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Abstract

Due to the exponential growth in the human population, the demand of energy is

increasing with increased use of technology and smart appliances in every field of

life. Energy consumers are increasing day by day due to their highly dependence

on automatic operated appliances and power consuming devices. Because of this,

reliable and high-quality electrical power system is extremely important to ful-

fill the residential, commercial and industrial sectors energy demand. Meanwhile

there is a rapid increase in the global natural resources pressure. Throughout

the world, major blackouts occur due to the consumer energy demand and sup-

ply mismatch and system automation deficiencies. Therefore, a transition process

from traditional electric power grid to smart grid, to integrate communication

and information technologies, is the demand of the future. To fulfill the energy

demands, new resources of energy generation are necessary to keep the balance

between demands and generation. However, due to the realization of the fact that,

with increased carbon emission and scarcity of fossil fuels, optimized and efficient

utilization of the existing resources of energy is very important in the near fu-

ture. Therefore, search and integration of new green renewable energy resources

is obligatory in such circumstances. But, integration of green renewable energy

resources needs a wide sort of design, planning and optimization. Different con-

ventional optimization techniques, such as Linear Programming (LP), Non-Linear

Programming (NLP), Integer Linear Programming (ILP), Mixed Integer Linear

Programming (MILP), Dynamic Programming (DP) and Constrained Program-

ming (CP) etc. have already been practiced in the near past. However, in the

present situations, when integration of renewable energy resources is mandatory,

and problems are non-linear and have numerous local optima, such conventional

optimization techniques become obsolete. In the last decade, bio-inspired modern

heuristic optimization techniques are getting popularity due to their stochastic

nature of search mechanisms and avoidance of large convergence time for exact so-

lution. In this research work, we have explored and analyzed different bio-inspired

algorithms for energy optimization problem, such as; Ant Colony Optimization
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(ACO), Antlion Optimization (ALO), Bacterial Foraging Optimization (BFO) al-

gorithm, Cuckoo Search Optimization Algorithm (CSOA), Firefly Algorithm (FA),

Genetic Algorithm (GA), Grasshopper Optimization Algorithm (GOA) and Moth-

Flame Optimization (MFO) algorithm. We also proposed a hybrid version of

Genetic and Moth Flame Optimization algorithms, named as, Time-constrained

Genetic-Moth Flame Optimization (TG-MFO) algorithm. Three main objectives

of the use of the aforementioned bio-inspired algorithms; (a) minimization of the

consumed energy cost by shifting the appliances from high energy price hours

(on-peak hours) to low energy demand or low price hours (off-peak hours), (b)

minimization of the peak to average power ratio (PAR) for stability and further

reduction of the energy cost, (c) Reduction in the consumer waiting time due to

shifting/scheduling of the appliances. Simulation results show that, the use of bio-

inspired energy optimization algorithms gave comparative results in terms of the

aforementioned objectives. Renewable energy sources (RESs) and battery storage

units (BSUs) are also integrated for further reduction of total load and its cost.

For analysis and validation of the proposed bio-inspired algorithms, we applied

these algorithms on consumer’s different real life scenarios, such as; single home

for one day, single home for thirty days, thirty different size homes for one day

and thirty different size homes for thirty days in a residential sector, an office in

the commercial sector and a woolen mill in the industrial sector. We considered

different size homes with different power rating appliances and different length of

operational times (LOTs) to make our algorithms more practicable. We put con-

straints on appliances starting times and their operation ending times to minimize

the end user discomfort and frustration along with the reduction of electricity bill.

In a single home, we categorized the appliances as; Fixed Load (i.e., non-shift able

or non-interruptible load) and shiftable Load (i.e., shift-able or interruptible load)

to minimize consumer electricity bill. We also divided the consumers into three

types as; (a) non-active users (that are fully depended on utility and do not have

their own energy generation or battery storage units, (b) semi-active users (that

are partially dependent on utility due to their own renewable energy sources and

(c) full-active users (those users who have their own energy generation from any
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renewable energy sources and battery storage units in their own premises). We

proposed three different system models (residential, commercial and industrial)

for considering all aforementioned parameters to make a reliable and sustainable

demand side management (DSM) system in a Smart Grid (SG). Day ahead pricing

(DAP) signals are applied for calculation of the consumed energy cost, to make

the system more practicable. In most of our assumed system models, usually

there is a trade-off between reduction of consumer’s electricity cost and waiting

time. Therefore, we proposed hybrid algorithm for achieving our objectives in an

efficient way.
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Chapter 1

Introduction

1.1 Motivation and Background

Since the human population of this bio-sphere is increasing day by day, therefore,

energy resources are becoming scarce. Because of the traditional methods, most

of the generated energy is wasted every year in distribution network and demand

side. Therefore, in the field of “energy trading”, researchers all over the world have

taken keen interest in this issue and finally introduced the concept of the smart

grid. Smart grid is an ultimate solution to all of the energy related problems of

today’s modern world. Since the creation of this biosphere, Nature is becoming

a big cause of inspiration. Inspired from nature, numerous researchers all over

the world have developed an immense set of algorithms [1] – [71] Table 1.1 and

Table 1.2. Some of these algorithms are very efficient and successful in solving real

life problems. That’s why, these algorithms have become very popular, especially

in the field of optimization. In the last decade, researchers are applying these

nature-inspired algorithms in different fields of life.

Energy consumers are increasing day by day due to their dependence on power

consumption devices. Because of this, reliable and high quality electrical power

system is extremely necessary to fulfill the residential, commercial and industrial

sectors energy demand. Meanwhile there is a rapid increase in the global natural

1
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Table 1.1: List of bio-inspired algorithms

S.
No.

Proposed Algorithm Ref. Authors

1 African buffalo opt. algorithm [1] Odili JB et al.
2 Ant colony optimization [2] Dorigo
3 Ant lion optimizer [3] Seyedali Mirjalili
4 Artificial bee colony [4] Karaboga and Basturk
5 Atmosphere clouds model [5] Yan and Hao
6 Biogeography-based optimization [6] Simon
7 Brain Storm Optimization [7] Shi
8 Bacterial foraging [8] Passino
9 Bacterial-GA Foraging [9] Chen et al.
10 Bat algorithm [10] Yang
11 Binary bat algorithm [11] Seyedali Mirjalili et al.
12 Bee colony optimization [12] Teodorovi’c and Dell’Orco
13 Bee system [13] Lucic and Teodorovic
14 BeeHive [14] Wedde et al.
15 Bees algorithms [15] Pham et al.
16 Bees swarm optimization [16] Drias et al.
17 Bumblebees [17] Comellas and Martinez
18 Cat swarm [18] Chu et al.
19 Chaotic Bat Algorithm [19] Aamir H. et al.
20 Chaotic cuckoo search [20] Wang GG et al.
21 Chaotic Krill Herd algorithm [21] Gai-Ge Wang et al.
22 Chicken swarm opt. algorithm [22] Meng X et al.
23 Consultant-guided [23] search Iordache
24 Cuckoo search [24] Yang and Deb
25 Differential evolution [25] Storn and Price
26 Dragonfly algorithm [26] Seyedali Mirjalili
27 Dolphin echolocation [27] Kaveh and Farhoudi
28 Eagle strategy [28] Yang and Deb
29 Eco-inspired evolutionary algorithm [29] Parpinelli and Lopes
30 Egyptian Vulture [30] Sur et al.
31 Elephant Search Algorithm [31] S. Deb et al.
32 Fish-school Search [32, 33] Lima et al.
33 Flower pollination algorithm [34, 35] Yang
34 Fast bacterial swarming algorithm [36] Chu et al.
35 Firefly algorithm [37] Yang

resources pressure. Throughout the world, major blackout occurs due to con-

sumer demand and utility supply mismatch and system automation deficiencies.

So, a transition process from traditional electric power grid (TEPG) to smart grid

(SG), to integrate communication and information technologies, is the demand of
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Table 1.2: List of bio-inspired algorithms

S.
No.

Proposed Algorithm Ref. Authors

36 Fish swarm/school [38] Li et al.
37 Good lattice swarm optimization [39] Su et al.
38 Glowworm swarm optimization [40, 41] Krishnanand and Ghose
39 Gene expression [42] Ferreira
40 Grasshopper optimization algorithm [43] Shahrzad Saremi
41 Grey Wolf Optimization [44] S. Mirjalili et al.
42 Great salmon run [45] Mozaffari
43 Group search optimizer [46] He et al.
44 Human-Inspired Algorithm [47] Zhang et al.
45 Hierarchical swarm model [48] Chen et al.
46 Invasive weed optimization [49] Mehrabian and Lucas
47 Japanese tree frogs calling [50] Hern’andez and Blum
48 Krill Herd [51] Gandomi and Alavi
49 Lion optimization algorithm [52] Rajakumar BR
50 Marriage in honey bees [53] Abbass
51 Monkey search [54] Mucherino and Seref
52 Moth-flame optimization algorithm [55] Seyedali Mirjalili
53 Multi-objective grey wolf optimizer [56] Seyedali Mirjalili
54 OptBees [57] Maia et al.
55 Paddy Field Algorithm [58] Premaratne et al.
56 Particle swarm algorithm [59] Kennedy and Eberhart
57 Queen-bee evolution [60] Jung
58 Roach infestation algorithm [61] Havens
59 Salp Swarm Algorithm [62] Seyedali Mirjalili et al.
60 Shuffled frog leaping algorithm [63] Eusuff and Lansey
61 Social spider algorithm [64] Yu JJQ and Li VOK
62 Spider monkey opt. algorithm [65] Bansal JC et al.
63 Termite colony optimization [66] Hedayatzadeh et al.
64 Virtual ant algorithm [67] Yang
65 Virtual bees [68] Yang
66 Weightless Swarm Algorithm [69] Ting et al.
67 Whale optimization algorithm [70] Seyedali Mirjalili
68 Wolf search [71] Tang et al.

the future. To fulfill the energy demands, new resources of energy generation are

necessary to keep the balance between demands and generation. Due to the real-

ization of the fact that, with increased carbon emission and scarcity of fossil fuels,

optimized and efficient utilization of the existing energy resources is very impor-

tant in the near future. Secondly, search and integration of new green renewable



Introduction 4

energy resources is obligatory in such circumstances. The integration of green re-

newable energy resources needs a wide sort of design, planning and optimization.

Different conventional optimization techniques, such as LP, NLP, ILP, MILP, DP

and CP etc. have been practiced so for. But in the present situations, when

integration of renewable energy resources is mandatory, and problems are non lin-

ear and have numerous local optima, such conventional optimization techniques

become obsolete. In the last decade, bio-inspired modern heuristic optimization

techniques are getting popularity due to their stochastic search mechanisms and

avoidance of large convergence time for exact solution.

In this work, we have given an overview of all proposed bio-inspired algorithms

in literature. Then we have analyzed and applied some of these bio-inspired al-

gorithms like, ACO, ALO, BFA, CSOA, FA, GA, GOA and MFO algorithms for

energy optimization problem in smart grids (SG). We implemented these algo-

rithms in residential, commercial and industrial sectors for energy optimization by

scheduling end-user appliances and machines. Our objectives are reduction of en-

ergy cost and PAR, while considering high end-user comfort level. To reduce user

frustration due to waiting time by scheduling the appliances, we also combined

GA with MFO, and proposed hybrid version TG-MFO (time-constrained genetic

moth-flame optimization) algorithm.

1.2 Research Challenges

Traditional electric power grids are unable to fulfill today’s electricity demand.

This deficiency has raised the demand for an energy management system. By

exploiting various computational techniques and algorithms, the aforementioned

problem could be solved comfortably. Researchers have applied different bio-

inspired algorithms, however, they did not consider the end-user comfort by reduc-

ing their waiting time along with the reduction of energy cost and PAR. Therefore,

in this research work, we use different bio-inspired techniques for three main sec-

tors of consumers, i.e. residential, commercial and industrial. In residential sector,
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different home appliances with different power ratings and length of operational

times (LOTs) are considered. While, in commercial sector, eight appliances have

been considered, named as automatically operating appliances (AOAs). In indus-

trial sector, we have divided our load in different load units. For residential and

industrial sectors, 24 hrs are considered, while in commercial applications 12 hrs

are considered. The scheduling of appliances is one of the most important require-

ments to optimize the performance of smart homes. The objectives of scheduling

are to reduce; the electricity bill, PAR, aggregated power consumption and appli-

ances waiting time in order to maximize the end user comfort etc. In this regard,

the current research in SG majorly focuses on optimization techniques for power

scheduling. Numerous researchers all over the world have proposed different sys-

tem models for energy cost minimization and reduction of peak to average power

ration. These techniques have efficiently reduced consumer electricity bills and

PAR, however, they have the limitations of comfort in terms of appliances waiting

time of end user (which should be kept minimum), i.e., when and which appliance

a consumer wants to start, it must be start with minimum waiting time. In the

present era of electricity dependent modern technologies, user wants to finish his

job quickly, instead of waiting for his appliances to start. On the other hand, the

consumption has to be minimized in order to reduce the cost as well. But un-

fortunately, these research attempts have ignored frequency of interruptions and

aggregated power consumption, as these issues threaten the reliability, stability,

sustainability and security of SG.

1.3 Objectives

There are four main objectives of our work as listed below:

1. Minimization of consumer’s frustration in terms of waiting time due to

scheduling of their appliances;

2. Reduction of consumer’s electricity bill by shifting their load from on-peak

hours to off-peak hours;
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3. Minimization of peak to average power ratio (PAR);

4. Integration of renewable energy resources (RESs) and batteries storage units

(BSUs).

The mathematical formulation of our objective function is given by:

EN
T =

N∑
n=1

Wn ×Xn (1.1)

where, Wn is the power of nth appliance, N shows the total no of appliances, Xn is

the ON-time in a time slot of nth appliance and EN
T is the total energy calculated

for all appliances in a single time slot.

Now the total cost CSch for all scheduled appliances can be calculated by multi-

plying total energy EN
T,m calculated in mth time slot with respective energy price

ζm in that time slot.

CSch =
M∑
m=1

EN
T,m × ζm (1.2)

Cunsch is the total energy price for all slots of Unscheduled appliances calculated

in the similar manner, then the normalized CNorm of scheduled appliances can be

calculated as:

CNorm =
CSch

CSch + Cunsch
(1.3)

1.3.1 User’s Waiting Time (τw)

User’s comfort in terms of waiting time is important for end-users. Waiting time

must be minimized to have a high comfort level so that the end-user’s frustration

can be avoided. It is that interval of time when a consumer wants to switch-ON

an appliance, however, due to the scheduling limitations of the system, consumer

has to wait for starting its operation. As we have defined the starting time α

and the latest ending time β of an appliance, then another parameter η will be

the operational starting time of the same switched-ON appliance. This is shown

diagrammatically in Figure 1.1. Where, β - α is the time span, defined by the
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consumer. The figure shows that a consumer’s maximum waiting time could be

up to ηmax. Since length of operational time (LOT) is already defined by the

consumer, so at ηmax, the algorithm will have to start the appliance to complete

its operation up to the final time β.

Figure 1.1: Starting time, ending time, LOT and waiting time.

Here, LOT is the length of the operational interval of time, in which an appliance

completes its task. To elaborate it further, let a user wants to start his/her washing

machine. As given in Table 1.3, its starting time (α)= 09.00 and ending time (β)=

12.00. So, its Time-span (β −α)= 12-9= 3 hrs. However, its LOT= 1.5 hrs. Now

this washing machine can start its operation from 9.00, 09.30, 10.00 Or at most

10.30, because it needs 1.5 hrs to complete its operation. Now, if this washing

machine started at 09.00, so waiting time is zero. If it starts its operation at

09.30, the waiting time will be 0.5 hr and so on. The maximum starting time ηmax

could be 10.30 to complete its operation LOT=1.5 hrs.

Now, since,

(β − α) ≥ LOT (1.4)

Therefore, the range of waiting time can be α to ηmax, as shown in Figure 1.1.

Appliances’ normalized waiting time (τw) can be calculated as:

τw =
η − α

ηmax − α
(1.5)

Equation (1.5) shows that the normalized waiting time can be from “0” (when

η = α) to “1” (when (η = ηmax). Now, the final expression for minimization
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function is given by the following equation:

min

(
(λ1 × CNorm) + (λ2 × τw)

)
(1.6)

Our proposed objective function aims to reduce electricity cost, while maintaining

higher end user comfort level by minimization of waiting time. λ1 and λ2 are

multiplying factors of two portions of our objective function. Their values varies

between ’0’ and ’1’ so that λ1 + λ2=1 . It reveals that either λ1 and λ2 could be

0 to 1. That is, if an end user does not want to participate in the load scheduling

process, then his multiplying factors will be λ1 =1 and λ2 =0 in the objective

function.

Table 1.3 illustrates the typical electricity demand of a single home and multi-

ple homes, with different power ratings and types of appliances, their LOTs and

(α) and (β) constraints [72]. Since different end-users have different habits and life

routines, with different sizes and power ratings of appliances, we have assumed four

types of homes and randomly selected through the proposed algorithm, to have

randomness in the consumed energy when taking multiple, i.e., 30 homes.

1.3.2 Peak to Average Power Ratio (PAR)

It is the ratio of the “peak load of the consumer” to the “average load” of the

consumer, in every interval of time and is denoted by PAR. PAR can be mini-

mized by reducing the peak load demand Wmax of a consumer using the proposed

scheduling algorithms, which is in favour of both the utility and consumer for

maintaining demand-supply balance. Mathematically, it is defined as in [102]:

PAR =
Loadpeak
Loadavg

=
Wpeak

1

T

∑T
n=1 Wt,n

(1.7)

where, Wpeak is the peak load demand of a consumer during 24 hrs interval of time.

Now the purpose of demand side management (DSM) is, to reduce this peak load

by shifting some load to low demand (Off-peak) hours, by using some optimization

algorithms, while keeping in view the user frustration in terms of waiting time.
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Table 1.3: Appliances and their running time constraints [72]

S.
No.

Appliance Category Power Rat-
ing ρe,n
(KW)

Starting
time (α)

Ending
time (β)

Time-
span
(β − α)
(hrs)

LOT
(hrs)

1 Fridge-1 Fixed 0.3 00 24 24 24

2 Interior Lighting-1 Fixed 0.84 18 24 06 6.0

3 Dish Washer-1 Shiftable 2.0 09 17 08 2.0

4 Washing Machine-
1

Shiftable 0.6 09 12 03 1.5

5 Spin Dryer-1 Shiftable 2.5 13 18 05 1.0

6 Cooker Hob-1 Shiftable 3.0 08 09 01 0.5

7 Cooker Oven-1 Shiftable 5.0 18 19 01 0.5

8 Microwave-1 Shiftable 1.7 08 09 01 0.5

9 Lap top-1 Shiftable 0.1 18 24 06 2.0

10 Desk Top-1 Shiftable 0.3 18 24 06 3.0

11 Vacuum cleaner-1 Shiftable 1.2 09 17 08 0.5

12 Electrical car-1 Shiftable 3.5 18 08 14 3.0

1 Fridge-2 Fixed 0.25 00 24 24 24

2 Interior Lighting-2 Fixed 0.9 19 24 07 7.0

3 Dish Washer-2 Shiftable 1.9 11 15 04 2.0

4 Washing Machine-
2

Shiftable 0.5 10 14 04 2.0

5 Spin Dryer-2 Shiftable 2.0 10 16 06 2.0

6 Cooker Hob-2 Shiftable 3.5 09 10 01 0.5

7 Cooker Oven-2 Shiftable 5.4 17 20 03 1.5

8 Microwave-2 Shiftable 1.9 07 09 02 0.8

9 Lap top-2 Shiftable 0.09 16 23 07 3.0

10 Desk Top-2 Shiftable 0.28 14 20 06 2.0

11 Vacuum cleaner-2 Shiftable 1.4 10 16 06 1.5

12 Electrical car-2 Shiftable 3.3 16 09 17 4.0

1 Fridge-3 Fixed 0.5 00 24 24 20

2 Interior Lighting-3 Fixed 0.62 17 06 13 13

3 Dish Washer-3 Shiftable 2.5 10 16 06 2.5

4 Washing Machine-
3

Shiftable 0.8 08 14 06 1.8

5 Spin Dryer-3 Shiftable 2.5 13 19 06 1.0

6 Cooker Hob-3 Shiftable 3.2 07 09 02 0.5

7 Cooker Oven-3 Shiftable 5.3 16 18 02 1.5

8 Microwave-3 Shiftable 1.9 10 14 04 1.0

9 Lap top-3 Shiftable 0.2 16 24 08 2.5

10 Desk Top-3 Shiftable 0.4 18 20 02 1.0

11 Vacuum cleaner-3 Shiftable 1.3 11 12 01 0.5

12 Electrical car-3 Shiftable 3.4 16 07 11 5.0

1 Fridge-4 Fixed 0.4 00 24 24 18

2 Interior Lighting-4 Fixed 0.7 19 08 13 13

3 Dish Washer-4 Shiftable 2.3 08 19 11 4.0

4 Washing Machine-
4

Shiftable 0.9 11 14 03 1.0

5 Spin Dryer-4 Shiftable 2.0 14 20 06 1.0

6 Cooker Hob-4 Shiftable 3.5 10 12 02 1.2

7 Cooker Oven-4 Shiftable 5.5 10 11 01 0.8

8 Microwave-4 Shiftable 1.9 10 14 04 1.5

9 Lap top-4 Shiftable 0.15 11 23 12 4.0

10 Desk Top-4 Shiftable 0.4 09 24 15 6.0

11 Vacuum cleaner-4 Shiftable 1.5 11 16 05 1.2

12 Electrical car-4 Shiftable 4.0 10 22 12 4.0
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1.3.3 Renewable Energy Source (RES) Model

Photovoltaic (PV) cells and wind turbines can be used as local power generators,

also known as distributed RESs, on consumer premises. These RESs can be used

for the local energy generation, as well as for charging the batteries in BSUs.

The RESs’ generated energy, denoted by ERES (Figure 1.3), can be calculated as

in [73], by approximating a local Gaussian function (Figure 1.2) as follows:

ERES(t, µ, σ) =
1

σ
√

2π
e(− (t−µ)2

2σ2
) (1.8)

where t denotes the prospection variable (time), µ is the mean or central value

and σ is the standard deviation.

Figure 1.2: Gaussian function representing the approximate PV cells’ energy
generation (Wh) [73].

The total daily energy generated from RESs must be positive, i.e., greater than

zero and on daily basis, it is given by:

0 ≤ ERES ≤ ERES(max)
(1.9)

where ERES(max)
is the maximum available RESs’ generated energy capacity. If in

any time interval, the renewable energy source (RES) generated energy exceeds
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Figure 1.3: RES-generated energy ERES for a single home.

the end-user energy demand ET , i.e.,

ERES > ET (1.10)

then it is sold back to the grid as per their prior agreement or can be used for

charging batteries in BSUs for later use, particularly during peak hours.

1.3.4 Batteries Storage Units (BSUs) Model

When RESs’ generated energy exceeds the consumer energy demand, it is stored in

the batteries using BSUs, which can be used during on-peak hours or night-time,

when RESs are not available. This can be modeled using a binary variable Xbat

as:

Xbat =

1 for charging

0 for discharging

(1.11)

where Xbat shows the charging and discharging states of the batteries. In this

model, I ignore the energy losses during the charging and discharging process.
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1.4 Smart Grid and its Benefits

A Smart grid (SG) is generally a combination of information technology (IT) and

traditional electric power grid (TEPG). SG networks can combine the proceedings

of all attached generators, transmission and consumers intelligently. Recently, the

traditional grids are transformed to smart digitized power grids due to several

factors. They were energy inefficient, tendency to regular transmission failures

and insecure. SG involves communication, control system, automation, computer

technology, power electronics, distributed generation, energy storage systems and

information flow. Traditionally, the flow of electric power is unidirectional, i.e.

from the supply to demand side. Conversely, SG purpose is to make the flow of

electricity supply and demand possible in bidirectional way.

1.4.1 Smart Grid Networks

For the flourishing functionality of SG, an integrated reliable, secure, high per-

formance, scalable and robust SG communication network is necessary. This will

make possible gathering distant and real time information from different grid re-

mote terminal units (RTUs) as well as to support various applications.

1.4.2 Traditional Electric Power Grid to Smart Grid

With the passage of time energy consumers are increasing due to their depen-

dence on power consumption devices. Because of this, reliable and high quality

electrical power system is extremely necessary to fulfill the consumer energy de-

mand. Meanwhile there is a rapid increase in the global natural resources pressure.

Throughout the world, major blackout occurs due to consumer demand and util-

ity supply mismatch & system automation deficiencies. So, a transition process

from Traditional Electric Power Grid to Smart Grid (TEPG) to Smart grid (SG),

to integrate communication and information technologies, is the demand of the

future. Figure 1.4 shows the schematic view of up-gradation of conventional grid
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to smart grid. The figure shows that, along with power lines, each section of the

existing grid is connected to another section using different types of communi-

cation means, like, WiFi, WiMax, GSM, Power Line Communication (PLC) etc.

In SG, to reduce the cost of the consumed energy by the end user, during peak

hours, the consumers also known as prosumers can produce energy from solar,

wind and other possible sources. So, the goal of SG is to accomplish proficient

energy consumption level by different end users.

Figure 1.4: Traditional Grid to Smart Grid

1.4.3 Smart Meter (SM)

Smart meter (SM) is an energy measuring device installed at consumer end. It

uses advanced metering infrastructure (AMI) for its communication with the power

grid. SMs are used to make possible two-sided stream of information between the

end electricity user and power providing companies.
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1.4.4 Home Energy Management System ( HEMS )

To keep demand-supply balance, HEMS is an extension of SG. Using AMI and

sensors, HEMS is used to help end user to minimize total electricity bill and

curtail peak load, hence reduction in PAR. By rescheduling the energy usage

pattern of end user’s house hold appliances, electricity bill can be highly reduced.

During peak hours, energy consumption and load can be reduced by HEMS in

smart grid, known as demand side management (DSM). With a proficient DSM

system, major blackout and risk of power system failure can be avoided in both

utility and consumer. So the main purpose of HEMS is to decrease electricity

bill by minimizing the consumer’s contribution to the peak hours energy demand

i.e. PAR and household carbon emission reduction. Throughout the world, many

researchers are investigating to apply artificial intelligence (AI) with HEMS in SG,

to have a reliable and energy efficient system. The appearance of SG intelligent

HEMS is made possible due to advancement in AI field. It means to put intelligence

in the machines through software for self-healing and self-supporting of the system.

1.4.5 Demand Side Management (DSM)

Electric power providers use the terminology of DSM in SG to manage the usage

of electric power by the consumers. For DSM, various terminologies are used like

demand response (DR) and energy efficiency (EE). DR is a program name. In DR,

electric power consumers are encouraged for reduction in their electricity demand

for short intervals particularly during peak hours. This reduction in electricity

demand will be either in response to electricity pricing schemes or utility operator

triggers end user appliances by giving them some incentives. This interval is

usually ranges from 1 to 4 hours. This can be achieved by either lighting reduction

or HVAC levels adjustment. This can also be achieved by integration of some RES

at consumer end to minimize the electricity demand. For end user’s consumed

energy cost calculation, different pricing schemes are available. In DSM, consumers

are encouraged for efficient utilization of electricity permanently through different



Introduction 15

incentives provided by the utilities. DSM can be achieved by saving energy using

energy saver lights, fans, inverter air conditioners (AC), up-gradation of building

automation and improvements of HVAC system etc. Demand side management

(DSM) has many strategies which help to solve the energy optimization problem by

peak clipping, load shifting, strategic conservation, flexible load shifting, strategic

load growth and valley filling [74]. All these strategies are shown in Figure 1.5.

Figure 1.5: DSM categories in a SG [74]
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1.4.5.1 Peak Clipping

Peak clipping means, decreasing the load on utility for the duration of peak hours.

It reduces the need of extra generation capacity of electricity, and hence reduction

in the electricity cost.

1.4.5.2 Valley Filling

In valley filling, direct load control is applied to construct the off peak demand

and decrease burden on utility. By using these strategies we can shift load from

those hours during which utility faces high load to those hours during which utility

has less load.

1.4.5.3 Load Shifting

In order to decrease load on the grid, load is shifted from peak load hours to off

peak load hours.

1.4.5.4 Strategic Load Growth

It changes the load pattern according to rise in sales and is stimulated by utility.

1.4.5.5 Flexible Load Shape

The management of smart grid identify those consumers which have flexible loads

and that load can be controlled during on-peak hours, in order to get incentives.

1.4.5.6 Strategic Conservation

For energy efficient utilization, consumers are motivated to use less energy during

on-peak hours, while use their routine appliances during off-peak hours.
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1.4.6 Energy Pricing Models

Different energy pricing schemes are used in the literature to give energy cost

either on daily basis or hourly basis like real time pricing (RTP), critical peak

pricing (CPP), time of use (TOU), critical peak rebate (CPR) and Inclined block

rate (IBR) etc. as shown in the Figure 1.6.
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Figure 1.6: Pricing signals

1.4.6.1 Real Time Pricing (RTP)

RTP is the hourly consumption rate of electricity. It is regulated by utility in two

parts, base bill and hourly prices.

1.4.6.2 Inclining Block Rate (IBR)

Inclining Block Rate (IBR) is the electricity pricing model which divides the pricing

scheme into several steps. The first step has low cost and then cost increases or

decreases step wise. Mostly, high units cost more, compared to low units.
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1.4.6.3 Time of Use (TOU)

TOU is the energy pricing scheme which is used for a wide block of hours.

1.4.6.4 Critical Peak Pricing (CPP)

CPP is the electricity pricing signal which shows the high electricity rate in specific

peak duration.

1.5 Interruption Frequency Indexes

1.5.1 System Average Interruption Frequency Index (SAIFI)

SAIFI is also a term used by electric utilities which indicates the distribution

system reliability. It gives the average no. of sustained interruptions faced by the

electricity consumers in a period of one year.

Mathematically, SAIFI can be calculated as;

SAIFI =
Total no. of consumers interruptions

Total served consumers
=

∑N
n=1 µnMn

MT

(1.12)

where µn is the rate of failures, Mn shows the no. of consumers for n locations,

and MT gives the total no. of served consumers.

1.5.2 Momentary Average Interruption Freq. Index (MAIFI)

MAIFI is a term used by electric utilities which indicates the power system re-

liability. MAIFI gives the average no. of transitory interruptions faced by the

electricity consumers in a period of one year. This interruption may lasts for 1 to

5 minutes duration.

MAIFI =
Avg. duration of consumers interruptions

Total served consumers
(1.13)
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1.5.3 System Average Interruption Duration Index (SAIDI)

SAIDI indicates the distribution system reliability. It gives the average duration

of interruptions faced by the electricity consumers in a period of one year.

SAIDI =
Avg. duration of consumers interruptions

Total served consumers
(1.14)

1.6 Main Contributions of this Work

The main contributions of this research work are summarized as follow:

1. We have proposed a new Time-constrained genetic moth flame optimization

(TG-MFO) algorithm, as the main contribution of this work.

2. We have explored and compared different bio-inspired algorithms for energy

optimization problem, such as; ACO, ALO, BFA, CSOA, FA, GA, GOA and

MFO with our proposed hybrid TG-MFO;

3. We applied our proposed hybrid TG-MFO algorithm in all three sectors,

i.e., residential, commercial and industrial consumers, and proposed system

models for all scenarios.

4. Through simulations, we have shown that, bio-inspired optimization algo-

rithms outperform in terms of minimization of:

(a) Total energy cost,

(b) Waiting time of the user appliances and

(c) Peak to Average power Ratio (PAR).

5. We integrated renewable energy sources (RESs) for further minimization of

total load and its cost;

6. We considered different size homes with different power rating appliances

and different length of operational times (LOTs);

7. We used DAP electricity pricing signal to make the system more practicable.
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8. For analysis and validation of the proposed nature inspired algorithm, we

applied it on different consumer scenarios, such as:

(a) single home for one day,

(b) single home for thirty days,

(c) thirty different size homes for one day and

(d) thirty different size homes for thirty days in residential sector;

(e) an office in commercial sector and

(f) woolen mill in industrial sector.

9. We also used constraints on user appliances starting time and operation

ending time to get maximum comfort level of end user;

10. We proposed three system models for considering all aforementioned param-

eters to make a reliable and sustainable feasible DSM in a smart grid;

1.7 Outline of the Thesis

The rest of the thesis work is structured as follows:

Chapter 2 gives the related work. This chapter summarizes the researchers work

in the field of energy optimization.

Chapter 3 gives a detail description and mathematical modeling of the state-

of-the-art bio-inspired algorithms, e.g. ACO, ALO, BFA, CSOA, FA, GA, GOA,

MFO and our proposed new hybrid algorithm TG-MFO.

Chapter 4 applies bio-inspired algorithms in a residential sector for all possi-

ble scenarios of a consumer. Both algorithms are applied on a single home and

multiple homes (i.e. 30 in our case), for a single day and thirty days to compare

their performance as compared to un-scheduled load. Then a hybrid version of

these two algorithms, GA and MFO, i.e. TG-MFO, named as, Time-constrained

genetic-moth-flame optimization algorithm is proposed to achieve three main ob-

jectives: energy cost reduction, minimization of peak to average ratio (PAR), and

user discomfort minimization due to scheduling of the house appliances. At the

end, performance of the proposed algorithm is compared to the state-of-the-art
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algorithms in terms of three aforementioned objectives.

Chapter 5 applies five bio-inspired algorithms for energy optimization in commer-

cial applications. An office is taken as an example. Both algorithms performances

are compared to an un-scheduled load, and again with state-of-the-art algorithms,

ant colony optimization (ACO), genetic algorithm (GA), cuckoo search algorithm

(CSA), and fire fly algorithm (FA) in terms of three main objectives of energy cost

reduction, minimization of PAR and user discomfort.

Chapter 6 applies five bio-inspired algorithms, their mathematical modeling and

application in an industrial sector. Again their performance in terms of the afore-

mentioned objectives is compared with un-scheduled load. Different machines are

scheduled for reduction of energy cost, so that their performance and working

hours (i.e. 24 hours) cycle remain the same. At the end of this chapter, the whole

work is concluded and future work is mentioned.

Chapter 7 gives the conclusion and future work. At the end a rich list of refer-

ences is given.



Chapter 2

Literature Review

2.1 Introduction

For smart grid (SG) many algorithms have been proposed for energy optimization

problem in residential, commercial and industrial areas. Numerous researchers

around the world are investigating different technologies in order to fulfill the

needs of energy efficient and intelligent smart homes. Many algorithms have been

proposed for optimal use of existing energy resources. In this regard, I illustrate

some prior state of the art challenges and the corresponding research work in SG.

2.2 Present Challenges and Their Solution

The researchers in the energy trading and optimization area have done lot of work

and proposed different algorithms for solving the issue of reducing the energy cost

and peak to average power ratio (PAR). This section depicts a comprehensive

literature review of the state of the art work and challenges in this field of study.

We have categorized the past work w.r.t. DR programs. Mainly three types of DR

programs are mentioned, i.e.,(a) energy cost reduction based DR programs, (b)

end user Comfort based DR programs and (c) trade-off between end user comfort

and electricity cost reduction based DR programs.

22
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2.2.1 Energy Cost Reduction Based DR Programs

In [75], the authors have proposed an approach to optimize their objective function

using the Genetic Algorithm (GA). Electricity prices are varying between on-peak

hours and off-peak hours. Therefore, an optimized task scheduling module is

used in smart homes, which can reduce the consumption of the entire energy.

The problem of optimal scheduling of household appliances has been explored

in [76]. The authors used the day-ahead changeable peak pricing technique for

the minimization of the consumer’s energy consumption cost using a combination

problem approach. This approach enables customers to schedule their household

appliance using MKP (Multiple knapsack problem) formulation.

In [77], the authors implemented GPSO (Gradient-based Particle Swarm Opti-

mization) for DR in smart homes by considering load and energy price uncertain-

ties. The authors implemented the 0/1 multiple knapsack problem with the genetic

algorithm to find a good solution in [78]. A simple fitness function is evaluated

for each appliance in every time slot to obtain the desired results. The authors

proposed a Demand-Side Management (DSM) strategy. This technique is based

on a load shifting strategy during peak hours to reduce electricity bills using an

Evolutionary Algorithm (EA). The authors discussed the strategy of the load

shifting-based generalized technique, from on-peak hours to off-peak hours of a

day, to minimize energy cost. This mechanism can support a large number of

controlled devices of numerous types to minimize end-user electricity bills.

An adaptive energy model for DSM in smart homes has been proposed by the

authors in [79]. Distributed RESs’ usage is optimized using the ACO algorithm

to minimize the electricity bill of end user. In [80], Kusakana et al. used the

TOU pricing model along with the integration of RESs and BSUs to minimize the

end-user’s electricity bill and achieve energy consumption balancing. The authors

proposed a model to sale extra generated energy back to the utility, as per their

prior agreement. For minimization of the end-user electricity bill, Bharathi et

al. suggested a model in [81], which works in all three sectors of society, i.e.,

industrial, commercial and residential areas. For optimization, the authors used
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GA. They also compared the different EA with GA and found that it gave a

maximum decrease of 21.9% in the consumption of energy. In [82], the authors

proposed objective function generalization using the DR program to minimize

the residential consumer electricity bill. The authors showed that by shifting the

load, unexpected peaks were observed in off-peak hours. They evaluated this

later peak formation with multi-CPP and multi-TOU pricing schemes combined

with DAP concepts. In [83], authors presented a DSM strategy, by shifting the

load from on-peak hours to off-peak hours, using DAP signal and Evolutionary

Algorithm (EA). However, consumer comfort is not considered. In [84], the authors

proposed a Quality of Experience (QoE)-based home energy management system.

They gave the priority to the end-user’s frustration. Two algorithms that run the

HEM system are: “QoE-aware Cost Saving Appliance Scheduling (Q-CSAS)” for

scheduling of controlled load and “QoE-aware Renewable Source Power Allocation

(Q-RSPA)” for management of appliances for renewable energy sources’ surplus

energy. They reduced energy cost to 30–33% without RES and 43–46% with RESs

for the end-user annoyance rates of 1.67–3.36 and 1.70–3.43, respectively.

In [85], authors have presented an optimal scheduling scheme for residential ap-

pliances, using DAP signal in smart homes. This algorithm has reduced peak cost

to 22.6% and normal price to 11.7%. This approach does not lie on the energy

optimization approach. In [86], the authors have discussed load shifting, cost mini-

mization and energy storage system (ESS). They proposed a system which enables

the user to buy energy during low demand timings and sale-out their storage energy

to utility during on-peak hours. In [87], gradient based particle swarm optimiza-

tion (GPSO) technique for demand response (DR) in smart homes, considering the

load and energy price uncertainties is discussed. The authors in [88] have discussed

cooperative multi-swarm particle swarm optimization (PSO) technique for achiev-

ing their goals of cost minimization, however, they have not considered PAR. In

[89] authors have used GA with the DAP scheme for optimally scheduling the load

demand. In [90] authors have introduced a load balancing mechanism in commer-

cial, residential and industrial areas. They have compared the usage of electricity

with GA and without GA in DSM. By using GA based DSM, they have reduced
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the electricity usage during peak hours. However, PAR and end-user discomfort

are not discussed. In [91], authors have proposed enhanced differential evolution

(EDE) and harmony search algorithm (HSA) for scheduling home appliances for

reduction of electricity cost and PAR. They have hybridized both algorithms for

achieving their objectives. However, user comfort is ignored. Table 2.1 depicts

the achievements and limitations of the energy cost reduction based DR programs

research work.

Table 2.1: Critical analysis of the energy cost reduction based DR programs

Mechanisms/
Techniques

Objectives/ Require-
ments

Achievements Limitations

GA [75] Minimization of electric-
ity bills.

Reduced electricity bill. No PAR is considered.

MKP with
DAP [76]

Minimization of total en-
ergy and electricity bill.

Reduced power consump-
tion and electricity bill.

Less end-user comfort
level.

GPSO with
DR [77]

Minimization of PAR and
electricity bills.

PAR and minimization of
electricity bill.

No end-user comfort level
and no RES and congestion
problem.

0/1 MKP and
GA [78]

Minimization of PAR and
electricity bills.

Minimization of PAR and
peak load shifting.

Less end-user comfort level
and no RES.

ACO [79] Distributed RES usage is
optimized.

Minimization of PAR and
peak load shifting.

End-user comfort has been
compromised.

TOU along
with RES and
BSUs [80]

To minimize the end-user
electricity bill.

Energy consumption bal-
ancing.

User comfort has been
compromised.

GA-based
DSM [81]

Bill minimization for in-
dustrial, commercial and
residential consumers.

Compared with EA, 20.9%
reduction in bill.

End-user comfort has been
compromised.

DR with CPP
and ToU [82]

Objective function general-
ization using the DR pro-
gram to minimize bill.

Minimized residential con-
sumer electricity bill.

End-user comfort is ig-
nored.

EA with
DAP [83]

Energy bill minimization. Bill is minimized. User comfort has been
compromised.

Q-CSAS and
Q-RSPA [84]

Energy bill minimization. Bill is minimized. User comfort has been
compromised.

optimal
scheduling
scheme [85]

To minimize the end-user
electricity bill.

minimized the end-user
electricity bill.

Less end-user comfort level
and no RES.

ESS [86] Electricity bill reduction. Minimization of PAR and
peak load shifting.

Less end-user comfort level
and no RES.

GPSO [87] Electricity bill reduction. Electricity bill is reduced. End-user comfort has been
compromised.

PSO [88] To minimize the end-user
electricity bill.

minimized the end-user
electricity bill.

End-user comfort has been
compromised.

GA with
DAP [89]

To minimize the end-user
electricity bill.

Electricity bill is reduced. End-user comfort is ig-
nored.

GA [90] Reduction of elect. bill. Reduction of elect. bill is
achieved.

PAR and user comfort have
been compromised.

EDE and HSA
[91]

Minimization of electric-
ity bills.

Reduced cost. No user comfort is taken
into consideration.
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2.2.2 End User Comfort Based DR Programs

Yi Peizhong et al. [92] have proposed the Optimal Stopping Rule (OSR) for energy-

efficient scheduling of home appliances. The limitation of this work is that OSR

runs on a threshold-based strategy. The end-user has to wait until the price

comes down below the threshold level. In [93], the authors proposed a distributed

algorithm for shifting the load from on-peak hours to off-peak hours. They used the

game theory approach for scheduling the residential load. The Nash equilibrium

convergence rate was also accelerated by the Newton technique. PAR and end-

user discomfort were minimized. A smart community based energy optimization

technique is discussed in [94]. The authors have focused on the end-user high

comfort level and less energy usage with integration of renewable energy sources

using particle swarm optimization (PSO).

In [95], the authors have discussed optimal operation methods for a micro-grid.

They have used improved adaptive evolutionary algorithm (IAEA) and swarm

optimization algorithm (SOA) for end user comfort maximization. In [96] au-

thors have used PSO for scheduling of smart electric appliances for electricity cost

minimization. They have taken different cases of changing the renewable energy

consumption rate and user comfort level, and applied it in a smart community as

a case study. Table 2.2 depicts the achievements and limitations of the end user

comfort based DR programs research work.

Table 2.2: Critical analysis of the end user comfort based DR programs

Mechanisms/
Techniques

Objectives/ Require-
ments

Achievements Limitations

Threshold
based OSR [92]

Minimization of electric-
ity bills.

Reduced cost. Threshold-based cost min-
imization.

Game theory,
Nash equilib-
rium [93]

Used distributed algo-
rithm, minimization of
PAR and discomfort.

PAR and end-user discom-
fort have been minimized.

No RES integration.

PSO [94] Maximization of user com-
fort and electricity bills.

Reduced cost and user dis-
comfort .

PAR is not considered.

IAEA and SOA
[95]

Minimization of total en-
ergy and electricity bill.

End user comfort maxi-
mization.

Electricity cost is in-
creased.

PSO [96] Energy bill and user dis-
comfort minimization.

Bill is minimized. PAR has been compro-
mised.
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2.2.3 Trade-off Between End User Comfort and Electricity

Cost Reduction Based DR Programs

The authors in [97] discussed the strategy for scheduling appliances in order to

reduce carbon emissions along with the reduction of the electricity bill and wait-

ing time. They applied the cooperative multi-swarm PSO technique to achieve

their goals; however, they did not consider PAR. Having an optimal scheduling

of power, a heuristic-based GA was used for Demand-Response (DR) in Home

Energy Management (HEM) systems in [98]. The authors proposed GA-, TLBO-

(Teaching Learning-Based Optimization), EDE (Enhanced Differential Evolution)

and EDTLA- (Enhanced Differential Teaching Learning-based Algorithm) based

approaches, which are used for minimization of the residential total energy cost

and maximization of the end-user comfort level.

The authors employed GA and BPSO (Binary Particle Swam Optimization) for

optimal scheduling of home appliances in [99]. They proposed GAPSO (Genetic

Algorithm with Particle Swam Optimization), a hybrid scheme of both these tech-

niques, to obtain better results in terms of reducing PAR, minimization of electric-

ity cost and especially end-user discomfort. Day-Ahead Pricing (DAP) and Crit-

ical Peak Pricing (CPP) are used as pricing schemes for single and several days.

The authors used GA and TLBO and their hybrid TLGO (Teacher Learning-

based Optimization with Genetic algorithm) for appliance scheduling in [100].

They categorized flexible appliances as time flexible and power flexible for pro-

ficient energy consumption of consumers in SG. This approach enables energy

consumers to schedule their appliances to obtain optimized energy consumption.

This approach also maximizes the comfort level of customers with restricted total

energy consumption. In [101], in order to lessen the end-user electricity cost and

minimize the end-user discomfort, Ogunjuyigbe et al. developed a GA-based opti-

mization technique for scheduling of appliances. In [102], the authors introduced

three heuristic-based algorithms: GA, ACO and BPSO, to maximize user comfort,

minimize PAR and minimize electricity cost, as well. In [103], the authors pro-

posed a hybrid GA-PSO, which is a combination of the GA and PSO algorithm,
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for energy management and obtaining maximum end-user comfort in smart homes.

K. Muralitharan et al. [104] presented multi-objective EA for the minimization of

electricity bill and appliances waiting time. As soon as the running appliances’

load increases from a threshold, they are switched off.

A multi-residential energy scheduling issue with multi-class appliances in a smart

grid was discussed in [105]. The authors proposed a PL-generalized Benders al-

gorithm (Property (P) and L-Dual-Adequacy) for bill minimization and bounded

user comfort. Hybrid Bacterial Foraging and Genetic (HBG) algorithm based

DSM for smart homes is proposed by the authors in [106]. They focused on peak

load reduction, cost minimization, user comfort maximization and load shifting.

Through HBG cost, PAR and waiting time are reduced compared to GA and BFA.

A time constrained nature inspired algorithms based HEM system is proposed by

the authors in [107]. Genetic algorithm (GA), Moth-flame optimization algorithm

(MFO) and their hybridization is proposed for energy bill reduction and achieving

end user high comfort level. A HEM system using Cuckoo search is proposed in

[108]. Performance of GA and cuckoo search algorithm is compared with respect

to the reduction of energy cost, PAR and user discomfort by using the DAP signal.

Cuckoo search incorporation with levy flights of some kind of birds and fruit-flies

are considered for breading strategy in [109]. In many optimization problems,

because of its generic and robust nature, the cuckoo search is superior to GA

and PSO. The authors have used GA, TLBO (teacher learning-based algorithm),

LP (linear programming) and TLGO (teacher learning genetic optimization) al-

gorithms for appliances scheduling in [110]. They have categorized flexible appli-

ances as ”time flexible” and ”power flexible” for proficient energy consumption

of consumers in SG. This approach enables energy consumers to schedule their

appliances to get optimized energy consumption. This approach also maximizes

the comfort level of customers with restricted total energy consumption. Having

an optimal scheduling of power, the heuristic-based Genetic Algorithm (GA) is

used for demand response (DR) in HEM systems in [111]. In this paper, authors

used GA, TLBO (teaching learning-based optimization), EDE (enhanced differ-

ential evolution) and proposed EDTLA (enhanced differential teaching learning
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algorithm) for minimization of the residential total energy cost and end user dis-

comfort level. In [112], authors have used optimal stopping rule (OSR) theory for

appliances scheduling in a house to achieve minimization of electricity cost, PAR

and user discomfort. They developed a multi-agent control system for residential

energy management using RTP signals. In [113], authors have reduced electricity

cost, PAR and user discomfort using a hybrid algorithm BGA, a combination of

bat algorithm (BA) and genetic algorithm (GA). They have applied time of use

(TOU) pricing signal, while load is categorized as base load, shift-able and non

shift-able interrupt-able loads. Table 2.3 depicts the achievements and limitations

of the trad-off between end user comfort and electricity cost reduction based DR

programs research work.

2.3 Future Challenges and Research Gaps

Numerous researchers all over the world have proposed different system models for

energy cost minimization and reduction of peak to average power ration. These

techniques have efficiently reduced consumer electricity bills and PAR, however,

they have the limitations of comfort in terms of appliances waiting time of end

user, i.e. when and which appliance a consumer wants to start, it must be start

with minimum waiting time. Table 2.2 showed a few papers that have taken user

comfort into consideration. In the present era of electricity dependent modern

technologies, user wants to finish his job quickly, instead of waiting for his ap-

pliances to start. On the other side, electricity consumption is to be minimized

to reduce cost as well. Also, these research attempts have ignored frequency of

interruptions and aggregated power consumption, as with these issues, reliability,

stability, sustainability, and security of grid may be threatened. Now the need of

the day is, to have an adoptive system, having the provision for use in all three

sectors of life, i.e., residential (single and multiple homes and buildings), commer-

cial and industrial. Therefore, in this research work, I have not only explored and

analyzed the world of bio-inspired algorithms for energy optimization problem,

but also combined two bio-inspired algorithms GA and MFO to make their hybrid
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Table 2.3: Critical analysis of the trade-off between end user comfort and
electricity cost reduction based DR programs

Mechanisms/
Techniques

Objectives/ Require-
ments

Achievements Limitations

PSO [97] Optimization of the appli-
ances.

Carbon emission, bill and
waiting time minimization.

Less end-user comfort level
and no RES.

GA, TLBO [98] Minimization of PAR and
electricity bills.

Reduced cost and PAR
with RES.

No end-user comfort prior-
ity.

MKP with
GA, PSO and
GAPSO [99]

Minimization of total en-
ergy and electricity bill.

Minimization of electric-
ity bill.

Less end-user comfort level
and no RES.

GA and TLGO
algorithm [100]

Cost minimization plus
congestion control.

Minimization of electric-
ity bill.

Waiting time increased.

GA [101] Bill minimization keeping
consumers’ maximum sat-
isfaction.

Managed the load as per
end-user budget.

PAR has been compro-
mised.

GA, ACO and
BPSO [102]

Cost minimization plus
congestion control.

Minimization of electric-
ity bill.

Less end-user comfort
level.

GA-PSO [103] Bill minimization keeping
consumers’ maximum sat-
isfaction.

Minimized electricity bill. Less end-user comfort.

Multiobjective
EA [104]

Minimization of electric-
ity bill and appliances
waiting time.

Minimized electricity bill
and appliances waiting
time.

Appliances’ interruptions
increased.

PL -generalized
Benders algo-
rithm [105]

Multi-residence and multi-
class appliance.

Bill minimized with up-
per and lower bounds on
user comfort.

No RESs and BSUs are in-
tegrated.

HBG [106] Minimization of electric-
ity bills and PAR.

Reduced cost and PAR. No. RES integration.

GA and
MFO [107]

Minimization of electric-
ity bills and User Discom-
fort.

Reduced electricity bill and
PAR.

high convergence time

CSA and
GA [108]

Minimization of total en-
ergy and electricity bill.

Reduced power consump-
tion and electricity bill.

Less end-user comfort
level.

CSA, GA and
PSO [109]

Minimization of PAR and
electricity bills.

PAR and minimization of
electricity bill.

No end-user comfort level
and no RES and congestion
problem.

GA,
TLBO and
TLGO [110]

Minimization of total en-
ergy and electricity bill.

Minimization of electric-
ity bill.

Less end-user comfort level
and no RES.

GA, TLBO
and EDE [111]

To minimize the end-user
electricity bill.

Electricity bill is reduced. No RES integrated.

OSR[112] Minimization of electric-
ity bills and PAR.

Reduced cost and PAR. No RES integration.

BA, GA and
BGA [113]

Minimization of electric-
ity bills and PAR

Reduced electricity bill and
PAR.

User comfort is ignored

algorithm TG-MFO for achieving a user comfort-based cost and PAR reduction.

I introduced the time constrained factor for scheduling the appliances. I.e., an ap-

pliance in a home or a machine in the industrial sector will be scheduled not on the

basis of low energy pricing criterion, but according to the consumer specified time

interval low energy cost threshold. Simulation results show that using bio-inspired
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optimization algorithms gave comparative results in terms of minimization of; to-

tal energy cost, waiting time of the user appliances and PAR. Renewable energy

sources are also integrated for further minimization of total load and its cost. For

analysis and validation of the proposed bio-inspired algorithms, I applied these al-

gorithms on different consumer scenarios in residential, commercial and industrial

sectors.

2.4 Methodology

For scheduling, I therefore, planned to use bio-inspired heuristic algorithms, like

ACO, ALO, BFA, CSOA, FA, GA, GOA and MFO. I also proposed the hybridiza-

tion of GA and MFO, named Time-constrained Genetic-Moth-Flame Optimization

(TG-MFO) algorithm because of its unique features; elasticity for particular lim-

itations, execution simplicity, less convergence time and less computational com-

plexity, to perform the scheduling process of end user appliances optimally using

DSM programs.

To achieve our goal, the smart electric grid is modeled as a residential sector

comprised of 30 homes having different size, different LOTs and appliances power

ratings. The appliances power rating is different due to their home size require-

ments. For example, a small size home runs 12000 BTUs air conditioner (AC), as

compared to a large size home who runs 18000 BTUs ACs. Various types of ap-

pliances in a home, that use electricity, are known as home loads. Each home also

has a RES and BSU. Each home is connected to the sub-utility, which is further

connected to the main utility and hence to the power generation system through

transmission lines. The utility provides the electricity to those homes whose power

demand exceeds their own power generation through any RES. However, if their

power generation exceeds their power demand, it is stored in the BSU, and may

be sell back to the power grid. In our model, we have forty eight (48) operational

time intervals (OTIs) in a day, by dividing one hour into two time slots of thirty

minutes each. In each OTI, a smart home checks the appliances power demand,
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i,e. whether an appliance is ON (1) or OFF (0). According to the appliances

status the energy management controller (EMC) check the availability of the RES

and BSU to fulfill the appliances power demand. If it is available, the appliance

will be turned-ON, and the consumer will not wait for appliance scheduling. If

the own generation and stored energy are insufficient for running the load, the

proposed algorithms will check the economical slot (time interval) for that appli-

ance keeping in view the maximum user comfort, i.e. minimum waiting time. In

order to achieve this objective, constraints have been put for maximum interval

of time in which an appliance has to complete its operation. For example, a user

wants to switch-ON a washing machine at 09:00 hrs, and there is no possibility

of providing power to it immediately, due to either no RES and BSU or peak

hours constraints, and the user can wait for a maximum of three hours only, so

the algorithm schedule it from 09:00 to 12:00 hrs definitely. Due to this the cost

may be less affected, but maximum user comfort is achieved.

Consequently, if the utility give incentives to the user in the form of real time

lower prices in off-peak hours, the end user will be encouraged to produce their

own energy from RES and schedule their loads accordingly. To summarize, the

following steps are followed:

1. In the first phase of this work, a thorough literature review of the bio-inspired

energy optimization algorithms in the field of energy trading has been con-

ducted. Furthermore, the literature study is categorized according to the

demand response programs and our main objectives.

2. Critical analysis of the literature review is given, limitations and challenges

of state-of-the-art energy optimization algorithms are summarized, based on

which, future challenges and research gaps are defined.

3. Mathematical models are developed for selected bio-inspired algorithms,

which are used to achieve our objectives.

4. The performance of the mathematical modeled bio-inspired heuristic algo-

rithms is examined and are compared with stat-of-the-art algorithms in the

research area of energy optimization through extensive simulations.
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2.5 Summary

The optimization techniques mentioned in the literature have achieved either the

energy cost minimization and PAR reduction by loosing the end-user comfort or

considered user comfort while loosing energy cost minimization. Also, most of the

research work have considered residential consumers. Therefore, in this work, I

have explored and analyzed bio-inspired algorithms for the energy optimization

problem in the residential, commercial and industrial sectors. I have taken into

consideration minimization of energy cost and PAR along with user comfort. For

this purpose, I have developed a hybrid algorithm named as, time-constrained

genetic-moth flame optimization algorithm, to achieve aforementioned objectives.

This is because of the algorithms developed on the perfect optimization behavior

of naturally available organisms. Through simulations, I have shown that using

bio-inspired optimization algorithms the energy cost and PAR can be reduced,

while keeping user comfort in first priority compared to unscheduled load. I, not

only compared the performance of numerous bio-inspired algorithms in terms of

electricity cost, PAR and user waiting time reductions in all three sectors of energy

consumers, but also integrated RESs and BSUs for further improvements in our

objectives.



Chapter 3

Contributions of Our Work

In this chapter, we discuss the main contributions of this research work, the new

proposed bio-inspired algorithm named as, Time-constrained genetic moth flame

optimization (TG-MFO) in detail along with different bio-inspired algorithms and

their mathematical models. Various classical programming techniques like LP,

ILP, MILP, DP and CP have already been used by researchers for optimal schedul-

ing of home appliances. The convergence time of these classical techniques is very

large due to the exact solution, and to schedule a large number of appliances, they

cannot be used. Furthermore, classical algorithms usually show the best results

for local optimization, as compared to the global point of view. Therefore, due to

their probabilistic nature, bio-inspired meta-heuristic algorithms give good results

in the case of local, as well as global solutions.

Heuristic means “to discover”, or “to find” or “to hit upon” by experiment, trial

and error approaches. The solution of an optimization problem can be found in a

realistic interval of time. However, such optimization techniques cannot guarantee

the optimal solution. Meta-heuristic means “to find on a higher level” or “to

find ahead of” local optimization. This means its performance is superior to

straightforward heuristics techniques. All such algorithms use the process of local

search and randomization, which further provides a path to global search and

optimization. In this way, the problem of global optimization is solved. However,

this form of optimization algorithms do not give exact solution.

34
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3.1 TG-Moth Flame Optimization (TG-MFO)

Time-constrained genetic moth flame optimization (TG-MFO) is the new proposed

bio-inspired algorithm, as the main contribution of this work. In this algorithm, we

apply the bio-inspired algorithms GA and MFO, then not only hybridize these two

algorithms, but putting a new concept of time constraints for achieving tremendous

results in terms of almost zero waiting time by minimizing the energy cost and

PAR. We compare their results with some of the existing techniques like ACO, CSA

and FA on randomly-generated data. To apply the strategy of the time constraints

of end-users, i.e., for each appliance to switch-ON, we give some time span as the

initial and final thresholds for all appliances. A user initiates the operation of an

appliance, but usually, it is allowed to remain OFF for a certain time interval, in

which the user has no problem or frustration. We apply this time threshold policy,

to have a zero end-user waiting time. As TG-MFO is based on the hybridization

of GA and MFO with time constraints. Therefore, initially, MFO is applied on

randomly-generated data for the optimization problem to obtain the local best

positions for home appliances. Then, GA is applied to compare MFO’s local

best solution with the new random data, to find the global best solution in each

iteration. The fitness functions are updated accordingly. This process continues

until the termination criterion is fulfilled. Figure 3.1 depicts the steps involved in

the TG-MFO implementation process, while, Algorithm 1 gives the pseudocode

to show the step-by-step working of the proposed TG-MFO algorithm.

3.2 Ant Colony Optimization (ACO)

ACO is a bio-inspired meta-heuristic iteration-based optimization technique. Us-

ing pheromone trails, chemicals as signals to other ants left on the ground known

as the Stigmergy principle, starting from their nest, in search of food, ants find

the shortest routes between their origins to the destination. If an ant wants, with

a certain probability, to follow a particular path, it follows the pheromone trail.

It reinforces the other ants by laying more pheromone on the same trail. As
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Figure 3.1: Flowchart for the proposed algorithm Time-constrained Genetic-
MFO (TG)-MFO.
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Algorithm 1: Pseudocode of the proposed TG-MFO algorithm.
1 Initialization: GA parameters, MFO parameters, the maximum size of the population, No. of iterations.
2 Input: RTP ζn, AP, ρ,X, α, β, VT , Xbat, λ.
3 MFO phase:
4 Random generation of the initial population of moths Qi,j matrix using Equation (16)
5 Random generation of the initial population of flames Ui,j matrix using Equation (17)
6 Fitness function OM is evaluated by objective function f(M) = (Ub(i)− lb(i)) ∗ rand() + lb(i)
7 Position of individual moths Qi,j is updated as per the position of flame Ui,j
8 while No. of iterations < population size do
9 for i =1:M do

10 for j =1:N do

11 end
12 New solution is evaluated
13 Present Pbest is assigned to the old Pbest
14 GA phase:
15 On the basis of Pbest, generate chromosomes xi for i = 1,2,...,n
16 Two parent values are selected as 1:2
17 if (The crossover is done then
18 One offspring is selected
19 Mutation is done

20 else
21 Two parent values are selected again till the crossover is finished
22 end

23 end
24 if (Mutation is finished then
25 The new population is generated
26 else
27 One offspring is again selected until the mutation is finished
28 end
29 Present Pbest is assigned to old Pbest
30 end
31 Output: ET , ERES , τw, µ

the movement of ants increases on a route, the amount of pheromone increases.

Since pheromones’ nature is volatile, so the shortest path has more pheromone as

compared to the longer one. As a result, ants’ movement increases on the short-

est route. Figure 3.2 shows the basic principle of ACO shortest path selection.

Figure 3.2: Paths followed by ants in ACO algorithm
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Using this principle, ACO is used for the solution of discrete combinatorial search

optimized-solution problems. Self-organization and self-healing are the distin-

guishing properties of ACO. ACO is used for the residential consumer’s energy

optimization, which is a novel scheme for such energy management problems [114].

The ACO parameters are given in Table 3.1.

Table 3.1: ACO parameters.

S. No. Parameter Value S. No. Parameter Value

1 No. of Ants 12 4 Evaporation rate 5

2 Pheromone intensity factor α1 2 5 Trail decay factor 0.5

3 Visibility intensity factor β1 6 6 Max. iterations 600

3.3 Ant Lion Optimization Algorithm (ALO)

The ALO is a bio-inspired and population based algorithm proposed by S. Mirajlili

in 2015 [115]. In ALO, the antlion search for food randomly in the search space.

For caching prey there needs to perform some steps to achieve the optimal solution

in ALO are: first, random walk in which the ants are randomly moving in the

search space. Second, building traps in which the antlion digs circular traps in

sands. The size of trap is a function of level of hunger and shape of moon. Third,

entrapment of prey in trap in which the prey comes inside the trap. Fourth,

catching in which antlion tries to catch the prey. Fifth, rebuilding traps in which

antlion rebuild the traps to get a chance of new prey.

Step 1: The random walk of ants in the search space is given by:

X(t) = [0, cumusum(2u(t1)− 1), cumusum(2u(t2)− 1), ..., cumusum(2u(ti)− 1)]

(3.1)

Where i shows total number of iterations, cumusum stands for cumulative sum

and u(t) is a random function defined as:

u(t) =

1 ifrand > 0.5

0 ifrand ≤ 0.5

(3.2)
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To keep the walk of ants inside the search space, the updated position is normalized

with the following equation:

Xi(t) = dfrac(xi(t)− ai)(bi − ci(t))(di(t)− ai)− α + Ci (3.3)

Step 2: The effect of antlion traps on the random walk of ants in the search space

are mathematically modeled with the following equation:

ci(t) = (Antlioni(t) + ci)di(t) = (Antlioni(t) + di) (3.4)

Step 3: A roulette wheel operator is used to evaluate the fitness of antlion during

optimization. The roulette wheel operator gives us high probability to select the

fitter antlion for hunting preys. Using this mechanism antlion become able to

build traps according to its fitness value.

Step 4: When an ant goes inside the trap, the ant lion trying to catch it shoot

sands outside from center of trap with his massive jaws. Catching prey occur when

the fitness value of ant becomes greater than its corresponding ant lion. For an

ant lion it is required to change its position to increase the probability of catching

new prey, this assumption is modeled with the following equation:

Step 5: The evolutionary algorithm allows him to get the optimal solution during

the optimization process and saved as an elite one. The elite ant lion change the

random walk of ant inside the search space. The ant walks around the selected

antlion inside the search space.

All the steps mentioned above are shown in the Figure 3.3

3.4 Bacterial Foraging Algorithm (BFA)

BFA was proposed by Kevin Passino in 2002 [116]. In this algorithm, the group

foraging strategy of a swarm of Escherichia coli (E. coli) bacteria is the key point.

Bacteria forage for food and nutrients, to maximize their energy per unit time. By

sending a signal, bacteria also communicate with each other. Because of predators,
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Figure 3.3: Flowchart of ALO

the prey may be mobile. Therefore, it is chased by the bacterium in an optimal

way. When a bacterium maximizes its energy by getting sufficient food, then it

does other activities like sheltering, mating, fighting, etc. Four steps are needed in

order to explain BFA, i.e., (a) Chemotaxis, (b) Swarming, (c) Reproduction and

(d) Elimination.

3.4.1 Chemotaxis

In the chemotaxis step, the E. coli move from one place to another through flagella.

According to the biological point of view, its motion is observed in two different
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ways: it may either swim or tumble.

To consider the chemotaxis movement of bacteria, we have the following equation:

δj(i+ 1, k, l) = δj(i, k, l) +Q(j)
∆(j)√

∆T (j)∆(j)
(3.5)

In the above equation, δj(i, k, l) shows the position of the jth bacterium at the

ith chemotactic, the kth reproductive and the lth elimination-dispersal step. Q(i)

represents the size of the step taken by the bacterium in a random direction when

it tumbles. ∆ shows the vector in random direction [−1,1].

3.4.2 Swarming

The E. coli bacterium is blessed with swarming behaviour. In this step, bacteria

cells form a ring-shaped structure and move in search of nutrients. A high level of

succinate usage stimulates the cells, due to which attractant-aspartate is released

by the cells, which helps them to bind in groups.

3.4.3 Reproduction

When a bacterium is in a feasible and nutritious environment, it reproduces, splits

into two bacteria and keeps the number of cells in a swarm fixed.

3.4.4 Elimination and Dispersal

The scarcity of nutrients kills the bacterium or disperses them into another envi-

ronment. They are also killed due to high temperature. If there is a poor condition

in the environment, the bacteria may place themselves near a good food source,

hence assisting the process of chemotaxis (first step).
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To calculate the fitness of each bacterium, the following equation can be used:

Fj[i, k, l] = Fj[i, k, l] + Fcc(δj[i, k, l], P [i, k, l]) (3.6)

In the above equation, Fj shows the fitness of the bacterium and δj is the position

of the bacterium.

Fcc =
d−1∑
d=1

(100× (δ(j, d+ 1)− (δ(j, d))2)2 + (δ(j, d)− 1)2) (3.7)

In order to achieve the time-varying objective, we must put the objective function

Jcc into the actual objective function Fj. The steps involved in the bacterial for-

aging algorithm (BFA) are given in Algorithm 2 and are depicted in the flowchart

diagram shown in the Figure 3.4.

Algorithm 2: Bacterial Foraging Algorithm (BFA).
1 Initialization: Generation of the price signal according to the scheme used, LOTs’ specification of

appliances, power ratings of appliances
2 Input: Give initial values to variables; pop, Np, Ne, Nc, Nr, Ns, D, C.
3 Evaluate fitness for each bacterium (Jlast).
4 for l = 1 to Ne do
5 for k = 1 to Nr do
6 for j = 1 to Nc do
7 for i = 1 to Np do
8 Find new position of the bacterium
9 Find the fitness

10 for s = 1 to Ns do

11 end
12 if Ji < Jlast then
13 Replace the previous position of the bacterium with the new position
14 Go back to line 10

15 else
16 Assign a random direction
17 Evaluate the fitness
18 Go back to line no. 10

19 end

20 end

21 end
22 Evaluate the fitness of the bacterium
23 Select the best one Random elimination and dispersal

24 end
25 if 1 < Ne then

26 else
27 Go back to the initial elimination step
28 end

29 end
30 Output: ET , load, PAR.
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3.5 Cuckoo Search Optimization Algorithm (CSA)

The cuckoo search optimization algorithm was proposed by [117] and belongs

to the family of bio-inspired meta-heuristic algorithms. It is used to solve the

optimization problems using the mating and production behavior of some cuckoo

species and the characteristics of Lèvy flights of some birds and fruit flies. Lévy

flights are performed to find the global best solution.

X t+1
i = Xi + α⊕ Lévy(λ) (3.8)

In the above equation X t+1
i is the new solution, Xi is the current status, α is the

transition or step size. Frye and Reynolds have recently found Lévy with the recent

study of fruit-fly flight. The fruit-fly explores its landscape by a series of straight

flights with a sudden turn of 90◦, leading to Lévy − flight − style intermittent

scale free search pattern. The step-by-step process of CSA algorithm is given in

Algorithm 3.

3.6 Dragonfly Algorithm

Dragonfly is a decorative insect, its scientific name is Anisoptera and belongs to

kingdom Animalia, and it is classified to phylum Arthropoda. The average life

span of a dragonfly is 6 months. Dragonfly insect is found in 3000 different species

around the world [118]. There are two main phases in the life-cycle of a dragonfly

which includes: nymph and adult. Dragonfly spends most of his lifespan as nymph

and then become adult after passing metamorphism stage as shown in the Figure

3.5 .

Dragonflies are placed in the class of small predators, they rely on other small

insects for their survival. They also prey aquatic flies and even small fishes. The

swarming nature is an interesting fact of dragonflies. The purpose behind the
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Algorithm 3: Pseudocode of proposed CSA Algorithm

1 Parameters initialization: The cuckoo position, maximum size of the
population, and maximum number of iterations.

2 Input: The Pricing signal, power rating of machines, LOTs for all machines,
3 Define variables i.e. Nn, D, Count, n, Tol
4 while No. of iterations < population size do
5 for i =1:M do
6 for j =1:N do

7 end

8 end
9 Find Electricity Cost;

10 Find E-Cost of all Machines LOTs
11 Find Pbest
12 Assign Pbest to Lbest
13 Find the best nest
14 Update the LOTs of Machines
15 New solution is evaluated
16 Find Pbest and Lbest
17 Assign Lbest to Gbest

18 Output: ET , τw, PAR

19 end

swarming of dragonflies is: hunting and migration. Hunting is static (stationary)

swarm and migration is dynamic (traveling) swarm.

In static behavior of swarm dragonflies in small groups over a specific area to

make prey of all other flying insects such as butterflies, mosquitoes and many

other small insects [119]. On other hand in dynamic swarm a large number of

dragonflies migrate from one place to another place over a long distance for finding

a best habitat for their living [120]. The mentioned two swarming behavior are

Figure 3.5: (a) Real dragonfly, (b) Life-cycle of dragonfly [118]
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similar to the main phases of optimization using meta-heuristics: exploration and

exploitation. Static swarm is the main goal of exploration, while dynamic swarm

is favorable in exploitation phase. The two swarming styles are briefly explained

and mathematically represented in the next section.

• Separation represents the static collision prevention of dragonflies in the

swarm from other dragonflies of the nearby vicinity.

• Alignment shows the velocity matching of one dragonfly in the swarm to

other individual dragonfly in the same swarm of dragonflies.

• Cohesion represents the struggle of dragonflies toward the center of the mass

of the nearby individual dragonflies.

All the individual dragonflies should attract their selves toward the food sources

and prevent their selves from the enemies to survive which is the main goal of

the swarming nature of dragonflies. In consideration to these two behavior five

main position updating factors are shown in the equation below: Separation can

calculated by the following equation:

Si = −
N∑
k=1

Z − Zk (3.9)

where Z represents the position of the current dragonfly while Zk represents the

position of k-th nearby dragonfly and N is the number of all other nearby individual

dragonflies.

Alignment can calculated by the following equation:

Ai =

∑
Nk = 1V k

N
(3.10)

where Vk is the velocity of k-th nearby dragonfly.

Cohesion can calculated by the following equation

Ci =

∑
Nk = 1Xk

N
Z (3.11)
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where Z shows the position of the current dragonfly while Zk represents the posi-

tion of k-th nearby dragonfly and N is the number of all other nearby individual

dragonflies.

Attraction toward the food can be calculated by the following equation:

Fi = Z+ − Z (3.12)

where Z shows the position of the current dragonfly , and Z+ Represents the po-

sition of the target food.

Distraction from the enemy can be calculated by the following equation:

Ei = Z− + Z (3.13)

where Z shows the position of current dragonfly and Z−Represents the position of

the enemy.

Two vector are used for updating the position of dragonflies and simulations of

their movement, that two vectors are: step (∆Z) and position (Z). The ∆Z rep-

resent the direction of the motion of dragonfly and the step vector is represented

mathematically by the following equation:

∆Zt+1 = (sSepi + aAligi + cCohi + fFoodi + eEnemyi) + w∆Zt (3.14)

where (s, a, c, f, e, w) are the swarm factors during an optimization process.

The step vector is represented mathematically by the following equation:

Zt + 1 = Zt + δZt + 1 (3.15)

In above two equations t shows the present iteration.
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For the arbitrariness, stochastic nature and exploration of dragonflies, the flying

over the search area is necessary, using arbitrary walk (levy flight) in case when

there is no nearby solution for finding the position of individual in the swarm, for

solving this issue the position of an individual can be calculated by the following

equation:

Zt+1 = Zt + Levy(d)× Zt (3.16)

In above equation t shows the present iteration, and d is the dimension of the

position vector.

The levy flight can be find by the following equation:

Levy(Z) = 0.01×
c1|c2|β
×

1σ (3.17)

where c1 and c2 are two randomly selected constants between 0 and 1, β is also a

constant number which is selected according to the situation of the problem. The

step by step process of the proposed DA is depicted in Figure 3.6 (flow-chart).

Figure 3.6: Step by step process of the DA
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3.7 Firefly Algorithm (FA)

Fireflies are in the insect family. They live mostly in humid environments. They

generate green, yellow and pale-red limited intensity flashing lights chemically.

There are more than 2000 different species. Their unique flashing light pattern

is used for communication, i.e., to attract partners and probable prey and as a

defensive cautionary mechanism. Some female species apply the flashing light

mating pattern for the hunting of other species [121]. Like PSO, in FA, inspired

by nature, three assumptions are made: (a) all fireflies must be of the same sex, (b)

the attractiveness of a firefly is directly proportional to its brightness and inversely

proportional to the square of the distance between two fireflies and (c) brightness

is calculated by an objective function: the brighter one will attract the less bright

ones. The firefly’s flashing light intensity in complete darkness is related to the

solution quality. The brighter firefly will attract less bright ones, depending on

the brightness intensity, which is calculated as follows:

I(Io, ri,j) =
Io
r2
i,j

(3.18)

where Io is the flashing light intensity at the origin and ri,j is the distance of firefly

j from firefly i. Let γ be the coefficient of the firefly’s flashing light absorption in

a medium, then, in the above equation, the light intensity I will vary with the

distance between fireflies ri,j using the following equation:

I(Io, γ, ri,j) = Ioe
−γri,j (3.19)

Both Equations (3.18) and (3.19) can be combined using the Gaussian form as fol-

lows:

I(Io, γ, ri,j) = Ioe
−γr2i,j (3.20)

The following approximation can be used for a slower rate of decrease in the light

intensity between the origin and the target.

I(Io, γ, ri,j) =
Io

1 + γr2
i,j

(3.21)
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As the less bright firefly will be attracted to the brighter firefly, this attractiveness

β between two fireflies can now be mapped as:

β(βo, γ, ri,j) = βoe
−γr2i,j (3.22)

where βo is the attractiveness at the zero distance. For β = βo at the zero distance,

ri,j = 0. Therefore, for a characteristic distance of r =
1
√
γ

, Equation 3.22 becomes:

β(βo, γ, ri,j) = βoe
−1

The distance between any two fireflies x and y at positions i and j is calculated by:

ri,j = Dist.(xi, yj) = ||xi − yj|| =

√√√√ n∑
k=1

(xi,k − yj,k)2 (3.23)

The firefly movement towards another firefly has two parts, i.e., (a) the movement

for finding a better solution using attractiveness, and (b) the random movement.

xi = xi + (Attractiveness ∗Distance) +Randomness (3.24)

xi = xi + βoe
−γr2i,j .(yj − xi) + α(Rand()− 0.5) (3.25)

where α is the randomness parameter and Rand is a random number generated

lying between zero and one. Two extreme points are that when γ is zero, attrac-

tiveness will be constant, and when γ is ∞, attractiveness will almost be zero.

Practically, γ lies between zero and ∞, so FA gives good results in finding local,

as well as global optima [121]. Table 3.2 depicts the FA parameters.

Table 3.2: FA parameters.

S. No. Parameter Value

1 Randomness parameter (α) 0.2
2 Attractiveness (β) 2
3 Absorption coefficient (γ) 1
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3.8 Genetic Algorithm (GA)

GA, based on Darwin’s theory of natural selection, is in the family of evolutionary

algorithms. This algorithm’s name is due to, it being inspired by the genetic

progression of living organisms. It has a quick rate of convergence. GA carries

out parallel search operations in the provided solution space, which reduces the

chances of being trapped in the local optimal solution.

For complex non-linear problems’ formulation, GA is the best option, especially

where the global optimization is a challenging job. For any solution deployment,

as GA is probabilistic in nature, the optimality is usually not guaranteed [122].

Every time, when it is run, it gives different solution due to its stochastic behavior.

The parameters used in GA are;

Chromosome: A design point made by string of zeros(0s) and ones(1s),

Gene: A scalar component, i.e., either zero (0) or one (1), of the design vector,

Population/population size: The set of design points at the current iteration

and

Generations: Iterations.

Besides these parameters, three genetic operators are;

Reproduction: Also known as selection process, in which an old pattern is copied

into a new pattern,

Crossover: The process of combining two different design points (set of bits) as

shown in Figure 3.7, and

Mutation: Mutual change of 1 to 0 or vice versa, in any random location, as

shown in Figure 3.8.

The optimization process of the GA is such that, it initiates a random population

known as chromosomes, and then, in every iteration, the generated population

is updated. The fitness function of a given problem is evaluated by the suitabil-

ity of each chromosome. Then, in every iteration, the population is updated by

storing the present local best solution, known as elitism. After elitism, in order

to reproduce new chromosomes, two parent chromosomes are chosen using the
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Figure 3.7: Process of crossover (a) One-cut point (b) Two-cut point

Figure 3.8: Process of mutation (changed 0 into 1 at random location 8)

tournament-based selection technique. Then, on the basis of selected chromo-

somes, the crossover procedure is performed. New offspring are added to update

the present population [123]. Pros: (a) GA utilizes only the function values for

finding a solution.

(b) GA can be used to apply all types of search problems, wither continuous prob-

lems, discrete problems or non-differentiable problems.

(c) GA is best for finding global best as compared to local best.

Cons: (a) Using GA, it is not usually possible to get an optimal solution.

(b) Even a simple problem can take a large amount of time to converge.

To overcome the 1st drawback, i.e., to get an optimal solution, usually the process

is repeated. However, to handle the second drawback, parallel computing can help

or the termination criterion is made adoptive.
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Stopping criterion: Adoptive, either (a) local best is not further improving

greater than the threshold µ or (b) max. no. of iterations exceeds a threshold

(here 800 in our case).

Mapping: In the case of a HEMS, home appliances are mapped with bits of

chromosomes. Table 3.3 shows the GA parameters and their values.

Table 3.3: GA parameters.

S. No. Parameter Value

1 Population size 200
2 Crossover probability 0.8
3 Mutation probability 0.2
4 Maximum number of generations 800

3.9 Grasshopper Optimization Algorithm (GOA)

GOA is the Meta-heuristic population based optimization technique [124]. Grasshop-

pers are insects and are considered harmful to crops. The main property of

grasshoppers is to form a swarm although they are seen separately in nature.

The swarm assembled by grasshoppers, is one of the largest swarms of all the

creature in the world and it is considered as the nightmare for farmers. The life

cycle of grasshopper consists of egg, nymph and adult, i.e., when a grasshopper

reaches its adult stage, it passes through the stages of eggs, nymph and adult as

shown in the Figure 3.9.

Figure 3.9: The life cycle of a grasshopper
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The eggs hatched for ten months, the nymph grasshopper born. Nymph grasshop-

pers jump over each other and start rolling and eat everything that comes in its

way. After sometime, it becomes an adult and start swarming in air.

GOA is basically focusing on the social behavior of grasshoppers. Every member

of the swarm consists of a single insect, positioned in a search space ’S’ and mov-

ing within its bound as shown in Figure 3.10. Here we are considering the two

important motions of grasshopper. The first is the cooperation of grasshoppers

which show slow movements when it is in larvae-phase and dynamic movements,

when it is in insect-form. The second movement is foraging of food.

Target Position

Comfort 

Zone

Force of Attraction                                                  

  Force of Repulsion

Figure 3.10: Behavior of grasshoppers in a swarm

Usually, grasshoppers can be seen in the form of a swarm in nature. They attack

agricultural lands and become a nightmare for formers. The swarming behaviour

is found in both adult and nymph grasshoppers [125, 126]. Generally, a locust

swarm contains five billion of grasshoppers and spread over an area of 60 square

miles. Nature-inspired algorithms have a unique search mechanism for food. This

consists of two techniques: exploration and exploitation.
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3.9.1 Exploration

The process in which the algorithm finds a new solution from the current solutions

in the search space.

3.9.2 Exploitation

The process in which algorithm searches the surrounding search space. The math-

ematical model of GOA, which carries the swarming behaviour of a grasshopper,

is given as in [127]. The best search agent is selected on the basis of fitness value

evaluation. The best grasshopper agent starts moving toward another individ-

ual in its surrounding. Thus all the search agents start motion toward the best

grasshopper search agent.

Mi shows the migration of ith search agent towards the target search agent. Math-

ematically it is given as follows;

Mi = Si +Gi + Ai (3.26)

In the above equation Ai shows the direction of wind, Gi shows the gravitational

force on ith grasshopper and Si is the social interaction, which is considered as the

main movement part in grasshopper motion. Mathematically it is given as follows;

Si =
N∑
i=1

S(dij)d̂ij..................j 6= i (3.27)

Where, d̂ij is the position vector from ith grasshopper to jth grasshopper and dij

is the distance between two grasshoppers, which is given by;

dij = |mj −mi| (3.28)

and S is the social interaction force which is given as:
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S(r) = fe
−d
a − e−d (3.29)

Where a is attractive scale length, d grasshoppers in-between distance and f is

the strength of social forces.

In Equation 3.26, the gravitational force Gi is calculated as follows:

Gi = −gêg (3.30)

where g denotes the constant of gravitational force and êg is the unit vector.

Now Ai component in Equation 3.26 is given as follows;

Ai = vêv (3.31)

where v is the constant drift velocity and êv denotes the unit vector.

According to proposed mathematical model in [124];

Mi =
N∑

j=1,j 6=i

S(|Pj − Pi|)
(Pj − Pi)

dij
− gêg + vêv (3.32)

We modify this model for the purpose of our energy optimization problem as

follows;

Mi = γ

(
N∑

j=1,j 6=i

γ
uu − ul

2
S(|mj −mi|)

(mj −mi)

dij
− gêg + vêw

)
+ τ̂d (3.33)

Where uu and ul are the upper and lower bounds respectively in the D dimension,

γ is the decreasing parameter which shrink the comfort zone and τ̂d is the value of

D dimension of the target agent. The gravitational force has been neglected and
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wind force is considered in the direction of target agent. γ can be calculated as

follows;

γ = γmax − Ii(
γmax − γmin)

Imax
) (3.34)

Where, γmax is the upper-limit and γmin is the lower-limit of γ, Ii is the number

of iterations and Imax is the maximum number of iterations. We utilize the above

equations for the creation of swarm in free space and use in simulation to describe

the interaction between grasshopper in a swarm. The algorithm working steps are

given in Algorithm 4 and are depicted in Figure 3.11.

Algorithm 4: GOA Algorithm

1 Initialization:Generation of price signal according to the used scheme
2 LOTs’ specification of appliances
3 power ratings of appliances
4 Input: variables ub, lb, dim, N
5 Initialize position of Grasshopper
6 for h = 1 to H do
7 Find Electricity Cost
8 Find Cost of all appliances LOTs
9 Find Fbest, Lbest and Gbest;

10 for It = 1 to ItMax do
11 for i = 1 to NV AR do

12 end
13 Find the best position

14 end
15 Update the LOTs of Appliances

16 end
17 Output: ET , Load, PAR.

3.10 Moth Flame Optimization (MFO)

The nature-inspired algorithm MFO was proposed by Seyedali Mirjalili in 2015 [128].

Moths are butterfly-like insects, having 160,000 plus different species in nature.

They have their unique navigation mechanism known as transverse orientation
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Start

Initialize all parameters:
Si, Ai, Vi ,etc.

Random generation of initial 
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No. of itera�ons
> 

Popula�on size

End

Yes

Yes

No

Figure 3.11: Step by step process of the GOA

when flying in the moonlight. When they fly in a spiral, they maintain a con-

stant angle related to the moon, ultimately converging in the direction of light.

The spiral articulates the searching region, and it assures the exploitation of the

optimum solution.

Since MFO is a population-based algorithm, the movement of m moths in n di-

mensions (variables) is given in the position matrix form as follows:

Q =


q1,1 ... q1,n

... ... ...

qm,1 ... qm,n

 (3.35)

The resultant fitness values, for “m” number of moths, are stored in an array.

The fitness function (objective) evaluates each moth’s fitness value. Each moth’s
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position vector, i.e., matrix Q’s first row, is evaluated on the fitness function, and

its output is then allocated to its respective moth.

Similarly, a matrix UF is assigned to the corresponding flames as follows:

Uf =


u1,1 ... u1,n

... ... ...

um,1 ... um,n

 (3.36)

Now, in mapping our problem of the optimum scheduling of home appliances,

moths act as searching agents, and flames are the optimum positions. In each

iteration, a moth searches for an optimum flame, with updates in the next it-

eration for the best solution by comparing with the previous one. Moths follow

the logarithmic spiral for their update positions, where moths start from some

initial position, following some limited fluctuating search space, and reach their

destination flames. In MFO, the logarithmic spiral is:

S(Xi, Pj) = di.e
bt.cos(2πt) + Pj (3.37)

where di = |Pj − Xi| is the ith moth distance from jth flame, b is the spiral

shape defining the constant and the random number t lies between −1 and one.

When t = −1, this means the moth is closest to its destination flame, while t = 1

indicates that its farthest position from the flame. Therefore, the moth is always

assumed to be in a hyper-ellipse space, which guarantees the exploitation and

exploration of search space. Table 3.4 depicts the MFO parameters.

Table 3.4: MFO parameters.

S.
No.

Parameter Value

1 Number of moths and
flames

12

2 Max. No. of Iterations 1000
3 Lower bound Lb −100
4 Upper bound Ub 100
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3.11 Whale Optimization Algorithm (WOA)

Whale optimization algorithm (WOA) - a naturally inspired optimization algo-

rithm provided by Mirjalili et al. [70]. WOA is inspired by Humpback whales

behavior survival and hunting. The whale can only live alone or in crowds and

can be up to 30 meters in length. WOA imitates automated behavior to simulate

wildlife hunting as a random or optimistic search agent, for hunting (exploration)

and using intelligence kits as a spiral bubble-net attack mechanism.

In addition, Humpback whales typically involve the formation of bubbles around

the spinning circle around the predator (exploitation). As with every optimization

technique, WOA involves two stages: exploration and exploitation. Exploration

is a global search for optimal solutions, but exploitation is related to local search.

Expected to explore the limited prospects of the search engines, hopes to expand

the already-known ’S’ solution. This will then speed up the search for a ”C”

solution. On the other hand, exploitation is a major part of the search field,

which hopes to find other stimulating solutions that are still being processed.

This requires diversification of search to avoid local optimization.

Whale optimization algorithm is similar to hunting optimization techniques and

the location of the hunt resembles the best solution. In addition, the WOA be-

gins with a randomly generated whale (solutions) randomly generated position.

During the initial iteration, search negotiators upgrade their locus on an arbitrar-

ily selected search negotiator. However, from the second iteration, intermediaries

change their state of mind about the best solution ever.

Arbitrary search negotiator is performed if —A— > 1 will help this discovery. If

the finest solution is nominated, —A— < 1 is set. This will exploit all exploitation,

as all search agents approach. Therefore, WOA can be considered as a good global

optimization. Hunting behavior can be summarized in three stages: Encircling,

attacking prey and searching of prey.

Figure 3.12 shows the bubble-net attacking strategy of Humpback Whale, i.e., it

depicts its hunting mechanism.
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Figure 3.12: Bubble-net attacking strategy of Humpback Whale

3.12 Summary

In this chapter, we have discussed, analyzed and mathematically modeled dif-

ferent bio-inspired optimization algorithms. Also, we have made flowcharts and

Pseudo-codes of these algorithms, to show that, how these algorithms are work-

ing. Although, there are so many bio-inspired algorithms listed in Tables 1.1 and

1.2, however, we have used ACO, ALO, BFA, CSOA, DA, FA, GA, GOA, MFO,

WOA and proposed a hybrid version of GA and MFO named as TG-MFO in detail

to achieve our three main objectives; minimization of energy cost, PAR and end

user discomfort in all three sectors of energy consumption; residential, commercial

and industrial. In successive chapters 4,5 and 6, these algorithms are applied and

simulated for the aforementioned objectives and their performance is compared in

different scenarios.

Due to the random numbers’ generation at the beginning, and stochastic nature

of the bio-inspired algorithms, every time the algorithm runs, it will give new so-

lution. Therefore, infinite number of solutions is possible, as in each iteration, the

algorithms look for local best, and then assign that best solution to the previous

achieved and stored global best solution if applied. Therefore, the performance

of an algorithm is measured on taking an average of more than ten (10) times

repetition on different consumer scenarios. Based on this strategy, the proposed

algorithms have been compared and analyzed with the state-of-the-art algorithms

used for energy optimization.



Chapter 4

Use of Bio-inspired Optimization

Algorithms for Efficient EMS in

Residential Sector (Homes and

Buildings)

4.1 Motivation

This chapter proposes two bio-inspired heuristic algorithms, the Moth-Flame Op-

timization (MFO) algorithm and Genetic Algorithm (GA), for an Energy Manage-

ment System (EMS) in smart homes and buildings. Their performance in terms of

our objectives; energy cost reduction, minimization of the Peak to Average power

Ratio (PAR) and end-user discomfort minimization are analysed and discussed.

Then, a hybrid version of GA and MFO, named TG-MFO (Time-constrained

Genetic-Moth Flame Optimization), is proposed for achieving the aforementioned

objectives. TG-MFO not only hybridizes GA and MFO, but also incorporates time

constraints for each appliance to achieve maximum end-user comfort. Different al-

gorithms have been proposed in the literature for energy optimization. However,

they have increased end-user frustration in terms of increased waiting time for

62
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home appliances to be switched ON. The proposed TG-MFO algorithm is specially

designed for nearly-zero end-user discomfort due to scheduling of appliances, keep-

ing in view the timespan of individual appliances. Renewable energy sources and

battery storage units are also integrated for achieving maximum end-user bene-

fits. For comparison, five bio-inspired heuristic algorithms, i.e., Genetic Algorithm

(GA), Ant Colony Optimization (ACO), Cuckoo Search Algorithm (CSA), Firefly

Algorithm (FA) and Moth-Flame Optimization (MFO), are used to achieve the

aforementioned objectives in the residential sector in comparison with TG-MFO.

The simulations through MATLAB show that our proposed algorithm has reduced

the energy cost up to 32.25% for a single user and 49.96% for thirty users in a

residential sector compared to unscheduled load.

4.2 Introduction

Energy utilization efficiency is increasing with increased use of technology and

smart appliances in every field of life in the residential, commercial and industrial

sectors. At the same time, a reliable and high-quality electrical power system is ex-

tremely vital to fulfill the residential energy demand. Meanwhile, there is a rapid

increase in demand for global natural resources. Throughout the world, major

blackouts occur due to consumer demand and utility supply mismatch and system

automation deficiencies. Hence, a transition process from the Traditional Electric

Power Grid (TEPG) to the Smart Grid (SG), to integrate communication and in-

formation technologies, is the demand of the future. Presently, about 40% of the

total generated energy is consumed by residential users, and approximately 30–

40% of carbon emission is due to these residential areas [129]. The unnecessary and

inefficient use of electrical energy brings sustainability issues to the forefront, such

as economic growth, heavy pollution and global warming. Conventionally, the ser-

vice provider power systems run on fossil fuel and add to global warming with high

carbon emissions. Furthermore, in the present power systems, electricity power

flow is uni-directional, i.e., from the supply- to the demand-side. Conversely, SG’s

purpose is to make the flow of electricity supply and demand bidirectional [130].
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Secondly, the search for and integration of new green renewable energy resources

are obligatory in such circumstances. The integration of green renewable energy

resources needs a broader perspective of design, planning and optimization. Up to

this time, different conventional optimization techniques, such as Linear Program-

ming (LP) [114], Non-Linear Programming (NLP) [131], Integer Linear Program-

ming (ILP) [132], Mixed Integer Linear Programming (MILP) [133], Dynamic Pro-

gramming (DP) [134] and Constrained Programming (CP), have been practised.

However, in the present situations, the integration of renewable energy resources

is mandatory, and the problems are non-linear and have numerous local optima,

making conventional optimization techniques obsolete. In the last decade, bio-

inspired modern heuristic optimization techniques have grown in popularity due

to their stochastic search mechanisms and avoidance of large convergence time for

the exact solution [129].

In this chapter, we propose a new meta-heuristic optimization algorithm, named

Time-constrained Genetic-Moth-Flame Optimization (TG-MFO), and applied it

for efficient energy optimization in smart homes and buildings. We have also

explored and analysed five bio-inspired heuristic algorithms for the energy opti-

mization problem, namely the ACO, GA, Cuckoo Search Algorithm (CSA), Firefly

Algorithm (FA) and MFO algorithms. For analysis and validation of the proposed

algorithm, we applied these algorithms in different consumer scenarios, such as

a single home for one day, a single home for thirty days, thirty different sizes

of homes for one day and thirty homes for thirty days. Simulation results show

that our proposed algorithm reduced the end-user discomfort in terms of appliance

waiting time being nearly equal to zero, as compared to the bio-inspired optimiza-

tion algorithms, along with minimization of total energy cost and minimum PAR.

Renewable energy sources are also integrated for further minimization of the total

load and its cost.

To achieve this goal, the SG is modeled as a residential sector comprised of 30

different size homes, different Lengths of Operational Time (LOTs) and appli-

ance power ratings. Appliance power ratings are different due to the home size

requirements. For example, a small-sized home runs a one-ton (12,000 BTU) air
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conditioner compared to a large-sized home that runs 1.5 tons (18,000 BTU) or

even more. Some homes have a Renewable Energy Source (RES) and a Battery

Storage Unit (BSU). In the considered model, we have forty-eight (48) Operational

Time Intervals (OTIs) in a day, by dividing one hour into two-time slots of thirty

minutes each. In each OTI, a smart home checks appliances’ power demand, i.e.,

whether an appliance is ON or OFF. According to the appliances’ ON/OFF sta-

tus, the Energy Management Controller (EMC) checks the availability of RES and

BSU to fulfill the appliances’ power demand. If it is available, the appliance will

be ON, and the consumer will not wait for appliance scheduling. If the generation

and stored energy are insufficient for running the load, the proposed algorithm will

check the time span, in which a user has no problem with appliance scheduling

with the lowest energy price (time interval) for running that appliance. In order to

achieve this objective, time constraints have been defined for a maximum interval

of time in which an appliance has to complete its operation. Consequently, if the

utility gives incentives to the user in the form of real-time lower prices in off-peak

hours, the end-user will be encouraged to produce his/her own energy from RES

and schedule the load accordingly.

4.2.1 Proposed System Model Architecture

Figure 4.1 shows the proposed system model architecture. In the proposed system

model, the following assumptions are made;

1. Four different size homes, in which, one will be selected randomly

2. Small size homes are assumed to have low power rated appliances

3. Large size homes are assumed to have high power rated appliances

4. Two types of loads; (a) fixed and (b) shiftable

5. Three types of consumers; (a) Passive, (b)semi active and(c) full active

6. 24 hrs time slots are assumed, with no load shedding or black-out.
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Smart Home (SH) consists of a smart meter along with the EMC, for a reliable

bi-directional power and information flow between SG and SH [135].

All appliances, sensors, RESs and BSUs are connected to EMC through a Home

Area Network (HAN), which is further connected to SG through a Wide Area

Network (WAN). Different WAN solutions are available like PLC, Wi-Fi, Wi-Max

and GSM [136]. End-users manage their energy consumption activities as per

incentives offered by the utilities. In each SH, the end-user sets various parameters

of all appliances in EMC. EMC is then responsible for the ON/OFF status of all

appliances.

4.2.2 Problem Formulation

To formulate the problem, residential consumers have been categorized as follows:

4.2.2.1 Non-active Users (NAUs)

Non-active Users (NAUs) do not use RESs and/or BSUs. They fulfil their load

demand only from the utility grid. They can reduce their electricity bill by trans-

ferring their loads to off-peak hours. The consumed energy of NAU is calculated

using the following equation:

ENAU = ET (4.1)

where ENAU is the energy consumption of all non-active users and ET is the total

energy consumption of all appliances.

4.2.2.2 Semi-active Users (SAUs)

Semi-active Users (SAUs) may generate their own energy using RESs and get

energy from the grid when needed, i.e., when their demand exceeds the RESs’

generated energy or when RESs are not available. That is, the end-user energy
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Figure 4.1: Proposed system model architecture.

demand from the grid will be the total used energy minus their self-generated RES

energy.

SAUs consumed energy is calculated using the following equation:

ESAU = ET −
48∑
n=1

ERES,n (4.2)
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where ESAU is the energy consumption of semi-active users and ERES is the energy

generated from RESs.

4.2.2.3 Fully-active Users (FAUs)

Fully-active users (FAUs) generate their own energy using RESs and store the

extra generated energy in the batteries using BSUs. They obtain energy from the

grid when needed, i.e., when their demand exceeds the RESs’ generated energy

plus the BSUs’ stored energy. Their energy consumption pattern is calculated

using the following equation:

EFAU = ET −
48∑
n=1

(
ERES,n ± EBSU,n

)
(4.3)

where EFAU is the energy consumption of fully-active users, ERES,n is the nth

consumer’s RESs’ generated energy and EBSU,n is consumers’ stored energy using

BSUs. Now, if EBSU is positive, this means that RESs are charging the batteries,

and if EBSU is negative, this means batteries are discharging and providing energy

to the load.

4.2.3 Load Categorization and Their Energy Models

To design an optimized model, the consumer load can be divided as follow:

4.2.3.1 Fixed Load

These are those regular appliances whose starting time remains fixed. That is, a

consumer can start and stop these appliances any time. Refrigerator and interior

lights are examples of Fixed Load (FL).

Most of the research works have considered 24 intervals for their energy calcula-

tions, which are usually not applicable to all appliances. Usually, an appliance, for
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example a microwave oven, a clothes dryer, etc., operates for less than an hour.

Hence, further dividing an hour into two sub-intervals of thirty minutes each gen-

erates a total of forty-eight (48) time slots, which results in accurate manipulation.

However, this slightly increased the manipulation time, but that can be ignored.

4.2.3.2 Shiftable Load

These are those appliances that can be fully managed, i.e., they can be shifted

to any time slot and can also be interrupted at any time keeping in view the

minimization of PAR and electricity bill [102]. These include: dish washer, washing

machine, spin dryer, electric car, laptop, desktop computer, vacuum cleaner, oven,

cook top and microwave oven [72]. The energy consumed by all shiftable appliances

in the total time interval of 24 h with 48 time-slots and their cost can be found

as:

EN
T =

N∑
n=1

Wn ×Xn (4.4)

where, Wn is the power of nth appliance, N shows the total no of appliances, Xn is

the ON-time in a time slot of nth appliance and EN
T is the total energy calculated

for all appliances in a single time slot.

Now the total cost CSch for all scheduled appliances can be calculated by multi-

plying total energy EN
T,m calculated in mth time slot with respective energy price

ζm in that time slot.

CSch =
M∑
m=1

EN
T,m × ζm (4.5)

Cunsch is the total energy price for all slots of Unscheduled appliances calculated

in the similar manner, then the normalized CNorm of scheduled appliances can be

calculated as:

CNorm =
CSch

CSch + Cunsch
(4.6)

In this work, we assumed a single home and thirty homes with different power

ratings of appliances, as tabulated in Table 4.1. Our required objectives are:

• Consumers’ high comfort level by reducing appliances’ average waiting time
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• Consumers’ electricity bill minimization

• Minimization of PAR and

• Integration of RES and BSU in the system for further reduction of end-user

waiting time.

These objectives can be achieved by the optimization of the energy consumption

profiles of home appliances, using different scheduling techniques. In this chapter,

we are using the MKP (multiple knapsack problem) scheduling technique. MKP

is a capacity (resources) allotment problem. It consists of N number of capacities

and Q number of objects [149].

MKP is a combinatorial problem. In MKP, stuff quantity, having different weights

and values, can be kept into a knapsack of certain capacity, such that the worth of

the knapsack should be maximum as shown in Figure 4.2. We consider U number

of knapsacks, and using MKP as scheduling mechanism to map our problem as

follows:

• Power capacities of consumers in every time interval are mapped as U number

of knapsacks

• Appliances in an office are mapped as ”Q” number of objects

• The weight of every object in MKP is mapped as appliances consumed energy

in every time interval. This is assumed to be time invariant

• In MKP, the worth of each object in a particular time interval is mapped as

the cost of appliances consumed energy in that interval of time [150].

ET ≤ VT (4.7)

Here ET is the cumulative energy demand of the end-user and VT is the maximum

energy capacity in a particular interval of time available from the utility grid.

MKP scheduling tells us to keep the total energy demand of end user less than or
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Figure 4.2: Multiple knapsack problem (MKP) formulation

equal to this maximum energy capacity threshold.

Waiting Time (τw) and PAR can be calculated as discussed in chapter 1, Figure

1.1, Equations 1.4 to 1.7

4.2.4 Objective Function

Our proposed objective function aims to reduce electricity cost, while maintaining

higher end user comfort level by minimization of waiting time. The final expression

for our objective function is given by:

min

(
(λ1 × CNorm) + (λ2 × τw)

)
(4.8)

λ1 and λ2 are multiplying factors of two portions of our objective function. Their

values varies between ’0’ and ’1’ so that λ1 + λ2=1 . It reveals that either λ1 and

λ2 could be 0 to 1. That is, if an end user does not want to participate in the load

scheduling process, then his multiplying factors will be λ1 =1 and λ2 =0 in the

objective function.
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Table 4.1: Home appliances and their running time constraints [72].

S.
No.

Appliance Category Power Rat-
ing ρ (KW)

Starting
Time (α)

Ending
Time (β)

Time-Span
(β−α) (h)

LOT
(h)

1 Fridge-1 Fixed 0.3 00 24 24 24
2 Interior Lighting-1 Fixed 0.84 18 24 06 6.0
3 Dish Washer-1 shiftable 2.0 09 17 08 2.0
4 Washing Machine-1 shiftable 0.6 09 12 03 1.5
5 Spin Dryer-1 shiftable 2.5 13 18 05 1.0
6 Cook Top-1 shiftable 3.0 08 09 01 0.5
7 Oven-1 shiftable 5.0 18 19 01 0.5
8 Microwave-1 shiftable 1.7 08 09 01 0.5
9 Laptop-1 shiftable 0.1 18 24 06 2.0
10 Desktop-1 shiftable 0.3 18 24 06 3.0
11 Vacuum Cleaner-1 shiftable 1.2 09 17 08 0.5
12 Electrical Car-1 shiftable 3.5 18 08 14 3.0

1 Fridge-2 Fixed 0.25 00 24 24 24
2 Interior Lighting-2 Fixed 0.9 19 24 07 7.0
3 Dish Washer-2 shiftable 1.9 11 15 04 2.0
4 Washing Machine-2 shiftable 0.5 10 14 04 2.0
5 Spin Dryer-2 shiftable 2.0 10 16 06 2.0
6 Cook Top-2 shiftable 3.5 09 10 01 0.5
7 Oven-2 shiftable 5.4 17 20 03 1.5
8 Microwave-2 shiftable 1.9 07 09 02 0.8
9 Laptop-2 shiftable 0.09 16 23 07 3.0
10 Desktop-2 shiftable 0.28 14 20 06 2.0
11 Vacuum Cleaner-2 shiftable 1.4 10 16 06 1.5
12 Electrical Car-2 shiftable 3.3 16 09 17 4.0

1 Fridge-3 Fixed 0.5 00 24 24 20
2 Interior Lighting-3 Fixed 0.62 17 06 13 13
3 Dish Washer-3 shiftable 2.5 10 16 06 2.5
4 Washing Machine-3 shiftable 0.8 08 14 06 1.8
5 Spin Dryer-3 shiftable 2.5 13 19 06 1.0
6 Cook Top-3 shiftable 3.2 07 09 02 0.5
7 Oven-3 shiftable 5.3 16 18 02 1.5
8 Microwave-3 shiftable 1.9 10 14 04 1.0
9 Laptop-3 shiftable 0.2 16 24 08 2.5
10 Desktop-3 shiftable 0.4 18 20 02 1.0
11 Vacuum Cleaner-3 shiftable 1.3 11 12 01 0.5
12 Electrical Car-3 shiftable 3.4 16 07 11 5.0

1 Fridge-4 Fixed 0.4 00 24 24 18
2 Interior Lighting-4 Fixed 0.7 19 08 13 13
3 Dish Washer-4 shiftable 2.3 08 19 11 4.0
4 Washing Machine-4 shiftable 0.9 11 14 03 1.0
5 Spin Dryer-4 shiftable 2.0 14 20 06 1.0
6 Cook Top-4 shiftable 3.5 10 12 02 1.2
7 Oven-4 shiftable 5.5 10 11 01 0.8
8 Microwave-4 shiftable 1.9 10 14 04 1.5
9 Laptop-4 shiftable 0.15 11 23 12 4.0
10 Desktop-4 shiftable 0.4 09 24 15 6.0
11 Vacuum Cleaner-4 shiftable 1.5 11 16 05 1.2
12 Electrical Car-4 shiftable 4.0 10 22 12 4.0

4.3 Results and Discussions

4.3.1 Consumer Scenarios

In the present work, four types of consumers’ scenarios were simulated and pre-

sented. In the first case, a single home was taken, and its hourly load, hourly

energy cost, PAR and waiting time were determined both in the unscheduled and

scheduled (with ACO, CSA, GA, FA, MFO and TG-MFO) environment for a

single day. In the second case, a residential building with thirty homes having

users with different LOTs and power ratings of their appliances were considered.

Again, their hourly average load, hourly cost, PAR and waiting time were deter-

mined both for unscheduled and scheduled (with ACO, CSA, GA, FA, MFO and
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TG-MFO) scenarios for a single day. In the third case, we considered a single

home, found all four of its parameters for unscheduled and scheduled scenarios for

a complete month, i.e., thirty (30) days, and found its monthly bill. In the fourth

case, a residential building with thirty homes was considered, where we deter-

mined its daily average load, daily cost, daily PAR and average waiting time for a

complete month, i.e., thirty (30) days, as well as calculated its monthly electricity

consumption and electricity bill. In all four cases, the RTP scheme was used.

For the system’s stability, further reduction of electricity consumption and maxi-

mum user comfort, RES and BSUs were also integrated. Additionally, for photo-

voltaic cells’ electricity generation, temperature, solar irradiance, battery charg-

ing/discharging rates and its storage system, different assumptions were considered

from [73].

4.3.2 Pricing Signal

Many international energy system operators issue hourly day-ahead pricing (DAP)

signals every day to the consumers. DAP signal is a key feature of smart meter

which benefits the end user as well as the utility. DAP signal is provided to the

users via smart energy meters, the users modify their daily needs according to

the DAP signal and the EMC scheduled the smart appliances according to the

proposed algorithm. The day-ahead energy price signal of New York Independent

System Operator (NYISO), shown in Figure 4.3, accessed on 5th Jan. 2019, is

reproduced and used for cost calculation [152].

4.3.3 Daily Basis Hourly Load Curves

Figure 4.4 depicts the daily basis hourly load curve for a randomly selected single

home and thirty homes, for un-scheduled load and GA-, MFO-, ACO-, CSA-,

FA- and TG-MFO-scheduled load, for 24 hours. According to the utility provided

DAP signal, shown in the Figure 4.3, peak hours range from 16 to 20 hrs, during

which the energy price is high. It is therefore clear from Figures 4.4 and 4.5, that
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Figure 4.3: Day-ahead real-time pricing signal.

as compared to the unscheduled load, meta-heuristic algorithm-based scheduled

load was shifted to the off-peak hours, where not only the price was low, but RES

was also available, considering the end-user’s time constraints for the maximum

comfort level. The Figure shows that our proposed algorithm gave comparatively

good results for both single and multiple homes with different sizes, power ratings

and LOTs.
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Figure 4.4: The hourly load for un-scheduled and GA-, MFO-, ACO-, CSA-,
FA- and TG-MFO-scheduled load for a single home.
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Figure 4.5: The hourly load for un-scheduled and GA-, MFO-, ACO-, CSA-,
FA- and TG-MFO-scheduled load for 30 homes

4.3.4 The Total Electricity Cost

Figure 4.6 shows the total average cost for a randomly selected single home for one

day, single home for thirty days, thirty homes for single day and thirty homes for

thirty days, for the unscheduled and scheduled (with ACO, CSA, GA, FA, MFO

and TG-MFO) load. Due to the shifting of load from ON-peak hours to OFF-peak

hrs, it is clear from figures the electricity cost of the meta-heuristic algorithms-

based scheduled load was very low as compared to the unscheduled load cost. In

Figure 4.6, the operation of a single home for a single day is considered. In this

case, ACO-based scheduling revealed better results as compared to all scheduled

and unscheduled costs. Similarly, in Figure 4.7, the case of a single home for

30 days (one month) is shown, while, in Figure 4.8, 30 homes with different LOTs

and power ratings for 30 days (one month), and in Figure 4.9, the case of 30 homes

for 30 days; the scheduled cost was very less as compared to the un-scheduled cost.

In all four cases, ACO outperformed all scheduling techniques.

4.3.5 Average Waiting Time

Figure 4.10 depicts the average waiting time of single and thirty homes. Wait-

ing time is a very important feature of appliance scheduling for optimal energy
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Figure 4.6: Total cost for un-scheduled, and GA, MFO, ACO, CSA, FA and
TG-MFO Scheduled load for a single home for 1 day
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Figure 4.7: Total cost for un-scheduled, and GA, MFO, ACO, CSA, FA and
TG-MFO Scheduled load for single home for 30 days.
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Figure 4.8: Total cost for un-scheduled, and GA, MFO, ACO, CSA, FA and
TG-MFO Scheduled load for 30 homes for 1 day.
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Figure 4.9: Total cost for un-scheduled, and GA, MFO, ACO, CSA, FA and
TG-MFO Scheduled load for 30 homes for 30 days.

consumption in the smart grid. To reduce electricity cost, usually, waiting time

increases. A user wants to start an appliance, but due to scheduling time con-

straints, the user has to wait for the starting of its operation. Our main objective

in this work was to minimize the user electricity bill, keeping in view the maximum

comfort level of the end-user. Figure 4.10 shows that we achieved our objective

using heuristic techniques for optimal scheduling. The graphs show that TG-MFO

outperformed ACO, CSA, GA, FA and MFO in achieving a nearly-zero waiting

time for the end-user.
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Figure 4.10: Average waiting time for a single home and 30 homes.

4.3.6 Peak to Average Power Ratio (PAR)

PAR plays an important role in the optimal scheduling of smart home appliances.

Due to high PAR, the utility faces huge peak loads during peak hours, and the rest

of the day, most of the generating units remain idle. Therefore, researchers try to
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reduce PAR for economical load dispatch in smart grids. Figure 4.11 and Figure

4.12 show that, in the case of a single home for a single day and thirty homes for

a single day, MFO performed better than FA, while in the case of a single home

for thirty days and thirty homes for thirty days, FA showed better results than

MFO respectively. In our proposed hybrid model, we tried to not only schedule

appliances optimally, economically and having maximum end-user comfort, but

also gave the lowest PAR, for the benefit of utility, and hence, to further increase

the end-user comfort level.
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Figure 4.11: PAR for a single home for a single day.
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Figure 4.12: PAR for thirty homes for a single day.

4.3.7 Integration of RES and BSU

The use of renewable energy sources is a good practice for cost reduction in all

three sectors of energy consumption. In order to minimize the consumed energy for

further reduction of the total cost, RES and BSUs were integrated in homes. Figure

4.13 shows that the day-time load will be supported by RES, while extra energy
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will be stored in BSUs for running the load in peak hours. It drastically reduces the

cost. The figure depicts that our proposed TG-MFO algorithm has intelligently

not only shifted the load to day-time off-peak hours for cost minimization, but

also reduced the PAR.
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Figure 4.13: Energy demand curves of the scheduled and the un-scheduled load along
with RES and BSUs.

A comparison of the proposed algorithm with state-of-the-art research works in the

smart grid environment for energy optimization and end-user comfort is depicted

in Table 4.2. Most of the existing techniques have used trade-offs between user

comfort and bill minimization. Table 4.3 shows the run-time of the proposed

Table 4.2: Comparison of TG-MFO with the state-of-the-art work.

Techniques No. of Homes/Days Cost Re-
duction

Waiting Time

K. Ma et al. [97] 34% 1.76 h

Y. Peizhong et al. [92] 30 days 20% 7.64 h

TLGO [100] 33% 1.83 h
TLBO 31.5% 2.14 h
GA 31% 2.37 h

Ogunjuyigbe et al. [101] 9.6 (dis-satisfaction level)
20.2=
30.9=

Pilloni et al. [84] 33% 1.65 to 1.70 (Annoyance rate)

K. Muralitharan et al. [104] 10 Home appliances 38% 73.32 s
11 76.28 s
12 86.83 s
13 94.39 s
14 107.58 s

TG-MFO (Proposed) 1 home for 1 day 32.25% 0.62 h
1 home for 30 days 19.39% 0.48 h
30 homes for 1 day 43.98% 0.38 h
30 homes for 30 days 49.96% 0.26 h

algorithms using an Intel (R) Core (TM) i5 processor, with 4.00 GB of installed
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memory (RAM) and the 32-bit Windows 7 Operating system.

Table 4.3: Runtime of the proposed algorithm in four different scenarios.

Proposed Algo-
rithm

No. of Homes/Days Run Time
(s)

TG-MFO Single home for 1 day 47.65
Single home for 30 days 123.02
Thirty homes for 1 day 129.18
Thirty homes for 30 days 841.65

Table 4.4 shows the performance of the proposed TG-MFO algorithm, compared

to unscheduled load and scheduled with the GA, MFO, ACO, FA and CSA algo-

rithms.

Table 4.4: Comparison of the un-scheduled load with GA, MFO, ACO, CSA,
FA and TG-MFO.

Techniques No. of Homes/Days Cost ($) %Cost Re-
duction

Waiting
Time (h)

PAR % PAR
Change

Un- Single home for 1 day 6.2 – – 4.58 –
Schedule Single home for 30 days 366 – – — –

30 homes for 1 day 582 – – 3.84 –
30 homes for 30 days 8476 – – — –

GA Single home for 1 day 5.8 06.45% 1.75 4.19 8.5%
Scheduled Single home for 30 days 332 09.28% 7.41 — —

30 homes for 1 day 340 41.58% 1.45 2.13 44.5%
30 homes for 30 days 4320 49.03% 6.76 — —

MFO Single home for 1 day 4.2 32.26% 2.81 3.82 16.6%
Scheduled single home for 30 days 296 19.12% 4.62 — —

30 homes for 1 day 490 15.8% 4.67 1.21 68.5%
30 homes for 30 days 4992 41.10% 4.61 — —

TG-MFO Single home for 1 day 4.2 32.25% 0.62 2.02 49.8%
Scheduled single home for 30 days 295 19.39% 0.48 — —

30 homes for 1 day 326 43.98% 0.38 1.48 61.4%
30 homes for 30 days 4241 49.96% 0.26 — —

ACO Single home for 1 day 4.4 29.03% 2.74 2.34 48.9%
Scheduled Single home for 30 days 245 33.06% 5.02 — —

30 homes for 1 day 242 58.41% 1.48 1.37 64.3%
30 homes for 30 days 3212 62.10% 1.39 — —

CSA Single home for 1 day 4.38 29.35% 2.46 4.26 6.9%
Scheduled Single home for 30 days 336 08.19% 5.21 — —

30 homes for 1 day 239 58.93% 6.82 2.67 30.4%
30 homes for 30 days 4295 49.32% 1.18 — —

FA Single home for 1 day 5.2 16.12% 4.54 2.45 46.5%
Scheduled Single home for 30 days 338 07.65% 2.38 — —

30 homes for 1 day 398 31.61% 1.17 1.83 52.3%
30 homes for 30 days 4852 42.75% 2.32 — —
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4.4 Summary

In chapter, we mapped GA, MFO and a new efficient and robust hybrid TG-MFO

meta-heuristic bio-inspired algorithm for optimal scheduling of home appliances

in the smart grid and compared their results with existing techniques of CSA,

FA and ACO. We considered both, the single and multiple homes scenarios in a

residential sector. In multiple homes, we took different LOTs and power ratings

of appliances to make it more practical. Day-ahead RTP signaling was used for

demand response in smart homes. The results show that there was a 6.45%–

49.03%, 32.26%–41.10% and 32.25%–49.96% decrease in the total cost with GA,

MFO and TG-MFO scheduling, respectively, for single and multiple users. RESs

and BSUs were also integrated to obtain a further decrease in the total cost and

end-user waiting time. In this work, we tried to not only reduce the total cost, but

to achieve a high comfort level of the end-user by minimizing the waiting time of

home appliances using the time constraints of a maximum average delay of 0.26–

0.62 h. This algorithm can be applied to actual data when and where they are

provided. It not only reduces the energy cost, but also increases the stability and

reliability of the grid.

Future work includes exploration of more bio-inspired algorithms for intelligent

and efficient energy optimization, and a multi-objective approach will be applied.



Chapter 5

Use of Bio-inspired Algorithms

for an Efficient EMS in

Commercial Applications

This chapter presents two bio-inspired energy optimization techniques; the grasshop-

per optimization algorithm (GOA) and bacterial foraging algorithm (BFA), for

power scheduling in an office. We have also applied our proposed hybrid TG-

MFO algorithm for comparison purpose in commercial application. Energy is one

of the valuable resources in this biosphere. However, with the rapid increase of

the population and increasing dependency on the daily use of energy due to smart

technologies and the Internet of Things (IoT), the existing resources are becom-

ing scarce. Therefore, to have an optimum usage of the existing energy resources

on the consumer side, new techniques and algorithms are being discovered and

used in the energy optimization process in the smart grid (SG). In SG, because of

the possibility of bi-directional power flow and communication between the utility

and consumers, an active and optimized energy scheduling technique is essential,

which minimizes the end-user electricity bill, reduces the peak-to-average power

ratio (PAR) and reduces the frequency of interruptions. Because of the varying

nature of the power consumption patterns of consumers, optimized scheduling of

energy consumption is a challenging task. For the maximum benefit of both the

82



Offices Energy Management System 83

utility and consumers, to decide whether to store, buy or sale extra energy, such

active environmental features must also be taken into consideration. It is clear

from the simulation results that the consumer electricity bill and PAR can be re-

duced as compared to unscheduled energy consumption with the day-ahead pricing

(DAP) scheme.

5.1 Introduction

With the increased use of modern technologies and smart appliances in every field

of life, energy consumption is rapidly increasing. The rising electricity demand

cannot be fulfilled by the traditional electric power grid. That is why the smart

grid is becoming more popular to fulfil daily electricity demand. The smart grid

(SG) is supposed to be the incorporation of information technologies (IT) in the

existing power grids to increase their robustness and consistency. Smart meters

(SM) are used for communication and energy monitoring purposes in SG. To sched-

ule smart appliances in residential, commercial and industrial sectors, an energy

management controller (EMC) is installed at the consumer premises. Demand

side management (DSM) has many strategies that help to solve the energy opti-

mization problem by peak clipping, load shifting, strategic conservation, flexible

load shifting, strategic load growth and valley filling. By using these strategies,

the load is shifted from high demand timings to low demand timings [137]. The

two main functionalities of DSM are proper management of the load and demand

response (DR) [138]. Consumer load management is also known as DSM. It is

the process of shifting electricity demand from high-demand (on-peak) hours to

low-demand(off-peak) hours to decrease the energy cost. DR is the consumer’s

response to variable pricing signals. There are two shapes of DR: in the form of

energy price reduction or some incentives to consumers [139, 140].

The main objectives of the energy management system (EMS) are the reduction

of the energy bill, PAR and consumer discomfort.

Many algorithms have been deigned to accomplish the aforementioned objectives.

For cost and energy consumption minimization, mixed integer linear programming
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(MILP), mixed integer nonlinear programming (MINLP), non-integer linear pro-

gramming (NILP) and convex programming were used in [141]-[144]. However,

these techniques are used for fewer appliances and have a large convergence time.

In order to overcome these deficiencies, researchers use meta-heuristic techniques

to resolve the issue of energy optimization. For cost minimization, the genetic

algorithm (GA) was proposed by the authors in [145, 146]. For cost minimization

and aggregated power consumption, differential evolution (DE) and ant colony

optimization (ACO) were used in [147, 148].

In this chapter, we apply meta-heuristic optimization algorithms in a single office

using the DAP pricing signal. The simulation is performed in MATLAB, and we

obtained the results of PAR, cost and average waiting time.

5.1.1 Proposed System Model Architecture

The efficient utilization of the existing energy resources is necessary in our daily

life. The proposed system model architecture is depicted in Figure 5.1. It consists

of a smart meter (SM), the energy management controller (EMC), automatically-

operated appliances (AOAs) and advance distribution and communication sys-

tems. EMC receives the required energy consumption outline from all connected

appliances, which schedule the energy consumption pattern according to the pric-

ing signal. The utility sends the pricing signal to the smart meter, which is then

forwarded to the EMC. At the same time, the SM receives the consumed electricity

reading from EMC and transmits it to the utility.

5.1.2 Load Categorization

5.1.2.1 Fixed Load

As discussed in chapter 4, these are those regular appliances whose starting time

remains fixed. That is, a consumer can start and stop these appliances any time.
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Figure 5.1: The proposed system model architecture

Here in the office, fans, lights, air conditioners and water dispenser are examples

of Fixed Load (FL). In this work, we considered only a single office with eight

appliances. In our case, the decision would be made after every 30 minutes, not

1 h, because we have divided 24 h into 48 time slots, each equal to 30 minutes.

Here, we considered 48/2=24 time slots for offices because offices only consume

energy during the daytime.

5.1.2.2 Shiftable Load

These are those appliances that can be fully managed, i.e., they can be shifted

to any time slot and can also be interrupted at any time keeping in view the

minimization of PAR and electricity bill [102]. These include: computers, electric

kettles, coffee makers and Oven. The energy consumed by all shiftable appliances

in the total time interval of 12 h with 24 time-slots can be found as:

EN
T =

N∑
n=1

Wn ×Xn (5.1)
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where, Wn is the power of nth appliance, N shows the total no of appliances, Xn is

the ON-time in a time slot of nth appliance and EN
T is the total energy calculated

for all appliances in a single time slot.

Now the total cost CSch for all scheduled appliances can be calculated by multi-

plying total energy EN
T,m calculated in mth time slot with respective energy price

ζm in that time slot.

CSch =
M∑
m=1

EN
T,m × ζm (5.2)

Cunsch is the total energy price for all slots of Unscheduled appliances calculated

in the similar manner, then the normalized CNorm of scheduled appliances can be

calculated as:

CNorm =
CSch

CSch + Cunsch
(5.3)

In this work, we assumed a single office with different fixed and shiftable appli-

ances, as tabulated in Table 5.1.

Table 5.1: Specifications of office automatically operating appliances (AOAs).

S. No. AOAs Category Power rating (kW) LOT Time-Span (slots)

1 Air conditioner Fixed 4.00 15 1–24
2 Fan Fixed 3.5 12 1–24
3 Light Fixed 2 17 1–24
7 Water dispenser Fixed 2.5 22 1–24
4 Computer shiftable 0.25 20 1–24
5 Electric kettle shiftable 3.00 1 1–22
6 Coffee maker shiftable 2.00 2 3–20
8 Oven shiftable 5.00 2 3–20

In the proposed work, we formulate our problems of; (a) end-user high comfort

level, (b) consumers’ electricity bill minimization, and (c) minimization of PAR by

optimization of energy consumption profiles of office appliances, using the MKP

(multiple knapsack problem) scheduling technique, as discussed in chapter 4. Now,

if ET is the cumulative energy demand of the end-user and VT is the maximum

energy capacity in a particular interval of time, then,

ET ≤ VT (5.4)

MKP scheduling tells us to keep the total energy demand of end user less than or

equal to this maximum energy capacity threshold.
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Waiting time (τw) and PAR can be calculated as discussed in chapter 1, Figure

1.1, Equations 1.4 to 1.7

5.1.3 Objective Function

Our proposed objective function aims to reduce electricity cost, while maintaining

higher end user comfort level by minimization of waiting time. The final expression

for our objective function is given by:

min

(
(λ1 × CNorm) + (λ2 × τw)

)
(5.5)

λ1 and λ2 are multiplying factors of two portions of our objective function. Their

values varies between ’0’ and ’1’ so that λ1 + λ2=1 . It reveals that either λ1 and

λ2 could be 0 to 1. That is, if an end user does not want to participate in the load

scheduling process, then his multiplying factors will be λ1 =1 and λ2 =0 in the

objective function.

5.2 Results and Discussions

5.2.1 Consumer Scenarios

Different consumer scenarios are possible in commercial sector. For example, Of-

fices, shopping malls, markets, street lights and parks. In this chapter, we have

taken an office as a case study, and scheduled its appliances. A substantial sim-

ulation was performed to show the performance of different algorithms in terms

of minimization of electricity cost by shifting appliances from on-peak hours to

off-peak hours, minimization of PAR and minimization of end-user discomfort due

to waiting time. In this chapter, eight appliances were selected, as shown in the

Table 5.1. For comparison purpose, firefly algorithm (FA), cuckoo search algo-

rithm (CSA) and ant colony optimization algorthm (ACO) are considered in the

same scenario for thirty-days load scheduling.
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5.2.2 Pricing Signal

Figure A-1 gives the day-ahead pricing (DAP) signal, taken from the daily report

of the New York Independent System Operator (NYISO) [152]. The total time of

24 h was divided into 24 time slots. For an office, usually 8–12 h are used, so time

was taken from 8:00–20:00.
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Figure 5.2: Day-ahead real time pricing signal [152]

5.2.3 Hourly Load

Figure 5.3 shows the daily unscheduled load and scheduled load with the Grasshop-

per optimization algorithm (GOA) and Bacterial Foraging Algorithm (BFA) al-

gorithms. It delivers important information in terms of time dependent load.

The figure shows that Grasshopper optimization algorithm (GOA) outperforms

Bacterial Foraging Algorithm (BFA) algorithms by eliminating the peak in the

unscheduled load.
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Figure 5.3: Hourly load for unscheduled load and scheduled load with the
TG-MFO, GOA and BFA algorithms.

5.2.4 Hourly Cost

Figure 5.4 shows the hourly unscheduled (Un-sch) and scheduled cost with Grasshop-

per optimization algorithm (GOA) outperforms Bacterial Foraging Algorithm (BFA)

algorithms cost. It is clear that the hourly cost is averaged compared to the un-

scheduled cost, especially the high cost in the on-peak hours due to shifting of the

load from on-peak hours to off-peak hours.
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Figure 5.4: Hourly cost for unscheduled load and scheduled load with the
TG-MFO, GOA and BFA algorithms.
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5.2.5 The Total Electricity Cost

Figure 5.5 depicts the total monthly electricity cost in dollars. In the unscheduled

case, we had a maximum cost of 267.45 $; when scheduled by GOA, it became

174.67 $ (34.69% reduction); and in the case of BFA, it became 161.23 $ (37.47%

reduction). The comparison of these proposed algorithms with state-of-the-art

algorithms for the same scenario is depicted in Table 5.3.
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Figure 5.5: Total cost

5.2.6 Average Waiting Time

Figure 5.6 depicts the average waiting time. The waiting time in the case of GOA

was 1.28 h, and BFA was 1.32 h. This shows that the waiting time of BFA was

greater than GOA because it had reduced the total cost more than that reduced

by BFA. Table 5.3 shows that, there is always a trade-off between energy cost and

waiting time.

Figure 5.7 shows that the office monthly load was equal for all algorithms, as each

algorithm had to reschedule the appliances only.

5.2.7 Peak to Average Power Ratio (PAR)

Figure 5.8 depicts the daily PAR. It is clear from the figure that our proposed

schemes minimized the PAR. Before scheduling, the PAR value was 7.81, and after
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Figure 5.6: Average waiting time
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Figure 5.7: Total monthly load

scheduling with GOA and BFA, the PAR values became 3.42 (56.20% reduction)

and 6.18 (20.87% reduction), respectively.
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Figure 5.8: The peak-to-average power ratio (PAR)
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Table 5.2 shows the run-time of the proposed algorithms using an Intel (R) Core

(TM) i5 processor, with 4.00 GB of installed memory (RAM) and the 32-bit Win-

dows 7 Operating system.

Table 5.2: Run-time of the proposed algorithms for 30 days of load scheduling.

Proposed Algo-
rithm

No. of Days Run time
(s)

TG-MFO 30 days 15.173
GOA 30 days 11.695
BFA 30 days 13.171

Table 5.3 compares the performance of the proposed algorithms with unscheduled

load and state-of-the-art algorithms like firefly algorithm (FA), cuckoo search algo-

rithm (CSA) and ant colony optimization (ACO) with respect to three parameters;

energy cost, waiting time and PAR.

Table 5.3: Comparison of the unscheduled load and scheduled load with the
TG-MFO, BFA, GOA, FA, CSA and ACO algorithms.

Techniques Days Cost ($) Cost Re-
duction

Waiting
Time (h)

PAR PAR
Change

Un-schedule 30 days 267.45 – – 7.86 –
TG-MFO-scheduled 30 days 161.92 39.45% 0.06 4.27 45.67%
BFA-scheduled 30 days 179.81 32.76% 1.46 6.69 14.88%
GOA-scheduled 30 days 138.54 37.47% 1.28 6.06 20.87%
FA-scheduled 30 days 169.89 48.19% 1.22 6.32 22.90%
CSA-scheduled 30 days 136.15 49.09% 1.39 7.23 08.01%
ACO-scheduled 30 days 168.71 36.92% 1.43 4.77 39.31%

5.3 Summary

In this chapter, we have proposed a novel technique of appliances’ scheduling in

an office. Different algorithms have been taken and applied to different scenarios

of consumers for comparison purpose. In some circumstances, an algorithm per-

forms good, but in some other situation, the same algorithm does not perform well.

Therefore, as adoptive approach will give better results. Therefore, in this chap-

ter, we used two more nature-inspired optimization algorithms, GOA and BFA

and compared their performance with our proposed hybrid TG-MFO to achieve
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our objective functions of end-user electricity bill minimization along with a reduc-

tion of PAR and user discomfort due to appliance scheduling. We considered only

eight appliances to check our proposed algorithms’ performance. We compared our

results with a few state-of-the-art nature-inspired algorithms in the literature like

FA, CSA and ACO for the three mentioned fitness functions, i.e., minimization

of the electricity bill, PAR and waiting time. Indeed, numerous countries in the

world can fulfill electricity demand. However, keeping in view the minimization of

the electricity bill, the reliability of the existing system and improvements towards

smart grids to facilitate the customers, with increased dependency on electricity

with automation, energy optimization is a big issue throughout the world. Fur-

thermore, with increased electricity generation, carbon emission increases due to

the use of different types of fuels, which pollute this biosphere day by day. There-

fore, the advantage of these algorithms for energy optimization is not only to save

money, but to reduce pollution, as well. The simulation results show that our

proposed energy optimization scheme performed well in the case of minimization

of PAR and cost. However, when energy cost is minimized, user waiting time

will increase as a penalty. therefore our designed TG-MFO minimized the en-

ergy cost and PAR while keeping in view the high comfort level of consumers. In

future, more nature-inspired algorithms will be used and analyzed for achieving

good results.



Chapter 6

Use of Bio-inspired Algorithms

for an Efficient EMS in Industries

6.1 Motivation

Industries are consuming more than 27% of the total generated energy in the

world, out of which 50% is used by different machines for processing, produc-

ing, and assembling various goods. Energy shortage is a major issue of this bio-

sphere. To overcome energy scarcity, a challenging task is to have optimal use

of existing energy resources. An efficient and effective mechanism is essential to

optimally schedule the load units to achieve three objectives: minimization of the

consumed energy cost, peak-to-average power ratio, and consumer waiting time

due to scheduling of the load. To achieve the aforementioned objectives, two bio-

inspired heuristic techniques—Grasshopper-Optimization Algorithm (GOA) and

Cuckoo Search Optimization Algorithm (CSOA) are analyzed and simulated for

efficient energy use in an industry. Then we applied our proposed hybrid TG-MFO

algorithm for comparison and testing purpose in such industrial applications. We

considered a woolen mill as a case study, and applied our algorithms on its differ-

ent load units according to their routine functionality. Then we scheduled these

load units by proposing an efficient energy management system (EMS).

94
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6.2 Introduction

According to the US Environmental Protection Agency, industries are responsible

for about 27% of total consumed energy [153]. Meanwhile, there has been an

exponential rise in energy demand worldwide due to rapid population expansion.

On the other hand, the generation of electric power contributes to nearly 25%

of green-house gases (GHGs) to the environment. The inadequacy of energy is

a major issue in many countries of the world, directly affecting the economy,

development, and environment. Therefore, the main focus is to preserve energy

resources [154]. In such circumstances, the electricity requirement of different users

cannot be fulfilled by traditional electric power grids. For this purpose, the concept

of smart grid (SG) arises, which efficiently overcomes energy generation and use

problems by using renewable energy sources (RES) and a distribution generation

(DG) system. An efficient and effective energy management system (EMS) is now

needed to not only integrate these RESs and DG systems into the existing network,

but also optimally use the existing energy resources to reduce consumed electricity

cost.

We are proposing two bio-inspired optimization algorithms for an optimal use of

the existing resources. For this purpose, our proposed system model will consist

of many smart agents in the premises of the industry like smart machines, smart

meters (SMs), and energy management controllers (EMC) etc. SM is a commu-

nication agent between utility and consumers. Because it shares of the consumer

load information, the energy supplier capacity is enhanced and it becomes able to

solve energy problems. Demand-side management (DSM) is used for this purpose,

to shift consumer load from high-demand hours to low-demand hours.

In this chapter, we have considered DSM, which helps in load balancing between

users and utility [155], [156]. In DSM strategies, demand response (DR) is the

mechanism in which utility tries to manage consumer demand with a condition,

such that users must reduce their consumption at critical times [106]. Utilities

give different incentives, in the form of reduced electricity pricing, to the user due

to this load reduction at peak hours. Out of different pricing schemes, day-ahead
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pricing (DAP), critical peak pricing (CPP), time of use (TOU), and real-time

pricing (RTP) schemes are used in DR [74].

The important matters which need to be addressed in distribution system are:

minimization of cost, stability of SG and user comfort maximization. Nowadays

power consumption is increasing due to increase in population. Traditional grid

(TG) is can not fulfill the present energy requirements. In order to meet users

demand, we must have to increase the power generation through thermal power

plants, nuclear power plants and renewable energy sources like wind and solar

etc. To handle this complexity of power resources integration, the concept of

revolutionary technology of SG arises. SG is environmental friendly because it

utilizes the available power resources efficiently among the users. To over come

energy optimization problem, different optimization techniques are used in SG.

In [152] through convex programming (CP) technique the cost of electricity is

reduced but user comfort is compromised. The reduction of electricity is addressed

by authors in [153]-[155] using optimization techniques i.e. MILP, ILP and NILP

but RES and user comfort have not been considered. In [156] the authors have

used MILP technique to minimize the electricity cost but considering RES and

user comfort are ignored. The techniques which are discussed above are unable to

handle a large number of machines or appliances. In order to surmount the flaw,

researchers move towards probabilistic models. Different meta-heuristic models are

proposed to solve the energy optimization problem. In this chapter we are taking

two meta-heuristic population based algorithms i.e. GOA and CSA. In our work we

are going to evaluate these techniques on the basis of different objectives which are

cost minimization, PAR reduction and user comfort maximization. To apply our

proposed algorithms on real world problems, we have considered a case study on

industrial sector which comprise of different independent sections. Our proposed

schemes performed well and efficiently conquer the aforementioned objectives.

Researchers all over the world have proposed numerous algorithms for optimal

scheduling of the load in the industrial, commercial and residential sectors [75]-

[111]. Most of these research works aim to reduce electricity bill and PAR. How-

ever, very few have considered end-user frustration due to scheduling of appliances.
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With more than 90% energy blackout and interruptions, found in power distribu-

tion networks, the world moves towards the smart grid concept. Due to the rapid

increase in the fuel cost, connected with failure of utility to increase its generation

in parallel with the rising electricity demand, has speeded up the need to improve

the distribution system by evolving new energy optimization techniques in DSM.

In the beginning, automated meter reading (AMR) technology was introduced

in SG, however, not too much successful due to its one-way communication to-

wards utility. After the limitation in AMR, the utility companies moved towards

advanced metering infrastructure (AMI) technology, which provides the two-way

communication system. Through the AMI, utility not only can get instantaneous

information about the consumer’s load demand, but also impose its small hat on

load consumption, in order to get low electricity cost.

In SG, different mathematical models such as LP (linear programming), ILP

(integer-linear programming) and MILP (mixed integer linear programming) are

used to resolve the issue of energy optimization. However, when appliances or

machines are increased in number, these models are not much applicable. So the

researchers moved towards meta-heuristic algorithms. In this chapter, we are fo-

cusing on the industrial sector, comprise of automatic operated machines (AOMs).

The objectives of this work are; the reduction of the electricity cost, PAR and user

discomfort due to scheduling of the machines. We have proposed three optimiza-

tion techniques i.e GOA, CSA and TG-MFO to achieve our objectives.

6.2.1 Proposed System Model Architecture

The energy management system (EMS) in SG consists of two sides, DSM and

SSM (supply-side management). We are considering DSM in an industry that

consists of machines, EMC and SM. SM has AMI technology which helps in the

two-way communication between consumers and utility. Different machines send

their power consumption patterns to EMC. EMC then schedules the load accord-

ing to the pricing signal received from utility. SM receives the pricing signal and

forward it to EMC. Simultaneously, it receives power consumption pattern from
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Figure 6.1: System Model Architecture

EMC and send it to utility. The communication between SM and utility is through

different wireless networks i.e. Wi-Fi, GSM, ZigBee, Home Area Network (HAN)

or wired medium like power line communication (PLC). In this chapter we are con-

sidering an industry (woolen-mills), that consists of six AOMs. The DAP pricing

signal is used for electricity bill calculation and time horizon for load scheduling

is considered as one hour. Figure 6.1 shows the system model architecture of the

proposed scheme.

The Table 6.1 depicts the load units with their respective power ratings and the

length of operational times (LOTs), while Figure 6.2 shows these load units in the

block diagram form.

In the industry system model with load units, shown in the Figure 6.2, scor-

ing section takes 150 kw power and consists of only one type of motors, that are

induction motors of 10 hp each. Carding section takes 50 kw power and consists
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Table 6.1: Specification of industry Automatically Oerated Machines (AOMs)

AOMs PR(kw) LOT AOMs PR(kw) LOT
Scoring Section 150 8 Temperature con-

trol load
100 9

Carding Section 50 12 Packing Section 100 10
Spinning Section 200 7 Weaving Section 250 6

Unit# 1

Viewing 
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Carding 

Section

Spinning 

Section
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Control
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Scoring 
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Figure 6.2: Industry load units

of two types of motors, induction motors of 10 hp and slip ring motors of 50 hp.

Spinning section takes 200 kw power and consists of one type of induction motors

of 100 hp each. Weaving section takes power of 250 kw and consists of three types

of motors; stepper motors of 0.5 hp, induction motors of 10 hp and induction mo-

tors of 2.5 hp. Packing section takes power of 100 kw and comprise of induction

motors of 5 hp and slip ring motors of 10 hp. The Temperature control section

takes 100 kw of power. It is just like an AC plant. The connected load is 900 kw

from utility and the running load is 400 kw to 550 kw.

Average load of the mill is 400 kw, which show that at a time, 3 to 4 machines are

in running position. Maximum demand indicator (MDI) is considered as 500 kw.

The machines in the industry stop working on the basis of production, because it

follows demand and supply mechanism.

6.2.2 Problem Formulation

The important matters which need to be addressed in the distribution system

are minimization of cost, stability of SG by reduction of PAR and user comfort



Industry Energy Management System 100

maximization. Nowadays power consumption is increasing due to increase in pop-

ulation. Traditional grid (TG) can not fulfill the present energy requirements.

In order to meet users demand, we must have to increase the power generation

through thermal power plants, nuclear power plants and renewable energy sources

like wind and solar. To handle this complexity of power resources integration, the

concept of revolutionary technology of SG arises. SG is environmental friendly be-

cause it utilizes the available power resources efficiently among users. To over come

energy optimization problem, different optimization techniques are used in SG. In

[158], through the convex programming (CP) technique the cost of electricity is

reduced, but user comfort is compromised.

The reduction of electricity bill is addressed by authors in [143, 144] using opti-

mization techniques, i.e., MILP, ILP and MILP but RES and user comfort have not

been considered. In [159] the authors have used MILP technique to minimize the

electricity cost, however, considering RES and user comfort are ignored. The tech-

niques which are discussed above are unable to handle a large number of machines

or appliances. In order to surmount the flaw, researchers move towards proba-

bilistic models. Different meta-heuristic models are proposed to solve the energy

optimization problem. In this chapter we are taking the two meta-heuristic popu-

lation based algorithms i.e. GOA and CSA. In our work, we are going to evaluate

these techniques on the basis of different objectives like reduction of electricity

bill, PAR and user frustration. To apply our proposed algorithms on real world

problems, we have considered a case study of a textile industry, that comprises of

different independent sections (i.e. load units).

The design of the power system, which is perfect and confident, must begin with

user needs and comfort. In this chapter, we have to tackle the aforementioned

problems, using the following objective function:

min

(
(λ1 × CNorm) + (λ2 × τw)

)
(6.1)

λ1 and λ2 are multiplying factors of two portions of our objective function. Their

values varies between ’0’ and ’1’ so that λ1 + λ2=1 . It reveals that either λ1 and
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λ2 could be 0 to 1. That is, if an end user does not want to participate in the load

scheduling process, then his multiplying factors will be λ1 =1 and λ2 =0 in the

objective function.

6.2.3 User’s Waiting Time (τw)

As discussed in chapter 1 in details, that user’s comfort in terms of waiting time is

important for end-users. Waiting time must be minimized to have a high comfort

level so that the end-user’s frustration can be avoided. It is that interval of time

when a consumer wants to switch-ON an appliance, however, due to the scheduling

limitations of the system, consumer has to wait for starting its operation. As we

have defined the starting time α and the latest ending time β of a load unit in the

mills, then another parameter η will be the operational starting time of the same

switched-ON machine in a load unit. This is shown diagrammatically in Figure

1.1 in chapter 1. Where, β - α is the time span, defined by the consumer. The

figure shows that a consumer’s maximum waiting time could be up to ηmax. Since

length of operational time (LOT) is already defined by the consumer, so at ηmax,

the algorithm will have to start the machine to complete its operation up to the

final time β. As shown in Figure 1.1 in chapter 1, appliances’ normalized waiting

time (τw) can be calculated as:

τw =
η − α

ηmax − α
(6.2)

This shows that the normalized waiting time can be from “0” (when η = α) to

“1” (when (β − LOT ) = η).

In the proposed work, we formulate our problems of; (a) end-user high comfort

level, (b) consumers’ electricity bill minimization, and (c) minimization of PAR by

optimization of energy consumption profiles of office appliances, using the MKP

(multiple knapsack problem) scheduling technique, as discussed in chapter 4. Now,

if ET is the cumulative energy demand of the end-user and VT is the maximum

energy capacity in a particular interval of time available from the utility grid, then
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the following condition must be satisfied.

ET ≤ VT (6.3)

MKP scheduling tells us to keep the total energy demand of end user less than or

equal to this maximum energy capacity threshold.

6.3 Results and Discussions

Different industries like steel mills, wooden industries, medicine, flour mills and

textile industries are available at consumer side. In this section, results and sim-

ulations work are explained in detail. To show legitimacy and benefits of our

proposed work, we have considered a MATLAB computing environment for sim-

ulations. For the solution of the energy optimization problem, simulation of our

proposed scheduling schemes are performed. To check out the performance of our

algorithms i.e., GOA and CSA, we are considering different parameters such as

total energy consumption, PAR, consumed energy expenditure and user comfort.

Moreover, in the industrial sector, automatic operating machines(AOMs) are be-

ing used as they can work independently and could be turned ON/OFF any time

during 24 h.

6.3.1 Pricing Signal

The day-ahead pricing (DAP) signal, shown in Figure 6.3 issued by the utility

[152](Accessed on 29/08/2020), is reproduced in Figure 6.4 and is used for the

manipulation of consumed energy bill.

6.3.2 Hourly Power Consumption

Figure 6.5 shows the graph of hourly power consumption. The consumption pat-

tern shows that in unscheduled cases, more power is consumed in high demand
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Figure 6.3: Day-ahead pricing (DAP) signal [152]
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Figure 6.4: (Day-ahead pricing (DAP) signal (Reproduced).
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time and thus creates the peak load. After the scheduling of the load through algo-

rithms, power consumption in high demand time is shifted to low-demand hours.

From the graph it is clear that a TG-MFO-scheduled load pattern is a bit uniform

and is low during the highest price from 16.00 to 18.00 hrs as per the DAP signal

shown in the Figure 6.4. Figure 6.5 depicts that CSA, GOA and ACO-scheduled-

load pattern show a bit variable response. Although the load is not totally shifted

from the first high price between 6.00 and 8.00 hr, during highest price at 18.00

hr, TG-MFO gives tremendous reduction in load pattern.
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Figure 6.5: Hourly load

6.3.3 The Hourly Consumed Energy Price

Figure 6.6 elaborates the graph of per-hour consumed energy price. The result

illustrates that in unscheduled cases, the company must pay higher cost because

the peak load is created in on-peak hours. However, in the scheduled-load case,

the load is shifted from timing of high load demand to low-demand hours and

thus reduces the cost per hour. TG-MFO-scheduled load-per-hour cost is again

a bit uniform due to its load pattern, and gives reduced total cost as is shown

in Figure 6.7. However, due to the variable nature of the CSA, GOA and ACO-

scheduled-load pattern, its total cost is a bit more than the TG-MFO-scheduled

load cost, but still it is less than unscheduled-load cost.
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Figure 6.6: Hourly electricity cost

6.3.4 Total Daily Average Cost

Figure 6.7 shows the total daily average cost in case of unscheduled load com-

pared to load scheduled using different algorithms. The figure depicts that the

unscheduled-load total daily cost is 211.831$. However, after scheduling, the to-

tal daily cost for TG-MFO-scheduled load is 112.277 $, CSA-scheduled load is

146.318$, for GOA it is 119.291$ and for ACO it is 168.383$per day. These re-

sults show that by using optimization algorithms, we can reduce our total cost.

TG-MFO gives better results in reducing per-day energy cost compared to other

scheduling algorithms. The figure also depicts a comparison of the proposed al-

gorithms with the most modernistic optimization algorithms such as ant-colony

optimization (ACO).
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Figure 6.7: Total daily cost
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6.3.5 Machines Average Waiting Time

Figure 6.8 shows the average waiting time of machines for each technique. It is that

time interval, when a consumer switches on a machine, but due to scheduling for

reduction of cost, the machine does not start operation. Therefore, the consumer

must wait for a specific amount of time τw. The figure shows that the waiting time

of TG-MFO is almost zero, which is the main contribution of this work, to reduce

cost, while keeping higher end user comfort level.

Un−sch TG−MFO−sch CSA−sch GOA−sch ACO−sch
0

0.2

0.4

0.6

0.8

1

1.2

W
a
it
in

g
 t
im

e
(h

)

Figure 6.8: Average waiting time

6.3.6 Peak to Average Power Ratio (PAR)

Figure 6.9 shows PAR results, which tells the stability of a grid. When the PAR

value increases or decreases, it affects the stability of a grid. Due to the more

reduction in the cost, usually PAR is not reduced. however, TG-MFO showed

good results due to its hybrid nature. The figure also depicts a comparison of

the proposed algorithms PAR with the most modernistic optimization algorithms

such as CSA, GOa and ACO algorithms PARs.

6.3.7 The Total Daily Average Load

Figure 6.10 shows that the total daily load is same in the case of unscheduled and

scheduled with different algorithms. It is clear from the figure that, irrespective
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Figure 6.9: Peak to average power ratio (PAR)

of the scheduling algorithms, the total daily load remains the same. Scheduling

algorithms only shift the load to low cost or low demand hours; however, they do

not reduce the total daily load run by the industry.
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Figure 6.10: The total daily average load.

6.3.8 Feasible Regions

A feasible region is a set of all possible points. Due to the scheduling of load, using

different algorithms, cost minimization is decided on the bases of the pricing signal

issued by the utility. We have considered DAP signal for our calculations. Figure

6.11 shows the feasible region for TG-MFO algorithm. Point P1(5.41, 115.8) gives

the minimum load with minimum cost and point P2(5.41, 250) gives the minimum

load with maximum cost in any interval of time. It usually happens when minimum

load is running in peak hrs with high energy cost. Similarly, point P3(71.96, 3226)
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gives maximum load with maximum cost in the case of un-scheduled load. Point

P4(71.96, 1363) gives the maximum load during off peak hrs with minimum cost.

P5(45.7, 2063) puts a threshold on the maximum cost after scheduling with GOA.

It continues until point P6(71.96, 1363) reaches, which gives a point of maximum

load with reduced cost. Figure 6.12 shows all these points for CSA scheduling and

Figure 6.13 depicts theses points for GOA. It is clear from these figures that our

proposed hybrid TG-MFO algorithm performs better as compared to CSA and

GOA in the case of cost minimization.
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Figure 6.11: Feasible region for TG-MFO-scheduled load.

Table 6.2 depicts a comparison of the proposed algorithms with the unscheduled

load in terms of minimization of consumed energy price, PAR and user average

time of waiting. A comparison of the proposed algorithms with recently applied

algorithms such as the ACO,FA and MFO algorithms is also shown in the table.

Table 6.2: A comparison of the proposed TG-MFO algorithm with other
algorithms for appliances scheduling in terms of unscheduled load and scheduled

load with GOA, CSA, ACO, FA and MFO algorithms.

Mechanisms Price ($) Price Reduction PAR PAR Changes Waiting Time (h)

Unscheduled 211.831 – 6.38 – –
TG-MFO-scheuled 112.277 46.99% 4.27 −33.07% 0.103

CSA-scheduled 146.318 30.92% 8.34 +30.72% 0.872
GOA-scheduled 119.291 43.68% 7.39 +15.83% 1.089
ACO-scheduled 168.383 20.51% 5.53 −13.32% 1.076
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Figure 6.12: Feasible region for CSA-scheduled load.
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Figure 6.13: Feasible region for GOA-scheduled load.

Table 6.3 depicts the run-time of GOA and CSA algorithms using an Intel (R)

Core (TM) i5 processor, with 4.00 GB of installed memory (RAM) and the 32-bit

Windows 7 Operating system.
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Table 6.3: Run-time of the GOA and CSA algorithms for one day.

Proposed Algorithm No. of Days Run-Time (s)

TG-MFO one day 12.937

CSA one day 9.152

GOA one day 8.702

6.4 Summary

In this chapter, we have illustrated a DSM strategy for the energy optimization

problem. We have divided industrial load into different load units. We have pro-

posed and practically applied two bio-inspired optimization schemes; GOA and

CSA in comparison with TG-MFO to these load units for scheduling the auto-

matic operated machines according to the day-ahead pricing signal. We checked

out the performance of our proposed hybrid TG-MFO algorithm based on total

consumed energy, reduction of PAR, cost and user comfort in terms of waiting time,

compared to unscheduled load. We also tested and compared the performance of

our proposed algorithms with state-of-the-art algorithm ACO. Simulation results

show that by applying bio-inspired techniques, we can minimize the consumed

energy price by shifting some load to low-demand load hours, without disturbing

its operation. Because of this, the burden on utility is reduced in the form of PAR

and maximized user comfort.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this work, we have proposed a new hybrid TG-MFO bio-inspired algorithm.

We have applied some of the bio-inspired meta-heuristic algorithms, like, ACO,

ALO, BFA, CSOA, FA, GA, GOA, MFO and TG-MFO, for energy optimization

problem in smart grid and compared their results. We considered three sectors of

energy consumption, residential, commercial and industrial.

In residential sector, we considered a single- and multiple home scenarios. In

multiple homes, we took different length of operational time intervals and power

ratings of appliances to make it more practical. Day-ahead RTP signaling was

used for demand response in smart homes. The results show that there was a

6.45%–49.03%, 32.26%–41.10% and 32.25%–49.96% decrease in the total cost with

GA, MFO and TG-MFO scheduling, respectively, for single and multiple users.

Renewable energy sources and battery storage units were also integrated to obtain

a further decrease in the total cost and end-user waiting time. In this work, we

tried to not only reduce the total cost, but to achieve a high comfort level of

the end-user by minimizing the waiting time of home appliances using the time

constraints. Using bio-inspired algorithms, not only reduces the energy cost, but

also increases the stability and reliability of the grid.

111
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In commercial application, we have proposed a novel technique of appliances’

scheduling in an office. We used two new bio-inspired optimization algorithms,

grasshopper optimization algorithm and bacterial foraging algorithm, to achieve

our objective functions of end-user electricity bill minimization along with a reduc-

tion of PAR and user discomfort due to appliance scheduling. We considered only

eight appliances to check our proposed algorithms’ performance. We compared our

results with a few state-of-the-art bio-inspired algorithms in the literature like GA,

FA, CSA and ACO for the three mentioned fitness functions, i.e., minimization of

the electricity bill, PAR and waiting time. The simulation results show that our

proposed energy optimization schemes performed well in the case of minimization

of PAR and cost. However, when energy cost is minimized, user waiting time will

increase as a penalty.

In industrial applications, we have illustrated a demand side management strategy

of energy optimization problem. We considered different types of automatic oper-

ated machines in the industrial sector. We have proposed different optimization

schemes to schedule automatic operated machines according to the utility provided

real time pricing signal. We checked out the performance of these bio-inspired al-

gorithms on the basis of energy consumption, PAR reduction, cost reduction and

user comfort in term of waiting time, compared to un-scheduled load. Simulation

results show that by applying bio-inspired techniques, we can reduce the electric-

ity bill by shifting some load to off-peak hrs, without disturbing its operation.

Because of this, burden on utility is reduced in the form of PAR reduction and

maximize user comfort.

7.2 Future Work

Exploration of more bio-inspired algorithms with adoptive nature for intelligent

and efficient energy optimization, and a multi-objective approach will be applied.

As some consumers prefer to reduce their consumed energy cost, while compromise

on their comfort in terms of their waiting time. On the other side, those consumers
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who have little tolerance for their waiting time, will prefer to slightly reduce their

energy cost. Therefore, bio-inspired algorithms with adoptive nature will be ex-

plored, having the capability of not only use in different load scenarios, but also,

give option to end user for either cost or waiting time reduction. In industrial

consumers, some running machines cannot be interrupted during their operations,

so the future algorithms should be smart enough to decide on LOT, not on low

price time slots only. Renewable energy sources will be accommodated for further

reduction of cost and PAR, while keeping in view high user comfort level. Also,

for comparison purpose, another software, i.e., CPLEX will be applied/used.
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Appendix A

Table A-1 gives the specifications of different appliances in an home and their

running time constraints used in chapter 4.

Table A-1: Home appliances and their running time constraints [72].

S.

No.

Appliance Category Power Rat-

ing ρ (KW)

Starting

Time (α)

Ending

Time (β)

Time-Span

(β−α) (h)

LOT

(h)

1 Fridge-1 Fixed 0.3 00 24 24 24

2 Interior Lighting-1 Fixed 0.84 18 24 06 6.0

3 Dish Washer-1 shiftable 2.0 09 17 08 2.0

4 Washing Machine-1 shiftable 0.6 09 12 03 1.5

5 Spin Dryer-1 shiftable 2.5 13 18 05 1.0

6 Cook Top-1 shiftable 3.0 08 09 01 0.5

7 Oven-1 shiftable 5.0 18 19 01 0.5

8 Microwave-1 shiftable 1.7 08 09 01 0.5

9 Laptop-1 shiftable 0.1 18 24 06 2.0

10 Desktop-1 shiftable 0.3 18 24 06 3.0

11 Vacuum Cleaner-1 shiftable 1.2 09 17 08 0.5

12 Electrical Car-1 shiftable 3.5 18 08 14 3.0

1 Fridge-2 Fixed 0.25 00 24 24 24

2 Interior Lighting-2 Fixed 0.9 19 24 07 7.0

3 Dish Washer-2 shiftable 1.9 11 15 04 2.0

4 Washing Machine-2 shiftable 0.5 10 14 04 2.0

5 Spin Dryer-2 shiftable 2.0 10 16 06 2.0

6 Cook Top-2 shiftable 3.5 09 10 01 0.5

7 Oven-2 shiftable 5.4 17 20 03 1.5

8 Microwave-2 shiftable 1.9 07 09 02 0.8

9 Laptop-2 shiftable 0.09 16 23 07 3.0

10 Desktop-2 shiftable 0.28 14 20 06 2.0

11 Vacuum Cleaner-2 shiftable 1.4 10 16 06 1.5

12 Electrical Car-2 shiftable 3.3 16 09 17 4.0

1 Fridge-3 Fixed 0.5 00 24 24 20

2 Interior Lighting-3 Fixed 0.62 17 06 13 13

3 Dish Washer-3 shiftable 2.5 10 16 06 2.5

4 Washing Machine-3 shiftable 0.8 08 14 06 1.8

5 Spin Dryer-3 shiftable 2.5 13 19 06 1.0

6 Cook Top-3 shiftable 3.2 07 09 02 0.5

7 Oven-3 shiftable 5.3 16 18 02 1.5

8 Microwave-3 shiftable 1.9 10 14 04 1.0

9 Laptop-3 shiftable 0.2 16 24 08 2.5

10 Desktop-3 shiftable 0.4 18 20 02 1.0

11 Vacuum Cleaner-3 shiftable 1.3 11 12 01 0.5

12 Electrical Car-3 shiftable 3.4 16 07 11 5.0

1 Fridge-4 Fixed 0.4 00 24 24 18

2 Interior Lighting-4 Fixed 0.7 19 08 13 13

3 Dish Washer-4 shiftable 2.3 08 19 11 4.0

4 Washing Machine-4 shiftable 0.9 11 14 03 1.0

5 Spin Dryer-4 shiftable 2.0 14 20 06 1.0

6 Cook Top-4 shiftable 3.5 10 12 02 1.2

7 Oven-4 shiftable 5.5 10 11 01 0.8

8 Microwave-4 shiftable 1.9 10 14 04 1.5

9 Laptop-4 shiftable 0.15 11 23 12 4.0

10 Desktop-4 shiftable 0.4 09 24 15 6.0

11 Vacuum Cleaner-4 shiftable 1.5 11 16 05 1.2

12 Electrical Car-4 shiftable 4.0 10 22 12 4.0
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Table A-2 gives the specifications of different appliances in an office used in chapter

5.

Table A-2: Specifications of office automatically operating appliances (AOAs).

S. No. AOAs Category Power rating (kW) LOT Time-Span (slots)

1 Air conditioner Fixed 4.00 15 1–24

2 Fan Fixed 3.5 12 1–24

3 Light Fixed 2 17 1–24

7 Water dispenser Fixed 2.5 22 1–24

4 Computer shiftable 0.25 20 1–24

5 Electric kettle shiftable 3.00 1 1–22

6 Coffee maker shiftable 2.00 2 3–20

8 Oven shiftable 5.00 2 3–20

The Table A-3 depicts the load units with their respective power ratings and the

length of operational times (LOTs) used in chapter 6.

Table A-3: Specification of industry Automatically Oerated Machines (AOMs)

AOMs PR(kw) LOT AOMs PR(kw) LOT
Scoring Section 150 8 Temperature con-

trol load
100 9

Carding Section 50 12 Packing Section 100 10
Spinning Section 200 7 Weaving Section 250 6

The day-ahead pricing (DAP) signal, shown in Figure A-1 issued by the utility

[152] used in chapters 4 and 5, while Figure A-2(Accessed on 29/08/2020), is

reproduced in Figure A-3 and is used for the manipulation of consumed energy

bill in chapter 6.
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Figure A-1: Day-ahead real time pricing signal [152]

Figure A-2: Day-ahead pricing (DAP) signal [152]
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