the ith experiment. Each experiment is repeated using a varying number of

Cloudlets (i.e., Cloudlets 100—10000, as presented in Table 2.5).

LBIMM, TASA, and Sufferage produce the shortest makespan for Synthetic-I,

Synthetic-II, and GoCJ workload, respectively. However, there is a minor dif-

ference with respect to the makespan of LBIMM, TASA and sufferage heuristics

for the three workloads. On the other hand, OLB achieves the largest makespan

for Synthetic-I, Synthetic-II, and GoCJ workloads. Fig. 2.6 presents the aver-

age makespan attained by the employed scheduling heuristics for the execution

of Synthetic-I, Synthetic-II, and GoCJ workloads, respectively. Fig. 2.6 shows

that the LBIMM consumes lower execution time (using Synthetic-I workload) as

compared to TASA (5.44% lower), Sufferage (8.98% lower), Min-Min (26.35%

lower), MCT (32.62% lower), Max-Min (285.69% lower), RASA (302.27% lower),

PSSLB (285.73% lower), PSSELB (387.24% lower), and OLB (647.18% lower).

Further, the results (using Synthetic-II workload) affirm that TASA achieves lower

makespan than the Sufferage (0.88% lower), LBIMM (1.30% lower), Max-Min

(252.44% lower), MCT (35.20% lower), Min-Min (38.25% lower), RASA (256.14%

lower), PSSLB (251.73% lower), PSSELB (259.37% lower) and OLB (616.34%

lower). Similarly, Fig. 2.6 presents that Sufferage consumes lower makespan

(using GoCJ workload) as compared to LBIMM (0.38% lower), TASA (1.98%

lower), MCT (17.68% lower), RASA (1.74% lower), Min-Min (25.28% lower), Max-

Min (11.26% lower), PSSLB (11.26% lower), PSSELB (207.30% lower) and OLB

(220.90% lower).

Throughput-based Investigation

Throughput is expressed as the number of jobs executed during the span of per

unit time. In our experiments, the number of Cloudlets executed per second is
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Figure 2.5: Makespan Results.

referred to as the throughput of a specific scheduling heuristic. Throughput can

be calculated as follows:

Throughput =
N

Makespan
(2.4)

where, N is the number of employed Cloudlets. A scheduling technique producing

higher throughput value is assumed as a better performing algorithm. For more
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Figure 2.6: Average Makespan Results

clarity in results, the average throughput (i.e., for synthetic-I, synthetic-II, and

GoCJ workloads) is calculated as:

Avg Throughput =

∑NE
i=1 Throughputi

NE
(2.5)

Fig. 2.7 presents the throughput results for the execution of Synthetic-I, Synthetic-

II, and GoCJ workloads. Likewise, average makespan results, the LBIMM, TASA,

and Sufferage heuristics achieves the highest throughput for Synthetic-I, Synthetic-

II, and GoCJ workloads, respectively. For more clarity of the simulation re-

sults, the average throughput of scheduling heuristics for Synthetic-I workload

is shown in Fig. 2.8. LBIMM achieves a higher throughput as compared to

the TASA (7.53% higher throughput), Sufferage (11.12% higher throughput),

Min-Min (30.24% higher throughput), MCT (37.75% higher throughput), Max-

Min (183.41% higher throughput), RASA (236.11% higher throughput), PSSLB

(183.41% higher throughput), PSSELB (171% higher throughput) and OLB (560.60%

higher throughput). Fig. 2.8 presents the average throughput of ten employed

heuristics for Synthetic-II workload. The results affirm that the TASA achieves

higher throughput as compared to the Sufferage (1.0% higher), LBIMM (1.14%

higher), MCT (34.32% higher), Min-Min (38.95% higher), Max-Min (147.34%
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higher), RASA (158.47% higher), PSSLB (145.17% higher), PSSELB (117.67%

higher) and OLB (398.51% higher). Similarly, for the makespan results, the Suf-

ferage scheduling heuristic produces a higher throughput while the OLB scheduler

produces a lower throughput for the GoCJ workload. Fig. 2.8 presents the average

throughput results of the ten scheduling heuristics for the GoCJ workload. The

Sufferage scheduling heuristic attains a higher throughput as compared to the

TASA (2.22% higher throughput), RASA (1.32% higher throughput), LBIMM

(5.25% higher throughput), Max-Min (11.62% higher throughput), MCT (19.74%

higher throughput), Min-Min (28.77% higher throughput), PSSLB (11.62% higher

throughput), PSSELB (108.60% higher throughput) and OLB (145.21% higher

throughput).

ARUR-based Investigation

ARUR shows average resource utilization ratio for a Cloud system. ARUR is cal-

culated as follows [37, 50], which is the ratio of average makespan to the makespan

of the Cloud system.

ARUR =

∑M
j=1 VM CTj

M

Makespan
(2.6)

ARUR value remains between 0 and 1, where value close to 1 shows exceptional

resource utilization (i.e., nearest to 100% resource utilization). Fig. 2.9 shows the

ARUR based experimental results of the ten scheduling heuristics for Synthetic-

I, Synthetic-II, and GoCJ workloads. Mean ARUR value for each heuristic is

reported based on the following equation:

Mean ARUR =

∑NE
i=1 ARURi

NE
(2.7)

The ARUR results for scheduling heuristics are presented in Fig. 2.10 for Synthetic-

I, Synthetic-II, and GoCJ workloads. The LBIMM heuristic attains the highest

ARUR (76.5% resource utilization) as compared to other scheduling heuristics for

Synthetic-I workload. However, Sufferage produces 75.7% and 86.3% resource uti-

lization (the highest resource utilization as compared to the other heuristics) for

Synthetic-II and GoCJ workloads, respectively.
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Figure 2.7: Throughput Results.

Fig. 2.10 presents the mean ARUR results for execution of Synthetic-I workload.

The results (presented in Fig. 2.10) show that the LBIMM attains the higher

resource utilization as compared to the TASA (8.36% higher), Sufferage (11.68%

higher), MCT (39.09% higher), Min-Min (64.52% higher), Max-Min (97.67% higher),

RASA (124.34% higher), PSSLB (97.67% higher), PSSELB (144.4% higher) and

OLB (306.92% higher). For Synthetic-II workload, the Sufferage scheduling heuris-

tic produces higher resource utilization as compared to TASA (0.66% higher),
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Figure 2.8: Average Throughput Results

LBIMM (9.24% higher), MCT (49.90% higher), Max-Min (94.60% higher), RASA

(110.28% higher), Min-Min (101.87% higher), PSSLB (93.60% higher), PSSELB

(105.15% higher) and OLB (265.70% higher) heuristics (as shown in Fig. 2.10).

The mean ARUR based experimental results for the execution of GoCJ workload

are presented in Fig. 2.10. The results affirm that the Sufferage has attained higher

resource utilization as compared to LBIMM (2% higher utilization), RASA (2.98%

higher utilization), Max-Min (2.13% higher utilization), TASA (8.55% higher uti-

lization), MCT (23.64% higher utilization), Min-Min (65.96% higher utilization),

PSSLB (2.13% higher utilization), PSSELB (84.80% higher utilization) and OLB

(109.47% higher utilization) heuristics (see Fig. 2.10).

Comparative Discussion on Empirical Investigation

OLB produces poor makespan and very low resource utilization. However, OLB

technique requires simple implementation, causes minimal scheduling overhead,

and result in lower time complexity. MCT provides improved makespan for the

workload execution and minimal completion time for each job. However, MCT

results in low resource utilization for both skewed and non-skewed workloads be-

cause it overloads the faster machines that result in an imbalanced distribution of

workload.
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Figure 2.9: ARUR Results.

A workload is referred to as positively skewed if it contains a large number of

shorter size jobs with a few very long jobs [28]. On the other hand, if the workload

comprises a large number of longer jobs with a few shorter jobs then the workload

is referred to as negatively skewed [28]. The skewness in synthetic and GoCJ

benchmark workloads used in this study is shown in Fig. 2.3 and Fig. 2.4.

Min-Min and Max-Min do not produce good results (in terms of execution time)

for a skewed workload [28]. Min-Min scheduling attains improved execution time
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Figure 2.10: Mean ARUR Results

when the workload has shorter size jobs or cloudlets. On the other hand, Min-Min

produces longer makespan for a positively skewed workload (due to the inherent

penalty for larger jobs). In case of workload containing most of the shorter jobs

with few longer jobs, Max-Min achieves improved makespan by executing longer

jobs on faster machines; and concurrently executing the shorter jobs on compar-

atively slower machines. However, Max-Min and Min-Min performs worst for a

skewed workload and provides improved results for a non-skewed workload [28].

RASA scheduling mechanism benefits from the merits of Min-Min and Max-Min

producing a lower response time for both smaller and larger size jobs [29]. TASA,

Sufferage, and LBIMM are modified versions of Min-Min [29, 39] Therefore, these

scheduling techniques provide better results (for a non-skewed workload) as com-

pared to Min-Min. Additionally; TASA produces higher resource utilization (as

evident by the results are shown in Section 2.5.3). Similarly, PSSLB and PSSELB

algorithms are the modified version of Max-Min techniques (as shown in Fig. 2.1).

PSSELB provides better resource utilization as compared to Max-Min, while it

introduces a slight degradation in makespan and throughput of PSSELB as com-

pared to Max-Min. On the other hand, PSSLB shows resemblance in results (i.e.,

makespan, resource utilization, and throughput results) as compared to Max-Min

technique.



Literature Review and Empirical Investigation 47

2.5.4 Resource Utilization and Load-Imbalance

The literature [26, 37, 44, 64, 68, 69, 77, 78] is scrutinized to examine the schedul-

ing aspects related to load balance and resource utilization for Cloud computing

platform. The detailed analysis of the literature revealed that most of the existing

scheduling heuristics [22, 24, 26, 29, 31, 37, 39, 44, 45, 64, 68, 69, 73–75, 75–78] are

more inclined towards the decrease in turnaround and response time of a Cloud

workload. For example, MCT, Min-Min, Max-Min, RASA, TASA, and Suffer-

age heuristics are designed and proposed to minimize the makespan of the Cloud

workload. The OLB, LBIMM, PSSLB, and PSSELB scheduling heuristics consider

additional consideration of load balance too. However, most of these scheduling

heuristics are unable to fully utilize the computing resources and imbalanced work

distribution among the virtual machines.

Our empirical analysis reveals that the LBIMM, TASA, and the Sufferage heuris-

tics produce comparatively better utilize the computing resources (i.e., higher

resource utilization) as compared to the other scheduling heuristics presented in

this work. In Table 2.6, the results show that the LBIMM heuristic attains higher

resource utilization (i.e., 8.36% and 11.52% higher, respectively) as compared to

the TASA, and Sufferage for the execution of Synthetic-I workload. The Sufferage

heuristic attained higher resource utilization (i.e., 0.66% and 9.24% higher, respec-

tively) as compared to the TASA, and LBIMM for the execution of Synthetic-II

workload. Similarly, the Sufferage scheduling achieves higher resource utilization

(i.e., 2.01% and 8.55% higher resource utilization, respectively) as compared to the

LBIMM, and TASA for the GoCJ workload. Moreover, the Sufferage, Max-Min,

and PSSLB heuristics attain higher resource utilization too for the execution of a

GoCJ workload. The Max-Min and RASA have achieved higher resource utiliza-

tion of 5.40% and 6.29% as compared to TASA (for GoCJ workload), respectively.

This minor improved resource utilization by the RASA and the Max-Min over

TASA is due to the lower resource utilization incurred by the Min-Min heuristic

(as compared to the Max-Min and RASA for the execution of GoCJ workload).
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Table 2.6: Percentage of Resource Utilization of Scheduling Algorithms.

Algorithms GoCJ Dataset Synthetic-I Dataset Synthetic-II Dataset
TASA 79.5% 70.6% 75.2%
Sufferage 86.3% 68.5% 75.7%
Max-Min 84.5% 38.7% 38.9%
RASA 83.8% 34.1% 36.0%
Min-Min 52.0% 46.5% 37.5%
LBIMM 84.6% 76.5% 69.3%
MCT 69.8% 55.0% 50.5%
PSSLB 84.5% 38.7% 39.1%
PSSELB 46.7% 31.3% 36.9%
OLB 41.2% 18.8% 20.7%

It is empirically observed that the LBIMM, TASA and Sufferage schedulers achieve

the minimal completion time and better resource utilization as compared to Max-

Min, RASA, Min-Min, MCT, OLB, PSSLB, and PSSELB. The experimental re-

sults reveal that the LBIMM, TASA and Sufferage mechanisms attain on average

lower makespan compared to the other state-of-the-art. However, most of these

mechanisms still lack a higher resource utilization (see Table 2.6) that could be

improved to further lessen the makespan for the execution of a Cloud workload.

Improving resource utilization is very crucial to the reduces the cost and energy

consumption for the execution of Cloud workload [23], [40]. Therefore, the issue

concerning low resource utilization should be addressed in a comprehensive man-

ner. For the optimal resource utilization, the workload should be assigned to the

computing resources according to the computing capabilities and application need.

A resource- and application-aware Cloud scheduling algorithm with load balancing

will greatly benefit in terms of reduced execution time and cost. Therefore, we

have investigated machine-level load balancing (i.e., VM category and VM-level

load distribution) by using these ten scheduling algorithms.

VM Category and VM-wise Load Imbalance

For the empirical investigation, we employ the simulation environment based on 50

VMs (08 different sizes as shown in Fig. 2.2). For a balanced workload distribution,

the Cloudlets (i.e., Cloud jobs) must be submitted for execution by considering the

computing capabilities of the employed VMs. Moreover, it is critical to consider
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the current load of a VM too. The computing load or share of each VMj is

presented as Sharej and can be calculated as:

Sharej =
N∑
i=1

Cloudleti.MI × VMj.MIPS∑m
k=1 VMk.MIPS

(2.8)

where, Sharej is the amount of workload in terms of MI that needs to be allocated

to VMj to attain a load-balanced scheduling. The balance share for each VM

category in terms of percentage workload is represented as VMCat Sharec and is

calculated as follows:

VMCat Sharec =

∑cm
a=1 Sharea∑N

i=1Cloudleti.MI
× 100 (2.9)

where, c represents the VM category and cm are the number of VMs in the VM

category c.

Percentage workload distribution by the 10 scheduling heuristics is presented in a

tabular form to highlight the load imbalance (see Fig. 2.11). VMCat Share c of

VM categories (see Fig. 2.2) in a simulation environment is presented as a reference

for load distribution attained by the employed scheduling heuristics (see Fig. 2.11,

presented in the last row). The imbalanced workload assignments are depicted

such as the underutilized resources are filled with orange-color background, heavily

loaded resources with red-background, and idle resources with a green background.

All the VMs based on 100 MIPS (14% of the computing nodes of the experimental

setup) and a few of the VM with 500 and 750 MIPS remain idle when the GoCJ

workload is scheduled using the Min-Min heuristic. Additionally, the Min-Min

overloads the fastest VMs (based on 4000 MIPS). On the other hand, the Max-

Min scheduling heuristic produces better workload distribution as compared to

the Min-Min; however, only a few VMs (both the slow and faster) are overloaded.

This load mapping scenario is mainly contributed by the composition of GoCJ

workload; where a small portion of large-sized Cloudlets or Cloud jobs is present

along with a majority of small-sized Cloudlets. The Max-Min heuristic overcomes

the imbalance produced by the Min-Min due to the presence of a few large-sized
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Cloudlets which suits the Max-Min scheduling. The PSSLB heuristic shows al-

most the same behavior for the workload distribution like Max-Min because both

of these heuristics favor larger jobs. The LBIMM, Sufferage, RASA, Max-Min, and

TASA produce comparatively a load-balanced schedule. Among these heuristics,

Sufferage produces the highest resource utilization because of the resource-aware

mechanism. However, an interesting observation is that the VMs based on 100

MIPS remain idle. Moreover, the recourse-ware mechanism employed by the Suf-

frage also produces a notable imbalance where the number of scheduled Cloudlets

is lesser (i.e., 100 Cloudlets) as shown in Fig. 2.11. Similarly, the LBIMM heuris-

tic shows an improved load balancing in workload distribution. Also, the RASA

scheduling heuristic produces better load balancing due to the inherent usage of

Min-Min and Max-Min (in alternate scheduling steps). However, the slowest ma-

chines remain idle (due to the inherent use of Min-Min heuristic) and the fastest

VMs remain overloaded when a small number of Cloudlets are scheduled by the

RASA (see Fig. 2.11). The employed alternate Min-Min and Max-Min mecha-

nisms (by the RASA) produce fair scheduling (for both the large and small size

Cloudlets). Similarly, the TASA technique produces minimal makespan among

the ten employed scheduling heuristics. However, most of the slower VMs (i.e.,

100 and 500 MIPS based) become idle due to the use of Min-Min in alternate

scheduling steps. On the other hand, the TASA overcomes the load imbalance

(caused by the Min-Min heuristic) to some extent with the help of inherent Suf-

ferage based mechanism (in alternate scheduling steps). The Sufferage scheduling

heuristic produces a better load-balanced schedule; however, very few slow VMs

(with 100 MIPS) remain idle. The results reveal that there is sufficient possibil-

ity of imbalance workload distribution (among VMs) even a scheduling heuristic

attains an improved ARUR value; (as presented in Section 2.5.3, ARUR-based

Investigation). It is empirically evident that most of the existing scheduling mech-

anisms produce a reduced makespan with higher throughput. However, often these

heuristics result in a load imbalanced scheduling.

For example, Sufferage produces a higher ARUR value of 0.863 (i.e., 86.3% resource

utilization) for the GoCJ workload (see Fig. 2.10). However, the scheduling by
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Balanced workload for VM categories. 

%age Load of VMs 1.07 % 5.33 % 6.85 % 9.13 % 11.42 % 13.70 % 15.98 % 36.53 % 

Figure 2.11: VM Category-wise %age Workload Distribution for GoCJ
Dataset.
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Figure 2.12: VM-wise %age Workload Distribution for GoCJ Dataset by Min-
Min Algorithm using 250 Cloudlets.
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Sufferage heuristic in this scenario does not utilize the VMs (with computer power

of 100 MIPS) i.e., those VMs remained idle. In addition to that, VMs with the

computing capability of 500 and 750 MIPS are underutilized too and the VMs

with 4000 MIPS were heavily loaded (for the schedule of 100 Cloudlets-based job

pool (see Fig. 2.11)). On the other hand, the VMs with the computing power

of 100 MIPS were being utilized by the Sufferage scheduling when the number

of Cloudlets in the job pool increased. Similarly, LBIMM heuristic attains 0.846

ARUR (i.e., 84.6% resource utilization); however, VMs with 100 MIPS remain

idle. Moreover, VMs with 4000 MIPS were observed heavily overloaded and all

the other VMs (in the employed experimental setup) are observed as underutilized

(for 100 Cloudlets-based scheduling). TASA technique produces 0.795 ARUR (i.e.,

79.5% resource utilization) for the GoCJ workload (see Fig. 2.10); however, VMs

with 100 MIPS remain idle (see Fig. 2.11). TASA utilizes the VMs with 100 MIPS;

however, most of these VMs (100 MIPS based) remained underutilized when the

number of Cloudlets, to be scheduled, are increased in the experiments. Min-Min

scheduling technique produces 0.52 ARUR (i.e., 52% resource utilization) for the

GoCJ workload (see Fig. 2.10). Fig. 2.11 depicts a load imbalance profile of the

workload distribution by the Min-Min scheduling heuristic. VMs with 100 MIPS

remain idle due to the imbalanced scheduling of the Min-Min. The VMs with

500 and 750 MIPS were assigned with Cloud jobs (i.e., Cloudlets); however, these

VMs were significantly underutilized (as shown in Fig. 2.11), when the number of

Cloudlets increases. Similarly, VMs with 1000, 1250, 1500, and 1750 MIPS also

remain underutilized for the Min-Min based scheduling. Contrarily, VMs with

4000 MIPS are heavily overloaded by Min-Min technique (see Fig. 2.11).

This empirical investigation reveals that for the workload distribution the schedul-

ing heuristics producing better ARUR value still result in load-imbalance on the

machine level. The imbalanced distribution of workload among the VMs within

the same VM category is observed too. Fig. 2.12 presents the workload assignment

among all VMs by the Min-Min scheduling heuristics (using 250 Cloudlets) for the

GoCJ workload. Fig. 2.12 highlights the imbalanced distribution of workload.

The underutilized VM categories are highlighted in orange color. The heavily
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overloaded or idle VM categories are highlighted with the yellow and green back-

ground, respectively. Similarly, the load imbalance of VMs within a specific VM

category is shown with a light-blue color. Despite balancing the workload assigned

to VM category with 1750 MIPS, it can be seen that the VM with ID 39 is heavily

overloaded (i.e.; 4.198% workload is assigned) and VMs with ID 41 and ID 45 are

underutilized with only 1.830 and 1.837% workload assignment, respectively (see

Fig. 2.12).

Higher resource utilization can be attained if all the VMs in Cloud exhibit ap-

proximately same makespan. The load balance execution guarantees that all the

computing resources (i.e., VMs) are being fully utilized and there are no idle

resources. Ultimately, the minimal makespan with maximal throughput will be

ensured. Load balanced execution in Cloud is a highly desirable aspect that will

ensure lower makespan in amalgamation with higher throughput, higher resource

utilization, and less energy cost. In summary, this empirical investigation high-

lights the following issues and potential research directions.

1. A balanced distribution of workload among computing resources be accom-

plished to achieve improved resource utilization with reduced makespan, and

increased throughput in Cloud computing;

2. Designing and implementing resource-aware holistic scheduling that not only

considers the application’s computing requirements but also contemplates

virtual machine level attributes to provide a higher ARUR and near-optimal

load balancing for the Cloud workload execution.



Chapter 3

Solution Methodology

This chapter presents the proposed works in the thesis. A new benchmark dataset

in the form of a GoCJ dataset for distributed and Cloud computing, and a novel

resource-aware scheduling mechanism (i.e., RALBA scheduler) that is capable of

mapping users jobs in Cloud environment in a balanced manner is proposed and

presented. In addition, a second novel cost-efficient and resource-aware scheduling

mechanism (i.e., SLA-RALBA scheduler) that provides jobs to virtual machines

mapping with an improved balance among execution time, cost and resource uti-

lization is also presented.

3.1 GoCJ Dataset

Datasets are becoming increasingly more pertinent when executing the perfor-

mance assessment of Cloud-scheduling, resource-allocation, and load-balancing

algorithms used for eagle-eyed examination of efficiency and performance in a

real-world Cloud. A minor change in the behavior and nature of the dataset is

reflected in the performance of scheduling and resource-allocation policies. As-

sessing the scheduling and allocation policies on Cloud infrastructures under a

varying load and system size is a challenging problem. Real Cloud workload is

hard to acquire for performance analysis and investigation due to the users’ data
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confidentiality and policies maintained by CSPs. In addition, using real testbeds

limits the experiments to the scale of the testbed. Hence, testing the accuracy

performance with real-world datasets is crucial in the field of research, and syn-

thetic data does not ally represent an actual dataset [63]. The most appropriate

alternative is to make the investigation in a simulation environment with a load

of varying behavior in the Cloud environment. For Cloud computing research, it

is valuable to formulate and ensure a widespread availability of realistic datasets

that show how resourcefully the Cloud addresses the user requirements.

The contemporary state-of-the-art has been scrutinized to explore a real work-

load behavior in Google cluster traces [88–91, 93] and MapReduce logs from the

M45 supercomputing cluster [92]. Liu and Cho analyzed large-scale Google clus-

ter traces of 29-days to examine the machine properties, workload behavior and

resource usage [88]. The analysis affirms that the majority of the jobs execute for

fairly a short duration of fewer than 15 min, while a few jobs execute over 300 min.

The median length of a job in Google cluster traces is witnessed as approximately

3 min. Furthermore, it establishes the fact that approximately two-thirds of the

jobs execute for less than 5 min and approximately 20% of the jobs execute for less

than one minute. It is found that most jobs in Google cluster traces are shorter

length. The shorter jobs are generally used for test runs on Google cluster [88].

Likewise, the MapReduce logs of the M45 supercomputing cluster presented in

[114] is also scrutinized. The MapReduce logs for the duration of 10 months (i.e.,

Hadoop logs from April 25, 2008, to April 24, 2009, except logs from Nov 12, 2008,

to Jan 18, 2009) have been released by the Yahoo. It is shown that most of jobs

(i.e., 95% of the jobs) complete the execution within 20 min, and approximately

4% of jobs take up to 30 min [114] to execute.

The main contribution of GoCJ dataset is to introduce a realistic Google Cloud

Jobs dataset based on Google Cloud infrastructure as a benchmark for Cloud-

scheduling researchers. This data descriptor is presented to address the research

issue of ensuring the public availability of a realistic dataset that satisfies the need

for researchers in performance analysis of Cloud infrastructure. A sample dataset

(with a small number of jobs) based on jobs trend behavior in Google cluster traces
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Table 3.1: Description of GoCJ Dataset

Feature Description

Subject area Computer Science, Cloud Computing

Type of data Text files, Excel files

Acquisition Analysis of Google cluster traces [88–91, 93].

Generation GoCJ is created using Monte Carlo simulation

Availability Online available on Mendeley [94]

Articles GoCJ is used in research [50, 52, 96, 97, 116–120]

is formulated and provided to the GoCJ dataset generator, which simulates the

desired dataset comprised of any required number of jobs. The proposed GoCJ

is used in [50, 62, 96] for performance analysis of several load-balancing Cloud

schedulers. The value and importance of the GoCJ dataset can be enumerated as

follows:

1. The GoCJ dataset provides a reflection of real workload behavior as per-

ceived in Google cluster traces [88–93] and MapReduce logs [92] from the

M45 supercomputing cluster, so it has more significance and usefulness for

researchers in the scheduling of cluster and Cloud-based applications;

2. The GoCJ dataset can serve as an alternative to benchmark workload for

scheduling and resource-allocation mechanisms using realistic HPC jobs in

Cloud computing.

3.1.1 GoCJ Overview

The GoCJ dataset is provided as a supplementary data in text and Excel file for-

mats in amalgamation with the two dataset generator files: 1) an Excel worksheet

generator, and 2) a Java tool generator. Each row in the text file describes the

size of a specific job in terms of MIs. The Monte Carlo simulation method [115] is

employed to generate the dataset comprised of any required number of jobs. The

specification of the GoCJ dataset is presented in Table 3.1. The GoCJ dataset,
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Figure 3.1: The Composition of GoCJ Dataset.

stored in a Mendeley Data repository, is comprised of 21 text files. Each dataset

file is named as “GoCJ Dataset XXX.txt”, where XXX is the number of jobs in

the file i.e., “GoCJ Dataset 100.txt” has the sizes of 100 jobs. Each text file con-

sists of a set of rows, where each row has a numeric value presenting the size of

a job in terms of MI. Job completion time for GoCJ dataset follows a long-tailed

distribution (with 90% of the jobs completing on average within 1.6 min). The

longest-executing job witnessed in the dataset lasts up to 15 min (i.e., 6% of the

jobs execute for less than 5 min and 4% of the jobs execute for 15 min). The av-

erage size of a job in the GoCJ dataset is 5 min. Fig. 3.1 displays ratios and sizes

of jobs distribution in GoCJ dataset in terms of percentage and MIs, respectively.

3.1.2 GoCJ Dataset Method

In this section, the data acquisition for input dataset and the method of generating

the GoCJ dataset is described in detail. In addition, the complexity of and data

distribution in GoCJ dataset is also presented.

3.1.2.1 Input Dataset

The Monte Carlo simulation method is used to generate the GoCJ dataset. A

sample input dataset is formulated based on workload behavior in Google cluster
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traces, which is input into the Monte Carlo simulation. The composition of jobs

in the simulated GoCJ dataset is generated based on the job sizes in the input

dataset.

Based on the analysis of [88–91, 93], a GoCJ realistic data set is generated using

the bootstrapped Monte Carlo (MC) simulation method [115]. Instead of Random

Number Generation (RNG), the input dataset is repeatedly sampled by selecting

one of the data points from the input dataset in bootstrapping [115]. A list of

50 different-size jobs (i.e., shown in Fig. 3.2) are identified and input into MC

bootstrapping as the input dataset. Each job size in the dataset is treated with

equal probability in repeated sampling by bootstrapping. The average power of

machine in the distributed computing environment for finding job sizes is assumed

as 1000 Million Instructions Per Second (MIPS). The majority of the smaller

jobs in Google-like realistic dataset (i.e., 90% of jobs) execute for up to 1.6 min.

However, the longest-executing jobs in the GoCJ dataset execute for up to 15

min (i.e., 900,000 MIs / 1000 MIPS = 900 s = 15 min). The sizes of jobs in

the GoCJ dataset is presented in terms of MIs instead of ETC as used in other

available datasets [24, 98]. The job size is calculated from the ETC of the job,

using the following relationship, where Job MI presents the size of job in MIs,

Machine MIPS is the power of computing machine in MIPS, and ETC is the

expected time to complete a job in seconds [50]. The job size can be calculated

using Equation 3.1.

Job MI = Machine MIPS × ETC Seconds (3.1)

The converse of Equation 3.1 is to determine the ETC of a job, which is presented

[50] as:

ETC Seconds =
Job MI

Machines MIPS
(3.2)

The job sizes in HCSP instances [95], GWA-T traces [99], ETM datasets [98],

Facebook Hadoop workload [100], and Yahoo cluster traces [102] are presented in

terms of ETC. On the other hand, the composition of the input dataset is presented

in Fig. 3.2 (which is derived using Equation 3.1). Fifty different job sizes are
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Figure 3.2: Sizes of Jobs in Input Dataset for GoCJ (in MIs)..

identified based on the analysis of Google cluster traces with an equal probability

of occurrences in the desired GoCJ dataset. Using Equation 3.1 by considering

the computing power of machine as 1000 MIPS and the ETC of jobs (derived from

workload behavior studied in Google Cloud infrastructure [88–91, 93]), the input

dataset is created and presented in Fig. 3.2.

3.1.2.2 GoCJ Dataset

The dataset is generated by bootstrapped MC simulation using an Excel worksheet

(as shown in Fig. 3.3). The input dataset is input in column C from cell C1

through C50, highlighted with a yellow background in Fig. 3.2. The individual

probability of occurrence of each job is placed in the corresponding row of column

A (i.e., from cell A1 through A50). Congruently, the cumulative probability of

each job is placed in column B from cell B1 through B50. Therefore, a data table

(i.e., from cell B1 through C50) is generated where each job size in column C

is referenced by a cumulative probability in column B. As presented in column

I in the worksheet, uniform RNG is used to generate a random number among

the indices of job sizes in the data table. Now, a built-in function VLOOKUP in

Excel is used to create the GoCJ dataset based on the input dataset provided in

column C. The VLOOKUP function inputs the generated random number (i.e.,

in the corresponding row of column E), and the data table (i.e., from cells B1
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through C50). Then, VLOOKUP searches for the entry in the data table based

on the input random number (i.e., search in cumulative probabilities in column B)

and returns the corresponding job-size entry to store it in column F, highlighted

with a green background as shown in Fig. 3.2. The VLOOKUP-based formula

used to find a job size is as follows:

F1 = V LOOKUP (E1, $B$1 : $C$50, 2) (3.3)

The GoCJ dataset with the specified number of jobs can be created by extending

the formulas in cells E1 and F1 by copy/paste to the row equal to the desired

number of jobs in the dataset.

3.1.2.3 GoCJ Dataset Tool

An automated dataset generator program is provided using Java programming.

The algorithm is presented as Algorithm 3.1, which presents the formal algorithm

for creating a dataset as discussed in Section 3.1.1. The GoCJ generator performs

the necessary initialization (lines 1–4). cPer variable presents the cumulative per-

centage of probability for each job in the input dataset to occur in the simulated

dataset, jobSize is the size of the job to occur in the simulated dataset, and jList

is the list of jobs finally produced in the simulated dataset. Afterward, the input

dataset from a text file named “Original Dataset” is read and resided in buffer-

Reader (in lines 5–6). Line 5 reads all the job sizes in the input dataset derived

from the Google cluster traces. A while-loop is used to copy the sample job sizes

from bufferReader to fill the dataTable. The dataTable contains the job sizes in

input dataset along with its cumulative probability (i.e., lines 7–10 of Algorithm

3.1). Line 9 maps the cumulative probability of each job in the dataTable. The

second while-loop is used to produce the GoCJ dataset with the desired number

of jobs. The job size produced in each iteration of the loop (i.e., lines 12–15)

is stored in a job list (i.e., jList variable). To scrutinize the complexity and ef-

ficiency of the GoCJ generator, N number of desired jobs are considered in the

GoCJ dataset. As mentioned in Section 3.1.2.1, the average computing power of
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Figure 3.3: GoCJ Excel Worksheet Generator.

a machine that is used to generate job sizes in the input dataset is 1000 MIPS.

Algorithm 3.1 inputs two parameters; first num is desired number of jobs in the

simulated dataset and second is the Original Dataset with a fixed number of jobs

(i.e., 50 jobs). Therefore, the first while-loop in Algorithm 3.1 iterates for a fixed

number of times (i.e., equal to the number of job sizes in the input dataset). On

the other hand, the second while-loop iterates till N that is the desired number of

jobs in the simulated dataset. The computational complexity of GoCJ generator

is linear or O(N ) depending only on the desired number of jobs in the simulated
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Algorithm 3.1: GoCJ Generator

Input: num - desired number of jobs in dataset,
Original DataSet - file of original dataset sample
Output: jList - list of job sizes in the desired dataset

1 cPer = 0
2 jobSize = 0
3 jList = Null
4 dataTable < cPer, jobSize >= Null
5 fileReader = readFile(Original DataSet)
6 bufferReader = read(fileReader)
7 while bufferReader is Not Empty do
8 jobSize = long.parseLong(bufferRedear.readLine())
9 dataTable.add(cPer,jobSize)

10 cPer = cPer + 2

11 a = 1
12 while num ≥ a do
13 rand = Random.nextInt(100)
14 jList.add((rand Mod 2)?dataTable.get(rand) : getJobSize(rand))
15 a + +

16 return jList

dataset. Due to the linear complexity of GoCJ generator, it will not create any

overhead even for a dataset creation with a large number (N ) of jobs.

3.1.3 Availability of GoCJ Dataset

To address the research question 1, the GoCJ dataset is kept publically available

on following two repositories since September 26, 2018: 1) Mendeley Repository

with DOI: 10.17632/b7bp6xhrcd.1 1. 2) MDIP Data in Supplementary Material.

The source code of the given algorithm in Java program is also available on Mende-

ley along with the GoCJ dataset files and provided with the supplementary files

as well. One Excel file, named “GoCJ Dataset Monte Carlo.xlsx”, is also placed

along with the text files in the dataset. This Excel file can be used to generate a

GoCJ dataset comprised of the desired number of jobs. New dataset instance can

be created by copying any worksheets in the “GoCJ Dataset Monte Carlo.xlsx”

1https : //data.mendeley.com/datasets/b7bp6xhrcd/1
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Figure 3.4: Ratios of Jobs Distribution in the GoCJ Dataset.

Excel file, and then extending the formulas in column E and F by copy/paste, as

discussed.

3.1.4 GoCJ Data Distribution

To test the compliance of the data distribution trend in the input dataset to the

simulated dataset produced by the GoCJ generator, the covariance statistical test

is performed. The average data distribution of 19 GoCJ dataset files is determined

and its covariance with the input dataset is calculated to find the correlation of

data distribution. The covariance of the input dataset to the average simulated

dataset is 2.49, demonstrating that both the original and simulated datasets are

positively dependent. Furthermore, the ratios of job-size distribution are also pre-

sented in Fig. 3.4 to highlight the job distribution trends in original and simulated

datasets. Another statistical measure that displays the data distribution based on

five-number summary (i.e., minimum, first quartile, median, third quartile and

maximum) is boxplot visualization. The five-number summary for input datasets

and ten sample datasets produced using GoCJ generated is determined. To reflect

the job-size trends in the original and simulated dataset, a boxplot visualization

is shown in Fig. 3.5. The boxplot presents the median of job sizes in the original,
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Figure 3.5: Boxplot Visualization of Jobs Distribution in Input and Generated
GoCJ Datasets.

and ten simulated GoCJ datasets which are 92,000, 91,000, 87,000, 89,000, 95,000,

93,000, 93,000, 93,000, 91,000, 93,000, and 93,000 MIs, respectively. These job

sizes belong to the medium job sizes as shown in Fig. 3.1 and 3.2. However, the

minimum and maximum job sizes in both original and simulated GoCJ datasets

are same as 15,000 and 900,000 MIs, respectively. Similarly, the first quartile and

third quartile of original and simulated GoCJ datasets belongs to a category of

medium- and large-size jobs as presented in Fig. 3.1. Thus, the boxplot visual-

ization proves that the data distribution in the simulated GoCJ datasets complies

with the data distribution in the input dataset in the same manner.

3.2 Resource-Aware Load Balancing Algorithm

(RALBA)

This section presents a detailed overview of the proposed RALBA scheduling

heuristic. The system architecture, overall system and performance model, al-

gorithm, computational complexity, and overhead analysis are presented in this

section.
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3.2.1 Overview

RALBA is a resource-aware load balancing algorithm that is comprised of two

sub-schedulers: Fill and Spill. Fig. 3.6 presents the RALBA based Cloud com-

puting system architecture. A renowned simulator CloudSim [1] is employed to

evaluate the performance of the proposed RALBA scheduler. Cloudlet is used as

a synonym for the job in CloudSim simulator. Physical and virtual instance layers

provide a foundation for the delivery of IaaS and PaaS to the Cloud users [1].

The computing power of a Cloud datacenter is represented as a collection of phys-

ical host machines along with the storage servers at the physical instance layer.

These resources are transparently managed by harnessing the virtualization con-

cept to provide dynamic sharing of computing and storage resources at the virtual

instance layer. A Cloud resource manager maintains the track and records the

status of VMs in the virtual instance layer. The resource manager is accountable

for creation, termination, and migration of VMs when required. Cloud resource

manager provides to RALBA the information pertaining to the available VMs and

their computing capabilities. To utilize the VMs for their full capacity, a resource-

aware scheduler is required on top of the virtual instance layer for a balanced

distribution of Cloudlets among VMs. The system accessibility layer provides a

user-friendly interface for the submission of HPC based Cloudlet instances to the

Cloud. To improve resource utilization and balanced job scheduling, we propose

RALBA on top of the virtual instance layer (as shown in Fig. 3.6). RALBA system

and performance model are presented using mathematical expressions. The basic

definitions, terminologies, and the notations used in the mathematical expressions

are listed in the Symbols section of the thesis.

3.2.2 System Architecture

RALBA is based on batch dynamic scheduling technique wherein a batch of

Cloudlets is formulated and a balanced mapping of Cloudlets is performed. The

system architecture of RALBA is depicted in Fig. 3.7. RALBA comprises of two
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Figure 3.6: Cloud Computing System Architecture with RALBA.

sub-schedulers i.e., Fill and Spill schedulers. Fill Scheduler performs Cloudlet to

VM allocation via considering the computing share of VMs. Fill scheduler se-

lects VMj with Largest VMShare and determines maxPCloudletV Mj for VMj.

The candidate Cloudlet to VM allocation is performed and VMSharej of VMj

is modified after allocation of the Cloudlet. Fill scheduler repeats the process of

Cloudlets mapping until there does not exist VMj with non-empty RPCloudletj

or the CLS becomes empty. Spill scheduler performs Cloudlets to VMs alloca-

tion based on EFT of candidate Cloudlet. After Fill scheduler, RALBA system

switches to the Spill scheduler to allocate the remaining Cloudlets of CLS. The

maxCloudlet is selected and allocated to the specific VM that produces EFT for

this maxCloudlet. On candidate Cloudlet—VM allocation, the completion time
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Figure 3.7: RALBA System Architecture.

of the VM is updated. Cloudlet to VM allocation is repeated until CLS becomes

empty.

The computation share based allocation of jobs to VMs by Fill scheduler, enables

RALBA to produce a load-balanced schedule with improved resource utilization

in amalgamation with improved makespan and throughput. This is evident in the

performance assessment of RALBA technique against existing scheduling in Cloud

computing (presented in Section 5.1 of Chapter 5).

3.2.3 System Model

The basic definitions, terminologies, and the notations used in the in system model

of RALBA are listed in Table 3.2. A unified Cloud model is formed to delineate the

performance of RALBA based Cloudlet scheduling. VMS={VM1,VM2,...,VMM}

represents a set of VMs in a Cloud, where M is the total number of VMs and

a specific VM can be represented as VMj (1 ≤ j ≤ M). VMS represents the

computing resources responsible for the execution of Cloudlets. The set of cloudlets
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Table 3.2: Preliminary Notations used in RALBA System Model.

Notations Descriptions

VMS Set of VMs in a datacenter.

vmCrMap Set of sorted VMs with computing ratio.

vmCrMapj Computating Ratio of VMj.

CLS Set of all cloudlets (to be scheduled).

Cloudleti.MI Size of Cloudleti in MI.

VMj.MIPS Computing power of VMj in MIPS.

RPCloudletj Remaining possible cloudlets (may map on VMj).

maxPCloudletV Mj Largest cloudlet in RPCloudletj (mapped to VMj).

minCloudlet Smallest sized Cloudlet (to be scheduled).

maxCloudlet Largest sized Cloudlet (to be scheduled).

VMShare Set of sorted VMs with computing share.

VMSharej Computing share of VMj (in terms of MI).

Largest VMShare Largest computing share for any VM in VMS.

Cloudlet CT ij Expected completion time of Cloudleti on VMj.

VM CTj Completion time of VMj.

Cloudlet EFTi Earliest finish time of Cloudleti.

Fill Scheduler Maps Cloudleti to VMj based on VMSharej.

Spill Scheduler Maps Cloudleti to VMj based on Cloudlet EFTi.

is presented as CLS={Cloudlet1, Cloudlet2,...,CloudletN}, where N is the total

number of Cloudlets and a specified Cloudlet can be represented as Cloudleti (1 ≤

i ≤ N). A resource manager in Cloud is responsible to provide the computation

ratios (vmCrMap) of all VMs to RALBA [50], where vmCrMapj can be computed

as:

vmCrMapj =
VMj.MIPS∑M
k=1 VMk.MIPS

(3.4)

vmCrMap is used to maintain a balanced workload allocation to VMs and assists

in calculating the computing share of all VMs (VMShare). The VMSharej [50]



Solution Methodology 70

of VMj is mathematically expressed as:

VMSharej =
N∑
i=1

Cloudleti.MI × vmCrMapj (3.5)

Fill scheduler allocates Cloudlet to VM based on VMShare. The RPCloudletj

of a specified VMj can be computed as:

RPCloudletj = {Cloudlet|Cloudlet ∈ CLS,Cloudlet ≤ VMSharej} (3.6)

maxPCloudletV Mj in each scheduling decision of Fill scheduler can be computed

as:

maxPCloudletV Mj = max
∀p∈RPCloudletj

Size(p) (3.7)

In addition, on each scheduling decision of Fill and Spill schedulers, the candidate

Cloudlet is removed from the list of Cloudlets with Equation 3.8 [50]:

CLS =

CLS −maxPCloudletV Mj, Using Fill Schduler

CLS −maxCloudlet, Using Spill Scheduler

(3.8)

minCloudlet and maxCloudlet are computed using Equation 3.9 and Equation

3.10, respectively.

minCloudlet = min
∀c∈CLS

Size(c) (3.9)

maxCloudlet = max
∀c∈CLS

Size(c) (3.10)

On Cloudlet—VM allocation, VMSharej of VMj is modified by Fill Scheduler

[50] as:

VMSharej =

VMSharej − Cloudlet.MI, Using Fill Scheduler

Switch to Spill Scheduler, Otherwise

(3.11)

Fill scheduler selects the VM with largest VMSharej in each scheduling deci-

sion.The Largest V MShare. In each scheduling decision of Fill scheduler, the
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VM with largest VMSharej is selected. The Largest V MShare can be com-

puted [50] as:

Largest V MShare = max
∀j∈{1,2,3,..,M}

(VMSharej) (3.12)

Spill scheduler uses Cloudlet EFTi to allocate the remaining Cloudlets to VMs.

The Cloudlet EFTi of a specified Cloudleti is computed using the mathematical

relation:

Cloudlet EFTi = max
∀j∈{1,2,3,..,M}

(Cloudlet CTij) (3.13)

where Cloudlet CTij is the expected completion time of Cloudleti on VMj. The

Cloudlet CTij is mathematically defined and expressed [50] as:

Cloudlet CTij = (
Cloudleti.MI

VMj.MIPS
) + (VM CTj) (3.14)

The VM CTj is the completion time of VMj for already assigned workload prior

to the allocation of Cloudleti and computed [50] as:

VM CTj =
N∑
i=1

Cloudleti.MI × F [i, j]

VMj.MIPS
(3.15)

Where F[i, j] is a Boolean variable that determines the allocation of Cloudleti to

VMj and represented in Equation 3.16.

F [i, j] =

1, Cloudlet i is assigned to VMj

0, Otherwise

(3.16)

3.2.4 Performance Model

This study evaluates RALBA based scheduling using makespan, throughput, and

resource utilization performance metrics. Mathematical presentation of makespan

is [35, 37]:

Makespan = max
∀j=1,2,3,...,M

(VM CTj) (3.17)
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Throughput definition is presented in Equation 3.18. A higher throughput value

indicates high workload execution per unit time.

Throughput =
N

Makespan
(3.18)

where, N represents total Cloud jobs executed. ARUR [35, 37] is a measure to

present the overall utilization of Cloud (expressed in Equation 3.19). The value

of ARUR remains between 0 and 1. The higher ARUR value represents higher

resource utilization in Cloud.

ARUR =

∑M
j=1 VM CTj

M

Makespan
(3.19)

3.2.5 RALBA Algorithm

This section elaborates the proposed scheduling algorithm RALBA (shown in Al-

gorithm 3.2) with its two primary modules i.e., Fill Scheduler (presented in Algo-

rithm 3.3) and Spill Scheduler (shown in Algorithm 3.4). The data items harnessed

in RALBA, Fill Scheduler, and Spill Scheduler are illustrated in the Symbol sec-

tion of the thesis. List of Cloudlets and list of all VMs computation ratio (provided

Algorithm 3.2: RALBA

Input: vmCrMap - set of VMs with computation ratio,
cloudletList - list of cloudlets c1, c2, . . . , cn
Output: cloudletV mMap - set of cloudlets to VMs mapping

1 cloudletV mMap = Null
2 cloudletV mMap = FillScheduler(vmCrMap,cloudletList)
3 vmList = getVmList(vmCrMap)
4 if cloudletList.size() ≥ 1 then
5 cloudletV mMap =SpillScheduler(vmList,cloudletList,cloudletV mMap)

6 return cloudletV mMap

by Cloud resource manager) are used as input parameters in RALBA (Algorithm

3.2). To perform mapping of Cloudlets to VMs, RALBA invokes Fill scheduler

(line 2 of Algorithm 3.2) and then invokes the Spill scheduler (line 5 of Algorithm

3.2).
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Algorithm 3.3: FillScheduler

Input: vmCrMap - set of VMs with computation ratio ,
cloudletList - list of cloudlets c1, c2, . . . , cn
Output: cloudletV mMap - set of cloudlets to VMs mapping

1 totalLength = 0
2 newV Share = 0
3 cloudletV mMap = Null
4 vShareMap < v, share >= Null
5 forall cloudlet in cloudletList do
6 totalLenght = totalLenght + cloudlet.getCloudletLength()

7 forall v in vmList do
8 vShareMapv = totalLenght * vmCrMapv

9 while getLargeShare(vShareMap) ≥ getMinCloudlet(cloudletList) do
10 v = getLargeShareV m(vShareMap)
11 cloudlet = getMaxPCloudletV m(v,cloudletList)
12 cloudletV mMap.add(cloudlet,v)
13 newV Share = vShareMap.get(v)− cloudlet.getCloudletLength
14 vShareMap.modify(v,newVShare)
15 cloudletList.remove(cloudlet)

16 return cloudletV mMap

Algorithm 3.4: SpillScheduler

Input: cloudletList - list of cloudlets c1, c2, . . . , cn,
vmList - list of VMs v1, v2, . . . , vm,
cloudletV mMap - set of cloudlets to VMs mapping by FillScheduler
Output: cloudletV mMap - set of cloudlets to VMs mapping

1 while cloudletList.size() ≥ 1 do
2 cloudlet = getMaxCloudlet(cloudletList)
3 v = getV mWithEFT (cloudlet,vmList)
4 cloudletV mMap.add(cloudlet,v)
5 cloudletList.remove(cloudlet)

6 return cloudletV mMap

Fill Scheduler (Algorithm 3.3) performs the necessary initializations (lines 1–4)

and computes the totalLength of all the Cloudlets in the submitted batch (lines

5–6). Afterward, the computing share of each VM (vShareMapv) is calculated

(lines 7–8 of Algorithm 3.3) by using Equation 3.5. A while-loop (lines 9–15 of

Algorithm 3.3) is used to select the VM with the largest computation share and to

determine the maxPCloudletVm for scheduling. On each scheduling decision (lines

13–15 of Algorithm 3.3), the candidate Cloudlet is removed from the cloudletList
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and the vShareMapv of the candidate VM is modified (using Equation 3.11). This

process (lines 9–15 of Algorithm 3.3) is repeated until the smallest size Cloudlet

becomes greater than the largest vShareMapv in vShareMap.

After Cloudlets–VMs allocation by the Fill scheduler, the Spill Scheduler (Al-

gorithm 3.4) is employed for the allocation of the remaining Cloudlets to VMs.

While-loop (in line 1 of 3.4) allocates the remaining Cloudlets (in descending or-

der of Cloudlets size) to VMs based on EFT. The maxCloudlet is selected on line

2 and the VM producing Cloudlet EFT is determined in line 3. This candidate

Cloudlet to VM allocation is performed in line 4 within each loop-iteration. At each

scheduling decision, the candidate Cloudlet is removed from the cloudletList and

the VM CTj of VMj is modified (using Equation 3.15). This process is repeated

until cloudletList becomes empty. RALBA produces a load-balanced schedule in

the form of cloudletVmMap.

The source code of the RALBA is available on the Bitbucket Repository1 in a

project named prjRALBA 2.

3.2.6 Complexity and Overhead Analysis

This section delineates the complexity and overhead analysis of the scheduling

algorithms. To scrutinize the complexity of RALBA, we consider the total number

of N Cloudlets and the total number of M VMs in a Cloud data-center.

In worst-case, Fill scheduler selects a VM with largest VMShare in M number of

comparisons (as full list of VMs is iterated in worst case) and it determines max-

PCloudletVM in N comparisons (as full list of Cloudlets is iterated in worst case).

After Cloudlet—VM allocation, the vShareMapv is modified in vShareMap with

a maximum of M comparisons. The time complexity of Fill scheduler is O(M2.N);

where M << N on the real Cloud. On the other hand, Spill scheduler selects the

maxCloudlet from a sorted cloudletList and assigns to the VM producing EFT

for it. In worst-case, when N Cloudlets are scheduled by Spill scheduler, the time

2https : //bitbucket.org/RALBA18/ralba/src
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Table 3.3: Computational Complexity of Scheduling Algorithms [38, 39].

Algorithms Time Complexity

RALBA O(M2.n + M.N − n)

Sufferage O(M.N2)

MCT O(M.N)

Min-Min O(M.N2)

Max-Min O(M.N2)

RASA O(M.N2)

TASA O(M.N2)

RR O(N)

RS O(N)

Table 3.4: Overhead Analysis of Scheduling Algorithms (N times of RR).

Algorithms RS MCT RALBA Max-
Min

RASA Min-
Min

TASA Sufferage

Overhead 1.01 1.24 1.43 2.05 3.45 6.40 11.11 13.36

complexity of Spill scheduler is O(M.N). If n is the number of Cloudlets sched-

uled by Fill scheduler, then remaining N − n Cloudlets will be scheduled by Spill

scheduler. The computational complexity of RALBA becomes O(M2.n+M.N−n)

[50]. Table 3.3 provides the computational complexities of RALBA and the exist-

ing scheduling algorithms.

Furthermore, we profile the simulation code of RALBA and other existing schedul-

ing heuristics to collect the time overhead related to the scheduling decisions. RR

presents the minimal scheduling overhead against the other heuristics. Table 3.4

delineates the relative scheduling overhead in terms of complexity order (N times

of RR scheduling) from best to worst i.e., RS, MCT, RALBA, Max–Min, RASA,

Min–Min, TASA, and Sufferage.

The Sufferage scheduling algorithm has the most expensive time overhead among

the given set of algorithms. Considering the computational complexity (Table 3.3)

and the overhead analysis (Table 3.4), RALBA is promised to schedule jobs in a

scalable manner for large dataset.
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3.3 SLA and Resource-Aware Load Balancing

Algorithm (SLA-RALBA)

This section describes a comprehensive summary of the proposed SLA-RALBA

technique that is based on cost-efficient and resource-aware scheduling. The

overview, system and performance model, and algorithm of SLA-RALBA are pre-

sented. In addition, the discussion on computation complexities of SLA-RALBA

and existing SLA-aware scheduling algorithms.

3.3.1 Overview

SLA-RALBA is a cost-efficient load balancing algorithm comprises two sub sched-

ulers like in RALBA [50]: SLA-Fill and SLA-Spill schedulers.

Fig. 3.8 presents the SLA-RALBA based Cloud computing system architecture.

The user job is known as Cloudlet in CloudSim; a renowned simulator used in

this study. The virtual instance layers is hosted by physical instance layer that

provides a foundation for the delivery of SLA-aware computing services to the

Cloud users [45]. The Cloud datacenters are comprised of an assortment of physical

host machines and storage media at the physical instances layer. The computing,

communication and storage resources are provisioned on-demand in a scalable and

dynamic manner to the Cloud users in the form of VMs formulating the visual

instance layer. The resource manager, on the top of the virtualization layer, is

held responsible for creation, termination, and migration of VMs when required.

In addition, resource manager and Cloudlet scheduler allocate VMs as needed and

records the cost estimation of provisioned services. Therefore, resource manager

provides the information pertaining to the available VMs that are the computing

capabilities and the incurred gain cost of each VM. To ensure the utilization of

VMs with its full computing capacity and minimal execution cost, a cost-efficient

and resource-aware load balancer is required on top of the Cloud virtualization for

a balanced workload distribution.
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Figure 3.8: Cloud Computing System Architecture with SLA-RALBA.

A user-friendly interface is provided by system accessibility layer for the submission

of SLA-aware Cloudlets on Cloud. SLA-RALBA scheduler is proposed on top

of the SLA-aware virtualization to improve the resource utilization with a cost-

efficient and load-balanced schedule ensuring the minimal execution time and cost

(as shown in Fig. 3.8).

3.3.2 System Architecture

The system and performance model of proposed technique are presented using

mathematical expressions. For easily and better understanding, the majority of
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basic definitions and terminologies used in RALBA are repeated for the represen-

tation of SLA-RALBA.

The system architecture of SLA-RALBA is depicted in Fig. 3.9. SLA-RALBA is

comprised of two sub-scheduler i.e., SLA-Fill and SLA-Spill schedulers. SLA-Fill

scheduler performs Cloudlet to VM allocation via considering the computing share

of VMs. SLA-Fill scheduler selects VMj with Largest V MShare and determines

the maxPCloudlet for this VMj. The maxPCloudlet is checked for its SLA-type

(i.e., SLA-1, SLA-2, or SLA-3). If the maxPCloudlet is SLA-3, then the VM

with minEGain is determined for it. The maxPCloudlet is assigned to the VM

with minEGain and removed from the list of Cloudlets. The VMShare of the

VM with minEGain is also updated. If the maxPCloudlet is SLA-2, then the

SLA-2 suitable VM is determined for it. The maxPCloudlet is assigned to the

SLA-2 suitable VM and removed from the list of Cloudlets. The VMShare of

the SLA-2 VM is also updated. If the maxPCloudlet belongs to SLA-1, then

the maxPCloudlet is allocated to the VMj with Largest V MShare and removed

from the list of Cloudlets. The VMShare of VMj is updated accordingly. SLA-Fill

scheduler repeats the process of Cloudlets mapping to VMs until there does not

exist maxPCloudlet for any of the VM in the computing setup.

SLA-Spill scheduler performs Cloudlets to VMs allocation based on descending

order of Cloudlet sizes. The largest sized Cloudlet as maxCloudlet is selected and

it is checked for SLA-type. If the maxCloudlet is SLA-3, then the maxCloudlet

is allocated to the economical VM (like mapped by SLA-Fill scheduler) and it

is removed from the list of Cloudlets. If the maxCloudlet is SLA-2, then the

maxCloudlet is assigned to the SLA-2 suitable VM and it is removed from the list

of Cloudlets. If the maxCloudlet belongs to SLA-3, the maxCloudlet is assigned

to the VM producing EFT and it is removed from the list of Cloudlets. SLA-

Spill scheduler repeats the Cloudlets to VMs mapping until the list of Cloudlets

becomes empty.

As SLA-Fill scheduler allocates SLA jobs to VMs based on the computation share

of each VM, which ensures load balancing in terms improved resource utilization.
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This is evident in the performance assessment of SLA-RALBA technique against

existing SLA-aware schedulers (presented in Section 5.3 of Chapter 5).

3.3.3 System Model

The Cloud has a service manager responsible for providing a unified service to

the Cloud users over internet. The service manager knows the computation re-

sources on the Cloud and the services are delivered to the Cloud user by deploying

VMs in the datacenters. The Cloud system is comprised of a set of VMs that is

VMS={VM1,VM2,...,VMM}, where M is the number of VMs, VMj (1 ≤ j ≤M)

stands for VM No. j. The VMS is measured in terms of MIPS. However, the

Expected Gain (EG) per unit time is the Gain Cost (GC) of executing user re-

quest on a specific VMj on the Cloud. The user request on the Cloud is known

as a Cloudlet. The set of cloudlets submitted by users for execution with some

SLA levels is CLS={Cloudlet1, Cloudlet2,...,CloudletN}, where N is the number

of cloudlets, Cloudleti (1 ≤ i ≤ N) stands for Cloudet No. i. The Cloudlet is

measured in terms of MIs. Each Cloudlet in the CLS belongs to one of the three

SLA levels: SLA-1, SLA2, and SLA-3 as used in the [45]. The SLA-1 focuses only

on execution time, however, SLA-3 focuses only on execution cost of the Cloudlet.

SLA-2 is the combination of SLA-1 and SLA3, by considering both the execution

time and cost of the Cloudlet in scheduling.

The computation share of VMj is represented as VMSharej and mathematically

expressed in Equation 3.5. The list of remaining possible Cloudlets those could

be allocated to a particular VMj is represented as RPCloudletj and mathemati-

cally expressed in Equation 3.6. Largest possible Cloudlet for VMj in remaining

set of Cloudlets is represented as maxPCloudlet4VMj and can be determined

using Equation 3.7. The VMj with minEGaini for Cloudleti is determined using

Equation 3.20, where (Cloudleti.MI ≤ VMSharej):

minEGaini = min
∀j∈VMS

f(Cloudleti.EGainij) (3.20)
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Figure 3.9: SLA-RALBA System Architecture.
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The EGain of Cloudleti on a particular VMj is determined with following relation

[96].

Cloudlet.EGainij = VMj.ECost× Cloudleti.MI

VMj.MIPS
(3.21)

The most economic VMj [96] for Cloudleti is the virtual machine that produces

minimum cost to execute Cloudleti in the computing sytem.

mostEconomicVMi = min
∀v∈{1,2,3,..,M}

f(Cloudleti.EGainiv) (3.22)

VMSharej is modified in each step of SLA-Fill-scheduler using Equation 3.11.

SLA-Fill-scheduler selects the VMj with largest VMSharej in each scheduling

decision. The Largest V MShare is computed using Equation 3.12.

3.3.4 Performance Model

Earliest finish time of Cloudleti on any available VM is presented as Cloudlet EFTi

and mathematically defined using Equation 3.13. The completion time of Cloudleti

on VMj is presented as Cloudlet CTij and mathematically expressed in Equation

3.14. The VM CTj is the completion time of VMj that can be calculated using

Equation 3.15. Makespan is a performance measure of scheduling techniques that

is the completion time to execute the whole workload by a computing system. It

is known as the completion time of a VM/resource in the computing system that

finishes to execute all of its allocated jobs and get ready for next batch of jobs

to be allocated for execution. Makespan is mathematically expressed in Equation

3.17. The performance metric ARUR is calculated using Equation 3.19. The value

of ARUR lies between 0 and 1; the higher value of ARUR dipects higher resource

utilization. The total Gain Cost of particular VMj is presented as VM EGainj

and mathematically expressed in Equation 3.23 [96], followed by the Gain Cost of

the computing system presented as EGain and defined in Equation 3.24 [96].

VM EGainj =

Nj∑
i=1

Cloudlet.EGainij × F [i, j] (3.23)
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EGain =
M∑
j=1

VM EGainj (3.24)

Where F[i,j] is a boolean variable presented in Equation 3.16, and Cloudlet.EGainij

is the Gain Cost of Cloudleti on VMj.

3.3.5 SLA-RALBA Algorithm

The proposed SLA-RALBA load balancing technique is explained with its two pri-

mary schedulers in this section i.e., SLA-Fill Scheduler and SLA-Spill Scheduler.

The SLA-RALBA is presented in Algorithm 3.5. List of Cloudlets with its SLA

types are submitted by Cloud users as cloudSLAList. The Cloud resource manager

provides the list of all VMs computation ratio as input parameter to SLA-RALBA

scheduler. Scheduling SLA-based Cloudlets on VMs, SLA-RALBA invokes SLA-

Fill scheduler (line 2 of Algorithm 3.5), and then invokes the SLA-Spill scheduler

(line 5 of Algorithm 3.5). The necessary initialization is accomplished by SLA-Fill

Algorithm 3.5: SLA-RALBA

Input: vmCrMap - set of VMs with computation ratio,
cloudletSLAList - list of SLA-cloudlets c1, c2, c3, . . . , cn
Output: cloudletV mMap - set of cloudlets to VMs mapping

1 cloudletV mMap = Null
2 cloudletV mMap = SLA-FillScheduler(vmCrMap,cloudletSLAList)
3 vmList = getVmList(vmCrMap)
4 if cloudletSLAList.size() ≥ 1 then
5 cloudletV mMap =SLA-

SpillScheduler(vmList,cloudletSLAList,cloudletV mMap)

6 return cloudletV mMap

scheduler, and then computes the totalLength of all the SLA-based Cloudlets in

the submitted workload (lines 5—6 of Algorithm 3.6). Afterwards, the comput-

ing share (vShareMapv) of each VM is determined (lines 7—8 of Algorithm 3.6)

by using Equation 3.5. A while-loop (lines 9—22 of Algorithm 3.6) is used to

schedule the SLA Cloudlets on VMs based on computation share and the execu-

tion cost of the VMs in the computing system. On each scheduling decision, first
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Algorithm 3.6: SLA-FillScheduler

Input: vmCrMap - set of VMs with computation ratio ,
cloudletSLAList - list of cloudlets c1, c2, c3, . . . , cn
Output: cloudletV mMap - set of cloudlets to VMs mapping

1 totalLength = 0
2 newV Share = 0
3 cloudletV mMap = Null
4 vShareMap < v, share >= Null
5 forall cloudlet in cloudletSLAList do
6 totalLenght = totalLenght + cloudlet.getCloudletLength()

7 forall v in vmList do
8 vShareMapv = totalLenght * vmCrMapv

9 while cloudletSLAList.size() ≥ 1 do
10 v = getLargeShareV m(vShareMap)
11 cloudlet = getMaxPCloudletV m(v,cloudletList)
12 if cloudlet != Null then
13 if cloudlet is SLA-3 then
14 v = getVMWithMinEGain(cloudlet,vmList)

15 else if cloudlet is SLA-2 then
16 v = getSLA2SuitableVM(cloudlet,vmList)

17 cloudletV mMap.add(cloudlet,v)
18 newV Share = vShareMap.get(v)− cloudlet.getCloudletLength
19 vShareMap.modify(v,newVShare)
20 cloudletList.remove(cloudlet)

21 else
22 break while-loop

23 return cloudletV mMap

the VM with largest computing share (using Equation 3.12) is determined and

the maxPCloudletVm is selected (lines 10—11 of Algorithm 3.6) using Equation

3.7. If the maxPCloudletVm is of SLA-3 type, then the VM selection is revised

and the VmWithMinEGain is determined for maxPCloudlet to be mapped on it

(lines 13—14 and line 17 of Algorithm 3.6). If the maxPCloudletVm is of SLA-2

type, then the VM selection is revised and the SLA2SuitableVM is determined for

maxPCloudlet to be mapped on it (lines 15—16 and line 17 of Algorithm 3.6). If

the maxPCloudletVm is of SLA-1 type, the Cloudlet is mapped to the VM with

the largest computation share (lines 17 of Algorithm 3.6). On each scheduling

step, when the Cloudlet is assigned to a specific VM, then its computing share
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Algorithm 3.7: SLA-SpillScheduler

Input: cloudletSLAList - list of cloudlets c1, c2, c3, . . . , cn,
vmList - list of VMs v1, v2, v3, . . . , vm,
cloudletV mMap - set of cloudlets to VMs mapping by SLA− FillScheduler
Output: cloudletV mMap - set of cloudlets to VMs mapping

1 vm = Null
2 cloudlet = Null
3 while cloudletSLAList.size() ≥ 1 do
4 cloudlet = getMaxCloudlet(cloudletSLAList)
5 if cloudlet is SLA-3 then
6 vm = getMostEconomicVm(cloudlet,vmList)

7 else if cloudlet is SLA-2 then
8 vm = getSuitableVM(cloudlet,vmList)

9 else if cloudlet is SLA-1 then
10 vm = getVMWithEFT(cloudlet,vmList)

11 cloudletV mMap.add(cloudlet,vm)
12 cloudletSLAList.remove(cloudlet)

13 return cloudletV mMap

is modified (lines 18—19 of Algorithm 3.6) using Equation 3.11 and the Cloudlet

is detached from the list of Cloudlets to be scheduled (line 20 of Algorithm 3.6).

This scheduling process is repeated until no VM with a remaining computation

share is found to accept any Cloudlet for scheduling (in line 11 of Algorithm 3.6,

when the maxPCloudletVm is not found and Cloudlet is initialized with Null).

The SLA-Spill scheduler is engaged for the allocation of remaining Cloudlets to

VMs, immediately after SLA-Fill scheduler finishes its working. The while-loop

(line 3—12 of Algorithm 3.7) assigns the remaining Cloudlets to VMs in descend-

ing order of Cloudlets sizes. On each scheduling decision, the maxCloudlet is

determined (line 4 of Algorithm 3.7) and scheduled on VMs. If the maxCloudlet

is of SLA-3, then the maxCloudlet is scheduled on most economic VM (lines 5—6

and lines 11—12 of Algorithm 3.7). If the maxCloudlet is of SLA-2, then the max-

Cloudlet is scheduled on the suitable VM (lines 7—8 of Algorithm 3.7, provides

the tradeoff between execution time and execution cost). If the maxCloudlet is

of SLA-1, then it is allocated to the VM that produces earliest finish time for

it (lines 9—12 of Algorithm 3.7). On each scheduling step, the maxCloudlet is
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scheduled on a candidate VM and it is detached from Cloudlets to be scheduled.

This scheduling process is repeated until cloudletSLAList is empty.

3.3.6 Complexity of SLA-RALBA Algorithm

Let M be total number of machines in computing setup, N be total number of

SLA-based jobs submitted in Cloud, and n be the number of cloudlets scheduled by

SLA-Fill scheduler of SLA-RALBA. The time complexities of SLA-Fill Scheduler

(i.e., Algorithm 3.6) and SLA-Spill scheduler (i.e., Algorithm 3.7) are O(M2.n) and

O(M.N–n), respectively. Therefore, the overall time complexity of SLA-RALBA

is O(M2.n) [96], where M << N on real Cloud.



Chapter 4

Experiments

This chapter presents the experimental environment and the workloads employed

for the experimentation of proposed RALBA and SLA-RALBA techniques. The

simulation setup and the employed two benchmark datasets (i.e., HCSP and GoCJ)

used for the VM-level empirical investigation of RALBA against eight existing

state-of-the-art scheduling algorithms are also presented.

4.1 Simulation Environment

This section sheds a light on the simulation setup and delineates two benchmark

workloads employed in this study. The extensive evaluation of scheduling tech-

niques and resource allocation policies on real Cloud (with a varying heteroge-

neous, load and system size) is a challenging problem. The use of real testbeds

restrict the experiments to the scale of the test Cloud environment. The Cloud

computing model is based on a pay-per-use model, thus repeatable experiments

on a real Cloud may incur a high monetary cost. Therefore, an ideal alternative

to evaluate resource management related Cloud policies is to use a simulation en-

vironment that enables Cloud developers to conduct experiments by employing

the desired and varying configurations related to computing infrastructure and

dataset (i.e., Cloud jobs). In this work, the extensive investigation of scheduling

86
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Table 4.1: Configuration of Simulation Setup for RALBA Evaluation.

Parameters Details
Simulator/version CloudSim version 3.0.2.
Host machines power 04 Dual-core (4000 MIPS), and 26 Quad-core

(4000 MIPS)
No. of host machines 30
Host machine memory 16384 MBs each
No. of VMs 50 Heterogeneous VMs (as shown in Table 4.2)
No. of Cloudlets 100, 150, 200, 250, 300, 350, 400, 450, 500, 550,

600, 650, 700, 750, 800, 850, 900, 950, 1000

techniques using different instances of benchmark datasets with a varying hetero-

geneity of computing environment is performed using a renowned Cloud simulator

CloudSim (version 3.0.2) [1].

4.1.1 Experimental Setup for RALBA Evaluation

The performance analysis of RALBA technique is conducted on a machine equipped

with Intel Core i3-4030U Quad-core processor (having 1.9 GHz clock speed) and

04 GBs of main memory. Table 4.1 illustrates the configuration detail for the em-

ployed simulation environment. All experiments are performed by using 50 VMs,

hosted on 30 host machines within a datacenter. Table 4.2 presents the overall

statistics of the VMs and their computing power in terms of Millions of Instruc-

tions Per Second (MIPS). As shown in Table 4.2, the slowest and fastest VMs have

the computing power of 100 and 4000 MIPS, respectively.

4.1.2 Experimental Setup for VM-level Load Balancing

The experiments are performed on a computing machine equipped with Intel Core

i3-4030U Quad-core processor (having 1.9 GHz clock speed) and 4 GBs of main

memory. Table 4.3 presents the configurations for the employed simulation setup.

The experiments are conducted with 16 heterogeneous VMs, hosted on 30 host

machines within 1 data-center. The computing powers of VMs are assigned in
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Table 4.2: Heterogeneous VMs used for RALBA Evaluation.

Powers in MIPS Number of VMs

100 07

500 07

750 06

1000 06

1250 06

1500 06

1750 06

4000 06

Table 4.3: Simulation Setup for VM-Level Load Balancing.

Parameters Description

Simulation/version CloudSim version 3.0.2

Host machines 04 Dual-core and 26 Quad-core

Power of each core 4000 MIPS

Total host machines 30 Host machines.

Host machines memory 16,384 MBs each

Total virtual machines 16 Heterogeneous VMs (as shown Fig. 4.1)

ascending order of their VMID. Fig. 4.1 shows the computing powers of VMs (in

terms of MIPS) used for VM-level load balancing of RALBA.

4.1.3 Experimental Setup for SLA-RALBA Evaluation

The performance analysis of the proposed SLA-RALBA is accomplished on a ma-

chine equipped with Intel Core i3-4030U Quad-core 1.9 GHz processor and 04GBs

main memory. The configuration of the simulation environment is presented in Ta-

ble 4.3. It is comprised of host machines in the Cloud datacenter which virtualized

the computing resources in the form of VMs. All the experiments are conducted

with 30 VMs hosted on 30 host machines within a datacenter. Table 4.4 shows the

information of VMs (i.e., the computing power in terms of MIPS and execution
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GoCJ c-lohi c-hilo s-lohi s-hilo i-lohi i-hilo

VM-1 100 21 605 19 378 74 396

VM-2 150 21 634 19 461 90 447

VM-3 200 22 643 20 543 90 543

VM-4 500 27 650 23 585 93 543

VM-5 550 29 794 24 639 100 606

VM-6 750 30 809 40 640 103 621

VM-7 800 32 814 48 666 118 622

VM-8 1000 37 819 49 678 122 641

VM-9 1050 43 821 52 738 140 720

VM-10 1250 52 833 68 854 192 741

VM-11 1300 55 833 73 864 214 966

VM-12 1500 102 883 149 1103 226 980

VM-13 1550 141 906 184 1707 353 1610

VM-14 1750 167 933 805 1815 375 1630

VM-15 1800 641 1488 1375 1881 2795 1944

VM-16 4000 7000 3000 3000 2000 3000 3000

1

10
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1000
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M
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Figure 4.1: Heterogeneous VMs in Computing Setup for VM-level Load Bal-
ancing.

cost in terms of unit cost per second) for the experimentation of SLA-RALBA

using GoCJ dataset [62, 94]. The computing powers and expected gain per second

of VMs in computing setup for experimentation of SLA-RALBA evaluation with

HCSP instances are presented in Fig. 4.2 and Fig. 4.3, respectively.

4.2 Employed Datasets

For the evaluation of RALBA, SLA-RALBA, and VM-level load balancing of

RALBA, one synthetic [50] and two benchmark datasets [24, 62, 94, 95] are used.
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Table 4.4: VMs Composition for SLA-RALBA Evaluation using GoCJ
Dataset.

Powers in MIPS Number of VMs Unit Cost/Second

100 04 0.5

500 04 2.0

750 04 3.0

1000 04 5.0

1250 04 6.5

1500 04 8.0

1750 03 9.0

3000 03 12.0

1 

  

 1 

 2 

Figure 1: Computing powers of 16 VMs in computing setup for HCSP instances 3 

c-hihi c-lohi s-hihi s-lohi i-hihi i-lohi

VM-1 222 21 226 19 44 74

VM-2 226 21 277 19 46 90

VM-3 333 22 281 20 46 90

VM-4 345 27 310 23 48 93

VM-5 424 29 311 24 48 100

VM-6 424 30 441 40 48 103

VM-7 460 32 493 48 50 118

VM-8 511 37 509 49 52 122

VM-9 553 43 531 52 71 140

VM-10 669 52 559 68 107 192

VM-11 742 55 568 73 143 214

VM-12 781 102 766 149 177 226

VM-13 982 141 855 184 250 353

VM-14 1000 167 1516 805 441 375

VM-15 1046 641 2405 1375 504 2795

VM-16 3000 7000 3000 3000 4000 3000
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Figure 4.2: Powers of 16 VMs in Computing Setup for SLA-RALBA Evalua-
tion using HCSP Instances.
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1 

  

 1 

Figure 1: Expected gain of 16 VMs in computing setup for HSCP instances 2 
 3 

c-hihi c-lohi s-hihi s-lohi i-hihi i-lohi

VM-1 0.5 0.5 0.5 0.5 0.5 0.5

VM-2 0.75 0.5 0.6 0.5 0.75 0.7

VM-3 1 0.6 0.6 0.6 0.8 0.7

VM-4 1.25 0.75 0.75 0.75 1 0.75

VM-5 1.5 0.8 0.75 0.8 1.1 0.85

VM-6 1.5 0.9 0.75 1 1.25 0.9

VM-7 1.75 1 0.75 1.2 1.4 1.1

VM-8 2 1.25 0.85 1.3 1.6 1.2

VM-9 2.25 1.5 1 1.5 1.8 1.4

VM-10 3 1.75 1.25 1.75 2 1.65

VM-11 4 1.9 1.45 1.9 2.2 2.25

VM-12 4.25 2.75 1.85 2.75 2.5 2.4

VM-13 5.5 3 2.75 3 2.75 3.5

VM-14 6 3.25 4 7 5 3.85

VM-15 6.25 7 4.75 9.5 7.5 8

VM-16 18 18 10 13 10 9.5
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Figure 4.3: Expected Gain of 16 VMs in Computing Setup for SLA-RALBA
Evaluation using HSCP Instances.

4.2.1 Synthetic Dataset

A synthetic dataset of independent Cloudlets are generated using the guidelines

available in the literature [88, 90, 107, 113]. The synthetic workload is created

using random-number generation mechanism employing 05 different Cloudlet-size

ranges i.e., tiny (1–250 MI), small (800–1200 MI), medium (1800–2500 MI), large

(7000–10,000 MI), and extra-large (30,000–45,000 MI) (as shown in Table 4.5).

This synthetic dataset (with different number of Cloudlets as shown in Table 4.1)

is employed in the experimentation of RALBA, Sufferage, TASA, RASA, Max-

Min, Min-Min, MCT, RR, and RS algorithms.
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Table 4.5: Composition of Synthetic Dataset used for RALBA Evaluation.

Cloudlet Size %age Cloudlets

Tiny (1-250 MI) 20%

Small (800-1200 MI) 60%

Medium (1800-2500 MI) 05%

Large (7000-10000 MI) 10%

Extra Large (30000-45000 MI) 05%

4.2.2 GoCJ Dataset [62, 94]

The first benchmark dataset used in the experiments of RALBA, SLA-RALBA,

and VM-level load balancing of RALBA is the proposed GoCJ dataset [62] that

is elaborated in detail in Section 3.1.1 of Chapter 3. The composition of GoCJ

dataset is presented in Fig. 3.1.

The GoCJ dataset (with different number of Cloudlets as shown in Table 4.1)

is employed in the experimentation of RALBA, Sufferage, TASA, RASA, Max-

Min, Min-Min, MCT, RR, and RS algorithms. Three different instances of GoCJ

dataset (i.e., with 256, 512, and 1024 Cloudlets, respectively) are employed in the

experimentation of VM-level load balancing of RALBA against Sufferage, TASA,

RASA, Max-Min, MCT, Min-Min, RASA, OLB, and PSSELB algorithms. In

addition, 09 GoCJ instances are used for experimentation of SLA-RALBA, SLA-

MCT, SLA-Min-Min, Execution-MCT, and Execution-Min-Min algorithms (each

instance comprised of 200, 300, 400, 500, 600, 700, 800, 900 and 1000 Cloudlets,

respectively).

4.2.3 HCSP Instances [24, 95]

The second benchmark dataset used in the experiments of SLA-RALBA and VM-

level load balancing is the ETC model of Braun et al. in the form of HCSP in-

stances [24, 95]. HCSP instances are labeled using a name with pattern C-THMH,

where c indicates the consistency type (c for consistent, s for semi-consistent, and
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i for inconsistent), TH and MH indicate the task and machine level heterogeneity,

respectively (lo and hi for low and high heterogeneity, respectively).

The 06 HCSP instances used for VM-level load balancing of RALBA are c-hilo,

clohi, i-hilo, i-lohi, s-hilo, and s-lohi instances. The low and high task heterogeneity

with high machine heterogeneity are employed for the empirical investigation.

Therefore, 06 HCSP instances are employed in this pragmatic examination of SLA-

RALBA evaluation are c-hihi, c-lohi, i-hihi, i-lohi, s-hihi, and s-lohi instances.



Chapter 5

Results and Discussion

This chapter presents the discussions on the experimental results of RALBA, SLA-

RALBA, and VM-level investigation of RALBA. The proposed RALBA and SLA-

RALBA techniques are empirically examined using two benchmark datasets.

5.1 Empirical Results - RALBA Scheduler

The performance of RALBA and the other Cloud scheduling heuristics (i.e., TASA,

Sufferage, Max–Min, RASA, Min–Min, MCT, RR, and RS) is compared by using

makespan, ARUR, and throughput metrics. Each experiment is performed 05

times and the analysis is conducted on average values.

5.1.1 Average Makespan Results

Fig. 5.1-a presents the average makespan based results for the synthetic workload.

Fig. 5.1-a shows that RALBA consumes on average 5.5, 6.9, 243.9, 246.4, 46.1,

and 41.9% less time for the execution of synthetic workload as compared to the

TASA, Sufferage, Max–Min, RASA, Min–Min, and MCT heuristics, respectively.

For the execution of GoCJ workload (shown in Fig. 5.1-b), RALBA consumes on

94
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 (a) Average makespan – Synthetic Workload   (b) Average makespan – GoCJ Workload 
 

Figure 5.1: Average Makespan Results.

average 3.8, 1.8, 47.5, 24.5, 28.1, and 18.6% lower time as compared to the TASA,

Sufferage, Max–Min, RASA, Min–Min, and MCT heuristics, respectively.

5.1.2 Mean ARUR Results

Fig. 5.2-a presents the mean ARUR based experimental results for execution of

the synthetic workload.

Fig. 5.2-a shows that RALBA has attained 10.9, 9.8, 103.3, 117.6, 121.6, 65, 624.1,

and 541.2% higher resource utilization (using synthetic workload) as compared to

TASA, Sufferage, Max–Min, RASA, Min–Min, MCT, RS, and RR heuristics, re-

spectively. For the execution of GoCJ workload, RALBA has achieved higher

resource utilization of 16.9, 7.4, 15.9, 13.9, 78.8, 30.1, 550.6, and 541.7% as com-

pared to the TASA, Sufferage, Max–Min, RASA, Min–Min, MCT, RS, and RR

scheduling heuristics, respectively (see Fig. 5.2-b).

5.1.3 Average Throughput Results

Fig. 5.3-a presents average throughput results for execution of the synthetic work-

load. As shown in Fig. 5.3-a, RALBA has achieved 6.2, 7.5, 151.6, 160.1, 47.2,

42.1, 2047, and 1812% higher throughput (using synthetic workload) as compared

to the TASA, Sufferage, Max–Min, RASA, Min–Min, MCT, RS, and RR schedul-

ing heuristics, respectively. Fig. 5.3-b shows the average throughput results for
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 (a) Mean ARUR – Synthetic Workload    (b) Mean ARUR – GoCJ Workload 
 

Figure 5.2: Mean ARUR Results.

 

 

 

 (a) Average throughput – Synthetic Workload    (b) Average throughput – GoCJ Workload 
 

Figure 5.3: Average Throughput Results.

GoCJ workload. As shown in Fig. 5.3-b, RALBA has attained higher job execu-

tion throughput of 5.6, 3.1, 20.1, 8.4, 33.8, 21.9, 1125, and 1785% as compared to

the TASA, Sufferage, Max–Min, RASA, Min–Min, MCT, RS, and RR heuristics,

respectively.

5.1.4 Results Discussion

It is scrutinized that the proposed scheduling technique has successively achieved

significant improvements in terms of makespan and resource utilization for the

skewed workload [28] (especially the positively skewed one) because of the inherent

resource aware scheduling mechanism employed by RALBA. We refer workload

having a large number of shorter Cloudlets (positively skewed) and a large number

of longer size Cloudlets (negatively skewed). A modest improvement in makespan
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and significant higher resource utilization is observed for the execution of the non-

skewed workload. The higher resource utilization achieved by RALBA is due to the

resource aware mapping that results in a load balanced execution of the workload.

The composition of the synthetic workload (as shown in Fig. 2.4) shows that there

are a large number of smaller and a few outsized (i.e., 10% large and 05% extra-

large) Cloudlets. This workload composition shows that the synthetic workload is

more positively skewed as compared to the GoCJ workload (i.e., 05% more number

of large Cloudlets). Experiments have revealed that the MCT scheduling heuristic

reduces the makespan; however, it causes an imbalanced mapping of Cloudlets by

overloading the faster VMs. The execution of the synthetic workload has resulted

in more imbalanced mapping as compared to the scheduling of GoCJ workload

which arose due to the more positively skewed nature of the synthetic workload

as compared to the GoCJ workload.

The experimental evaluation has revealed that the Min–Min has acquired reduced

makespan as compared to the Max–Min due to a large number of shorter size

Cloudlets in both workloads (i.e., synthetic and GoCJ). The inherent scheduling

mechanism of Max–Min maps some larger Cloudlets to slow VMs producing a

longer makespan [31]. As compared to Min–Min heuristic, RALBA has achieved

28.1% (for GoCJ workload) and 46.1% (for synthetic workload) reduced makespan.

Moreover, RALBA has consumed 243.9 and 47.5% reduced time as compared to

Max–Min for the execution of the GoCJ and synthetic workloads, respectively.

Max–Min has produced longer makespan (for GoCJ workload) due to a few huge

size Cloudlets as compared to the synthetic workload. Alternatively, Max–Min

has significantly improved resource utilization as compared to the Min–Min that

overloads faster VMs (producing load imbalance). However, Max–Min has not

significantly improved the resource utilization (for the execution of the synthetic

workload) as compared to the GoCJ workload because the synthetic workload con-

tains high number of large size Cloudlets. Our experimental evaluation exhibits

that the Sufferage scheduling heuristic produces lower makespan and higher re-

source utilization as compared to the Min–Min, Max–Min, and RASA heuristics.

This reduced makespan and higher resource utilization are achieved due to the
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selection of a suitable VM for Cloudlet mapping. The suitable VM represents the

computing resource which will suffer most (in terms of makespan) if the candi-

date Cloudlet has not been mapped to that resource (in the current scheduling

iteration).

The VM–Cloudlet allocation mechanism of TASA is based on Sufferage and Min-

Min algorithms. Therefore, TASA provides reduced makespan among the existing

algorithms. Fig. 5.1 shows that RALBA has produced slightly reduced makespan

as compared to TASA and Sufferage for the GoCJ workload (i.e., 1.88 and 3.86%

reduced, respectively). TASA and Sufferage have performed almost identical to

RALBA due to the inherent resource-aware mapping mechanism employed by

both of these scheduling heuristics. However, RALBA also considers load-balance

factor for scheduling; therefore, it has produced higher resource utilization (i.e.,

7.45 and 16.97% more resource utilization as compared to TASA and Sufferage,

respectively) for GoCJ workload as well. It is evident that the TASA has produced

lower resource utilization (as compared to the Sufferage) due to the inherent use

of Min–Min scheduling mechanism.

The scheduling mechanism of RASA is based on Max–Min and Min–Min heuristics.

Therefore, RASA provides improved resource utilization over TASA for the GoCJ

workload (better resource utilization due to the inherent Max–Min mechanism).

Overall scrutinization of the conducted experiments persuades that RALBA has

achieved significant improvement in resource utilization, makespan, and through-

put as compared to the existing scheduling heuristics. However, RALBA does

not support SLA-aware scheduling of Cloud jobs. Therefore, the SLA based re-

source (e.g., execution-cost, bandwidth, memory, etc.) and deadline constrained

Cloudlets may not be scheduled adequately.

5.2 RALBA: VM-Level Load Balancing

This section elaborates the experimental evaluation of 09 scheduling algorithms,

including RALBA, using two benchmark datasets: GoCJ [62] and HCSP datasets



Results and Discussion 99

[95]. The workload distribution by each algorithm is measured and compared

with the computation share [50] of each VM in the simulation environment as a

machine-level load-imbalance.

5.2.1 Investigation using GoCJ Dataset

The load imbalance produced by the scheduling algorithms using different in-

stances of GoCJ dataset is described below:

Load-Imbalance using 256x16 - GOCJ Instances

Fig. 5.4 shows the VMs level load-imbalance that is produced by scheduling heuris-

tics using 16 VMs and 256 Cloudlets from GoCJ dataset. The load-imbalance is

presented in terms of percentage load-imbalance at VM level. The numbers in

the pink-background present the percentage under-utilization of virtual machines

and the numbers in green-background present the percentage over-utilization of

virtual machines as compared to the computation share of each VM.

The RALBA achieves highest resource utilization (i.e., 99.3%) among the given

scheduling techniques by providing the machine-level load balancing as presented

in Fig. 5.4. On the other hand, Max-Min produces the least resource utilization

among scheduling techniques. Min-Min heuristic produces a sever VM-level load-

imbalance by overloading the faster VMs and under-utilizing the slower VMs (i.e.,

the VM1 remains idle), although Min-Min produces 69.3% resource utilization.

Likewise, the PSSELB under-utilizes the slower machines and overloads the ma-

chines with moderate computing powers. The TASA and sufferage achieve 94.3

and 92.3% resource utilization, respectively. On the other hand, both of these

heuristics under-utilize the slower machines and provide comparatively moderate

load-balancing at faster machines. It is observed that PSSELB produces higher

resource utilization than Min-Min technique, but PSSELB produces more load-

imbalance at each machine level as shown in Fig. 5.4.

Load-Imbalance using 512x16 using GOCJ Instances
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Table 1: 256-GoCJ results 

 
RALBA Sufferage TASA MaxMin MCT MinMin RASA OLB PSSELB 

ARUR 0.993 0.923 0.943 0.434 0.846 0.693 0.568 0.539 0.805 

%age Machine-level Load Imbalance 

VM.1 2.086 29.989 44.194 166.346  12.740 100 43.687 6.652) 40.136 

VM.2 1.917 23.225 12.740 77.564  13.755 62.458 77.564  18.376  27.114 

VM.3 0.818 15.911 0.197  33.173  13.247 43.687 6.652 100.9  14.135 

VM.4 0.044  7.261 0.146  1.021 6.449 55.254 4.572 0.057 21.77 

VM.5 0.564 4.485 2.203  2.040 5.176 50.190 5.269 13.364  14.17 

VM.6 0.361 1.207 0.924  1.207 7.701 17.226  2.830 3.405 11.962 

VM.7 0.374 1.325 1.053  1.769 4.496 16.291 1.497  48.519  14.706 

VM.8 0.298  1.807 2.365 2.467 6.931 18.676 0.919 4.192 36.927  

VM.9 0.226 0.878 0.499  2.473 6.749 18.780 0.081 6.942 9.455 

VM.10 0.301 0.329 1.965 2.228 4.765 15.772  0.978  6.125 4.319 

VM.11 0.002  0.116 1.325 2.125 4.779 14.948  1.794 4.077 3.218 

VM.12 0.264  0.514 2.446  2.238 1.736  7.722  0.822  0.366  14.013  

VM.13 0.057 0.058  0.237 1.874 1.694 9.631 0.728 6.750 14.034  

VM.14 0.117  2.567  0.378  1.956 1.668  9.162  0.100 3.161  0.697  

VM.15 0.154  2.818  0.057 1.988 3.157 18.686  0.339 6.089 2.409  

VM.16 0.260  2.828  1.408  1.769 12.601  9.094  10.673 6.519 3.856 

 

Fig. 4 shows the VMs level load-imbalance that is produced by scheduling heuristics using 

16 VMs and 256 cloudlets from GoCJ dataset. The load-imbalance is presented in terms of 

percentage load-imbalance at VMs level. The numbers in pink-background present the percentage 

under-utilization of a specified virtual machine and the numbers in green-background present the 

percentage over-utilization of virtual machine as compare to the computation share of virtual 

machine. The RALBA achieves highest resource utilization (i.e., 99.3% resource utilization) 

among the given scheduling techniques. In the same way, RALBA provides the machine-level 

load balancing as presented in Fig. 4. Max-Min produces the minimum resource utilization among 

scheduling techniques. However, Min-Min heuristic produces a sever VM-level load-imbalance 

by overloading the fastest VMs and underutilizing the slowest VMs (i.e., VM1 remains idle), 

although Min-Min produces 69.3% resource utilization (i.e., ARUR = 0.693). Likewise, the 

PSSELB underutilizes the slower machines and overloads the machines with moderate computing 

powers. The TASA and sufferage achieve 94.3 and 92.3% resource utilization, on the other hand, 

both of these heuristics underutilize the slower machines and provide comparatively moderate 

load-balancing at faster machine-level. It is observed that PSSELB produces higher resource 

Figure 5.4: Individual Machine-level Load Imbalance using 256 Cloudlets -
GoCJ Dataset.

Fig. 5.5 shows the VMs level load-imbalance that is produced by scheduling heuris-

tics using 16 VMs and 512 Cloudlets from GoCJ dataset. The highest resource

utilization (i.e., 99.4%) is attained by RALBA, however, OLB produces the least

resource utilization. RALBA scheduler produces a VM-level load balancing with

less than 1% load-imbalance on each machine, while VM.1 and VM.2 are 2.279 and

1.216% under-utilized as compared to its computing share, respectively. TASA and

sufferage heuristics achieve 97.1 and 96.7% resource utilization, respectively. But

then again, TASA and sufferage under-utilize the slower machines with moderate

load balancing at faster machines. The Max-Min overloads the slower machines,

while the Min-Min under-utilizes the slower machines. On the other hand, Min-

Min overloads the faster machines in the computing setup. The least resource uti-

lization is produced by OLB (i.e., 46.8% resource utilization) by overloading the

slower machines and underutilizing the faster machines. Likewise, the PSSELB

heuristic also provides a sever load-imbalance at machine-level while producing

74.7% resource utilization. Likewise Min-Min, the MCT severely under-utilizes

the slower machines that results in the over-utilization of faster machines as shown
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Table 1: 512-GoCJ results 

 
RALBA Sufferage TASA MaxMin MCT MinMin RASA OLB PSSELB 

ARUR 0.994 0.967 0.971 0.805 0.901 0.823 0.796 0.468 0.747 

%age Machine-level Load Imbalance 

VM.1 0.420 15.025 9.316 2.103  15.556 75.304 10.378 138.993  27.771 

VM.2 2.279 12.015 14.494 26.135  14.848 46.005 26.135  0.200  3.429 

VM.3 1.216 8.851 3.938 0.576  1.216 49.280 1.748 54.084  1.017 

VM.4 0.324  1.641 0.207 0.659 4.536 6.431  4.323 9.565  5.173 

VM.5 0.082 1.313 4.379 0.589 3.196 8.483 0.353  4.669 32.653  

VM.6 0.253  1.925 0.819  0.243 2.526 14.281 0.314 12.380  5.802 

VM.7 0.304 1.880 1.041  0.387 3.606 6.136  0.835 2.684  4.768 

VM.8 0.088 0.828  1.761 0.407 2.730 13.339 0.287 2.796 22.603  

VM.9 0.078 0.857  1.115 0.268 3.151 12.926 0.319 4.403 2.494 

VM.10 0.165 0.377 0.249  0.186 2.555 2.979  1.142 4.594 5.656  

VM.11 0.009  0.908  0.338 0.205 2.064 0.673  0.685 4.393 2.871 

VM.12 0.014  0.996  0.040  0.207 1.739 4.351  0.572  3.297 5.228  

VM.13 0.009 0.214  0.994  0.137 2.21 2.133  0.360  3.315 2.030 

VM.14 0.094 0.438  0.938  0.253 7.531  8.025  0.028  8.973  3.576 

VM.15 0.125 0.768  0.960  0.243 0.634 7.244  0.340  4.152 4.862  

VM.16 0.327  0.788  0.762  0.128 4.685  4.234  5.674 4.416 8.555 

 Fig. 5 shows the VMs level load-imbalance that is produced by scheduling heuristics using 

16 VMs and 512 cloudlets from GoCJ dataset. The highest resource utilization is attained by 

RALBA, however, OLB produces the least resource utilization. RALBA scheduler produces a 

VM-level load balancing with less than 1% load imbalance on each machine, while VM.1 and 

VM.2 are 2.279 and 1.216% underutilized as compared to its computing share, respectively. TASA 

and sufferage heuristics achieve 97.1 and 96.7% resource utilization, but then again, these both 

heuristics underutilize the slower machines with moderate load balancing at faster machines. The 

Max-Min overloads the slower machines, while the Min-Min underutilizes the slower machines. 

On the other hand, Min-Min overloads the faster machines in the computing setup. The least 

resource utilization is produced by OLB (i.e., 46.8% resource utilization) by overloading the 

slower machines and the faster machines are underutilized. Likewise, the PSSELB heuristic also 

provides a sever load-imbalance at machine-level while producing 74.7% resource utilization. 

Likewise Min-Min, the MCT underutilizes the slower machines and overloads the faster machines 

as shown in Fig. 5.  

Figure 5.5: Individual Machine-level Load Imbalance using 512 Cloudlets -
GoCJ Dataset.

in Fig. 5.5.

Load-Imbalance using 1024x16 - GOCJ Instances

Fig. 5.6 shows the VMs level load-imbalance that is produced by scheduling algo-

rithms using 16 VMs and 1024 Cloudlets from GoCJ dataset.

RALBA heuristic achieves the highest resource utilization (i.e., 99.6%), while

the second highest resource utilization (i.e., 98.6%) is produced by RASA. The

RALBA provides almost a complete load balancing at VMs level as shown in Fig.

5.6. The scheduling mechanism of TASA and sufferage heuristics under-utilize the

slower machines and provide a moderate load balancing at faster machines. Min-

Min severely underutilized and the OLB overloads the slower machines. Likewise,

the slower machines are under-utilized and the faster machines are overloaded

by the MCT heuristic. The PSSELB severely overloads the slower VMs and the

moderate speed VMs, while under-utilizing the faster VMs.
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Table 1: 1024 -GoCJ results 

 
RALBA Sufferage TASA MaxMin MCT MinMin RASA OLB PSSELB 

ARUR 0.996 0.983 0.974 0.986 0.937 0.859 0.990 0.642 0.761 

%age Machine-level Load Imbalance 

VM.1 1.14 9.651 12.532 0.497  5.592 49.719 3.104 62.759  5.931  

VM.2 1.14 3.409 9.302 1.523  7.207 52.687 2.973 3.138  1.533 

VM.3 0.649 3.628 6.672 0.890  5.068 45.594 0.420 10.088  35.164  

VM.4 0.052  0.143  0.276 0.105 2.711 2.528 0.485 0.235  10.187  

VM.5 0.152 0.973 0.045 0.187 2.259 3.550  1.449 0.955  1.473 

VM.6 0.021  0.249 0.274  0.021  2.589 3.034 0.022 1.533 4.037  

VM.7 0.039  0.227  0.878 0.149 2.515 0.129  0.223 1.639 0.485 

VM.8 0.014 0.477  0.346  0.019  2.469 1.644 0.118 1.212 10.854  

VM.9 0.020  0.66 0.466 0.005 2.555 2.337 0.391 0.547 5.152 

VM.10 0.028  0.218 0.814  0.082 2.177 0.662  0.405  1.977  1.538 

VM.11 0.092 0.062 0.354 0.007 2.278 0.349 0.442  3.725  1.417 

VM.12 0.049 0.449  0.135  0.013  0.965 1.550 0.340  1.454 1.537 

VM.13 0.056  0.033 0.081  0.02 0.664  3.507  0.134 1.579 1.558 

VM.14 0.051 0.021 0.499  0.017 1.606  0.293  0.085 0.634  1.375 

VM.15 0.006  0.119  0.581  0.016 4.731  6.055  0.187 1.594 1.031 

VM.16 0.142  0.610  0.495  0.007 2.283  3.170  2.52 1.521 4.459 

Fig. 6 shows the VMs level load-imbalance that is produced by scheduling heuristics using 16 

VMs and 1024 cloudlets from GoCJ dataset. RALBA heuristic achieves the highest resource 

utilization, while the second highest resource utilization is produced by RASA. The RALBA 

provides VM-level load balancing at VMs level as shown in Fig. 6. The TASA and sufferage 

heuristics distribute the workload among VMs by underutilizing the slower machines and 

providing a moderate load balancing at faster machines. Min-Min severely underutilizes and the 

OLB overloads the slower machines. The MCT repeats its behavior of load balancing by 

underutilizing the slower machines and overloading the faster machines. The PSSELB heuristic 

severely overloads the slower VMs and a few VMs with moderate computing powers.  

Figure 5.6: Individual Machine-level Load Imbalance using 1024 Cloudlets -
GoCJ Dataset.

5.2.2 Investigation using HCSP Dataset

The load imbalance produced by the scheduling heuristics using different instances

of HCSP dataset is described below:

Load-Imbalance using 512x16 c-lohi - HCSP Instances

Fig. 5.7 shows VMs level load-imbalance that is produced by scheduling heuristics

using 512x16 c-lohi datasets. The RALBA scheduler achieves the highest resource

utilization (i.e., 93.4%), while the Min-Min attains the least resource utilization

(i.e., 27.4%) among the given scheduling algorithms. The Min-Min heuristic pro-

duces a sever load-imbalance by under-utilizing the VM.9–15, overloading the

VM.16. In addition, Min-Min does not utilize the VM.1–8 during workload ex-

ecution. Sufferage technique attains the second highest resource utilization (i.e.,

90%), however, it underutilizes the slower machines. Likewise Min-Min, the Max-

Min produces a sever load-imbalance by heavily overloading the slower machines.

In the same way, OLB overloads the slower VMs and the VMs with moderate
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Table 1: c_lohi results 

 
RALBA Sufferage TASA MaxMin MCT MinMin RASA OLB PSSELB 

ARUR 0.934 0.900 0.763 0.620 0.860 0.274 0.763 0.676 0.562 

%age Machine-level Load Imbalance 

VM.1 0.798 2.596 64.287 113.376  27.557 100 47.146 26.600  45.338 

VM.2 1.501 2.529 64.972 116.035  12.707 100 47.174 29.734  15.310 

VM.3 1.004 12.184 1.834 110.066  7.857 100 19.032 79.532  35.871  

VM.4 0.311 8.573 0.794 76.189  2.653 100 21.766 47.294  53.259  

VM.5 0.011  2.839 28.693 64.574  9.314 100 22.913 74.186  35.844 

VM.6 0.711 3.012 45.112 63.010  2.094 100 23.366 47.669  22.243 

VM.7 0.052 4.140 8.940 54.405  14.045 100 4.052 53.154  52.386  

VM.8 0.016 3.218 8.720 35.991  14.593 100 31.063 1.257  5.380  

VM.9 0.017  5.629 20.100 19.007  9.836 45.308 31.460 37.585  38.111 

VM.10 0.012  4.165 13.942 0.638 7.528 69.060 9.971 24.813  6.985 

VM.11 0.140 5.883 6.406 0.673 10.651 71.200 0.673 9.524  44.779 

VM.12 0.113 1.270 0.708 1.473 0.251  34.202 11.028 8.076  14.570 

VM.13 0.037 2.795 0.508  1.884 0.077  31.252 0.332  1.514  25.581 

VM.14 0.042 1.596 7.814 1.821 0.716 21.034 2.707 0.125  17.638 

VM.15 0.010  0.245 0.388 2.114 0.402 3.540 0.553  1.826  4.482 

VM.16 0.018  0.394  1.295  2.115 0.593  6.433  1.245  2.171 2.036  

Fig. 7 shows VMs level load-imbalance produced by scheduling heuristics using 512 ×16 c-lohi 

datasets. The RALBA scheduler achieves the highest resource utilization, while the Min-Min 

attains the least resource utilization among given scheduling algorithms. RALBA produces a VM-

level load balancing as presented in the results. The Min-Min heuristic produces a sever load-

imbalance by under-utilizing the VM.9—15, overloading the VM.16 and does not utilize the 

VM.1—8. Sufferage technique attains the second highest resource utilization (i.e., 90%), however, 

it under-utilizes the slower machines. Likewise Min-Min, the Max-Min produces a sever load-

imbalance by heavily overloading the slower machines. In the same way, OLB overloads the 

slower VMs and the VMs with moderate computing power. Most of the slower VMs are under-

utilized by TASA and MCT heuristics. The PSSELB technique repeats its behavior of workload 

distribution by either heavily overloading or under-utilizing the slower VMs and the VMs with 

moderate computing powers.  

Figure 5.7: Individual Machine-level Load Imbalance using 512x16 c-lohi -
HCSP Instances.

computing power. Most of the slower VMs are assigned with the lesser work-

load as compared to its computing share by TASA and MCT heuristics. The

PSSELB technique repeats its behavior of workload distribution by either heavily

overloading or underutilizing the slower VMs and the VMs with moderate com-

puting powers. On the other hand, RALBA produces a VM-level load balancing

as presented in the results.

Load-Imbalance using 512x16 c-hilo - HCSP Instances

Fig. 5.8 shows VMs level load-imbalance that is produced by scheduling heuristics

using 512 x 16 c-hilo dataset. The RALBA and Max-Min heuristics achieve the

highest resource utilization (i.e., 99.9%), while the MCT attains the least resource

utilization. The MCT slightly overloads the faster VMs and under-utilizes the

slower machines. Min-Min heuristic produces the load-imbalance at the slower

VMs, while slightly overloads the faster VMs. The PSSELB and OLB heuristics

produce the machine-level load-imbalance by slightly overloading a few machines.

Likewise, the TASA technique slightly under-utilizing the slower VMs and assigned
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Table 1: c_hilo results 

 
RALBA Sufferage TASA MaxMin MCT MinMin RASA OLB PSSELB 

ARUR 0.999 0.984 0.975 0.999 0.957 0.963 0.981 0.967 0.967 

%age Machine-level Load Imbalance 

VM.1 0.019 0.907 0.207 0.022 1.139 2.507  0.961 3.306  0.247  

VM.2 0.053 0.241  2.565 0.01 2.744 1.603  2.628 0.965  1.236 

VM.3 0.046 1.355  1.622 0.057 0.137  4.669 0.784 1.719  1.294 

VM.4 0.029  1.034 0.618 0.004 2.575 2.824  0.075  0.668 1.971  

VM.5 0.017 0.861 0.611  0.049 0.806  4.593 0.219 1.320 1.130 

VM.6 0.012  0.666  1.354  0.033  3.176 1.485 0.539  0.674 0.735 

VM.7 0.025  0.667 1.967 0.012  1.880 3.467 0.846  0.916  1.131 

VM.8 0.036  1.579 1.171 0.013  2.005 4.908 0.332 1.171 3.297  

VM.9 0.002 1.144 1.685  0.029  2.286 2.021  1.881 1.229 0.696  

VM.10 0.009  0.377 1.843 0.006 3.307 1.988 1.890 3.742  1.701 

VM.11 0.025  0.373 2.030 0.008  1.738  2.487 1.672  0.244 0.764 

VM.12 0.010  0.425 0.862  0.006  0.448 0.339  1.251 2.486  0.211 

VM.13 0.004  0.237 1.000  0.014  3.867  1.222  1.128 1.002  1.536 

VM.14 0.016  0.144 2.162 0.000  0.960  1.428  1.655  0.049 0.194 

VM.15 0.027 0.506  2.135  0.010  0.203  0.090 1.409  1.135 2.296  

VM.16 0.001 1.237  1.065  0.005 2.665  3.262  0.746  1.583 0.093 

 

Fig. 8 shows VMs level load-imbalance produced by scheduling heuristics using 512 ×16 c-hilo 

dataset. The RALBA and Max-Min heuristics achieve the highest resource utilization, while the 

MCT attains the least resource utilization. The MCT slightly overloads the faster VMs and under-

utilizes the slower machines. Min-Min heuristic produces the load-imbalance at slower VMs, 

while slightly overload the faster VMs. The Max-Min and RALBA produce almost a complete 

load balancing at VMs level. On the other hand, the PSSELB and OLB heuristics produce 

machine-level load-imbalance by slightly overloading a few machines. Likewise, the TASA 

technique slightly under-utilizing the slower VMs and assigned the faster VMs with slightly more 

workload than its computing share.   

Figure 5.8: Individual Machine-level Load Imbalance using 512x16 c-hilo -
HCSP Instances.

the faster VMs with slightly more workload than its computing share. On the

other hand, the Max-Min and RALBA produce almost a complete load balancing

at VMs level.

Load-Imbalance using 512x16 i-lohi - HCSP Instances

Fig. 5.9 shows VMs level load-imbalance that is caused by scheduling heuristics

using 512 x 16 i-lohi datasets. RALBA attains the highest resource utilization (i.e.,

99.8%) followed by Max-Min that achieves the second highest resource utilization

(i.e., 99.7%). RALBA and Max-Min schedulers produce almost a complete load

balancing at the VM level. In addition, the VM.3 is fully utilized as per its com-

puting share by RALBA. The Min-Min produces the least resource utilization and

depicts the load-imbalance by heavily underutilizing the slower VMs and moderate

speed VMs, while overloading the faster VMs. The PSSELB produces a load im-

balance schedule by heavily under-utilizing the slower and moderate speed VMs

that results in overloading the faster VMs. Likewise, the sufferage and TASA

heuristics heavily under-utilize the slower VMs and slightly overload the faster
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Table 1: i_lohi results 

 
RALBA Sufferage TASA MaxMin MCT MinMin RASA OLB PSSELB 

ARUR 0.998 0.916 0.984 0.997 0.938 0.855 0.947 0.861 0.892 

%age Machine-level Load Imbalance 

VM.1 0.381 20.511 22.148 0.056 8.083 17.507 9.184 0.085  8.529 

VM.2 0.007 23.882 12.482 0.093 10.85 8.366 6.675 9.597  21.507 

VM.3 0 4.592 10.073 0.154 2.582 7.573 0.547  0.921 21.362 

VM.4 0.133 20.123 19.401 0.118  1.183 18.497 0.486  22.279  12.735 

VM.5 0.020 9.371 0.032 0.281  7.349 32.202 12.025 1.691 14.404 

VM.6 0.388 1.196 19.563 0.023 1.424 37.712 9.348 3.802  18.117 

VM.7 0.026  15.782 16.799 0.050  5.322 3.602  7.686 13.465  2.137  

VM.8 0.034 2.166 17.324 0.072  5.196 11.681 9.575 8.856  10.24 

VM.9 0.199 4.055 2.655  0.014 7.603 13.089 2.929 3.107  8.402 

VM.10 0.168 0.827 8.983 0.070  3.896 15.218 0.641 18.821  8.485 

VM.11 0.027 3.063 8.678 0.151 2.477 1.836 4.769 7.221  5.178 

VM.12 0.036 4.802 0.594  0.015 2.745 14.918 1.007  2.735  3.417  

VM.13 0.015  0.974  2.738  0.010 2.45 5.152 1.980 2.155  3.282 

VM.14 0.021  0.595  2.289 0.002 1.063 2.253 2.296 1.369  0.93 

VM.15 0.004  1.871  2.033  0.011 0.213  4.056  1.402  2.241 2.354  

VM.16 0.045  1.936  2.957  0.003  2.564  4.134  1.465  2.325 2.682  

Fig. 9 shows VMs level load-imbalance caused by scheduling heuristics using 512 ×16 i-lohi 

datasets. RALBA attains the highest resource utilization followed by Max-Min that achieves the 

second highest resource utilization. RALBA produces almost a complete load balancing (i.e., the 

VM.3 is fully utilized as per its computing share). Max-Min also provides almost complete load 

balancing schedule in this experiment. The Min-Min produces the least resource utilization and 

depicts the same behavior of load-imbalance by heavily under-utilizing the slower VMs, the VMs 

with moderate computing power, and overloading the faster VMs. The PSSELB produces a load-

imbalance schedule by either heavily under-utilizing the VMs or slightly overloading the VMs. 

Likewise, the sufferage and TASA heuristics heavily under-utilized the slower VMs, while slightly 

overloading the faster VMs. The OLB overloads most of the VMs, while under-utilizing the faster 

VMs. The MCT also repeats its behavior of under-utilizing the slower VMs and assign slightly 

more workload to the faster VMs. The results portrays that even some algorithms achieve more 

resource utilization but reproduces almost the resembling machine-level load imbalance to the 

other scheduling heuristics with least producing resource utilization (i.e., Sufferage, TASA, Min-

Min, and PSSELB etc.).  

Figure 5.9: Individual Machine-level Load Imbalance using 512x16 i-lohi -
HCSP Instances.

VMs. The OLB overloads most of the VMs, while underutilizes the faster VMs.

The MCT also repeats its behavior of under-utilizing the slower VMs and assign-

ing slightly more workload to the faster VMs. The results portrays that even some

algorithms achieve higher resource utilization but reproduces almost the resem-

bling machine-level load imbalance to the other scheduling heuristics with least

producing resource utilization (i.e., Sufferage, TASA, Min-Min, and PSSELB etc.)

Load-Imbalance using 512x16 i-hilo - HCSP Instances

Fig. 5.10 shows VMs level load-imbalance that is produced by scheduling heuris-

tics using 512 x 16 i-hilo dataset. The highest resource utilization (i.e., 99.9%) is

achieved by RALBA, and the Max-Min achieves second highest resource utiliza-

tion (i.e., 99.8%). The RALBA and Max-Min heuristics provide almost balanced

workload distribution among all VMs. Alternatively, the sufferage and TASA pro-

vides load imbalance by under-utilizing the slower VMs, and slightly overloading

the faster VMs. Likewise, MCT under-utilizes the slower VMs and overloads the
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Table 1: i_hilo results 

 
RALBA Sufferage TASA MaxMin MCT MinMin RASA OLB PSSELB 

ARUR 0.999 0.978 0.965 0.998 0.958 0.951 0.987 0.927 0.955 

%age Machine-level Load Imbalance 

VM.1 0.044 6.843 6.095 0.163  6.130 5.258 1.228  1.171 3.293 

VM.2 0.005  3.690 4.336 0.002  1.484 1.234  0.173  8.722  1.570  

VM.3 0.037 0.317 0.575  0.023 2.406 1.140 0.290  0.951 0.590 

VM.4 0.043 1.550  2.987 0.023 2.158 1.529  1.079  1.812  2.166  

VM.5 0.037 4.200 0.822  0.034 3.133 0.828 0.763 1.693 2.403  

VM.6 0.038 0.097  0.584 0.026 1.910 7.281 1.584 2.798  3.799 

VM.7 0.023  1.281  4.044 0.035 3.643 3.316  1.068  1.364 3.464 

VM.8 0.017  3.334 3.659 0.001 2.629  4.114 0.658 6.871  2.900 

VM.9 0.002 1.474  2.451 0.028 1.987 1.956 0.303 0.353  0.014  

VM.10 0.004 1.327 0.199 0.033 2.260  0.011 0.406  1.677  4.338  

VM.11 0.015 0.081  0.223  0.027  2.033 4.218 0.605 0.458 2.063 

VM.12 0.026 0.556  0.388 0.023 0.857 1.462 1.776 3.390  1.590 

VM.13 0.006 1.223  2.529  0.007  0.871  4.206  0.271  1.685 0.868  

VM.14 0.002  0.174 0.968  0.009 1.452  0.806 0.605 1.849 0.260 

VM.15 0.026  0.906  1.377  0.027  0.989 0.040 0.407  1.888 0.141  

VM.16 0.026  1.122  1.380  0.003  3.317  2.820  0.632  1.050 1.247  

 Fig. 10 shows VMs level load-imbalance that is produced by scheduling heuristics using 

\text{512 ×16} c-hilo dataset. The highest resource utilization is achieved by RALBA, and the 

Max-Min achieves second highest resource utilization. The RALBA and Max-Min heuristics 

provides almost balanced workload distribution among all VMs. Alternatively, the sufferage and 

TASA provides by under-utilizing the slower VMs, and slightly overloading the faster VMs. 

Likewise, MCT under-utilizes the slower VMs and overloads the faster VMs. On the other hand, 

half of the machines are overloaded by Min-Min that results in the under-utilization of remaining 

machines. The same trend of machine-level load-imbalance is observed by the workload 

distribution mechanism of PSSELB and OLB heuristics as shown in Fig. 10. The RASA provides 

favorable load-balancing at VMs level as compared to sufferage, TASA, PSSELB, OLB, MCT 

and Min-Min heuristics. RASA provides machine-level load balancing because it uses the Max-

Min and Min-Min techniques in each alternate step of scheduling decisions, while the Max-Min 

has provided promising load-balancing in this experiment. 

Figure 5.10: Individual Machine-level Load Imbalance using 512x16 i-hilo -
HCSP Instances.

faster VMs. On the other hand, half of the machines are overloaded by Min-Min

that results in the under-utilization of remaining machines. The same trend of

machine-level load-imbalance is observed by the workload distribution mechanism

of PSSELB and OLB heuristics as shown in Fig. 5.10. The RASA provides fa-

vorable load-balancing at VMs level as compared to sufferage, TASA, PSSELB,

OLB, MCT, and Min-Min heuristics. RASA provides machine-level load balanc-

ing because it uses the Max-Min and Min-Min techniques in each alternate step of

scheduling decisions, while the Max-Min has provided a promising load-balancing

in this experiment.

Load-Imbalance using 512x16 s-lohi - HCSP Instances

Fig. 5.11 shows VMs level load-imbalance produced by scheduling heuristics em-

ploying 512 x 16 s-lohi dataset. The resource utilization of Max-Min degraded to

70.9%, however, the RALBA retains its highest resource utilization (i.e., 99.8%)

among all the given scheduling algorithms. The Max-Min provides a sever load-

imbalance by heavily overloading the slower machines and slightly under-utilizing
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the faster machines. Contrariwise, the RALBA provides almost a complete load

balancing at VM level. In addition, the VM.11 is fully utilized as per its computing

share by RALBA. The Min-Min achieves the least resource utilization and provides

absolutely undesirable load-imbalance at machine level (i.e. the slower machines

VM.1–5 remain idle, the VM.6–13 are severely under-utilized, and the remaining

faster VMs are overloaded). Likewise, the PSSELB heavily overloads the slower

and moderate speed VMs, while under-utilize the remaining VMs. The RASA

heuristic provides a sever load-imbalance by heavily overloading the slower VMs

and under-utilizing the VMs with moderate computing powers. In the same way,

the TASA provides a sever load-imbalance by heavily under-utilizing the slower

VMs and overloading the faster VMs. Such a sever load-imbalance reproduced

by RASA and TASA is due to the drastically degraded performance of Min-Min

heuristic (the scheduling mechanism of RASA and TASA techniques use Min-Min

in each alternate step of its scheduling decision as mentioned in Section 2.3).

The VM.1–6 and VM.8–12 are heavily overloaded and the remaining VMs are

under-utilized by OLB technique. The sufferage under-utilizes the VMs with

slower and moderate computing powers.

Load-Imbalance using 512x16 s-hilo - HCSP Instances

Fig. 5.12 shows VMs level load-imbalance produced by scheduling heuristics using

512 x 16 s-hilo dataset. The highest resource utilization (i.e., 99.9%) is achieved

by RALBA and the Max-Min achieves the second highest resource utilization

(99.8%). The RALBA and Max-Min provides almost a complete load-balancing

at VMs-level. The sufferage and TASA under-utilize several VMs that results in

overloading the remaining VMs. The MCT produces load-imbalance that cause the

under-utilization of slower machines while overloading the faster VMs. The OLB

heavily overloads the VM.2, VM.4, and VM.12 that produces the load-imbalance

at remaining VMs. The Min-Min heavily overloads VM.2, VM.5, VM.12, VM.14,

and VM.16 machines, however, severely under-utilizes the VM.3 and VM.8–10

computing machines. The RASA and PSSELB under-utilize the VMs with slow

and moderate computing powers, while overloads the remaining VMs.
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Table 1: s_lohi results 

 
RALBA Sufferage TASA MaxMin MCT MinMin RASA OLB PSSELB 

ARUR 0.998 0.954 0.732 0.709 0.915 0.489 0.810 0.541 0.658 

%age Machine-level Load Imbalance 

VM.1 0.002 8.549 53.812 63.875  5.984 100 26.881  54.759  70.112  

VM.2 0.029 8.339 55.293 64.246  0.725 100 24.839  47.147  5.526  

VM.3 0.459 7.563 70.555 57.449  28.687 100 24.372  138.495  2.153 

VM.4 0.511 5.559 46.474 39.626  3.015 100 8.858  58.216  2.639 

VM.5 0.490 7.012 54.939 35.128  8.477 100 9.643  39.731  19.431  

VM.6 0.533 4.649 30.211 3.066  3.702 72.044 4.645 74.254  34.411  

VM.7 0.006  2.392 19.323 2.194  7.706 42.201 16.696 2.798 16.646  

VM.8 0.153 5.220 24.742 1.982  6.867 44.951 6.217 3.804  0.154  

VM.9 0.055 4.762 15.936 0.550  3.181 53.404 0.461  26.296  6.016  

VM.10 0.069 3.722 12.559 0.267  2.304 15.916 7.400 8.465  5.329  

VM.11 0  3.850 16.148 0.430  6.520 35.368 6.797 21.182  42.791  

VM.12 0.048 2.585 1.417 0.725 3.966 8.212 4.539 10.090  1.294  

VM.13 0.107 0.396  4.425 0.797 0.458 9.538 4.457 3.023 2.064 

VM.14 0.005  0.150  2.368  1.051 0.694 1.423  0.633  3.430 0.312 

VM.15 0.014  0.232  2.574  1.062 0.369 6.205  0.050  2.387 1.955 

VM.16 0.025  0.660  2.554  1.060 1.456  5.784  0.427  2.805 1.552 

 

Fig. 11 shows VMs level load-imbalance produced by scheduling heuristics employing 512 ×16 

s-lohi dataset. The resource utilization of Max-Min degraded to 70.9%, however, the RALBA its 

highest resource utilization among all given scheduling algorithms. The Max-Min provides a sever 

load-imbalance by heavily overloading the slower machines, while slightly under-utilizing the 

faster machines. Contrariwise, the RALBA provides almost complete load balancing at VMs level 

(i.e., VM.11 is fully utilized as per its computing share). The Min-Min achieves the least resource 

utilization and provides absolutely undesirable load-imbalance at machine level (i.e. the slower 

VM.1—5 remain idle, the VM.6—13 are severely under-utilize, and the remaining faster VMs are 

overloaded). On the other hand, the PSSELB heavily overloads the slower VMs and the VMs with 

moderate computing powers, while the remaining VMs are under-utilized. The RASA heuristic 

provides a sever load-imbalance by heavily overloading the slower VMs and under-utilized the 

VMs with moderate computing powers in the computing setup. Likewise RASA, the TASA 

provides sever load-imbalance by heavily under-utilizing the slower VMs and overloading the 

faster VMs. Such a sever load-imbalance by RASA and TASA is produced due to the drastically 

degraded performance of Min-Min heuristic, because the scheduling mechanism these techniques 

use Min-Min in each alternate step of its scheduling decision. The VM.1—6 and VM.8—12 are 

heavily overloaded, while the remaining VMs are under-utilized by OLB technique. The sufferage 

under-utilized the VMs with slower and moderate computing powers.  

Figure 5.11: Individual Machine-level Load Imbalance using 512x16 s-lohi -
HCSP Instances.

Table 1: s_hilo results 

 
RALBA Sufferage TASA MaxMin MCT MinMin RASA OLB PSSELB 

ARUR 0.999 0.975 0.969 0.998 0.958 0.955 0.981 0.935 0.960 

%age Machine-level Load Imbalance 

VM.1 0.002 3.168 9.680 0.185  3.567 1.816 2.069 1.640 0.407 

VM.2 0.062 1.705  1.357  0.070  2.297 2.163  1.811 6.061  3.209 

VM.3 0.030 3.753 2.541  0.099  2.384 7.211 1.127 1.880 2.048 

VM.4 0.053 2.191 0.506  0.041 1.225 0.209 3.293 7.662  1.032  

VM.5 0.027 2.381 1.663 0.087  0.753  2.908  1.435  0.600  2.821 

VM.6 0.015 3.316 1.446  0.054  0.688 0.444 2.375 1.193  0.875 

VM.7 0.020 0.051  3.958 0.004 1.912 1.309  1.488  1.423  3.140  

VM.8 0.040 2.641 1.899 0.029  2.393 4.077 0.641 1.494  3.902 

VM.9 0.018 1.393  0.696  0.012 3.651 5.656 0.417 2.217 2.740 

VM.10 0.018 1.890  0.096  0.029 2.206 4.919 0.665 0.299 3.031 

VM.11 0.005 1.559 0.063 0.035 2.538 1.297 0.493 5.062  2.104  

VM.12 0.008  1.895  1.350 0.023 0.829  3.948  0.171  0.846 2.150 

VM.13 0.065  1.531  0.170  0.023 3.111  0.557 0.785  0.783 3.493  

VM.14 0.015  0.250  0.378  0.013 0.938  2.707  1.183  1.954 1.103  

VM.15 0.020  0.444  1.063  0.025 1.156  0.262  0.655  0.435 0.258  

VM.16 0.003 0.923  1.696  0.020 1.972  2.366  0.298  2.295 0.887  

 

Fig. 12 shows VMs level load-imbalance produced by scheduling heuristics using 512 ×16 s-hilo 

dataset. The highest resource utilization is achieved by RALBA that is following by Max-Min 

heuristic by achieving 99.8% resource utilization. The RALBA and Max-Min provides almost 

complete load-balancing at VMs-level. The sufferage and TASA under-utilize several VMs 

resulting overloading the remaining VMs. The MCT produces load-imbalance that cause the 

under-utilization of slower machines, while overloading the faster VMs. The OLB heavily 

overloads VM.2, VM.4, and VM.12 that produces the load-imbalance at remaining VMs. The Min-

Min heavily overloads VM.2, VM.5, VM.12, VM.14, and VM.16 machines, however, severely 

under-utilizes the VM.3 and VM.8—10 computing machines. The RASA and PSSELB under-

utilize the VMs with slow and moderate computing powers, while overloading the remaining VMs.  

These experimental results show that these scheduling techniques depicts a varying behavior of 

machine-level load balancing using different instances of HCSP and GoCJ datasets. However, the 

RALBA technique shows a consistent behavior of workload distribution that produces a load-

balanced computing schedule and the highest resource utilization using all instances of both HCSP 

and GoCJ datasets.   

Figure 5.12: Individual Machine-level Load Imbalance using 512x16 s-hilo -
HCSP Instances.
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The experimental results show that these scheduling techniques depict a varying

behavior of machine-level load balancing using different instances of HCSP and

GoCJ datasets. However, the RALBA technique shows a consistent behavior of

workload distribution that produces a load-balanced computing schedule and the

highest resource utilization using all instances of both HCSP and GoCJ datasets.

5.2.3 Results Discussion

This section delineates the analysis of the results obtained employing the afore-

mentioned simulation-based experiments.

The resource utilization of RALBA in terms of VM-level load balancing has been

compared with 8 different scheduling algorithms using two benchmark datasets

(i.e., HCSP instances [24, 95] and GoCJ [62, 94]). Among all the schedulers,

RALBA has attained the highest resource utilization for all the instances of HCSP

and GoCJ datasets. Max-Min has achieved almost the same resource utilization

as RALBA (i.e., 99.9% resource utilization) using c-hilo HCSP instances. Though,

the RALBA scheduling heuristics has shown minor improvements (i.e., 0.1% im-

proved ARUR using s-hilo, ihilo, and i-lohi HCSP instances) over the Max-Min in

terms of resource utilization. However, the RALBA has attained an improved load

balancing at individual machine level with shorter makespan (i.e., 0.12%, 0.14%,

and 0.24% shorter makespan using the s-hilo, i-hilo, and i-lohi HCSP instances,

respectively) than Max-Min.

Resource utilization is a very critical need for Cloud service providers. Higher

resource utilization often leads to a balanced and energy-efficient scheduling [1, 44].

The issue of low resource utilization (as identified in the literature and accredited

in our experimental results) should be addressed in a comprehensive manner. For

optimal resource utilization, the workload should be assigned to the computing

resources according to the resource capabilities and already assigned workload.

The resource-aware and balanced distribution of Cloud jobs can eliminate the

issues of under-/over-utilized computing resources and higher energy costs.
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The empirical investigation has revealed an interesting fact that the scheduling

heuristics with similar ARUR values have produced different load distribution at

machine level. This different load distributions by the employed scheduling algo-

rithms have constituted in varying makespan and throughput. The RALBA and

TASA heuristics have attained 0.994 and 0.974 ARUR values respectively, using

GoCJ workload with 512 Cloudlets and 16 VMs. In the same case, RALBA has

produced 2.27% and 1.21% load–imbalance at two of the slowest VMs with less

than 1% load–imbalance on all the other remaining VMs. However, TASA has

caused more load–imbalance at VMs level (i.e., 9.32, 14.49, 3.95, 4.38, 1.05, 1.76,

and 1.12% load–imbalance by seven VMs and less than 1% load–imbalance by the

other remaining VMs used in the experimentation). Similarly, the Sufferage and

Max-Min heuristics have attained almost the similar ARUR values (i.e., 0.983 and

0.986 ARUR values by Sufferage and Max-Min, respectively) using GoCJ work-

load with 1024 Cloudlets and 16 VMs (as discussed). In the same case, Sufferage

has caused 9.65%, 3.41%, and 3.62% load imbalance at slowest three VMs and less

than 1% load–imbalance by other remaining VMs. However, Max-Min has caused

1.52% load–imbalance at one of the slowest VM and less than 1% load–imbalance

by the rest of the VMs. Similarly, the OLB and PSSELB heuristics have achieved

the same ARUR value (i.e., 0.967 ARUR) using HCSP c-hilo instances. However,

PSSELB has produced more VM-level load-balancing as compared to OLB heuris-

tic, as discussed. PSSELB has caused 3.30, 2.30, 1.97, 1.70, 1.53, 1.29, 1.24, 1.13,

and 1.13% load–imbalance by the nine VMs and less than 1% load–imbalance by

remaining 7 VMs. On the other hand, OLB has resulted in 3.74, 3.31, 2.49, 1.72,

1.58, 1.32, 1.22, 1.17, 1.13, and 1.01% load–imbalance by the 10 VMs and less

than 1% of load–imbalance by the remaining 6 VMs. The same trend of different

load–imbalance produced at the machine level by different scheduling heuristics

(i.e., producing exactly same or almost similar ARUR values) is discerned in the ex-

periments using the benchmark HCSP instance and GoCJ workloads, as discussed

in Section 5.2. Contrariwise, RALBA has outperformed all other heuristics by at-

taining the highest value of ARUR with minimum makespan and more VM–level

load–balancing as compared to other eight scheduling heuristics using all GoCJ
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and HCSP instances.

In Section 5.2, the empirical investigation of VM-level load balancing is conducted

and presented to address the Research Question 3 of this dissertation mentioned

in Section 1.5.1, and concluded with following empirical findings.

1. The utilization of the full capacity of computing resources in a Cloud is

achieved by machine-level load-balancing in combination with higher re-

source utilization and minimal makespan. The RALBA heuristic is empiri-

cally endorsed to produce a more load-balanced schedule by releasing all the

computing resources in almost similar ready time. This will effectuate the

CSP to minimize the delay time in initializing the execution of next batch

of workload.;

2. The CSP can maximize its revenue generation and minimize the energy-

consumption in Cloud datacenters by executing the workload in minimal

time with improved resource utilization and machine-level load balancing.

In addition, the Cloud users can also be served with minimal execution time

and cost for their HPC jobs on the Cloud.

5.3 Empirical Results - SLA-RALBA Scheduler

5.3.1 Results using GoCJ Dataset

The efficacy of SLA-RALBA and existing scheduling techniques (i.e., Execution-

MCT, Execution-Min-Min, Profit-MCT, Profit-Min-Min, SLA-MCT, and SLA-

Min-Min) is evaluated by using ARUR, Expected Gain (i.e., execution cost) and

makespan metrics. Each experiment is performed 10 times and the investigation is

shown on average values. The empirical evaluation is performed using benchmark

GoCJ [62, 94] and HCSP [24, 95] datasets.

Fig. 5.13 displays the makespan results for the instances of GoCJ with 200, 300,

400, 500, 600, 700, 800, 900, and 1000 Cloudlets, respectively. Fig. 5.14 shows the
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Figure 1: Makespan Results - GoCJ Instances 3 

200 300 400 500 600 700 800 900 1000

SLA-RALBA 8935 13874 14802 25446 31992 27384 27471 62180 53927

SLA-MCT 11787 22409 23154 24614 32883 36423 47202 56746 56937

SLA-Min-Min 16450 30340 34672 40068 56630 58582 66818 83678 84449

Profit-MCT 54439 83052 103739 130003 164682 174987 197916 240094 259324

Profit-Min-Min 54439 83052 103739 130003 164682 174987 197916 240094 259324
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Figure 5.13: Makespan Results - GoCJ Instances.
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Figure 1: %age Makespan improvements of SLA-RALBA – GoCJ Instances  2 

200 300 400 500 600 700 800 900 1000

SLA-MCT 31.92 61.52 56.43 -3.27 2.79 33.01 71.83 -8.74 5.58

SLA-Min-Min 45.68 54.27 57.31 36.49 43.51 53.26 58.89 25.69 36.14

Profit-MCT 83.59 83.29 85.73 80.43 80.57 84.35 86.12 74.1 79.2

Profit-Min-Min 83.59 83.29 85.73 80.43 80.57 84.35 86.12 74.1 79.2
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Figure 5.14: %age Makespan Improvements of SLA-RALBA – GoCJ Instances
.

percentage improvement of SLA-RALBA in terms of makespan against SLA-MCT,

SLA-Min-Min, Profit-MCT, and Profit-Min-Min heuristics for the given instances

of GoCJ dataset. On average the SLA-RALBA attains lower makespan than SLA-

MCT (27.89% lower), SLA-Min-Min (45.69% lower), Profit-MCT (81.93% lower),

and Profit-Min-Min (81.93% lower) heuristics.

Fig. 5.15 presents gain cost based results of SLA-RALBA as compared to SLA-

MCT, SLA-Min-Min, Execution-MCT, and Execution-Min-Min for the instances
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Figure 1: Gain Cost Results - GoCJ Instances 2 

200 300 400 500 600 700 800 900 1000

SLA-RALBA 119060 180979 207478 282094 356245 381284 434775 513858 557906

SLA-MCT 120498 178164 225450 286597 357024 380503 429095 515987 562440

SLA-Min-Min 131978 202325 252974 317618 403392 427956 485569 589179 634482

Execution-MCT 960756 1470758 1860584 2342258 2951380 3115068 3538362 4289210 4629043

Execution-Min-Min 188477 307727 416028 503154 687299 796058 866247 1030159 1163987
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Figure 5.15: Gain Results - GoCJ Instances.
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Figure 1: %age Gain Cost improvements of SLA-RALBA – GoCJ Instances  2 

200 300 400 500 600 700 800 900 1000

SLA-MCT 1.19 -1.58 -1.04 1.57 0.22 -0.21 -1.32 0.41 0.81

SLA-Min-Min 9.79 10.55 9.95 11.18 11.69 10.91 10.46 12.78 12.07

Execution-MCT 87.61 87.69 87.76 87.96 87.93 87.76 87.71 88.02 87.95

Execution-Min-Min 36.83 41.19 45.24 43.93 48.17 52.1 49.81 50.12 52.07
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Figure 5.16: %age Gain Improvements of SLA-RALBA – GoCJ Instances .

of GoCJ dataset with 200, 300, 400, 500, 600, 700, 800, 900, and 1000 jobs, re-

spectively. Fig. 5.16 shows the percentage improvements of SLA-RALBA in terms

of gain cost against SLA-MCT, SLA-Min-Min, Execution-MCT, and Execution-

Min-Min heuristics. On average the SLA-RALBA achieves lower gain cost as com-

pared to SLA-MCT (0.01% lower), SLA-Min-Min (11.04% lower), Execution-MCT

(87.82% lower), and Execution-Min-Min (46.61% lower) heuristics, respectively.
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Figure 1: ARUR Results - GoCJ Instances 2 

200 300 400 500 600 700 800 900 1000

SLA-RALBA 0.08 0.09 0.1 0.08 0.08 0.09 0.11 0.06 0.07

SLA-MCT 0.06 0.05 0.06 0.07 0.06 0.06 0.06 0.057 0.06

SLA-Min-Min 0.045 0.04 0.043 0.046 0.042 0.043 0.043 0.042 0.046

Profit-MCT 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

Profit-Min-Min 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
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Figure 5.17: ARUR Results - GoCJ Instances.

Fig. 5.17 presents the ARUR based results of SLA-RALBA as compared to SLA-

MCT, SLA-Min-Min, and Profit-MCT and Profit-Min-Min for the instances of

GoCJ dataset with 200, 300, 400, 500, 600, 700, 800, 900, and 1000 jobs, respec-

tively.

Fig. 5.18 shows the percentage improvement of SLA-RALBA in terms of ARUR

against SLA-MCT, SLA-Min-Min, Profit-MCT, and Profit-Min-Min heuristics.

On average, the SLA-RALBA attains higher resource utilization as compared to

SLA-MCT (42.23% higher), SLA-Min-Min (96.34% higher), Profit-MCT (156.57%

higher), and Profit-Min-Min (156.57% higher) heuristics. On the other hand, the

Execution-MCT and Execution-Min-Min attain the highest resource utilization

as compared to SLA-RABA. In contrary, the Execution-MCT and Execution-

Min-Min attain 1965% and 982% higher gain cost as compared to SLA-RALBA,

because these don’t consider the SLA parameters in scheduling decisions.

5.3.2 Results using HCSP Dataset

Fig. 5.19 presents the makespan based results for the six instances of 512x16

HCSP dataset, namely u-c-hihi, u-c-lohi, u-s-hihi, u-s-lohi, u-i-hihi, and u-i-lohi.
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Figure 1: %age ARUR Improvements of SLA-RALBA - GoCJ Instances 2 

 3 

200 300 400 500 600 700 800 900 1000

SLA-MCT 40 69.23 71.67 16.42 23.81 43.55 85.31 8.77 21.31

SLA-Min-Min 87.67 120 139.53 69.57 85.71 106.98 146.51 47.62 64.44

Profit-MCT 154.55 166.67 212.12 136.36 136.36 169.7 221.21 87.88 124.24

Profit-Min-Min 154.55 166.67 212.12 136.36 136.36 169.7 221.21 87.88 124.24
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Figure 5.18: %age ARUR Improvements of SLA-RALBA – GoCJ Instances .
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Figure 1: Makespan results - HCSP Instances 3 

c-hihi c-lohi s-hihi s-lohi i-hihi i-lohi

SLA-RALBA 20932092 95604 11525698 596412 34860934 906629

SLA-MCT 827623549 109930 61235856 1825123 508278837 1647532

SLA-Min-Min 189329860 28492553 952750146 114853473 223080547 51165039

Profit-MCT 827623549 223911 16148630 1096182 700543972 20621604

Profit-Min-Min 827623549 223911 16148630 1096182 700543972 20621604
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Figure 5.19: Makespan Results - HCSP Instances.

Fig.5.20 shows the percentage improvement of SLA-RALBA in terms of makespan

against SLA-MCT, SLA-Min-Min, Profit-MCT, and Profit-Min-Min heuristics

for the given instances of HCSP dataset. On average the SLA-RALBA attains

lower makespan than SLA-MCT (66.17% lower), SLA-Min-Min (94.91% lower),

Profit-MCT (69.94% lower), and Profit-Min-Min (69.94% lower) heuristics. Fig.

5.21 presents gain cost based results of SLA-RALBA as compared to SLA-MCT,

SLA-Min-Min, Execution-MCT, and Execution-Min-Min for the given instances of
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Figure 1: %age Makespan improvements of SLA-RALBA – HCSP Instances  2 

c-hihi c-lohi s-hihi s-lohi i-hihi i-lohi

SLA-MCT 97.47 13.03 81.18 67.32 93.14 44.97

SLA-Min-Min 88.94 99.66 98.79 99.48 84.37 98.23

Profit-MCT 97.47 57.3 28.63 45.59 95.02 95.6

Profit-Min-Min 97.47 57.3 28.63 45.59 95.02 95.6
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Figure 5.20: %age Makespan Improvements of SLA-RALBA – HCSP In-
stances .

512x16 HCSP dataset. Likewise, Fig. 5.22 shows the percentage improvements of

SLA-RALBA in terms of gain cost against SLA-MCT, SLA-Min-Min, Execution-

MCT, and Execution-Min-Min heuristics. On average the SLA-RALBA achieves

lower gain cost as compared to SLA-Min-Min (37.74% lower), Execution-MCT

(91.97% lower), and Execution-Min-Min (75.02% lower) heuristics, respectively.

However, SLA-MCT achieves 5.79% lower gain cost on average (due to much bet-

ter performance of SLA-MCT in terms of gain cost only using u-c-hihi instance of

512x16 HCSP dataset) as compared to the proposed SLA-RALBA.

Fig. 5.23 presents the ARUR based results of SLA-RALBA as compared to SLA-

MCT, SLA-Min-Min, and Profit-MCT and Profit-Min-Min for given instances of

512x16 HCSP dataset. Fig. 5.24 shows the percentage improvement of SLA-

RALBA in terms of ARUR against SLA-MCT, SLA-Min-Min, Profit-MCT, and

Profit-Min-Min algorithms. On average, the SLA-RALBA attains higher resource

utilization as compared to SLA-MCT (253.95% higher), SLA-Min-Min (698.15%

higher), Profit-MCT (871.39% higher), and Profit-Min-Min (871.39% higher) algo-

rithms. On the other hand, the Execution-MCT and Execution-Min-Min heuristics

attains 35.23% and 4.54% highest resource utilization on average as compared to

SLA-RABA. In contrary, the Execution-MCT and Execution-Min-Min algorithms
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Figure 1: Gain cost results - HCSP Instances 2 

c-hihi c-lohi s-hihi s-lohi i-hihi i-lohi

SLA-RALBA 931471491 3501913 306383656 23094686 1013117399 28176771

SLA-MCT 413811775 3527427 1384644313 40861803 900371550 23627287

SLA-Min-Min 912434650 15275373 659362697 64101366 996119408 43826897

Execution-MCT 4212010808 83546680 6023862521 1024376709 9580794620 713815578

Execution-Min-Min 3388829450 9745480 1857322142 71460100 5139566514 156856822
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Figure 5.21: Gain Results - HCSP Instances.

1 

  

 1 

Figure 1: %age Gain cost improvements of SLA-RALBA – HCSP Instances  2 

c-hihi c-lohi s-hihi s-lohi i-hihi i-lohi

SLA-MCT -125 0.72 77.87 43.48 -12.52 -19.26

SLA-Min-Min -2.09 77.07 53.53 63.97 -1.71 35.71

Execution-MCT 77.89 95.81 94.91 97.75 89.43 96.05

Execution-Min-Min 72.51 64.07 83.5 67.68 80.29 82.04
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Figure 5.22: %age Gain Improvements of SLA-RALBA – HCSP Instances .

attains higher gain cost as compared to SLA-RALBA as shown in Fig. 5.22.

5.3.3 Results Discussion

A substantial improvement is witnessed in the efficacy of SLA-RALBA in terms

of resource utilization against existing SLA-aware and SLA-spare scheduling al-

gorithms as presented in Fig. 5.17 – 5.18 and Fig. 5.23 – 5.24. Similarly, a

prominent enhancement in the makespan results are also achieved except against
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Figure 1: ARUR results - HCSP Instances 2 

c-hihi c-lohi s-hihi s-lohi i-hihi i-lohi

SLA-RALBA 0.75 0.4 0.59 0.59 0.62 0.67

SLA-MCT 0.104 0.4 0.54 0.35 0.083 0.23

SLA-Min-Min 0.105 0.062 0.063 0.062 0.124 0.064

Profit-MCT 0.062 0.062 0.062 0.062 0.062 0.062

Profit-Min-Min 0.062 0.062 0.062 0.062 0.062 0.062
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Figure 5.23: ARUR Results - HCSP Instances.
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Figure 1: %age ARUR improvements of SLA-RALBA – HCSP Instances  2 

c-hihi c-lohi s-hihi s-lohi i-hihi i-lohi

SLA-MCT 618 -0.5 8.46 67.61 640.96 189.18

SLA-Min-Min 614.29 546.77 836.51 851.61 395.97 943.75

Profit-MCT 1109 546.77 851.61 851.61 891.94 977.42

Profit-Min-Min 1109 546.77 851.61 851.61 891.94 977.42
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Figure 5.24: %age ARUR Improvements of SLA-RALBA – HCSP Instances .

the makespan-based results of SLA-MCT for a couple of GoCJ instances (i.e., 500

and 900 Cloudlets instances, shown in Fig. 5.14). The SLA-RALBA attained

a significant reduction in expected gain against existing algorithms except SLA-

MCT for some GoCJ and HCSP instances (i.e., in case of c-hihi, i-hihi, and i-lohi

instances of HCSP, and GoCJ instances with 300, 400, and 800 Cloudlets, re-

spectively). However, SLA-RALBA outperformed the given scheduling heuristics

(including SLA-MCT) by offering a well-balanced among makespan, expected gain

and resource utilization on Cloud using all instances of HCSP and GoCJ datasets.
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Figure 1: Overall improvement of SLA-RALBA against SLA-MCT - GoCJ Instances 2 

 3 

200 300 400 500 600 700 800 900 1000

SLA-RALBA 0.695 0.695 0.701 0.691 0.693 0.696 0.701 0.678 0.691

SLA-MCT 0.673 0.652 0.662 0.688 0.685 0.67 0.655 0.685 0.684
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Figure 5.25: oi-Factor of SLA-RALBA and SLA-MCT - GoCJ Instances.

To prove the improved performance of SLA-RALBA against the SLA-MCT, the

oi-Factor is calculated and compared as follows. The max-min normalization is

adopted to normalize the values of makespan and expected gain (achieved by SLA-

RALBA and SLA-MCT in the experimental results) to a number ranged of 0 –

1. [121, 122]. The normalized values of makespan and expected gain is repre-

sented as n-Makespan and n-EGain. The lower values (between 0.0 and 1.0) of

n-Makespan and n-EGain, for a scheduling algorithm, show it to be the better

one. However, the higher value of ARUR identifies an scheduling algorithm to be

the better one. Therefore, n-Makespan’ and n-EGain’ is found by subtracting the

values of n-Makespan and n-EGain from 1, respectively. The oi-Factor of an algo-

rithm is calculated by averaging its values of n-Makespan’, n-EGain’ and ARUR.

Fig. 5.25 and Fig. 5.26 show the overall improvement of SLA-RALBA against

SLA-MCT using GoCJ and HCSP datasets, which proves a promising balance of

SLA-RALBA among makespan, expected gain and resource utilization.

5.4 Summary

Resource-Aware Scheduling

In-depth analysis of the current state-of-the-art scheduling heuristics results in

inefficient resource utilization, reduced makespan, and low throughput due to the
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Figure 1: Overall improvement of SLA-RALBA against SLA-MCT - HCSP Instances 2 
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Figure 5.26: oi-Factor of SLA-RALBA and SLA-MCT - HCSP Instances.

imbalanced mapping of Cloud jobs. The RALBA is a reource-aware technique

instead of a fair scheduling algorithm that considers the computing powers of ma-

chines in the computing environment and the computation requirements of jobs in

the dataset for scheduling decisions. This Chapter presents the performance anal-

ysis of a novel Cloud scheduling heuristic RALBA that ensures improved resource

utilization with minimal makespan and increased throughput. The performance

of RALBA has been compared with the state-of-the-art scheduling heuristics in

terms of makespan, resource utilization, and throughput. The detailed analysis

of experimental results has shown that RALBA has successively attained lower

makespan, higher throughput, and improved resource utilization as compared to

the existing Cloud scheduling heuristics (i.e., TASA, Sufferage, Max–Min, RASA,

Min–Min, MCT, RS, and RR).

VM-Level Load Balancing

This Chapter has focused on the empirical investigation of 09 state-of-the-art

scheduling heuristics, OLB, MCT, Min-Min, Max-Min, RASA, Sufferage, TASA,

PSSELB, and RALBA in a renowned CloudSim simulation environment. To scru-

tinize the potential of each heuristic under varying workload compositions and

computing capabilities have been assessed by employing two different benchmark

scientific workloads (i.e., HCSP instances and GoCJ datasets). These workloads

have been configured using different heterogeneity of jobs and machines in the
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computing environment. The RALBA heuristic has attained the highest resource

utilization among nine scheduling heuristics for all the instances of benchmark

datasets (i.e., 93.4% resource utilization for the c-lohi HCSP instances and 99.9%

resource utilization for ihilo, s-hilo, and c-hilo HCSP instances). However, for few

HCSP instances, Max-Min heuristic has also achieved the high resource utilization

with a slighter difference in ARUR value than RALBA. Although Max-Min has

achieved slightly reduced resource utilization than RALBA in these three cases

(i.e., i-hilo, s-hilo, and c-hilo HCSP instances). However, RALBA has caused the

highest resource utilization in consolidation with more machine-level load balanc-

ing and attained improved results of makespan and throughput as compared to

OLB, MCT, Min-Min, Max-Min, RASA, Sufferage, TASA, and PSSELB heuris-

tics. Moreover, RALBA has achieved significantly improved resource utilization

as compared to Max-Main for two instances of HCSP dataset (i.e. Max-Min

achieves 70.9, and 62.0% resource utilization for s-lohi and c-lohi HCSP instances,

while RALBA achieves 99.8, and 93.4% resource utilization for s-lohi and c-lohi

HCSP instance, respectively) and two instances of GoCJ dataset (i.e. Max-Min

achieves 43.4%, and 80.5% resource utilization for GoCJ workload with 256 and

512 Cloudlets, while RALBA has achieved 99.3, and 99.4% resources utilization

for the same GoCJ workload, respectively).

SLA and Resource-Aware Scheduling

A comprehensive investigation of the current SLA-based heuristics fallouts in a

reduced resource utilization and increased execution cost due to the improper

allocation of jobs to VM and the straggling jobs in scheduling. The proposed

novel technique SLA-RALBA ensures enhanced resource utilization with reduced

execution time and cost. The performance of SLA-RALBA has been compared

using benchmark HCSP and GoCJ datasets with the scheduling algorithms in

terms of execution time, cost and resource utilization. The exhaustive examination

of pragmatic results has shown that SLA-RALBA has presented an improved

balance among the resource utilization, execution time, and cost as compared to

the existing algorithms (i.e., Execution-MCT, Execution-Min-Min, Profit-MCT,

Profit-Min-Min, SLA-MCT, and SLA-Min-Min).
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In future, we intend to consider other important QoS aspects to enhance the

functionalities of SLA-RALBA; especially to deal with the communication cost

involved in the scheduling on Cloud.

SLA-RALBA as compared to RALBA technique: RALBA is a resource-

aware scheduler, while SLA-RALBA is resource-aware as well as SLA-aware sched-

uler in Cloud computing. Therefore, the SLA-RALBA has to consider the SLA-

type of user jobs for satisfying the SLA requirements in job scheduling. If a non

SLA-based workload is submitted, then both RALBA and SLA-RALBA will be-

have in the same manner and will exhibits the same performance in terms of

resource utilization, makespan and throughput. On the other hand, if SLA-based

workload is submitted, then RALBA will produce a drastic increase in the resource

utilization as compared to SLA-RALBA (as RALBA doesn’t considers the SLA

types of jobs). However, RALBA will not satisfy the SLA requirements of jobs

(SLA-3 jobs may receive expensive execution cost, and SLA-1 jobs maybe exe-

cuted in longer completion time) in the workload, and this is not desired by CSPs

and Cloud users. While, SLA-RALBA will provide the scheduling that will sat-

isfy the SLA-requirements of all jobs in workload but will produce much reduced

resource utilization as compared to RALBA technique. Further, It is evident in

the experimental results (presented in section 5.3) that SLA-RALBA still pro-

duces drastic increase in resource utilization as compared to existing SLA-aware

scheduling algorithms.



Chapter 6

Conclusions and Future Work

This chapter concludes the thesis by presenting the summary of main contributions

related to proposed benchmark GoCJ dataset, resource-aware load balancing, and

cost-efficient resource-aware load balancing techniques. Moreover, this Chapter

provides an insight into promising open-issues for future work in the area of Cloud

computing.

6.1 Contributions

Following is the summary of major contributions of the thesis. We present two

novel Cloud scheduling algorithms: 1) RALBA, and 2) SLA-RALBA. The RALBA

ensures improved resource utilization in a datacenter with reduced mankespan,

and higher throughput. Likewise, the SLA-RALBA scheduler provides enhanced

resource utilization with reduced makespan and execution cost.

Existing state-of-the-art algorithms are either based on completion time or exe-

cution time of jobs on each machines in a computing system. Empirical analysis

shows that these scheduling techniques produce very poor resource utilization in

Cloud datacenters. However, the proposed RALBA algorithm presents the idea of

job scheduling based on computation share of each computing machine. The com-

putation share based scheduling methodology introduces computation-awareness

123
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both at machines and HPC applications level, which produces a significant in-

crease in the resource utilization. In addition, a scalable computing environment

will not affect the performance of RALBA because the increase or decrease in

the number of computing machines will not affect the computation share of each

machine. This will ensure a load-balanced job scheduling with improved resource

utilization.

SLA-aware scheduling algorithms ensure the QoS by considering both the execu-

tion time and cost of jobs. On the other hand, these algorithms drastically reduce

the resource utilization in Cloud datacenters. Therefore, the idea of computation

share based scheduling is inculcated in a new proposed SLA-RALBA algorithm

that significantly increased the resource utilization while providing an improved

balance between execution time and cost. The performance of SLA-RALBA is em-

pirically examined using two benchmark datasets against the exiting SLA-aware

algorithms.

These proposed schedulers (i.e., RALBA and SLA-RALBA) effectuate the CSP

to minimize the delay time in initializing the execution of next batch of workload,

maximize the revenue generation of CSP, and minimize the energy consumption

in Cloud datacenter by improving the resource utilization. In addition, a new

GoCJ dataset is proposed that can be used by the Cloud research community

for job scheduling, resource-allocation policies, and benchmark-based performance

analysis in distributed and Cloud computing.

6.2 Future Directions

In this thesis, a novel resource-aware load balancing technique, a benchmark

dataset for distributed and Cloud computing, and a novel cost- and resource-

efficient load balancing technique with improved resource utilization are presented.

There are several potential research directions which could be explored and inves-

tigated. These research directions are as follows:
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RALBA is a batch-dynamic load balancing mechanism to schedule non-preemptive,

compute-intensive, and independent jobs on Cloud. The functionality of RALBA

will be enhanced to deal with unexpectedly slow computing resources and to cope

with the sudden resource failures and a fault-tolerant scheduling mechanism.

RALBA scheduler represents a static mechanism for intra-batch jobs scheduling.

However, RALBA mechanism will be enhanced for dynamic scheduling. In the

future, we intend to propose and design the dynamic mechanism based on RALBA

(i.e., Dynamic-RALBA) with a single Fill-Scheduler instead of two sub-schedulers

(i.e., Fill-Scheduler and Spill-Scheduler). The Fill-Scheduler of Dynamic-RALBA

will be based on the idea of employing a mechanism to revise the computing share

of VMs for the completing jobs on those VMs.

The proposed SLA-RALBA provides an improved balance among resource utiliza-

tion, execution time, and cost as compared to existing state-of-the-art heuristics.

In the future, the SLA-RALBA mechanism could be amended to consider other

important QoS aspects specially to deal with the communication cost involved. In

addition, a fault-tolerant version of the SLA-RALBA could possibly be proposed

and developed.

GoCJ benchmark dataset is based on the jobs trend observed for a specific Cloud

datacenter (i.e., Google cluster traces). The modified version of GoCJ benchmark

dataset can be enhanced with a generalized original dataset (to be input to the MC

simulation) based on a diversified analysis of multiple real Cloud infrastructures

(i.e., Google cluster traces [101], Facebook Hadoop [100] workload, and Yahoo

cluster traces [102] etc.). In addition, the GoCJ can be equipped with SLA- and

deadline-aware job parameters based on a comprehensive literature review that

would be useful in the performance analysis of SLA-aware and constraints-oriented

resource-allocation and scheduling policies in Cloud.
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