
CAPITAL UNIVERSITY OF SCIENCE AND
TECHNOLOGY, ISLAMABAD

Coverage Analysis of Dense
Heterogeneous Cellular Networks

using Dual-Slope Path Loss
Model

by
Khurram Shehzad

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Faculty of Engineering

Department of Electrical Engineering

2021

www.cust.edu.pk
www.cust.edu.pk
engr.ksm@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


i

Coverage Analysis of Dense Heterogeneous

Cellular Networks using Dual-Slope Path Loss

Model

By

Khurram Shehzad

(PE141001)

Dr. Rodica Ramer, Professor

University of New South Wales, NSW, Australia

Foreign Evaluator 1

Dr. Raziq Yaqoob, Associate Professor

Alabama Agriculture & Mech University, USA

Foreign Evaluator 2

Dr. Noor Muhammad Khan

(Thesis Supervisor)

Dr. Noor Muhammad Khan

(Head, Department of Electrical Engineering)

Dr. Imtiaz Ahmed Taj

(Dean, Faculty of Engineering)

DEPARTMENT OF ELECTRICAL ENGINEERING

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2021



ii

Copyright © 2021 by Khurram Shehzad

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.



iii

I dedicate this thesis to my family.









vii

List of Publications

It is certified that following publication(s) have been made out of the research

work that has been carried out for this thesis:-

1. K. Shehzad, N. M. Khan, and J. Ahmed, “Impact of frequency reuse and

flexible cell association on the performance of dense heterogeneous cellular

networks using dual-slope path loss model,” IEEE Access, vol. 7, pp. 166214-

166234, 2019.

2. K. Shehzad, N. M. Khan, and J. Ahmed, “Performance analysis of coverage-

centric heterogeneous cellular networks using dual-slope path loss model,”

Computer Networks, vol. 185, pp. 107672, 2020.

Khurram Shehzad

(PE141001)



viii

Acknowledgement
In the name of Allah, The Most Gracious, The Most Merciful. Firstly, I thank

Allah SWT for granting me with the opportunity, strength, and perseverance

to pursue my doctoral studies. I also extend my deepest greetings to the Holy

Prophet Muhammad (PBUH), the last messenger of Allah SWT, whose life is the

perfect model for all humans and whose teachings are the source of guidance in

all disciplines of life.

I am indebted to all of my teachers whose teachings have brought me to this

stage. I am highly grateful to my PhD supervisor, Prof. Dr. Noor M Khan, for his

unending support and thorough guidance throughout my degree program. His kind

efforts contributed greatly to my knowledge, understanding, and enthusiasm for

this research. I have not only learned from his insight, deep technical knowledge,

and practical experience, but a lot of things from him as a person as well. It has

been a real honor for me to work under his supervision and to attend his lectures

and talks. I would also like to express my gratitude to Dr. Junaid Ahmed for

his valuable guidance, and suggestions, which he was always ready to offer. His

constructive comments and suggestions throughout my research phase helped a

lot in the completion of my research work. I am sincerely grateful to Dr. Syed

Safwan Khalid for being a friend and a mentor. He always appreciated me and

encouraged me which in turn kept me motivated throughout the research work.

I am thankful to Dr. M. Mansoor Ahmed and Dr. Fazal-ur-Rehman for giving

me the opportunity to present my research work in their research groups. I am

grateful to my office colleagues and friends whose valuable company always kept

me focused and motivated. Especially, I recognize the valuable support from Mr.

Syed Bilal Javed, Mr. Noman Riaz, Dr. Rizwan Azam, and Dr. Ali Arshad.

Last, but not the least, I wish to thank my family, whom I always took for granted

but they have always stood by my side and supported me through the good and bad

times. It is to them that I owe my success in life. My sincerest acknowledgments

go to my proud parents whose prayers and best wishes were always with me. I am

also thankful to them for inculcating in me the values responsible for making me



ix

the person, I am today. I am thankful to my wife for supporting me during odd

times and compromising on family life due to my PhD. Moreover, I am thankful to

my siblings for their constant support and encouragement throughout my graduate

studies. I am grateful to my kids Salaar and Muaaz for keeping me cheerful and

refreshed during my studies.

Khurram Shehzad



x

Abstract

Densifying the cellular networks has been largely considered as a promising so-

lution in meeting the capacity demands of emerging cellular networks that have

expeditiously transformed from voice-oriented to data-oriented. Owing to the dis-

parity in transmit power of the base station (BS) tiers, proactive offloading of

users is extensively required to ensure a balance in the user load amongst different

BS tiers. Meanwhile, it is equally essential to utilize efficient interference manage-

ment schemes to account for the excessively-increasing interference in the densely

deployed cellular networks. There is extensive literature available on the perfor-

mance analysis of dense multi-tier networks that undertake various load-balancing

and interference management mechanisms, but it is strictly limited to the usage

of the single-slope (SS) path loss model (PLM). Nonetheless, it is also well-known

in the literature that the usage of SS-PLM leads to inaccuracies in evaluating the

performance of dense networks. Therefore, the primary objective of this research

is to use dual-slope (DS)-PLM in analyzing the downlink performance of dense

heterogeneous cellular networks (HCNs) and investigate its impact on the utili-

ty/pitfall of the commonly employed load balancing and interference management

strategies.

In the first part of the thesis, the downlink performance of uniformly distributed

two-tier HCNs is analyzed while jointly considering the load balancing and inter-

ference management mechanisms. The adopted load balancing strategy is based

on the range extension of small BSs (SBSs), whereas a simple interference man-

agement scheme based on the static frequency reuse mechanism is considered.

Analytical expressions for the tier association and coverage probability are de-

rived for a randomly chosen user using the tools from stochastic geometry and

validated through the Monte Carlo simulations. Owing to the better accuracy of

DS-PLM in estimating the path loss in dense deployment scenarios, the results

obtained precisely demonstrate the benefits and detriments of densifying SBSs,

while employing the load balancing and interference management mechanisms.

Meanwhile, a thorough comparison of the evaluated network performance using
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both SS-PLM and DS-PLM is also performed for the tier association and network

coverage probabilities. The comparative analysis verifies the limitation of SS-PLM

in dense cellular network scenarios. For instance, it is observed that the usage of

SS-PLM not only overestimates the user offloading to smaller BS tier, but it also

results in the overestimation of network coverage.

In a two-tier uniform HCN with BSs having disparity in transmit powers, deployed

densities and critical distances, the SBSs located in the immediate vicinity of macro

BSs (MBSs) have negligible coverage areas and therefore act as the strong inter-

ference sources and cause degradation of the network coverage. This shortcoming

of the uniform HCNs is addressed in the second part of the thesis, where deactiva-

tion of the SBSs located in the near vicinity of MBSs is proposed. This selective

muting of SBSs introduces a partial spatial correlation between the BS locations

of both tiers that transforms the network into a non-uniform HCN. This network

transformation ensures that the macro associated users within the near proximity

of cell-center region of their respective MBSs experience reduced inter-tier inter-

ference. In order to further enhance the performance of these non-uniform HCNs,

the above-mentioned load balancing and interference abating strategies are jointly

adopted as well. Using stochastic geometry, the mathematical expressions for tier

association and coverage probability are derived for a randomly chosen user and

validated through the Monte Carlo simulations. A comparison of the estimated

network performance using both SS-PLM and DS-PLM is also carried out for the

above-mentioned performance metrics. The results highlight that the usage of

SS-PLM causes underestimation of the benefits associated with SBS densification,

load balancing and interference management in non-uniform HCNs.

The research work thus concludes that the choice of PLM greatly impacts the

performance prediction of the dense cellular networks and leads to valuable design

insights that are vital in determining the optimal parametric values for cellular

planning.



Contents

Author’s Declaration v

Plagiarism Undertaking vi

List of Publications vii

Acknowledgement viii

Abstract x

List of Figures xv

List of Tables xvii

Abbreviations xviii

Symbols xx

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Cellular Networks and the Capacity Crunch . . . . . . . . . . . . . 2
1.3 Introduction of Path Loss Modeling . . . . . . . . . . . . . . . . . . 6
1.4 Challenges in Dense HCNs . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature Survey, Problem Formulation, and the Proposed Re-
search Methodology 13
2.1 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Stochastic Geometry and Cellular Networks . . . . . . . . . 14
2.1.2 Performance Analysis of Uniformly Distributed HCNs . . . 16
2.1.3 Performance Analysis of Non-Uniformly Distributed HCNs . 22

2.2 Gap Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xii



xiii

2.4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Coverage Analysis of Uniform HCNs using DS-PLM 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 BS Deployment and User Distribution . . . . . . . . . . . . 36
3.2.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Tier Association Probability (T-AP) and PDF of Distance to the
Serving BS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Tier Association Probability . . . . . . . . . . . . . . . . . . 40
3.3.2 Distribution of the Statistical Distance between T-UE and

its Serving BS . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Coverage Probability . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Coverage Probability of T-UE Associated with Macro Tier . 52
3.4.2 Coverage Probability of T-UE Associated with Small Tier . 56
3.4.3 Computational Complexity Comparison . . . . . . . . . . . 60

3.5 Numerical and Simulation Results . . . . . . . . . . . . . . . . . . . 63
3.5.1 Tier Association Probability . . . . . . . . . . . . . . . . . . 64

3.5.1.1 Comparison of T-AP using SS-PLM and DS-PLM 64
3.5.1.2 Impact of SBS Biasing on T-AP . . . . . . . . . . 68

3.5.2 Coverage Probability . . . . . . . . . . . . . . . . . . . . . . 69
3.5.2.1 Comparison of Network Coverage using SS-PLM

and DS-PLM . . . . . . . . . . . . . . . . . . . . . 70
3.5.2.2 Impact of SBS Biasing on Network Coverage . . . 72
3.5.2.3 Impact of Incorporating Frequency Reuse on Net-

work Coverage . . . . . . . . . . . . . . . . . . . . 74
3.5.2.4 Impact of Integrated SBS Biasing and Frequency

Reuse Incorporation on Network Coverage . . . . . 75
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Coverage Analysis of Dense Coverage-Centric HCNs using DS-
PLM 78
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 BS Deployment and User Distribution . . . . . . . . . . . . 81
4.2.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Tier Association Probability (T-AP) and Probability Density Func-
tion (PDF) of Distance to the Serving BS . . . . . . . . . . . . . . 84
4.3.1 Tier Association Probability . . . . . . . . . . . . . . . . . . 85
4.3.2 Distribution of the Statistical Distances Between T-UE and

its Serving BS for the two-tier NuHCN . . . . . . . . . . . . 89
4.4 Coverage Probability . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.1 Coverage Probability of T-UE Associated with Macro Tier . 92



xiv

4.4.2 Coverage Probability of T-UE Associated with Small Tier . 96
4.5 Numerical and Simulation Results . . . . . . . . . . . . . . . . . . . 98

4.5.1 Tier Association Probability . . . . . . . . . . . . . . . . . . 99
4.5.1.1 Validation of Macro T-AP Analysis and Compar-

ison with Other System Scenarios . . . . . . . . . 100
4.5.1.2 Impact of SBS Biasing on T-AP in NuHCNs . . . 101

4.5.2 Coverage Probability . . . . . . . . . . . . . . . . . . . . . . 103
4.5.2.1 Validation of Coverage Analysis . . . . . . . . . . 104
4.5.2.2 Performance comparison of network coverage with

other system scenarios . . . . . . . . . . . . . . . . 104
4.5.2.3 Impact of SBS biasing and Frequency Reuse on

Network Coverage . . . . . . . . . . . . . . . . . . 105
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Conclusion and Future Research Directives 108
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 113

Appendices 132

A Proofs for Chapter No. 3 133
A.1 Proof of Macro T-AP in R-II . . . . . . . . . . . . . . . . . . . . . 133
A.2 Proof of Macro T-AP in R-III . . . . . . . . . . . . . . . . . . . . . 134
A.3 Proof of Macro T-AP in R-IV . . . . . . . . . . . . . . . . . . . . . 135
A.4 Proof of the Distance PDF between T-UE and Nearest MBS when

Distance is Smaller than RCM . . . . . . . . . . . . . . . . . . . . . 136
A.5 Proof of the Distance PDF between T-UE and Nearest SBS when

Distance is Smaller than RCS . . . . . . . . . . . . . . . . . . . . . 138
A.6 Proof of Macro Tier Coverage in Region XM < RCM . . . . . . . . 139

B Proofs for Chapter No. 4 142
B.1 Proof of T-UE Association with Macro-tier in R-III . . . . . . . . . 142
B.2 Proof of the Macro Tier Coverage when the Distance between T-UE

and its Associated MBS is Smaller than RCM . . . . . . . . . . . . 143



List of Figures

1.1 Video traffic dominating other application categories and the data
traffic forecast (Ericsson Mobility Report, June 2019) . . . . . . . . 2

1.2 Possible paths leading to the network capacity improvements. . . . 3
1.3 A Heterogeneous Cellular Network comprising of three BS tiers. . . 5

2.1 Main theme of the literature review . . . . . . . . . . . . . . . . . . 16

3.1 A two-tier HCN with MBSs and SBSs distributed using indepen-
dent PPPs. The blue colored dots represent the MBSs while SBSs
are denoted by red asterisks. . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Critical distance based association regions for T-UE in a two-tier
HCN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Comparison of macro T-AP for varying λS using SS-PLM and DS-
PLM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Association region-based macro T-AP using DS-PLM against vary-
ing small tier density. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Comparison on the impact of SBS biasing on macro T-AP against
varying λS using both DS-PLM and SS-PLM. . . . . . . . . . . . . 66

3.6 Association region-based macro T-AP for varying SBS biasing using
DS-PLM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Validation and comparison of network coverage performance anal-
ysis against varying (a) SINR threshold and (b) Small tier density
using both SS-PLM and DS-PLM. . . . . . . . . . . . . . . . . . . 70

3.8 Network coverage for varying SBS biasing factor (BS) . . . . . . . 72
3.9 Impact of SBS biasing on network coverage for varying SBS densi-

fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.10 Impact of frequency reuse factor (N) on network coverage for vary-

ing SBS densification . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.11 Impact of SBS biasing (BS) on network coverage over varying fre-

quency reuse factor (N) . . . . . . . . . . . . . . . . . . . . . . . . 76
3.12 Joint impact of reuse factor (N) and SBS biasing BS on network

coverage for varying SBS densification. . . . . . . . . . . . . . . . 77

4.1 A two-tier HCN depicting the coverage regions of BSs from both
BS tiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Transformation of a uniformly distributed HCN to an NuHCN by
muting SBSs lying within the critical region of MBSs. . . . . . . . . 83

xv



xvi

4.3 Critical distance based association regions for T-UE in a two-tier
NuHCN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Comparison of macro T-AP against varying small tier density . . . 99
4.5 Comparison of macro T-AP in NuHCNs for both unbiased and

biased UE associations. . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6 Impact of SBS biasing on region-based macro T-AP in DS-PLM

based NuHCNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.7 Validation of network coverage analysis against varying (a) SINR

threshold and (b) Small tier density . . . . . . . . . . . . . . . . . 103
4.8 Network coverage against varying SBS densification factor (λS/λM) 104
4.9 Coverage comparison for SBS-biasing in uniform HCNs and NuHCNs105
4.10 Comparison of the evaluated network coverage with frequency reuse

consideration in uniform HCNs and NuHCNs . . . . . . . . . . . . 106
4.11 Comparison of the estimated network coverage with integration of

SBS biasing and frequency reuse in uniform HCNs and NuHCNs . . 107



List of Tables

2.1 Downlink coverage performance of densely deployed Uniform cellu-
lar networks using various PLMs. . . . . . . . . . . . . . . . . . . . 21

2.2 Downlink coverage performance of densely deployed non-uniform
cellular networks using various PLMs. . . . . . . . . . . . . . . . . 25

3.1 Association Regions for T-UE in a two-tier HCN . . . . . . . . . . 38

4.1 Association Regions for T-UE in a two-tier NuHCN . . . . . . . . . 84

xvii



Abbreviations

3GPP Third Generation Partnership Project

ASAPPP Approximate SIR analysis based on the Poisson point process

bps bits per second

BS Base station

CCDF Complementary cumulative distribution function

CDF Cumulative distribution function

CoMP Coordinated multipoint

CRE Cell range extension

DS Dual-slope

DUDe Decoupled uplink downlink access

FBS Femto base station

HCN Heterogeneous cellular network

iid Independent and identically distributed

LTE Long-term evolution

LTE-A Long-term evolution-Advanced

MBS Macro base station

MIMO Multiple-input multiple-output

mm-wave Millimeter wave

NuHCN Non-uniform HCN

PBS Pico base station

PDF Probability distribution function

PGFL Probability generating functional

PLM Path loss model

PLE Path loss exponent

xviii



xix

PPP Poisson point process

RATs Radio access technologies

SBS Small base station

SS Single-slope

SINR Signal to interference plus noise ratio

T-UE Typical User equipment

UE User equipment

UE-AS User equipment association strategy

WiMAX Worldwide Interoperability for Microwave Access



Symbols

φM , φS, φUE PPPs of MBSs, SBSs and UEs

α0, α1 Pre-critical and post-critical PLEs

BS, BM SBS and MBS biasing factor

λS, λM , λUE SBS, MBS and UE densities

PM , PS Transmit powers of MBSs and SBSs

Pr
M Received power from the nearest MBS

Pr
S Received power from the nearest SBS

RCM
Macro tier critical distance

RCS
Small tier critical distance

ηM , ηS Continuity constants

x0, L0 Reference distance and its path-loss

τ SINR threshold

σ2 Noise power

N Frequency reuse factor

hX Rayleigh fading gain

l(xi) Generic path loss

Γ Instantaneous received SINR

$, %, ς, υ Likelihood of association regions R-I,

R-II, R-III, R-IV

XM , XS T-UE distance from MBS and SBS

fXM
(xM), fXS

(xS) PDF of the T-UE distance from the

MBSs and SBSs

fXM |XM>RCM
(xM), fXM |XM<RCM

(xM) PDF of T-UE distance > RCM

xx



xxi

and < RCM from the serving MBS

fXS |XS>RCS
(xS), fXS |XS<RCS

(xS) PDF of the T-UE distance > RCS

and < RCS from the serving SBS

AM, AS Total macro and small T-AP

AM,R−I to AM,R−IV Joint macro T-AP in R-I to R-IV

AS,R−I to AS,R−IV Joint small T-AP in R-I to R-IV

P[ΓXM |XM>RCM
(xM) > τ ] CCDF conditioned on XM > RCM

P[ΓXM |XM<RCM
(xM) > τ ] CCDF conditioned on XM < RCM

P[ΓXS |XS>RCS
(xS) > τ ] CCDF conditioned on XS > RCS

P[ΓXS |XS<RCS
(xS) > τ ] CCDF conditioned on XS < RCS

LIM , LIS Laplace transform of interference

from MBSs and SBSs

CP Network coverage probability

CPM|XM>RCM
Macro coverage for distances > RCM

CPM|XM<RCM
Macro coverage for distances < RCM

CPS|XS>RCS
Small coverage for distances > RCS

CPS|XS<RCS
Small coverage for distances < RCS



Chapter 1

Introduction

This chapter introduces the thesis, provides the basic motivation for carrying out

this research work and highlights its importance. The chapter is divided into seven

sections. In section 1.1, a brief summary on the rapidly increasing mobile traffic

demands is presented. The limited suitability of conventional cellular networks

in handling the excessive data deluge is highlighted in section 1.2. Moreover, the

commonly employed strategies to resolve the capacity crunch faced by cellular

networks is also presented in the same section. A brief introduction on the theory

of path loss modeling is presented in section 1.3. In section 1.4, the challenges

commonly faced in the dense deployment of low power base stations in the already

deployed macro based cellular networks are described. The research objectives are

presented in section 1.5 while the organization of the rest of the thesis is described

in section 1.6. Lastly, the concluding remarks on the contents covered in this

chapter are presented in section 1.7.

1.1 Overview

The past decade has witnessed an exponential increase in mobile data traffic, owing

primarily to the drastic rise in the demand for high-end devices that support nu-

merous high data rate applications. According to the mobility report published by

1
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Ericsson, the mobile data traffic is predicted to reach a mammoth 131 exabytes/-

month by the year 2024, wherein the video traffic alone is expected to account for

a significant 74% of the total traffic [1]. The report also predicts that by the end of

year 2024, approximately 45% of world’s population would be under 5G coverage

while around 35% of data traffic would be carried by 5G networks. Interestingly,

the cellular networks were originally designed for voice-oriented applications, but

with the popularity of high-tech devices, the trend has clearly shifted towards

data-hungry applications like high-definition video conferencing, telehealth, mo-

bile television, interactive gaming, augmented/virtual reality and many others [2].

Hence, this two-pronged growth requires substantial increase not only in the peak

data rates (bps) but also in data rate density (bps/km2). Fig 1.1 illustrates the

continual dominance of video traffic over other application categories as foreseen

in [1].

Figure 1.1: Video traffic dominating other application categories and the data
traffic forecast (Ericsson Mobility Report, June 2019)

.

1.2 Cellular Networks and the Capacity Crunch

In order to meet the rapidly increasing traffic demands, the mobile cellular net-

works must realize the gains on the order of 1000 times increase in transmission
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capacity [3]. The feasible options in achieving improved peak link rates include

enhancing the spectrum efficiency, and/or utilizing larger bandwidths. Mean-

while, augmenting the data rate density requires aggressive reuse of the available

spectrum within near-vicinity of user equipment (UE) by densifying the network

infrastructures. Thus, it is getting progressively challenging for the traditional

cellular networks in coping up with this drastic increase in the data demand, as

the single base station (BS) tier based cellular networks have nearly reached their

optimum capacity limits as governed by the principles of information theory [4].

Therefore, in order to support the traditional high power macro BSs (MBSs), the

addition of economical and low-power BSs has been recommended by the Third

Generation Partnership Project (3GPP) to be a viable solution in addressing this

data deluge [5].

Figure 1.2: Possible paths leading to the network capacity improvements.

From year 1950 to 2000, the capacity of wireless networks has increased by a

million fold and it has been primarily achieved through the reusing of available

spectrum, while spectral efficiency improvements and the extension in spectrum

have also played their parts [6]. However, as of now, employing better modulation

and coding schemes offer a scanty improvement in the efficiency of wireless links.
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This is because, these schemes have nearly reached their optimum capacity limits

as governed by the principles of information theory [7, 8]. Similarly, multiple

input multiple output (MIMO) systems which are used in the renowned wireless

standards like WiMAX and LTE-A, also do not offer significant improvement in

spectral efficiency owing to the limited number of antennas available at each BS

[9]. Thus, these techniques do not meet the hallmark of increasing the network

capacity by 1000×. Fig. 1.2 mentions the possible paths that have historically

lead to improvements in the network capacity of cellular networks.

Nonetheless, massive MIMO offers a favorable solution as it has the capability of

serving tens to hundreds of users concurrently in a single resource block by using

hundreds or even thousands of antennas embedded on a single BS [10–13]. In order

to pack a large number of antennas on a BS, their size needs to be as small as

possible and the configuration of tiny antennas looks most suitable. Consequently,

it has resulted in an increased interest in millimeter wave (mm-wave) based massive

MIMO systems [14–17]. The mm-wave massive MIMO systems operate at 30-

300 GHz frequency spectrum and due to the abundance availability, low-cost and

no-congestion in that frequency range, it offers a unique opportunity to address

the excessive data deluge [18, 19]. However, signal propagation characteristics

in this extremely high frequency range are vastly different from the operational

frequencies of current cellular networks; for instance, path loss, object diffraction

and building blockage, atmospheric absorption, rain attenuation, and vegetation

effects [20–23]. This variation in characteristics poses new challenges not only in

the system design but also in the architectures of various hardware infrastructures

involved [24–27].

The capacity offered by the conventional cellular networks is certainly not enough

to meet the drastically increasing traffic demands. Hence, in order to meet such

a momentous target, it is necessary to densify the deployed networks. Moreover,

it is pertinent to mention that over the last two decades, the increase in cellular

networks capacity has largely been achieved by reducing the cell sizes and reusing

the available spectrum efficiently. For instance, in 3G cellular networks, the MBSs

were densified to ensure improved coverage and transmission rates in urban areas
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while the density of MBSs was around 4-5 BSs/km2 [28]. However, coping up with

the increasing traffic requirements urged a much higher MBS densification, espe-

cially when compared with the era prior to smart-phone boom and penetration.

Contrarily, densifying MBSs required prohibitively high deployment costs along

with other limitations including the unavailability of cell-sites, and dedicated and

faster backhaul in dense urban areas.

Figure 1.3: A Heterogeneous Cellular Network comprising of three BS tiers.

Keeping in view the limited feasibility of MBS densification, the popularity of

low-powered BSs i.e., small cells (SBSs) erupted [29]. In contrast to the MBS

densification, the SBSs are less costly and can be readily deployed to assist the

macro-cellular network especially in highly dense urban areas to meet the desired

data demands. It is for the same reason that 4G cellular networks, like LTE-

A, deploy abundant SBSs to complement the MBSs in addressing the explosive

data deluge [30, 31]. Hence, transforming the conventional cellular networks into

dense and irregular networks, i.e., heterogeneous cellular networks (HCNs) [5].

Fig. 1.3 depicts a section of HCN coverage area, where multiple Pico BSs (PBSs)

and Femto BSs (FBSs) are deployed in the surrounding area of a MBS. With the
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assistance of SBSs (PBSs and FBSs), low coverage areas associated with MBSs can

be eliminated and capacity can be improved in hot-spots. Furthermore, the relay

BSs boost flexibility in backhaul especially in areas where the wired backhaul is

either costly or unavailable [32]. Moreover, HCNs offer notable improvements in

the overall network performance by coping up with intense data rate requirements

using intelligent combination of technologies, network architectures, disparity in

cell sizes, and/or frequency bands [4, 33].

1.3 Introduction of Path Loss Modeling

The wireless communication systems, over the past five decades, have traversed

through five generations while supporting highly diverse applications ranging from

voice-only to extremely data demanding. Hence, a wide range of frequency bands

ranging from 800 MHz to 100 GHz has been allocated to account for the ever-

growing data rate demands of the wireless systems [34]. With the widespread

usage of high-end user devices capable of supporting numerous data-hungry appli-

cations, the data demand from the users to the service providers has significantly

increased. Therefore, to accommodate these demands, the cellular operators are

bound to improve the connectivity between the deployed network infrastructures

and user devices. Meanwhile, it is important to mention here that the benefits as-

sociated with any radio communication system cannot be fully harvested without

understanding the prorogation mechanisms of the radio waves through different

environments. The wired channels are commonly assumed to be stationary and

predictable; however, the wireless channels are extremely random and as a result

they do not lead to easy analysis. The modeling of wireless channel plays an ex-

tremely vital role in the performance evaluation of any wireless communication

system, as it permits the network planners to optimize the distribution of BSs,

and set their transmit powers for achieving the desired service level requirements

for a given environment profile or the frequency band [35]. Comprehensive sur-

veys related to standardization and evolution of path loss models from 1G to 5G

cellular networks are presented in [34] and the references therein.
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Radio propagation models are commonly employed to characterize the attenua-

tion experienced by the radio wave as it traverses through the wireless channel.

Generally, the signal attenuation is a function of the operating frequency (carrier),

heights of the BSs and UEs, nature of environment i.e., urban/suburban/rural, and

the distance between the transmitting and receiving stations. The attenuation of

the received signal due to the distance between BS and UE is termed as the path

loss, and it is a large scale fading parameter. It has been reported in [36] that the

average received power decays logarithmically with the distance in both indoor

and outdoor environments, while the signal attenuation rate is further dictated

by the path loss exponent (PLE). Meanwhile, it is well-known in the literature

that the PLE value is sensitive to the environment profile, i.e., the value of the

PLE increases when obstacles are present in the communicating path. This PLE

is also termed as the slope of the decay rate of the signal strength in logarithmic

scale. The simplest of the path loss models (PLMs) is the single-slope (SS) PLM,

in which it is assumed that the received signal strength decays with a constant

rate i.e., independent of the distance between transmitter and receiver stations.

Contrarily, in case of the dual-slope (DS) PLM, the signal attenuates with two

different rates separated by a critical or breakpoint distance. For example, if the

distance between the communicating stations is smaller than the critical distance

then the received signal attenuates with α0 otherwise it falls-off with α1, where

both α0 and α1 are the far-field PLEs and 2<α0≤ α1. Lastly, it is also well-known

in the literature that the value of critical distance depends primarily on the heights

of the communicating stations [37].

For a fixed link distance between the BS and UE, the fluctuations in the received

signal strength due to the natural and man-made objects like mountains, buildings,

forests, tunnels etcetera, are characterized by shadow fading which results in the

degradation of signal strength of up to 10 dB around the mean value i.e., path

loss. The shadow fading is further sensitive to the carrier frequency and the

geometry of obstacles around the communicating stations. The PLMs are usually

developed from large datasets that are collected from measurements in a particular

environment, and hence their suitability is limited for those environments only.
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1.4 Challenges in Dense HCNs

Traditionally, the conventional (homogeneous) networks involved only macro cells

in which MBSs transmitted with equal power, while their locations were also

planned. On average, this schematic strategy of regular placement and uniform

power transmission not only restricted the inter-cell interference from affecting

system performance but it also guaranteed a balanced load on all BSs [38]. More-

over, it was generally assumed in macro-cellular networks that the MBSs were

positioned on a regular-grid and their performance was mostly analyzed by ex-

haustive Monté Carlo simulations. Contrarily, the ongoing evolution of cellular

networks into dense and irregular networks have introduced multiple disparities,

and as a result, it makes them significantly different from the macro-cellular net-

works. For instance, HCNs feature multiple BSs of varying cell sizes, transmis-

sion powers, backhaul capabilities, signal-to-interference plus noise ratio (SINR)

thresholds, spatial densities, path loss exponents (PLEs) and carried traffic loads

[32, 39]. Hence, the heterogeneity associated with these multi-tier cellular net-

works emphasize the need for revamping the conventional strategies of cellular

planning and deployment.

Though deploying densified SBSs in support of MBSs has been one of the primary

driving forces in meeting the staggering user demands [40, 41], but their consid-

eration brings along new technical challenges as well that need special attention

prior to the successful rollout and operation of HCNs. For instance, the possible

challenges can be divided into these major categories: hardware expenses asso-

ciated with new SBS deployments, utilization of radio resources, need for subtle

user association strategies within the deployed BS tiers, management of interfer-

ence, network topologies, coexistence with other radio access technologies (RATs)

[42–45].

In addition to the above issues, it is equally important to employ suitable prop-

agation path loss models (PLMs) as they play a pivotal role in the designing of

cellular systems. For any given environment, the PLMs help in specifying impor-

tant parameters such as transmit power of BSs, the antenna heights, location and
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density of BSs, frequency etceteras. The PLMs dedicated for the macro-cellular

systems were usually based on the antenna heights of the communicating stations

and frequency, while building heights, orientation and width of the streets were

the prime parameters in the PLMs of micro-cellular systems [35, 36]. The per-

formance of cellular networks is greatly influenced by the choice of PLM because

interference estimates are based directly on it, and a balance must be struck be-

tween financial feasibility and the quality of services offered [46, 47]. Hence, for

designing a cellular system that comprises of BSs with disparate transmit powers

and coverage areas, it is important to select an appropriate PLM.

This thesis is mainly focused on the interference management, load balancing

between BS tiers and random deployments/positioning of SBSs in HCNs. The ad-

dition of SBSs in the overlaid macro-cellular network is like a double-edged sword,

it brings the network resource in close proximity to UEs but the excessive interfer-

ence also has a detrimental impact on the performance of dense HCNs. Moreover,

it is the disparity in transmit powers of BS tiers which is the root-cause for the

load imbalance between the BS tiers, as UEs mostly receive better signal strength

from MBSs. Thus, it is of paramount importance to address this disparity of UEs

association to avail maximum potential of these multi-tier HCNs. Similarly, due to

random SBS deployments and transmit power disparity, the services received by

cell-edge UEs could be well below the desired quality levels or those experienced

by cell-center UEs. Thus, degrading the overall network capacity.

1.5 Research Objectives

With the increasing popularity and penetration of high-tech devices capable of

supporting numerous data-hungry applications, the cellular networks are expe-

ditiously transforming from voice-oriented to data-oriented. Hence, there is an

urgent need to analyze the performance of these emerging wireless networks and

devising strategies to increase their network capacity. Densifying SBSs is one of

those strategies that is widely considered to be a promising solution in meeting
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the intensive capacity demands. Although the distance between users and the

deployed network decreases with the increasing SBS density, it also alters the reg-

ular/schematic geometry of BS distribution that is commonly associated with the

macro-cellular networks. Consequently, highlighting the need for devising more

dynamic network modeling strategies.

It is interesting to note that the performance analysis of dense HCNs mostly

involves the usage of SS-PLM, which is generally well-suited for less dense and

regular network deployment scenarios. Moreover, SS-PLM fails to precisely cap-

ture the dependence of PLE on the link distance in many practical deployment

scenarios involving disparate link distances, e.g., dense cellular networks. Con-

trarily, the HCNs are bound to be more irregular due to the ad hoc and random

deployment of SBSs. Hence, its usage can result in a significant difference in the

values of average received and interference powers, and thus, may lead to incorrect

estimation of the benefits/drawbacks associated with load balancing and interfer-

ence management schemes. Therefore, the primary objective of this research is

to use DS-PLM in analyzing the downlink performance of dense HCNs and inves-

tigate its impact on the utility/pitfall of the commonly employed load balancing

and interference management strategies.

1.6 Thesis Organization

Chapter 2 begins with a detailed account of the work related to the modeling of

cellular networks using stochastic geometry and the ease it brings in analyzing

the performance of emerging cellular networks. A comprehensive literature survey

on the performance analysis of uniform and non-uniform HCNs using stochastic

geometry is also presented in this chapter which helps in identifying the research

openings and formulation of the problem statement. The research methodology

adopted in this thesis for analyzing the downlink coverage performance of dense

HCNs is also described, while the chapter finally concludes with the contribution

of thesis.
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In chapter 3, DS-PLM is employed to study and analyze the downlink performance

of a two-tier dense HCN with uniformly distributed BS tiers having disparity in

transmit powers and infrastructure densities. Analytical expressions for the tier

association and coverage probability are derived for a randomly chosen user us-

ing the tools from stochastic geometry and validated through simulations. Finally,

with the help of numerical results, a thorough comparison of the estimated network

performance using both SS-PLM and DS-PLM is also carried out. The compara-

tive results highlight a critical limitation associated with the usage of SS-PLM in

evaluating the network performance of densely deployed cellular networks.

Chapter 4 extends the work presented in chapter 3, wherein it was highlighted

that DS-PLM is well-suited for analyzing the performance of dense HCNs ow-

ing to its better accuracy in estimating the strength of signals in disparate link

distances. Moreover, it was noticed that the UEs mostly prefer associating with

macro tier, whenever the distance between UE and its nearest MBS is smaller than

the critical distance. Consequently, a correlation needs to be introduced between

the positioning of MBSs and SBSs to better avail the potential of dense deploy-

ments of SBSs. Hence, a coverage-centric SBS deployment strategy i.e., muting

the SBSs that exist at distances smaller than the critical distance from each MBS,

is adopted in this chapter. In order to investigate the performance of non-uniform

HCNs (NuHCNs) using DS-PLM, and for carrying out a thorough comparison,

the estimated results for each of the performance metric using both SS-PLM and

DS-PLM are compared as well.

Chapter 5 concludes the research work presented in this dissertation and suggests

possible extensions of this research work.

1.7 Conclusion

The primary motivation for carrying out this research work has been presented

in this chapter. Keeping in view the need for dense deployment of the network
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infrastructures, the importance of selecting appropriate PLMs has also been high-

lighted in this chapter. Meanwhile, the challenges faced in the successful roll-out

of the HCNs have been discussed as well.



Chapter 2

Literature Survey, Problem

Formulation, and the Proposed

Research Methodology

In this chapter, a comprehensive literature review of the works related to the

acceptability of stochastic geometry modeling in cellular networks, and the per-

formance analyses of uniform and non-uniform cellular networks are presented in

section 2.1. The chapter also describes gap analysis and problem statement in

sections 2.2 and 2.3 respectively. The proposed research methodology adopted in

this thesis to address the identified problems is discussed in section 2.4. The thesis

contributions are given in the section 2.5, while the concluding remarks on this

chapter are given in section 2.6

2.1 Literature Survey

In order to provide readers with better visibility, the presented literature review

is divided into three parts i.e., stochastic geometry and cellular networks, and the

performance analyses of uniformly and non-uniformly distributed HCNs, which

are presented in the subsequent subsections.

13
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2.1.1 Stochastic Geometry and Cellular Networks

In the conventional cellular networks, the randomness associated with the position-

ing of MBSs was minimal, as the MBSs were positioned after careful planning on

the basis of traffic density and/or coverage issues in the deployment area. However,

the studies and designs of traditional cellular networks have inclined towards two

extremes. For the sake of maintaining tractability during analysis, simpler models

have been employed while complicated simulation based models have been used

in the industry for gaining design insights. Numerous baseline models focusing on

BS locations have been proposed in the literature to analyze the performance of

cellular networks [48, 49]. However, given their simplicity which is additionally

coupled with some unrealistic assumptions, analyzing the performance of conven-

tional cellular networks using them is not suitable.

The derived SINR expression from the renowned hexagonal grid model for a simple

MBS based cellular network is complicated and intractable. Thus, it requires

numerical evaluation, which is equivalent to simulating the network deployment

[48]. Similarly, the Wyner model suffers from the simplistic assumptions (i.e.,

fixed location of UEs, deterministic interference intensity, predefined channel gains

between UEs and interfering BSs) which can result in an inaccurate estimation

of the downlink performance especially in netwrok scenarios involving single or

multiple strong interfering BSs [49]. In order to analyze such models, system-level

simulations need to be performed which are not only extremely time consuming

and error-prone but also require exhaustive repetitions to account for randomness

[50, 51].

In these models when the densification is needed, the complexity of the cellular

networks increases significantly and as a result, it limits the utility of system-level

simulations due to the increasing number of simulation scenarios. These limita-

tions highlight the need for employing tractable models which in turn signify the

importance of the spatial stochastic models owing to their superior tractability.

The BS locations in spatial stochastic models are assumed to be distributed using

a particular probability distribution that captures the inherent spatial randomness
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of the radio networks. Besides this, the spatial stochastic models can successfully

grab other sources of randomness (like channel uncertainties) associated with var-

ious types of wireless networks as well [52].

In the recent past, various types of wireless networks have been modeled using

stochastic geometry that provides a unified mathematical modeling to thoroughly

understand the behavior of wireless networks [53–56]. Furthermore, the perfor-

mance analysis carried out through the use of stochastic geometry can result in

closed-form expressions for some special cases as well. These derived expressions

not only facilitate in understanding the operation of the network but also provide

easily the critical design insights, which cannot be obtained from the system-level

simulations owing to their excessive computational complexities [57]. Typically,

the Poisson point process (PPP) based models were mostly used to represent

node locations in unplanned networks like Ad-Hoc networks [53, 56] or femto cells

[58–61] due to the ease of random deployments in any specific area. In PPP, a

collection of nodes is randomly and independently distributed in an infinite region

while the number of points in any region follows a Poisson distribution. A PPP is

known to be a homogeneous PPP when the density of nodes remains fixed in the

entire region. On the contrary, the cellular networks were largely considered to

be deployed in a relatively arranged or schematic manner, for instance hexagonal

grid. Owing to the unprecedented success in characterizing unplanned networks

using stochastic geometry, numerous attempts were made to utilize this concept

in cellular networks as well [62].

A major breakthrough was reported in [63–65], when it was observed that the

cellular networks exhibit random topology and variant behavior in different geo-

graphical locations. It was shown in [63] that the accuracy of stochastic geometry

based model is comparable to that of an ideal grid based model, because the

SINR received by UEs in a simulation environment with actual BS positions is

lower-bounded by the random deployments of BSs and upper-bounded by ideal-

ized grid based BS deployments. Though both models provide similar tight bounds

(pessimistic and optimistic); however the stochastic geometry oriented model is

preferred owing to its remarkable tractability. Similarly, Andrews et al. in their
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seminal work proposed a mathematical framework based on stochastic geometry

and observed that the received SINR in case of real deployment can be approxi-

mated by stochastic geometry based model under general assumptions [64]. Mean-

while, the authors further observed that the exclusion of shadowing mechanism

helps in improving the analytical tractability of the derived expressions without

compromising on the accuracy of the analysis. The authors in [65] observed that

for a shadowing environment, the SINR received by UEs in grid based network

conforms to that received in stochastic geometry based model. Hence in the follow-

ing subsections of the literature review, the locations of the BSs are modeled using

appropriate point process models and stochastic geometry tools are employed to

analyze the performance of dense cellular networks as depicted in the Fig. 2.1.

Figure 2.1: Main theme of the literature review

2.1.2 Performance Analysis of Uniformly Distributed HCNs

By taking advantage from the analytical tractability of stochastic geometry, Dhillon

et al. extended the mathematical framework of a single-tier cellular network (pre-

sented in [64]) to a generic multi-tier HCN, where all the BS tiers were assumed
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to be distributed through independent PPPs [66]. Expressions for the coverage

probability and mean transmission rate were determined, while considering dis-

parity in the transmit power of the BSs, BS density and data rate. In addition to

the tractability, their proposed model effectively captures the placement of dense

BSs which is a premier feature of HCNs. However, being a baseline model for

analyzing the performance of HCNs, its applicability is limited in many aspects.

For instance, the analysis is defined for SINR thresholds greater than 0 dB while

it is assumed that only a single BS amongst the contending BSs of all tiers can

meet this SINR threshold. Similarly, for a UE-AS based on highest instantaneous

received SINR, the authors in [67] relaxed the SINR threshold condition of 0 dB

considered in [66] and determined the CCDF of SINR for the nearest BSs of each

tier. Moreover, the authors were also successful in determining the closed-form ex-

pressions for SINR distribution and UE association probability for Rayleigh fading

assumption. The presented works in [66, 67] did not consider any strategies for

interference management and steering of UEs to lightly loaded tiers. In order to re-

solve the issue of transmit power disparity between the MBS and SBSs, the 3GPP

has recommended employing the cell range extension strategy. The cell range ex-

tension strategy which is also called as SBS biasing is implemented practically by

increasing the cell selection offset of the SBSs.

An improved mathematical model was proposed in [68] that permitted flexible cell

association to UEs using a UE-AS based on the average biased received power.

Besides accounting for the ping-pong handovers that were inherent in the highest

instantaneous received SINR based UE-AS, their proposed approach was helpful in

providing valuable insights on important performance metrics like tier association

probability, average load per tier, and per-tier coverage probabilities. Moreover,

it has also been highlighted that although biasing helps in reducing the UE access

load from macro tier but this feature is achieved at the cost of degraded network

performance i.e., decrease in the coverage probability. Likewise, it has also been

shown that the coverage area of SBSs is sensitive to the distance from their prox-

imate MBSs. In [69], Singh et al. analyzed the impact of UE offloading using
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flexible cell association in a multi-tier HCN supporting multiple radio access tech-

nologies (RATs) and observed that the optimum rate coverage can be achieved by

steering a certain percentage of traffic to the other tiers with less load. Similarly

in [70], the authors derived an expression for the rate distribution of a two-tier

co-channel HCN for a joint incorporation of both load balancing and resource

partitioning.

Nevertheless, load balancing in HCNs is directly related to the tier association

of a user, which is a non-trivial problem [71]. Moreover, the UE-AS based on

the nearest BS which has been extensively adopted in analyzing single-tier cellu-

lar networks is not valid in case of multi-tier cellular networks. For instance, a

UE might be located in the near vicinity of any BS but due to the disparity in

transmit power, it receives better signal strength from a relatively far located BS

and thus, prefers association with that BS. Similarly, the irregularities associated

with cell coverage areas (footprints) due to disparity in transmit power of tier BSs

not only affect the composition of interference in densified HCNs but also cause

highly diverse loads to be served by the BSs. In [72], Dhillon et al. observed

that the disparity in transmit power and density of deployed BS tiers resulted in

the overburdening of certain BSs while significant number of the BSs remained

idle as well. Thus, the contribution of SBSs in the interference received by UEs

is overestimated which results in pessimistic coverage. By incorporating depen-

dent thinning of idle SBSs, the authors determined the expression for coverage

probability and observed an increase in the network coverage due to increasing

density of SBSs. In [73], the authors scrutinized numerous UE offloading schemes

and observed that the UE association is primarily dependent upon the network

density.

The cellular networks have transformed from their voice-oriented pattern to always-

available and uninterrupted mobile broadband data networks. Generally in cellu-

lar networks, the speed and bandwidth requirements were driven by the downlink;

however, the uplink also gained significant importance in the recent past owing to

the applications that require symmetric data traffic. The commonly employed cell
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association strategies in HCNs can be broadly categorized into coupled and decou-

pled. Traditionally, in the cellular networks both the uplink and downlink have

been coupled i.e., the mobile terminals are forced to associate with a single BS

for both links. The exponential upsurge in mobile data usage and recent trends

in network densification have resulted in an increased interest in the decoupled

association [74]. With the evolution of heterogeneity in the cellular networks, a

device can access the deployed infrastructure through various BSs and may thus

choose to associate with one BS for its uplink and any other for downlink. This

amenity of choosing amongst multiple BSs for uplink and downlink is termed as the

downlink-uplink decoupled (DUDe) access and its usage can potentially improve

the overall network performance [75, 76]. In [77], the authors have compared the

performance of coupled and decoupled UE association strategies in terms of the

UE offloading to small tier while employing DS-PLM and observed the advantages

of DUDe over non-DUDe or the coupled association scheme.

A comprehensive analytical framework for the uplink is complicated as compared

to that for the downlink. Essential modifications in the system model are required

for the uplink analysis when compared with the downlink. The random/regular

locations of BSs contribute to the interference in the downlink, while in uplink,

the source of interference is the randomness in the locations of UEs. Furthermore,

the choice of transmit power in uplink is critical as well, owing to the battery-

life limitation associated with user devices. Thus, the analysis of uplink becomes

very difficult by using the conventional approaches. To manage the uplink inter-

ference in HCNs, power control is used as one of the approaches recommended by

3GPP [78–80]. For a detailed study on the power control, the reader may consult

to [81] and the references therein. In order to determining accurately the basic

performance metric (i.e., SINR distribution) of the uplink, the authors presented

a tractable model using stochastic geometry [82]. Achieving maximum benefit of

HCNs requires proactive offloading of users onto BSs with low loads. Mostly, of-

floading has been studied for downlink only under the assumption that offloaded

users will have both the uplink and downlink from the BS having low load. Know-

ing that the uplink rate is better achieved with minimum path loss association,
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the authors in [83] modeled the rate distribution and uplink SINR in a multi-tier

HCN on the basis of power control parameters and association rules.

Due to the limited wireless spectrum availability, its aggressive reuse in co-existing

BS tiers of HCNs has been extremely helpful in achieving improved network capac-

ity; however, it leads to increased interference [29, 84]. In HCNs where SBSs and

MBSs are co-existing, the interference received by the users in the downlink comes

from both inter-tier and co-tier BSs respectively. As interference is a primary per-

formance limiting parameter, therefore, it needs to be managed in an effective way.

A comprehensive survey of various strategies adopted in combating interference

is presented in [85]. In an another work focusing on urban environment, mathe-

matical expressions for coverage probability and area spectral efficiency have been

determined which lead to vital design insights [86]. The reported results explic-

itly highlight the need for employing spectrally-efficient interference management

strategies to compensate for the excessive interference received by outdoor users

due to densified SBS deployments.

It is pertinent to mention that the incorporation of frequency reuse mechanism

introduces dependency on BS locations, since the neighboring BSs are bound to

operate in different frequency bands and this affects the tractability of PPP. In [64],

Andrews et al. addressed this dependency problem by considering static frequency

reuse (worst-case) in a single-tier cellular network and observed its impact on the

coverage and average achieved rate of the network. The authors have assumed that

amongst the available frequency sub-bands, each BS randomly selects a frequency

sub-band. Owing to this independent thinning, the tractability associated with

PPP is retained. By using the same interference management strategy, Giambene

et al. proposed prioritizing small tier association over macro tier in order to

achieve load balancing amongst the BS tiers [87]. The joint incorporation of both

load balancing and interference management mechanisms resulted in a pronounced

improvement in the overall performance of the HCNs.

Another technique commonly employed in the literature to improve the received

SINR of the cell-edge users (particularly) is based on fractional frequency reuse
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(FFR) [88]. Dissimilar to the traditional frequency reuse mechanism, in FFR

the coverage area of a cell is divided into cell-center and cell-edge regions by

assigning different frequency sub-bands. The impact of FFR incorporation in a

single-tier and multi-tier cellular network have been thoroughly studied in [89]

and [90], respectively. In an another work, the potential of employing FFR in

conjunction with UE offloading was investigated and a substantial enhancement

in the network performance was reported [91]. In order to reduce the excessive

cross-tier interference received by users, Ijaz et al. presented a strategy based

on reversing the transmission direction of interfering BSs. On the basis of this

reverse frequency allocation (RFA), they achieved a remarkable improvement in

the received SINR and data rate [92]. Though these frequency reuse mechanisms

help in reducing the interference experienced by users; however, this interference

reduction is achieved at the cost of reduced spectral efficiency per unit area.

Table 2.1: Downlink coverage performance of densely deployed Uniform cel-
lular networks using various PLMs.
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3 3 3 3 3 [64]

3 3 3 3 3 [93]

3 3 3 3 3 [94]

3 3 3 3 3 [66]

3 3 3 3 3 [67]

3 3 3 3 3 [69]

3 3 3 3 3 [86]

3 3 3 3 3 [87]

3 3 3 3 3 [95]

3 3 3 3 3 [96]

3 3 3 3 3 [97]

3 3 3 3 3 [98]

3 3 3 3 3 [91]

3 3 3 3 3 [68]

It is interesting to note that although the authors have assumed different UE-ASs

in [66–69, 72, 87] but the derived expressions for SINR distributions were found

to be almost similar in terms of their independency on the network density in

interference dominant and fully loaded HCNs. One of the major reasons for this



Literature Survey, Problem Formulation and Research Methodology 22

insignificance of SBS densification, i.e., no improvement in coverage probability,

is the increase in interference at those regions of MBS coverage areas where UEs

are already receiving desired quality levels [99]. Similarly, it was also observed

that the random deployment of SBSs not only reduces their coverage areas in

the near vicinity of MBSs, but also degrades the efficiency of SBS biasing [68].

Thus, in nutshell, densifying SBSs limits the performance of uniform HCNs. This

observation explicitly highlights the need for exploring selective or non-uniform

densification option for SBSs. A qualitative summary of the coverage performance

of densely deployed cellular networks with uniform distribution over varying PLMs

is available in Table 2.1.

2.1.3 Performance Analysis of Non-Uniformly Distributed

HCNs

In multi-tier cellular networks, the BSs of different tiers are commonly assumed

to be deployed using independent PPPs; however, this strategy is not helpful in

enhancing the network coverage of the dense HCNs. Owing to the uniform distri-

bution of SBSs, the UEs associated with macro tier receive excessive interference

from their nearby SBSs [100]; while on the other hand, the UEs which are of-

floaded to small tier using SBS biasing also face excessive interference from MBSs

due to their higher transmit powers [101]. Nevertheless, as far as the practical BS

deployments are concerned, it would also be unrealistic to assume no spatial corre-

lation between the BSs of the different tiers. Similarly, it is also well-known in the

literature that the traditional BSs are usually deployed in a planned manner and

there is a little likelihood that any two BSs would be deployed in the close prox-

imity of each other [102]. Consequently, the spatial stochastic models that permit

repulsion between BS positions (both inter-tier and intra-tier) are well-suited in

estimating the BS locations [103–106].

To ensure improved capacity and coverage of the deployed HCNs, a simplified

non-uniform deployment of SBSs was considered in [107] by muting the SBSs

within a specific distance from the MBSs. This spatial separation among the
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MBSs and SBSs has two main advantages, 1) it protects the UEs located within

the exclusion regions (i.e., MBS cell-center region) from excessive interference of

nearby co-channel SBSs and 2) it increases the coverage region of SBSs. Hence,

this results in a noteworthy improvement in the network coverage and throughput

as compared to the uniform SBS deployment scenario without incurring any extra

expenses. It is worth mentioning here that this selective muting/thinning of SBSs

forms a Poisson hole process (PHP); however, the interference field is usually

characterized by PPP, owing to its remarkable tractability [108, 109].

In [110], Deng et al. proposed adding dependencies between the locations of the

MBSs and SBSs in order to improve the coverage performance. These dependen-

cies include deploying SBSs only in those regions which are not completely covered

by MBSs or in the regions that are relatively far-away from the MBSs. The de-

sired locations of the SBSs were characterized using PHP and tier-wise outage

probabilities were determined. The authors also studied the impact of the spa-

tial correlation between the locations of BSs within a tier by modeling them with

Matern cluster process (MCP) and determined the expressions for the outage prob-

ability and the spectral efficiency per unit area. In [111], the authors approximated

the per-tier signal-to-interference ratio (SIR) distribution for interference-limited

HCNs exploiting the spatial dependence between the locations of the BSs in real

deployments using approximate SIR analysis based on PPP (ASAPPP) and mean

SIR based gain schemes. In [112], the authors have used PHP to characterize the

spatial interactions between active transmitters in cognitive and device-to-device

(D2D) networks.

It is usually though that in order to accommodate the extremely high mobile data

traffic requirements, the network operators need to deploy SBSs in abundance and

employ advanced inter-cell interference mitigation techniques. This is because the

available spectrum is scarce, and augmenting the network capacity extensively re-

quires improvement in the spectral efficiency of the available spectrum or else it

would result in a severely interference-limited network [113]. Xia et al. presented

a coordinated multi-point (CoMP) based model to reduce the inter-cell interfer-

ence in HCNs and achieved improved data rate and throughput in the cell-edge
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region [114]. Guo et al. extended the work in [114] by proposing a location aware

cooperation scheme that jointly achieves load balancing and eliminates excessive

inter-tier interference in a two-tier HCN [115]. A comprehensive survey highlight-

ing the weaknesses and strengths of the state-of-the-art CoMP clustering schemes

is presented in [116], and the references therein.

Muhammad et al. extended the non-uniform SBS distribution model proposed in

[107] by inculcating the load balancing perspective on the basis of SBS biasing

[117]. This load balancing exhibited a considerable improvement in the UEs of-

floading to small tier and at the macro cell-edge regions which in turn improved

the utilization of the network resources and resulted in capacity enhancement of

non-uniform HCNs (NuHCNs). In [118], the authors enhanced the NuHCN model

presented in [117] by considering an interference management strategy based on

RFA. They observed that the RFA employment in NuHCNs yields better coverage

and rate performance when compared to the uniformly distributed HCNs with or

without RFA consideration. Similarly, Haroon et al. investigated the impact of

soft frequency reuse (SFR) in conjunction with a power control factor on the per-

formance of NuHCNs [119]. They also compared the obtained results with those

of the uniform HCNs and observed significant improvement in the overall network

coverage.

In the cases of PPP tweaked non-uniform deployment of SBSs [107, 117–119],

it is usually observed that the SBSs in a multi-tier cellular network are generally

distributed using independent PPPs. Thus, to inhibit the SBS services with in the

near-vicinity of the MBSs, a fixed-sized exclusion region is considered around them.

Nonetheless, another approach available in the literature for the non-uniform and

selective SBS deployments is based on Stienen’s model [120]. In this strategy,

the coverage area of an MBS is divided into two disjoint regions, i.e. MBS cell-

center and boundary regions. In this model, the MBSs and UEs are distributed

using independent PPPs while the SBSs are deployed only in the outer region of

macro coverage areas exploiting the PHP. This selective deployment of the SBSs

assists in ensuring reduced interference within the MBS cell-center region, and

thus leads to an improved performance of the deployed network [121]. Exploiting
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the same Stienen’s model, Sajid et al. jointly considered the SBS biasing and

interference abating strategies, and investigated their impact on the performance

of cell-edge users [122, 123]. A comprehensive survey of the estimated network

performance of the densely deployed non-uniform cellular networks using various

PLMs is summarized in Table 2.2.

Table 2.2: Downlink coverage performance of densely deployed non-uniform
cellular networks using various PLMs.
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3 3 3 3 [112]

3 3 3 3 3 [72]

3 3 3 3 3 [110]

3 3 3 3 3 [117]

3 3 3 3 3 [118]

3 3 3 3 3 [119]

3 3 3 3 3 [111]

3 3 3 3 3 [107]

3 3 3 3 3 [121]

3 3 3 3 3 [122]

3 3 3 3 3 [123]

2.2 Gap Analysis

The emerging cellular networks are bound to be dense, especially when their as-

tounding success in meeting the high capacity demands over the last few years is

considered. The densification of SBSs in an overlaid network is like a double-edged

sword; it on one hand brings the deployed network resource in the close proximity

of the users and helps in achieving the desired data rates but on the other hand,

it results in excessive interference [124]. There is extensive literature available on

the performance analysis of dense multi-tier networks that undertake various load-

balancing and interference management mechanisms; however, such literature is

strictly limited to the usage of SS-PLM. The estimation of path loss using SS-PLM

is based on a simplified approach, i.e., the decay rate of a signal is assumed to be

uniform over all ranges of the link distance. Due to this assumption, SS-PLM fails
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to precisely capture the dependence of the value of path loss exponent on the range

of link distance in dense cellular networks. Nevertheless, the signal attenuation

generally increases with the distance in practical networks due to the presence of

numerous obstacles in the path between UEs and BSs [93, 95, 125].

Using SS-PLM, it has been reported in numerous works [64, 66–69, 72, 73, 87, 126]

that the expression for the coverage probability is independent of the network den-

sity in a fully-loaded and interference-limited cellular network. This independence

of SINR distribution infers that the cellular operators may freely densify their

infrastructures, as the increase in the interference is counterbalanced by the im-

proved received power at the UEs owing to the decrease in link distances. In uni-

form HCNs, this observation of the SINR invariance to SBS densification has come

under rigorous scrutiny. It has been shown in numerous recent works employing

more realistic path loss models that the network coverage is sensitive to SBS densi-

fication [93, 95, 96, 127]. It was even reported recently that the ultra-densification

of SBSs degrades the network performance significantly [94, 97, 128–130]. This

contrasting behavior of uniform dense HCNs appears largely due to the usage of

SS-PLM, which fails to precisely estimate the path loss in densely deployed cel-

lular networks. The SS-PLM works on a ‘one-size-fits-all approach’ and its usage

leads to severe differences in estimating the strength of the desired and interfering

signals. Since, the emerging cellular networks are bound to have varying distances

of the desired and interfering links; hence, the analyses of such cellular networks

is not recommended on the basis of SS-PLM.

There has already been a growing interest in replacing the SS-PLM by multi-slope

PLMs due to their innate ability to account for extensive variations in the distances

of the desired and interfering links. Meanwhile, it is well-known in the literature

that the critical distance where the received/interfering signal decay rate changes

is primarily dependent on the antenna heights of the transmitting and receiving

stations [37, 131]. Similarly, it was observed in [98, 132–134] that the antenna

height at the BS significantly affects the downlink performance of both single-

tier and multi-tier cellular networks. As the available literature on the coverage

performance analysis of dense HCNs is solely based on the usage of SS-PLM, which
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leads to incorrect estimation of the benefits associated with various load balancing

and interference management mechanisms. Therefore, it is of utmost importance

to employ more accurate PLMs especially in the dense deployment scenarios to

better estimate the network performance.

2.3 Problem Statement

As discussed in the earlier sections, the available literature on the downlink perfor-

mance analysis of uniform HCNs and coverage-oriented HCNs considering various

load balancing and/or interference management schemes is solely based on the us-

age of SS-PLM. Meanwhile, it is also well-known in the literature that employing

SS-PLM leads to significant inaccuracies in evaluating the performance of dense

networks. Nevertheless, it is important to note that the occurrence of disparate

link distances is a usual phenomenon in dense cellular networks; hence, it is highly

desirable to use more realistic PLMs in analyzing the downlink coverage perfor-

mance of the dense multi-tier cellular networks. Although, DS-PLM is well-known

to be fairly accurate in approximating the path loss in dense networks, the down-

link performance analysis of densely deployed multi-tier cellular networks using

DS-PLM still needs to be explored. Therefore, in this thesis, DS-PLM is em-

ployed to analyze the downlink coverage performance of dense HCNs considering

both uniform and nonuniform distribution of SBSs. Meanwhile, the impact of DS-

PLM consideration on the utility/pitfall of the commonly employed load balancing

and interference management strategies is also investigated.

2.4 Research Methodology

From the perspective of modeling the locations of BSs and UEs, it is commonly

accepted in the literature that the locations of UEs are random, while the loca-

tions of BSs are relatively fixed and regular. However, with the dense deployment

of SBSs in the overlaid network, the randomness associated with the BS positions
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also increases. Consequently, this increased randomness in the location of BSs

necessitates adopting more tractable network modeling strategies that can cir-

cumvent the limitations of existing approaches [39]. The authors in [64, 66] have

shown that the BS locations in both the conventional (single-tier) and multi-tier

cellular networks can be precisely modeled by the point process models, e.g, PPP

in their cases. Dissimilar to the previous models (i.e., Wyner and regular grid-

based models), employing point process models permit mathematical derivation

of SINR distribution which leads to important design insights. Moreover, owing

to the translational and rotational invariant properties of the homogeneous PPP,

the estimated network performance using PPP is location independent. Hence,

this thesis assumes that the BSs and UEs are distributed in a service area using

distinct PPPs.

Keeping in view the random distance-separation between the BSs and UEs which

is additionally coupled with the random gains of the fading channel, paramet-

ric statistics of both the desired and interfering signals received by the UEs are

highly random. Consequently, the received SINR is also random and highly sen-

sitive to any variation in these factors. A number of techniques are available in

the literature to analyze the downlink performance (i.e., coverage probability, av-

erage data rate, throughput etceteras) of cellular networks. However, due to the

non-existence of a closed-form expression for the probability density function of

aggregate interference, Rayleigh fading impairment is commonly considered on

the reference link [135]. Based on this assumption, the exact expression for the

SINR distribution can be determined using the Laplace transform of the aggregate

interference experienced by the user devices [49, 64, 66–69, 72, 89, 90, 136, 137].

It is important to note that the Rayleigh fading assumption can be removed by

considering any arbitrary fading, but in order to keep the analytical tractability,

this thesis assumes that the reference link under investigation undergoes Rayleigh

fading impairment, while ignoring shadowing.

As far as the performance evaluation strategy is concerned, the prime focus of

this thesis is to investigate the impact of employing DS-PLM on the estimated

downlink performance of dense cellular networks that jointly consider CRE-based
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load balancing and traditional frequency reuse mechanism using stochastic geom-

etry approach. By using DS-PLM, the coverage area of a BS is divided into two

non-overlapping regions separated by a critical distance and this special distance

is well-known to be dependent on the antenna heights of the communicating sta-

tions [37, 98, 132, 134]. In this thesis, it is also assumed that the UEs are free

to associate with any tier, but their association with any BS is primarily based

on the maximum average biased received power. Moreover, a fully-loaded HCN is

assumed, i.e., the density of UEs is significantly greater than the density of BSs

and every BS has always some data for at least a single UE.

In order to validate the accuracy of the derived expressions for both the uniform

and non-uniform deployment scenarios, the mathematical expressions for each

network layout are evaluated numerically and compared with the Monté Carlo

simulations. The simulation setup involves placing a typical user device at the

origin for each network realization while the locations of BSs of both the tiers

are generated using independent PPPs. It is pertinent to mention here that the

received interference and SINR are bound to vary in each network realization owing

to the randomness associated with the selected point process model. Therefore,

in order to effectively characterize the important performance metrics, average is

commonly taken over very large number of simulation iterations to account for all

the possible network realizations.

2.5 Thesis Contributions

The prime focus of this thesis is to employ DS-PLM to analyze the downlink

coverage performance of dense HCNs considering both uniform and non-uniform

distribution of SBSs. The novelty of the presented work lies in the derived expres-

sions and the ease with which critical design insights can be obtained. As discussed

earlier, the traditional approaches of obtaining the network design insights heavily

relied on performing field experiments or using highly complicated system level

simulations.
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Thus, the two major contributions of this thesis can be briefly summarized as

follows:

1. Coverage performance of the uniformly distributed cellular net-

works using DS-PLM

In the first thesis contribution, a two-tier HCN has been considered in which

the locations of BSs and UEs are modeled using independent PPPs. Con-

trary to SS-PLM usage, the consideration of DS-PLM ensures that the de-

sired and interfering signals experience a more-realistic distance dependent

path loss. Hence, DS-PLM is employed to study and analyze the perfor-

mance of a two-tier dense cellular network that permits flexible user as-

sociation using SBS biasing in conjunction with a simple frequency reuse

mechanism. A thorough comparison of SS-PLM with DS-PLM is performed

for the tier association probability (T-AP) and coverage probability, which

outrightly shows that there is a significant difference in the estimated over-

all network performance using both PLMs. Thus, owing to the better ac-

curacy of DS-PLM in path loss estimation in dense deployment scenarios,

the impact of load balancing and/or interference avoiding strategies on the

downlink performance of a two-tier HCN is better estimated by DS-PLM. A

brief detail of the studied effects is described below:

• New macro T-AP expression of T-UE is derived using DS-PLM which

is found to be a function of critical distance of both tiers. Dissimilar

to the SS-PLM where SBS biasing and densification always lead to

aggressive offloading of UEs to small tier, DS-PLM expression explicitly

highlights the MBS association regions wherein both SBS biasing and

densification are not effective in UE steering. Thus, highlighting the

overestimation of UE offloading to smaller tier in SS-PLM.

• Conditioned on T-UE association with either of the BS tiers for link

distance greater and smaller than their respective critical distances,

novel coverage probability expressions are derived using DS-PLM. Un-

like SS-PLM, it has been shown that the network coverage is sensitive



Literature Survey, Problem Formulation and Research Methodology 31

to both the density of BSs and their critical distances. In addition to

this, it also highlights the overestimation of coverage degradation due

to offloading of UEs to smaller tier using SS-PLM.

The above contribution has lead to the following research publication: K.

Shehzad, N. M. Khan, and J. Ahmed, “Impact of frequency reuse and

flexible cell association on the performance of dense heterogeneous cellu-

lar networks using dual-slope path loss model,” IEEE Access, vol. 7, pp.

166214–166234, 2019.

2. Coverage performance of the coverage-oriented cellular networks

using DS-PLM

For a two-tier uniform HCN in which BSs of both tiers are randomly deployed

using two independent PPPs, the SBSs that exist at distances smaller than

the critical distance of each MBS are deactivated to form a non-uniform

HCN i.e., NuHCN. This selective SBS deactivation ensures that most of the

SBSs are deployed at locations where MBSs have weaker coverage. More-

over, the UEs that are located within the critical distance of any MBS are

bound to associate with that MBS only. This is because when the UEs exist

at distances smaller than the critical distance of any MBS, then owing to

the disparity in transmit power of MBSs and SBSs, the UEs mostly receive

a stronger signal from MBS as compared to the nearest SBS. Similar to the

previous contribution, DS-PLM is employed to analyze the downlink perfor-

mance of a two-tier NuHCN while considering load balancing and interfer-

ence management strategies. An extensive performance comparison using

both SS-PLM and DS-PLM is also carried out for both T-AP and cover-

age probability, which highlights that the usage of SS-PLM underestimates

the benefits associated with load balancing and interference management

schemes in NuHCNs. A brief detail of the studied effects is described below:

• Novel expression for the macro association of a random UE is deter-

mined for the two-tier NuHCNs. The derived expression clearly high-

lights the important parameters of UE association with macro tier BSs.
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Furthermore, it sheds light on the improved efficiency of SBS biasing in

MBS outside region (post critical distance), as the UEs are proactively

offloaded to SBSs in that region which reduces the load from macro

tier.

• New expression for the network coverage probability is derived for the

two-tier NuHCNs using DS-PLM, which highlights the dependency of

network coverage on BS densities and critical distances of both tiers.

Contrary to uniform HCNs, NuHCNs can ensure the same coverage

performance with far lesser SBS deployments, owing to the reduction

in interference due to selective SBS deployments. Moreover, the cov-

erage performance of NuHCNs also highlights the perks of utilizing

load balancing mechanism in conjunction with simple frequency reuse,

as the network coverage provided by NuHCNs is significantly greater

than the uniform HCNs.

The above contribution has lead to the following research publication:

K. Shehzad, N. M. Khan, and J. Ahmed,“Performance analysis of coverage-

centric heterogeneous cellular networks using dual-slope path loss model,” Com-

puter Network, pp-107672, 2020.

2.6 Conclusion

In this chapter, a thorough study on the stochastic geometry modeling of cellular

networks has been presented. Although the cellular networks have rapidly trans-

formed from voice-only to data-centric over the past decade, it has been observed

that the stochastic geometry modeling leads to tractable analyses in many prac-

tical scenarios. Meanwhile, the gap analysis, problem statement and the adopted

research methodology have also been presented in this chapter.



Chapter 3

Coverage Analysis of Uniform

HCNs using DS-PLM

Densifying low-powered BSs in support of the overlaid MBSs is getting signifi-

cant consideration as a viable solution for meeting the rapidly increasing capacity

demands of emerging wireless networks. Contrarily, this ongoing evolution of cel-

lular networks into dense and irregular networks has introduced multiple dispar-

ities, which makes them significantly different from the macro-cellular networks.

Nonetheless, it is worth mentioning that the analysis of conventional cellular net-

works is generally carried out using the standard SS-PLM. Contrarily, it is also

well-known in the literature that the usage of SS-PLM leads to inaccuracies in eval-

uating the performance of dense networks. Thus, in this chapter, DS-PLM has

been employed to study and analyze the downlink performance of dense HCNs

with randomly distributed BS tiers. Meanwhile, the impact of DS-PLM consider-

ation on the effectiveness of load balancing and interference management schemes

is also investigated in this chapter.

Remaining parts of the chapter are organized in the following manner: Section 3.1

provides a brief introduction to the problem. System model is presented in section

3.2, which is followed by section 3.3 that presents the analysis for macro T-AP and

statistical distance distributions for communicating distances greater and smaller

33



Coverage Analysis of Uniform HCNs using DS-PLM 34

than the RCM . In Section 3.4, the derivation of network coverage expression is

presented for the two-tier HCNs. Numerical results are discussed in section 3.5,

and the chapter is concluded in section 3.6.

3.1 Introduction

The last decade has witnessed an exponential increase in the mobile data traffic,

owing primarily to the drastic rise in the demand of smart devices supporting nu-

merous data hungry applications. This exponential rise in the demand of wireless

data has lead to an evolution of cellular networks into a stage where MBS-based

system has reached its optimum capacity limits, as governed by the principles

of information theory. Deploying abundant low-powered BSs to complement the

conventional MBSs has been considered a feasible approach to address the ex-

plosive data deluge [4]. Hence, transforming the conventional cellular networks

into dense and irregular networks, i.e., HCNs [5]. The heterogeneity associated

with HCNs necessitates revising the traditional strategies of cellular planning and

deployment as it features multiple BSs of varying cell sizes, transmission powers,

SINR thresholds, spatial densities, PLEs and carried traffic load [32].

The conventional (homogeneous) networks involved only macro cells in which

MBSs usually transmitted with equal power while their locations were also rel-

atively regular, thus restricting interference from affecting system performance.

Moreover, this schematic strategy of regular placement and uniform power trans-

mission also ensured equal load on all BSs, and hence, load balancing was not re-

quired explicitly. Contrarily, the disparity in transmit power of BS tiers in HCNs

overburdens the macro tier, as the UEs mostly receive better strength of received

signal from their nearest MBSs, and thus prefer association with the macro tier.

To exploit maximum potential of HCNs, it is vital to address the issue of load bal-

ancing at cell association stage [138], [69]. Offloading UEs to lightly loaded tiers is

highly desirable and numerous techniques targeting various perspectives have been

reported in the literature to effectively offload UEs to smaller tiers [126, 139, 140].
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The most commonly adopted strategy is based on the static cell biasing in which

UEs are steered towards lightly loaded BS tiers with the help of biased received

signals. With the consideration of cell biasing, the cell-range of the lightly loaded

BS tiers is increased.

Besides inter-tier load balancing problem in HCNs, the densification of SBSs also

leads to an excessive increase in the network interference which significantly im-

pacts the user experience [141], [142]. The interference in HCNs has been exten-

sively studied in literature [143–148], and references therein. The conventional

cellular systems generally encountered two types of interference, i.e., co-channel

and adjacent channel. Dealing with inter-cell interference mostly required control-

ling the usage of frequencies over various channels in a network. On the contrary in

HCNs, besides co-channel and adjacent channel interference, random deployment

of densified SBSs and their access strategies also play their part in making it a

non-trivial problem. The inter-tier interference can be removed by dedicating fre-

quency channels for SBSs but given limited spectrum and its effective utilization,

the cellular operators prefer sharing over partitioning of the spectrum [149–152].

The future wireless networks are expected to be dense, and thus the transmission

distances are more likely to be small. Given its simplicity, the SS-PLM fails to

accurately capture path loss for such small distances, as it assumes homogeneous

attenuation from all distance ranges. Contrarily, in real networks, signal attenu-

ation increases with the distance due to numerous obstacles present in the path

between UEs and BSs. Therefore, by analyzing the performance of dense HCNs

while ignoring the disparity in path loss for varying link and interfering distance

would lead to severe inaccuracies [125] and [124]. Consequently, there has been

a growing interest in replacing SS-PLM by multi-slope PLMs due to their innate

ability to account for extensive variations in communicating and interfering links.

The critical distance where the received/interfering signal decay rate changes is

primarily dependent on the antenna heights of communicating stations [131], while

it has been shown in [98, 132, 134] that the antenna heights at transmitter end

significantly affect the downlink performance of cellular networks.
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Figure 3.1: A two-tier HCN with MBSs and SBSs distributed using indepen-
dent PPPs. The blue colored dots represent the MBSs while SBSs are denoted

by red asterisks.

3.2 System Model

3.2.1 BS Deployment and User Distribution

In this chapter, a two-tier HCN is considered in which both the BS tiers are

assumed to be distributed in a service area using independent PPPs as shown in

Fig. 3.1. Let φM , and φS represent the PPPs for MBSs, and SBSs respectively,

while their respective spatial densities (i.e., number of BSs per unit area) are

denoted by λM , and λS. The UEs locations are also considered to be distributed

using another independent PPP i.e., φU with spatial density λU . The respective

transmit powers of both BS tiers are represented by PM and PS, and it is assumed

that all MBSs transmit with power PM , while all the SBSs transmit with PS and

PS < PM . To account for the disparity in the transmit power of both BS tiers,

SBS biasing is considered, i.e., BS ≥0 dB. Let XM and XS denote the coordinates
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of macro and small BSs in the considered 2-D plane. The analysis is carried out

for a typical UE (T-UE) located at the origin, and Silvnyak’s Theorem justifies

this assumption owing to a special property, i.e., translation invariance or the

stationarity of PPPs [39].

3.2.2 Channel Model

Due to the dense deployment of SBSs in the overlaid cellular networks, multiple

SBSs can appear in the coverage area of any MBS as λS > λM . Therefore, dis-

parate link distances are most likely to occur in such deployment scenarios and

as a result, DS-PLM has been used to accurately account for the signal atten-

uations due to the variations in the link distance ranges. Using DS-PLM, the

long-term averaged received power at the T-UE from the ith tier BS is given

by: PRUEi
(xi) = PiL0l(xi), where, l(xi)=

xi
−α0i xi ≤ RCi

ηixi
−α1i xi > RCi,

and the constant

ηi
4
= Rα1i−α0i

Ci is introduced to ensure continuity of the DS-PLM. It is important

to note that the introduction of ηi conforms with the DS-PLM definitions given in

[93] and [153]. Meanwhile, RCi is the critical distance of the ith tier BS, and α0i

and α1i are the far field PLEs for the pre-critical and post-critical distances re-

spectively, while 2 < α0i ≤ α1i. Hence, by employing DS-PLM it has been ensured

that both the desired and interfering signals experience a more-realistic distance

dependent path loss.

The usage of DS-PLM divides the coverage area of a BS into two regions and these

regions are separated by the RC of that BS. It is well-known in the literature that

the size of RC is mainly dependent on the antenna heights of the communicating

stations [37]. For a two-tier HCN, as shown in Fig. 3.2, the overlaying of SBSs

on MBSs forms four disjoint regions, as the BSs of both tiers are independently

placed. The circle around each BS refers to its RC and the Fig. 3.2 clearly

illustrates that RCM is greater than RCS owing to the disparity in the heights of
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Figure 3.2: Critical distance based association regions for T-UE in a two-tier
HCN.

Table 3.1: Association Regions for T-UE in a two-tier HCN

Regions Communication Distance Limits
R-I [XM > RCM ∩ XS > RCS]
R-II [XM > RCM ∩ XS < RCS]
R-III [XM < RCM ∩ XS > RCS]
R-IV [XM < RCM ∩ XS < RCS]

MBSs and SBSs. Meanwhile, the figure further illustrates that the UE is located

in region R-I as its distance from the nearest MBS and SBS is greater than RCM

and RCS, respectively. The description of each association region for the T-UE

along with its likelihood which is expressed as a function of RC and λ is given in

Table 3.1.

The UE association strategy (UE-AS) considered in this chapter permits the T-UE

to associate with any BS offering the maximum averaged biased received power.
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Thus, adopting a flexible UE association to ensure possible extension in the cov-

erage range of SBSs. Dissimilar to the UE-AS employed in [64, 66, 87] which is

susceptible to the fading induced ping-pong handover effects, the employed UE

association policy successfully evades such issues during UE attachment with any

BS. Nonetheless, owing to the densified deployment of SBSs, a simple frequency

reuse mechanism is also considered to reduce the excessive aggregate interference

experienced by the UEs. The adopted interference management mechanism is im-

plemented by performing the random thinning of the BSs of both tiers using the

properties of the PPP. It is assumed that the available frequency band is divided

into N equal channels i.e., F1, F2, ...., FN while every BS randomly chooses a chan-

nel out of the N available channels. Therefore, the T-UE receives interference

from each BS with a likelihood of 1/N which is further equivalent to performing

an independent thinning of deployed BSs of both tiers.

ΓXi
(xi) =

PihXi

L0

(
d0i
xi

)α0i

xi ≤ RCi

L0

(
d0i
RCi

)α0i
(

RCi

xi

)α1i

xi > RCi,

∑
j ε {φM,n ∪ φS,n}\i

(
PjhXj

L0

(
d0j
xj

)α0j

xj ≤ RCj

L0

(
d0j
RCj

)α0j
(

RCj

xj

)α1j

xj > RCj,

)
+ σ2

,

(3.1)

The T-UE association with any BS tier is solely based on the highest biased

received power in which fading is averaged out; however, for determining the

average network coverage probability or the CCDF of SINR, the impact of fading

is considered. The expression for received SINR (ΓXi
(xi)) at T-UE located at a

distance xi from its associated ith tier BS is given in (3.1), where φM,n ∪ φS,n

represents a collection of all MBSs and SBSs that operate at the same frequency

channel n, d0i = 1m is the close-in reference distance for both the tiers. The path

loss constant at a close-in reference distance d0i is represented by L0. The downlink

interference fading coefficient denoted as hXi
is modeled as Rayleigh fading whose

power is exponentially distributed with unitary mean, i.e., hXi
∼ exp (1) while a
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constant thermal noise power of σ2 having additive nature is also considered in

the system. It is further assumed that none of the deployed BSs of both tiers are

unloaded i.e., every BS always has some data for its associated UEs.

3.3 Tier Association Probability (T-AP) and PDF

of Distance to the Serving BS

In this section, macro T-AP of T-UE in the presence of a load balancing scheme

based on SBS biasing is determined and it is followed by the derivation of necessary

distance distributions of T-UE and serving MBSs. The distribution of Xi is given

by the 2D null probability of PPP, and the likelihood that there is no BS within

the circle of radius xi,

P [Xi > xi] = exp
(
−πλix

2
i

)
. (3.2)

Using (3.2), the PDF of Xi where xi ≥ 0 can be expressed as

fXi
(xi) = 2πλixi exp

(
−πλix

2
i

)
. (3.3)

By using 2D null probability, the likelihood that T-UE could be located in any of

the four association regions (region specifications in terms of RCM and RCS are

described in Table 3.1) is given below:

$ = exp
(
−πλMR2

CM − πλSR
2
CS

)
% = exp

(
−πλMR2

CM

)
− exp

(
−πλMR2

CM − πλSR
2
CS

)
ς = exp

(
−πλSR

2
CS

)
− exp

(
−πλMR2

CM − πλSR
2
CS

)
υ = 1− ($ + %+ ς) .

3.3.1 Tier Association Probability

To account for the disparity in transmit power of BS tiers, biased received power

(with BM = 0 dB and BS ≥ 0 dB) based UE-AS is employed to ensure a balanced
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load between the two tiers of HCN. Thus, the T-UE associates with macro tier only

if the received power from the nearest MBS is greater than the power offered by the

closest SBS after considering biasing. The complete T-UE association probability

with macro tier for all four regions (disjoint) is governed by the total probability

law as

AM =
4∑

k=1

AM,Rk
, (3.4)

where AM,Rk
is the joint association probability of T-UE with macro tier while

T-UE is located in region k. As discussed earlier, the regions are sensitive to the

variation in deployment densities and critical distance sizes of both the tiers.

Lemma 3.3.1: Using DS-PLM, the association probability of T-UE with macro tier

in region R-I is given as

AM,R-I = 2πλM

∞∫
RCM

xM

exp (−π (λMx2
M + λSβ

2)) dxM β ≥ RCS

exp (−π (λMx2
M + λSR

2
CS)) dxM β < RCS

, (3.5)

where β = (PSBSηS/PMηM)1/α1S x
α1M/α1S

M .

It is obvious from (3.5) that besides λi and Pi, the T-UE association probability

in R-I is further sensitive to distance dependent PLEs (α1M and α1S), tier biasing

factors (BS and BM) and critical distance (RCM and RCS).

Proof: The joint association probability of T-UE with macro tier in R-I is given

by the following probabilistic event

AM,R-I = P
[
Pr

M > Pr
S,R-I

]
, (3.6)

where Pr
M and Pr

S are the averaged received powers from the nearest macro and

small tier BSs respectively. As discussed in section 3.2, the impact of shadowing
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and small scale fading is not considered in UE association decisions. Therefore,

the averaged received powers using DS-PLM in R-I from both BS tiers are Pr
M =

PMηML0x
−α1M
M and Pr

S = PSBSηSL0x
−α1S
S respectively. Inserting them in (3.6)

to get

AM,R-I = P
[
PMηML0x

−α1M
M > PSBSηSL0x

−α1S
S , R-I

]
, (3.7)

rearranging the terms in (3.7) gives

AM,R-I = P

[
xS >

(
PSBSηS
PMηM

) 1
α1S

x
α1M
α1S
M , R-I

]
. (3.8)

From Table 3.1, we already know the constraints on XM and XS in R-I. Now by

conditioning on XM , (3.8) takes the integral form

AM,R-I =

∞∫
RCM

P [(XS > β ∩ XS > RCS),R-I|XM ] fXM
(xM) dxM , (3.9)

where fXM
(xM) is already given in (3.3). The integration limits in (3.9) are from

RCM to ∞, as XM is constrained over the same range as well. Now, simplifying

(3.9) by using (3.2) gives the desired expression for association probability of T-UE

with macro tier in R-I and completes the proof of (3.5). �

As per the system model, the association of T-UE for a two tier HCN is a Bernoulli

event, i.e., having only two possible outcomes which means the T-UE either asso-

ciates with macro tier or with the small tier. Therefore, the association probability

of T-UE with small tier conditioned on R-I can be expressed as

AS|R-I = 1−AM|R-I, (3.10)

where AM|R-I can be easily determined from (3.5) by using conditional probability

and the likelihood of T-UE located in R-I ($).

The alternate way to determine the expression of T-UE association with small tier



Coverage Analysis of Uniform HCNs using DS-PLM 43

in R-I is to follow the procedure adopted in the proof of (3.5), and the final result

is given as

AS ,R-I = 2πλS

∞∫
RCS

xS

exp
(
−π

(
λSx

2
S + λMkA

2
))

dxS kA ≥ RCM

exp (−π (λSx
2
S + λMR2

CM)) dxS kA < RCM

, (3.11)

where kA = (PMηM/PSBSηS)
1/α1M x

α1S/α1M

S .

Lemma 3.3.2: The association probability of T-UE with macro tier in region R-II

using DS-PLM is given as

AM,R-II = 2πλM

∞∫
RCM

xM

[
exp

(
−πλSγ

2
)
− exp

(
−πλSR

2
CS

)]
exp

(
−πλMx2

M

)
dxM ,

(3.12)

where γ = (PSBS/PMηM)1/α0S xα1M
M /α0S.

It is an important result as it justifies the need for SBS densification but preferably

in MBS coverage regions where the received power from nearby MBSs is smaller

as compared to the power received from SBSs. Based on the UE-AS adopted in

this chapter, such regions are MBS cell-boundary regions. Hence, (3.12) brings

focus to the introduction of dependency between the location of BSs from both

tiers.

Proof: Please refer to Appendix A.1. �

Similarly, by following the procedure adopted in derivation of (3.12), the expression

for association probability of T-UE with small tier in region R-II can be determined

and it is given as

AS ,R-II = 2πλS

RCS∫
0

xS

exp
(
−π

(
λSx

2
S + λMkB

2
))

dxS kB ≥ RCM

exp (−π (λSx
2
S + λMR2

CM)) dxS kB < RCM

, (3.13)
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where kB = (PMηM/PSBS)
1/α1M x

α0S/α1M

S .

Lemma 3.3.3: The association probability of T-UE with macro tier in R-III using

DS-PLM is given as

AM,R-III = 2πλM

RCM∫
0

xM

exp (−π (λMx2
M + λSκ

2)) dxM κ ≥ RCS

exp (−π (λMx2
M + λSR

2
CS)) dxM κ < RCS

, (3.14)

where κ = (PSBSηS/PM)1/α1S x
α0M/α1S

M .

The expression presented in (3.14) determines the association likelihood of UEs

with macro tier when their distance is less than RCM . Naturally, it is most likely

that the UEs prefer macro tier association in this region owing to the higher

transmit power of MBSs and greater distances from small tier BSs. Intuitively,

if the UEs are to be offloaded to smaller tier in this association region then a

relatively higher SBS biasing level would be required.

Proof: Please refer to Appendix A.2. �

The expression for association probability of T-UE with small tier in region R-III

can be determined by following the approach used in the derivation of (3.14), and

the final result is given as

AS ,R-III = 2πλS

∞∫
RCS

xS

[
exp

(
−πλMkC

2
)
− exp

(
−πλMR2

CM

)]
exp

(
−πλSx

2
S

)
dxS,

(3.15)

where kC = (PM/PSBSηS)
1/α0M xα1S

S /α0M .

Lemma 3.3.4: The association probability of T-UE with macro tier in R-IV using

DS-PLM is given as

AM,R-IV = 2πλM

RCM∫
0

xM

(
exp

(
−π

(
λMx2

M + λS

(
PSBSx

α0M
M

PM

)2/α0S

))
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− exp
(
−π
(
λMx2

M + λSR
2
CS

)))
dxM . (3.16)

Proof: Please refer to Appendix A.3. �

Finally, by plugging (3.5), (3.12), (3.14) and (3.16) in (3.4) we get the complete ex-

pression for T-UE macro association probability when DS-PLM is used. Moreover,

it is clear from the derived expressions of each region that disparity in transmit

power of both tiers is the primary reason for creating load imbalance between the

BS tiers, and it could be finely tuned by opting subtle values of BS and RCS as

both parameters can assist in proactive offloading of UEs to smaller tier.

Similar to the derivation of (3.16), the association probability of T-UE with small

tier in R-IV using DS-PLM is given as

AS ,R-IV = 2πλS

RCS∫
0

xS

(
exp

(
−π

(
λSx

2
S + λM

(
PMxα0S

S

PSBS

)2/α0M

))

− exp
(
−π
(
λSx

2
S + λMR2

CM

)))
dxS. (3.17)

Moreover, the analysis of T-AP using DS-PLM does not add to the complexity

as the generalized expression of T-AP in case of SS-PLM is also integral-based

[68]. Furthermore, the expression for T-AP is efficiently computed numerically in

contrast to the Monté Carlo methods which heavily rely on time consuming and

exhaustive experiment repetitions to account for the randomnesses.

Remark 3.3.1: The derived expression given in (3.4) for macro T-AP using DS-

PLM in a two-tier HCN is integral-based, and it is similar to the kth tier association

probability expression determined in [68] using SS-PLM. In-fact, (3.4) reduces to

the same integral-based expression presented in [68] for SS-PLM based two-tier

HCN when RCM = RCS = d0i =1m while α0M = α1M and α0S = α1S is considered.

Moreover, (3.4) further simplifies to a closed-form solution when it is assumed
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that all path loss exponents are same i.e. α0M = α0S = α1M = α1S = α.

AM =
λM(

λM + (PSBS/PM)
2
α λS

) (3.18)

From (3.18), it can be easily inferred that the UE association with any tier is

more dominantly influenced by its spatial density when compared with either of the

transmit powers or biasing factors. This simplified result depicts a different story

to the DS-PLM case, which shows a reasonable sensitivity to both critical distance

and biasing as they play a vital role in UE offloading to smaller tiers.

3.3.2 Distribution of the Statistical Distance between T-

UE and its Serving BS

In order to determine the network coverage, it is important to derive the distance

distribution between T-UE and its serving BS. Prior to the derivation of distance

PDFs for MBSs is presented, it is vital to understand that the T-UE could be

associated with any tier in two ways given the UE association policy is fulfilled

i.e., when its distance with the nearest MBS is greater than RCM or lesser to it.

Therefore, we derive two PDFs of XM conditioned on the distance between T-UE

and its nearest associated MBS.

Lemma 3.3.5: The PDF given T-UE is located at distance greater than RCM from

its associated MBS is given as

fXM |XM>RCM
(xM) =

2πλMxM

AM,R-I +AM,R-II

exp (−π (λMx2
M + λSβ

2)) β ≥ RCS

exp (−π (λMx2
M + λSγ

2)) β < RCS

.

(3.19)
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Proof: For a macro tier associated T-UE which is located at a distance greater

than RCM from its nearest MBS, the likelihood of event XM > xM is given as

P [XM > xM ] = P [XM > xM | (AM, XM > RCM)] . (3.20)

By converting the right hand side (R.H.S) of (3.20) into joint probability, we get

P [XM > xM ] =
P
[
XM > xM , Pr

M > Pr
S, XM > RCM

]
P
[
Pr

M > Pr
S, XM > RCM

] . (3.21)

In (3.21), the sub-event
[
Pr

M > Pr
S, XM > RCM

]
can be expanded based on the

knowledge of association probability regions i.e., R-I and R-II to get

[
Pr

M > Pr
S, XM > RCM

]
=
[
Pr

M > Pr
S, XM > RCM , XS > RCS

]
∪
[
Pr

M > Pr
S, XM > RCM , XS < RCS

]
. (3.22)

The R.H.S of (3.22) refers to two disjoint events, and by using (3.6) and (A.1),

(3.22) can be rewritten as

[
Pr

M > Pr
S, XM > RCM

]
= AM,R-I +AM,R-II. (3.23)

Now by inserting (3.23) into (3.21) to get

P [XM > xM ] =

P [XM > xM , (XS > β,XM > RCM)] XS > RCS

P [XM > xM , (XS > γ,XM > RCM)] XS < RCS

AM,R-I +AM,R-II
. (3.24)

The expression in (3.24) is simplified with the help of (3.8) and (3.12), and by

using the PDF of XM , it can be expressed as
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P [XM > xM ] =



∞∫
xM

P [XS > β ∩ XS > RCS] fXM
(xM) dxM

AM,R-I+AM,R-II
β ≥ RCS

∞∫
xM

P [XS > γ ∩ XS < RCS] fXM
(xM) dxM

AM,R-I+AM,R-II
β < RCS

.

(3.25)

The CDF of XM is given by FXM
(xM) = 1−P[XM > xM ], and the desired PDF of

XM conditioned on distance between T-UE and associated MBS greater than RCM

is obtained by taking derivative of its CDF followed by simplification to complete

the proof of (3.19). �

Lemma 3.3.6: The PDF given T-UE is located at distance smaller than RCM from

its associated MBS is given as

fXM |XM<RCM
(xM) =

(
2πλMxM

AM,R-III +AM,R-IV

){
exp

(
−π

(
λMx2

M + λSg
2
A

))
κ ≤ RCS

gC + exp
(
−π

(
λMx2

M + λSκ
2
))

κ > RCS

,

(3.26)

where

gC = exp(−π(λMx2
M + λS (PSBSx

α0M
M /PM)2/α0S)) − exp (−π (λMx2

M + λSR
2
CS)),

and gA = (PSBS/PM)1/α0S x
α0M/α0S

M .

Proof: Please refer to Appendix A.4. �

Lemma 3.3.7: The PDF given T-UE is located at distance greater than RCS from

its associated SBS is given as

fXS |XS>RCS
(xS) =

2πλSxS

AS ,R-I +AS ,R-III

exp
(
−π
(
λSx

2
S + λMkA

2
))

kA ≥ RCM

exp
(
−π
(
λSx

2
S + λMkC

2
))

kA < RCM

,

(3.27)

where AS ,R-I and AS ,R-III are given in (3.11) and (3.15) respectively.
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Proof: For a smaller tier associated T-UE which is located at a distance greater

than RCS from its nearest SBS, the likelihood of event XS > xS is given as

P [XS > xS] = P [XS > xS| (AS , XS > RCS)] . (3.28)

By converting the right hand side (R.H.S) of (3.28) into joint probability, we get

P [XS > xS] =
P
[
XS > xS, Pr

S > Pr
M , XS > RCS

]
P
[
Pr

S > Pr
M , XS > RCS

] . (3.29)

In (3.29), the sub-event P
[
Pr

S > Pr
M , XS > RCS

]
can be expanded based on the

knowledge of association probability regions i.e., R-I and R-III to get

P
[
Pr

S > Pr
M , XS > RCS

]
= P

[
Pr

S > Pr
M , XS > RCS, XM > RCM

]
∪ P

[
Pr

S > Pr
M , XS > RCS, XM < RCM

]
. (3.30)

The R.H.S of (3.30) refers to two mutually exclusive events that cannot occur at

the same time, and thus can be rewritten as

P
[
Pr

S > Pr
M , XS > RCS

]
= AS ,R-I +AS ,R-III. (3.31)

Now by inserting (3.31) into (3.29) and after simplification, we get

P [XS > xS] =

P [XS > xS, (XM > kA ∩ XS > RCS)] XM ≥ RCM

P [XS > xS, (XM > kC ∩ XS > RCS)] XM < RCM

AS ,R-I +AS ,R-III
, (3.32)

By using the PDF of XS, (3.32) can be expressed as
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P [XS > xS] =



∞∫
xS

P [XM > kA ∩ XM > RCM ] fXS
(xS) dxS

AS ,R-I+AS ,R-III
kA ≥ RCM

∞∫
xS

P [XM > kC ∩ XM < RCM ] fXS
(xS) dxS

AS ,R-I+AS ,R-III
kA < RCM

.

(3.33)

The CDF of XS is given by FXS
(xS) = 1− P[XS > xS], and the desired PDF of

XS conditioned on distance between T-UE and associated SBS greater than RCS

is obtained by taking derivative of its CDF followed by simplification to complete

the proof of (3.27). �

Lemma 3.3.8: The PDF given T-UE is located at distance smaller than RCS from

its associated SBS is given as

fXS |XS<RCS
(xS) =

2πλSxS

exp (−π (λSx
2
S + λMq2A)) kB ≤ RCM

qB + exp
(
−π
(
λSx

2
S + λMkB

2
))

kB > RCM

AS ,R-II +AS ,R-IV
,

(3.34)

where

qB = exp(−π(λSx
2
S+λM (PMxα0S

S /PSBS)
2/α0M ))−exp (−π (λSx

2
S + λMR2

CM)), and

qA = (PM/PSBS)
1/α0M x

α0S/α0M

S .

Proof: Please refer to Appendix A.5. �

3.4 Coverage Probability

The T-UE is said to be in network coverage if the received instantaneous SINR

from its associated BS is above a predefined target τ . As discussed in the pre-

vious section, employing DS-PLM divides the coverage area of any BS into two
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non-overlapping regions. Hence, the T-UE could be in coverage from tier i by as-

sociating with it while lying at a distance smaller or farther than RCi from nearest

BS in that tier i.

Densification of SBSs in the overlaid network is like a double-edged sword, it brings

the network resource in close proximity to UEs which helps in achieving the desired

data rates but at the cost of excessive interference. To account for the detrimental

impact of this increased level of interference, a simple yet effective frequency reuse

mechanism has been employed. In accordance with the system model, if the T-UE

associates with a BS which operates at frequency channel N , then it would receive

interference only from that particular set of BSs that operate at N . Hence, all

other BSs operating at different frequency channels will not add to the cumulative

interference faced by the T-UE.

For computing the complete network coverage of two-tier HCN, the conditional

coverage offered by each of the tiers in both the regions i.e., Xi > RCi and Xi <

RCi, where i ε M, S, is to be determined. Thus, the complete network coverage is

governed by the total probability law as

CP =
2∑

i=1

2∑
j=1

(CPi|Rj
,Ai,Rj

), (3.35)

where i refers to the number of BS tiers in HCN, while j indicates the newly

formed regions which are dependent on RCi. The coverage offered by tier i to

T-UE located in region j, given the T-UE is associated with tier i is denoted by

CPi|Rj
. Moreover, Ai,Rj

represents the joint association probability of T-UE with

ith tier while it lies in region j. For instance, AM,R2 refers to macro association

of T-UE while the distance between T-UE and its associated MBS is smaller than

RCM i.e., AM,R2 = AM,R-III + AM,R-IV where AM,R-III and AM,R-IV have already

been determined in section 3.3.1. It is important to note that, the T-UE can

only be associated with a single tier at once while being located in one of the two

mutually exclusive regions.
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The CCDF of SINR (ΓXi
(xi)) of T-UE at a distance xi from its associated ith tier

BS can be expressed by using (3.1) as

P[ΓXi
(xi) > τ ] = P

[
PihXil (xi)

I + σ2
> τ

]
, (3.36)

where l(xi) represents the path loss in general, while I denotes the cumulative

interference received by T-UE from both co-tier and inter-tier interfering BSs that

are operating at a common frequency channel. Solving for hXi in (3.36) gives

P[ΓXi
(xi) > τ ] = P

[
hXi >

τ (I + σ2)

Pil (xi)

]
, (3.37)

where hXi represents the channel gains which are assumed to be Rayleigh dis-

tributed, thus the simplified form of (3.37) is given as

P[ΓXi
(xi) > τ ] = exp

(
−τσ2

Pil (xi)

)
LIM

(
τ

Pil(xi)

)
LIS

(
τ

Pil(xi)

)
, (3.38)

where LIM and LIS are the Laplace transforms of interference from macro and

small tier BSs respectively. It is clear from (3.38) that the UE can associate with

any BS tier, but it faces interference from both tier BSs.

3.4.1 Coverage Probability of T-UE Associated with Macro

Tier

The coverage probability of T-UE associated with macro tier is defined as the

likelihood of receiving instantaneous SINR from the closest MBS at T-UE greater

than the predefined threshold τ . As per the system model, the T-UE can associate

with macro tier (i.e., receives higher power from the nearest MBS as compared

to the nearest SBS) in two regions i.e., when the distance between T-UE and

the closest MBS is either greater or smaller than RCM . Therefore, the CCDF of

received SINR at T-UE which is located at distance xi has to be computed for

both the regions. Next, we determine the contribution of each region.
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Proposition 3.4.1: The expression for macro tier coverage in the region XM > RCM

is given as

CPM |XM>RCM
(xM) =

2πλM

AM,R-I +AM,R-II

∞∫
RCM

xM exp

(
−τσ2

PMηML0x
−α1M
M

)

× exp

(
−2πλMτxM

2

N(−2 + α1M)
2F1

[
1, 1− 2

α1M

; 2− 2

α1M

;−τ
])

×



exp (−π (λMx2
M + λSβ

2)) exp

(
−2πλSτβ

2

N(−2+α1S)

× 2F1

[
1, 1− 2

α1S
; 2− 2

α1S
;− τ

BS

])
dxM β ≥ RCS

exp (−π (λMx2
M + λSγ

2)) exp

(
−2πλSτgBx

α1M
M RCS

2−α1S

N(−2+α1S)

× 2F1

[
1, 1− 2

α1S
; 2− 2

α1S
;− τgBx

α1M
M

RCS
α1S

])
dxM β < RCS

, (3.39)

where gB=PSηS/PMηM .

Proof: The macro tier coverage in the region XM > RCM is given by the

following integral equation as

CPM |XM>RCM
(xM) =

∞∫
RCM

P[ΓXM|XM>RCM
(xM) > τ ] fXM |XM>RCM

(xM) dxM ,

(3.40)

where fXM |XM>RCM
(xM) is already determined in section 3.3.2 and is given in

(3.19), while P[ΓXM|XM>RCM
(xM) > τ ] is yet to be derived. The limits of integra-

tion in (3.40) are from RCM to ∞, as the distance between T-UE and the closest

MBS (to which the T-UE associates) is greater than RCM .
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Using (3.38) and substituting the respective parametric values, the CCDF condi-

tioned on XM greater than RCM can be expressed as

P[ΓXM |XM>RCM
(xM) > τ ] = exp

(
−τσ2xα1M

M

PMηML0

)
LIM

(
τ xα1M

M

PMηM

)
LIS

(
τ xα1M

M

PMηM

)
.

(3.41)

The computation of (3.41) further requires determining the summation of interfer-

ence from all co-tier (LIM) and inter-tier (LIS ) interfering BSs that are operating

at frequency channel N . Using Campbell Mecke theorem and probability gener-

ating functional (PGFL) of PPP, the Laplace transform, LIM is given as

LIM
(
τ (PMηM)−1 xα1M

M

)
= exp

−2πλM

N

∞∫
xM

y

1 + (xα1M
M τ)−1 yα1M

dy

 , (3.42)

where the distance of T-UE from co-tier MBSs which are operating at frequency

channel N is greater than RCM . Therefore, the integration limits in computation

of LIM are from xM to ∞. Simplifying the integrand in (3.42) by substituting

uM = (xα1M
M τ)−2/α1M y2 and solving it gives

LIM
(
τ (PMηM)−1 xα1M

M

)
= exp

(
−2πλMτx2

M

N(−2 + α1M)
2F1

[
1, 1− 2

α1M

; 2− 2

α1M

;−τ
])

,

(3.43)

where 2F1[ . ] is the well-known Gauss Hypergeometric function and (3.43) gives

the contribution of macro tier interference in CCDF conditioned on xM greater

than RCM . Similar to (3.42), the LIS is also expressed as

LIS
(
τ (PMηM)−1 xα1M

M

)
= exp

(
−2πλS

N


∫∞
β

y

1+
(
x
α1M
M

PSηS
PMηM

τ
)−1

yα1S
dy β ≤ RCS∫∞

β
y

1+
(
x
α1M
M

PSηS
PMηM

τ
)−1

yα1S
dy β > RCS

)
,

(3.44)

where the integration limits in (3.44) are from β to∞, as the cross-tier interferers

are at least apart by β, given xM is greater than RCM . Moreover, similar to

(3.42), the T-UE faces interference from only those SBSs which are operating at

frequency channel N . Simplifying the integrand in (3.44) by substituting vM =
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(xα1M
M PSηS/PMηMτ)−2/α1S y2 and solving it gives

LIS
(
τ (PMηM)−1 xα1M

M

)
=



exp

(
−2πλSτgBx

α1M
M

N(−2+α1S)RCS
−2+α1S

× 2F1

[
1, 1− 2

α1S
; 2− 2

α1S
;− τgBx

α1M
M

RCS
α1S

])
β ≤ RCS

exp

(
−2πλSτβ

2

N(−2+α1S)

× 2F1

[
1, 1− 2

α1S
; 2− 2

α1S
;− τ

BS

])
β > RCS

,

(3.45)

where (3.45) gives the contribution of inter-tier interference in macro CCDF

conditioned on xM greater than RCM . Now by plugging the values of LIM and

LIS in (3.41), results in

P[ΓXM|XM>RCM
(xM) > τ ] = exp

(
−τσ2

PMηML0x
−α1M
M

)
exp

(
−2πλMτ x2

M

N(−2 + α1M)
2F1

[
1, 1− 2

α1M

; 2− 2

α1M

;−τ
])

×



exp

(
−2πλSτgBx

α1M
M

N(−2+α1S)
(
RCS

−2+α1S
)

× 2F1

[
1, 1− 2

α1S
; 2− 2

α1S
;− τgBx

α1M
M

RCS
α1S

])
β ≤ RCS

exp

(
−2πλSτβ

2

N(−2+α1S) 2
F1

[
1, 1− 2

α1S
; 2− 2

α1S
;− τ

BS

])
β > RCS

. (3.46)

Finally by inserting (3.46) into (3.40), we get the desired expression for macro tier

coverage in R1 to complete the proof of (3.39). �

Proposition 3.4.2: The expression for macro tier coverage in the region XM < RCM

is given as

CPM |XM<RCM
(xM) =

2πλM

AM,R-III +AM,R-IV

RCM∫
0

(
xM exp

(
−τσ2

PML0x
−α0M
M

)
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× exp

[
−2πλS

N

(
−g2A

2
2F1

[
1,

2

α0S

; 1 +
2

α0S

;−BS

τ

]
+

R2
CS

2
2F1

[
1,

2

α0S

; 1 +
2

α0S

;− PMRα0S
CS

PSx
α1M
M τ

]
+

PSηSτx
α0M
M R2−α1S

CS

PM (−2 + α1S)
2F1

[
1, 1− 2

α1S

; 2− 2

α1S

;−PSηSx
α0M
M τ

PMRα1S
CS

])]

× exp

[
−2πλM

N

((
−x2

M

2
2F1

[
1,

2

α0M

; 1 +
2

α0M

;−1

τ

])
+

R2
CM

2
2F1

[
1,

2

α0M

; 1 +
2

α0M

;−
(
RCM

xM

)α0M 1

τ

]
+

ηMτxα0M
M R2−α1M

CM

−2 + α1M
2F1

[
1, 1− 2

α1M

; 2− 2

α1M

;−ηMxα0M
M τ

Rα1M
CM

])]

×

exp (−π (λMx2
M + λSg

2
A)) κ ≤ RCS

gC + exp (−π (λMx2
M + λSκ

2)) κ > RCS

)
dxM . (3.47)

Proof: Please refer to Appendix A.6. �

By evaluating the derived integral-based expressions of conditional coverage in

(3.39) and (3.47) for both regions, the conditional coverage of macro tier is ob-

tained.

3.4.2 Coverage Probability of T-UE Associated with Small

Tier

The coverage probability of T-UE associated with small tier is defined as the

likelihood of receiving instantaneous SINR from the nearest SBS at T-UE greater

than the predefined threshold τ . Similar to macro tier association of T-UE, the

link distance between T-UE and its associated SBS can be either greater or smaller

than the RCS. Hence, the coverage expressions for both regions are required to

determine the complete contribution of small tier coverage in the total network

coverage offered by the deployed HCN.
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Proposition 3.4.3: The expression for small tier coverage in the region XS > RCS

is given as

CPS |XS>RCS
(xS) =

2πλS

AS ,R-I +AS ,R-III

∞∫
RCS

xS exp

(
−τσ2

PSηSL0x
−α1S
S

)

× exp

(
−2πλSτ x2

S

N(−2 + α1S)
2F1

[
1, 1− 2

α1S

; 2− 2

α1S

;−τ
])

×



exp
(
−π
(
λSx

2
S + λMkA

2
))

exp

(
−2πλM τBSk

2
A

N(−2+α1M )

× 2F1

[
1, 1− 2

α1M
; 2− 2

α1M
;−τBS

])
dxS kA ≥ RCM

exp
(
−π
(
λSx

2
S + λMkC

2
))

exp

(
−2πλM τBSkDxS

2RCM
2−α1M

N(−2+α1M )

× 2F1

[
1, 1− 2

α1M
; 2− 2

α1M
;−kDτxS

α1S

RCM
α1M

])
dxS kA < RCM

,

(3.48)

where kD=PMηM/PSηS.

Proof: The small tier coverage in the region XS > RCS is given by the following

integral equation as

CPS |XS>RCS
(xS) =

∞∫
RCS

P[ΓXS|XS>RCS
(xS) > τ ] fXS |XS>RCS

(xS) dxS, (3.49)

where fXS |XS>RCS
(xS) is given in (3.27), while P[ΓXS|XS>RCS

(xS) > τ ] is yet to be

derived. The limits of integration in (3.49) are from RCS to ∞, as the distance

between T-UE and its associated SBS is greater than RCS.

Using (3.38) and substituting the respective parametric values, the CCDF condi-

tioned on XS greater than RCS can be expressed as

P[ΓXS|XS>RCS
(xS) > τ ] = exp

(
−τσ2xα1S

S

PSηSL0

)
LIS

(
τ xα1S

S

PSηS

)
LIM

(
τ xα1S

S

PSηS

)
.

(3.50)
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The computation of (3.50) further requires determining the summation of interfer-

ence from all co-tier (LIS ) and inter-tier (LIM) interfering BSs that are operating

at frequency channel N . The Laplace transform, LIS is given as

LIS

(
τ xα1S

S

PSηS

)
= exp

−2πλS

N

∞∫
xS

y

1 + (xα1S
S τ)−1 yα1S

dy

 , (3.51)

where the distance of T-UE from co-tier SBSs which are operating at frequency

channel N is greater than RCM . Therefore, the integration limits in computation

of LIS are from xS to ∞. Simplifying the integrand in (3.51) by substituting

uS = (xα1S
S τ)−2/α1S y2 and solving it gives

LIS

(
τ xα1S

S

PSηS

)
= exp

(
−2πλSτx

2
S

N(−2 + α1S)
2F1

[
1, 1− 2

α1S

; 2− 2

α1S

;−τ
])

, (3.52)

where 2F1[ . ] is the well-known Gauss Hypergeometric function and (3.52) gives

the contribution of small tier interference in CCDF conditioned on xS greater than

RCS.

Similar to (3.51), the LIM is also expressed as

LIM

(
τ xα1S

S

PSηS

)
= exp

(
−2πλM

N


∫∞
kA

y

1+
(
x
α1S
S

PMηM
PSηS

τ
)−1

yα1M
dy

)
kA ≤ RCM∫∞

kA

y

1+
(
x
α1S
S

PMηM
PSηS

τ
)−1

yα1M
dy

)
kA > RCM

,

(3.53)

where the integration limits in (3.53) are from kA to ∞, as the cross-tier BS

interferers are at least apart by kA, given xS is greater than RCS. Moreover, similar

to (3.51), the T-UE faces interference from only those MBSs which are operating
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at frequency channel N . Simplifying the integrand in (3.53) by substituting vS =

(xα1S
S PMηM/PSηSτ)

−2/α1M y2 and solving it gives

LIM

(
τ xα1S

S

PSηS

)
=



exp

(
−2πλM τBSk

2
A

N(−2+α1M )

× 2F1

[
1, 1− 2

α1M
; 2− 2

α1M
;−τBS

])
kA > RCM

exp

(
−2πλM τBSkDxS

2RCM
2−α1M

N(−2+α1M )

× 2F1

[
1, 1− 2

α1M
; 2− 2

α1M
;−kDτxS

α1S

RCM
α1M

])
kA ≤ RCM

,

(3.54)

where (3.54) gives the contribution of inter-tier interference in small CCDF con-

ditioned on xS greater than RCS. Now by plugging the values of LIS and LIM in

(3.50), results in

P[ΓXM|XM>RCM
(xM) > τ ] = exp

(
−τσ2

PMηML0x
−α1M
M

)
× exp

(
−2πλSτβ

2

N(−2 + α1S)
2F1

[
1, 1− 2

α1S

; 2− 2

α1S

;− τ

BS

])

×



exp

(
−2πλM τBSk

2
A

N(−2+α1M )

× 2F1

[
1, 1− 2

α1M
; 2− 2

α1M
;−τBS

])
kA > RCM

exp

(
−2πλM τBSkDxS

2RCM
2−α1M

N(−2+α1M )

× 2F1

[
1, 1− 2

α1M
; 2− 2

α1M
;−kDτxS

α1S

RCM
α1M

])
kA ≤ RCM

. (3.55)

Finally by inserting (3.55) into (3.49), we get the desired expression for small tier

coverage in R1 to complete the proof of (3.48). �
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Proposition 3.4.4: The expression for small tier coverage in the region XS < RCS

is given as

CPS |XS<RCS
(xS) =

2πλS

AS ,R-II +AS ,R-IV

RCS∫
0

(
xS exp

(
−τσ2

PSL0x
−α0S
S

)

× exp

[
−2πλS

N

(
−x2

S

2
2F1

[
1,

2

α0S

; 1 +
2

α0S

;−1

τ

]
+

R2
CS

2
2F1

[
1,

2

α0S

; 1 +
2

α0S

;−1

τ

(
RCS

xS

)α0S
]

+
ηSτx

α0S
S (RCS)

2−α1S

(−2 + α1S)
2F1

[
1, 1− 2

α1S

; 2− 2

α1S

;−τηSx
α0S
S

Rα1S
CS

])]

× exp

[
−2πλM

N

((
−(xα0S

S PM)2/α0M

2(PSBS)2/α0M
2F1

[
1,

2

α0M

; 1 +
2

α0M

;− 1

BSτ

])

+
R2

CM

2
2F1

[
1,

2

α0M

; 1 +
2

α0M

;−
(

PSR
α0M
CM

τPMxα0S
S

)]
+

PMηMτxα0S
S (RCM)2−α1M

PS(−2 + α1M)
2F1

[
1, 1− 2

α1M

; 2− 2

α1M

;−PMτηMxα0S
S

PSR
α1M
CM

])]

×

exp (−π (λSx
2
S + λMq2A)) kB ≤ RCM

qB + exp
(
−π
(
λSx

2
S + λMkB

2
))

kB > RCM

)
dxS. (3.56)

Proof: The expression for CPS |XS<RCS
(xS) can be similarly derived by following

the procedure adopted in the derivation of (3.48). �

Finally, the complete network coverage expression is determined from (3.35) when

conditional coverage expressions of both tiers i.e., (3.39), (3.47), (3.48), and (3.56)

are multiplied with their respective regional T-UE association probabilities.

3.4.3 Computational Complexity Comparison

In this subsection, we present the simulation algorithms for determining the cov-

erage/outage in a two-tier HCN using DS-PLM and SS-PLM respectively. These

algorithms are then used to estimate the computational complexity of the network

performance evaluation using both PLMs [154].
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Algorithm 1 Algorithm for determining coverage/outage in a two-tier HCN using
SS-PLM

1: S ← λSA i.e., The SBSs deployed in the network for each simulation run
2: M ← λMA i.e., The MBSs deployed in the network for each simulation run
3: xU ← (0, 0) i.e., T-UE is fixed at the origin
4: for m = 1 to M do
5: xM ← (Distance of T-UE from mth MBS)
6: PUM(m)←PMhXML0

(
d0M

xM (m)

)α0M

7: end for
8: xMMIN

← min(xM) i.e., Identifying the nearest MBS from T-UE
9: PUMMAX

← max(PUM)
10: for s = 1 to S do
11: xS ← (Distance of T-UE from sth SBS)
12: PUS(s)←PSBShXSL0

(
d0S
xS(s)

)α0S

13: end for
14: xSMIN

← min(xS) i.e., Identifying the nearest SBS from T-UE
15: PUSMAX

← max(PUS)
16: if (PUMMAX

> PUSMAX
) then

17: if (Γ(xMMIN
) > τ) then

18: Macro Coverage
19: else

Outage
20: end if
21: else
22: if (Γ(xSMIN

) > τ) then
23: Small Coverage
24: else

Outage
25: end if
26: end if
27: C← [Macro Coverage, Small Coverage, Outage]
28: return C

In Algorithm 1, firstly the received power from all the BSs of both BS tiers is

determined at the T-UE. Secondly, in accordance with the UE-AS adopted in this

chapter, the averaged received powers from the nearest MBS and SBS are then

compared and the T-UE association decision is made. Once the tier association of

T-UE is determined, the received SINR from the associated BS is then compared

with the target SINR threshold. Finally, this last comparison decides whether

the T-UE is under coverage from the associated BS or not. Similar to algorithm

1, the T-UE association with any BS tier in DS-PLM (i.e., Algorithm 2) is also
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Algorithm 2 Algorithm for determining coverage/outage in a two-tier HCN using
DS-PLM

1: S ← λSA
2: M ← λMA
3: xU ← (0, 0)
4: for m = 1 to M do
5: xM ← (Distance of T-UE from mth MBS)
6: if xM(m) ≤ RCM then
7: PUM(m)←PMhXML0

(
d0M

xM (m)

)α0M

8: else
9: PUM(m)← PMhXML0

(
d0M
RCM

)α0M
(

RCM

xM (m)

)α1M

10: end if
11: end for
12: xMMIN

← min(xM)
13: PUMMAX

← max(PUM)

14: for s = 1 to S do
15: xS ← (Distance of T-UE from sth SBS)
16: if xS(s) ≤ RCS then
17: PUS(s)←PSBShXSL0

(
d0S
xS(s)

)α0S

18: else
19: PUS(s)← PSBShXSL0

(
d0S
RCS

)α0S
(

RCS

xS(s)

)α1S

20: end if
21: end for
22: xSMIN

← min(xS)
23: PUSMAX

← max(PUS)

24: if (PUMMAX
> PUSMAX

) then
25: if (Γ(xMMIN

) > τ) then
26: Macro Coverage
27: else

Outage
28: end if
29: else
30: if (Γ(xSMIN

) > τ) then
31: Small Coverage
32: else

Outage
33: end if
34: end if
35: C← [Macro Coverage, Small Coverage, Outage]
36: return C
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determined firstly but the received power in this case is additionally dependent on

the respective BS tier critical distances of both tiers.

Remark 3.4.1: It is worth mentioning here that the network coverage estimation

using SS-PLM and DS-PLM algorithms follow a linearly growing complexity order

i.e., O(λM+λS), where λM and λS refer to the spatial densities of MBSs and SBSs

respectively in a given network with coverage area A. It is clearly observable from

both the algorithms that the number of computations never exceeds the linear trend.

For example, the number of computations in case of loop are function of either S

or M . It is also clear from each of the algorithms that there are no nested loops

involved. Hence, as described above, the complexity of the simulation algorithm

in each of the cases stays linear. Nonetheless, given the excessive deployment of

SBSs in meeting the capacity demands, O(λM +λS) can be safely approximated by

O(λS).

3.5 Numerical and Simulation Results

In order to validate the accuracy of derived mathematical expressions of both per-

formance metrics using DS-PLM, the resultant expressions of (3.4) and (3.35) are

evaluated numerically and compared with Monté Carlo simulations. In our simu-

lation setup, without loss of generality, a T-UE is placed at the origin for each net-

work realization while BSs of both tiers are deployed for numerous times. Hence,

the reported results of both metrics for any simulation scenario are based on aver-

age values. Moreover, following parametric values have been considered for gener-

ating all the results for DS-PLM: λM = 1/(π5002)BSs /m2, PM = 53 dBm, PS =

33 dBm, thermal noise (σ2) = −104 dBm, α0M = α0S = 2.7, α1M = α1S =

3.9, L0 = 5.1286e− 04, RCM = 300m, and RCS = 55m unless specified explicitly.

Similarly, the T-AP and network coverage results for the SS-PLM are generated

for αM = αS = 3.9 while other relevant parameters of both tiers remain the same

as considered for DS-PLM.
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Figure 3.3: Comparison of macro T-AP for varying λS using SS-PLM and
DS-PLM.

3.5.1 Tier Association Probability

In order to validate the accuracy of derived expression for macro T-AP using DS-

PLM in a two-tier HCN, both the analytical and simulation results are plotted in

Fig. 3.3 for varying small tier density (λS) . It is clear from the figure that for an

unbiased UE-AS, both the curves (i.e., analytical and simulation) are in complete

agreement of each other, and hence it corroborates the accuracy of T-AP analysis

presented in this chapter.

3.5.1.1 Comparison of T-AP using SS-PLM and DS-PLM

Fig. 3.3 further illustrates that when the path loss is estimated through one

size fits all approach i.e., SS-PLM, the densification of SBSs results in significant

offloading of UEs to small tier. This is because the distance between UEs and SBSs

decrease with the increasing λS, and thus it improves the received signal strength

at UEs from their nearby SBSs. On the contrary, densifying SBSs in case of DS-

PLM fails to swiftly reduce the UE load from macro tier owing to the reduction

in BS association area due to DS-PLM consideration. Hence, the association of

cell-edge UEs is steered towards their nearby BSs. In other words, UEs receive

better power levels from both tier BSs owing to a smaller path loss for shorter link
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Figure 3.4: Association region-based macro T-AP using DS-PLM against
varying small tier density.

distance only which restricts a rapid reduction in macro tier load. For instance,

at λS = 10λM , the SS-PLM estimates that 48% of the UEs associate with the

smaller tier while the DS-PLM predicts it to be 25% with smaller tier RCS=55m.

Thus, the SS-PLM clearly underestimates UE access load on macro tier which is

equivalent to overestimating the UE offloading benefit of SBS densification.

It is also evident from Fig. 3.3 that the increase in RCS size along with the

SBS densification further reduces the UE association load on macro tier. For

instance, at λS = 10λM and RCS = 35m, approximately 20% of the UEs associate
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with smaller tier while by increasing RCS size to 55m, the UE association with

smaller tier increases up to 25%. Similarly, by further increasing the RCS size

to 75m for the same level of SBS densificatoin, the UE association with smaller

BS tier increases to 28% approximately. This is because, the increase in RCS

size increases the likelihood of UEs residing within the RCS distance from their

respective nearest SBSs. Hence, the nearby UEs receive signal with a smaller

decay rate from SBSs which increases the association of UEs with smaller BS tier.

Fig. 3.3 further illustrates that increasing RCS beyond an optimal value can lead

to reduced offloading of UEs to smaller BS tier, owing to the increased distance

from SBSs. For instance, it is clear from Fig. 3.3 that the vertical offset in macro

T-AP curves have reduced when RCS is increased from 35m to 75m. Meanwhile, it

is pertinent to mention here that RCS is a design parameter and its value depends

mainly on the heights of the transmitter and UE antennas. However, the recent

literature advocates that the heights of the SBS antennas must to be lowered to

avoid excessive interference to the macro associated users. Therefore, improvement

in the UE offloading at the cost of increased interference is not a feasible solution.
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Figure 3.5: Comparison on the impact of SBS biasing on macro T-AP against
varying λS using both DS-PLM and SS-PLM.

For a thorough insight of UEs association with macro tier using DS-PLM, Fig. 3.4

is plotted against varying λS. It is worth noting here that when DS-PLM is used

instead of SS-PLM to estimate the path loss, then the coverage area of an HCN

gets divided in four disjoint regions which are written as R-I, R-II, R-III and R-IV
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in Fig. 3.4. In Fig. 3.4(a), the y-axis denotes the likelihood of each region, i.e., for

any given SBS densification factor, the probability that the T-UE falls in each of

the regions is plotted. Meanwhile, in Fig. 3.4(b), the y-axis represents the macro

tier association probability of the T-UE in each of the above described regions.

It can be readily observed from the figure that the T-AP is significantly impacted

by SBS densification, as the distance between UEs and SBSs is directly related to

it. Moreover, it is evident from Fig. 3.4(b) that at lower levels of SBS densification,

the UEs prefer associating with macro tier as reflected by higher macro T-AP in

regions R-I and R-III respectively. This is because, the power received by UEs

from their respective nearest MBSs is typically higher than the power offered by

the closest SBSs. Furthermore, at lower SBS densification, the distance between

UEs and their respective nearest SBSs in mostly greater than RCS and given the

transmit power disparity between both tiers, the UEs prefer macro tier association

which leads to a lightly loaded small tier.

Contrarily, higher SBS densification does lead to a considerable offloading of UEs

to small tier as the distance between UEs and their closest SBSs significantly

decrease. Interestingly, when the distance between UEs and their nearest SBSs is

smaller than RCS, some of the UEs may also lie at distances smaller than RCM

as well (R-IV), given a much bigger size of RCM as compared to RCS. Therefore,

the disparity in transmit powers of both tiers impels some of the UEs to associate

with their nearest MBSs.

Consequently, the DS-PLM consideration has highlighted two important observa-

tions in T-AP: 1) using SS-PLM overestimates the UE offloading to smaller BS

tier in dense network deployments, as SS-PLM is not well-suited for estimating

the received power levels in disparate link distances and 2) the need for employing

an effective load balancing strategy to ensure fairness in UEs load distribution

amongst BS tiers.
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3.5.1.2 Impact of SBS Biasing on T-AP

The disparity in transmit power of BS tiers emphasizes the need for adopting

load balancing strategies, and static SBS biasing helps in artificially increasing

the association regions of SBSs which leads to more intense UE offloading from

macro tier. It is evident from Fig. 3.5 that adopting SBS biasing at smaller λS has

a pronounced effect on UE steering than at higher values of λS. This is because,

the UEs are distantly located from SBSs at lower λS but when biasing is applied it

steers significant number of UEs to smaller tier as cell ranges of SBSs are increased.

While on the other hand, considering biased UE-AS in highly dense scenarios is

relatively less effective in steering UEs as most of the UEs already receive higher

signal strength from SBSs owing to the decrease in distance from SBSs. Given

the overestimation of UEs offloading to small tier in dense HCNs using SS-PLM,

employing SBS biasing to further reduce the load on macro tier only adds to the

inaccuracy in estimating the tier loads. While on the contrary, using DS-PLM and

given its high accuracy as compared to SS-PLM in estimating the path loss in dense

networks, the UE offloading benefit is relatively better estimated by DS-PLM.
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Figure 3.6: Association region-based macro T-AP for varying SBS biasing
using DS-PLM.

It is worth mentioning here that the association region of any SBS is directly

related to its distance from the neighboring MBSs, and hence the usefulness of

SBS biasing is also sensitive to this distance. For a better understanding of the
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effectiveness of SBS biasing in HCNs, a region-wise macro T-AP is shown against

varying SBS biasing factor (BS). In Fig. 3.6 for a fixed λS =20λM , macro T-AP

for varying SBS biasing is plotted for each of the association regions. It is clear

from the figure that by increasing BS for a fixed λS, the macro T-AP decreases in

all the regions.

The SBS biasing is found to be most effective in R-I, because in this UE association

region the distance between UEs and their nearest MBSs is already greater than

RCM . In R-II, the UEs dominantly associate with smaller tier as they are mostly

lying within the RCS of their proximate SBSs. It can be seen from the figure

that in R-III, a relatively higher level of BS is required to offload UEs to smaller

tier and this is because the UEs are lying within the RCM of their nearest MBSs

and receive strong signals from them. Finally, in R-IV, since the UEs are located

within the critical distance of both tier BSs, hence a moderate BS would improve

the UEs offloading to smaller tier BSs.

3.5.2 Coverage Probability

In this subsection, network coverage (SINR distribution) results are presented for

varying τ and λS from different aspects including unbiased and biased association

scenarios, incorporation of frequency reuse and integration of both biasing and

frequency reuse mechanisms. Firstly, the validation of network coverage analysis

estimated using DS-PLM is presented for varying SINR threshold τ , at λS = 50λM

and SBS densification factor, λS/λM for τ =0 dB in Fig. 3.7 (a) and Fig. 3.7 (b)

respectively. It is clear from both these figures that the simulation and analytical

results perfectly match with each other which corroborates the accuracy of DS-

PLM analysis for network coverage presented in this chapter. Furthermore, it

also means that the derived analytical expression for SINR distribution can thus

be used not only to predict the performance trends but also in obtaining critical

system design insights.
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Figure 3.7: Validation and comparison of network coverage performance anal-
ysis against varying (a) SINR threshold and (b) Small tier density using both

SS-PLM and DS-PLM.

3.5.2.1 Comparison of Network Coverage using SS-PLM and DS-PLM

It is clear from Fig. 3.7(a) that the network coverage estimated using both SS-

PLM and DS-PLM is a monotonically decreasing function of τ , owing primarily to

the increased strictness in network coverage criteria. Moreover, it is also evident

from the figure that the simplistic approach of estimating the path loss using

SS-PLM leads to the overestimation of network coverage in the dense network

scenario as compared to DS-PLM. This is because, SS-PLM fails to accurately
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estimate the received/interfering signal strengths in dense network deployments

where disparate link distances are extensively present. While on the contrary, DS-

PLM accounts for the varying communicating and interfering links by assuming

distance dependent path loss for each of them. Besides this, DS-PLM usage also

reduces the coverage area of each BS which not only ensures UEs association with

their nearby BSs, but it also avoids the underestimation of interference received

from the neighboring/interfering BSs.

For gaining better insight of the coverage estimation using DS-PLM, region-wise

macro tier coverage curves for both regions (XM > RCM and XM < RCM) are

also plotted in Fig. 3.7(a). It can be easily observed from the figure that UEs

residing within RCM of their associated MBSs can stay in network coverage for

higher values of τ as well due to better received signal strength. While the UEs

residing at distances greater than RCM of their associated MBSs generally receive

inadequate signal strengths to sustain stricter network coverage criteria, and hence

face network outage at higher value of τ . Thus, it can be readily seen from the

figure that the difference between estimated network coverages by both PLMs

increase with the increasing τ . For instance at τ=0 dB, the SS-PLM overestimates

the network coverage by 8% while at τ= 10dB the difference substantially increases

to nearly 50%.

In Fig. 3.7(b), a comparison of the estimated network coverage for both PLMs

against varying SBS densification is presented. It can be readily observed from the

figure that the estimated network coverage using SS-PLM is independent of vari-

ation in λS. This independence of SINR distribution inferences that the cellular

operators may freely densify their infrastructures, as the increase in interference is

counterbalanced by the improved received power at the UEs owing to the decrease

in the size of link distances. Contrarily, the network coverage is found to be a

decreasing function of λS when DS-PLM is used to estimate the path loss instead

of SS-PLM. A region-wise macro tier coverage shown in figure also verifies that the

increase in SBS density causes a decrease in the overall network coverage, as UEs

receive excessive from nearby interfering SBSs. The SINR invariance observed in

case of SS-PLM is largely due to the inability of SS-PLM in accurately estimating
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the strengths of desired and interfering signals in dense network deployments. It is

for the same reason that the difference in estimated coverages using both PLMs in-

crease with increase in SBS density. For instance at a lower SBS densification level

i.e., (λS= 10λM), the coverage estimated by both PLMs is nearly the same, since

the deployed network is sparse and disparate link distances are hardly present.

While on the contrary, at a higher SBS densification level i.e., (λS= 50λM), the

percentage difference in estimated coverage values using both PLMs increases to

nearly 8%.
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Figure 3.8: Network coverage for varying SBS biasing factor (BS)

3.5.2.2 Impact of SBS Biasing on Network Coverage

For a fixed λS and τ , the impact of BS variation on the network coverage estimated

using both SS-PLM and DS-PLM is presented in Fig. 3.8. It is clear from the figure

that SBS biasing results in performance degradation of the network i.e., coverage

probability reduces for both PLMs with the increase in BS. Although SBS biasing

helps in offloading the UEs from heavily loaded macro tier to smaller tier, but

it does so at the cost of increased network outage as the received interference

at offloaded UEs increase significantly. The pushing of UEs to smaller tier from

macro tier improves the coverage offered by macro tier, as most of its boundary

residing UEs are pushed to associate with nearby BSs of smaller tier. While on
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the other hand, these pushed UEs receive excessive interference from their nearby

MBSs which increases the outage probability in smaller tier.

At a relatively lower SBS densification level (like λS=20λM), the difference between

estimated coverage using both PLMs is 4% (unbiased UE-AS), as at such a lower

densification (sparsely deployed SBS), there are very few disparate link distances.

Contrarily, this difference increases with the increase in BS factor, owing to the

incorrect estimation of region enhancement due to SBS biasing. For instance,

by considering a biased UE-AS with BS= 10 dB, and τ= 0 dB, the coverage

estimated using SS-PLM reduces by approximately 12% while in case of DS-PLM,

the estimated network coverage decreases by 16.5 %. It is clear from these statistics

that similar to the overestimation of UEs offloading to smaller tier in case of T-

AP, the SS-PLM usage underestimates the coverage degradation caused due to

the consideration of SBS biasing.
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Figure 3.9: Impact of SBS biasing on network coverage for varying SBS den-
sification

In order to better understand the impact of SBS biasing on network coverage for

varying SBS densification using both SS-PLM and DS-PLM, Fig. 3.9 is plotted.

The figure illustrates that when the network coverage is estimated using any of

these PLMs, the consideration of SBS biasing has a significant impact at lower

λS as compared to the higher values of λS. This is because, the UEs association

with smaller tier is minimal at lower values of λS due to greater distances from
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nearby SBSs and transmit power disparity between BS tiers. By offloading UEs at

lower λS using biased UE-AS results in an excessive interference at the offloaded

UEs from nearby MBSs, and hence it leads to considerable degradation in the

overall network coverage. This negative impact of SBS biasing reduces with the

increase in λS, as the distance between UEs and SBSs reduce, and owing to this,

the UEs prefer small tier association. Moreover, at higher SBS densification,

the equilibrating effect of increased signal strength and interference ensures the

network coverage remains constant for higher values of λS in case of SS-PLM.

Contrarily, in case of DS-PLM, the SINR distribution is a decreasing function

of SBS densification. Therefore, considering biased UE-AS further degrades the

network coverage, and hence it highlights an additional limitation of using SS-PLM

in analyzing the performance of dense networks.
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Figure 3.10: Impact of frequency reuse factor (N) on network coverage for
varying SBS densification

3.5.2.3 Impact of Incorporating Frequency Reuse on Network Cover-

age

Given the need for densified SBSs in meeting the rapidly increasing capacity de-

mands of emerging networks, the decreasing distance between deployed infrastruc-

tures requires utilization of efficient interference management mechanisms to avoid

performance degradation of the networks. Fig. 3.10 depicts the effect of employing



Coverage Analysis of Uniform HCNs using DS-PLM 75

frequency reuse mechanism in dense deployment of SBSs in a two-tier dense HCN

using both SS-PLM and DS-PLM. The figure demonstrates that at any fixed λS

and target SINR τ , increasing the reuse factor N improves the overall network

coverage for both PLMs as the number of interfering BSs reduces and interference

received from both BS tiers diminishes as well. Moreover, it is important to note

that the biggest jump in network coverage is achieved for both PLMs when N is

increased from 1 to 2. This is because, the number of interfering BSs from both

tiers have reduced to half on average. Similarly, the increase in network cover-

age for any further increase in N reduces from the earlier value as the number of

interferer BSs have already reduced, and fewer interfering BSs contribute to the

interference faced by UEs.

It is imperative to mention here that the difference between estimated network

coverages using both PLMs reduces with the increase in N . This is because, the

density of interfering BSs from both tiers decrease with the increase in N , and

this reduced density is equivalent of a network scenario where interfering BSs are

sparsely located. Moreover, it is already well-known in the literature that the

accuracy of SS-PLM in estimating path loss of sparse networks is comparable

to that of DS-PLM as disparate link distances are minimal. Hence, Fig. 3.10

illustrates similar observations. For instance, when universal frequency reuse is

considered i.e., N=1, the difference between estimated coverages at a relatively

higher SBS densification of λS=50λM is 8%, which reduces to 2.3% at N=3 and

further decreases to 1.2% at N=5.

3.5.2.4 Impact of Integrated SBS Biasing and Frequency Reuse Incor-

poration on Network Coverage

In Fig. 3.11 for a fixed λS and τ , the impact of varying SBS biasing BS on

network coverage estimated using both PLMs for different values of reuse factor

N is depicted. The figure illustrates that for a fixed value of BS, increasing N

improves the network coverage as the number of interfering BSs from both BS

tiers are reduced, and the UEs experience lesser interference from interfering BSs
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Figure 3.11: Impact of SBS biasing (BS) on network coverage over varying
frequency reuse factor (N)

of both the tiers. Contrarily, by increasing BS while ensuring a fixed N degrades

the network coverage owing to the excessive interference faced by UEs due to

high offloading of UEs to small tier. Moreover, it is also evident from the figure

that at lower levels of BS, the difference between estimated coverage using both

PLMs is relatively small but it increases considerably at higher values of BS. This

is because, the offloaded UEs receive strong interference from their proximate

MBSs. For instance at λS=50λM , τ= 0 dB,N= 3 and BS= 2 dB, the difference

estimated network coverages using both PLMs is 2.5% which swiftly increases to

14.4% when BS is increased to 20 dB.

The joint impact of incorporating both SBS biasing and frequency reuse on net-

work coverage estimated using both PLMs in the presence of SBS densification is

shown in Fig. 3.12. The figure clearly illustrates that the joint incorporation of

both mechanisms is highly conducive in dense deployments of SBSs as it not only

ensures a balanced tier load but it is equally effective in avoiding excessive inter-

ference occurring mostly due to SBS densification and UEs offloading from macro

tier to small tier. Given better accuracy of estimating the path loss in dense net-

works, the usage of DS-PLM clearly highlights the shortcomings of using SS-PLM

in analyzing the performance of dense networks. Moreover, employing DS-PLM

further demonstrates the realistic advantage associated with joint consideration of
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Figure 3.12: Joint impact of reuse factor (N) and SBS biasing BS on network
coverage for varying SBS densification.

SBS biasing and frequency reuse mechanisms. Thus, giving critical design insights

for finding optimal parametric values in cellular planning.

3.6 Conclusion

In this chapter, the downlink performance of a two-tier uniform HCN has been

analyzed by using the DS-PLM. Intuitive mathematical expressions for the TAP

and network coverage have been derived which lead to useful insights in cellular

planning. Meanwhile, to account for the disparity in transmit power of BS tiers

and to overcome the excessive interference faced by the UEs, load balancing and

interference abating mechanisms have been jointly considered as well. A thorough

comparison of the estimated network performance using both SS-PLM and DS-

PLM clearly highlighted the limitation of SS-PLM consideration in dense network

scenarios.



Chapter 4

Coverage Analysis of Dense

Coverage-Centric HCNs using

DS-PLM

This chapter extends the work presented in Chapter 3. It was highlighted in the

last chapter that the usage of DS-PLM is well-suited for analyzing the performance

of dense HCNs owing to its better accuracy in estimating the strength of desired

and interference signals in disparate link distances. It was also observed that

the cellular network coverage not only depends on the SBS densification, but the

random placement of SBSs in the overlaid network also results in the performance

degradation due to excessive interference. Nonetheless, it was also noticed that the

UEs mostly prefer associating with macro tier, whenever the distance between UE

and its nearest MBS is smaller than RCM . Consequently, a correlation needs to be

introduced between the positioning of MBSs and SBSs to better avail the potential

of dense deployments of SBSs. Hence, a coverage-centric SBS deployment strategy

i.e., muting the SBSs that exist at distances smaller than RCM from each MBS,

is adopted in this chapter, and the coverage performance of NuHCNs is analyzed

using DS-PLM.

Remaining parts of the chapter are organized in the following manner: Section

4.1 provides a brief introduction to the problem. System model is presented in

78
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section 4.2, which is followed by section 4.3 that presents the analysis for macro T-

AP and statistical distance distributions for communicating distances greater and

smaller than RCM . In Section 4.4, the derivation of network coverage expression

is presented for the two-tier NuHCNs. Numerical results are discussed in section

4.5, while the chapter is concluded in section 4.6.

4.1 Introduction

Cellular networks are developing from voice-oriented to always available and unin-

terrupted mobile-broadband data networks. Deploying densified SBSs in support

of MBSs has been one of the primary driving forces in meeting the ever increasing

capacity demands of emerging wireless networks [40]. The addition of these SBSs

in the overlaid network is like a double-edged sword, it brings the network resource

in close proximity of UEs but the excessive interference also has a detrimental

impact on the performance of dense HCNs [155, 156]. Besides this, the disparity

in transmit power of BS tiers is the root cause for load imbalance between the BS

tiers as UEs. Thus, it is of paramount importance to address the excessive inter-

ference experienced by UEs and the disparity of UEs association with different BS

tiers to avail maximum potential of multi-tier cellular networks [157].

It is a common assumption in the literature that the locations of BSs and UEs

are distributed using independent PPPs, but these spatially un-correlated deploy-

ments of BSs and UEs do not help in improving the downlink performance of HCNs

[102]. Given random deployment of SBSs and transmit power disparity between

BS tiers, the SBSs located in near proximity of MBSs cause excessive interference

to macro associated UEs while the offloaded UEs to small tier also face excessive

interference from MBSs [91]. Moreover, it is also a common assumption to con-

sider a fully-loaded system i.e., all BSs are assumed to be always transmitting and

serving their respective UEs [66, 68]. The MBSs are generally known to have large

coverage areas and hence, this assumption is valid for them. However, it is not
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true for the SBSs and as result, it leads to a pessimistic network coverage estima-

tion. Therefore, it is important to consider the impact of BS loading especially

given the density of BSs is quickly approaching the density of user devices. It has

been shown in numerous research works [72, 158–161] that the network coverage

improves if the activity factor of low-powered BS tiers is assumed to be lesser than

1 i.e., all the SBSs are not active at all the times.

MBS

SBS

Figure 4.1: A two-tier HCN depicting the coverage regions of BSs from both
BS tiers

A two-tier HCN is shown in Fig. 4.1 which clearly shows that the coverage region

of any SBS is sensitive to its distance from the neighboring MBSs. The SBSs which

are located in near-vicinity of MBSs have very small coverage areas, while those

located at the far distances from MBSs have reasonable coverage areas. Besides

this, it is also evident that a moderate level of SBS biasing would not be helpful

in increasing the coverage areas of those SBSs which are in close proximity of

MBSs. These observations clearly suggest that densifying SBSs without taking into

consideration the distance from neighboring MBSs would not lead to improvement
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in the network coverage, and hence it highlights the need for exploring selective or

non-uniform densification of SBSs [162]. It is important to mention here that the

emerging networks are bound to be dense, especially given their astounding success

in meeting the high capacity demands over the past few years. Therefore, to

accurately estimate the path losses in such disparate link distance based scenarios,

it is important to employ more accurate and realistic PLMs that can efficiently

estimate the propagation environment.

By using DS-PLM, the coverage area of a BS is divided into two non-overlapping

regions separated by a critical distance and this special distance is well-known to be

dependent upon the antenna heights of the communicating stations [37]. For a two-

tier HCN in which BSs of both tiers are randomly deployed using two independent

PPPs, the SBSs that exist at distances smaller than the critical distance of each

MBS are deactivated to form an NuHCN. This selective SBS deactivation ensures

that most of the SBSs are deployed at locations where MBSs have weaker coverage.

Moreover, the UEs that are located within the critical distance of any MBS are

bound to associate with that MBS, as the UEs mostly receive a stronger signal

from MBS as compared to the nearest SBS within that distance range [163].

4.2 System Model

4.2.1 BS Deployment and User Distribution

This chapter considers a two-tier BS system comprising of macro and small BSs

which are distributed in a service area using distinct PPPs, represented as φM and

φS respectively. The deployed BSs have distinct spatial densities (λM and λS) and

transmit powers (PM and PS) as well, while it is further assumed that λS ≥ λM

and PS < PM . Besides this, the UEs are also assumed to be distributed through

an independent PPP represented as φUE having density λU . The analysis is car-

ried out for a T-UE which is assumed to be located at the origin and Silvnyak’s

Theorem justifies this assumption owing to a special property of PPPs [39].
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4.2.2 Channel Model

Using DS-PLM, the power received (SDLi
) by the T-UE at a distance Xi from an

ith tier BS is given as,

SDLi
(xi) =

PihXi
L0

(
x0i

xi

)α0i

xi ≤ RCi

PihXi
L0

(
x0i

RCi

)α0i
(

RCi

xi

)α1i

xi > RCi,

(4.1)

where the fading coefficient denoted as hXi
is considered to be Rayleigh distributed

and its power is exponentially distributed with unity mean, i.e., hXi
∼ exp (1).

Besides this, the close-in reference distance for both BS tiers is represented by

x0i = 1m, while the path loss observed at x0i is denoted by L0. Moreover, as can

be seen from (4.1), the received power expression ignores shadowing effect and this

assumption is considered to improve the tractability of our analysis. In contrast

to the SS-PLM where signals decay with increasing distance but at a single rate,

employing DS-PLM ensures the desired and interfering signals both experience a

more realistic distance dependent path loss using dual decay rates. This effectively

means that there is a disparity in signal decay rate beyond the BS critical distance

RCi. The far field signal decay rate or the PLE for distances smaller than RCi is

represented by α0i, while α1i denotes the PLE for distances farther than RCi.

Given dense deployment of SBSs, multiple SBSs can appear in the coverage area

of any MBS and thus can badly effect the services offered by MBS to its UEs

depending upon their location w.r.t the serving MBS. Therefore, to safeguard the

services’ quality offered by MBSs to their UEs specially in their near-vicinity, an

NuHCN is considered in which the SBSs located within the RCM of any MBS

are assumed to be muted (as shown in Fig. 4.2). With the available state-of-art

technology, it is expected that the cellular operators are well-aware of the SBSs

locations. Hence, by using subtle provisioning processes, the deployment of SBSs

in certain regions can be easily avoided. This occurs today with the operators

assigning FBSs to the selected sites based on the system constraints, where the

proposed non-uniform SBS deployment scheme can be applicable [107, 115]. The

UE association policy adopted in this chapter is based on maximum average biased
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Figure 4.2: Transformation of a uniformly distributed HCN to an NuHCN by
muting SBSs lying within the critical region of MBSs.

received power. Moreover, to account for the disparity in transmit powers of both

tiers in NuHCNs, static SBS biasing is also employed to offload UEs from macro

to small tier.

It is further assumed that none of the deployed BSs in the NuHCN are unloaded

i.e., every BS has some data for its associated UEs. It is important to note that

by removing the SBSs from the near-vicinities of MBSs, the SBSs are mostly lo-

cated outside of macro cell-center region. Hence, it is a valid assumption that

none of the deployed BSs in the NuHCN are unloaded. Moreover, to ensure that

the aggregate interference received by the UEs is reduced substantially, a simple

frequency reuse mechanism is incorporated which helps in countering the decrease

in received SINRs at UEs due to their offloading from macro tier and excessive

SBS densification. The adopted frequency reuse mechanism divides the available

bandwidth resource into N equal channels i.e., F1, F2, ...., FN while each BS ran-

domly chooses 1 out of N channels. Since, independently thinning out a PPP

results into another PPP; hence, the tractability associated with PPP is retained.

The instantaneous received SINR (Γi) at T-UE which is associated with ith tier

BS is given as

Γi =
SDLi∑

j ε {φM,N ∪ φS,N}\i

SDLj
+ σ2

, (4.2)
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Table 4.1: Association Regions for T-UE in a two-tier NuHCN

Regions Communicating Distance Ranges
R-I [XM < RCM ]
R-II [XM > RCM ∩ XS > RCS]
R-III [XM > RCM ∩ XS < RCS]

where φM,N ∪ φS,N represents a collection of MBSs and SBSs operating at

frequency channel (i.e., N) over which the serving BS of T-UE also operates.

4.3 Tier Association Probability (T-AP) and Prob-

ability Density Function (PDF) of Distance

to the Serving BS

In this section, the derivations of macro T-AP expression and distance distribu-

tions for each of the association regions i.e., (XM > RCM and XM < RCM) to the

serving MBS are presented. The critical distance based T-UE association regions

are shown in Fig. 4.3, where a UE is located in region R-II as its distance from

the nearest MBS and SBS is greater than RCM and RCS, respectively.

In a two-dimensional homogeneous PPP, the probability of having no BS in a circle

of radius xi which is also the distance to the nearest i-th tier BS is given using

[164] as,

P [Xi > xi] = exp
(
−πλix

2
i

)
. (4.3)

Using (4.3), the likelihood that the T-UE can be located in any of the association

regions (see Table 4.1 for region details) of a two-tier NuHCN can be expressed

as,

ς = 1− exp
(
−πλMR2

CM

)
.

$ = exp
(
−π
(
λMR2

CM + λSR
2
CS

))
.

% = exp
(
−πλMR2

CM

)
− exp

(
−π
(
λMR2

CM + λSR
2
CS

))
.
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Figure 4.3: Critical distance based association regions for T-UE in a two-tier
NuHCN.

It is clear from these expressions that the location of T-UE in any of the association

regions is dependent on both the tier densities and critical distances. The PDF of

Xi where xi ≥ 0 can also be expressed using (4.3) as,

fXi
(xi) = 2πλixiexp

(
−πλix

2
i

)
. (4.4)

4.3.1 Tier Association Probability

The association of T-UE with any BS tier is chiefly dependent on BS density,

transmit power and distance from the nearest BS of that tier. Using DS-PLM, the

importance of distance between the deployed BSs and UEs considerably increase

owing to the disparity in estimated path loss (due to different power decay rates)

for smaller and larger communicating distances. In accordance with the system
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model, if the T-UE lies within the RCM of its nearest MBS, then it is forced to

associate with it (i.e., the nearest MBS) as all SBSs within the RCM of each MBS

are muted. Meanwhile, the T-UE association with any BS for the remaining cov-

erage areas of the NuHCN is solely based on the highest averaged biased received

power.

The likelihood that T-UE associates with macro tier in a two-tier NuHCN, when

the path loss is estimated using DS-PLM is given as,

AM = AM,ROUT +AM,RIN , (4.5)

where AM,ROUT refers to the T-UE association with macro tier when the nearest

MBS is at least apart by RCM , while AM,RIN denotes the T-UE association with

macro tier when the distance between T-UE and its closest MBS is less than RCM .

Lemma 4.3.1: When the T-UE is located within the RCM of its nearest neighbor,

it is only permitted to associate with it and its likelihood is given using the 2D null

probability as:

AM,XM<RCM
= 1− exp

(
−π

(
λMR2

CM

))
(4.6)

It is clear from (4.6) that the T-UE association probability in R-I is independent

of λS and RCS as the SBSs within RCM are muted. Moreover, it is interesting

to note here that the T-UE association within RCM is not affected by the BS

transmit powers and PLEs (pre-critical and post-critical) of both tiers either, as

the only dominant factor dictating this likelihood is the RCM which is also the

size of exclusion region. As described earlier, when the T-UE is located within

the RCM of its nearest MBS, it receives network services from macro tier only.

Therefore, the T-UE association with small tier within R-I, i.e., AS ,XS<RCS
= 0.

When the distance between T-UE and its nearest MBS is greater than RCM , and

the T-UE receives higher power from it as compared to the closest SBS even after

considering extended cell range of small BS tier, then this resultant association

probability of T-UE with macro tier falls in two regions i.e., R-II and R-III as

given in Table 4.1.
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Lemma 4.3.2: The association probability of T-UE with macro tier in R-II is given

as,

AM,R-II = 2πλM

∞∫
RCM

xM

exp (−π (λMx2
M + λS(g1(xM))2)) dxM g1(xM) ≥ RCS

exp (−π (λMx2
M + λSR

2
CS)) dxM g1(xM) < RCS

,

(4.7)

where g1(xM) = (PSBSηS/PMηM)1/α1S x
α1M/α1S

M and ηi = Rα1i−α0i
Ci .

It is obvious from (4.7) that besides λi and Pi, the T-UE association probability

in R-II is dependent upon α1i, BS and RCi as well.

Proof: The joint association probability of T-UE with macro tier in R-II is given

by the following probabilistic event

AM,R-II = P
[
Pr

M > Pr
S,R-II

]
, (4.8)

where Pr
M and Pr

S are received powers from the nearest macro and small tier

BSs respectively. By using DS-PLM, the averaged received powers from the re-

spective nearest BSs of both tiers in R-II are Pr
M = PMηML0x

−α1M
M and Pr

S =

PSBSηSL0x
−α1S
S respectively. Inserting them in (4.8) to get

AM,R-II = P
[
PMηML0x

−α1M
M > PSBSηSL0x

−α1S
S , R-II

]
, (4.9)

rearranging the terms in (4.9) gives

AM,R-II = P

[
xS >

(
PSBSηS
PMηM

) 1
α1S

x
α1M
α1S
M , R-II

]
. (4.10)

From Table 4.1, we already know the constraints on XM and XS in R-II, and based

on those (4.10) takes the integral form as

AM,R-II =

∞∫
RCM

P [(xS > g1(xM) ∩ xS > RCS),R-II] fXM
(xM) dxM , (4.11)
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where fXM
(xM) is already given in (4.4). The integration limits in (4.11) are from

RCM to ∞, as XM is constrained over the same range as well. Now, simplifying

(4.11) by using (4.3) gives the desired expression for association probability of

T-UE with macro tier in R-II and completes the proof of (4.7). �

Similarly, by following the procedure adopted in the derivation of (4.7), the asso-

ciation probability of T-UE with small tier in R-II using DS-PLM is given as:

AS ,R-II = 2πλS

∞∫
RCS

xS

exp
(
−π

(
λSx

2
S + λMkA

2
))

dxS kA ≥ RCM

exp (−π (λSx
2
S + λMR2

CM)) dxS kA < RCM

, (4.12)

where kA = (PMηM/PSBSηS)
1/α1M x

α1S/α1M

S .

Lemma 4.3.3: The association probability of T-UE with macro tier in R-III using

DS-PLM is given as:

AM,R-III = 2πλM

∞∫
RCM

xM exp
(
−πλMx2

M

)(
exp

(
−πλSγ

2
)
−exp

(
−πλSR

2
CS

))
dxM .

(4.13)

where γ = (PSBS/PMηM)1/α0S x
α0S/α1M

S . The expression given in (4.13) clearly

highlights the parameters that affect the T-UE association with macro tier in this

specific region.

Proof: Please refer to Appendix B.1. �

Similarly, by following the procedure adopted in the derivation of (4.13), the as-

sociation probability of T-UE with small tier in R-III using DS-PLM is given as:

AS ,R-III = 2πλS

RCS∫
0

xS

exp
(
−π

(
λSx

2
S + λMkB

2
))

dxS kB ≥ RCM

exp (−π (λSx
2
S + λMR2

CM)) dxS kB < RCM

, (4.14)

where kB = (PMηM/PSBS)
1/α1M x

α0S/α1M

S .

Finally, by plugging (4.6), (4.7), (4.13) in (4.5) we get the complete expression for

T-UE macro association probability when DS-PLM is used to estimate the path



Coverage Analysis of Coverage-Centric HCNs using DS-PLM 89

loss in a two-tier NuHCN.

Remark 4.3.1: It is clear from the derived expressions of each region that disparity

in transmit power of both tiers is the primary reason which creates load imbalance

between the BS tiers, and it could be finely tuned by opting subtle values of BS and

RCS as both parameters can assist in proactive offloading of UEs to the smaller

BS tier.

4.3.2 Distribution of the Statistical Distances Between T-

UE and its Serving BS for the two-tier NuHCN

In this subsection, we present the PDFs for T-UE association distances with macro

tier w.r.t RCM i.e., for link distances greater and smaller than RCM .

Lemma 4.3.4: The PDF given T-UE is macro tier associated and located at dis-

tances greater than RCM from its nearest MBS is given as

fXM |XM>RCM
(xM) =

2πλMxM

{
exp

(
−π

(
λMx2

M + λS(g1(xM ))2
))

g1(xM ) ≥ RCS

exp
(
−π

(
λMx2

M + λSγ
2
))

g1(xM ) < RCS

AM,R-II +AM,R-III
. (4.15)

Proof:

For a macro tier associated T-UE which is located at a distance greater than RCM

from its nearest MBS, the likelihood of event XM > xM is given as

P [XM > xM ] = P [XM > xM | (AM, XM > RCM)] . (4.16)

Using conditional probability, the right hand side (R.H.S) of (4.16) can be ex-

pressed in terms of a joint probability event as,

P [XM > xM ] =
P
[
XM > xM , Pr

M > Pr
S, XM > RCM

]
P
[
Pr

M > Pr
S, XM > RCM

] , (4.17)
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where the denominator in (4.17) is given by

[
Pr

M > Pr
S, XM > RCM

]
= AM,R-II +AM,R-III. (4.18)

The integral form of (4.17) can be expressed as

P [XM > xM ] =

∞∫
xM

P
[
(XS > g1(xM) ∩ XS > RCS) ∪ (XS > γ ∩ XS ≤ RCS)

]
AM,R-II +AM,R-III

× fXM
(xM) dxM . (4.19)

The proof of PDF of XM conditioned on link distance between T-UE and associ-

ated MBS greater than RCM completes after taking derivative and some simplifi-

cations. �

Lemma 4.3.5: The PDF given T-UE is macro tier associated and located at dis-

tances smaller than RCM from its nearest MBS, is given as

fXM |XM<RCM
(xM) =

2πλMxM exp (−πλMx2
M)

1− exp (−πλMR2
CM)

. (4.20)

Proof: The PDF expression given in (4.20) can be easily derived using 2-D null

probability. �

Lemma 4.3.6: The PDF given T-UE is small tier associated and located at dis-

tances greater than RCS from its nearest SBS is given as

fXS |XS>RCS
(xS) =

2πλSxS

AS ,R-II

exp
(
−π
(
λSx

2
S + λMkA

2
))

kA ≥ RCM

exp
(
−π
(
λSx

2
S + λMRCM

2
))

kA < RCM

, (4.21)

where AS ,R-II is already given in (4.12).

Proof: The PDF expression given in (4.21) can be derived by following the deriva-

tion steps of (4.15). �
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Lemma 4.3.7: The PDF given T-UE is small tier associated and located at dis-

tances smaller than RCS from its nearest SBS is given as

fXS |XS<RCS
(xS) =

2πλSxS

AS ,R-III

exp (−π (λSx
2
S + λMR2

CM)) kB ≤ RCM

qB + exp
(
−π
(
λSx

2
S + λMkB

2
))

kB > RCM

.

(4.22)

Proof: The PDF expression given in (4.22) can be derived by following the deriva-

tion steps of (4.15). �

4.4 Coverage Probability

The T-UE is said to be in network coverage if the received instantaneous SINR

from its associated BS is above a predefined threshold τ . The overall network

coverage in a two-tier cellular network is the sum of coverages offered by both BS

tiers, i.e., CPi
and is expressed as

CP =
2∑

i=1

CPi
. (4.23)

Therefore, for computing the overall network coverage, individual contributions of

both macro and small tiers for both regions i.e., Xi > RCi and Xi < RCi are to

be determined. The coverage probability of tier i can be expressed as

CPi
= CPi|Xi>RCi

Ai,Xi>RCi
+ CPi|Xi<RCi

Ai,Xi<RCi
, (4.24)

where CPi|Xi>RCi
and CPi|Xi<RCi

denote the conditional coverage offered by tier

i in both regions respectively, while Ai,Xi>RCi
and Ai,Xi<RCi

represent the joint

association probabilities in both regions respectively.

Now by using [68], the probability that T-UE is in coverage, which is equivalent

to the CCDF of SINR (ΓXi
(xi)) at a distance xi from its associated ith tier BS
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can be expressed as

P[ΓXi
(xi) > τ ] = exp

(
−τσ2

Pil (xi)

) ∏
i ε {φM,N ∪ φS,N}

LI〉

(
τ

Pil(xi)

)
, (4.25)

where l(xi) refers to the generic path loss function, while LI〉 denotes the Laplace

transform of cumulative interference received at T-UE due to both the inter-tier

and co-tier BSs that are operating at frequency channel N .

4.4.1 Coverage Probability of T-UE Associated with Macro

Tier

For a two-tier NuHCN, the T-UE can associate with macro tier when its distance

is either greater or smaller than the RCM . However, it is important to note that

when the distance between T-UE and nearest MBS is smaller than RCM then in

that scenario the T-UE is forced to associate with that MBS. Meanwhile, if the

distance between T-UE and nearest MBS is greater than RCM , then in that case

the T-UE association decision wil be made on the highest average received power.

Therefore, conditional macro tier coverage for each of the association regions is to

be determined and is presented next.

Proposition 4.4.1: The macro tier coverage for link distance (XM) greater than

RCM corresponds to the cumulative likelihood in association regions R-II and R-

III, respectively. The resultant expression for the region XM > RCM is given as

CPM |XM>RCM
(xM) =

∞∫
RCM

2πλMxM

AM,R-II +AM,R-III

(
exp

(
−τσ2

PMηML0x
−α1M
M

)

× exp

(
−2πλMτ x2

M

N(−2 + α1M)
2F1

[
1, 1− 2

α1M

; 2− 2

α1M

;−τ
])
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×



exp
(

−2πλSτ(g1(xM ))2

N(−2+α1S) 2F1

[
1, 1− 2

α1S
; 2− 2

α1S
;− τ

BS

])
× exp (−π (λMx2

M + λSg1(xM)2)) dxM g1(xM) ≥ RCS

exp

(
−2πλS

N

(
(g0(xM ))2

2 2F1

[
1, 2

α0S
; 1 + 2

α0S
;−BS

τ

]
+

R2
CS

2 2F1

[
1, 2

α0S
; 1 + 2

α0S
;−PMηM (RCS)

α0S

PSτ(xM )α1M

]
+

PSBSτ x
α1M
M

PMηM (−2+α0S)

×
(
R2−α0S

CS

)
2F1

[
1, 1− 2

α0S
; 2− 2

α0S
;−PSBSτ(xM )α1M

PMηM (RCS)
α0S

]))
× exp

(
−π
(
λMx2

M + λSR
2
CS + λS

(
PSBS

PMηM

) 2
α0S x

2α0S
α1M
S

))
dxM g1(xM) < RCS

.

(4.26)

where g0(xM) = (PSBS/PMηM)1/α0Sx
α1M/α0S

M and

g1(xM) = (PSBSηS/PMηM)1/α1S x
α1M/α1S

M .

Proof: The macro tier coverage for link distance XM greater than RCM is given

by the following integral equation as

CPM |XM>RCM
(xM) =

∞∫
RCM

P[ΓXM|XM>RCM
(xM) > τ ] fXM |XM>RCM

(xM) dxM ,

(4.27)

where fXM |XM>RCM
(xM) is already determined in section 4.3.2 and is given in

(4.15), while P[ΓXM|XM>RCM
(xM) > τ ] is yet to be derived. The limits of integra-

tion in (4.27) are from RCM to∞, as the distance between T-UE and closest MBS

(to which the T-UE associates) is greater than RCM .

Using (4.25) and by substituting the respective parametric values, the CCDF

conditioned on XM greater than RCM can be expressed as

P[ΓXM |XM>RCM
(xM) > τ ] = exp

(
−τσ2xα1M

M

PMηML0

)
LIM

(
τ xα1M

M

PMηM

)
LIS

(
τ xα1M

M

PMηM

)
.

(4.28)

In (4.28), the cumulative effect of co-tier and inter-tier interference is to be deter-

mined and Laplace transform is used to determine their contributions. Meanwhile,

it is important to note that only those BSs from both tiers interfere with the refer-

ence link that are operating at frequency channel i.e., N . Using Campbell Mecke
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theorem and PGFL property of the PPP, the Laplace transform of co-tier inter-

ference LIM is given as

LIM

(
τ xα1M

M

PMηM

)
= exp

−2πλM

N

∞∫
xM

y

1 + (xα1M
M τ)−1 yα1M

dy

. (4.29)

The integration limits in computation of LIM in (4.29) are from xM to ∞, as

the nearest co-tier interferer must be at least farther than xM . Simplifying the

integrand in (4.29) by substituting uM = (xα1M
M τ)−2/α1M y2 and solving it gives

LIM

(
τ xα1M

M

PMηM

)
= exp

(
−2πλMτx2

M

N(−2 + α1M)
2F1

[
1, 1− 2

α1M

; 2− 2

α1M

;−τ
])

, (4.30)

where 2F1[ . ] is the well-known Gauss Hypergeometric function and (4.30) gives

the contribution of macro tier interference in CCDF conditioned on xM greater

than RCM .

Similar to (4.29), the LIS is also expressed as

LIS

(
τ xα1M

M

PMηM

)
= e

[
−2πλS

N



∞∫
g0(xM )

y

1 +
(
xα1M
M

PS

PMηM
τ
)−1

yα0S

dy g1(xM) ≤ RCS

∞∫
g1(xM )

y

1 +
(
xα1M
M

PSηS
PMηM

τ
)−1

yα1S

dy g1(xM) > RCS

]

.

(4.31)

It is clear from (4.31), that computing the received interference from neighboring

SBSs requires solving two integrals. This is because, the T-UE may associate with

macro tier both within and outside RCS while its distance from the nearest MBS

is greater than RCM . The received interference from within RCS is determined
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with integration limits g0(xM) to ∞ while the limits for the second integral are

from g1(xM) to ∞. Meanwhile, similar to (4.29), the T-UE receives interference

from only those SBSs which are operating at the frequency of its associated MBS.

Now, simplifying the integrands in (4.31) by using suitable substitutions gives

LIS

(
τ xα1M

M

PMηM

)
=



exp

(
−2πλSτ(g1(xM ))2

N(−2+α1S)

× 2F1

[
1, 1− 2

α1S
; 2− 2

α1S
;− τ

BS

])
g1(xM) ≥ RCS

exp

(
−2πλS

N

(
(g0(xM ))2

2

× 2F1

[
1, 2

α0S
; 1 + 2

α0S
;−BS

τ

]
+

R2
CS

2

× 2F1

[
1, 2

α0S
; 1 + 2

α0S
;−c2(xM)

]
+

PSηSτ x
α1M
M

PMηM (−2+α1S)

(
R2−α1S

CS

)
× 2F1

[
1, 1− 2

α1S
; 2− 2

α1S
;−c3(xM)

]))
g1(xM) < RCS

,

(4.32)

where,

c2(xM) = (PMηM(RCS)
α0S)/(PSτ(xM)α1M ) and c3(xM) =

(PSηSτ(xM)α1M )/(PMηM(RCS)
α1S).

Now by plugging the respective values of LIM and LIS in (4.27), completes the

proof of (4.26). �

Proposition 4.4.2: The macro tier coverage for link distance smaller than RCM

corresponds to the coverage likelihood in R-I. The resultant expression for the

network coverage in region XM < RCM is given as

CPM |XM<RCM
(xM) =

2πλM

(1− exp (−πλMR2
CM))

×
RCM∫
0

xM exp (− (2πλS + πλMx2
M + τσ2))

exp
(
PML0x

−α0M
M +N(−2 + α1S)

)
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×



(
− PSτηSx

α0M
M (RCM−xM )−2+α1S

PM

× 2F1

[
1, 1− 2

α1S
; 2− 2

α1S
;− PSηSx

α0M
M τ

PM (RCM−xM )α1S

])
xM ≤ RCM −RCS(

− PSτηSx
α0M
M (RCM+RCS−xM )−2+α1S

PM

× 2F1

[
1, 1− 2

α1S
; 2− 2

α1S
;− PSηSx

α0M
M τ

PM (RCM+RCS−xM )α1S

])
xM > RCM −RCS

)

× exp

[
−2πλM

N

((
−x2

M

2
2F1

[
1,

2

α0M

; 1 +
2

α0M

;−1

τ

])
+

R2
CM

2

× 2F1

[
1,

2

α0M

; 1 +
2

α0M

;−
(
RCM

xM

)α0M 1

τ

]
+

ηMτxα0M
M (RCM)2−α1M

−2 + α1M

× 2F1

[
1, 1− 2

α1M

; 2− 2

α1M

;−ηMτ(xM)α0M

(RCM)α1M

])]
dxM . (4.33)

Proof: Please refer to Appendix B.2. �

4.4.2 Coverage Probability of T-UE Associated with Small

Tier

For a two-tier NuHCN, the T-UE can associate with small tier when its distance

is either greater or smaller than the RCS. Therefore, the expressions for the

conditional coverage of small tier in each of the association regions needs to be

determined.

Proposition 4.4.3: The small tier coverage for link distance (XS) greater than

RCS corresponds to the cumulative likelihood in association region R-II and can be

expressed as

CPS |XS>RCS
(xS) =

2πλS

AS ,R-II

∞∫
RCS

xS exp

(
−τσ2

PSηSL0x
−α1S
S

)

× exp

(
−2πλSτ x2

S

N(−2 + α1S)
2F1

[
1, 1− 2

α1S

; 2− 2

α1S

;−τ
])
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×



exp
(
−π
(
λSx

2
S + λMkA

2
))

exp

(
−2πλM τBSk

2
A

N(−2+α1M )

× 2F1

[
1, 1− 2

α1M
; 2− 2

α1M
;−τBS

])
dxS kA ≥ RCM

exp
(
−π
(
λSx

2
S + λMRCM

2
))

exp

(
−2πλM τBSkDxS

2RCM
2−α1M

N(−2+α1M )

× 2F1

[
1, 1− 2

α1M
; 2− 2

α1M
;−kDτxS

α1S

RCM
α1M

])
dxS kA < RCM

,

(4.34)

where kD=PMηM/PSηS.

Proof: The expression given in (4.34) can be derived by following the derivation

steps of 4.26. �

Proposition 4.4.4: The small tier coverage for link distance (XS) smaller than RCS

corresponds to the cumulative likelihood in association region R-III. The resultant

expression for XS < RCS is given as

CPS |XS<RCS
(xS) =

2πλS

AS ,R-II +AS ,R-IV

RCS∫
0

(
xS exp

(
−τσ2

PSL0x
−α0S
S

)

× exp

[
−2πλS

N

(
−x2

S

2
2F1

[
1,

2

α0S

; 1 +
2

α0S

;−1

τ

]
+

R2
CS

2
2F1

[
1,

2

α0S

; 1 +
2

α0S

;−1

τ

(
RCS

xS

)α0S
]

+
ηSτx

α0S
S (RCS)

2−α1S

(−2 + α1S)
2F1

[
1, 1− 2

α1S

; 2− 2

α1S

;−τηSx
α0S
S

Rα1S
CS

])]

×



exp
(
−π
(
λSx

2
S + λMRCM

2
))

× exp

[
− 2πλM

N

(
PMηM τx

α0S
S (RCM )2−α1M

PS(−2+α1M )

)
×2F1

[
1, 1− 2

α1M
; 2− 2

α1M
;−PM τηMx

α0S
S

PSR
α1M
CM

] ]
dxS kB < RCM

exp

[
−2πλMBSτkB

2

N(−2+α1M ) 2F1

[
1, 1− 2

α1M
; 2− 2

α1M
;−BSτ

]]
×
(
qB + exp

(
−π
(
λSx

2
S + λMkB

2
)))

dxS kB > RCM

. (4.35)
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Proof: The expression for the conditional coverage of small tier in R-III given in

(4.35) can be similarly derived by adopting the derivation procedure of regional

macro tier coverage expressions.

Finally, the complete network coverage expression is determined from (4.23) when

the respective conditional coverage expressions of both tiers given in (4.26), (4.33),

(4.34) and (4.35) are multiplied with their respective regional association proba-

bilities.

Remark 4.4.1: It is important to note that the network coverage analysis using DS-

PLM does not introduce any additional complexity in computation, as the number

of integrals in the final expressions of the analysis carried out for both PLMs are

the same. Therefore, the DS-PLM based analysis is more useful as compared to

the SS-PLM, owing to the valuable design insights that its usage leads to without

adding significant computational complexities.

4.5 Numerical and Simulation Results

The analytical expressions for the tier association and coverage probabilities have

been derived in sections 4.3 and 4.4 respectively. In this section, the accuracy

of derived expressions for both performance metrics is validated thorough Monté

Carlo simulations. The simulation setup involves placing the T-UE at origin, while

the MBS and SBS locations are generated 106 times using independent PPPs to

ensure all possible BS location possibilities. Furthermore, for ensuring coverage-

centric SBS deployments, the SBSs are placed only in those regions where MBSs

have either poor or limited coverage. This selective SBS positioning is achieved

by assuming that the SBSs lying within the RCM of any MBS are removed or

deactivated. Hence, a thinned density of SBSs is considered for the coverage

analysis, while original density is assumed for T-AP as all SBSs were available for

UEs association. Moreover, for generating the numerical results in this chapter,

all necessary parametric values considered are as follows: PM= 53 dBm, PS= 33
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Figure 4.4: Comparison of macro T-AP against varying small tier density

dBm, RCM= 300m,RCS= 55m, BM= 0 dB, α0M = α0S= 2.7, α1M = α1S= 3.9,

L0= -32.9 dB and σ2= -104 dBm.

In order to investigate the performance of DS-PLM based two-tier NuHCN, and

for an extensive comparison, we compare the results for both performance metrics

with DS-PLM based uniform HCNs and SS-PLM based NuHCNs as well.

4.5.1 Tier Association Probability

In this subsection, the validation of macro T-AP analysis for the two-tier NuHCN

using DS-PLM is presented initially, while the estimated macro T-AP results are
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further compared with the SS-PLM based NuHCNs. Moreover, a similar compar-

ison is presented for a CRE-based UE association policy as well.

4.5.1.1 Validation of Macro T-AP Analysis and Comparison with Other

System Scenarios

For a two-tier NuHCN, a comparison of macro T-AP estimated using SS-PLM

and DS-PLM for varying the SBS densification factor (λS/λM) is depicted in Fig.

4.4(a). It can be readily observed from the figure that the analytical and simulation

results for the DS-PLM are in complete agreement with each other and thus, it

validates the correctness of T-AP analysis.

Besides this, it is also evident from the figure that the UEs association with macro

tier decreases with the increase in λS owing to the decrease in distance between

UEs and their nearby SBSs. Though, this decrease in distance certainly ensures

improved signal strength from SBSs but the SS-PLM clearly overestimates the

UEs association with small tier due to the simplistic approach of assuming a

fixed signal degradation rate for all distance ranges. Contrarily, the DS-PLM

adopts a relatively more realistic strategy based on disparate path loss, to account

for the inhomogeneous signal attenuations over varying communicating distances.

Consequently, it estimates the UEs association with any BS tier more precisely

when compared with the SS-PLM. For instance, it can be seen from the figure

that at λS = 50λM , around 34% of the UEs associate with macro tier as estimated

by SS-PLM while the DS-PLM predicts it to be 45% approximately. Thus, the

SS-PLM clearly underestimates the UE access load on macro tier. Moreover, it is

also evident from the figure that the UEs association with macro tier is dependent

on RCS size as well.

For a detailed insight of UEs association with macro tier using DS-PLM, region-

wise UEs association is plotted in Fig.4.4(b) against the varying SBS densification

factor. It can be seen from the figure that when UEs lie within the RCM of any

MBS, they associate with macro tier only without taking into consideration the

received power level from their respective nearest SBSs. While it can also be
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Figure 4.5: Comparison of macro T-AP in NuHCNs for both unbiased and
biased UE associations.

observed from the figure that UEs prefer associating with small tier whenever the

distance from the respective nearest SBS is smaller than RCS owing to the higher

received power level from them. Moreover, the UEs mostly receive higher signal

strength from their proximate MBSs at small λS values due to two major reasons

i.e., 1) difference in transmit powers of both BS tiers, 2) the distance between UEs

and their respective closest SBSs is usually greater than RCS. Consequently, the

need for effective UE steering strategies is highlighted to reduce the UE access

burden off macro tier.

4.5.1.2 Impact of SBS Biasing on T-AP in NuHCNs

The disparity in transmit power of BS tiers is the principal cause of load imbalance

between BS tiers in uniform HCNs, and it is no different in case of NuHCNs as

well. Thus, to account for this difference, static SBS biasing is employed to offload

UEs to small BS tier. It is clear from Fig. 4.5 that the SBS biasing helps in

offloading UEs to smaller tier which reduces the UE access load on macro tier.

It is also evident from the figure that SBS biasing is more effective at relatively

lower SBS densification factor. This is because at smaller values of λS/λM , the

UEs mostly lie at distances greater than RCS from their nearest SBSs. Moreover,

the transmit power disparity between both BS tiers also paves the way for macro
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tier association of UEs. Contrarily, with the consideration of SBS biasing, the

association region of SBSs remarkably enhances (as MBSs are far from SBSs)

which helps in steering of UEs towards smaller BS tier.
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Figure 4.6: Impact of SBS biasing on region-based macro T-AP in DS-PLM
based NuHCNs.

The SS-PLM usage leads to inaccurate estimation of the load served by any BS

tier especially in dense deployment scenarios. Therefore, employing SBS biasing

in conjunction with SS-PLM only adds to the error in estimation of the UE access

load served by various BS tiers. While DS-PLM is relatively more accurate in

estimating the tier load as compared to SS-PLM, hence, it lends same accuracy in

the case of biased UE-AS as well. For instance at λS =25λM with BS=10 dB, the

macro T-AP of UEs estimated by SS-PLM decreases by 33%, while in case of DS-

PLM, the macro T-AP decreases by 56%. Moreover, for determining the impact

of SBS biasing in all UE association regions of the two-tier NuHCN, Fig. 4.6 is

plotted. It is clear from the figure that whenever T-UE falls within the RCM of its

nearest MBS, increasing BS has no impact on the macro T-AP in that region. This

is because, the macro T-AP within the RCM (i.e., the inhibition region for SBSs)

is independent of the received power from nearby SBSs. Contrarily, increasing the

biasing factor when the distance between T-UE and the nearest MBS is greater

than RCM , the macro T-AP swiftly decreases owing to the increase in size of SBS

association regions. These observations categorically suggest that the utility of

employing biased UE-AS was underestimated by using SS-PLM.
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Figure 4.7: Validation of network coverage analysis against varying (a) SINR
threshold and (b) Small tier density

4.5.2 Coverage Probability

In this subsection, the validation of network coverage analysis is presented firstly

and it is followed by various comparisons of the results achieved for coverage prob-

ability through DS-PLM based NuHCNs with multiple system scenarios including

SS-PLM based uniform and NuHCNs and DS-PLM based uniform HCNs. More-

over, the individual and joint impact of incorporating SBS biasing and traditional

frequency reuse mechanisms in DS-PLM based NuHCNs is also investigated, and

it is further compared with other system scenarios as discussed above.
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4.5.2.1 Validation of Coverage Analysis

In order to validate the coverage analysis, the estimated results are plotted against

varying SINR threshold, τ and SBS densification factor, λS/λM in Fig. 4.7(a) and

Fig. 4.7(b) respectively. It is evident from both the figures that the analytical

results are reasonably consistent with the simulation results. Hence, the derived

analytical expression for coverage probability can be used to predict the perfor-

mance trends and in obtaining critical system design insights as well.
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Figure 4.8: Network coverage against varying SBS densification factor
(λS/λM )

4.5.2.2 Performance comparison of network coverage with other sys-

tem scenarios

The impact of varying SBS densification factor (λS/λM) on the network coverage

estimated through different system scenarios based on SS-PLM and DS-PLM is

depicted in Fig. 4.8. It can be observed from the figure that the network coverage

in case of SS-PLM based uniform HCNs is independent of variation in λS. This

is because, the increase in received signal strength due to the increasing SBS

density is counter balanced by the rise in interfering signal strength. Contrarily,

given better accuracy of DS-PLM in estimating the path loss especially in dense

networks, the SINR distribution in DS-PLM based uniform HCNs is found to be
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a monotonically decreasing function of λS. However, with the consideration of

SBS thinning (i.e., dependent), the strongest interferers in the vicinity of MBSs

are muted and as a result, the overall network coverage improves in both SS-PLM

and DS-LM scenarios. For instance at λS = 50λM and τ =0 dB, thinning out

the selective SBSs improves the coverage by 6% in SS-PLM scenario while by

9% in DS-PLM. Hence, using SS-PLM underestimates the benefit associated with

non-uniform deployment of SBSs in HCNs.
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Figure 4.9: Coverage comparison for SBS-biasing in uniform HCNs and
NuHCNs

4.5.2.3 Impact of SBS biasing and Frequency Reuse on Network Cov-

erage

Given better accuracy of DS-PLM in estimating the path loss in dense HCNs,

and for a fair assessment of determining the impact of utilizing SBS biasing and

interference management on network coverage, Fig. 4.9 and Fig. 4.10 depict a

region-wise macro-tier coverage estimated using DS-PLM for both uniform HCNs

and NuHCNs.

It can be observed from Fig. 4.9 that adopting biased UE-AS is advantageous

in NuHCNs, as the overall network coverage increases. Contrarily, the coverage

reduces with the consideration of biased UE-AS in uniform HCNs as the offloaded

UEs receive strong interference from their nearby MBSs. For instance at λS=50λM ,
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τ =0 dB, and BS= 5 dB, the macro-tier cell-edge region coverage increases by

around 14% while the overall network coverage in NuHCNs improves by 10%.

The non-uniform deployment of SBSs achieved through muting the SBSs within

the RCM of each MBS has ensured that only those UEs are offloaded to small-tier

BSs which are located far away from their nearest MBS and as a result, receive

weak interference from their nearby MBSs.

To account for the excessive interference received at UEs either due to the densifi-

cation of SBSs or UE offloading, traditional frequency reuse mechanism has been

considered. Fig. 4.10 illustrates that with the usage of frequency reuse mecha-

nism, the number of potential interferers is decreased and as a result, the overall

coverage in both uniform HCNs and NuHCNs increases. However, using the fre-

quency reuse mechanism in NuHCNs yields more gain when compared with the

uniform HCNs. For instance at λS= 50λM , τ= 0 dB and N= 3, the network cov-

erage estimated using DS-PLM in NuHCNs is 3% higher than the uniform HCNs.

Moreover, it can also be observed that the consideration of frequency reuse has

approximately same impact on both the cell-center and cell-edge regions of macro

tier.
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Figure 4.10: Comparison of the evaluated network coverage with frequency
reuse consideration in uniform HCNs and NuHCNs

To highlight the impact of jointly considering the incorporation of both SBS biasing

and frequency reuse mechanisms on the region-wise macro-tier coverage estimated

using DS-PLM for both uniform HCNs and NuHCNs, Fig. 4.11 is presented.

It can be seen from the figure that the joint incorporation of both mechanisms
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in conjunction with non-uniform deployment of SBSs results in a 4% increase in

the overall network coverage. Moreover, it is also evident from the figure that the

joint incorporation of both mechanisms have a little impact on macro-tier coverage

for cell-center region, while in case of cell-edge region, the coverage improves by

around 5%.
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Figure 4.11: Comparison of the estimated network coverage with integration
of SBS biasing and frequency reuse in uniform HCNs and NuHCNs

4.6 Conclusion

In this chapter, the downlink performance of a two-tier NuHCN has been analyzed

using a more realistic PLM based on the dual-slope to effectively account for the

disparate link distances between the communicating stations. The SBSs located

within the RCM of any MBS have been assumed to be muted, and this correlation

between the locations of MBSs and SBSs lead to improvement in the coverage

performance of dense HCNs. Meanwhile, the presented model of NuHCNs has

been further studied with the consideration of SBS offloading and interference

mitigation mechanisms. The obtained results of the proposed scheme have been

compared with the uniform and non-uniform HCNs whose performance have been

evaluated using SS-PLM and DS-PLM respectively. It has been observed that the

usage of SS-PLM leads to inaccurate estimation of the benefits associated with

UE offloading and interference mitigation mechanisms in NuHCNs.



Chapter 5

Conclusion and Future Research

Directives

In this chapter, the general conclusions drawn from this dissertation are summa-

rized and some potential extensions to this work are briefly discussed as well.

5.1 Conclusion

In this thesis, we have investigated the coverage performance of densely deployed

HCNs that additionally consider the load balancing and interference management

mechanisms as well. It has been found that the densification of SBSs causes a

decrease in the network coverage due to the excessive interference received by the

UEs. Consequently, it is essential to utilize interference management schemes that

effectively account for the excessive interference received by the UEs in the densely

deployed cellular networks. Meanwhile, it is pertinent to mention that the ran-

domness associated with the BS positions substantially increases with the dense

deployment of SBSs, and as a result, this increased randomness necessitates adopt-

ing more tractable network modeling strategies that can evade the limitations of

existing approaches. Additionally, the existence of disparate link distances is also

108
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a common phenomenon in the densely deployed cellular networks; hence, employ-

ing SS-PLM to evaluate the performance of dense networks leads to significant

inaccuracies. Therefore, in this dissertation, the downlink performance analysis of

dense HCNs has been carried out using the tools from stochastic geometry while

DS-PLM has been used to estimate the path loss. The following passages pro-

vide a chapter-wise conclusion of the research work presented in chapters 3 and 4

respectively.

In chapter 3, DS-PLM has been employed to study and analyze the downlink

performance of a two-tier dense HCN with uniformly distributed BS tiers having

disparities in transmit power and infrastructure density. The adopted HCN model

permits flexible UE association based on the range extension of SBSs to avoid

overburdening of the macro tier while the traditional frequency reuse mechanism

has been considered to reduce the excessive interference received by the UEs.

Analytical expressions for the tier association and coverage probability have been

derived for a randomly chosen user using the tools from stochastic geometry and

validated through simulations. With the help of numerical results, a thorough

comparison of the evaluated network performance using both SS-PLM and DS-

PLM has been carried out for each performance metric and the observed results

have clearly reinforced the limited suitability of the usage of SS-PLM in the densely

deployed cellular networks. For instance, the usage of SS-PLM overestimated the

benefits associated with the densification of SBSs and the range extension of SBSs

in the tier association probability. Meanwhile, the estimated network coverage

using SS-PLM demonstrated a scale-invariant behavior from any change in the SBS

density, i.e., the densification of SBSs had no effect on the coverage probability.

However, when the network coverage was estimated using DS-PLM, it was found

to be a monotonically decreasing function of SBS density; hence highlighting the

need for employing efficient interference management mechanisms. Finally, it has

been concluded that the joint consideration of SBS biasing and the traditional

frequency reuse mechanisms significantly improve the coverage performance of

dense HCNs while the benefits associated with their joint consideration can be

accurately estimated using the DS-PLM.
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In chapter 4, the usage of DS-PLM has been extended to the case of non-uniformly

distributed BS tiers in dense HCNs. It was observed in chapter 3 that a more re-

alistic assessment of the network performance of the densely deployed cellular

networks can be obtained by employing DS-PLM, owing to its ability to accu-

rately estimate the path loss in the disparate desired/interfering link distance

scenarios. Keeping in view the transmit power disparity between MBSs and SBSs,

the SBSs that fall within the critical distance of any MBS have been proposed

to be muted, as their likelihood of being active BSs is negligible. By introducing

this partial spatial correlation between the locations of MBSs and SBSs, the in-

terference received by macro associated users residing within the MBS cell-center

region reduces significantly which leads to a substantial improvement in the net-

work coverage. This coverage-centric based HCN model has been further studied

with the joint consideration of range extension of SBSs and interference mitiga-

tion mechanisms. Mathematical expressions for the tier association and coverage

probability have been derived for a randomly chosen user using the tools from

stochastic geometry and validated through simulations. A rigorous comparison of

the evaluated network performance using both SS-PLM and DS-PLM has been

carried out for each performance metric and the observed results exhibit that the

usage of SS-PLM leads to underestimation of the benefits associated with UEs

offloading to lightly loaded BS tier and interference abating mechanisms in the

densely deployed non-uniform HCNs.

5.2 Future Work

There are several possible extensions of the presented research work in this thesis,

some of which are briefly discussed below:

Analyzing the network performance of finite cellular networks: A possi-

ble extension of the presented work involves estimating the network performance

of a finite-sized cellular network, as practically the BSs are deployed in a finite

region. Keeping in view the analytical tractability, we had assumed the location
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of BSs to be modeled as distinct homogeneous PPPs in an infinite region. Owing

the translation-invariant and isotropic properties of the homogeneous PPPs, the

estimated network performance is location-independent. Consequently, the statis-

tical characteristics derived at the typical user device are same for all the other

user devices. However, the network performance in finite networks is sensitive to

the location of user devices and their distance from the deployed network infras-

tructures. Hence, the users located in the near vicinity of BS cell-center region

experience different network characteristics to those residing in the cell-boundary

regions. Therefore, for precisely capturing the estimated network performance in

a finite region, it is important to derive the expressions for metrics of interest by

removing the assumption of PPP based abstraction of the BS locations.

Performance analysis cellular networks with decoupled access enabled

Traditionally, the user devices have been forced to associate with a single BS for

their uplink and downlink services. However, the exponential upsurge in mobile

data usage and recent trends in network densification suggest employing more

flexible user association strategies, e.g., the decoupled access. With the evolu-

tion of heterogeneity in the wireless cellular networks, a user device can access

the deployed network infrastructure through multiple BSs and thus may choose

to associate with different BSs for its downlink and uplink, respectively. This

amenity of choosing amongst multiple BSs for downlink and uplink is termed as

the Decoupled UL/DL (DUDe) access. It has been reported in numerous recent

studies that the network performance improves with the consideration of decou-

pled access. The work presented in this thesis considers a coupled access for the

user devices, i.e., a UE is forced to associate with a single BS for both its uplink

and the downlink. Hence, the presented work can be extended by enabling the

decoupled association of the UEs.

Impact of the anisotropic path loss on the coverage performance of

dense cellular networks In conventional cellular networks, it was generally as-

sumed that the BS locations were relatively regular while the locations of user

devices were random. However, with the widespread success of network densi-

fication in meeting the capacity demands of the emerging cellular networks, the
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randomness associated with locations of BSs has drastically increased. Meanwhile,

various studies have shown that the BS locations in both single-tier and multi-tier

cellular networks can be accurately modeled by the usage of various point process

models. It is interesting to note that the coverage area of the deployed cellular

networks using these models is generally obtained through the usage of Poisson-

Voronoi tessellation (PVT) method. However, it is pertinent to mention that

the impact of environment on the signal propagation is not considered in the PVT

based model, and hence smooth cellular coverage boundaries are obtained through

it. Contrarily, in practical cellular networks, signals experience the anisotropic na-

ture of the path loss fading and as a result, the cellular coverage boundaries are

extremely irregular shaped. Moreover, the network performance is greatly im-

pact by the network geometry. Therefore, it would be an interesting extension

of the presented work to consider the impact of environment on wireless signal

propagation and estimate the network performance while using the DS-PLM.

The studies presented in this thesis can be extended by jointly considering more

practical load-aware UE association strategies and spectrally efficient interference

management schemes. Similarly, the proposed work can also be extended by em-

ploying dependent/repulsive point processes to better characterize the locations

of BSs in a multi-tier cellular network scenario. Another possible extension of the

presented work involves evaluating the network performance when user devices are

located in clusters in any specific area e.g., in shopping malls or stadiums.
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Appendix A

Proofs for Chapter No. 3

A.1 Proof of Macro T-AP in R-II

The probabilistic event defining joint association probability of T-UE with macro

tier in R-II is given as

AM,R-II = P
[
Pr

M > Pr
S,R-II

]
, (A.1)

where Pr
M and Pr

S are received powers from the closest macro and small tier BSs

respectively. Similar to R-I, the received powers at T-UE using DS-PLM from

nearest both tier BSs in R-II are Pr
M = PMηML0x

−α1M
M and Pr

S = PSBSL0x
−α0S
S

respectively. Inserting them in (A.1) to get

AM,R-II = P
[
PMBMηML0x

−α1M
M > PSBSL0x

−α0S
S , R-II

]
, (A.2)

rearranging the terms in (A.2) gives

AM,R-II = P

[
xS >

(
PSBS

PMηM

) 1
α0S

x
α1M
α0S
M , R-II

]
. (A.3)

133



Appendices 134

From Table 3.1, we already know the constraints on XM and XS in region R-II.

Now by conditioning on XM , (A.3) takes the integral form

AM,R-II =

∞∫
RCM

P [(xS > γ ∩ xS < RCS),R-II|xM ] fXM
(xM) dxM , (A.4)

where γ = (PSBS/PMηM)1/α0S xα1M
M /α0S and fXM

(xM) is already given in (3.3).

The integration limits in (A.4) are from RCM to∞, as XM is constrained over the

same range as well. Now, simplifying (A.4) by using (3.2) gives the desired ex-

pression for association probability of T-UE with macro tier in R-II and completes

the proof of (3.12).

A.2 Proof of Macro T-AP in R-III

The probabilistic event defining joint association probability of T-UE with macro

tier in R-III is given as

AM,R-III = P
[
Pr

M > Pr
S,R-III

]
, (A.5)

where Pr
M and Pr

S are received powers from the closest macro and small tier

BSs respectively. Similar to R-I and R-II, the received powers at T-UE using

DS-PLM from nearest both tier BSs in R-III are Pr
M = PML0x

−α0M
M and Pr

S =

PSBSηSL0x
−α1S
S respectively. Inserting them in (A.5) to get

AM,R-III = P
[
PMBML0x

−α0M
M > PSBSηSL0x

−α1S
S , R-III

]
, (A.6)

rearranging the terms in (A.6) gives

AM,R-III = P

[
xS >

(
PSBSηS
PM

) 1
α1S

x
α0M
α1S
M , R-III

]
. (A.7)
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From Table 3.1, the constraints on XM and XS in region R-III are already known.

Now by conditioning on XM , (A.7) takes the integral form

AM,R-III =

RCM∫
0

P [(xS > κ ∩ xS > RCS),R-III|xM ] fXM
(xM) dxM , (A.8)

where fXM
(xM) is already given in (3.3). The integration limits in (A.8) are from 0

to RCM , as XM is constrained over the same range as well. Now, simplifying (A.8)

by using (3.2) gives the desired expression for association probability of T-UE with

macro tier in R-III and completes the proof of (3.14).

A.3 Proof of Macro T-AP in R-IV

Similar to the proofs of macro tier association in R-I,R-II and R-III, we once again

define a probabilistic event for defining joint association probability of T-UE with

macro tier in R-IV as

AM,R-IV = P
[
Pr

M > Pr
S,R-IV

]
, (A.9)

where Pr
M and Pr

S are received powers from the closest macro and small tier

BSs respectively. The received powers at T-UE using DS-PLM from nearest both

tier BSs in R-IV are Pr
S = PML0x

−α0M
M and Pr

S = PSBSL0x
−α0S
S respectively.

Inserting them in (A.9) to get

AM,R-IV = P
[
PML0x

−α0M
M > PSBSL0x

−α0S
S , R-IV

]
, (A.10)

rearranging the terms in (A.10) gives

AM,R-IV = P

[
xS >

(
PSBS

PM

) 1
α0S

x
α0M
α0S
M , R-IV

]
. (A.11)
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From Table 3.1, we already know the constraints on XM and XS in region R-IV.

Now by conditioning on XM , (A.11) takes the integral form

AM,R-IV =

RCM∫
0

P

[(
xS >

(
PSBS

PM

) 1
α0S

x
α0M
α0S
M ∩ xS < RCS

)
,R-IV|XM

]
fXM

(xM) dxM ,

(A.12)

where fXM
(xM) is already given in (3.3). The integration limits in (A.12) are from

0 to RCM , as XM is constrained over the same range as well. Now, simplifying

(A.12) by using (3.2) gives the desired expression for association probability of

T-UE with macro tier in R-IV and completes the proof of (3.16).

A.4 Proof of the Distance PDF between T-UE

and Nearest MBS when Distance is Smaller

than RCM

For a macro tier associated T-UE which is located at a distance smaller than RCM ,

the likelihood of event XM > xM is given as

P [XM > xM ] = P [XM > xM | (AM, XM < RCM)] . (A.13)

By converting the right hand side (R.H.S) of (A.13) into joint probability, we get

P [XM > xM ] =
P
[
XM > xM , Pr

M > Pr
S, XM < RCM

]
P
[
Pr

M > Pr
S, XM < RCM

] . (A.14)

In (A.14), the sub-event
[
Pr

M > Pr
S, XM < RCM

]
can be expanded based on the

knowledge of association probability regions i.e., R-III and R-IV to get

[
Pr

M > Pr
S, XM < RCM

]
=
[
Pr

M > Pr
S, XM < RCM , XS > RCS

]
∪
[
Pr

M > Pr
S, XM < RCM , XS < RCS

]
. (A.15)
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The R.H.S of (A.15) refers to two disjoint events. By using (A.5) and (A.9), (A.15)

can be rewritten as

[
Pr

M > Pr
S, XM < RCM

]
= AM,R-III +AM,R-IV. (A.16)

Now by inserting (A.16) into (A.14) and simplifying to get

P [XM > xM ] =


{

P [XM > xM , (XS > κ,XM < RCM )] XS ≥ RCS

P [XM > xM , (XS > gA, XM < RCM )] XS < RCS

AM,R-III +AM,R-IV

 , (A.17)

using PDF of XM , (A.17) can be expressed as

P [XM > xM ] =



RCM∫
xM

P [(XS > κ,XS ≥ RCS)] fXM
(xM) dxM

AM,R-III+AM,R-IV
κ ≥ RCS

RCM∫
xM

P [(XS > gA, XS < RCS)] fXM
(xM) dxM

AM,R-III+AM,R-IV
κ < RCS

.

(A.18)

The desired PDF of XM conditioned on distance between T-UE and associated

MBS smaller than RCM is obtained by simplification of A.18 to complete the proof

of (3.26).



Appendices 138

A.5 Proof of the Distance PDF between T-UE

and Nearest SBS when Distance is Smaller

than RCS

When the T-UE is associated with smaller tier and its distance from the connected

SBS is shorter than RCS, then the likelihood of event XS > xS is given as

P [XS > xS] = P [XS > xS| (AS , XS < RCS)] . (A.19)

By converting the right hand side (R.H.S) of (A.19) into joint probability, we get

P [XS > xS] =
P
[
XS > xS, Pr

S > Pr
M , XS < RCS

]
P
[
Pr

S > Pr
M , XS < RCS

] . (A.20)

In (A.20), the sub-event
[
Pr

S > Pr
M , XS < RCS

]
can be expanded based on the

knowledge of association probability regions i.e., R-III and R-IV to get

[
Pr

S > Pr
M , XS < RCS

]
=
[
Pr

S > Pr
M , XS < RCS, XM > RCM

]
∪
[
Pr

S > Pr
M , XS < RCS, XM < RCM

]
. (A.21)

The R.H.S of (A.21) refers to two mutually exclusive events that cannot occur at

the same time and can be rewritten as

[
Pr

S > Pr
M , XS < RCS

]
= AS ,R-II +AS ,R-IV. (A.22)

Now by inserting (A.22) into (A.20) to get

P [XS > xS] =


P[XS>xS ,(XM>kB ,XS<RCS)]

AS ,R-II+AS ,R-IV
kB ≥ RCM

P[XS>xS ,(XM>qA,XS<RCS)]
AS ,R-II+AS ,R-IV

kB < RCM

, (A.23)
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using PDF of XS, (A.23) can be expressed as

P [XS > xS] =



RCS∫
xS

P [(XM > kB, XM > RCM)] fXS
(xS) dxS

AS ,R-II+AS ,R-IV
kB ≥ RCM

RCS∫
xS

P [(XM > qA, XM < RCM)] fXS
(xS) dxS

AS ,R-II+AS ,R-IV
kB < RCM

.

(A.24)

By simplifying (A.24), the desired PDF of XS conditioned on the distance between

T-UE and associated SBS shorter than RCS is obtained to complete the proof of

(3.34).

A.6 Proof of Macro Tier Coverage in Region XM <

RCM

The integral form of macro tier coverage in the region XM < RCM is given as

CPM |XM<RCM
(xM) =

RCM∫
0

P[ΓXM|XM<RCM
(xM) > τ ] fXM |XM<RCM

(xM) dxM ,

(A.25)

where fXM |XM<RCM
(xM) is already determined in section 3.3.2 and is given in

(3.26), while P[ΓXM|XM<RCM
(xM) > τ ] is yet to be derived. The limits of integra-

tion in (A.25) are from 0 to RCM as the T-UE lies within the RCM of its closest

MBS.
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After substituting suitable parametric values in (3.38), the conditioned macro tier

CCDF given xM smaller than RCM can be expressed as

P[ΓXM|XM<RCM
(xM) > τ ] = exp

(
−τσ2

PML0x
−α0M
M

)
LIM

(
−τ xα0M

M

PM

)
LIS

(
−τ xα0M

M

PM

)
.

(A.26)

In region xM smaller than RCM , the T-UE can possibly receive co-tier interference

from MBSs operating at frequency channel N and located at distance both greater

and smaller than RCM . Therefore, LIM for xM smaller than RCM contains two

integrals in its expression

LIM

(
−τ xα0M

M

PM

)
= exp

(
−2πλM

N

( RCM∫
xM

y

1 + (xα0M
M τ)−1 yα0M

dy

+

∞∫
RCM

y

1 + (xα0M
M ηMτ)−1 yα1M

dy

))
. (A.27)

Solving the integrations in (A.27), we get

LIM

(
−τ xα0M

M

PM

)
= exp

[
−2πλM

N

((
−x2

M

2
2F1

[
1,

2

α0M

; 1 +
2

α0M

;−1

τ

])
+

R2
CM

2
2F1

[
1,

2

α0M

; 1 +
2

α0M

;−
(
RCM

xM

)α0M 1

τ

]
+

ηMτxα0M
M (RCM)2−α1M

−2 + α1M
2F1

[
1, 1− 2

α1M

; 2− 2

α1M

;−ηMτ(xM)α0M

(RCM)α1M

])]
. (A.28)

Similarly, the inter-tier interference in region xM smaller than RCM may also come

from two distance ranges. Thus, resulting in two integrals for determining of LIS

as well. The limits of integration for computing interference from SBSs lying at

distance smaller than RCS are gA to RCS, while for interferers lying at distance

farther than RCS are RCS to ∞.



Appendices 141

The integral form of inter-tier interference is given as

LIS

(
−τ xα0M

M

PM

)
= exp

−2πλS

N

 RCS∫
gA

y

1 +
(
xα0M
M

PS

PM
τ
)−1

yα0S

dy




+ exp

−2πλS

N

 ∞∫
RCS

y

1 +
(
xα0M
M

PSηS
PM

τ
)−1

yα1S

dy


 , (A.29)

solving integrations in (A.29) gives

LIS

(
−τ xα0M

M

PM

)
= exp

[
−2πλS

N

(
−g2A

2
2F1

[
1,

2

α0S

; 1 +
2

α0S

;−BS

τ

]
+

R2
CS

2
2F1

[
1,

2

α0S

; 1 +
2

α0S

;− PMRα0S
CS

PSx
α0M
M τ

]
+

PSηSτx
α0M
M R2−α1S

CS

PM (−2 + α1S)
2F1

[
1, 1− 2

α1S

; 2− 2

α1S

;−PSηSx
α0M
M τ

PMRα1S
CS

])]
, (A.30)

The resultant expression for macro tier contribution in CCDF of received SINR

for xM smaller than RCM is obtained by inserting (A.28) and (A.30) in (A.26) to

get

P[ΓXM|XM<RCM
(xM) > τ ] = exp

(
−τσ2

PML0x
−α0M
M

)
exp

[
−2πλS

N

(
−g2A

2

× 2F1

[
1,

2

α0S

; 1 +
2

α0S

;−BS

τ

]
+

R2
CS

2
2F1

[
1,

2

α0S

; 1 +
2

α0S

;− PMRα0S
CS

PSx
α1M
M τ

]
+

PSηSτx
α0M
M R2−α1S

CS

PM (−2 + α1S)
2F1

[
1, 1− 2

α1S

; 2− 2

α1S

;−PSηSx
α0M
M τ

PMRα1S
CS

])]

× exp

[
−2πλM

N

((
−x2

M

2
2F1

[
1,

2

α0M

; 1 +
2

α0M

;−1

τ

])
+

R2
CM

2
2F1

[
1,

2

α0M

; 1 +
2

α0M

;−
(
RCM

xM

)α0M 1

τ

]
+

ηMτxα0M
M R2−α1M

CM

−2 + α1M
2F1

[
1, 1− 2

α1M

; 2− 2

α1M

;−ηMxα0M
M τ

Rα1M
CM

])]
. (A.31)

Finally by inserting (A.31) into (A.25), we get the desired expression for macro

tier coverage in R2 to complete the proof of (3.47).
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Proofs for Chapter No. 4

B.1 Proof of T-UE Association with Macro-tier

in R-III

The joint association probability of T-UE with macro tier in R-III is given by the

following probabilistic event

AM,R-III = P
[
Pr

M > Pr
S,R-III

]
, (B.1)

where Pr
M and Pr

S are received powers from the nearest macro and small tier

BSs respectively. By using DS-PLM, the averaged received powers from the

respective nearest BSs of both tiers in R-III are Pr
M = PMηML0x

−α1M
M and

Pr
S = PSBSL0x

−α0S
S respectively. Inserting them in (B.1) to get

AM,R-III = P
[
PMηML0x

−α1M
M > PSBSL0x

−α0S
S , R-III

]
, (B.2)

rearranging the terms in (B.2) gives

AM,R-III = P

[
xS >

(
PSBS

PMηM

) 1
α0S

x
α1M
α0S
M , R-III

]
. (B.3)
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From Table 4.1, we already know the constraints on XM and XS in R-III, and

based on those (B.3) takes the integral form as

AM,R-III =

∞∫
RCM

P

[
(xS >

(
PSBS

PMηM

) 1
α0S

x
α1M
α0S
M ∩ xS > RCS),R-III

]
fXM

(xM) dxM ,

(B.4)

where fXM
(xM) is already given in (4.4). The integration limits in (B.4) are from

RCM to ∞, as XM is constrained over the same range as well. Now, simplifying

(B.4) by using (4.3) gives the desired expression for association probability of

T-UE with macro tier in R-III and completes the proof of (4.13).

B.2 Proof of the Macro Tier Coverage when the

Distance between T-UE and its Associated

MBS is Smaller than RCM

The integral form of the macro tier coverage in region R-I is given as

CPM |XM<RCM
(xM) =

RCM∫
0

P[ΓXM|XM<RCM
(xM) > τ ] fXM |XM<RCM

(xM) dxM , (B.5)

where fXM |XM<RCM
(xM) is already determined in section 4.3.2 and is given in

(4.20), while P[ΓXM|XM<RCM
(xM) > τ ] is yet to be derived. The limits of integra-

tion in (B.5) are from 0 to RCM as the T-UE lies at distances smaller than RCM

of its closest MBS.

The conditioned macro tier CCDF given xM smaller than RCM can be expressed

with the help of (4.25) as

P[ΓXM|XM<RCM
(xM) > τ ] = exp

(
−τσ2

PML0x
−α0M
M

)
LIM

(
−τ xα0M

M

PM

)
LIS

(
−τ xα0M

M

PM

)
.

(B.6)
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In region xM smaller than RCM , the T-UE can possibly receive co-tier interference

from MBSs operating at frequency channel N and located at distances both greater

and smaller than RCM . Therefore, LIM for xM smaller than RCM contains two

integrals in its expression

LIM

(
−τ xα0M

M

PM

)
= exp

(
−2πλM

N

( RCM∫
xM

y

1 + (xα0M
M τ)−1 yα0M

dy

+

∞∫
RCM

y

1 + (xα0M
M ηMτ)−1 yα1M

dy

))
. (B.7)

Solving the integration in (B.7), we get

LIM

(
−τ xα0M

M

PM

)
= exp

[
−2πλM

N

((
−x2

M

2
2F1

[
1,

2

α0M

; 1 +
2

α0M

;−1

τ

])
+

R2
CM

2
2F1

[
1,

2

α0M

; 1 +
2

α0M

;−
(
RCM

xM

)α0M 1

τ

]
+

ηMτxα0M
M (RCM)2−α1M

−2 + α1M
2F1

[
1, 1− 2

α1M

; 2− 2

α1M

;−ηMτ(xM)α0M

(RCM)α1M

])]
. (B.8)

The integration limits for determining the inter-tier interference in region xM

smaller than RCM is a little tricky. This is because, we need to ensure that

the T-UE associates with MBS when it lies inside the RCM of its closest MBS.

Moreover, given xM < RCM , there is a very little likelihood that the T-UE may

still receive better signal strength from SBSs residing near the RCM boundary of

MBS. Therefore, to avoid such a scenario, we take small tier interference with

reference to xM , i.e., xM ≤ (RCM −RCS) or xM > (RCM −RCS).

The integral form of inter-tier interference is given as
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LIS

(
−τ xα0M

M

PM

)
= exp

(
−2πλS

N

×



 ∞∫
(RCM−xM )

y

1 +
(
xα0M
M

PSηS
PM

τ
)−1

yα1S

dy

 xM ≤ RCM −RCS ∞∫
(RCM+RCS−xM )

y

1 +
(
xα0M
M

PSηS
PM

τ
)−1

yα1S

dy

 xM > RCM −RCS

)
.

(B.9)

Simplifying (B.9) by using appropriate substitution to get

LIS

(
−xα0M

M τ

PM

)
= exp

(
−2πλS

N(−2 + α1S)

×



(
− PSτηSx

α0M
M (RCM−xM )−2+α1S

PM

× 2F1

[
1, 1− 2

α1S
; 2− 2

α1S
;− PSηSx

α0M
M τ

PM (RCM−xM )α1S

])
xM ≤ RCM −RCS(

− PSτηSx
α0M
M (RCM+RCS−xM )−2+α1S

PM

× 2F1

[
1, 1− 2

α1S
; 2− 2

α1S
;− PSηSx

α0M
M τ

PM (RCM+RCS−xM )α1S

])
xM > RCM −RCS

)
.

(B.10)

The resultant expression for macro tier contribution in CCDF of received SINR

for xM smaller than RCM is obtained by inserting (B.8) and (B.10) in (B.6) to get

P[ΓXM|XM<RCM
(xM) > τ ] = exp

(
−τσ2

PML0x
−α0M
M

)
exp

(
−2πλS

N(−2 + α1S)
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×



(
− PSτηSx

α0M
M (RCM−xM )−2+α1S

PM

× 2F1

[
1, 1− 2

α1S
; 2− 2

α1S
;− PSηSx

α0M
M τ

PM (RCM−xM )α1S

])
xM ≤ RCM −RCS(

− PSτηSx
α0M
M (RCM+RCS−xM )−2+α1S

PM

× 2F1

[
1, 1− 2

α1S
; 2− 2

α1S
;− PSηSx

α0M
M τ

PM (RCM+RCS−xM )α1S

])
xM > RCM −RCS

)

× exp

[
−2πλM

N

((
−x2

M

2
2F1

[
1,

2

α0M

; 1 +
2

α0M

;−1

τ

])
+

R2
CM

2
2F1

[
1,

2

α0M

; 1 +
2

α0M

;−
(
RCM

xM

)α0M 1

τ

]
+

ηMτxα0M
M (RCM)2−α1M

−2 + α1M
2F1

[
1, 1− 2

α1M

; 2− 2

α1M

;−ηMτ(xM)α0M

(RCM)α1M

])]
. (B.11)

Lastly by inserting (B.11) into (B.5), we get the desired expression for macro tier

coverage in R-I to complete the proof of (4.33).
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