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Abstract

Hybrid synchronization control of dynamical networks with uncertain parameters

has increasing importance for the last two decades. A key motivation for this

research comes from the fact that chaotic systems pose challenging circumstances

for control design engineers. Chaotic systems are very sensitive to their initial con-

ditions, a slight perturbation in the initial conditions leads to a very significant

variation in the steady-state response of these systems. The hybrid synchroniza-

tion of these kinds of systems in an interconnected network is of significant interest

from a control point of view.

In this thesis, the hybrid synchronization control problem of the dynamical net-

works in the presence of uncertain parameters is investigated using adaptive inte-

gral sliding mode control (ISMC) and smooth super twisting algorithm (SSTA). To

apply the adaptive ISMC, the error system is transformed into a special arrange-

ment comprising of a nominal portion and a few unknown items. The unknown

items are gauged adaptively. The error system is stabilized using ISMC. The

designed controller for the error system comprises of both the nominal and com-

pensatory control. Lyapunov stability theorem is employed to derive the adapted

laws and compensator controllers.

The first part of the thesis deals with the hybrid synchronization control of a

dynamical network of non-identical and identical chaotic systems connected in

the ring topology by assuming the unknown parameters. The proposed control

algorithm is employed onto a network of three different chaotic systems and then

it is applied to a dynamical network of four identical dynamical systems. In the

second part of this thesis, hybrid synchronization control is investigated for the

dynamical network of complex chaotic systems connected in a ring topology. The

proposed control algorithm is employed onto complex chaotic permanent magnet

synchronous motors. In the last part of this thesis, Hybrid synchronization control

is investigated for neural networks by assuming the uncertain parameters. The

proposed control algorithm is applied to a 3-cell cellular neural network.
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This dissertation primarily focuses on the design and application of adaptive ISMC

and SSTA to investigate hybrid synchronization of dynamical networks of chaotic

systems in the presence of unknown parameters. For this purpose, control laws

are formulated using Lyapunov stability analysis. In all the cases, errors dynamics

are converging to zero. The convergence of error dynamics to zero yields the con-

vergence of systems states i.e the states of all the chaotic systems connected in the

network are synchronized for synchronization scenario and are anti-synchronized

for the anti-synchronization scenario. Moreover, the uncertain parameters are con-

verging to their true values. Numerical simulations results support the validation

of the proposed control algorithms.
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Chapter 1

Introduction

In this chapter, an introduction of the research work carried out in this disser-

tation is described. After discussing the background, motivation for this work is

developed. The research problem and objectives are clearly defined and then the

novel contribution of this dissertation is presented. Finally, a brief overview of

this dissertation is presented.

1.1 Background and Motivation

The Newtonian philosophy states that the future can be determined by the present

state of the universe. The belief in Newtons philosophy is stated by Laplace: We

ought to regard the present state of the universe as the effect of the past and

the cause of the future. This opinion is supported by Newton’s state of the art

equations of motion, which claims that initial conditions play a major role in

finding the solutions for future and past.

The works presented by Birkhoff [1, 2], Poincare [3], Smalle and others, have stated

that many beliefs on natural phenomena are erroneous. The analysis of the equa-

tions of motions presented by Newton predicts the future behavior of dynamical

systems. There are several natural systems which exhibit a strong dependency

on their initial conditions; orbits of typical points in close proximity go far away

1
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Figure 1.1: Phase portrait of Lorenz attractor

under the influence of system dynamics. Consequently, future dynamics cannot

be predicted for a large time span. Such dynamical aggression characterizes de-

terministic chaos. Chaotic phenomena have been widely investigated in numerous

fields of physical sciences [4, 5], economy [6], ecology [7] and applied engineer-

ing [8]. A non-linear system is chaotic if it comprises of following characteristics:

boundedness, infinite recurrence and sensitive dependency on initial conditions

[9]. As an example, a Lorenz chaotic attractor on phase portrait is depicted in

Fig.1.1. Chaotic systems are different as compared to uncertain systems. Uncer-

tain systems mean the systems with uncertain parameters. A dynamic system is

said to be uncertain if there are some external disturbances being occured due to

noise and other undesirable circumstances which are making the parameters of the

system uncertain.

In practice, all physical systems are naturally considered as nonlinear systems. To

get a better concept of non-linear system behaviors, it is important to analyze

synchronization between two non-linear systems. Synchronization is a natural

phenomenon which appears in almost every field of science, social science and
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engineering. In this phenomenon, the dynamic states of one system converges

to the dynamic states of the other systems. In this process, one is acting as

master and the other is acting slave. Figure 1.2 shows a basic block diagram of

Master/Slave type synchronization and Fig 1.3 shows the state-level concept of

synchronization.
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15
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Figure 1.3: Synchronization between master and slave systems

Fujisaka and Yamada [10], presented, for the first time, the concept of synchro-

nization amongst the coupled systems. Subsequently, some artistic works were

presented by Pecora and Carrol [11] on synchronization between coupled chaotic

systems. As time passed on, the interest in analyzing the synchronization phe-

nomena amongst coupled chaotic systems keep rising exponentially. Currently, the

concern is complete synchronization (CS), where the state variables of the individ-

ual system converge towards each other. As for as the difficulty level is concerned

CS is difficult than phase synchronization (PS) [12]. In nature, however, some
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interacting dynamic systems form small and large networks in a typical coupling

topology e.g. neural networks. Astonishingly, although chaotic systems own expo-

nential divergent characteristics of close by trajectories, they observe synchroniza-

tion [11, 13]. The synchronization phenomena between interacting systems are

relatively frequent phenomena being found in many branches of science [14–16],

neuroscience [17, 18], and lasers [19, 20].

Since the artistic work of Poincare [21] on the three-body problem, the study of

non-linear phenomena has attracted several researchers of many fields, that made

the non-linear dynamics a subject of values. The valuable efforts made in this

field provided a new angle to the control engineers, the recent interests are ana-

lyzing and designing new control laws for dynamical networks. The invention of

such electronic circuits which shows chaotic behavior set up the new standards

for non-linear dynamics to tackle with. The works of Chua et.al [22] and Pecora

et.al [23] opened new dimensions to the chaos. It not only gives brand new be-

havior for signal processing but also new processing engines that can be within

sizable systems. For the processing of unique patterns from arrays with defined

connections between cells, cellular neural networks have become a standard for

complexity. Currently, the CNNs engines are designed on the CNN-universal ma-

chine architecture are serving as visual processing machines. this have empowered

real-time employment like unmanned aerial vehicles, video-based vigilance etc. In

addition, CNNs furnishes the sufficient capability of analysis and design due to its

complex dynamics. Artificial neural networks exhibit chaos [24, 25], that is why,

synchronization of chaotic neural networks have achieved significant importance

in the previous decade [26, 27].

Several unique synchronization techniques for chaotic systems were reported [28–

32]. Among these schemes, hybrid synchronization (HS) [33, 34] is currently a topic

of interest in which synchronized and anti-synchronized appears together. Due to

its practical importance, HS has been the subject of many research works. Among

these works: study of synchronization/anti synchronization of PMSMs coupled in

ring topology [33], function projective synchronization [35], complete synchroniza-

tion (CS) [36], and many other works reported in literature [34, 37]. Study of HS
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which involves multiple chaotic systems like complete, adaptive, global, projective

and anti-synchronization (AS) [38, 39], and synchronization in multiple coupled

complex networks [40, 41]. Currently, hybrid synchronization (HS) of several cou-

pled chaotic systems is an interesting area of research [42, 43].

All the techniques mentioned above are mainly designed for synchronization of

two or more complex systems, where usually one is drive system, as well as the

other, is respond system. The purpose of these kinds of techniques is that the

dynamic states of one system follow the trajectories of the other system. Instead

of using the simple techniques, the synchronization technique for multiple coupled

complex chaotic systems can better improve the protection of message signal in

secure communication and also has a bright future in the communication field.

Consequently, many researchers are attracted and are spending their efforts to

analyze multiple coupled systems.

The motivation of this thesis is to investigate hybrid synchronization (HS) con-

trol of dynamical networks with coupled nodes and uncertain parameters. Three

different kinds of networks are selected as test cases, the dynamical network of

non-identical and identical coupled chaotic systems, a dynamical network of com-

plex chaotic systems and the dynamical cellular nonlinear network. The design of

control laws for these kinds of networks is a challenging task in the presence of

uncertain parameters.

1.2 Problem Statement

Hybrid synchronization (HS) has increasing theoretical and practical importance

in the field of engineering and science especially in secure communication and

crypto-systems. Co-existence of synchronization and anti-synchronization (AS)

makes it a difficult job for the control design engineers to design a single controller

to control HS amongst several coupled chaotic systems forming a complex network.

Plenty of research has been carried out to investigate HS in chaotic systems but

less work is done for chaotic systems connected in a network. Up till now, several
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control algorithms are tested to investigate HS in a dynamical network of chaotic

systems. Some of them were system-oriented and not generalized and some of

them investigated HS with some error bound. To our best knowledge hybrid

synchronization (HS) control problem is still open and needs maturity particularly

for the ring connected network[33, 44].

1.3 Research Objectives

The core research objective of this work is to investigate, by applying adaptive

ISMC theory and smooth twisting algorithm, a comprehensive and robust control

design framework for hybrid synchronization (HS) control of dynamical networks.

Moreover, in the existence of uncertain parameters and co-existence of synchro-

nization and anti-synchronization (AS) the controller design will be a much more

difficult job. The proposed control framework is generalized and applicable to all

identical and non-identical chaotic systems coupled in a dynamical network. Fi-

nally, the proposed methodology is applied to the following benchmark dynamical

networks:

• Dynamical network of non-identical and identical chaotic systems.

• Dynamical network of complex chaotic systems.

• Dynamical network of 3-cell cellular nonlinear network.

1.4 Research Contributions

The core contributions of this dissertation are as follows:

i) A novel hybrid synchronization (HS) control scheme for dynamical networks

of non-identical and identical chaotic systems, based on adaptive ISMC, is pro-

vided in this dissertation. This synchronization control scheme is advantageous
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compared to conventional active control scheme used to achieve hybrid synchro-

nization (HS). This control technique is robust against the parameter uncertainties

and is easy to implement [45].

ii) A novel hybrid synchronization (HS) control scheme for a dynamical network

of complex natured, chaotic, PMSM systems coupled in the ring topology, based

on adaptive ISMC, is provided in this thesis. The application of ISMC for hybrid

synchronization (HS) of the complex chaotic network of PMSM systems with un-

certain parameters is proposed for the first time up to our best knowledge [46].

iii) A novel Hybrid synchronization (HS) control scheme for a 3-cell cellular non-

linear network using master/slave type environment, using the SSTA, is provided

in this thesis. The application of SSTA for achieving hybrid synchronization in

CNNs with uncertain parameters is considered for the first time up to our best

knowledge.

1.5 Research Scope

In pursuance of the research carried out in this thesis following assumptions are

made:

• It is assumed that there are no delays in synchronization between the systems

coupled in the dynamical network.

• It is also assumed that the coupling between the systems is constant.

1.6 Organization of Dissertation

This thesis comprises of seven chapters. The major focus of this thesis is to

give novel solutions to the HS control problem of dynamical networks. in order

to organize a self-descriptive text on HS of dynamical networks, the nonlinear

feedback control method is being reviewed to highlight the significance of HS
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control problem in the presence of uncertain parameters. Finally, the framework

is presented in a detailed fashion and numerical results are being examined.

The chapter-wise description is given below:

• Chapter 2, Literature Survey: This chapter presents a comprehensive

study about the synchronization and hybrid synchronization (HS) control

of DNs. The chapter summarized the findings of limitations and research

contributions of various synchronization methods. The research gap in the

literature helped to formulate the problem statement and finding the solution

for hybrid synchronization (HS) control problem of DNs.

• Chapter 3, Preliminaries: In this chapter some preliminaries are pre-

sented to understand the hybrid synchronization (HS) control of DNs. This

chapter presents the base for Chapter 4, Chapter 5 and Chapter 6.

• Chapter 4, Hybrid Synchronization (HS) in a Dynamical Network

of Non-identical and Identical Chaotic Systems: In this chapter adap-

tive ISMC is proposed to investigate hybrid synchronization (HS) of DNs in

the existence of uncertain parameters. in the first part of this chapter, a

dynamical ring type network of nonidentical chaotic systems is considered.

In the second part, a DN of identical chaotic systems is examined. The sim-

ulation results given in the end of this chapter justifies the validity of the

proposed solution.

• Chapter 5, Hybrid Synchronization (HS) in a Dynamical Network

of Complex Chaotic PMSM Systems: In this chapter adaptive ISMC

is proposed to examine the hybrid synchronization (HS) control problem in

a DN of complex chaotic PMSM systems. The simulation results given in

the end, justifies the validity of the proposed solution.

• Chapter 6, Hybrid synchronization (HS) in a 3-cell cellular nonlin-

ear network: In this chapter SSTA which is a variant of SOSM control is
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proposed to investigate the hybrid synchronization control problem for cel-

lular nonlinear networks. Finallyafafaza, simulation results are given, which

validates the effectiveness of the proposed methodology.

• Chapter 7, Conclusion and Future Work: This chapter summarizes

the overall thesis and draws conclusions along with the recommendations

and claims. The importance of the proposed research is emphasized. Future

directions have also been proposed for further research.

1.7 Summary

This chapter presents the motivation and background of this research. On the

basis of overview and motivation from the existing literature, problem statement

and research goals are defined. The research contributions based on the objectives

are presented and finally, the organization of the thesis is discussed.



Chapter 2

Literature Review

2.1 Introduction

Synchronization emerges in coupled chaotic systems and can be stable if the

coupling strength is above a threshold value. There are many synchronization

types reported in the literature for different coupling thresholds. For large cou-

pling strengths, complete synchronization and anti-synchronization regimes are

suggested, where the phase as well as amplitudes of states of the coupled sys-

tems become identical and opposite respectively as t → ∞. Both these kinds

of synchronization are possible for identical dynamic systems. For non-identical

dynamic systems which commonly appears in nature, other types of synchroniza-

tion are investigated e.g. Lag synchronization, phase synchronization, generalized

synchronization. Following is a brief description of these synchronization schemes.

2.2 Synchronization

In the mid of 17th century investigation of synchronization between dynamic sys-

tems was started when Christiaan Huygens firstly revealed that two similar pen-

dulums hanging over a single rod synchronized either in-phase or anti-phase [47].

10
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A couple of similar kind of cases reported in the literature, for example: proper-

ties of arrangement of organ pipes [48] and twinkling of glowworms in conjunction

[49]. Several paradigms of synchronization reported like: cardio-respiratory syn-

chronization [50], crowd synchronization [51, 52], and bacterial quorum sensing

[53]. From the last couple of decades, chaos synchronization has grasp significant

attention. As described earlier a chaotic system is sensitive to its initial condi-

tions,i.e. two similar chaotic systems starting from two nearby initial conditions

produce dissimilar response. Due to this property it was generally considered that

two similar kind of chaotic systems can not be synchronized. Ultimately, Fujisaka

and Yamada [13] revealed that two chaotic systems can be synchronized after that

some artistic work presented by Pecora and Carroll [11].

As an elementary definition of synchronization of chaos, it is seen as a procedure

in which two or more chaotic systems adopt a motion to develop a common atti-

tude because of coupling or forcing [54, 55]. Interestingly, for identical systems,

the coupled systems maintain their isolated dynamics once the synchronization is

established after the initial transients.

The synchronization has been investigated in different field of science, physics,

chemistry and biology and engineering. In the field of physics, synchronization

can be found in electronic circuit [56], laser [57], and plasma [58]. In the field

of chemistry, there are examples of chemical reactions [59] where many coherent

patterns were observed. Many synchronization phenomena were also reported in

chemical [60] and electrochemical systems [61]. In biology, the list of examples

is too long, but prominent works are the issues related to cardio-respiratory in-

teraction [62] and brain function [63] where the process of synchronization plays

key role in useful functional behaviors. In spreading of epidemics [64] and ecolog-

ical systems too [65], synchrony is present: different species show synchrony [66].

Synchronization is thus ubiquitous in nature.

Two or many dynamical systems can interact through coupling in two significant

ways, either unidirectional or bidirectional. In case of unidirectional coupling,

a drive-response (or master-slave) configuration is realized [67]. In Master-Slave
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configuration, one which moves freely is called master system and the other which

follows the trajectory of Master is called slave system. In simple words the master

system drives the slave system. This master-slave configuration of the interacting

dynamical systems is a potential candidate for secure communications and showed

promising results [68].

On the other hand, the bidirectional coupling presents a different scenario, here

the interacting systems mutually influence each other. The coupling parameter

convinces their rhythms onto a common synchronization behavior; the interacting

systems come into a state of synchronization or develop a common rhythm.

There are several types of synchronization reported in the last two decades, namely,

complete synchronization (CS) [11], phase synchronization (PS) [68, 69], anti-

synchronization (AS) [67, 70, 71], antiphase synchronization (APS) [70, 72], lag

synchronization (LS) [73], generalized synchronization (GS) [74, 75] and mixed

synchronization [70].

In recent years, several different other forms of coupling were also considered in

studies of synchronization, instantaneous or delay coupling [55], synaptic coupling

[76]. The information exchange may happen between the interacting systems either

instantaneously or delayed in time. In all the cases, of course, the unidirectional or

bidirectional concept is considered. In most of these cases, a scalar type coupling

suffices the condition of stable synchronization when the coupling is made through

one or a few of the state variables. Sometimes, the interacting systems interact

via all the state variables which are known as vector coupling and it is necessary

for the stability of synchronization in particular cases. On the other hand, the

synaptic coupling is relevant in the context of neuronal systems [77]. The synaptic

coupling is a special type of coupling form [78]. However, the gap junction type

coupling [79] in case of neuron is diffusive linear type. This coupling form is not

utilized in the thesis.

In contrary to studies using diffusive coupling or synaptic coupling where the

coupling form is known a priori, an alternative approach of designing coupling

is given importance to realize a targeted synchronization [80] or desired coherent
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pattern [81] where the coupling is assumed unknown a priori. It is designed for

a given dynamical system and a desired synchronization state to realize between

the oscillators based on selected stability criteria.

Time has significant importance and plays a vital role as for as physical systems

are concerned. Since the physical systems are dynamic so their peculiar movement

changes with time. Even there are a lot physical systems which need a rigorous tim-

ing between oscillators for actual working. Synchronization is such a phenomenon

in which a precise timing is given between two oscillators [11, 13, 54, 82, 83]. There

are a lot of synchronization types which depend on the nature and coupling prop-

erties between the oscillators. Let x1 and x2 be the two oscillators, If these are

appropriately coupled then it is possible to attain CS i.e. both behaves similarly:

lim
t→∞
||χ1 − χ2|| = 0 (2.1)

Generally, CS is meant for identical oscillators. If, however, they present a mis-

match parameter the states can be close χ1 ≈ χ2, but not equal.

2.3 Types of Synchronization

2.3.1 Complete Synchronization (CS)

The CS is more artificial since it is true for identical systems only, which is ac-

tually not a practical assumption. However, using the idealistic case, complete

synchronization is investigated in computer simulations as well as verified in ex-

perimental setup for closely similar systems. The interacting dynamical systems

become almost identical even if they start from any initial point for the coupling

strength greater than some critical value. The complete synchronization was first

investigated in [13, 84]. Pecora and Carrol investigated synchronization in an

experimental set up where a chaotic oscillator, which was considered to be the

drive system, was coupled unidirectionally to its subsystem. The signature of CS
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was recognized by the presence of negative lyapunov exponents [82, 85] of the

subsystem.

2.3.2 Anti Synchronization (AS)

In the 17th century, Huygens for the first time investigated anti synchronization

between pendulums hanging on a single beam [47, 86]. He reported that two iden-

tical pendulums hanged on a single beam oscillate with same frequency but having

180 degree phase shift. Recently, the phenomenon of complete synchronization and

anti synchronization between two coupled pendulums was investigated in [87]. Anti

synchronization appears frequently in nature just like complete synchronization

but APS is much likely to be occur in nature [88]. In APS the phases of coupled

oscillators are 180 degree out of phase but their amplitudes are totally uncorre-

lated. The anti synchronization can be defined as: lim t→∞||ω(t) + χ(t)|| = 0:

where ω(t) and χ(t) are two possible states of chaotic systems. Anti synchroniza-

tion is normally observed in van der pol system with cubic nonlinearity under the

diffusive coupling [89].

2.3.3 Phase Synchronization (PS)

Rosenblum et. al. [68, 73] was the pioneer who reported the phase synchronization

(PS) among dynamical systems for the first time. PS is generally similar to phase

lock loop in periodic oscillators. Phase synchronization (PS) means that the phases

of the two connected chaotic systems are locked and is normally observed in non-

identical systems for weak coupling strength. In [68], phase is considered to be

a fickle which corresponds to the zero LE of a system that has chaotic response.

Estimation of phase is discussed in detail for chaotic systems in [90–92]. Phase

synchronization is observed in several laboratory results and natural phenomena

like electrically connected neurons also in networks of complex systems connected

to each other in ring topology. Phase synchronization in electronic circuits is

discussed in [93–95].
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2.3.4 Generalized Synchronization (GS)

The generalized synchronization can be defined like this: ω(t) = Ξ[χ(t)] where

χ(χ ∈ Cn) is dynamic variable of driving system, ω(ω ∈ Bn) is the dynamic vari-

able of respond system and Ξ is transformation. If the trajectories in C transforms

to the trajectories in B space through the transformation function Ξ, then it is

possible to say that both variables χ and ω are synchronized. The transforma-

tion may be of complex nature but it develops a functional relation between both

variables which is called generalized synchronization [96, 97]. When this transfor-

mation function is set equal to unity function then the synchronization amongst

the master and slave system is called complete synchronization. GS has very vast

applications in electronic circuits, communication etc [75, 98].

2.3.5 Lag Synchronization

Lag synchronization happens in weak coupling strength. Lag synchronization can

be defined as ω(t) = χ(t − τ) where both variables χ and ω are almost similar

but are shifted in time. There is another particular case of lag synchronization

called anticipatory synchronization lim t→∞||ω(t) − χ(t + τ)|| = 0 in which

the responding system forecast the trajectory of driving system. In both the lag

synchronization and anticipatory synchronization the delaying factor τ is assumed

to be positive τ > 0. The anticipation time can be maximized by connecting the

chaotic systems in a ring topology or array [91, 99, 100].

2.3.6 Projective Synchronization

In projective synchronization [101–104], the master and slave chaotic systems are

synchronized under the influence of a constant scaling term. The projective syn-

chronization is defined as:

χ̇ = z(χ)

ω̇ = g(ω) + µ(χ, ω)
(2.2)
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Where χ ∈ Rn are the dynamic states of the master system and ω ∈ Rn are the

dynamic states of slave system, z ∈ Rn, g ∈ Rn are differentiable functions and

µ(χ, ω) represents the input control term. The synchronization error is described

as:

ε = χ− αω (2.3)

Where α is a constant scaling factor up to which the synchronization yields.

2.3.7 Function Projective Synchronization

Function projective synchronization (FPS) [105–108] is slightly different than the

projective synchronization. In FPS, instead of constant scaling factor, synchro-

nization occurs for a time dependent scaling function α(t). The FPS is defined

as:

χ̇ = z(χ)

ω̇ = g(ω) + µ(χ, ω)
(2.4)

Where χ ∈ Rn are the dynamic states of master system and ω ∈ Rn are the

dynamic states of the slave system, z ∈ Rn, g ∈ Rn are differentiable functions

and µ(χ, ω) represents input control term. The synchronization error for FPS is

described as: ε = χ − α(t)ω, where α(t) is a scaling function up to which the

synchronization yields.

2.3.8 Hybrid Synchronization (HS)

The HS for chaotic systems [45, 101, 109–115] coupled in a network is defined as:

ẋ1 = f1(x1) + F1(x1)θ1 +D1(xM − x1)

ẋ2 = f2(x2) + F2(x2)θ2 +D2(x1 − x2) + µ1

...

˙xM = fM(xM) + FM(xM)θM +DM(xM−1 − xM) + µM−1

(2.5)
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Definition: For system Eqn.(2.5), it is defined that it exhibits hybrid synchro-

nization if controllers uo, o = 1, 2, 3, 4, ...M − 1 exist such that all trajectories

x1(t), x2(t), · · · , xM(t) for initial conditions x1(0), x2(0), · · · , xM(0) satisfy:

(1) For the AS errors ero = (ero1, ero2, ..., erom)T , o = 1, 2, 3, 4, ...,

M − 1 , yields:

lim
t→∞
||ero|| = lim

t→∞
||xo(t) + xo+1(t)|| = 0, o = 1, 2, 3, 4, ...,M − 1 (2.6)

(2) For Synchronization the error erp = (erp1, erp2, ..., erpm)T and erq = (erq1, erq2, ...,

erqm)T if M(M > 3) is odd, then erp and erq satisfy:

lim
t→∞
||erp|| = lim

t→∞
||xp+2(t)− xp(t)|| = 0, p = 1, 3, 5, 7, 9, ...,M − 2

lim
t→∞
||erq|| = lim

t→∞
||xq+2(t)− xq(t)|| = 0, q = 2, 4, 6, 8, 10, ...,M − 3

(2.7)

and if M(M > 4) is even, the erp, erq satisfy:

lim
t→∞
||erp|| = lim

t→∞
||xp+2(t)− xp(t)|| = 0, p = 1, 3, 5, 7, 9, ...,M − 3

lim
t→∞
||erq|| = lim

t→∞
||xq+2(t)− xq(t)|| = 0, q = 2, 4, 6, 8, 10, ...,M − 2

(2.8)

it is clear from Eqns.(2.6) - (2.8) that ero, erp, erq are globally and asymptotically

stable. So, to achieve HS, the controllers must be designed in such a way that it

make ero, erp, erq converge to zero.

2.3.9 Mixed Synchronization

This is a very interesting scheme of synchronization. In this scheme a couple of

states in a dynamical system are synchronized and the other couple of states are

AS in the coupling mode. For Lorenz systems, this type of synchronization for

scalar coupling is investigated in [67, 71]. Mixed synchronization is investigated

through many control techniques, like, Layapunov stability theory [116], nonlinear

feedback control method [117], pinning control [118] etc. Mixed synchronization

is also studied in hyper chaotic [119] systems and complex networks [120].
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2.4 Control Techniques

Several control techniques are investigated in the literature. In this section, some

of the mostly widely used control techniques are discussed.

2.4.1 Active Control Technique

In active control technique [121, 122] the synchronization amongst the master

and slave chaotic systems is possible to attain by simply designing the control

terms directly for the error systems. As an example the active control method

is employed for synchronization in master-slave configuration between two Lorenz

chaotic systems [123], the master system is defined as:

χ̇1 = σ(ω1 − χ1)

ω̇1 = rχ1 − ω1 − χ1ζ1

ζ̇1 = χ1ω1 − bζ1

(2.9)

and the slave system is defined as:

χ̇2 = σ(ω2 − χ2) + ua

ω̇2 = rχ2 − ω2 − χ2ζ2 + ub

ζ̇2 = χ2ω2 − bζ2 + uc

(2.10)

where ua, ub, uc are control inputs. Subtracting the Eqn. (2.8) from Eqn. (2.9)

following error dynamical system yields:

χ̇3 = σ(ω3 − χ3) + ua

ω̇3 = rχ3 − ω3 − χ2ζ2 + χ1ζ1 + ub

ζ̇3 = χ2ω2 − χ1ω1 − bζ3 + uc

(2.11)

Now the only job is to design ua, ub, uc to converge the error dynamics to zero. The

active control technique [124–127] is widely used in the master/slave environment

and is very effective.
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2.4.2 Direct Design Method

Chen et al. [44] presented the direct control method to get the hybrid synchroniza-

tion of multiple chaotic systems connected in an array. This method of controlling

synchronization has some advantages like (i) this provides a very simple and easy

procedure for designing the controllers to get synchronization (ii) the implemen-

tation of controllers is very easy. The proposed problem of hybrid synchronization

reads as:

ẋ1 = β1x1 + Φ1(x1)θ1 + A1(xM − x1)

ẋ2 = β2x2 + Φ2(x2)θ2 + A2(x1 − x2) + u1
...

˙xM = βMxM + ΦM(xM)θM + AM(xM−1 − xM) + uM−1

(2.12)

to achieve hybrid synchronization, the error system for anti synchronization and

synchronization are defined same like in Eqn. (2.6) and Eqs. (2.7)(2.8) respec-

tively. The direct design method [128–134] of synchronization for chaotic systems

has wide spread of applications and is very effective when there are no perturba-

tions.

2.4.3 Adaptive Control Technique

In [135], adaptive control technique is applied to study the synchronization be-

tween several coupled chaotic systems. They have considered the following model

to investigate adaptive synchronization:

χ̇1 = f1(χ1) + z1(χ1(t))Θ̂1

χ̇2 = f2(χ2) + z2(χ2(t))Θ̂2 + µ1

χ̇3 = f3(χ3) + z3(χ3(t))Θ̂3 + µ2

χ̇4 = f4(χ4) + z4(χ4(t))Θ̂4 + µ3

...

˙χM = fM(χM) + zM(χM(t))Θ̂M + µM−1

(2.13)
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The adaptive control technique [30, 136–144] of synchronization between chaotic

systems is very popular and most widely used when the system parameters are

unknown.

2.4.4 Active Backstepping

Runzi et al. [145] studied combination synchronization for three benchmark sys-

tems like Lu system, Lorentz system and Chen system using back-stepping ap-

proach. Lorentz system and Chen system are used as a master system and Lu

system is used as a slave system. The effectiveness of the proposed technique

established through the simulation results. Backstepping control [146–149] tech-

nique comprised of a repeated algorithm amalgamating the option of Lyapunov

function theory for designing the active control. Particularly, this method provides

flexibility in building up the control law.

2.4.5 Sliding Mode Control

Hou et al. [150] presented the chaotic system synchronization by means of SMC.

For the error dynamics in sliding motion a proportional integral controller is de-

signed and after this SMC is designed to get the chaos synchronization in master

slave fashion. The justification of the proposed technique validated by the simu-

lation results. SMC [146, 151–157] is a very effective non-linear control method.

It is very popular due to its robust characteristics against the perturbations and

widely used technique. The main demerit of the SMC approach is the introduction

of chattering characteristics which is unwanted.

2.4.6 State Feedback Control

In [158] chaos synchronization and hyper-chaotification of systems is discussed.

To get hyper-chaotification of the dynamic systems state feedback control is used

and to get synchronization active controllers are designed. State feedback control
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[159–163] is a very effective to regulate the response of the dynamic systems and

is very useful in synchronization of chaotic systems.

2.4.7 Robust Synchronization using Active SMC

Naseh et al. [164] discussed the robust synchronization in the presence of uncer-

tainties using active SMC which is very effective technique to synchronize chaotic

systems. An algorithm is proposed to select most excellent control parameters so

that less control effort is required for synchronization. Robust control technique

[165–168] is very effective when there are external disturbances. It is assumed in

this type of control that the disturbances are bounded.

2.5 Findings of the Literature Review

The literature reviewed in this chapter directs towards two streams, one is the

type of synchronizations and the other is the control techniques used by many re-

searchers to reach the goal. The types of synchronizations are classified mainly in

two classes, the CS and AS. In all most all the literature surveyed in this chapter,

the Master-Slave type formation of synchronization is considered. In this type

of formation, if the slave system is in phase with the master then it is said its

complete synchronization and if all states of slave are 180 degree out of phase then

it is called anti-synchronization. The control techniques used in the literature to

reach synchronization is of the direct design type and a few work investigated SMC

for chaos synchronization. The bulk of the literature reviewed emphasis on the

investigation of different control approaches to address synchronization problem of

chaotic systems which helps us to contribute in this field of research. In this emerg-

ing field of research, researchers are striving for new techniques and exploring new

areas. Furthermore, hybrid synchronization in dynamical network is also being

investigated. Following are some points or research gap in the existing literature,

which helps us to clarify the research goals and objectives for this dissertation:
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• Most of the literature is about the synchronization or anti-synchronization

by considering two chaotic systems in master/slave formation. A very less

work is reported in the literature which addresses the co-existence of syn-

chronization and anti-synchronization problem for more than two systems

forming a DN.

• The HS control problem for coupled chaotic systems in a ring network in-

vestigated in the literature is assumption based and do not consider the

robustness property.

2.6 Summary

In this chapter, synchronization and HS control problem of chaotic systems is pre-

sented to find the research gap in the existing literature. Regardless of particular

types of control technique, a wast range of control methods are available which

has their own merits and demerits discussed above. While reviewing the survey

about the HS of chaotic systems coupled in the ring type DN, certain assumptions

are assumed. The control techniques used to investigate hybrid synchronization

are direct design type which do not provide the robustness. Consequently, based

on the literature review, a comprehensive framework is in dire need to cope with

these issues so that HS in CNNs and DN of identical,non-identical and complex

systems could be achieved.
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Preliminaries

In this chapter, some preliminaries are presented regarding the hybrid synchroniza-

tion of dynamical networks by employing adaptive ISMC and SSTA. A preliminary

mathematical description is presented to understand the technique used to achieve

hybrid synchronization in the presence of uncertainties.

3.1 Dynamical Networks (DNs)

The word networks refer to graphs with non-trivial topological characteristics.

This section presents a brief introduction on the network theory, the terms used,

and about some network structures [169–173]. Main components of the network

are nodes, which are connected with small paths providing ease of going from node

to another. These types of dynamical networks are called, small-world networks

e.g. neural networks, networks of movies stars and the networks of electric power

substations [172].

Erdos and Rnyi [171] introduced the small-world networks model for the first

time in detailed. Unluckily, this model was not realistic in sense that it does

address many real network features. The small-world network, discussed in [172]

is more realistic and has both characteristics i.e. nodes are well connected to each

23
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other and you can go to any other node with limited steps, and meanwhile a high

clustering coefficient.

3.1.1 Mathematical Description

A dynamical network comprises of some nodes which can be denoted by N and

some links L connecting these nodes. There is a discrimination between a directed

network and undirected networks. As the name explains the link in directed net-

work is unidirectional and points from one node to another, whereas, in undirected

network the link is bidirectional. In a dynamical network, it is necessary to study

the adjacency matrix to know the complete linkages between the nodes. An adja-

cency matrix can be defined as:

Aij =

1, if node j has a link to node i

0, otherwise

The above matrix A is helpful in explaining network properties and provides a

nice description for unweighted networks. However, most of the real world net-

works have links with different strengths. In distinction, the coupling matrix in

a dynamical network is quite different. The term Ξij of the coupling matrix Ξ

expresses a link from one node to another node by having some weight Ξij.The

relationship between the adjacency matrix and coupling matrix is defined in the

following equation:

Aij = HΞij (3.1)

where

H(a) =

1, ifa > 0

0, ifa ≤ 0

The matrices are symmetric for undirected dynamical networks and unsymmetrical

for directed dynamical networks. A ring connected dynamical network is a network

in which all the nodes are connected in a chain formation, moreover, the last and

first node are also connected in ring type arrangement.
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3.1.2 Types of Coupling

As mentioned above, there are mainly two types of interactions that are commonly

found in natural systems, unidirectional exchange of information as mathemati-

cally expressed below. Consider the following coupled system,

Master : χ̇ = z(χ) (3.2)

Slave : ω̇ = z(ω) + µ(χ, ω) (3.3)

Where χ, ω ∈ Rn and µ(χ, ω) ∈ Rn∗n is the coupling function. This system Eq.

3.2 is called the master and the system Eq. 3.3 is the slave system. The coupling

function is considered usually as a diffusive term as µ(χ, ω) = κ(χ−ω) which may

be defined as a difference of potential or ion concentration of the two interacting

system represented by the state variables and κ is rate of transfer of ions or of

current that is defined as the coupling strength. The mutual bidirectional diffusive

coupling is considered as written, in a similar fashion,

χ̇ = z(χ) + κ(ω − χ)

ω̇ = z(ω) + κ(χ− ω)
(3.4)

A very basic assumption in the above definition of coupling is that the coupling

is instantaneous and constant in time and, known as a priori coupling. The in-

teracting systems exchange information between then instantaneously, i.e., the

information reaching to each dynamical system without any delay. Keeping the

fact in mind, this interaction can be delayed and the coupling can be time varying.

The delay couling in unidirectional mode is

χ̇ = z(χ)

ω̇ = z(ω) + ξ(χ(t− τ)− ω)
(3.5)

Where χ(t − τ) is the delayed version of the driving signal. Such delay coupling

can be mutual too. For time varying coupling, the coupling constant ξ becomes a

time dependent ξ(t) function, otherwise the conditions remains same.
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Figure 3.1: Dynamical network of systems connected in a ring topology.

3.1.3 Network Topologies

In real world, most of the networks have random connections between their nodes.

However, there are some networks which comprises some noticeable characteristics

e.g. small path lengths and high degree nodes. To represent topological features,

many models have been developed and analyzed in the literature like small world

model, scale free network random network models etc. Some commonly used

network topologies are given below.

3.1.3.1 Circular Networks

Figure 3.1 represents a ring type network with all the systems linked to each other.

This type of network is very interesting because it displays chimera states under

some particular conditions [174, 175]. Chimera states means that the network

exhibits the co-existence of state synchronization and anti-synchronization (AS).

Unidirectional type ring network is a special type of circulant network which is

taken for this thesis. A circulant matrix C can be defined as:

C =


c0 c1 c2 c3 · · · cN−1

cN−1 c0 c1 c2 · · · cN−2
...

...
...

...
. . .

...

c1 c2 c3 c4 · · · c0

 (3.6)
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The circulant matrix for unidirectional ring is defined as

C =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

 (3.7)

3.1.3.2 Random Networks

In mathematics, random networks are of particular interest as for as the probability

distributions over networks are concerned. Random networks are characterized by

a probability distribution which makes them. The concept of random networks de-

scribes the co-existence of network theory and probability theory. Mathematically,

random networks describes the properties of typical networks. Its experimental

applications are found in all areas in which complex networks need to be mod-

eled. In a mathematical context, random network refers almost exclusively to the

ErdosRenyi [171, 176] random graph model.

3.1.3.3 Small World Networks

In small-world network [177], all nodes may not be directly coupled to each other,

but they can be accessed to each other by going through the small paths.A class

of small-world networks were classified as a random network by Watts and Stro-

gatz [172]. They found that networks can be categorized according to the two

features, clustering coefficient, and average node-node distance. They also found

that several physical networks contains these features.

3.1.3.4 Scale Free Networks

Scale-free networks [178] are those networks which preserve a power distribution

law for a node to originate links with other nodes. These networks are created by

adding nodes and making links with the nodes which are already present in the
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network. Practically there exist several examples of scale free networks e.g. the

network of movies stars with the co-stars, the network of power grids, substations,

and distribution lines e.t.c.

Moreover, there are some practical implications with the network models presented

by many researchers, e.g the small world network model produced by Erdos and

Renyi [171] did not presented topological information. In fact, many real network

models are neither completely regular nor completely random. The small world

network model presented by Watts and Strogatz [172] has high degree of clustering

as in regular networks and small average distance among the connected systems

as in the random networks. The connectivity distribution of the network peaks

at an average value and decays exponentially which is common in both Watts

and Strogatz model and Erdos and Renyi. Coupling delays, coupling strength,

uncertainty about the topological structures are common practical implication in

the mathematical networks presented in the literature.

3.2 Dynamics of Ring Connected Network

In practice, the complexity of a DN con not be examined by only considering its

physical structure. The nodes, which are dynamical systems and are connected

through links, must be given full attention to describe the level of complexity a

DN has. As an example, laser, which can be a node in a DN, interact with other

lasers through its light [179]. Another example of DNs are neural networks. The

nodes in the neural networks are the neural models and the links are the interaction

between the neurons [180, 181]. Moreover, many researchers investigated the inter-

action of dynamical nodes and the networks in terms of synchronization [44, 182].

The dynamics of a ring connected network in [44] are defined in Eq. (3.8), Where

x1, x2, x3, x4, ..., xM are vectors, fo : Rm → Rm, o = 1, 2, 3, 4, ...,M are the non-

linear continuous function, θo ∈ Rg are unknown parameters. Fo(xo) ∈ Rm∗g are

matrices, Do = diag{do1, do2, do3 · · · , doM} are m dimensional diagonal matrices,

and dop ≥ 0 is a diagonal matrix. If fo(.) 6= fp(.), o = 1, 2, 3, 4, · · · ,M , then the
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arrangement Eq. (3.8) has non-identical systems.

ẋ1 = f1(x1) + F1(x1)θ1 +D1(xM − x1)
...

˙xM = fM(xM) + FM(xM)θM +DM(xM−1 − xM)

(3.8)

Remark 3.1. in Eq. (3.8), ring coupling topology [45] is applied, in which 1st

system is connected with M th, and 2nd system is connected with 1st; and so on,

finally the M th system is connected with M − 1th system.

3.3 Sliding Mode Control (SMC)

Among the state of the art non-linear control techniques, SMC has attained a

reasonable attention in the previous decades. It provides remarkable features like

accuracy, robustness and easy tuning capability and implementation. The control

design process in SMC can be divided into two parts.

i. Design of SS in such a manner that the desired response of the system is ac-

complished.

ii. Selection of suitable control law, such that in the existence of external distur-

bances and matched uncertainties, it drags the sliding variable to zero.

Design of the SS is established by keeping in view the design specifications of

sliding motion. After designing the SS, a suitable law is needed, to engage the

system states to the switching surface. Closed loop response in SMC consists of

the following phases:

i. A reaching phase in which plant trajectories are driven to the sliding manifold.

ii. A sliding phase in which plant trajectories slides to the origin.

3.3.1 Reaching Phase in SMC

Figure 3.2 shows the operation of SMC. In this figure a reaching phase is shown.

In this phase controllers will drive the trajectories to sliding manifold σ regardless
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of any initial condition. This is guaranteed by the hitting condition as explained

in [183].

3.3.2 Sliding Phase in SMC

As shown in 3.2, as the system trajectory hits the SS σ it stays on it due to the

control action and after hitting the SS the system is now in sliding phase. In the

sliding phase the system trajectory is derived to equilibrium by the control action

and finally it settle at the origin [183].

3.3.3 Practical Limitations in SMC

Ideally, SMC assumed to be an infinite frequency controller, but practically, it has

some limitations. These limitations includes the bandwidth, switching delays, sat-

uration, etc., limits the performance of the SM controllers. This deviated behavior

of SM controller is called chattering [184] as shown in Fig. 3.2. These practical

limitations makes the SMC a quasi SMC. In chattering behavior the system tra-

jectory oscillates at high frequency around the sliding manifold resulting in steady

state error.

3.3.4 Advantages of SMC

The principle benefit of SMC is that it offers robustness to external disturbances

and parameter variations. To stabilize the system, the gain must be more than the

norm of external disturbances and parametric variations. The switching nature

produces unwanted characteristics known as chattering in SMC. Different HOSM

control techniques are also adopted for the elimination of the chattering. However,

in situations where system dynamics are unknown, an observer-based SMC law is

constructed to stabilize the system dynamics. The first main advantage of SMC is

its dynamic behavior, which is due to the suitable selection of the sliding function.

Secondly, for some particular uncertainties, closed-loop system response becomes
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insensitive. The principle of Sliding Mode (SM) can be extended to the model

which has disturbances, parameter uncertainties, and bounded nonlinearities. The

control strategies such as SMC of uncertain systems were briefly discussed in [87].

3.3.5 Design of SMC Algorithm

Consider a system given in the following:

ẋ = z(x) + g(x)µ (3.9)

where x ∈ <n is the state vector, z(x) ∈ <n and g(x) ∈ <n are the vector

fields, where µ ∈ < is the input control vector field. The SS σ(x) is designed as

σ(x) = {Tx, where { ∈ Rn is constant vector field. The first derivative of the SS

is taken as:

σ̇(x) = {T ẋ (3.10)

The reaching condition for Eq. 3.10 is described in such a manner that it guaran-

tees the inception of sliding mode.

σ̇(x) = −M sign(σ(x)) (3.11)

The positive constant M is selected greater than the magnitude of the distur-

bances. Equation 3.10 can be rewritten as:

σ̇(x) = {Tz(x) + {Tg(x)µ (3.12)

The control law for Eq. 3.26 can be designed as:

µ = −[{Tg(x)]−1[{Tz(x) +M sign(σ(x))] (3.13)

The control law designed in Eq. 3.13 comprises two components one is discontin-

uous and the other is equivalent control. Discontinuous part of the control law

rejects the disturbances incurred in the system, this shows the robustness of the
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Figure 3.2: Sliding surface(SS)

control scheme. Figure 3.2 shows the complete framework of SMC by showing the

reaching phase and the sliding phase. The dangerous chattering characteristics

which is the major drawback of this scheme is also shown in the Fig. 3.2. There

are many solutions available in the literature to eliminate this drawback of SMC

[185–187].

3.3.6 Integral Sliding Mode Control (ISMC)

A modified form of SMC is ISMC. In ISMC the reaching phase is eradicated while

maintaining the robustness property of the conventional SMC [45, 188–191] . The

ISMC consists of the nominal control input to stabilizes the nominal system and

a discontinuous control input to reject the uncertainties. Consider the following

nonlinear system:

ẋ = f(x) + βµ+ h(x, t) (3.14)

where x ∈ Rn are system states, µ ∈ Rm is the input vector, β ∈ Rn∗m behaves as

input gain, f(x) is nonlinear function and the term h(x, t) is a bounded matched

uncertainty. To implement ISMC the following two part controller is defined in

(3.15) where µ0 ∈ Rm is the nominal control part and the second part µ1 is further

divided in two parts µ1 = µ1eq +µ1disc where µ1eq rejects the matched uncertainties
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and the other part can be defined as µ1disc.

µ = µ0 + µ1 (3.15)

By replacing the controller defined in Eq. 3.15, the Eq. 3.14 is rewritten as:

ẋ = f(x) + βµ0 + βµ1 + h(x, t) (3.16)

The sliding surface for Eq. 3.16 is described as:

σ = σ0(x) + z (3.17)

where z ∈ Rm is integral term defined in a manner that z(0) = −σ0(0). The 1st

derivative of SS defined in Eq. 3.17 is taken as:

σ̇ =
∂σ(0)

∂x
[f(x) + βµ0 + βµ1 + h(x, t)] + ż (3.18)

To reach ISMC the nominal trajectory x0(t) should converge to ISMC trajectory

x(t) i.e. x0(t) = x(t). To achieve this the equivalent control is defined as:

βµ1eq(t) = −h(x, t) (3.19)

By replacing Eq. 3.19 in Eq. 3.18 the integral term can be calculated in the

following:

0 =
∂σ(0)

∂x
[f(x) + βµ0] + ż (3.20)

The initial value of z(0) must be defined in such a way that it ensure σ = 0 and the

sliding mode exists right from the starting. The dynamics of the system in ISMC

look like this: ẋ = f(x) + βµ0 which clearly shows that there are no disturbances.

3.3.7 Second Order Sliding Mode Control (SOSMC)

The SOSMC control reduces the dangeraous chattering characteristics [192–195].

In conventional or standard SMC the 1st derivative of the SS is discontinuous
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where as, in SOSM the second derivative of SS is discontinuous. The chattering

phenomenon is reduced in SOSM by making a trade-off between the controller

gain and disturbance rejection.

3.3.8 Super Twisting Algorithm (STA)

The STA [196–200] is a particular form of SOSM that gives

finite time convergence. The twisting algorithm can be written as:

µ = −λ1|σ|
1
2 sign(σ) + w

ẇ = −λ2 sign(σ)
(3.21)

3.3.9 Smooth Super Twisting Algoritm (SSTA)

The SSTA [201–203] smoothens the chattering effect and does not need information

regarding derivative of SS. SSTA can be written as:

µ = −λ1|σ|
ρ−1
ρ sign(σ) + w

ẇ = −λ2|σ|
ρ−2
ρ sign(σ)

(3.22)

3.4 Hybrid Synchronization of Dynamical Net-

works (DNs) and Adaptive Integral Sliding

Mode Control

As a general case a dynamical network(DN) connected in a ring topology is shown

in Fig. 3.1. Considering that all the parameters of all the nodes connected in this

network are uncertain, the general mathematical structure of network is defined

in Eq. (2.5). In practice, the design of control law is essentially based on the

mathematical description of the network to be synchronized. There always ex-

ist discrepancies between the actual network model and its mathematical model.
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These discrepancies arise due to external disturbances, unmodeled/neglected dy-

namics and parametric uncertainties. To get the required closed loop performance

for plants operating in the existence of disturbances/uncertainties, the controller

must be robust against the external disturbances and model uncertainties. How-

ever, designing robust controllers is a difficult task. SMC is a very successful

robust control approach for high order nonlinear complex networks operating in

the existence of uncertainties. The ISMC, a special type of SMC, ensures the

robustness [204] by eliminating the reaching-phase [190, 191]. The ISMC includes

the nominal and the discontinuous control. To reach hybrid synchronization and

estimation of uncertain parameters the adaptive ISMC approach for system Eq.

(3.8) is as follows:

For the anti synchronization, the error vectors are:

er1 = x2 + x1, er2 = x3 + x2, · · · , eM−1 = xM + xM−1 (3.23)

Let θ̂o is the estimate of θo and let θ̃o = θo − θ̂o are the errors while estimating

θo, o = 1, 2, 3, 4, · · · ,M . To employ the integral sliding mode control, following

nominal system is defined for the error dynamics as:

ėr1 = er2

ėr2 = er3

ėr3 = er4

ėr4 = er5

ėr5 = er6
...

ėrM−2 = erM−1

ėrM−1 = v0

(3.24)

To stabilize the system Eq. (3.10), the Hurwitz SS for system Eq. (3.10) is as

follows:

σ0 = (1 +
d

dt
)M−2er1 = er1 + c1er2 + c2er3 + · · ·+ cM−3erM−2 + erM−1 (3.25)
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Then the over all sliding surface for the error dynamics including all terms can be

defined as:

σ = σ0 + z (3.26)

where z is an integral term. The first derivative of Eq. (3.26) yields following:

σ̇ = σ̇0 + ż (3.27)

For Eq. (3.13) the following Lyapunove stability function is designed.

V =
1

2
{σTσ + θ̃T1 θ̃1 + θ̃T2 θ̃2 +

M−1∑
o

θ̃To+2θ̃o+2 + θ̃TM−1θ̃M−1 + θ̃TM θ̃M} (3.28)

The first derivative of Eq. (3.14) yields:

V̇ = σT σ̇ + θ̃T1
˙̃θ1 + θ̃T2

˙̃θ2 +
M−4∑
o=3

θ̃To+2
˙̃θo+2 + θ̃TM−1

˙̃θM−1 + θ̃TM
˙̃θM (3.29)

by designing adaptive laws and ż Eq. (3.29) becomes as following:

V̇ = −κσ2 −
M∑
o=1

κoθ̃
T
o θ̃o (3.30)

From Eq. (3.30) it is clear that V̇ < 0 for κ > 0 so, σ, θ̃o → 0 therefore eo →

0, o = 1, 2, 3, · · · ,M − 1. Thus anti synchronization achieved. The controllers

designed for the anti synchronization can be used for complete synchronization

by considering the cases discussed in Eqs. (2.6)-(2.8). The complete detail is

discussed in the upcoming Section 4.3.

3.5 Summary

This chapter presents the mathematical model, types of coupling and different

types of DNs. The concept of ISMC is presented in brief and a coherent way of

establishing interest to employ this technique for HS of DN of coupled chaotic

systms. This chapter laid the foundation of upcoming chapters of this thesis.



Chapter 4

Hybrid Synchronization in a

Dynamical Network (DN) of

Non-identical and Identical

chaotic Systems

4.1 Introduction

This chapter presents the HS of chaotic systems which are coupled as shown in Fig.

3.1. This type of coupling was studied in [44] where all the constant parameters of

the systems were assumed to be known. We extend this work in [45] and assumed

that due to uncertain situations all the constant parameters are uncertain. To

achieve HS for this kind of arrangement, adaptive ISMC method is utilized. By

using this technique, the error systems is converted to a particular format through

a transformation. The transformed structure has a nominal part and few un-known

terms. The un-known terms are figured out adaptively. Then the error system

is stabilized by employing ISMC. The designed controller for the error system

consists of both the nominal and the compensator control. Lyapunov stability

theory is used to drive the adaptive laws and compensator control.

37
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4.2 Problem Formulation

4.2.1 System Description and Mathematical Model

The structure of a DN of chaotic systems connected in the ring topology is de-

scribed in sec (3.2) and in Eq. (3.8) is defined as:

ẋ1 = f1(x1) + F1(x1)θ1 +D1(xM − x1)

ẋ2 = f2(x2) + F2(x2)θ2 +D2(x1 − x2)
...

˙xM = fM(xM) + FM(xM)θM +DM(xM−1 − xM)

(4.1)

4.2.2 Problem Statement

ẋ1 = f1(x1) + F1(x1)θ1 +D1(xM − x1)

ẋ2 = f2(x2) + F2(x2)θ2 +D2(x1 − x2) + µ1

...

˙xM = fM(xM) + FM(xM)θM +DM(xM−1 − xM) + µM−1

(4.2)

Definition: For system Eq. (4.2), it is defined that it exhibits hybrid synchro-

nization if controllers uo, o = 1, 2, 3, 4, ...M − 1 exist such that all trajectories

x1(t), x2(t), x3(t), x4(t), ..., xM(t) for any starting point x1(0), x2(0), x3(0), x4(0),

..., xM(0) satisfy Eqs. (2.6) - (2.8).

4.3 The Proposed Control Algorithm

For the anti synchronization, the error vectors are:

er1 = x2 + x1, er2 = x3 + x2, · · · , eM−1 = xM + xM−1 (4.3)

Let θ̂o be the estimate of θo and let θ̃o = θo − θ̂o be the errors while estimating

θo, o = 1, 2, 3, 4, · · · ,M then the derivative of Eq. (4.3) leads to the following:
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˙er1 = ẋ2 + ẋ1 = f2(x2) + F2(x2)θ̂2 + F2(x2)θ̃2 +D2(x1 − x2) + µ1

+ f1(x1) + F1(x1)θ̂1 + F1(x1)θ̃1 +D1(xM − x1)

˙er2 = ẋ3 + ẋ2 = f3(x3) + F3(x3)θ̂3 + F3(x3)θ̃3 +D3(x2 − x3) + µ2

+ f2(x2) + F2(x2)θ̂2 + F2(x2)θ̃2 +D2(x1 − x2) + µ1

...

˙erM−1 = ˙xM + ˙xM−1 = fM(xM) + FM(xM)θ̂M + FM(xM)θ̃M +DM(xM−1 − xM)

+ µM−1fM−1(xM−1) + FM−1(xM−1)θ̂M−1 + FM−1(xM−1)θ̃M−1

+DM−1(xM−2 − xM−1) + µM−2

(4.4)

Equation (4.4) can be written in matrix form as:


ėr1

ėr2
...

ėrM−1

 =



f2(x2) + F2(x2)θ̂2 +D2(x1 − x2) + f1(x1) + F1(x1)θ̂1 +D1(xM − x1)

f3(x3) + F3(x3)θ̂3 +D3(x2 − x3) + f2(x2) + F2(x2)θ̂2 +D2(x1 − x2)
...

fM(xM) + FM(xM)θ̂M + fM−1(xM−1) + FM−1(xM−1)θ̂M−1

+DM(xM−1 − xM) +DM−1(xM−2 − xM−1)



+


F2(x2)θ̃2 + F1(x1)θ̃1

F3(x3)θ̃3 + F2(x3)θ̃2
...

FM(xM)θ̃M + FM−1(xM−1)θ̃M−1

+


1 0 0 · · · 0

1 1 0 · · · 0
...

...
...

...
...

0 0 · · · 1 1




µ1

µ2

...

µM−1


(4.5)

by defining the controllers in the following way:


µ1

µ2

...

µM−1

 =


1 0 0 · · · 0

1 1 0 · · · 0
...

...
...

...
...

0 0 · · · 1 1



−1





er2

er3
...

erM−1

v


− A


(4.6)
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Where, the term v is new input vector and

A =



f2(x2) + F2(x2)θ̂2 +D2(x1 − x2) + f1(x1) + F1(x1)θ̂1 +D1(xM − x1)

f3(x3) + F3(x3)θ̂3 +D3(x2 − x3) + f2(x2) + F2(x2)θ̂2 +D2(x1 − x2)
...

fM(xM) + FM(xM)θ̂M + fM−1(xM−1) + FM−1(xM−1)θ̂M−1

+DM(xM−1 − xM) +DM−1(xM−2 − xM−1)


(4.7)

then Eq. (4.5) becomes:

ėr1 = er2 + F2(x2)θ̃2 + F1(x1)θ̃1

ėr2 = er3 + F3(x3)θ̃3 + F2(x2)θ̃2
...

ėrM−1 = v + FM(xM)θ̃M + FM−1(xM−1)θ̃M−1

(4.8)

To employ the integral sliding mode control, following nominal system is defined

for Eq. (4.8) as:

ėr1 = er2

ėr2 = er3

ėr3 = er4
...

ėrM−2 = erM−1

ėrM−1 = v0

(4.9)

To stabilize the system (4.9), the Hurwitz sliding surface for system (4.9) is as

following:

σ0 = (1 +
d

dt
)M−2er1 = er1 + c1er2 + c2er3 + · · ·+ cM−3erM−2 + erM−1 (4.10)

where the coefficients co are choosen in a manner that σ0 becomes Hurwitz polyno-

mial. The first derivative of Eq. (4.10) is taken to be as: σ̇0 = er2 + c1er3 + c2er4 +

· · ·+cM−3erM−1+v0. By defining v0 = −er2−c1er3−c2er4−· · ·−cM−3erM−1−κσ0−
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κsign(σ0), κ > 0 yields σ̇0 = −κσ0 − κsign(σ0), therefore σ0 → 0 consequently

er1, er2, er3, · · · , erM−1 → 0. Therefore, system (4.9) becomes asymptotically sta-

ble.The sliding surfaces for system (4.8) is σ = σ0 + z. The term z in the sliding

surface is an integral term to be calculated later in this section. To avert the reach-

ing phase, choosing z(0) such that σ(0) = 0 . By choosing v = v0 + vs, where the

first term v0, is the nominal input vector and the second term vs is compensator

which will be calculated later. Then the first derivative of the SS becomes as:

σ̇ = σ̇0 + ż = ėr1 + c1ėr2 + c2ėr3 + c3ėr4 + · · ·+ cM−3ėM−2 + ėM−1 + ż

= er2 + c1er3 + c2er4 + · · ·+ cM−3erM−1 + v0 + vs + F1(x1)θ̃1 + (1 + c1)F2(x2)θ̃2

+ (c1 + c2)F3(x3)θ̃3 + (c2 + c3)F4(x4)θ̃4 + · · ·+ (cM−4 + cM−3)FM−2(xM−2)θ̃M−2

+ (cM−3 + 1)FM−1(xM−1)θ̃M−1 + FM(xM)θ̃M ż

(4.11)

For Eq. (4.11) the following Lyapunove stability function is designed:

V =
1

2
{σTσ + θ̃T1 θ̃1 + θ̃T2 θ̃2 +

M−1∑
o

θ̃To+2θ̃o+2 + θ̃TM−1θ̃M−1 + θ̃TM θ̃M} (4.12)

from Eq. (4.12) designing the adaptive laws θ̂o, θ̃o, o = 1, 2, 3, · · · ,M and comput-

ing vs in such a way that the derivative of Eq. (4.12) becomes V̇ < 0.

Theorem 4.1. Consider the Layapunov equation of the form Eq. (4.12), then to get

V̇ < 0 the following values of vs, ż are derived as ż = −er2 −
∑M−1

0=3 co−2ero − v0,

vs = −κσ and adaptive laws for θ̂o, θ̃o, o = 1, 2, 3, · · · ,M are derived as:

˙̃θ1 = −F T
1 (x1)σ − κ1θ̃1, ˙̂

θ1 = − ˙̃θ1 (4.13a)

˙̃θ2 = −(1 + c1)F
T
2 (x2)σ − κ2θ̃2, ˙̂

θ2 = − ˙̃θ2 (4.13b)

˙̃θo+2 = −(co + co+1)F
T
o+2(xo+2)σ − κo+2θ̃o+2 (4.13c)

˙̂
θo+2 = − ˙̃θo+2, o = 1, 2, 3, · · · ,M − 4 (4.13d)

˙̃θM−1 = −(cM−3 + 1)F T
M−1(xM−1)σ − κM−1θ̃M−1, (4.13e)

˙̂
θM−1 = − ˙̃θM−1 (4.13f)

˙̃θM = −F T
M(xM)σ − κM θ̃M , ˙̂

θM = − ˙̃θM (4.13g)
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Proof. since

V̇ = σT σ̇ + θ̃T1
˙̃θ1 + θ̃T2

˙̃θ2 +
M−4∑
o=3

θ̃To+2
˙̃θo+2 + θ̃TM−1

˙̃θM−1 + θ̃TM
˙̃θM

= σT{er2 +
M−1∑
0=3

co−2ero + v0 + vs + ż}+ θ̃T1 {
˙̃θ1 + F T

1 (x1)σ}

+ θ̃T2 {
˙̃θ2 + (1 + c1)F

T
2 (x2)σ}+

M−4∑
o=1

θ̃To+2{
˙̃θo+2 + (co + co+1)F

T
o+2(xo+2)σ}

+ θ̃TM−1{
˙̃θM−1 + (cM−3 + 1)F T

M−1(xM−1)σ}+ θ̃TM{
˙̃θM + F T

M(xM)σ}
(4.14)

by replacing adaptive laws and the values of vs, ż designed in Eq. (4.13) into Eq.

(4.14) gives following.

V̇ = −κσ2 −
M∑
o=1

κoθ̃
T
o θ̃o (4.15)

Equation (4.15) shows that V̇ < 0 for κ > 0 consequently σ, θ̃o → 0, since σ → 0,

therefore eo → 0, o = 1, 2, 3, · · · ,M − 1. Thus anti synchronization achieved.

The designed controllers which are used to achieve the anti-synchronization are

employed to get CS. Following are two cases considered to illustrate the entire

procedure.

case (1): For odd number of systems and M(M ≥ 3), synchronization error is

defined in Eq. (2.6).

case (2): For even number of systems and M(M ≥ 4), synchronization error is

defined in Eq. (2.7).

4.4 Application Examples

4.4.1 Dynamical Network(DN) of Non-identical Systems

In this section HS in a DN of non-identical chaotic systems connected in ring

topology is discussed. To examine hybrid synchronization, three non-identical
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chaotic systems are considered with uncertain parameters. As an example, chen ,

Lorenz, and Lu chaotic system are selected which are expressed as following:

˙x11 = −35x11 + 35x12 + d11(x31 − x11)

˙x12 = −7x11 + 28x12 + x11x13 + d12(x32 − x12)

˙x13 = −3x13 + x11x12 + d13(x33 − x13)

(4.16)

˙x21 = −36x21 + 36x22 + d21(x11 − x21) + u11

˙x22 = 20x22 − x21x23 + d22(x12 − x22) + u12

˙x23 = −3x23 + x21x22 + d23(x13 − x23) + u13

(4.17)

˙x31 = −10x31 + 10x32 + d31(x21 − x31) + u21

˙x32 = 28x31 − x32 − x31x33 + d32(x22 − x32) + u22

˙x33 =
−8

3
x33 + x31x32 + d33(x23 − x33) + u23

(4.18)

In Eqs. (4.16),(4.17),(4.18) all the constant parameters are there by values, these

equations with unknown parameters can be rewritten as:

˙x11 = a1x11 + b1x12 + d11(x31 − x11)

˙x12 = c1x11 + d1x12 − x11x13 + d12(x32 − x12)

˙x13 = e1x13 + x11x12 + d13(x33 − x13)

(4.19)

˙x21 = a2x21 + b2x22 + d21(x11 − x21) + u11

˙x22 = c2x22 − x21x23 + d22(x12 − x22) + u12

˙x23 = e2x23 + x21x22 + d23(x13 − x23) + u13

(4.20)

˙x31 = a3x31 + b3x32 + d31(x21 − x31) + u21

˙x32 = c3x31 − x32 − x31x33 + d32(x22 − x32) + u22

˙x33 = e3x33 + x31x32 + d33(x23 − x33) + u23

(4.21)

Let âo, b̂o, ĉo, êo, d̂1, o = 1, 2, 3 be estimates of ao, bo, co, eo, d1, o = 1, 2, 3 respectively

and let ão = ao − âo, b̃o = bo − b̂o, c̃o = co − ĉoẽo = eo − êo, d̃1 = d1 − d̂1, o = 1, 2, 3

be errors in estimation of ao, bo, co, eo, d1, o = 1, 2, 3, respectively.
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Defining:

x1 =


x11

x12

x13

 , x2 =


x21

x22

x23

 , x3 =


x31

x32

x33

 , u1 =


u11

u12

u13

 , u2 =


u21

u22

u23

 ,

θ̂ =



â

b̂

ĉ

d̂

ê


, θ̃ =



ã

b̃

c̃

d̃

ẽ



(4.22)

Then the Eqs. (4.19),(4.20),(4.21) in vector form are written as:

ẋ1 = f1(x1) + F1(x1)θ̂1 + F1(x1)θ̃1

ẋ2 = f2(x2) + F2(x2)θ̂2 + F2(x2)θ̃2 + u1

ẋ3 = f3(x3) + F3(x3)θ̂3 + F3(x3)θ̃3 + u2

(4.23)

Where,

θ̂1 =
[
â1 b̂1 ĉ1 d̂1 ê1

]T
, θ̃1 =

[
ã1 b̃1 c̃1 d̃1 ẽ1

]T
, θ̂2 =

[
â2 b̂2 ĉ2 d̂2 ê2

]T
,

θ̃2 =
[
ã2 b̃2 c̃2 d̃2 ẽ2

]T
, θ̂3 =

[
â3 b̂3 ĉ3 d̂3 ê3

]T
, θ̃3 =

[
ã3 b̃3 c̃3 d̃3 ẽ3

]T
,

f1(x1) =


d11(x31 − x11)

x11x13 + d12(x32 − x12)

x11x12 + d13(x33 − x13)

 , F1(x1) =


x11 x12 0 0 0

0 0 x11 x12 0

0 0 0 0 x13

 ,

f2(x2) =


d21(x11 − x21)

−x21x23 + d22(x12 − x22)

x21x22 + d23(x13 − x23)

 , F2(x2) =


x21 x22 0 0 0

0 0 0 x22 0

0 0 0 0 x23

 ,

f3(x3) =


d31(x21 − x31)

−x32 − x31x33 + d22(x22 − x32)

x31x32 + d33(x23 − x33)

 , F3(x3) =


x31 x32 0 0 0

0 0 0 x31 0

0 0 0 0 x33


(4.24)
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For the anti-synchronization, the errors er1 =
[
er11 er12 er13

]T
, er2 =

[
er21 er22 er23

]T
are: er1 = x2 + x1, er2 = x3 + x2. Therefore, ˙er1

˙er2

 =

f2(x2) + F2(x2)θ̂2 + f1(x1) + F1(x1)θ̂1

F2(x2)θ̂2 + f3(x3) + F3(x3)θ̂3

+

F2(x2)θ̃2 + F1(x1)θ̃1

F2(x2)θ̃2 + F3(x3)θ̃3


+

1 0

1 1

u1
u2


(4.25)

by choosing

u1
u2

 =

1 0

1 1

−1−
f2(x2) + F2(x2)θ̂2 + f1(x1) + F1(x1)θ̂1

F2(x2)θ̂2 + f3(x3) + F3(x3)θ̂3

+

er2
v


(4.26)

where v =
[
v1 v2 v3

]T
is the new input vector, then system (4.25) becomes:

˙er1 = er2 + F2(x2)θ̃2 + F1(x1)θ̃1

˙er2 = v + F3(x3)θ̃3 + F2(x2)θ̃2

(4.27)

The nominal system for Eq. (4.27) is:

˙er1 = e2

˙er2 = v0

(4.28)

where, v0 =
[
v01 v02 v03

]T
is the nominal input vector. The SS for Eq. (4.28)

is defined as:σ0 = er1 + er2, i.e.,
σ01

σ02

σ03

 =


er11 + er21

er12 + er22

er13 + er23

 (4.29)

The nominal system Eq. (4.29) is asymptotically stable if v0 = −er2 − kσ0 −

k sign(σ0), k > 0. The SS for Eq. (4.27) is σ = σ0 + z = er1 + er2 + z, where,
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z =
[
z1 z2 z3

]T
is the integral term and z(0) is chosen in such a manner that

σ(0) = 0. Defining v = v0 +vs, where, vs =
[
vs1 vs2 vs3

]T
is compensator. Then

system (4.27) can be rewritten as:

ėr11 = er21 + ã2x21 + b̃2x22 + ã1x11 + b̃1x12

ėr12 = er22 + c̃2x22 + c̃1x11 + d̃1x12

ėr13 = er23 + ẽ2x23 + ẽ1x13

ėr21 = v1 + ã3x31 + b̃3x32 + ã2x21 + b̃2x22

ėr22 = v2 + c̃3x31 + c̃2x22

ėr23 = v3 + ẽ3x33 + ẽ2x23

(4.30)

Then σ̇ = ˙er1 + ˙er2 + ż gives:

σ̇1 = er21 + v01 + vs1 + ż1 + ã1x11 + b̃1x12 + 2ã2x21 + 2b̃2x22 + ã3x31 + b̃3x32

σ̇2 = er22 + v02 + vs2 + ż2 + c̃1x11 + d̃1x12 + 2c̃2x22 + c̃3x31

σ̇3 = er23 + v03 + vs3 + ż3 + 2ẽ2x23 + ẽ1x13 + ẽ3x33

(4.31)

By taking a Lyapunov equation of the following form:

V =
1

2
{σ2

1 + σ2
2 + σ2

3 + ã21 + ã22 + ã23 + b̃21 + b̃22 + b̃23 + c̃21 + c̃22 + c̃23 + ẽ21 + ẽ22

+ ẽ23 + d̃21}
(4.32)

Then V̇ < 0 if the adaptive laws for ão, âo, b̃o, b̂o, c̃o, ĉo, ẽo, êo, d̃1, d̂1 and the values

of vro, o = 1, 2, 3 are chosen as:

ż1 = −er21 − v01, vs1 = −k1σ1, ż2 = −er22 − v02, vs2 = −k2σ2

ż3 = −er23 − v03, vs3 = −k3σ3, ˙̃a1 = −σ1x11 − k4ã1, ˙̂a1 = − ˙̃a1

˙̃a2 = −2σ1x21 − k5ã2, ˙̂a2 = − ˙̃a2, ˙̃a3 = −σ1x31 − k6ã3, ˙̂a3 = − ˙̃a3

˙̃b1 = −σ1x12 − k7b̃1, ˙̂
b1 = − ˙̃b1,

˙̃b2 = −2σ1x22 − k8b̃2, ˙̂
b2 = − ˙̃b2

˙̃b3 = −σ1x31 − k9b̃3, ˙̂
b3 = − ˙̃b3
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˙̃c1 = −σ2x11 − k10c̃1, ˙̂c1 = − ˙̃c1

˙̃c2 = −2σ2x22 − k11c̃2, ˙̂c2 = − ˙̃c2

˙̃c3 = −σ1x31 − k12c̃3, ˙̂c3 = − ˙̃c3

˙̃e1 = −σ3x13 − k13ẽ1, ˙̂e1 = − ˙̃e1

˙̃e2 = −2σ3x23 − k14ẽ2, ˙̂e2 = − ˙̃e2

˙̃e3 = −σ3x33 − k15ẽ3, ˙̂e3 = − ˙̃e3

˙̃d1 = −σ2x12 − k16d̃1, ˙̂
d1 = − ˙̃d1, ko > 0, o = 1, 2, ..., 16

(4.33)

By incorporating the Eq. (4.33) in the derivative of Eq. (4.32) it yields:

V̇ = −k2σ12 − k2σ22 − k3σ32 − k4ã21 − k5ã22 − k6ã23 − k7b̃21 − k8b̃22 − k9b̃23 − k10c̃21

− k11c̃22 − k12c̃23 − k13ẽ21 − k14ẽ22 − k15ẽ23 − k16d̃21
(4.34)

From this it is clear that σo, ẽo, d̃1, ão, b̃o.c̃o → 0 where o = 1, 2, 3. Therefor, anti-

synchronization is achieved. For CS, the error is er3 = x3−x1 = x3+x2−x2+x1 =

er2 − er1. As er1, er2 → 0 therefore er3 → 0. Thus complete synchronization is

achieved.

4.4.1.1 Performance Analysis

The work presented in this chapter can be compared with the work presented in

[44, 205]. There are many differences like the network model presented in [44]

is different as compared to network model presented in Eq.(4.1) it consist of an

additional parameter . The error dynamics defined in Eq.(4.7) and the controller

defined in Eq.(4.9) are entirely different. The proposed control methodology is

integral sliding mode control whereas direct design control technique is employed

in [44]. The proposed control technique presented in this chapter is advantageous

in sense that it provides fast response and robustness to uncertainties. The work

presented in this chapter is more practical because it considers the effect of uncer-

tainties. Lyapunove stability function defined in Eq.(4.15) is much more different
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than [44] as it justifies the adaptive laws as well. Moreover, estimating the un-

known parameters is another valuable difference.

Figures 4.1 - 4.5 displays simulation results for Sec. 4.4.1 with M=3. The initial

(starting point) conditions are chosen as (x11(0) = 10, x12(0) = 20, x13(0) = 30),

(x21(0) = −5.8, x22(0) = 8, x23(0) = 10) and (x31(0) = 11, x32(0) = 15, x33(0) =

26). The coupling parameters are chosen as d11 = d21 = d13 = d23 = d31 =

d33 = 0, d12 = 10, d22 = 11 and d32 = 1. Figure 4.1(a) shows the errors er11, er12,

er13, er21, er22, and er23 asymptotically goes to zero. Figure 4.1(b) displays the

errors e‘r31, e‘r32, and e‘r33, converging to origin. Figure 4.2(a) shows system states

x11, x21, x31, Figure 4.2(b) shows system states x12, x22, and x32 and Fig. 4.2(c)

shows system states x13, x23, and x33.

From these figures it can be seen that systems x1(t) and x2(t), and systems x2(t)

and x3(t) achieve the AS, and systems x1(t) and x3(t) attain CS and therefore

milestone attained i.e. hybrid synchronization. Figure 4.3 shows the adaptive es-

timation of parameters a, b, c, d, and er for the three systems. Figure 4.3(a) shows

the estimation of a1, b1, c1, d1,and er1, the parameters of the first system, which

converge to their true values of −35, 35,−7, 28, and −3 respectively. Figure 4.3(b)

shows the estimation of a2, b2, c2, d2,and er2, and the parameters of the second

system, which converges to their actual values of −36, 36, 20, and 3 respectively.

Figure 4.3(c) shows the estimation of a3, b3, c3, d3,and er3, the parameters of the

third system, which converges to their actual values −10, 10, 28, and −8/3 respec-

tively. Figures 4.4 and 4.5 depicts the control effort exerted to achieve hybrid

synchronization.
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Figure 4.1: Convergence of error system (a) er11, er12, er13, er21, er22, er23
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4.4.2 Dynamical Network (DN) of Identical Systems

In this section HS in a DN of identical chaotic systems connected in ring topology

is discussed. To examine HS, Lorenz chaotic systems are considered with uncertain

parameters. The structure of the dynamic network comprising four Lorenz systems

is defined as:

ẋ11 = −10x11 + 10x12 + d
′

11(x41 − x11)

ẋ12 = 28x11 − x12 − x11x13 + d
′

12(x42 − x12)

ẋ11 = −8

3
x13 + x11x12 + d

′

13(x43 − x13)

(4.35)

ẋ21 = −10x21 + 10x22 + d
′

21(x11 − x21) + µ
′

11

ẋ22 = 28x21 − x22 − x21x23 + d
′

22(x12 − x22) + µ
′

12

ẋ23 = −8

3
x23 + x21x22 + d

′

23(x13 − x23) + µ
′

13

(4.36)

ẋ31 = −10x31 + 10x32 + d
′

31(x21 − x31) + µ
′

21

ẋ32 = 28x31 − x32 − x31x33 + d
′

32(x22 − x32) + µ
′

22

ẋ33 = −8

3
x33 + x31x32 + d

′

33(x23 − x33) + µ
′

23

(4.37)

ẋ41 = −10x41 + 10x42 + d
′

41(x31 − x41) + µ
′

31

ẋ42 = 28x41 − x42 − x41x43 + d
′

42(x32 − x42) + µ
′

32

ẋ43 = −8

3
x43 + x41x42 + d

′

43(x33 − x43) + µ
′

33

(4.38)

If the constant parameters in the above ring connected network are uncertain then

the Eqs. (4.35), (4.36), (4.37), (4.38) can be rewritten as:

ẋ11 = −ax11 + bx12 + d
′

11(x41 − x11)

ẋ12 = cx11 − x12 − x11x13 + d
′

12(x42 − x12)

ẋ11 = −dx13 + x11x12 + d
′

13(x43 − x13)

(4.39)

ẋ21 = −ax21 + bx22 + d
′

21(x11 − x21) + µ
′

11

ẋ22 = cx21 − x22 − x21x23 + d
′

22(x12 − x22) + µ
′

12

ẋ23 = −dx23 + x21x22 + d
′

23(x13 − x23) + µ
′

13

(4.40)
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ẋ31 = −ax31 + bx32 + d
′

31(x21 − x31) + µ
′

21

ẋ32 = cx31 − x32 − x31x33 + d
′

32(x22 − x32) + µ
′

22

ẋ33 = −dx33 + x31x32 + d
′

33(x23 − x33) + µ
′

23

ẋ41 = −ax41 + bx42 + d
′

41(x31 − x41) + µ
′

31

ẋ42 = cx41 − x42 − x41x43 + d
′

42(x32 − x42) + µ
′

32

ẋ43 = −dx43 + x41x42 + d
′

43(x33 − x43) + µ
′

33

(4.41)

Let â, b̂, ĉ, d̂ be the estimates of a, b, c, d respectively and let ã = a− â, b̃ = b− b̂, c̃ =

c − ĉ, d̃ = d − d̂ be the errors in estimation of a, b, c, d respectively. Defining the

dynamic states of the network nodes in a vector form as:

x1 =
[
x11 x12 x13

]
, x2 =

[
x21 x22 x23

]
, x3 =

[
x31 x32 x33

]
x4 =

[
x41 x42 x43

]
, µ
′

1 =
[
µ
′
11 µ

′
12 µ

′
13

]
, µ
′

2 =
[
µ
′
21 µ

′
22 µ

′
23

]
µ
′

3 =
[
µ
′
31 µ

′
32 µ

′
33

]
, θ̂ =

[
â b̂ ĉ d̂

]
, θ̃ =

[
ã b̃ c̃ d̃

] (4.42)

the dynamic systems of Eqs. (4.39)-(4.41) are rewritten as:

ẋ1 = f1(x1) + z1(x1)θ̂ + z1(x1)θ̃

ẋ2 = f2(x2) + z2(x2)θ̂ + z2(x2)θ̃ + µ
′

1

ẋ3 = f3(x3) + z3(x3)θ̂ + z3(x3)θ̃ + µ
′

2

ẋ4 = f4(x4) + z4(x4)θ̂ + z4(x4)θ̃ + µ
′

3

(4.43)

where

f1(x1) =


d
′
11(x41 − x11)

−x12 − x11x13 + d
′
12(x42 − x12)

x11x12 + d
′
13(x43 − x13)

 ,z1(x1) =


x11 x12 0 0

0 0 x11 0

0 0 0 x13



f2(x2) =


d
′
21(x11 − x21)

−x22 − x21x23 + d
′
22(x12 − x22)

x21x22 + d
′
23(x13 − x23)

 ,z2(x2) =


x21 x22 0 0

0 0 x21 0

0 0 0 x23


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f3(x3) =


d
′
31(x21 − x31)

−x32 − x31x33 + d
′
32(x22 − x32)

x31x32 + d
′
33(x23 − x33)

 ,z3(x3) =


x31 x32 0 0

0 0 x31 0

0 0 0 x33



f4(x4) =


d
′
41(x31 − x41)

−x42 − x41x43 + d
′
42(x32 − x42)

x41x42 + d
′
43(x33 − x43)

 ,z4(x4) =


x41 x42 0 0

0 0 x41 0

0 0 0 x43


(4.44)

For the anti-synchronization, the error vectors er1 =
[
er11 er12 er13

]
, er2 =[

er21 er22 er23

]
and er3 =

[
er31 er32 er33

]
are defined as:

er1 = x2 + x1

er2 = x3 + x2

er3 = x4 + x3

(4.45)

Therefore,
˙er1

˙er2

˙er3

 =


f1(x1) + z1(x1)θ̂ + f2(x2) + z2(x2)θ̂

f2(x2) + z2(x2)θ̂ + f3(x3) + z3(x3)θ̂

f3(x3) + z3(x3)θ̂ + f4(x4) + z4(x4)θ̂

+


(z1(x1) + z2(x2))θ̃

(z2(x2) + z3(x3))θ̃

(z3(x3) + z4(x4))θ̃



+


1 0 0

1 1 0

0 1 1



µ
′
1

µ
′
2

µ
′
3


(4.46)

By designing the control terms present in Eq. (4.46) in the following way,


µ
′
1

µ
′
2

µ
′
3

 =


1 0 0

1 1 0

0 1 1


−1−


f1(x1) + z1(x1)θ̂ + f2(x2) + z2(x2)θ̂

f2(x2) + z2(x2)θ̂ + f3(x3) + z3(x3)θ̂

f3(x3) + z3(x3)θ̂ + f4(x4) + z4(x4)θ̂

+


er2

er3

v




(4.47)
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Where, v is the new input vector. By replacing Eq. (4.47) in Eq. (4.46) yields,


˙er1

˙er2

˙er3

 =


er2

er3

v

+


(z1(x1) + z2(x2))θ̃

(z2(x2) + z3(x3))θ̃

(z3(x3) + z4(x4))θ̃

 (4.48)

Equation (4.48) can be written as:

˙er1 = er2 + (z1(x1) + z2(x2))θ̃

˙er2 = er3 + (z2(x2) + z3(x3))θ̃

˙er3 = v + (z3(x3) + z4(x4))θ̃

(4.49)

The nominal system for Eq. (4.49) is defined as:

˙er1 = er2

˙er2 = er3

˙er3 = v0

(4.50)

The Hurwitz SS vector for nominal system Eq. (4.50) can be defined as:

σ0 = er1 + 2er2 + er3

σ0 =


σ01

σ02

σ03

 =


er11 + 2er21 + er31

er12 + 2er22 + er32

er13 + 2er23 + er33

 (4.51)

The time derivative of system (4.51) is σ̇0 = ėr1 + 2ėr2 + ėr3 = er2 + 2er3 + v0. By

choosing v0 = −er2 − 2er3 − κσ0 − κ sign(σ0), κ > 0, it yiekds that σ̇0 = −κσ0 −

κ sign(σ0), this means that the error dynamics in Eq. (4.50) are asymptotically

stable.

Now, the sliding surface for Eq. (4.49) including all the terms is designed as:

σ = σ0 + z

= er1 + 2er2 + er3 + z
(4.52)
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where z =
[
z1 z2 z3

]T
is some integral term designed z(0) in such a way that

σ(0) = 0. In Eq. (4.49) the input term v = v0 + vs where v0 =
[
v01 v02 v03

]T
is the nominal input and vs =

[
vs1 vs2 vs3

]T
is compensator term which will

be computed later in this section.The error dynamics defined in Eq. (4.49) are

rewritten as:

ėr11 = er21 + ãx21 + b̃x22 + ãx11 + b̃x12

ėr12 = er22 + c̃x21 + c̃x11

ėr13 = er23 + d̃x23 + d̃x13

ėr21 = er31 + ãx31 + b̃x32 + ãx21 + b̃x22

ėr22 = er32 + c̃x31 + c̃x21

ėr23 = er33 + d̃x33 + d̃x23

ėr31 = v01 + vs1 + ãx41 + b̃x42 + ãx31 + b̃x32

ėr32 = v02 + vs2 + c̃x41 + c̃x31

ėr33 = v03 + vs3 + d̃x43 + d̃x33

(4.53)

The first derivative of Eq. (4.52) yields: σ̇ = ėr1 + 2ėr2 + ėr3 + ż which can be

further written as:

σ̇1 = er21 + 2er31 + ã(3x21 + x11 + 3x31 + x41) + b̃(3x22 + x12 + 3x32 + x42)

+ v01 + vs1 + ż1

σ̇2 = er22 + 2er32 + c̃(3x21 + x11 + 3x31 + x41) + v02 + vs2 + ż2

σ̇3 = er23 + 2er33 + d̃(3x23 + x13 + 3x33 + x43) + v03 + vs3 + ż3

(4.54)

To check the stability of sliding surfaces following Lyapunov stability function is

defined.

V =
1

2
(σ2

1 + σ2
2 + σ2

3 + ã2 + b̃2 + c̃2 + d̃2) (4.55)

The derivative of Eq. (4.55) is taken as:

V̇ = σ1σ̇1 + σ2σ̇2 + σ3σ̇3 + ã ˙̃a+ b̃ ˙̃b+ c̃ ˙̃c+ d̃ ˙̃d (4.56)
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if the adaptive laws for ã, b̃, c̃, d̃, â, b̂, ĉ, d̂ and vso, o = 1, 2, 3 are defined as:

ż1 = −er21 − 2er31 − v01, vs1 = −κ1s1

ż2 = −er22 − 2er32 − v02, vs2 = −κ2s2

ż3 = −er23 − 2er33 − v03, vs3 = −κ3s3
˙̃a = −σ1(3x21 + x11 + 3x31 + x41)− κ4ã, ˙̂a = − ˙̃a

˙̃b = −σ1(3x22 + x12 + 3x32 + x42)− κ5b̃, ˙̂
b = − ˙̃b

˙̃c = −σ2(3x21 + x11 + 3x31 + x41)− κ6c̃, ˙̂c = − ˙̃c

˙̃d = −σ3(3x23 + x13 + 3x33 + x43)− κ7d̃, ˙̂
d = − ˙̃d, κo > 0, o = 1, · · · , 7

(4.57)

By replacing Eq. (4.57) in Eq. (4.56) it yields:

V̇ = −κ1σ2
1 − κ2σ2

2 − κ3σ2
3 − κ4ã2 − κ5b̃2 − κ6c̃2 − κ7d̃2 (4.58)

From Eq. (4.58) it is clear that σ1, σ2, σ3, ã, b̃, c̃, d̃ → 0. Since σ1, σ2, σ3 → 0,

therefore er1, er2, er3 → 0. Thus anti-synchronization achieved.

For CS the errors are defined as:

e
′

r1 = x3 − x1 = x3 + x2 − x2 − x1 = er2 − er1

e
′

r2 = x4 − x2 = x4 + x3 − x3 − x2 = er3 − er2
(4.59)

Since er1, er2, er3 → 0 therefore e
′
r1, e

′
r2 → 0 thus complete synchronization is also

achieved in a similar way as anti synchronization achieved.

4.4.2.1 Performance Analysis

Figures 4.6 - 4.11 shows simulation results for section 4.4.2 with M=4. The ini-

tial (starting point) conditions are chosen as (x11(0) = 4, x12(0) = 5, x13(0) =

−3), (x21(0) = 5, x22(0) = 2, x23(0) = −5),(x31(0) = 11, x32(0) = 15, x33(0) = 10)

and (x41(0) = 4, x42(0) = 5, x43(0) = −3). The coupling parameters are chosen as

d12 = d22 = d32 = d13 = d23 = d33 = d42 = d43 = 0, d11 = d21 = 1 and d31 = d41 =

−1. Figure 4.6(a) shows the errors er11, er12, er13, er21, er22, er23, er31, er32, and er33
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asymptotically converge to zero. Figure 4.6(b) shows the errors e‘r11, e‘r12, and

e‘r13, asymptotically converge to zero. Figure 4.6(c) depicts the errors e“r21, e“r22,

and e“r23, asymptotically converge to zero. Figure 4.7(a) depicts system states

x11, x21, x31, and x41, Figure 4.7(b) depicts system states x12, x22, x32, and x42, and

Figure 4.7(c) shows system states x13, x23, x33, and x43. From these figures it can

be see that systems x1(t) and x2(t), systems x2(t) and x3(t), and systems x3(t) and

x4(t) achieve the anti-synchronization, and systems x1(t) and x3(t) and systems

x2(t) and x4(t) attained the complete synchronization and hence hybrid synchro-

nization attained. Figure 4.8 shows an adaptive estimation of parameters a, b, c,

and d for four systems which converge to their true values of −10, 10, 28, and −8/3

respectively. Figures 4.9 - 4.11 depicts the control effort exerted to achieve the

hybrid synchronization.
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Figure 4.6: Convergence of error systems (a) er11, er12, er13, er21, er22, er23,
er31, er32, er33 (b) e‘r11, e‘r12, e‘r13 (c) e“r21, e“r22, e“r23
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Figure 4.7: Time history of system states (a) x11, x21, x31, x41 (b)
x12, x22, x32, x42 (c) x13, x23, x33, x43
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Figure 4.8: Convergence of estimated parameters to their actual values a, b, c,
and d

4.5 Summary

In this chapter, the control design method is presented for parameter estimation

and hybrid synchronization in a DN of non-identical and identical chaotic systems

connected in the ring topology. The methodology is created using adaptive ISMC.

The error system was transformed into a special structure containing nominal part
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Figure 4.9: Control effort (a) u11 (b) u12 (c) u13

and some unknown terms. The unknown terms were computed adaptively. Then

the error system was stabilized using integral sliding mode control. The stabilizing

controller for the error system is created that contains the nominal control and

the compensator control. Simulation results show that hybrid synchronization

was achieved with the proposed control laws and that the uncertain parameters

converge to their actual values.
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Figure 4.10: Control effort (a) u21 (b) u22 (c) u23
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Figure 4.11: Control effort (a) u31 (b) u32 (c) u33



Chapter 5

Hybrid Synchronization in a

Dynamical Network (DN) of

Complex Chaotic PMSM Systems

5.1 Introduction

In this chapter, the use of adaptive ISMC is investigated to achieve hybrid syn-

chronization of complex chaotic systems connected in the ring topology as shown

in 4.1. In addition, it is considered that due to the uncertainties the parameters

of the complex chaotic systems are unknown. As an example, a DN of complex

chaotic permanent magnet synchronous motor (PMSM) systems is selected.

Medium power PMSMs are very useful inside industrial areas by reason of their

significant features like small size, low cost, high torque, and simple structure as

there is no field winding present in the motor. Therefore, a lot of research has been

carried out to investigate control and synchronization of real permanent magnet

synchronous motors [206–209]. Whereas a very less work is done for complex vari-

able permanent magnet synchronous motors [210, 211]. Practically, in permanent

magnet synchronous motors, complex currents and complex voltages are present

in the dynamical model and a possibility is there that one or all the parameters

64
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of the systems are disturbed due to noises. So it is practically sound to estimate

the unknown parameters for hybrid synchronization of PMSM systems.

5.2 Problem Formulation

5.2.1 System Description and Mathematical Model

In [33, 212] the equivalent circuit diagram Fig. 5.1 and mathematical model of a

PMSM field-oriented rotor system are given in Eq. (5.1), where the dynamic state

variables id, iq represent currents and w is angular frequency; ud is the direct axis

and uq is the quadrature-axis component of input stator voltages; TL is the applied

load torque; J is the arctic moment of inertia; β is the adhesive damping constant,

R1 represents resistance of stato wingding; Ld represents direct axis inductance

and Lq represents quadrature-axis inductance ;ψr represents rotor flux and np are

the total number of rotor poles.

did
dt

=
(−R1id + wiqLq + ud)

Ld

diq
dt

=
(−R1iq + widLd − wψr + uq)

Lq

dw

dt
=

(npψriq + npidiq(Ld − Lq)− wβ − TL)

J

(5.1)

In the presence of even air gap as well as uniform distribution of flux and motor

runs with no-load as well as power failure, the equations of PMSM system can be

represented in (5.2) this system has two complex variable x1, x2 and two constant

parameters a, b. In [210] another complex model of permanent magnet synchronous

motor is presented in (5.3).

ẋ1 = a(x2 − x1)

ẋ2 = bx1 − x2 − x1x3

ẋ3 = x1x2 − x3

(5.2)
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Figure 5.1: Equivalent circuit diagram of PMSM system on (a) D−Axis, (b)
Q−Axis

ẋ1 = a(x2 − x1)

ẋ2 = bx1 − x1x3 − x2

ẋ3 = 0.5(x2x1 + x2x1)

(5.3)

where x1, x2 are in complex conjugate form with j =
√
−1. This system Eq. (5.3)

shows chaotic behavior when its constant parameters are selected as b = 20, a = 11.

Figure 5.3 shows the chaotic behavior of this system. There are many properties of

PMSM systems studied in [23,39,40]. In this section, the parameter identification

and hybrid synchronization of PMSM systems using adaptive ISMC is investigated
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Figure 5.2: Chaotic behaviour of PMSM system on (a) x1r, x2r, x3r, (b) x1i, x2i
space Eq. (5.3)

.

5.2.2 Problem statement

In general, N complex chaotic systems connected in a ring topology can be con-

figured as:

ẋ1 = f1(x1) + F1(x1)θ1 +D1(xN − x1)

ẋ2 = f2(x2) + F2(x2)θ2 +D2(x1 − x2)
...

ẋN = fN(xN) + FN(xN)θN +DN(xN−1 − xN)

(5.4)

Where x1, x2, ..., xN ∈ Cn, are defined as the complex state vectors, and xi =

(xi1, xi2, xi3, ..., xin)T , xk = xkr + jxki, k = 1, 2, 3, ..., N , j =
√
−1, both subscripts

r and i represents real and imaginary components from beginning to end of this

chapter.fi : Cn → Cn are the nonlinear function,θi ∈ <p are unknown parame-

ters, Fi(xi) ∈ C(n × p) are matrices, Di = diag{di1, di2, ..., diN}, i = 1, 2, 3, ..., N

are diagonal matrices, and dij ≥ 0 represents the connected terms of the diag-

onal matrices. The complex chaotic systems are connected in a ring, where the
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dynamic states of the first system are connected with the Nth, the second sys-

tem is connected with the first, and finally the Nth complex chaotic system is

connected with the (Nth-1) system. This kind of coupling scheme to investigate

hybrid synchronization can be mathematically represented as:

ẋ1 = f1(x1) + F1(x1)θ1 +D1(xN − x1)

ẋ2 = f2(x2) + F2(x2)θ2 +D2(x1 − x2) + u1
...

ẋN = f(xN) + FN(xN)θN +DN(xN−1 − xN) + uN−1

(5.5)

Where uk = ukr + juki, k = 1, 2, ..., N −1 are the complex inputs. The hybrid syn-

chronization for multiple connected systems is defined as:

Definition. The chaotic dynamic system Eq. (5.5), it say that there exist HS

if the controllers ui, i = 1, 2, 3, ..., N−1 are selected in a manner that all trajectories

x1(t), x2(t), ..., xN(t)) in Eq. (5.5) with either initial condition (x1(0), x2(0), ..., xN(0))

satisfy:For the errors ei = (ei1, ei2, ..., eiN)T , yields:

lim
t→∞

ei = lim
t→∞

xi(t) + qxi+1(t) = 0, i = 1, 2, 3, ..., N − 1

For the anti-synchronization q = 1 and for complete synchronization q = −1.

The HS control become a problem to design appropriate controller ui to make

ei = (ei1, ei2, ..., eiN)T → 0 asymptotically.

5.3 Proposed Control Algorithm

For the HS, the error vectors is defined as:

e1 = x2 + qx1

e2 = x3 + qx2
...

eN−1 = xN + qxN−1

(5.6)



Hybrid Synchronization in a dynamical network of PMSM systems 69

Let θ̂i be the estimate of θi and let θ̃i = θi − θ̂i be the errors in estimating the

parameters θi, i = 1, 2, ..., N , respectively.

The derivative of Eq. (5.6) yields:

ė1 = ẋ2 + qẋ1 = f2(x2) + F2(x2)θ̂2 + F2(x2)θ̃2 +D2(x1 − x2) + u1 + qf1(x1)

+ qF1(x1)θ̂1 + qF1(x1)θ̃1 + qD1(xN − x1)

ė2 = ẋ3 + qẋ2 = f3(x3) + F3(x3)θ̂3 + F3(x3)θ̃3 +D3(x2 − x3) + u2 + qf2(x2)

+ qF2(x2)θ̂2 + qF2(x2)θ̃2 + qD2(x1 − x2) + qu1
...

ėN−1 = ẋN + qẋN−1 = fN(xN) + FN(xN)θ̂N + FN(xN)θ̃N +DN(xN−1 − xN)

+ uN−1 + qfN−1(xN−1) + q(FN−1(xN−1)θ̂N−1) + qFN−1(xN−1)θ̃N−1

+ q(DN−1(xN−2 − xN−1)) + quN−2
(5.7)

which can be written as:


ė1
...

ėN−1

 =



f2(x2) + qf1(x1) + F2(x2)θ̂2 + qF1(x1)θ̂1 +D2(x1 − x2)

+qD1(xN − x1)
...

fN(xN) + qfN−1(xN−1) + FN(xN)θ̂N + qFN−1(xN−1)θ̂N−1

+DN(xN−1 − xN) + qDN−1(xN−2 − xN−1)



+


F2(x2)θ̃2 + qF1(x1θ̃1)

...

FN(xN)θ̃N

+qFN−1(xN−1θ̃N−1)

+


1 0 0 · · · 0
...

...
...

...
...

0 0 · · · q 1



u1
...

uN−1



(5.8)

By choosing


u1
...

uN−1

 =


1 0 0 · · · 0
...

...
...

...
...

0 0 · · · q 1


−1


+


e2
...

eN−1

v

− A


(5.9)
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where, v is the new input vector and

A =


f2(x2) + qf1(x1) + F2(x2)θ̂2 + qF1(x1)θ̂1 +D2(x1 − x2) + qD1(xN − x1)

...

fN(xN) + qfN−1(xN−1) + FN(xN)θ̂N + qFN−1(xN−1)θ̂N−1 +DN(xN−1 − xN)

+qDN−1(xN−2 − xN−1)


(5.10)

Then system Eq. (5.8) becomes:

ė1 = e2 + F2(x2)θ̃2 + qF1(x1)θ̃1
...

ėN−2 = eN−1 + FN−1(xN−1)θ̃N−1 + qFN−2(xN−2)θ̃N−2

ėN−1 = v + FN(xN)θ̃N + qFN−1(xN−1)θ̃N−1

(5.11)

To employ ISMC, first defining the nominal system for Eq. (5.11) as:

ė1 = e2

ė2 = e3

ė3 = e4
...

ėN−2 = eN−1

ėN−1 = vo

(5.12)

To stabilize the error system Eq. (5.12), the Hurwitz sliding surface is designed

as: σo = (1 + d
dt

)N−2e1 = e1 + c1e2 + ... + cN−3eN−1, where the coefficients ci are

selected in a way that σo becomes Hurwitz polynomial.

The first derivative of the above SS will be like this: σ̇o = e2 + c1e3 + c2e4 + ... +

cN−3eN−1 + vo. By choosing vo = −e2 − c1e3 − c2e4 − ...− cN−3eN−1 − kσo, k > 0,

it becomes σ̇o = −kσo, consequently σo → 0 ,which gives e1, e2, ..., eN−1 → 0.

Therefore system Eq. (5.12) is asymptotically stable. Now designing the SS for

system Eq. (5.11) as: σ = σo + z where z is an integral term which shall be
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calculated later. To avert the reaching phase set z(0) in such a way that σ(0) = 0.

The time derivative of this sliding manifold will be as following.

σ̇ = σ̇o + ż

= ė1 + c1ė2 + · · ·+ cN−3ėN−2 + ėN−1 + v + ż

= e2 + F2(x2)θ̃2 + qF1(x1)θ̃1 + c1e3 + c1F3(x3)θ̃3 + qc1F2(x2)θ̃2 + c2e4

+ c2F4(x4)θ̃4 + qc2F3(x3)θ̃3 + · · ·+ cN−3eN−1 + cN−3FN−1(xN−1)θ̃N−1

+ q(cN−3FN−2(xN−2)θ̃N−2) + FN(xN)θ̃N + qFN−1(xN−1)θ̃N−1 + v + ż

= e2 + c1e3 + c2e4 + · · ·+ cN−3eN−1 + v + ż + qF1(x1)θ̃1 + (1 + qc1)F2(x2)θ̃2

+ ((c1 + qc2)F3(x3))θ̃3 + ((c2 + qc3)F4(x4))θ̃4 + · · ·

+ ((cN−4 + qcN−3)Fn−2(xN−2))θ̃N−2) + (cN−3 + q)(FN−1(xN−1)θ̃N−1)

+ FN(xN)θ̃N

= e2 +
N−1∑
i=3

ci−2ei + v + ż + qF1(x1)θ̃1 + ((1 + qc1)F2(x2)θ̃2)

+
N−4∑
i=1

(ci + qci+1)Fi+2(xi+2)θ̃i+2 + ((cN−3 + q)FN−1(xN−1)θ̃N−1) + FN(xN)θ̃N

(5.13)

The new input term v in Eq. (5.13) is defined as v = vs + v0, where v0 is the

nominal input vector as well as the other term vs is a compensator input vector

which will be computed later. By choosing a Lyapunov function for equation Eq.

(5.13):

V =
1

2
{σTσ + θ̃T1 θ̃1 + θ̃T2 θ̃2 +

N−4∑
i=1

θ̃Ti+2θ̃i+2 + θ̃TN−1θ̃N−1 + θ̃TN θ̃N (5.14)

and designing the adaptive laws for θ̃i, θ̂i, i = 1, 2, 3, ..., N , computing the compen-

sator input vector vs such that the derivative of the Lyapunov function becomes

V̇ < 0.

Theorem 5.1. Consider a Lyapunov function as described in Eq. (5.14). Then

it is only possible to get V̇ < 0 if the following adaptive laws are derived for

θ̃i, θ̂i, i = 1, 2, 3, ..., N and vs are selected as:
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ż = −e2 −
N−1∑
i=3

ci−2ei − vo, vs = −kσ − k sign(σ)

˙̃θ1 = −qF T
1 (x1)σ − k1θ̃1, ˙̂

θ1 = − ˙̃θ1

˙̃θ2 = −(1 + qc1)F
T
2 (x2)σ − k2θ̃2, ˙̂

θ2 = − ˙̃θ2

˙̃θi+2 = −(ci + qci+1)F
T
i+1(xi+2)σ − kN−1 − ki+2θ̃i+2,

˙̂
θi+2 = − ˙̂

θi+2, i = 1, ..., N − 4

˙̃θN−1 = −(cN−3 + q)F6TN−1σ − kN−1θ̃N−1, ˙̂
θN−1 = − ˙̃θN−1

˙̃θN = −F T
N (xN)σ − kN θ̃N , ˙̂

θN = − ˙̃θN

(5.15)

Proof. Since

V̇ = σT σ̇ + θ̃T1
˙̃θ1 + θ̃T2

˙̃θ2 +
N−4∑
i=1

θ̃Ti+2
˙̃θi+2 + θ̃TN−1

˙̃θN−1 + θ̃TN
˙̃θN

= σT{e2 +
N−1∑
i=3

ci−2ei + vo + vs + ż + qF1(x1)θ̃1 + (1 + qc1)F2(x2)θ̃2

+
N−4∑
i=1

(ci + qci+1)Fi+2(xi+2)θ̃i+2 + (cN−3 + q)FN−1(xN−1)θ̃N−1 + FN(xN)θ̃N}

+ θ̃T1
˙̃θ1 + θ̃T2

˙̃θ2 +
N−4∑
i=1

θ̃Ti+2
˙̃θi+2 + θ̃TN−1

˙̃θN−1 + θ̃TN
˙̃θN

= σT{e2 +
N−1∑
i=3

ci−2ei + vo + vs + ż}+ θ̃T1 {
˙̃θ1 + qFF T

1 (x1)σ}+ θ̃T2 {
˙̃θ2 + (1+

qc1)F
T
2 (x2)σ}+

N−4∑
i=1

θ̃Ti+2{
˙̃θi+2 + (ci + qci+1)F

T
i+2(xi+2)σ}+ θ̃TN−1{

˙̃θN−1 + (cN−3+

q)F T
N−1(xN−1)σ}+ θ̃TN{

˙̃θN + F T
N (xN)σ}

(5.16)

By replacing Eq. (5.15) in Eq. (5.16) it yields:

V̇ = −kσ2 −
N∑
i=1

kiθ̃
T
i θ̃i − kσT sign(σ), k > 0 (5.17)

From Eq. (5.17) it can be concluded that σ, θ̃i → 0 and since σ → 0 , therefore

ei → 0, i = 1, 2, 3, .., N − 1 .
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5.4 Application to Dynamical network (DN) of

Complex PMSM Systems

In the following, HS of N - Coupled complex PMSM systems connected in ring

topology is investigated. Assuming N = 4, the Coupled complex PMSM systems

in a ring topology can be represented as:

ẋ11 = a(x12 − x11) + d11(x41 − x11)

ẋ12 = bx11 − x12 − x11x13 + d12(x42 − x12)

ẋ13 = 0.5(x̄11x12 + x11x̄12)− x13 + d13(x43 − x13)

ẋ21 = a(x22 − x21) + d21(x11 − x21) + µ11

ẋ22 = bx21 − x22 − x21x23 + d22(x12 − x22) + µ12

ẋ23 = 0.5(x̄21x22 + x21x̄22)− x23 + d23(x13 − x23) + µ13

ẋ31 = a(x32 − x31) + d31(x21 − x31) + µ21

ẋ32 = bx31 − x32 − x31x33 + d32(x22 − x32) + µ22

ẋ33 = 0.5(x̄31x32 + x31x̄32)− x33 + d33(x23 − x33) + µ23

ẋ41 = a(x42 − x41) + d41(x31 − x41) + µ31

ẋ42 = bx41 − x42 − x41x43 + d42(x32 − x42) + µ32

ẋ43 = 0.5(x̄41x42 + x41x̄42)− x43 + d33(x33 − x43) + µ33

(5.18)

Where, xk1 = xk1r + jxk1i, xk2 = xk2r + jxk2i are complex and xk3 = xk3r are real.

x̄k1, x̄k2 denote the complex conjugate variables of xk1, xk2, k=1,2,3,4 and a,b are

unknown real terms.

let â, b̂ be the estimates of the parameters a, b and let ã = a− â, b̃ = b− b̂ be the

errors in estimating the parameters a, b respectively. Then Eq. (5.18) after some

modification is written in the following:

ẋ1r = f1r + F1rθ̂ + F1rθ̃ +D1G1r

ẋ1i = f1i + F1iθ̂ + F1iθ̃ +D1G1i
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ẋ2r = f2r + F2rθ̂ + F2rθ̃ +D2G2r + µ1r

ẋ2i = f2i + F2iθ̂ + F2iθ̃ +D2G2i + µ1i

ẋ3r = f3r + F3rθ̂ + F3rθ̃ +D3G3r + µ2r

ẋ3i = f3i + F3iθ̂ + F3iθ̃ +D3G3i + µ2i

ẋ4r = f4r + F4rθ̂ + F4rθ̃ +D4G4r + µ3r

ẋ4i = f4i + F4iθ̂ + F4iθ̃ +D3G4i + µ3i

(5.19)

where

fkr =


0

−xk2r − xk1rxk3
0.5(xk1rxk2r + xk1ixk2i)− xk3

 , Fkr =


xk2r − xk1r 0

0 xk1r

0 0



fki =


0

−xk2r − xk1rxk3
0

 , Fki =


xk2i − xk1i 0

0 xk1i

0 0

 , k = 1, 2, 3, 4

G1r =


x41r − x11r
x42r − x12r
x4r − x13

 , G1i =


x41i − x11i
x42i − x12i

0

G2r =


x11r − x21r
x12r − x22r
x13 − x43

 , G2i =


x11i − x21i
x12i − x22i

0



G3r =


x21r − x31r
x22r − x32r
x23 − x33

 , G3i =


x21i − x31i
x22i − x32i

0

 , G4r =


x31r − x41r
x32r − x42r
x33 − x43

 , G4i =


x31i − x41i
x32i − x42i
x33 − x43



ulr =


ul1r

ul2r

ulr

 , uli =


ul1i

ul2i

0

 , l = 1, 2, 3, θ̂ =

â
b̂

 , θ̃ =

ã
b̃


(5.20)

Defining the error as: ek = ekr+jeki = xk+1+qxk = x(k+1)r + qxkr+jx(k+1)i + qxki, k =

1, 2, 3, this gives ekr = x(k+1)r + qxkr and, eki = x(k+1)i + qxki, k = 1, 2, 3. The

error dynamics of this system becomes as:
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
ė1r

ė2r

ė3r

 =


(f2r + qf1r) + (F2r + qF1rθ̂) +D2G2r + qD1G1r)

(f3r + qf2r) + (F3r + qF2rθ̂) +D3G3r + qD2G2r)

(f4r + qf3r) + (F4r + qF3rθ̂) +D4G4r + qD3G3r)

+


F2r + qF1r

F3r + qF2r

F4r + qF3r



+


I 0 0

−qI I 0

0 −qI I



µ1r

µ2r

µ3r



ė1i

ė2i

ė3i

 =


(f2i + qf1i) + (F2i + qF1iθ̂) +D2G2i + qD1G1i)

(f3i + qf2i) + (F3i + qF2iθ̂) +D3G3i + qD2G2i)

(f4i + qf3i) + (F4i + qF3iθ̂) +D4G4i + qD3G3i)

+


F2i + qF1i

F3i + qF2i

F4i + qF3i



+


I 0 0

−qI I 0

0 −qI I



µ1i

µ2i

µ3i


(5.21)

by choosing,


µ1r

µ2r

µ3r

 =


I 0 0

−qI I 0

0 −qI I


−1 

(Fqr1)

(Fqr2)

(Fqr3)

+


e2r

e3r

vr



µ1i

µ2i

µ3i

 =


I 0 0

−qI I 0

0 −qI I


−1 

(Fqi1)

(Fqi2)

(Fqi3)

+


e2i

e3i

vi


(5.22)

where

Fqr1 = (f2r + qf1r) + (F2r + qF1rθ̂) +D2G2r + qD1G1r Fqr2 = (f3r + qf2r) + (F3r +

qF2rθ̂) +D3G3r + qD2G2r Fqr3 = (f4r + qf3r) + (F4r + qF3rθ̂) +D4G4r + qD3G3r

Fqi1 = (f2i + qf1i) + (F2i + qF1iθ̂) + D2G2i + qD1G1i Fqi2 = (f3i + qf2i) + (F3i +

qF2iθ̂) +D3G3i + qD2G2i Fqi3 = (f4i + qf3i) + (F4i −+F3iθ̂) +D4G4i + qD3G3i
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The system Eq. (5.21) becomes:


ė1r

ė2r

ė3r

 =


e2r

e3r

vr

+


F2r + qF1r

F3r + qF2r

F4r + qF3r

 θ̃

ė1i

ė2i

ė3i

 =


e2i

e3i

vi

+


F2i + qF1i

F3i + qF2i

F4i + qF3i

 θ̃ (5.23)

taking the nominal system for Eq. (5.23) as:


ė1r

ė2r

ė3r

 =


e2r

e3r

v0r

 ,

ė1i

ė2i

ė3i

 =


e2i

e3i

v0i

 (5.24)

and defining the SS for nominal system Eq. (5.24) as:

σ0r = e1r + 2e2r + e3r

σ0i = e1i + 2e2i + e3i

(5.25)

then,

σ̇0r = ė1r + 2ė2r + ė3r = e2r + 2e3r + v0r

σ̇0i = ė1i + 2ė2i + ė3i = e2i + 2e3i + v0i

(5.26)

by choosing,

v0r = −e2r − 2e3r − k1 sign(σ0r), k1 > 0

v0i = −e2i − 2e3i − k2 sign(σ0i), k2 > 0
(5.27)

Eq. (5.26) becomes:

σ̇0r = −k1σ0r − k1 sign(σ0r)

σ̇0i = −k2σ0i − k2 sign(σ0i)
(5.28)
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Therefore, from Eq. (5.28) it can be concluded that Eq. (5.25) is asymptotically

stable. Now defining the SS for the error dynamic system Eq. (5.24) as:

σr = σ0r + zr = e1r + 2e2r + e3r + zr

σi = σ0i + zi = e1i + 2e2i + e3i + zi

(5.29)

where zr, zi are some integral terms which will be calculated later. To avert the

reaching phase, take up zr(0), zi(0) such that σr(0) = 0, σi(0) = 0. By choosing

the following values for vr and vi as:

vr = v0r + vsr

vi = voi + vi

where, v0r, v0i are the nominal inputs and vsr, vsi are compensator terms computed

later. Then the first derivative of Eq. 5.29 becomes:

σ̇r = σ̇0r + żr = ė1r + 2ė2r + ė3r + żr

= e2r + (F2r + qF1r)θ̃ + 2e3r + 2(F3r + qF2r)θ̃ + (F4r + qF3r)θ̃ + v0r + vsr + żr

σ̇i = σ̇0i + żi = ė1i + 2ė2i + ė3i + żi

= e2i + (F2i + qF1i)θ̃ + 2e3i + 2(F3i + qF2i)θ̃ + (F4i + qF3i)θ̃ + v0i + vsi + żi

(5.30)

by taking a Lyapunov function: V = 1
2
σT
r σr + 1

2
σT
i σi +

1

2
θ̃T θ̃, and designing the

adaptive laws for θ̃, θ̂ and computing vsr, vsi in such a manner that V̇ < 0.

Theorem 5.2. Consider a Lyapunov function of this kind: V = 1
2
σT
r σr + 1

2
σT
i σi +

1

2
θ̃T θ̃ then it is possible to get V̇ < 0 if the following adaptive laws are derived for

˙̃θ,
˙̂
θ and the values of vsr, vi are chosen as:

żr = −ė2r − 2e3r − v0r, vsr = −k − 3σr − k3 sign(σr)

żi = −ė2i − 2e3i − v0r
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vsi = −k − 4σi − k4 sign(σi)

˙̃θ = −σT
r {(F2r + qF1r)

T + 2(F3r + qF2r)
T + (F4r + qF3r)

T} − σT
i {(F2i + qF1i)

T

+ 2(F3i + qF2i)
T + (F4i + qF3i)

T} −K5θ̃

˙̂
θ = − ˙̃θ, ki > 0, i = 1, ..., 5

(5.31)

Proof. Since

V̇ = σT
r σ̇r + σT

i σ̇i + θ̃T ˙̃θ

V̇ = σT
r {e2r + 2e3r + v0r + vsr + żr}+ σT

i {e2i + 2e3i + v0i + vsi + żi}

+ θ̃T [ ˙̃θ + σT
r {(F2r + qF1r)

T + 2(F3r + qF2r)
T + (F4r + qF3r)

T}

+ σT
i {(F2i + qF1i)

T + 2(F3i + qF2i)
T + (F4i + qF T

3i)}]

(5.32)

By replacing the values of adaptive laws ˙̃θ,
˙̂
θ and the values of vsr, vi proposed in

Eq. (5.32) the above system Eq. (5.33) becomes:

V̇ = −k1σT
r σr − k2σT

i σi − k2θ̃T θ̃ − k3σT
r sign(σr)− k4σT

i sign(σi) < 0

= −k1σT
r σr − k2σT

i σi − k2θ̃T θ̃ − k3|σr| − k4|σi| < 0, ∀ k1, k2, k3, k4 > 0
(5.33)

This shows that the designed sliding surfaces σr, σi and adaptive laws θ̃ → 0 there-

fore ekr, eki → 0, k = 1, 2, 3, 4. Convergence of error system to zero ensures hybrid

synchronization of coupled complex chaotic PMSMs connected in ring topology.

5.5 Performance Analysis

The work presented in this chapter can be compared with the work presented in

[33]. The network model defined in Eq.(5.1) is different than the network model

presented in [33] because it consists of constant parameters which are considered
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to be uncertain. The error dynamics defined in Eqs.(5.7,5.8) are entirely different

as defined in Eq.(6) of Ref[46]. The proposed control methodology employed in

[33] is direct design whereas integral sliding mode control technique is used in

this thesis which is advantageous as described in the thesis. Synchronization and

anti-synchronization achieved in [33] by considering known parameters whereas

Hybrid synchronization is achieved in this thesis by considering unknown parame-

ters. Moreover, estimating the unknown parameters is another valuable difference

between [33] and in this thesis.

Simulation results are presented by taking the following initial conditions, x1(0) =

(1+2j, 3+6j, 5)T , x2(0) = (4−2j, 1+2j, 8)T , x3(0) = (−3+4j,−2+5j,−1)T , x4(0) =

(5 − 5j, 4 − 2j, 3)T . Figure 5.3 displays the convergence of real and imaginary

parts of anti-synchronization error dynamics to zero. Figure 5.4 depict that dy-

namic states of all the systems are anti-synchronized. From this it is very clear

that the dynamic states of the second systems are Anti-synchronized with the

dynamic states of the first system. Whereas states of the third system are Anti-

synchronized with the second system but due to the connection arrangement these

are synchronized with the first system. Similarly, states of the fourth system are

Anti-synchronized with the third system but are synchronized with the second

system. Figure 5.5 shows the convergence of synchronization error dynamics to

zero. Synchronization phenomena of the all the systems connected in the ring con-

nection is depicted in Fig. 5.6. Figure 5.7 shows that the estimated parameters

â, b̂ converge to their true values a,b respectively. Figures 5.8 - 5.18 depicts the

control effort exerted to achieve the hybrid synchronization.

5.6 Summary

In this chapter, parameter identification and HS of complex chaotic permanent

magnet synchronous motors system connected in a ring topology are established.

The methodology is based on adaptive ISMC, where synchronization error system
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Figure 5.3: Convergence of real and imaginary parts of anti-synchronization
error dynamics to zero

is transformed into a typical form which contains nominal part and a few un-

known terms. The unknown terms are computed adaptively. Moreover, the error

system has been stabilized using ISMC. The stability of the designed sliding sur-

face has been proved by the lyapunov stability theorem. The designed stabilizing

controller for error system comprised of nominal control and compensator control.

The effectiveness of the proposed technique has been presented through exten-

sive mathematical expressions and MATLAB simulations. The simulation results

show that hybrid synchronization is achieved through proposed control laws, an-

other key fact to remember that the uncertain parameters converge to their actual

values.
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Figure 5.4: Convergence of system states in anti-synchronization scenario
(a) AS of real parts of system states x11r, x21r, x31r, x41r, (b) AS of imagi-
nary parts of system states x11i, x21i, x31i, x41i, (c) AS of real parts of sys-
tem states x12r, x22r, x32r, x42r, (d) AS of imaginary parts of system states

x12i, x22i, x32i, x42i,(e) AS of system states x13, x23, x33, x43.
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Figure 5.5: Convergence of real and imaginary parts of synchro-
nization errors (a) e11r, e12r, e13r, e11i, e12i, (b) e21r, e22r, e23r, e21i, e22i, (c)

e31r, e32r, e33r, e31i, e32i.
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Figure 5.6: Convergence of system states in synchronization scenario (a) syn-
chronization of real parts of system states x11r, x21r, x31r, x41r, (b) synchroniza-
tion of real parts of system states x12r, x22r, x32r, x42r, (c) synchronization of real
parts of system states x13, x23, x33, x43, (d) synchronization of imaginary parts
of system states x11i, x21i, x31i, x41i, (e) synchronization of imaginary parts of

system states x12i, x22i, x32i, x42i.
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Figure 5.7: Convergence of Estimated parameters â, b̂ to their true values a, b
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Figure 5.8: Control effort for anti-synchronization (a) u11r (b) u12r (c) u13r
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Figure 5.9: Control effort for anti-synchronization (a) u21r (b) u22r (c) u23r



Hybrid Synchronization in a dynamical network of PMSM systems 88

0 2 4 6 8 10 12 14 16

Time(s)

-400

-300

-200

-100

0

100

200

300

400

500

600

u 31
r

u
31r

(a)

0 2 4 6 8 10 12 14 16

Time(s)

-1000

-500

0

500

1000

1500

2000

u 32
r

u
32r

(b)

0 2 4 6 8 10 12 14 16

Time(s)

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

u 33
r

u
33r

(c)

Figure 5.10: Control effort for anti-synchronization (a) u31r (b) u32r (c) u33r
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Figure 5.11: Control effort for anti-synchronization (a) u11i (b) u12i
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Figure 5.12: Control effort for anti-synchronization (a) u21i (b) u22i
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Figure 5.13: Control effort for synchronization (a) u11r (b) u12r (c) u13r
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Figure 5.14: Control effort for synchronization (a) u21r (b) u22r (c) u23r
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Figure 5.15: Control effort for synchronization (a) u31r (b) u32r (c) u33r
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Figure 5.16: Control effort (a) u11i (b) u12i
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Figure 5.17: Control effort (a) u21i (b) u22i
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Chapter 6

Hybrid Synchronization of 3-cell

Cellular Nonlinear Network

6.1 Introdution

In this chapter, HOSMC based on SSTA is investigated to achieve hybrid syn-

chronization of cellular Cellular Nonlinear Network network. In addition, it is

considered that due to uncertainties the parameters of the CNN are unknown. As

an example, 3-cell cellular neural network is considered to check the validation of

proposed control algorithm.

Chua and Yang [213] presented for the first time the terminology CNN as cellular

neural network. It is considered to be a signal processing system comprised of a lot

of processing units called cells. These cells are locally connected to each other to

perform complex tasks in a parallel processing regime. Since the cells are locally

connected in CNN, this feature makes it different from other neural networks [214]

which is advantageous in a sense that its implementation becomes easier in the

current planar technologies [215–217]. Several applications of CNN are reported

in the literature [218–230] after its invention, specially in image processing. CNNs

are non-linear complex DNs and the occurrence of chaos is very obvious. From an

electrical Engineering perspective, CNNs are considered to be DNs comprising of

95
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nodes which are coupled locally to perform some information processes to generate

specific behaviors. Since, CCNs exhibit chaotic behavior, so in this chapter HS

of CNNs is investigated by employing SSTA. Smooth super twisting algorithm is

a special flavor of HOSMC. There are two reasons of proposing SSTA. First, to

achieve smooth control needed for hybrid synchronization of CNN by eliminating

chattering, which is unwanted, and second, to achieve robustness contrary to the

uncertainties by ensuring the correctness of sliding modes.

6.2 Problem Formulation

6.2.1 System Description and Mathematical Model

A 3-cells CNN attractor was firstly introduced by Arena et al. [231], which is

described as:

ẋ1 = −x1 + αΨ(x1)− δΨ(x2)− δΨ(x3)

ẋ2 = −x2 − δΨ(x1) + βΨ(x2)− γΨ(x3)

ẋ3 = −x3 − δΨ(x1) + γΨ(x2) + Ψ(x3)

(6.1)

where xj and Ψ(xj) are the state variables and output function of jth cell, respec-

tively; γ, δ, α and β are the real parameters. Output Ψ(xj) is the piecewise linear

function defined as: Ψ(xj) = 0.5|xj + 1| − 0.5|xj − 1|, j = 1, 2, 3. In [231, 232], the

chaotic behavior of Eq. (6.1) is analyzed by considering these parametric values:

α = 1.24, β = 1.1, γ = 4.4, δ = 3.21 and the starting points for the dynamic states

are considered as: x1(0) = 0.1, x2(0) = 0.1, x3(0) = 0.1. The 3-D and 2-D phase

portraits of Eq. (6.1) are shown in Fig. 6.1a-d.

6.2.2 Problem Statement

The chaotic nature of the 3-cells CNN attractor [231] is a renowned case of a

chaotic CNN system. To achieve hybrid synchronization Eq. (6.1) is considered
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as master and the slave systems is defined as following:

ẏ1 = −y1 + αΨ(y1)− δΨ(y2)− δΨ(y3) + ~1 + µ1

ẏ2 = −y2 − δΨ(y1) + βΨ(y2)− γΨ(y3) + ~2 + µ2

ẏ3 = −y3 − δΨ(y1) + γΨ(y2) + Ψ(y3) + ~3 + µ3

(6.2)

where y1, y2, y3 are the states of the slave system, ~1, ~2, ~3 are bounded distur-

bances, µ1, µ2, µ3 are the control inputs to be determined, and Ψ(yj) = 0.5|yj +

1| − 0.5|yj − 1|, j = 1, 2, 3.

Definition. The 3-cell CNN Eq. (6.1), it say that there exist HS if the controllers

µi, i = 1, 2, 3 are selected in such a manner that all trajectories y1(t), y2(t), y3(t)

in Eq. (6.2) with either starting points (y1(0), y2(0), y3(0)) satisfy: for the errors

e(t) = (e1, e2, e3) , yields:

lim
t→∞

e(t) = lim
t→∞

yi(t) + qxi(t) = 0, i = 1, 2, 3

For the AS q = 1 and for complete synchronization q = −1. The HS control

become a problem to design appropriate controller µi to make ei = (e1, e2, e3)→ 0

asymptotically.

6.3 Proposed Control Algorithm and Numerical

Example

To investigate smooth twisting algorithm for hybrid synchronization of 3-cell CNN,

following two cases are considered.

Case (i) Assuming system parameters γ, δ, α, β are known and defining the error

as:

e1 = y1 − qx1

e2 = y2 − qx2

e3 = y3 − qx3

(6.3)
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When q = 1, it obtain synchronization and when q = −1, anti-synchronization is

achieved. The error dynamical system is obtained as:

ė1 = ẏ1 − qẋ1

= −y1 + αΨ(y1)− δΨ(y2)− δΨ(y3) + ~1 + µ1 − q{−x1 + αΨ(x1)− δΨ(x2)− δΨ(x3)}

ė2 = ẏ2 − qẋ2

= −y2 − δΨ(y1) + βΨ(y2)− γΨ(y3) + ~2 + µ2 − q{−x2 − δΨ(x1) + βΨ(x2)− γΨ(x3)}

ė3 = ẏ3 − qẋ3

= −y3 − δΨ(y1) + γΨ(y2) + Ψ(y3) + ~3 + µ3 − q{−x3 − δΨ(x1) + γΨ(x2) + Ψ(x3)}

(6.4)

by choosing

µ1 = y1 − αΨ(y1) + δΨ(y2) + δΨ(y3) + q{−x1 + αΨ(x1)− δΨ(x2)− δΨ(x3)}+ e2

µ2 = y2 + δΨ(y1)− βΨ(y2) + γΨ(y3) + q{−x2 − δΨ(x1) + βΨ(x2)− γΨ(x3)}+ e3

µ3 = y3 + δΨ(y1)− γΨ(y2)−Ψ(y3) + q{−x3 − δΨ(x1) + γΨ(x2) + Ψ(x3)}+ ν

(6.5)

where ν is the new input. then the error dynamic becomes

ė1 = e2 + ~1

ė2 = e3 + ~2

ė3 = ν + ~3

(6.6)

By choosing the Hurwitz SS for Eq. (6.6) as: σ = e1 + 2e2 + e3 and its derivative

is taken as:

σ̇ = ė1 + 2ė2 + ė3 = e2 + 2e3 + ν + ~1 + ~2 + ~3 (6.7)

By selecting,

ν = νeq + νs (6.8)
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where

νeq = −e2 − 2e3,

νs = −κ1|σ|
ρ−1
ρ sign(σ) + w,

ẇ = −κ2|σ|
ρ−2
ρ sign(σ), κ1, κ2 > |~1 + ~2 + ~3|, ρ ≥ 2

(6.9)

then Eq. (6.7) becomes:

σ̇ = −κ1|σ|y sign(σ) + w,

ẇ = −κ2|σ|y−
1
ρ sign(σ), y =

ρ− 1

ρ

(6.10)

Defining a new parameter as: ζ =

|σ|y sign(σ)

w

 and taking its derivative yields:

ζ̇ =

y|σ|y−1σ̇
ẇ


=

y|σ|−1
ρ −κ1|s|y sign(σ) + w

−κ2|σ|y−
1
ρ sign(σ)


= |σ|−

1
ρ

y−κ1|σ|y sign(σ) + w

−κ2|σ|y sign(σ)


= |σ|−

1
ρ

−yκ1 y

−κ2 0

|σ|y sign(σ)

w


= |σ|−

1
ρAζ

(6.11)

where, A =

−yκ1 y

−κ2 0

 i.e. ζ̇ = |σ|−
1
ρAζ. The eigenvalues of A =

−yκ1 y

−κ2 0


are the roots of the Hurwitz polynomial: |λI − A| =

∣∣∣∣∣∣λ+ yκ1 −y

κ2 λ

∣∣∣∣∣∣ = λ2 +

λ(yκ1) + (yk2) = 0, therefore A =

−yκ1 y

−κ2 0

 is strictly stable. Therefore, there

is a symmetric and positive definite matrix P ∈ R2X2 satisfying the Lyapunov

equation [197]: ATP + PA = −Q , where Q ∈ R2X2 is the positive definite and
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symmetric matrix.

Theorem 6.1. Examine a Lyapunov function of the kind: V = ζTPζ, where

P =

p1 p2

p2 p3

 (6.12)

if the Eq. (6.12) satisfies the basic Lyapunov equation: ATP + PA = −Q, where

Q ∈ R2X2 is a symmetric and positive definite matrix. Then V̇ = −|σ|−
1
ρ ζTQζ <

0. Consequently Eq. (6.3) is asymptotically stable. For simulation purpose the

parametric values are as: α = 1.24, β = 1.1, γ = 4.4, δ = 3.21, ~1 = ~2 = ~3 =

0.02, κ1 = κ2 = 5.

Case (ii) Assume systems parameters are unknown and let γ̂, δ̂, α̂, β̂ be estimate

of γ, δ, α, β respectively and let γ̃ = γ − γ̂, δ̃ = δ − δ̂ , α̃ = α − α̂, β̃ = β − β̂ be

the errors in estimating the unknown parameters. Then systems (6.1) and (6.2)

are rewritten as:

ẋ1 = −x1 + α̂Ψ(x1) + α̃Ψ(x1)− δ̂Ψ(x2)− δ̃Ψ(x2)− δ̂Ψ(x3)− δ̃Ψ(x3)

ẋ2 = −x2 − δ̂Ψ(x1)− δ̃Ψ(x1) + β̂Ψ(x2) + β̃Ψ(x2)− γ̂Ψ(x3)− γ̃Ψ(x3)

ẋ3 = −x3 − δ̂Ψ(x1)− δ̃Ψ(x1) + γ̂Ψ(x2) + γ̃Ψ(x2) + Ψ(x3)

(6.13)

ẏ1 = −y1 + α̂Ψ(y1) + α̃Ψ(y1)− δ̂Ψ(y2)− δ̃Ψ(y2)− δ̂Ψ(y3)− δ̃Ψ(y3) + ~1 + µ1

ẏ2 = −y2 − δ̂Ψ(y1)− δ̃Ψ(y1) + β̂Ψ(y2) + β̃Ψ(y2)− γ̂Ψ(y3)− γ̃Ψ(y3) + ~2 + µ2

ẏ3 = −y3 − δ̂Ψ(y1)− δ̃Ψ(y1) + γ̂Ψ(y2) + γ̃Ψ(y2) + Ψ(y3) + ~3 + µ3

(6.14)

Defining the error between Eq. (6.13) and Eq. (6.14) as: e1 = y1 − qx1, e2 =

y2 − qx2, e3 = y3 − qx3. When q = 1, it obtain synchronization and when q = −1,

anti-synchronization is achieved. The error dynamics are obtained as:

ė1 = ẏ1 − qẋ1

= −y1 + α̂Ψ(y1) + α̃Ψ(y1)− δ̂Ψ(y2)− δ̃Ψ(y2)− δ̂Ψ(y3)− δ̃Ψ(y3) + ~1 + µ1

− q{−x1 + α̂Ψ(x1) + α̃Ψ(x1)− δ̂Ψ(x2)− δ̃Ψ(x2)− δ̂Ψ(x3)− δ̃Ψ(x3)}
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ė2 = ẏ2 − qẋ2

= −y2 − δ̂Ψ(y1)− δ̃Ψ(y1) + β̂Ψ(y2) + β̃Ψ(y2)− γ̂Ψ(y3)− γ̃Ψ(y3) + ~2 + µ2

− q{−x2 − δ̂Ψ(x1)− δ̃Ψ(x1) + β̂Ψ(x2) + β̃Ψ(x2)− γ̂Ψ(x3)− γ̃Ψ(x3)}

ė3 = ẏ3 − qẋ3

= −y3 − δ̂Ψ(y1)− δ̃Ψ(y1) + γ̂Ψ(y2) + γ̃Ψ(y2) + Ψ(y3) + ~3 + µ3

− q{−x3 − δ̂Ψ(x1)− δ̃Ψ(x1) + γ̂Ψ(x2) + γ̃Ψ(x2) + Ψ(x3)}

(6.15)

By choosing

µ1 = y1 − α̂Ψ(y1) + δ̂Ψ(y2) + δ̂Ψ(y3) + q{−x1 + α̂Ψ(x1)− δ̂Ψ(x2)− δ̂Ψ(x3)}+ e2

µ2 = y2 + δ̂Ψ(y1)− β̂Ψ(y2) + γ̂Ψ(y3) + q{−x2 − δ̂Ψ(x1) + β̂Ψ(x2)− γ̂Ψ(x3)}+ e3

µ3 = y3 + δ̂Ψ(y1)− γ̂Ψ(y2)−Ψ(y3) + q{−x3 − δ̂Ψ(x1) + γ̂Ψ(x2) + Ψ(x3)}+ ν

(6.16)

where ν is the new input. Then the error dynamics becomes

ė1 = e2 + α̃Ψ(y1)− δ̃Ψ(y2)− δ̃Ψ(y3)− q{α̃Ψ(x1)− δ̃Ψ(x2)− δ̃Ψ(x3)}

= e2 + α̃{Ψ(y1)− qΨ(x1)} − δ̃{Ψ(y2)− qΨ(x2)} − δ̃{Ψ(y3)− qΨ(x3)}+ ~1

ė2 = e3 − δ̃Ψ(y1) + β̃Ψ(y2)− γ̃Ψ(y3)− q{−δ̃Ψ(x1) + β̃Ψ(x2)− γ̃Ψ(x3)}

= e3 − δ̃{Ψ(y1)− qΨ(x1)}+ β̃{Ψ(y2)− qΨ(x2)} − γ̃{Ψ(y3)− qΨ(x3)}+ ~2

ė3 = ν − δ̃Ψ(y1) + γ̃Ψ(y2)− q{−δ̃Ψ(x1) + γ̃Ψ(x2)}

= ν − δ̃{Ψ(y1)− qΨ(x1)}+ γ̃{Ψ(y2)− qΨ(x2)}+ ~3

(6.17)

or

ė1 = e2 + α̃{Ψ(y1)− qΨ(x1)} − δ̃{Ψ(y2)− qΨ(x2)} − δ̃{Ψ(y3)− qΨ(x3)}+ ~1

ė2 = e3 − δ̃{Ψ(y1)− qΨ(x1)}+ β̃{Ψ(y2)− qΨ(x2)} − γ̃{Ψ(y3)− qΨ(x3)}+ ~2

ė3 = ν − δ̃{Ψ(y1)− qΨ(x1)}+ γ̃{Ψ(y2)− qΨ(x2)}+ ~3

(6.18)
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By choosing the Hurwitz SS for system Eq. (6.18) as: σ = e1 + 2e2 + e3. Then its

derivative gives:

σ̇ = ė1 + 2ė2 + ė3

= e2 + α̃{Ψ(y1)− qΨ(x1)} − δ̃{Ψ(y2)− qΨ(x2)} − δ̃{Ψ(y3)− qΨ(x3)}+ 2e3

− 2δ̃{Ψ(y1)− qΨ(x1)}+ 2β̃{Ψ(y2)− qΨ(x2)} − 2γ̃{Ψ(y3)− qΨ(x3)}

− δ̃{Ψ(y1)− qΨ(x1)}+ γ̃{Ψ(y2)− qΨ(x2)}+ ν + ~1 + ~2 + ~3

(6.19)

By choosing ν = νeq + νs + z, where

νeq = −e2 − 2e3

νs = −κ1|σ|
ρ−1
ρ sign(σ) + w

ẇ = −κ2|σ|
ρ−2
ρ sign(σ), κ1, κ2 > |~1 + ~2 + ~3|, ρ ≥ 2

(6.20)

then Eq. (6.19) becomes

σ̇ = −κ1|σ|y sign(σ) + w + z,

ẇ = −κ2|σ|y−
1
ρ sign(σ), y =

ρ− 1

ρ

z = α̃{Ψ(y1)− qΨ(x1)} − δ̃{Ψ(y2)− qΨ(x2)} − δ̃{Ψ(y3)− qΨ(x3)} − 2δ̃{Ψ(y1)− qΨ(x1)}

+ 2β̃{Ψ(y2)− qΨ(x2)} − 2γ̃{Ψ(y3)− qΨ(x3)} − δ̃{Ψ(y1)− qΨ(x1)}+ γ̃{Ψ(y2)− qΨ(x2)}

(6.21)

Defining a new parameter ζ =
[
|σ|y sign(σ) w

]T
and taking its derivative yields:

ζ̇ =

y|σ|y−1σ̇
ẇ

 =

y|σ|−1
ρ −κ1|σ|y sign(σ) + w + z

−κ2|σ|y−
1
ρ sign(σ)


= |σ|−

1
ρ

y−κ1|σ|y sign(σ) + w + z

−κ2|σ|y sign(σ)


= |σ|−

1
ρ

−yκ1 y

−κ2 0

|σ|y sign(σ)

w + z

 = |σ|−
1
ρAζ + |σ|−

1
ρ

yz
0


(6.22)
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where, A =

−yκ1 y

−κ2 0

 i.e. ζ̇ = |σ|−
1
ρ (Aζ +

yz
0

). The eigenvalues of A =−yκ1 y

−κ2 0

 are the roots of the Hurwitz polynomial: |λI − A| =

∣∣∣∣∣∣λ+ yκ1 −y

κ2 λ

∣∣∣∣∣∣ =

λ2 + λ(yκ1) + (yκ2) = 0, therefore A =

−yκ1 y

−κ2 0

 is strictly stable.

Theorem 6.2. Examine a Lyapunov function of the kind V = ζTPζ + 1
2
(γ̃2 +

δ̃2 + α̃2 + β̃2), where P =

p1 p2

p2 p3

 is a symmetric and positive definite matrix

satisfying: ATP + PA = −Q, where Q ∈ R2X2 > 0 is a symmetric and positive

definite matrix. In this way V is global and strict Lyapunov function [197]. Then

the finite time convergence of V̇ = −|σ|−
1
ρ ζTQζ ≤ 0 is possible if the adaptive laws

are chosen as:

˙̃γ = 2l(Ψ(y3)− qΨ(x3))γ − l(Ψ(y2)− qΨ(x2))− κ1γ̃, ˙̂γ = − ˙̃γ

˙̃δ = l(Ψ(y2)− qΨ(x2)) + l(Ψ(y3)− qΨ(x3)) + l(Ψ(y1)− qΨ(x1))− κ2δ̃, ˙̂
δ = − ˙̃δ

˙̃α = −l(Ψ(y1)− qΨ(x1))− κ3α̃, ˙̂α = − ˙̃α

˙̃β = −2l(Ψ(y2)− qΨ(x2))− κ4β̃, ˙̂
β = − ˙̃β, κi > 0, i = 1, ..., 4

(6.23)

Proof. since

V̇ = ζ̇TPζ + PζT ζ̇ + γ̃ ˙̃γ + δ̃ ˙̃δ + α̃ ˙̃α + β̃ ˙̃β

= {|σ|−
1
ρ ζTAT + |σ|−

1
ρ{
[
yz 0

]
}Pζ + ζTP{|σ|−

1
ρAζ + |σ|−

1
ρ

yz
0

}
+ γ̃ ˙̃γ + δ̃ ˙̃δ + α̃ ˙̃α + β̃ ˙̃β

= |σ|−
1
ρ{ζT{ATP + PA}ζ}+ |σ|−

1
ρ{
[
yz 0

]
Pζ + ζTP

yz
0

}
+ γ̃ ˙̃γ + δ̃ ˙̃δ + α̃ ˙̃α + β̃ ˙̃β

= −|σ|−
1
ρ ζTQζ + 2y|σ|−

1
ρ (P1ζ1 + P2ζ2) + γ̃ ˙̃γ + δ̃ ˙̃δ + α̃ ˙̃α + β̃ ˙̃β



Hybrid synchronization in a 3-cell cellular nonlinear network 104

= −|σ|−
1
ρ ζTQζ + l[α̃{Ψ(y1)− qΨ(x1)} − δ̃{Ψ(y2)− qΨ(x2)} − δ̃{Ψ(y3)

− qΨ(x3)} − 2δ̃{Ψ(y1)− qΨ(x1)}+ β̃{Ψ(y2)− qΨ(x2)} − 2γ̃{Ψ(y3)− qΨ(x3)}

− δ̃{Ψ(y1)− qΨ(x1)}+ γ̃{Ψ(y2)− qΨ(x2)}] + γ̃ ˙̃γ + δ̃ ˙̃δ + α̃ ˙̃α + β̃ ˙̃β

= −|σ|−
1
ρ ζTQζ + γ̃{ ˙̂γ − 2l(Ψ(y3)− qΨ(x3)) + l(Ψ(y2)− qΨ(x2))}

+ δ{ ˙̂
δ − l(Ψ(y2)− qΨ(x2))− l(Ψ(y3)− qΨ(x3))− l(Ψ(y1)− qΨ(x1))}

+ α{ ˙̂α + l(Ψ(y1)− qΨ(x1))}+ β{ ˙̂
β + 2l(Ψ(y2)− qΨ(x2))}

(6.24)

where l = 2y|σ|−
1
ρ (P1ζ1 + P2ζ2) = 2y|σ|−

1
ρ (P1|σ|ysign(σ) + P2w)

by using

˙̃γ = 2l(Ψ(y3)− qΨ(x3))− l(Ψ(y2)− qΨ(x2))− κ1γ̃, ˙̂γ = − ˙̃γ

˙̃δ = l(Ψ(γ2)− qΨ(x2)) + l(Ψ(y3)− qΨ(x3)) + l(Ψ(y1)− qΨ(x1))− κ2δ̃, ˙̂
δ = − ˙̃δ

˙̃α = −l(Ψ(y1)− qΨ(x1))− κ3α̃, ˙̂α = − ˙̃α

˙̃β = −2l(Ψ(y2)− qΨ(x2))− κ4β̃, ˙̂
β = − ˙̃β, κi > 0, i = 1, ..., 4

(6.25)

Eq. (6.24) becomes: V̇ = −|σ|−
1
ρ ζTQζ − κ1γ̃

2 − κ2δ̃
2 − κ3α̃

2 − κ4β̃
2 < 0. For

simulation purpose parametric values are selected as: α = 1.24, β = 1.1, γ =

4.4, δ = 3.21, ~1 = ~2 = ~3 = 0.02, κ1 = κ2 = 5.

6.4 Performance Analysis

Simulation results are presented by taking the following initial conditions, x1(0) =

12.4, x2(0) = 21.7, x3(0) = 10.3,y1(0) = 5.3, y2(0) = 23.4, y3(0) = 18.7,α̂(0) =

β̂(0) = â(0) = b̂(0) = 0. For synchronization the initial conditions for errors are

e1(0) = −7.1, , e2(0) = 1.7, e3(0) = 8.4 and for anti-synchronization the initial

conditions for errors are e1(0) = 17.7, e2(0) = 45.1, e3(0) = 29. Simulation results
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depicted in Figs. 6.2-6.9 are presented for Case I and simulation results depicted

in Figs. 6.10-6.14 are presented for Case II. In Fig. 6.2 synchronization error

dynamics are converging to zero which means that the states of master CNN are

synchronized with the states of slave CNN. Figure 6.3 presents the time evolution

of the states of both the master CNN and slave CNN and it can be observed that

the states are completely synchronized with each other. Figure 6.4 presents the

control effort exerted to achieve the target. Figure 6.5 depicts the establishment

of sliding manifold and it can be observed very clearly that the SS is very smooth

and there are no chattering in the steady state which validates the claim. Figure

6.6 displays the convergence of AS error dynamics to zero which infers that AS is

achieved. Figure 6.7 shows the time evolution of master CNN and slave CNN and

it is very clear that the states of both CNNs are now anti synchronized. Similarly

Fig. 6.8 represents the control effort exerted to achieve the desire goal and Fig.

6.9 shows the establishment of smooth sliding surface. Figure 6.10 represents

the convergence of synchronization error dynamics to zero for Case II where it is

assumed that the parameters are uncertain. Figure 6.11 shows the time evolution

of states of the master CNN and slave CNN. Figure 6.12 displays the convergence

of AS error dynamics to zero and Fig. 6.13 depicts the time evolution of the

dynamic states of master CNN and slave CNN and it is very clear that the states

of both CNN are fully anti-synchronized with each other. Figure 6.14 shows the

convergence of estimated parameters α̂, β̂, γ̂, δ̂ to their true values α, β, γ, δ.

6.5 Summary

In this chapter parameter estimation and hybrid synchronization of 3-cell cellular

neural network is achieved. The methodology is based on the SSTA which is a

special flavor of SOSMC. The chaotic behavior of the CNN is analyzed and the

Hybrid synchronization is achieved by using the Master/Slave type configuration

of CNNs. A smooth sliding surface is established which ensures smooth control and

robustness to uncertainties. The uncertain parameters are figured out adaptively

and the stability of the smooth sliding surface is checked by using the Lyapunov
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(a) (b)

(c) (d)

Figure 6.1: Chaotic behavior of 3-cell cellular neural network on (a) x1, x2, x3
space (b) x1, x2 space (c) x2, x3 space and (d) x3, x1 space.
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Figure 6.2: Convergence of synchronization error dynamics to zero

stability theorem. The effectiveness of the proposed control algorithm has been

presented through extensive mathematical expressions and MATLAB simulations.

The simulation results are very attractive and provides the proof of trueness of

the proposed control technique. The simulation results shows the achievement of

hybrid Synchronization of CNNs by the proposed control laws, another key fact

to remember that the uncertain parameters converge to their real values.
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Figure 6.3: States in synchronization of Master CNN and Slave CNN (Case
I)
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Figure 6.4: Control effort exerted to achieve state synchronization between
Master CNN and Slave CNN
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Figure 6.5: Sliding Surface for synchronization in (Case I)
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Figure 6.6: Convergence of Anti-synchronization error dynamic to zero (Case
I)
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Figure 6.7: States in Anti-synchronization of Master CNN and Slave CNN
(Case I)
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Figure 6.8: Control effort
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Figure 6.9: Sliding Surface for Anti-synchronization in (Case I)
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Figure 6.10: Convergence of synchronization error dynamics to zero (Case II)
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Figure 6.11: States in synchronization of Master CNN and Slave CNN (Case
II)
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Figure 6.12: Convergence of Anti-synchronization error dynamic to zero (Case
II)
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Figure 6.13: States in Anti-synchronization of Master CNN and Slave CNN
(Case II)
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The goal of this thesis is to propose new and novel control algorithm for the hybrid

synchronization of DN with coupled nodes and uncertain parameters. Control of

HS of a DN is quite difficult task due to the chaotic nature of the nodes. Fur-

thermore, in the presence of uncertain parameters this becomes a real challenging

task. A generalized algorithm is designed in this thesis for DN of N systems to

investigate the co-existence of synchronization and anti-synchronization.

The theoretical problems considered in the most literature as reviewed in this

thesis are considering synchronization between two and more chaotic systems. The

synchronization problem for multiple chaotic systems coupled in a network like

the proposed in this thesis is addressed in a less work. The problem formulation

presented in this thesis considers Hybrid synchronization in dynamical network

with uncertain parameters. It is more practical because it considers the unknown

parameters. Practically the constant parameters of the network are more prone

to disturbances. In the presence of uncertain parameters it becomes genuinely

difficult to control the hybrid synchronization in a dynamical network.
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Based on the comprehensive study on types of synchronization and control tech-

niques in the literature, Two different kinds of DNs are considered. To gain in-

sight and to create interest to deal with the DNs with uncertain parameters, ring

type and cellular neural networks are considered. An adaptive ISMC and SSTA

techniques are used to investigate hybrid synchronization of DNs and following

conclusions are drawn:

• The proposed control algorithm addresses the problem of HS in DNs com-

prehensively.

• The Adaptive control laws have faithfully estimated the uncertain parame-

ters.

• The theoretical results presented in this thesis are in agreement with the

simulation results for the challenging problem of HS of ring type DNs and

cellular neural network.

• Since the control methodology is based on the sliding mode control and its

variants ISMC and SSTA, the control design procedure is simple and robust

to disturbances and parametric variations.

In the presence of uncertain parameters the HS of DN using adaptive ISMC and

SSTA, set new paradigm in this field of research. Practically, the constant parame-

ters are more prone to disturbances so achieving the HS with unknown parameters

is presented in this thesis. Simulation results provide the proofs of achieving the

objectives and the effectiveness of the proposed control framework.

7.2 Future Work

Future research will include in-depth study of star topology and chain formation

of chaotic systems. More complex network like the secure communication network

and electrical grid are of high interest.

A list of few topics for future research is:
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• Investigation of hybrid synchronization in time-delayed coupling network.

• application of adaptive integral sliding mode control to investigate hybrid

synchronization considering uncertain states of chaotic systems in a DN

• hybrid synchronization of DN considering the occurrence of faults using

adaptive ISMC.

• Investigation of hybrid synchronization in secure communication network.

• Investigation of hybrid synchronization in time delay and non-time delay

power grids.



Bibliography

[1] G. Birkhoff, Lattice theory, 1st ed. American Mathematical Soc., 1940,

vol. 25.

[2] G. D. Birkhoff, Dynamical systems, 1st ed. American Mathematical Soc.,

1927, vol. 9.
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[59] L. Gyorgyi, T. Turányi, and R. J. Field, “Mechanistic details of the oscilla-

tory belousov-zhabotinskii reaction,” Journal of physical chemistry, vol. 94,

no. 18, pp. 7162–7170, 1990.

[60] Y.-N. Li, L. Chen, Z.-S. Cai, and X.-z. Zhao, “Experimental study of chaos

synchronization in the belousov–zhabotinsky chemical system,” Chaos, Soli-

tons & Fractals, vol. 22, no. 4, pp. 767–771, 2004.

[61] M. Rivera, G. Martinez Mekler, and P. Parmananda, “Synchronization phe-

nomena for a pair of locally coupled chaotic electrochemical oscillators: A

survey,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 16,

no. 3, p. 037105, 2006.

[62] E. Toledo, S. Akselrod, I. Pinhas, and D. Aravot, “Does synchronization re-

flect a true interaction in the cardiorespiratory system?” Medical engineering

& physics, vol. 24, no. 1, pp. 45–52, 2002.

[63] M. G. Kitzbichler, M. L. Smith, S. R. Christensen, and E. Bullmore, “Broad-

band criticality of human brain network synchronization,” PLoS computa-

tional biology, vol. 5, no. 3, p. e1000314, 2009.

[64] C. J. Tessone, M. Cencini, and A. Torcini, “Synchronization of extended

chaotic systems with long-range interactions: an analogy to levy-flight

spreading of epidemics,” Physical review letters, vol. 97, no. 22, p. 224101,

2006.



Bibliography 125

[65] B. Blasius and L. Stone, “Chaos and phase synchronization in ecological

systems,” International Journal of Bifurcation and Chaos, vol. 10, no. 10,

pp. 2361–2380, 2000.

[66] N. Basalto, R. Bellotti, F. De Carlo, P. Facchi, and S. Pascazio, “Cluster-

ing stock market companies via chaotic map synchronization,” Physica A:

Statistical Mechanics and its Applications, vol. 345, no. 1-2, pp. 196–206,

2005.

[67] V. N. Belykh, I. V. Belykh, and M. Hasler, “Hierarchy and stability of

partially synchronous oscillations of diffusively coupled dynamical systems,”

Physical Review E, vol. 62, no. 5, p. 6332, 2000.

[68] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase synchronization

of chaotic oscillators,” Physical review letters, vol. 76, no. 11, p. 1804, 1996.

[69] A. A. Eshmawi and E. E. Mahmoud, “Secure communications via com-

plex phase synchronization of pair complex chaotic structures with a similar

structure of linear terms with modifying in nonlinear terms,” Alexandria

Engineering Journal, vol. 59, no. 3, pp. 1107–1116, 2020.

[70] W. Liu, J. Xiao, X. Qian, and J. Yang, “Antiphase synchronization in cou-

pled chaotic oscillators,” Physical Review E, vol. 73, no. 5, p. 057203, 2006.

[71] C.-M. Kim, S. Rim, W.-H. Kye, J.-W. Ryu, and Y.-J. Park, “Anti-

synchronization of chaotic oscillators,” Physics Letters A, vol. 320, no. 1,

pp. 39–46, 2003.

[72] V. Astakhov, A. Shabunin, and V. Anishchenko, “Antiphase synchronization

in symmetrically coupled self-oscillators,” International Journal of Bifurca-

tion and Chaos, vol. 10, no. 04, pp. 849–857, 2000.

[73] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “From phase to lag syn-

chronization in coupled chaotic oscillators,” Physical Review Letters, vol. 78,

no. 22, p. 4193, 1997.



Bibliography 126

[74] L. Kocarev and U. Parlitz, “Generalized synchronization, predictability, and

equivalence of unidirectionally coupled dynamical systems,” Physical review

letters, vol. 76, no. 11, p. 1816, 1996.

[75] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. Abarbanel, “Gen-

eralized synchronization of chaos in directionally coupled chaotic systems,”

Physical Review E, vol. 51, no. 2, p. 980, 1995.

[76] S. Jacquir, S. Binczak, J.-M. Bilbault, V. Kazantsev, and V. Nekorkin,

“Synaptic coupling between two electronic neurons,” Nonlinear Dynamics,

vol. 44, no. 1-4, pp. 29–36, 2006.

[77] M. Breakspear, J. R. Terry, and K. J. Friston, “Modulation of excitatory

synaptic coupling facilitates synchronization and complex dynamics in a non-

linear model of neuronal dynamics,” Neurocomputing, vol. 52, pp. 151–158,

2003.

[78] M. J. Tunstall, A. Roberts, and S. R. Soffe, “Modelling inter-segmental

coordination of neuronal oscillators: synaptic mechanisms for uni-directional

coupling during swimming in xenopus tadpoles,” Journal of computational

neuroscience, vol. 13, no. 2, pp. 143–158, 2002.

[79] Q. Y. Wang, Q. S. Lu, G. R. Chen, and D. H. Guo, “Chaos synchronization

of coupled neurons with gap junctions,” Physics Letters A, vol. 356, no. 1,

pp. 17–25, 2006.

[80] E. Padmanaban, R. Banerjee, and S. K. Dana, “Targeting and control of

synchronization in chaotic oscillators,” International Journal of Bifurcation

and Chaos, vol. 22, no. 07, p. 1250177, 2012.

[81] D. Sussillo and L. F. Abbott, “Generating coherent patterns of activity from

chaotic neural networks,” Neuron, vol. 63, no. 4, pp. 544–557, 2009.

[82] L. M. Pecora and T. L. Carroll, “Master stability functions for synchronized

coupled systems,” Physical review letters, vol. 80, no. 10, p. 2109, 1998.



Bibliography 127

[83] Y. Kuramoto, “Chemical oscillations, waves, and turbulence,” Springer Se-

ries in Synergetics, Vol. 19, vol. 40, no. 10, pp. 817–818, 1984.

[84] T. L. Carroll and L. M. Pecora, “Synchronizing chaotic circuits,” IEEE

Transactions on circuits and systems, vol. 38, no. 4, pp. 453–456, 1991.

[85] E. A. Assali, “Predefined-time synchronization of chaotic systems with dif-

ferent dimensions and applications,” Chaos, Solitons & Fractals, vol. 147, p.

110988, 2021.

[86] R. Guo and Y. Qi, “Partial anti-synchronization in a class of chaotic and

hyper-chaotic systems,” IEEE Access, vol. 9, pp. 46 303–46 312, 2021.

[87] M. Bennett, M. F. Schatz, H. Rockwood, and K. Wiesenfeld, “Huygens’s

clocks,” Proceedings: Mathematics, Physical and Engineering Sciences, pp.

563–579, 2002.

[88] J.-b. Liu, C.-f. Ye, S.-j. Zhang, and W.-t. Song, “Anti-phase synchronization

in coupled map lattices,” Physics Letters A, vol. 274, no. 1-2, pp. 27–29,

2000.

[89] I. Grosu, R. Banerjee, P. K. Roy, and S. K. Dana, “Design of coupling for

synchronization of chaotic oscillators,” Physical Review E, vol. 80, no. 1, p.

016212, 2009.

[90] E. E. Mahmoud and B. H. AL-Harthi, “A hyperchaotic detuned laser model

with an infinite number of equilibria existing on a plane and its modified

complex phase synchronization with time lag,” Chaos, Solitons & Fractals,

vol. 130, p. 109442, 2020.

[91] W. Shammakh, E. E. Mahmoud, and B. S. Kashkari, “Complex modified

projective phase synchronization of nonlinear chaotic frameworks with com-

plex variables,” Alexandria Engineering Journal, vol. 59, no. 3, pp. 1265–

1273, 2020.

[92] I. Bashkirtseva, L. Ryashko, and A. N. Pisarchik, “Stochastic transitions be-

tween in-phase and anti-phase synchronization in coupled map-based neural



Bibliography 128

oscillators,” Communications in Nonlinear Science and Numerical Simula-

tion, vol. 95, p. 105611, 2021.

[93] U. Parlitz, L. Junge, W. Lauterborn, and L. Kocarev, “Experimental obser-

vation of phase synchronization,” Physical Review E, vol. 54, no. 2, p. 2115,

1996.

[94] S. Taherion and Y.-C. Lai, “Experimental observation of lag synchronization

in coupled chaotic systems,” International Journal of Bifurcation and Chaos,

vol. 10, no. 11, pp. 2587–2594, 2000.

[95] A. Prasad, J. Kurths, S. K. Dana, and R. Ramaswamy, “Phase-flip bifurca-

tion induced by time delay,” Physical Review E, vol. 74, no. 3, p. 035204,

2006.

[96] W. S. Sayed and A. G. Radwan, “Generalized switched synchronization

and dependent image encryption using dynamically rotating fractional-order

chaotic systems,” AEU-International Journal of Electronics and Communi-

cations, vol. 123, p. 153268, 2020.

[97] K. Huang, F. Sorrentino, and M. Hossein-Zadeh, “Experimental observations

of synchronization between two bidirectionally coupled physically dissimilar

oscillators,” Physical Review E, vol. 102, no. 4, p. 042215, 2020.

[98] S. Yang and C. Duan, “Generalized synchronization in chaotic systems,”

Chaos, Solitons & Fractals, vol. 9, no. 10, pp. 1703–1707, 1998.

[99] S. Xiang, Y. Han, H. Wang, A. Wen, and Y. Hao, “Zero-lag chaos synchro-

nization properties in a hierarchical tree-type network consisting of mutu-

ally coupled semiconductor lasers,” Nonlinear Dynamics, vol. 99, no. 4, pp.

2893–2906, 2020.

[100] W. Yang, W. Yu, J. Cao, F. E. Alsaadi, and T. Hayat, “Global exponen-

tial stability and lag synchronization for delayed memristive fuzzy cohen–

grossberg bam neural networks with impulses,” Neural Networks, vol. 98,

pp. 122–153, 2018.



Bibliography 129

[101] Z. S. Al-Talib and S. F. AL-Azzawi, “Projective synchronization for 4d hy-

perchaotic system based on adaptive nonlinear control strategy,” Indonesian

Journal of Electrical Engineering and Computer Science, vol. 19, no. 2, pp.

715–722, 2020.

[102] P. Liu, M. Kong, and Z. Zeng, “Projective synchronization analysis of

fractional-order neural networks with mixed time delays,” IEEE Transac-

tions on Cybernetics, 2020.

[103] S. Yang, C. Hu, J. Yu, and H. Jiang, “Projective synchronization in finite-

time for fully quaternion-valued memristive networks with fractional-order,”

Chaos, Solitons & Fractals, vol. 147, p. 110911, 2021.

[104] S. Aadhithiyan, R. Raja, Q. Zhu, J. Alzabut, M. Niezabitowski, and C. Lim,

“Modified projective synchronization of distributive fractional order com-

plex dynamic networks with model uncertainty via adaptive control,” Chaos,

Solitons & Fractals, vol. 147, p. 110853, 2021.

[105] M. El-Dessoky, E. Alzahrani, and N. Al-Rehily, “Control and adaptive mod-

ified function projective synchronization of a new hyperchaotic system,”

Alexandria Engineering Journal, vol. 60, no. 4, pp. 3985–3990, 2021.

[106] G. M. Mahmoud, T. Aboelenen, T. M. Abed-Elhameed, and A. A. Farghaly,

“On boundedness and projective synchronization of distributed order neural

networks,” Applied Mathematics and Computation, vol. 404, p. 126198, 2021.

[107] M. Hui, J. Zhang, J. Zhang, H. H.-C. Iu, R. Yao, and L. Bai, “Finite-

time projective synchronization of stochastic complex-valued neural net-

works with probabilistic time-varying delays,” IEEE Access, vol. 9, pp.

44 784–44 796, 2021.

[108] M. El-Dessoky and M. Khan, “Application of fractional calculus to combined

modified function projective synchronization of different systems,” Chaos:

An Interdisciplinary Journal of Nonlinear Science, vol. 29, no. 1, p. 013107,

2019.



Bibliography 130

[109] A. Khan, P. Trikha, and L. S. Jahanzaib, “Dislocated hybrid synchronization

via. tracking control & parameter estimation methods with application,”

International Journal of Modelling and Simulation, pp. 1–11, 2020.

[110] P. Trikha and L. S. Jahanzaib, “Secure communication: using double

compound-combination hybrid synchronization,” in Proceedings of Inter-

national Conference on Artificial Intelligence and Applications. Springer,

2021, pp. 81–91.

[111] A. Khan and H. Chaudhary, “Hybrid projective combination–combination

synchronization in non-identical hyperchaotic systems using adaptive con-

trol,” Arabian Journal of Mathematics, vol. 9, no. 3, pp. 597–611, 2020.

[112] A. Khan and U. Nigar, “Sliding mode disturbance observer control based

on adaptive hybrid projective compound combination synchronization in

fractional-order chaotic systems,” Journal of Control, Automation and Elec-

trical Systems, vol. 31, no. 4, pp. 885–899, 2020.

[113] A. Khan and H. Chaudhary, “Adaptive hybrid projective synchronization of

hyper-chaotic systems,” Applications and Applied Mathematics: An Inter-

national Journal (AAM), vol. 16, no. 1, p. 7, 2021.

[114] Z. Wang and R. Guo, “Hybrid synchronization problem of a class of chaotic

systems by an universal control method,” Symmetry, vol. 10, no. 11, p. 552,

2018.

[115] M. Dalir and N. Bigdeli, “The design of a new hybrid controller for fractional-

order uncertain chaotic systems with unknown time-varying delays,” Applied

Soft Computing, vol. 87, p. 106000, 2020.

[116] W. Jun-Wei, M. Qing-Hua, and Z. Li, “A novel mixed-synchronization phe-

nomenon in coupled chua’s circuits via non-fragile linear control,” Chinese

Physics B, vol. 20, no. 8, p. 080506, 2011.



Bibliography 131

[117] C. Yang, Z. Xiong, and T. Yang, “Finite-time synchronization of coupled

inertial memristive neural networks with mixed delays via nonlinear feedback

control,” Neural Processing Letters, pp. 1–18, 2020.

[118] C. Yi, C. Xu, J. Feng, J. Wang, and Y. Zhao, “Pinning synchronization for

reaction-diffusion neural networks with delays by mixed impulsive control,”

Neurocomputing, vol. 339, pp. 270–278, 2019.

[119] K. S. Sudheer and M. Sabir, “Hybrid synchronization of hyperchaotic lu

system,” Pramana, vol. 73, no. 4, p. 781, 2009.

[120] P. He, S.-H. Ma, and T. Fan, “Finite-time mixed outer synchronization of

complex networks with coupling time-varying delay,” Chaos: An Interdisci-

plinary Journal of Nonlinear Science, vol. 22, no. 4, p. 043151, 2012.

[121] M.-C. Ho and Y.-C. Hung, “Synchronization of two different systems by

using generalized active control,” Physics Letters A, vol. 301, no. 5-6, pp.

424–428, 2002.

[122] M. Yassen, “Chaos synchronization between two different chaotic systems

using active control,” Chaos, Solitons & Fractals, vol. 23, no. 1, pp. 131–

140, 2005.

[123] E.-W. Bai and K. E. Lonngren, “Synchronization of two lorenz systems using

active control,” Chaos, Solitons & Fractals, vol. 8, no. 1, pp. 51–58, 1997.

[124] S. Agrawal, M. Srivastava, and S. Das, “Synchronization of fractional order

chaotic systems using active control method,” Chaos, Solitons & Fractals,

vol. 45, no. 6, pp. 737–752, 2012.

[125] C.-F. Feng, “Projective synchronization between two different time-delayed

chaotic systems using active control approach,” Nonlinear Dynamics, vol. 62,

no. 1-2, pp. 453–459, 2010.

[126] G. M. Mahmoud, T. Bountis, and E. E. Mahmoud, “Active control and

global synchronization of the complex chen and lü systems,” International
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