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Abstract

Salient object detection (SOD) models are trained to recognize and locate the

most conspicuous object(s) that capture human attention. The growing potential

of multi-modalities based deep learning methods has motivated computer vision

community to build multi-modal saliency detection models. Recently, the avail-

ability of depth sensors such as Microsoft Kinect and Time-of-Flight etc. has

contributed to the accessibility of depth images at a low cost, therefore, depth is

added as an additional modality with RGB modality for saliency detection. How-

ever, the rise of RGB-D salient object detection has introduced several challenges

such as (i) What are the real complementarity of RGB and depth modalities and

how to determine them, (ii) Is low quality depth images degrade the saliency

detection accuracies, if yes, then how to handle it and (iii) How to fuse RGB

and depth at multi-levels of abstraction. This dissertation is dedicated to two dis-

tinct depth quality-aware RGB-D saliency detection learning framework. The first

contribution develops a depth quality-aware salient object detection model, that

utilizes the synergies of RGB and depth modalities and assesses the depth qual-

ity explicitly. The proposed model considers certain design choices. Specifically,

the two parallel streams hybrid Conformer backbone network is used. Keeping in

view the intrinsic characteristics of RGB and depth modality, the CNN stream of

Conformer is fed with RGB modality while Transformer stream of Conformer is

fed with depth modality. It is explored that shallow layers of backbone delineate

modality-specific features while deep layers possess task-oriented characteristics.

Consequently, shallow and deep features are handled separately in Local Detail

Enhancement Module (LDE) and Global Detail Enhancement Module (GDE), re-

spectively. The intra-modality features in LDE are utilized to investigate the depth

quality in a supervised manner. A novel operation-wise shuffle channel attention

module is proposed that correlates the edge maps of RGB and depth with saliency

edge map. GDE module captures the global context using proposed reverse at-

tention and presents affluent saliency cues. A light-weight decoder combines the

outputs of LDE and GDE for final saliency map. Proposed model is tested on six

benchmark datasets and result evaluation shows notable performance gain against



x

22 state-of-the-art (SOTA) RGB-D SOD models. The imperfections in depth im-

ages are further investigated and it was figured out that some depth images are so

blurred that they need to be discarded. Earlier approaches, rectify severely noisy

depth images by adding some depth correction weights or by augmenting estimated

depth with raw depth. These methods rely on RGB images for depth rectification,

thereby, lack generalization, specifically for low contrast and cluttered background

RGB images. Contrary to former methods, a novel incomplete RGB-D modality

learning paradigm is formulated. Depth quality assessment model detects and

discards the low quality depth leaving to missing depth images for some corre-

sponding RGB. This is believed that this is first saliency detection framework

that works with missing depth. Therefore, it can also be applied to scarcity of

depth modality in contrast to RGB modality. A robust RGB-D common latent

correlation model is proposed which follows three steps. (i) Distinct conceal blocks

to capture low-level (i.e. modality-specific) and high level (i.e. saliency) features

in Shallow Common Latent Representation (SCLR) block and Deep Common La-

tent Representation (DCLR) block, respectively. (ii) Correlate block that presents

common latent correlation representation for RGB and depth. (iii) And multi-level

fusion block for final saliency generation. A thorough validation against 14 latest

state-of-the-art (SOTA) models demonstrate the supremacy of proposed model.
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Chapter 1

Introduction

1.1 Background

Object detection is a seminal task within the realm of computer vision that deals

with the identification and localization of objects within an image or video. Salient

object detection (SOD) is a specialized area of object detection task that deals

with identifying and locating objects that garners the greatest human visual at-

tention [1]. Unlike generic object detection, which aims to find all objects in a

scene, SOD aims at highlighting visually prominent object. There are vast num-

ber of applications in computer vision that utilize saliency detection frameworks as

pre-processing step, such as, image retrieval [2], object tracking [3, 4], object seg-

mentation [5], image understanding [6], action recognition [7, 8], image captioning

[9], medical image segmentation [10–12], camouflaged object detection [13], per-

son re-identification [14, 15] and video summarization [16] etc. The recognition

task in SOD models need to detect one or multiple salient objects in image while

localization task need to segment out the detected objects with precise boundaries

[17]. For image-based salient object detection model formulation, a saliency map

S ∈ [0, 1]W×H is generated by feeding an input image I ∈ RC×W×H to a model f .

Where, C,W and H represents number of channels, width of image and height of

image respectively. The goal of training of model f is to minimize the distance

d between S and provided ground truth G ∈ [0, 1]W×H . Broadly speaking, SOD

1
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models are categorized into two: (i) Conventional SOD models and (ii) Deep-

learning based SOD models. A good saliency detection model should possess the

following criteria:

1. Detection Accuracy: low probabilities of missing salient object and minimum

chances of false positive prediction.

2. Precise localization of salient object.

3. Resource efficient.

Generally, a salient region is defined as a segment of an image that stands out

predominantly from its surroundings, capturing the attention of a human ob-

server [18]. Conventional SOD models utilize heuristic details, such as contrast,

focus, spatial distribution etc. for salient object detection [19–22]. Mainly, RGB

(Red-Green-Blue) visual image displays distinctive patterns, color distribution and

textural details for various objects in an image. Traditional SOD models extract

informative hand-crafted patterns from RGB image. The prediction accuracies of

these models are unsatisfactory, specifically, for complex scenarios [18]. With the

advancement in deep learning, remarkable progress in SOD technology is observed.

The deep SOD models can handle millions of parameters, hence, can be effectively

applied on challenging scenes. Initial deep models were designed for single modal-

ity [23]. In recent years, it was observed that richer information can be extracted

from multiple modalities and noticeable performance gain can be achieved with

multi-modal system development. For RGB salient object detection task, various

factors (such as low contrast, varying illumination conditions, appearance changes,

indistinguishable foreground etc.) pose challenge in detection model [18, 24–26].

To overcome these challenges, data from other complementary modalities (such as

depth, thermal, audio, LiDAR etc.) can be utilized. In recent studies, depth (D)

modality is established as a RGB complementary source to address SOD’s funda-

mental problems [1, 24, 26, 27]. The intrinsic characteristics obtained from depth

modality includes distance of objects from viewpoint, edges, spatial and geomet-

rical details of objects. Hence, endorsement of depth modality in RGB-D SOD
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frameworks helps to discern foreground from complex background. The rationale

behind the endorsement of multi-modality data is to exploit the synergies of RGB

and depth [18]. The joint learning of RGB and depth provides a robust detec-

tion model especially in challenging scenes such as illumination changes, cluttered

background, indistinguishable patterns etc. [25].

1.1.1 Evolution of RGB-D Salient Object Detection Tech-

niques

RGB-D Salient Object Detection deals with extracting, processing and fusing fea-

ture representations from RGB and depth modality in a such a way that the com-

monalities and complementarities of two modalities are exploited to strengthen the

detection performance. Traditional models used handcrafted features extracted

from RGB and depth modalities such as 3D structure and shape [19], depth con-

trast [20, 21, 28] and contextual contrast [22] etc. Conventional RGB-D SOD

models rely on low-level features and lack to capture global context required for

saliency detection task. Therefore, with the advancement in deep learning the

cumbersome task of feature extraction is vanished and millions of parameters

are trained to solve complex task. Eventually, deep learning based RGB-D SOD

models needs to perform two tasks (i) multi-modal feature alignment and (ii)

multi-modal feature fusion. Effective performance of RGB-D SOD models heavily

depends on backbone network. Most studies used convolutional neural network

(CNN) based backbone such as VGG [29] and ResNet [30] etc. while other adopted

Transformer based models such as Swin Transformer [31], T2T-ViT [32] etc.

Mainly three types of fusion strategies are incorporated in detection models.

Early Fusion: Low-level features of each modality is fused in initial stage of de-

tection model. Early fusion either concatenate all modalities in channel dimension

before feeding input to model [33, 34] or fuse the extracted low-level features from

shallow layers of backbone network [35]. Two early fusion schemes are presented

in Fig. 1.1. This fusion strategy is mainly adopted in single-stream networks.

Although early fusion is a resource efficient scheme, however, lacks uniformity due
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Figure 1.1: Early Fusion: (a) Concatenation of RGB-D Inputs (b) Concate-
nation of shallow RGB-D features.

to diversity of RGB and depth features at shallow level.

Late Fusion: Two stream backbone network is adopted and deep features are

fused in later stages of detection model. Late fusion methods either concatenate

high level features extracted from backbone network [18, 36] or separate RGB

and depth saliency maps are generated and concatenated for final prediction map

[37].Two late fusion schemes are presented in Fig. 1.2. These fusion schemes ig-

nore the intrinsic correlation of RGB and depth as modality-specific features are

totally ignored.

Multi-Level Fusion: Considering the fact that shallow layers are modality-

specific and task agnostic while characteristics of deep layers are opposite to shal-

low characteristics [1], multi-level fusion scheme came to existence. Therefore, to

subjugate the limitations of early and late fusion strategies, fusion of RGB and

depth features at multiple levels of backbone network is accomplished. RGB and

depth input are fed to separate backbone stream. Then either multi-levels cross-

modal features are interacted to form separate saliency maps, which are later on
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Figure 1.2: Late Fusion: (a) Concatenation of deep RGB-D features (b) Con-
catenation of RGB and depth saliency maps.
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fused for final prediction [25] as illustrated in Fig. 1.3 (a) or fusion is performed

at multi-levels and combined at decoder [24, 38, 39], demonstrated in Fig. 1.3 (b).

1.1.2 Datasets for Salient Object Detection

With rapid progression in salient object detection frameworks, various datasets

have been developed. Previously presented SOD datasets contain simple images

which are center biased [40]. Recent datasets lean towards more challenging scenes.

Popular datasets are summarized in Table 1.1 Following RGB and RGB-D SOD

datasets are adopted by current studies [1, 17, 18, 24–26, 33]:

RGB SOD Datasets: Popular RGB SOD Datasets have included complex back-

ground, multiple objects and diverse scenes.

� DUTS [41]: This dataset contains 10,553 and 5,019 RGB images with cor-

responding ground truth saliency maps for training and testing respectively.

Train set is formed by collecting images from ImageNet [42] train/val dataset

while test samples are from ImageNet-test and SUN [43] datasets.

� ECSSD [44]: This dataset contains 1000 images from real-world scenes,

having cluttered background.

RGB-D SOD Datasets: Introduction of multi-modal RGB-D SOD frameworks,

directed the construction of RGB-D datasets. Popular RGB-D datasets are given

below. They contain RGB and depth pair along with corresponding binary ground

truth saliency maps.

� NJU2K [45]: This dataset contains 2000 stereoscopic RGB-D pairs. This

a diverse dataset with images collected from movies and internet. It also

includes images taken using Fuji W3 stereo camera.

� NLPR [22]: This dataset comprises of 1000 images with depth images ob-

tained using Microsoft Kinect. Various scenes from outdoor and indoor loca-

tions focusing on different scales and contrast are introduced in the dataset.
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Table 1.1: SOD Benchmark Datasets Characteristics.

Sr.
No.

Dataset Size
Number
of Salient
Objects

Object
Type

Sensor Resolution

RGB SOD Datasets

1
DUTS

[41]
15,572 Multiple

Indoor/
Outdoor

-
[100− 500]×
[100− 500]

2
ECSSD

[44]
1000 Multiple Outdoor -

(139− 400)×
(139− 400)

RGB-D SOD Datasets

1
NJU2K

[45]
2000 Single

Movies/
Internet/
Camera
pictures

Fuji W3
[231− 1213]×

[274− 828]

2
NLPR

[22]
1000 Multiple

Indoor/
Outdoor

Microsoft
Kinect

640× 480,
480× 640

3
LFSD

[46]
100 Single

Indoor/
Outdoor

Lytro
light
field

360× 360

4
SIP

[33]
929 Multiple Person

Huawei
Mate10

992× 744

5
STERE

[47]
1000 Single Internet Stero

[251− 1200]×
[222− 900]

6
RGBD135

[21]
135 Single Indoor

Microsoft
Kinect

640× 480

� LFSD [46]: 100 RGB-D pair collected by Lytro light field camerais included

in this dataset.

� SIP [33]: This dataset includes 929 RGB-D pair taken by Huawei Mate10.

Salient-in-Person include multiple human objects in each high-resolution im-

age.

� STERE [47]: It includes a collection of 1000 stereoscopic RGB-D image

pairs from internet.

� RGBD135 [21]: Also known as DES contain 135 indoor images. Depth

images are obtained by Microsoft Kinect.



Introduction 8

1.1.3 Performance Evaluation Metrics

To evaluate the extent of similarity between the predicted saliency map (S) and

ground truth (GT) map, various metrics are used including Precision-Recall Curve

(PR-Curve), Structural Measure (S-measure), F-measure, Enhance-alignment Mea-

sure (E-measure) and Mean Absolute Error (MAE). In these evaluation metrics,

Precision-Recall, F-measure and MAE calculates pixel-level inaccuracies of pre-

diction with respect to GT. While object-level errors are found using S-measure

and E-measure. A brief introduction of evaluation metrics are given below.

� Precision-Recall [48]:

To calculate PR a binary mask B is formed from S and following formula is

applied.

Precision =
B ∩G

B
,

Recall =
B ∩G

G
.

(1.1)

A threshold ranging from 0-255 is applied on S and for each thresholded S,

PR is calculated. These PR are combined to form a curve as shown in Fig.

1.4.

Figure 1.4: Precision-Recall Curve
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Area under the PR-curve is used to compare different models. High recall

means low false negative (FN) rate while high precision relates to low false

positive (FP) rate. Thereby, PR-curve represents the trade-off between FN

and FP.

� Structural Measure [49]:

The structural similarity between S and G is given by S-measure (Sα). This

metrics presents a weighted expression between object-aware structural sim-

ilarity So and region-aware structural similarity Sr.

Sα = αSo + (1− α)Sr, (1.2)

here, α is balancing factor.

� F-measure [50]:

This metric yields weighted harmonic mean of precision and recall. Different

thresholds are applied to obtain set of F-measure, which are used to repre-

sent maximum of F-measure (Fmax
β ). In Eq. 1.3, β value 0.3 is chosen to

emphasize on precision.

Fβ =
(1 + β2)Precision×Recall

β2 × Precision + Recall
. (1.3)

� E-measure [51]:

Enhance-alignment Measure considers image-level statistics and local pixel

matching jointly, given in Eq. 1.4

Eϕ =
1

W ×H

W∑
i=1

H∑
j=1

ϕ(i, j), (1.4)

here, ϕ is enhanced-alignment matrix.

� Mean Absolute Error [52]:

It computes pixel-wise mean absolute error between S and G. Unlike PR and
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F-measure, MAE considers true negative pixels also.

MAE =
1

W ×H

W∑
i=1

H∑
j=1

|S(i, j)−G(i, j)|, (1.5)

here, W and H are weight and width of image.

1.1.4 Applications and Impact of Salient Object Detection

Salient object detection plays a vital role as a pre-processing step in wide variety

of applications. Various domains need the interpretation of visual content. Salient

object detection helps to obtain useful insights from images or videos. Some of

the applications of salient object detection in several fields are listed below.

Computer Vision Domain:

A large number of computer vision applications need salient object detection mod-

els. Some of these are listed below:

� Image Retrieval: In computer vision field, salient object detection is used

in image retrieval applications for relevant search results based on detected

salient object.

� Image Captioning: For image captioning task, capturing salient object

helps to obtain descriptive annotations. Image understanding models apply

salient object detectors to extract meaningful interpretation of visual images.

� Surveillance: In surveillance applications, saliency detection is utilized by

object tracking, camouflaged object detection models, person re-identification

and object detection frameworks.

� Medical Imaging: Salient object detection also contributes in medical

imaging field to identify crucial anatomical structures.

� Segmentation: Salieny detection enhances the target objects in Unsuper-

vised object segmentation and semantic segmentation applications.
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Figure 1.5: Applications of Salient Object Detection.

Computer Graphics Domain:

A vast number of computer graphics application opt salient object detectors for

non-photorealistic rendering, image cropping, image re-targeting, etc.

Robotics Domain:

In robotics field, it aids to identify hazards thus improves scene understanding. It

helps to enhance human-robot interaction. Overall, salient object detection has

huge impact in diverse fields.

Fig. 1.5 illustrated the summary of above mentioned applications

1.2 Research Objectives

The SOD models that incorporate depth modality as additional source along with

color, presents more precise and robust saliency predictions. However, they are

confronted with three major challenges. Firstly, depth images are often contami-

nated with noise and error during acquisition process. The underlying premise of

accurate depth data is impossible in real world due to constraints of depth sensors

and scene conditions, eventually, low quality depth has negative effect on perfor-

mance of detection model. Secondly, intra-modality features of RGB and depth
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are very distinct. The real complementarity selection of two modalities is still a

challenge. Thirdly, how to effectively fuse inter-modality features. Although RGB

gives color/texture details and depth provides geometric cues, however, there ex-

ists a strong correlation between two modalities for a given scene. Focus of this

research is to develop a multi-modal salient object detection framework capable

of extracting advantageous depth cues and fusing real complementarities of RGB

and depth.

Main objectives of this research are:

1. Develop a depth quality-aware salient object detection (SOD) framework

that explicitly assesses and integrates depth quality by correlating RGB and

depth edge maps.

2. Create a robust model for salient object detection that can handle incomplete

RGB-D data by:

(a) Identifying and discarding severely noisy depth images.

(b) Effectively detecting salient objects with missing depth information or

using complete RGB-D pairs.

1.3 Research Contributions

Main contributions of this research work are:

1. Development of depth quality aware salient object detection framework.

Considering the fact that edge maps of depth maps can contribute to detect

depth quality explicitly. With the increase in distortions, edge details of

depth images are lost. Also the misalignment of RGB and depth images also

lead to inaccurate predictions. Edge maps of RGB and depth are correlated

in a supervised manner for a resilient RGB-D salient object detection model

implementation. Evaluation of proposed work demonstrates noticeable per-

formance gain against state-of-the-art SOTA model. My contributions have

been published in [53].
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2. Development of depth quality assessment regression model, to distinguish

good and bad quality depths. This no reference depth quality assessment

model assigns a quality score to depth images. Afterwards, a threshold

is applied to predict it as good or bad quality image. The depth quality

assessment model is also tested on a database for stereoscopic image quality

assessment. Our proposed model shows improved performance as compared

to SOTA model. My contributions have been published in [54].

3. Development of incomplete RGB-D salient object detection network. Severely

noisy depth images are discarded and resultant data contain complete RGB-

D pair and RGB with missing depth. A robust representation is formulated

that detects salient object exploiting the common latent RGB-D correla-

tion representation. Results shows that proposed model outperforms SOTA

models. My contributions have been published in [54].

4. Incomplete RGB-D salient object detection network is applied for the case of

severally missing depth modality. So that large amount of RGB data as com-

pared to scarce depth data can be effectively utilized. Results illustrate the

robustness of proposed work for severally missing depth. My contributions

have been published in [54].

1.4 Thesis Organization

This research thesis is composed of five chapters.

Chapter 1 starts with the introduction of preliminary knowledge about object de-

tection and saliency detection. This is followed by the evolution of multi-model

RGB and depth salient object detection. It describes the overview of traditional

and deep SOD methods. It also presents different fusion schemes of multi-modal

data. It outlines the benchmark datasets used for the implementation and eval-

uation of SOD models along with performance evaluation metrics. The chapter

describes the applications, research objectives and research contributions of the

thesis.
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Chapter 2 reviews the existing work. The literature survey discusses the current

work based on backbone network. It also outlines major fusion strategies of RGB-

D salient object detection models. Limitations of existing work are presented.

The chapter gives a research gap analysis and problem statement of the proposed

model.

Chapter 3 gives a comprehensive framework of the proposed depth-aware saliency

detection model and provides its results. A comparison of proposed methodology

with SOTA models is presented. It gives comprehensive ablation studies of the

proposed model.

Chapter 4 introduces the implementation of incomplete RGB-D salient object

detection model. It first presents proposed depth quality assessment regression

model, then describes the proposed methodology of common latent RGB-D corre-

lation framework for saliency prediction. The results of incomplete RGB-D salient

object detection model are discussed and compared with SOTA models. It also

covers comprehensive ablation studies.

Chapter 5 concludes this research thesis and provides future directions.



Chapter 2

Literature Review

A comprehensive literature survey of RGB-D salient object detection is presented

in this chapter. Existing approaches are categorized according to convention-

al/deep models, backbone network architecture, fusion strategies and complemen-

tarity cue selection schemes. the limitations of earlier models are also discussed.

Chapter also give research gap, problem statement and proposed methodology.

Organization of literature review is given in Fig. 2.1.
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Multi-Level 
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Figure 2.1: Organization of Literature Review.
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2.1 Traditional Methods

Initially, color and textural patterns from visual data was explored for saliency

detection task. Considering that human exploit multiple senses to interpret the in-

formation from environment, multi-modality learning approach for machines came

into being. With the availability of depth sensors such as Microsoft Kinect and

Time-of-Flight, depth images are adjoined with RGB images for salient object de-

tection task. Over the past several years, hand-crafted geometric and appearance

cues from depth and RGB modality performed saliency detection task. Notable

conventional RGB-D SOD models are categorized according to low-level depth

feature measurements, saliency measures and foreground extraction [55]. Fig. 2.2

summarises the methods and brief description is given below.

Low-level 
Features

Saliency 
Measures

Foreground 
Object

Mixture of Gaussian

Local Contrast

Global Contrast

Background 
Contrast

Graph- based 

Manifold Ranking

3D Layout

Shape prior

Figure 2.2: Conventional RGB-D SOD methods categorization.
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Depth prior is used in many SOD models to improve saliency prediction. Lang

et al. in [56] integrates depth and saliency cues by learning mixture of Gaussian

distribution. Recently, Xiaoqin et al. in [57] utilize depth prior along with gradient

and edge prior for multi-modality saliency detection. In [20], region contrast is

utilized for 3D saliency and fused with 2D saliency for improved performance.

Niu et al. in [47] utilize global disparity contrast. Another work proposed local,

global and background contextual contrast based depth saliency method [22]. In

[19], structural and shape features are extracted from depth images. In [28],

background and orientation prior are used for 3D saliency prediction. Method

proposed in [58] exploited local background enclosure instead of depth contrast

for salient object detection. Xue et al. proposed different depth features such as

distance, spatial location and surface normals etc. and integrate them with RGB

in a dual manifold ranking scheme [59]. In [60] graph-based segmentation is used

to highlight salient region.

Although, incorporating heuristic depth cues with RGB using traditional methods

have proved their efficiency for SOD task, however, these methods lack general-

ization ability due to limited manifestation of hand-crafted features. With the

introduction of AlexNet [61] convolutional neural network (CNN) image classifica-

tion model, researches started to investigate their usefulness for high-level tasks.

2.2 Deep Learning Based Methods

Deep learning uses multiple interconnected layers of nodes to capture hierarchical

representations of data. It mimics the neurological structure of the human brain

to interpret data, allowing the construction of computational models. In deep

neural networks, feature extraction occurs in an automated manner. Before 2000,

the introduced deep neural networks such as Recurrent Neural Networks (RNNs)

[62] and LeNet [63] were potentially limited due to hardware constraints. In 2006,

Hinton et al. [64] proposed Deep Belief Networks (DBNs) with several Restricted

Boltzmann machine (RBM) type structures stacked together for a deep network

formation. The first convolutional neural network (CNN) proposed by Krizhevsky
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et al. [61] in 2012, opens the door for research community to utilize deep learning

based models for complex tasks. Deep learning based methods can learn complex

representations and maneuver millions of parameters. CNN consists of convo-

lution and pooling operations along with activation functions. The hierarchical

structure of CNN can learn abstract manifestation of input data automatically.

Various network architectures VGG [29], ResNet [30], GoogLeNet [65] etc. were

developed to automatically learn discriminative features from input data. These

network architectures were initially developed for image recognition task but later

on adopted for complex high-level computer vision tasks such as object detection,

segmentation, image understanding, robotics and surveillance. For salient object

detection task, the pre-trained CNN networks are used for feature extraction. The

extracted features are enhanced and refined through additional layers.

The recent studies on RGB-D SOD are almost exclusively using deep architectures

and optimizing the detection accuracies using differing fusion schemes, attention

based modelling and advanced architectures. The subsequent sections discuss

deep learning based methods, classified based on feature extraction and fusing

strategies.

2.2.1 Backbone Network Architecture

The backbone network plays a crucial role for feature manifestation, thereby, influ-

ences the saliency detection performance. At the beginning, several deep learning

based multi-modal SOD model was built upon CNN backbone network. However,

with the advent of Visual Transformer (ViT) [66], researchers started to investi-

gate Transformer or Hybrid backbone networks. Extensive survey on the adoption

and impact of various backbone networks are discussed below.

CNN based RGB-D Salient Object Detection Models

Convolutional neural networks (CNN) provides a strong hierarchical feature repre-

sentation with shallow layers embedded with modality-specific features while deep
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layers presents global context. Initially, CNN based multi-modal fusion is not

performed in end-to-end manner. The first systematic SOD model having CNN

network was proposed in 2017 [36]. Before that, saliency cues are fed to CNN

network or some post-processing is applied. Subsequently, advantages of CNN is

not fully exploited. The prominent CNN based RGB-D salient object detection

models are presented below

� LP-Net This research model highlights RGB and depth features, combines

the multi-modality features and feed them to CNN. Afterwards CNN output

is refined by Laplacian. This method consists of three steps. In the first step

of method, various saliency priors are extracted such as, local contrast, global

contrast, background prior and spatial positioning etc. CNN was used only

for deep fusion. Just like, traditional methods where several low level saliency

cues are used, this method feed CNN with prior welldesigned knowledge. In

second step, hyper features are extracted using CNN. The saliency features

from first step are fed as input to second step where binary logistic regression

problem is formulated and saliency prediction is obtained. The third step is

Laplacian propagation, where the spatially inconsistent saliency is mapped

to optimal saliency generation [67].

� CA-Fuse Earlier methods, either concatenate RGB and depth features or

fuse modality-specific predictions. In this model, following a progressive hi-

erarchy a well structured complementarity aware fusion scheme is proposed.

This model develops a multi-level supervision scheme, which combines the

RGB and depth residual with complementarity-aware supervisions. A back-

ward prediction denseconnection (BPDC) module further adds the global

context to saliency detection model [68].

� CPFP The intuition behind this research work stemmed from the sub-

optimal outcomes observed when employing ImageNet pre-trained backbone

network for both RGB and depth modality. Reason of this is the inher-

ent difference of RGB and depth. Therefore it was proposed that contrast

prior can be used to enhance the original depth map in a CNN network.
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A novel fluid pyramid integration is proposed to fuse cross-modal features.

Performance of this method is superior than multi-level fusion [69].

� Att-CMCL This model employs a three stream network, one for modality-

specific RGB features, second for modality-specific depth features and third

stream is distillation stream. Earlier methods implement two stream network

for RGB and depth and fuse cross-modalities at later stages. While Att-

CMCL focus on complementarity of two modalities in bottom-up and top-

down paths. This methods propose a novel channel attention mechanism

employed at cross-modal cross-level fusion [70].

� LSF This model learns modality-specific representation of RGB and depth

via distillation network, then selects real complementarities and fuses in a

progressive way. This model trains a RGB teacher network with color images

from RGB and RGB-D datasets. Then a hierarchical knowledge distillation

scheme is devised to transfer knowledge from pre-trained RGB modality

teacher network to depth student network. This approach adopts L2 loss for

five levels of hierarchy. Then progressive top-down fusion combines cross-

modalities and skip connections for final prediction. This model can be used

for zero-shot learning [1].

� A2dele This model develops an attentive depth distiller, that transfers

saliency information from depth stream to RGB stream. Unlike, custom

methods which utilize two independent streams for RGB and depth modal-

ities, this model propose that depth should be learned earlier so that depth

ambiguity during testing can be hindered. In test phase, only RGB input

can be used. It remedies low quality depth with small number of parame-

ters. Depth stream is trained using VGG encoder and privileged knowledge

is transferred to RGB stream. RGB stream acts as student network and

adaptive distillation is used to mitigate negative impact of low quality depth

[71] .

� CIR-Net This model proposes an encoder decoder architecture, where en-

coder consists of attention guided interaction module between RGB and
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depth modalities. Decoder consists of convergence aggregation via gated fu-

sion. A middleware enhancement structure is constructed between encoder

and decoder. CIR-Net is a three stream network. RGB and depth encoder

streams learn features from ResNet50 backbone network and extracted multi-

level features are fed to progressive attention-guided integration unit and

third stream i.e. RGB-D stream is generated. Further to reduce redundancy,

middleware refinement is used for top encoder features. In decoder stage,

convergence aggregation structure combines the RGB and depth to RGB-

D decoding stream in progressive manner. Although middleware structure

is pluggable to three stream network, however, model complexity increases

[72].

� LIANet This model proposes a two stream network for RGB and depth. It

consists of encoder with attention to obtain relevant features. The encoded

features are enhanced for saliency detection via layered interaction fusion

module. Model proposes a novel RGB-Depth-RGB modulation feedback

mechanism. Two stream network is defined for RGB and depth modality

in encoder stage and simple attention is used to enhance channel and spa-

tial features. Layered interaction fusion module is most crucial part of this

methodology that interacts encoder and decoder features. The main role of

layered interaction fusion module is to filter low-quality depth and enhance

RGB object details [73].

� HiDAnet This research work develops a novel granularity based attention.

In order to effectively capture geometric priors, multi-Otsu method is applied

to generate granularity based multiple regions. In this way, multiple objects

far from viewpoint can be detected. Furthermore, edges are sharpened with

channel attention. Encoder consists of parallel RGB and depth streams for

feature extraction. Granularitybased attention is proposed based on the

observation that geometric priors defined by multi-granularities correlates

with saliency cues at multi-level. Local Efficient Channel Attention (L-

ECA) is proposed to generate depth aware encoded features. In decoder
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stage, multi-input is adaptively concatenated with efficient channel attention

model [74].

� M2RNet This work proposes a novel multi-scale refinement network, which

consists of nested dual attention module to select informative features. The

two adjacent feature maps are combined in adjacent interactive aggregation

module and for further saliency supervision loss called joint optimization loss

is proposed. Encoder consists of RGB and depth stream for independent fea-

ture extraction and combined. RGB-D is fed to nested dual attention module

to enhance the features. The coordination of RGB-depth and contamination

in depth is handled using channel and spatial attention. Additionally, Adja-

cent Interactive Aggregation Module focus on difference of deep and shallow

features properties [75].

Transformer based RGB-D Salient Object Detection Models

Mostly, RGB-D saliency detection is performed by extracting modality-specific

features from independent CNN based backbone streams and then fusing these

features for final prediction. Low-level details of any modality can be easily lever-

aged with CNN but it fails to capture global context. Some methods used dilation

convolution to increase the receptive field but the intrinsic nature of CNN can-

not fully apprehend long-range dependencies. Global context can help to predict

salient regions in an image, subsequently, researchers started to investigate other

backbone networks. After the development of Visual Transformer (ViT) [66], many

SOD models utilize Transformer as backbone network. Some popular methods are

given below.

� SwinNet This research model utilizes Swin Transformer [31] for RGB and

depth features extraction. CNN is limited by capturing long-range depen-

dencies while transformer is inefficient to represent local details. Swin Trans-

former combine the CNN and Transformer structure in one framework. Swin

Transformer is used as backbone network in two stream structure. The hier-

archical multi-modal features are aligned using attention mechanism. Along
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with that shallow layers are trained with edge guided module to refine edges

[17].

� VST This work is based on pure transformer. A novel token upsampling

technique is develop to increase the resolution. Token based decoder network

performs two tasks. One is to predict salient object using task-related to-

kens and other is to refine boundaries using patch-task-attention. This model

utilize T2T-ViT [32] Transformer as backbone network to obtain RGB and

depth encoder patch tokens. Transformer converter then combines the en-

coder patch tokens. The decoder converts the patch tokens to saliency map

[76].

� TriTransNet The intuition behind this work is to introduce triplet trans-

former embedding module in U-Net ResNet network. It consists of transition

layer to align features for fusion. These features are fed to triplet transformer

embedding module for enhancement. In decoder, enhanced feature and low

two layers are combined. TriTransNet consists of three main modules. First

the encoder modules purify the low quality depth and performs RGB-D fu-

sion through attention. Second feature enhancement module selects three

deep features and align them so that they can be fed to triplet transformer.

Last is the three stream decoder that receives the enhanced features from

feature enhancement module and combines deep and shallow features for

final saliency map [26].

� MutualFormer The model performs token mixer for intra-modality fea-

tures using self-attention and modality-mixer for inter-modality fusion using

cross-diffusion attention. Final aggregation results in a modality-invariant

saliency output. Based on self similarity, modality-specific tokens are gen-

erated and at the same time the correlation of RGB and depth is studied

using cross-diffusion attention. Moreover, MutualFormer also enhance the

most important features of each modality using Focal Feature Extractor.

Due to focus on global context, this model has limitations in capturing local

details [77].
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� SiaTrans This model performs depth image quality classification along with

saliency detection task. It adopts Siamese transformer network for weight

sharing in both encoder and decoder. Cross modality fusion is designed to

choose between RGBD or RGB, in case of poor depth, based on classification.

SiaTrans opt encoder decoder architecture. Encoder is developed on Siamese

transformer while decoder has CNN architecture. Last layer of backbone

generates coarse saliency for both modalities. These two coarse saliencies

are combined to form RGB-D coarse saliency in CMF module which consists

of attention. It also produces depth quality classification labels. Adaptive

attention is used in decoder to fuse the features and form the final prediction

[27].

� CAVER This research work builds a transformer based information prop-

agation path (TIPP) on CNN backbone. Matrix operation in attention is

optimized by Patch-wise token re-embedding. Model predicts the global con-

text in an efficient way. CNN backbone is used to extract features from RGB

and depth modality. And the intermediate features are fed to corresponding

transformer stage. TIPP consists of cascaded integration units which absorbs

the modality-specific local features to obtain global context. CAVER also

presents parameter-free patch-wise token re-embedding strategy to reduce

complexity [78].

2.2.2 Fusion Strategies

The complementarities of multi-modalities need to be fused efficiently and accu-

rately. Existing work can be categorized in three fusion schemes, as given below:

1. Early Fusion

Early fusion scheme is simplest approach used to combine multi-modalities. As,

early fusion concatenates low-level or raw cross-modal features, therefore, it gen-

erates a rich representation from diverse data. Although, there exist a strong



Literature Review 25

correlation between cross-modalities, the intrinsic characteristics of them are het-

erogeneous. Additionally, a large representation may result degradation of accu-

racy. A review of popular single stream models are presented below.

� SSRC This model exploits a single stream recurrent network. Four chan-

nel input is used to generate coarse prediction which is fed back in top-down

manner. The top down hierarchy sharpens the boundaries by processing raw

depth, current CNN level features and coarse saliency prediction. This early

fusion method concatenates the RGB and depth before feeding to backbone

network. Then backbone generates a coarse saliency map. Multiple Depth

Recurrent Convolution Neural Networks (DRCNN) follow a top-down pro-

gressive structure. Each stage of backbone is connected in a side-out fashion

with the DRCNN. Each DRCNN takes following inputs: Coarse saliency

map, raw depth, prediction from one step forward stage and feature map

from current stage. These four inputs are concatenated and recurrent con-

nection learns the features. The saliency maps from each stage is combined

for final saliency map [34].

� D3Net This work proposes three stream network. Input to three streams are

RGB, Depth and fusion of RGB-D. Three feature pyramid networks produce

three saliency maps Srgb, Sdepth and Srgbd. In test phase, a depth depurator

unit selects the optimized saliency map and thus filters low quality depth.

In test phase, a depth depurator unit (DDU) selects the optimized saliency

map and thus filters low quality depth. DDU consists of gate connection

and MAE metric is used to find the distance between Sdepth and Srgbd. A

threshold is used to select the multi-modal or RGB stream. The three stream

network increases the model complexity. This research work develops a new

dataset SIP of type ‘person in wild’ using Huawei Mate10 sensor. It contains

high quality depth images [33].

� UCNet In this research work, uncertainty is captured in human annota-

tions by generating a set of saliency maps instead of single prediction. The
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model utilizes generative adversarial network (GAN). The training and test-

ing pipelines are different. Training pipeline consists of generator and in-

ference module. The generator model produces the saliency based on input

latent uncertainty in saliency region while inference module infers the latent

uncertainty. Testing pipeline utilizes prior distribution of latent uncertainty

and generates several predictions for each input [79].

2. Late Fusion

This fusion scheme combines the cross-modalities in later stages of detection frame-

work. Bypassing the low-level details, late fusion merge the independent predic-

tions. Following models are based on late fusion scheme.

� MV-CNN This work proposes the first CNN based end-to-end RGB-D

salient object detection model. In this model pre-trained RGB network

supervises depth stream. The fully connected layer gives saliency probabil-

ities which are then mapped to saliency prediction. Two stream network is

adopted one for RGB modality and one for depth modality. A third stream

MV-CNN is proposed to fuse the two modalities. This layer fuses the fully

connected layers of RGB and depth stream. Global structural loss is utilized

to capture global context [36].

� AF This work proposes a model based on observation that salient object is

prominent in at least one modality. It fuses the predicted saliency maps from

cross-modality streams. Due to limitations of each modality, this scheme

fails at various challenging scenes. AF consists of two stream network, each

stream fed with one modality. Through progressive aggregation at each stage

of backbone, a saliency map is generated. RGB stream generates saliency

map with RGB input. Depth stream generates saliency map with depth

input. The last stage of RGB and depth streams are combined to form a

switch map. A novel saliency fusion expression is proposed based on RGB

saliency map, depth saliency map and switch map for final prediction [37].
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� HANet In this research, a asymmetric two stream topology is explored,

which fuses middle and high level features. The model distinguish adja-

cent salient and non salient objects with the attention mechanism. A large

backbone network is used to extract detailed RGB modality features and a

shallow backbone is used to extract comparatively simple features from depth

modality. For RGB stream fully connected layer is removed and multi-level

features are processed in side-output fashion. A weighted attention map

from RGB and depth streams predicts the final saliency map [18].

3. Multi-Level Fusion

At each hierarchical position of backbone network, the extracted features contain

distinct rich information. Therefore, multi-level fusion scheme is developed to

effectively combine all representations. Following are SOTA models employing

multi-level fusion.

� DPANet The model formulates potentiality of depth map explicitly us-

ing ground truth saliency map and generates pseudo labels. It then trains

a regressor along with two stream network and fuses the RGB and depth

at multi-level decoder. The encoder architecture of DPANet represents

multi-modality features in side-output fashion and feed them to gated multi-

modality attention (GMA) module. There are four GMA modules and they

enhance RGB and multi-scale depth features. Decoder combines these multi-

scale features progressively and separately for each modality. Lastly feature

fusion block combines RGB and depth final decoded features to generate

final saliency map. The last layer of backbone network is fed to global aver-

age pooling module to generate RGB and depth feature vector which is fed

to regression module. The pseudo labels are used to train this regressor to

handle the effect of low quality depth [80] .

� BBSNet This work proposes a Bifurcated Backbone Strategy that separates

low and high features. Informative depth representations are obtained from

depth enhancement module using attention mechanism while high features
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are processed for global context. Two stream network consists of backbone

for feature extraction where shallow and deep features are processed sep-

arately. To mitigate the impact of low quality depth, a module for depth

enhancement is designed at multi-scales. This module have channel and spa-

tial attention in series to attend strong features. The multi-modality features

are combined in cascaded decoder. The global context is enhanced for deep

features and using shallow features local details are effectively used [81].

� BTSNet This model observes the difference of representations at low and

high level of backbone network. Thus, proposes a bidirectional transfer and

select (BTS) module using encoder decoder framework. RGB and depth

backbone network features of different stages are fed at each level with the

output of previous level proposed BTS. At the end of each backbone stream

atrous spatial pyramid pooling (ASPP) is added. BTS consists of spatial

attention and channel attention. The decoder treats low and high features

separately. All low features are added to form combined low feature and

similarly for deep features . Multi-modality features are concatenated and

then low and high multi-modal features are added and multiplied. Model

consists of three prediction heads one for RGB, second for depth and third

for RGB-D [39].

� ICNet This model adopts a Siamese encoder for information conversion

(ICM) between cross-modalities and Cross-modal Depth-weighted Combi-

nation (CDC) block to enhance RGB features based on depth. They are

fused in decoder stage. ICM adopts correlation to prop out salient object in

each modality and concatenation to extract commonality. CDC is applied at

multiple stages of backbone. CDC maps complementary features of multi-

modality. Decoder generates multi-scale saliencies using CDC output and

combines them for final saliency [82].

� JLDCF This model utilizes Siamese network for feature learning, which

greatly reduces the model size. Then complementarity and commonalities

of two modalities is observed at multiple levels and decoded using densely

corporative fusion. Siamese backbone is used for multi-modal input and
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side-outputs are extracted for multiscale features processing. Channel in-

formation is compressed to reduce the model complexity and then multi-

modal feature fusion through addition and multiplication. Before fusion

batch split is applied. Cross-modal fusion at multi-levels are progressively

combine through inception module and addition. Model can be opted for

other computer vision tasks [25].

Depth Quality-aware Models: Significant progress in saliency detection is

observed with RGB and depth modality. However, exploiting multi-modalities

has manifold drawbacks. (i) Adding depth branch increases complexity. (ii) Depth

maps suffer from noise and redundant information during acquisition process. Low

quality depth are due to errors in sensors or various scene conditions. Using

these low quality depth reduces the accuracy. (iii) Depth is a scarce modality as

compared to RGB. Existing depth quality-aware works are discussed below.

� DASNet This model consists of three modules. First saliency detection

module takes RGB as input and generates a saliency map under supervision

of ground truth. Second depth awareness module takes depth image as

ground truth and produce a predicted depth with RGB input. Third, error

weighted correction utilize predicted and original depth to produce depth

error weight matrix, which is utilized in final saliency refinement. In test

phase, depth is not used and prediction is based on RGB only [83].

� CDNet This model utilizes saliency informative depth along with original

depth and RGB for salient object detection. For depth estimation, RGB

is input to VGG encoder and decoder network generates estimated depth

with target of original depth. In this process, low quality depth with little

saliency information can degrade the results, that is why IoU values between

original depth and ground truth saliency map is used. And for training only

those samples are used, which have high IoU. For final prediction, estimated

and original depth features are dynamically selected and fused with RGB

[84].
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� DCF The model proposes depth calibration scheme, which calibrates the

original depth based on estimated depth. Two stream network is trained

with RGB-D and ground truth. The resultant saliency maps are sorted

and with higher IoU values with GT are selected for calibration network

training. The calibrated depth maps are used for final saliency prediction.

The calibrated depth and corresponding RGB is fed to two stream network.

Cross Reference Module (CRM) combines deep three layers of RGB and

depth stream in progressive manner. CRM extracts most discriminative

features from RGB and depth modality and concatenates them, which is

trained using triplet loss. Three decoders are used. One for RGB saliency

generation from RGB stream, second for depth saliency and third from CRM.

All are combined for final prediction [85].

� FCFNet In this research work, an image generation network trained on

RGB and saliency based depth images to generate pseudo depth is devel-

oped. These pseudo depth are used to calibrate original depth. Afterwards,

designed fusion module generates the final saliency map. Image generation

stage is designed for low quality depth images and 2-step selection is used

to detect high quality depth images to supervise image generation. In step

1, intersection over union between depth saliency map and ground truth is

computed. In step 2, true positive rate of RGB saliency and depth saliency is

calculated. And all those depth images are selected which have high true pos-

itive than RGB true positives. All RGB-D pairs having saliency consistent

depths are selected for depth image generation. Next stage is salient object

detection stage, which utilize raw depth and generated depth for calibrated

depth generation. These depth are fused with RGB for final prediction [86].

� DCMNet The model separates low quality depth and performs enhance-

ment on them. A novel multi-cross attention scheme is proposed, which

performs channel and spatial attention in multi-cross way. Rectified depth

images are generated based on saliency cues from ground truth and RGB.
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Then the rectified depth and RGB are fed to two stream network. The multi-

scale multi-modal features are enhanced and fused in proposed multi-cross

attention module (MCAM) [87].

Critical Survey of CNN Based RGB-D SOD Models

A review of deep learning based SOTA models are presented. Based on extensive

survey, the essential characteristics, strengths and limitations of existing CNN

based RGB-D SOD models are presented in Table 2.1. Table is split according

to backbone network and presents the architecture, number of streams and fusion

strategy.

Table 2.1: Summary of essential characteristics of CNN based RGB-D Salient
Object Detection Models

Models

& Publ.

Streams

& Fusion

Scheme

Architecture Highlights and Limitations

VGG Backbone Network

MV-CNN

[36]

IEEE

2017

Three

Streams

Late Fusion

Transfer

Learning

Highlights:

RGB-D transfer learning in a super-

vised manner via global contrast loss

Limitations:

(i) Modality-specific representation in

shallow layers is ignored. (ii)Blurry

saliency maps

LP-Net

[67]

TIP

2017

Single

Stream

Early

Fusion

Simple CNN Highlights:

RGB-D saliency feature vector fed to

CNN and refined by Laplacian prop-

agation.

Limitations:

(i) not trained end-to-end. (ii) Fail at

low contrast

CA-Fuse

[68]

CVF

2018

Two Streams

Multi-level

Fusion

BottomUp

CNN

Highlights:

Complementarity-aware fusion

Limitations:

Quality of depth not considered

Continued on next page
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Table 2.1 – continued from previous page

Models

& Publ.

Streams

& Fusion

Scheme

Architecture Highlights and Limitations

CPFP

[69]

CVF

2019

Single

Stream

Contrast

Prior Fused

Fluid Pyramid

Integration

Highlights:

Novel depth contrast loss and multi-

scale integration.

Limitations:

Missing depth where depth contrast

fail.

Att-

CMCL

[70]

TIP

2019

Three

Streams

Multi-level

Fusion

BottomUp

TopDown

Attentive

Distillation

Highlights:

Attention-aware fusion.

Limitations:

Complex model.

AF

[37]

IEEE

2019

Two Streams

Late Fusion

BottomUp Highlights:

Switch-map between RGB and Depth

streams.

Limitations:

Poor performance when objects are

not distinguishable in RGB and depth

modalities.

SSRC

[34]

Elsevier

2019

Single

Stream

Early Fusion

RNN Highlights:

RNN merges features from top to bot-

tom.

Limitations:

Noisy depth gives inaccurate results.

D3Net

[33]

TNNLS

2020

Three

Streams

Early Fusion

Feature Pyra-

mid Network

Highlights:

Depth depurator unit filters low qual-

ity depth in inference.

Limitations:

(i) Biased towards RGB for low qual-

ity depth. (ii) Larger parameter size.

A2dele

[71]

CVF

2020

Two Streams

Late Fusion

Distiller & At-

tention

Highlights:

Depth distiller mitigates low quality

effects.

Limitations:

More informative depth features can

be used.

Continued on next page
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Table 2.1 – continued from previous page

Models

& Publ.

Streams

& Fusion

Scheme

Architecture Highlights and Limitations

ICNet

[82]

TIP

2020

Two Streams

Multi-level

Fusion

Siamese Highlights:

Attention based Encoder decoder net-

work with concatenation-convolution

and correlation-convolution

Limitations:

Poor performance for low quality

depth.

LSF

[1]

IJCV

2021

Two Streams

Multi-level

Fusion

Teacher-

Student

Framework

Highlights:

(i) RGB teacher model distil knowl-

edge to depth student model (ii) pro-

gressive complementarities (iii) zero-

shot learning

Limitations:

depth quality not considered.

CDNet

[84]

TIP

2021

Two Streams

Multi-level

Fusion

Encoder-

Decoder

Highlights:

Saliency informative depth is utilized

for low quality depth

Limitations:

Biased towards RGB can lead to in-

correct estimated depth

LIANet

[73]

Access

2022

Two Streams

Multi-level

Fusion

Feedback

Mechanism

Highlights:

Layered interactive fusion and RGB-

depth- RGB feedback for noisy depth.

Limitations:

Uncertainty in objects.

FCFNet

[86]

TCSVT

2023

Two Streams

Multi-level

Fusion

U-Net Highlights:

Pseudo depth is calibrated and used

in fusion.

Limitations:

Pseudo depth is based on RGB.

M2RNet

[75]

PR

2023

Two Streams

Late Fusion

Encoder-

Decoder

Highlights:

(i) Attention to reinforce good fea-

tures. (ii) Adjacent integration. (iii)

Joint optimization loss.

Limitations:

Lacks generalization.

Continued on next page
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Table 2.1 – continued from previous page

Models

& Publ.

Streams

& Fusion

Scheme

Architecture Highlights and Limitations

ResNet Backbone Network

HANet

[18]

Appli.

Sci.

2020

Two Streams

Late Fusion

Res2Net

for RGB

Inception-v4-

ResNet2 for

depth

Highlights:

Asymmetric attention network

Limitations:

Low quality depth not considered

DPANet

[80]

TIP

2020

Two Streams

Multi-level

Fusion

Encoder-

Decoder

Highlights:

Saliency based depth quality assess-

ment

Limitations:

Poor performance if (i) Conflict be-

tween saliency and depth (ii) long dis-

tance objects

DASNet

[83]

ACM

2020

Single

Stream

Multi-level

Fusion

Encoder-

Decoder

Highlights:

Channel-Aware fusion for distinct fea-

tures.

Limitations:

Prediction is biased towards RGB

UCNet

[79]

PAMI

2021

- GAN Highlights:

Attention based GAN with DenseA-

SPP

Limitations:

Need improvement for illumination

changes.

BBSNet

[81]

TIP

2021

Two Streams

Multi-level

fusion

Encoder-

Decoder

Highlights:

(i)Attention for depth enhancement.

(ii)Cascaded refinement based fusion.

Limitations:

Depth quality ignored.

BTSNet

[39]

ICME

2021

Two Streams

Multi-level

Fusion

Encoder-

Decoder

Highlights:

(i)Transfer and select. (ii)Low and

high features combined separately.

Limitations:

Complex.

Continued on next page
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Table 2.1 – continued from previous page

Models

& Publ.

Streams

& Fusion

Scheme

Architecture Highlights and Limitations

JLDCF

[25]

PAMI

2021

Two Streams

Multi-level

Fusion

Siamese Highlights:

(i)Joint learning using Siamese net-

work (ii)Cross-modal corporation fu-

sion.

Limitations:

Poor performance for low contrast

RGB and non-salient regions are ad-

joined.

DCF

[85]

CVF

2021

Two Streams

Multi-level

Fusion

Encoder-

Decoder

Highlights:

Low quality depth images are cali-

brated in plug-n-play manner.

Limitations:

Lacks generalization ability.

CIR-Net

[72]

TIP

2022

Three

Streams

Multi-level

Interaction

ResNet Highlights:

(i) Interaction modules between cross-

modalities in encoder and decoder.

(ii) Middleware refinement network.

Limitations:

Poor detection at (i) Multiple and

small salient objects. (ii) non salient

(iii)complex background.

DCM-Net

[87]

ESA

2023

Two Streams

Multi-level

Fusion

Res2Net Highlights:

(i) DDRM for depth rectification. (ii)

Progressive feature refinement and fu-

sion.

Limitations:

Depth stream architecture needs to be

enhanced.

HiDA-Net

[74]

TIP

2023

Two Streams

Multi-level

Fusion

U-Net Highlights:

Granularity-based attention.

Limitations:

Low depth quality ignored.

BFLNet

[88]

PR

2024

Two Streams

Multi-level

Fusion

Encoder De-

coder

Highlights:

(i)Asymmetric feature extraction.

(ii)Bidirectional feature fusion.

(iii)Dual Consistency Loss function

Limitations:

Low depth quality ignored.
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Critical Survey of Transformer Based RGB-D SOD Models

Table 2.2 presents the summary of properties of Transformer based RGB-D SOD

Models. The highlights and limitations of recent SOTA models are discussed.

Some Transformer based models are build on pure transformer network while oth-

ers utilize CNN-Transformer Hybrid network as backbone. Transformers can cap-

ture long-range dependencies more effectively than convolution neural networks.

Hybrid networks can leverage the capabilities of transformer to obtain global con-

textual information along with the capturing of local details from convolution

neural networks. Hybrid networks have CNN-Transformer blocks in early, late,

sequential or parallel patterns.

Table 2.2: Summary of essential characteristics of Transformer based RGB-D
Salient Object Detection Models

Models &

Publ.

Backbone Architecture Highlights and Limitations

SwinNet

[17]

TCSVT

2021

Swin Encoder-

Decoder

Highlights:

(i) Two stream network with atten-

tion based fusion. (ii) Edge-aware de-

coder for boundaries.

Limitations:

Complex.

VST

[76]

CVF

2021

T2T-ViT Encoder

Multi-task

Decoder

Highlights:

(i)Multi-level token fusion. (ii) Task-

related tokens for saliency prediction.

(iii) Patch-task-attention for bound-

ary detection

Limitations:

Depth quality ignored.

TriTransNet

[26]

ACM

2021

Triplet

trans-

former

embed-

ding with

ResNet

U-Net Highlights:

Transformer embedded with CNN for

feature extraction.

Limitations:

Depth purification module needs to be

improved.

MutualFormer

[77]

2021

Hybrid Encoder-

Decoder

Highlights: Intra-modality and

inter-modality tokens used.

Limitations: Error in fine-grained

detection.

Continued on next page
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Table 2.2 – continued from previous page

Models &

Publ.

Backbone Architecture Highlights and Limitations

SiaTrans

[27]

IVC

2022

T2T-ViT Siamese Trans-

former

Network

Highlights:

Fusion and decoder module selects

RGB-D or RGB stream.

Limitations:

RGB stream gives poor results for

very low quality depth.

CAVER

[78]

TIP

2023

Hybrid Transformer

based in-

formation

propagation

path

Highlights:

Cross modal view-mixed transformer.

Limitations:

Poor performance for cluttered back-

ground.

CMAFE

[89]

IET

2024

Swin Encoder-

Decoder

Highlights:

Dual-attention to filter noise from two

modalities.

Limitations:

Poor result for low-light scenes.

2.3 Research Gap Analysis

Extensive survey on multi-modality salient object detection presented in literature

review shows that deep learning has obtained great success to manifest RGB and

depth features for saliency detection task.

Main limitations of existing methods are given below:

� The intra-modality features of RGB and depth are distinct. RGB gives color

and textural details while depth modality provides geometric cues, 3D layout,

spatial details and object edges etc. The disparity of two modalities is not

well explored, specifically, with feature extraction from backbone network.

� Mostly, CNN are used as backbone network for feature extraction, which

have inherent ability to focus only on local details. Recently, some models

are build on Transformer as backbone network to capture global context.

However, transformer lacks the ability to fully represent local details. For
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RGB-D SOD task, both local and global details are required to fully com-

prehend the scene.

� In current literature, the intrinsic correlation of RGB and depth is utilized

only for effective multi-modality fusion. However, no contribution in litera-

ture is available that exploit multi-modality correlation for complex scenarios

and less instructive images.

� Quality of depth images are not always the same. The noise and redun-

dant information is introduced inevitability due to depth sensors and var-

ious image capturing conditions such as occlusion, reflection, and viewing

distance. The low-quality depth adversely effect the detection accuracy. Ex-

isting methods, ignore the image quality in fusion process. Some researchers

have exploited multi-modular approach for depth quality enhancement and

cross-modal feature fusion. This two step strategy leads to sub-optimal so-

lution.

� Some depth maps are so blurred and noisy that they need to be discarded.

No contribution in existing literature is available for incomplete RGB-D

modality saliency learning problem, where we have complete RGB images

but some depth images are missing.

The research gaps mentioned above lead us to following research questions:

1. Can we integrate depth quality enhancement and cross-modal feature fusion

to develop an end-to-end framework for RGB-D SOD?

2. How can we solve the incomplete multi-modality learning problem, when we

have complete RGB images but with some missing depth images?

2.4 Problem Statement

“Quality of depth map in RGB-D salient object detection varies due to depth

sensors. Low quality depth map introduce noise, sparse or redundant information,
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causing negative effect on detection. Some depth maps are so blurred that they

need to be discarded, creating incomplete multi-modal learning problem.” Thus,

the main focus of this research is “To develop a model that can learn modal-specific

information and cross-modal complement fusion for salient object detection having

incomplete RGB-D data.”

2.5 Proposed Methodology

The main focus of this research is to develop depth quality-aware salient object de-

tection method with improved detection efficiency and reasonable efficacy. In Fig.

2.3 the proposed research methodology can be visualized. The proposed method-

ology consists of two distinct methods. The two methods introduce depth quality

aware saliency detection explicitly and implicitly. The explicit depth quality-aware

model correlates the saliency edge map, RGB edge map and depth edge map. The

intuition behind is two-fold: (1) Spatial distortion of low quality depth is evident

in depth edge map. (2) RGB and depth edge misalignment reduces detection ac-

curacy. The implicit depth quality-aware model do not fuse low-quality depth.

Initially, each depth image is fed to depth quality assessment module to predict

the quality score. Low quality depth images are discarded and saliency detection

model is trained using incomplete RGB and depth i.e. training is done with two

types of data (1) complete RGB and depth pair, (2) RGB present depth missing.

2.6 Conclusion

A comprehensive review of recent salient object detection models, presented in

this chapter, reveals that deep learning has achieved significant advancements in

leveraging RGB and depth features for the task of saliency detection. The chap-

ter categorized the different aspects of saliency detection, including traditional vs

deep models, CNN vs transformer backbone network, fusion schemes and depth

aware models. Based on the literature review, it is evident that multi-modality
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Figure 2.3: Proposed Research Methodology.

SOD modeling faces three major challenges. (i) The first challenge is to consider

the differences between modalities for intra-modality feature selection. (ii) The

development of a task-oriented optimal multi-modality fusion scheme poses a sig-

nificant challenge. (iii) How can we mitigate the detrimental impact on model

performance caused by low-quality depth maps? The existing approaches do not

address all of these challenges, leading to ambiguous learning. Therefore, the pri-

mary goal of this research is to develop a Salient Object Detection (SOD) model

capable of effectively handling and minimizing the impact of low-quality depth, as

well as selecting descriptive RGB-D features and achieving effective fusion. Two

distinct approaches for a depth quality-aware SOD model have been proposed.

The first model explicitly evaluates depth quality using edge correlation, while

the second approach introduces a depth quality assessment regression module to

eliminate low-quality depth images. This is followed by the proposal of a novel

incomplete RGB-D modality SOD learning approach. In the following chapters,

main contribution of proposed methodology will be elaborated.



Chapter 3

Depth-Aware Saliency Detection

This chapter introduces the first contribution of the research, highlighting the in-

novative aspects and novel findings of depth quality aware salient object detection

(SOD) framework. Several reasons contribute to the ambiguity of multi-modal

(RGB and depth modalities) fusion in SOD models. Firstly, the complementarity

features of RGB and depth modalities are not properly selected. Secondly, the

quality of depth images is not considered which eventually mitigate the detection

performance. Thirdly, the fusion strategy of cross-modalities is not very persua-

sive. To overcome these challenges, a two-way feature manifestation scheme is

proposed to exploit the intrinsic properties of RGB and depth modalities. To re-

duce the disruption caused by low quality depth images, a novel edge guidance

module is proposed that correlates the RGB and depth edge features in a super-

vised manner. The integration of depth quality enhancement and cross-modal

feature fusion occur in end-to-end manner. In this chapter, experimental setup of

proposed explicit depth quality-aware salient object detection model (CVit-Net)

is also presented. A detail analysis of results obtained on benchmark datasets is

provided. Qualitative and quantitative analysis of proposed models with respect

to state-of-the-art (SOTA) models is presented. A detail ablation investigation to

confirm the importance of each module is presented. The proposed model demon-

strates promising outcome.

41
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3.1 Multi-modality Feature Processing for

Saliency Detection

Salient object detection involves identifying the most visually conspicuous ob-

ject(s) within images or videos. The integration of depth images (captured by

sensors like Microsoft Kinect and Time-of-Flight) along with RGB images has

become increasingly prevalent in various computer vision and robotics tasks. Ro-

bustness and effectiveness of salient object detection models can by enhanced by

utilizing the synergies of RGB and depth modality [1].

Conventional RGB-based SOD methods fail when the salient object and back-

ground exhibit similar appearances. Unlike the color and texture details extracted

from the RGB modality, the depth modality offers valuable geometric cues that

prove advantageous in numerous challenging scenarios, including illumination vari-

ations, low-contrast, and complex backgrounds. In addition to traditional and

convolutional neural networks (CNN) based SOD models, some researchers have

proposed co-saliency [90] and generative adversarial network (GAN) models [37]

to enhance detection accuracy.

For the efficient processing of multi-modal data, three crucial factors require con-

sideration [1]:

1. intra-modality features

2. inter-modality features correlation

3. quality of RGB and depth images

Previously proposed models fail to address all the mentioned aspects in a single

comprehensive model. The subsequent sections methodically explore these three

aspects of RGB-D SOD architecture.



Depth-Aware Saliency Detection 43

3.1.1 Intra-modality Features

Knowing the modality-specific representation of various modalities is crucial for

development of multi-modal SOD model. The depth modality captures spatial

details and object locations, while the RGB modality provides color and texture

features. For depth modality, global contextual representation provides legiti-

mate cues for salient object detection. While rich information can be disentangled

for saliency detection using local features representations. The disparity of two

modalities is handled previously through following different architectures.

3.1.1.1 Modality-specific Features Extraction using CNN

Considerable amount of work published so far, have used convolutional neural

networks (CNN) for various computer vision tasks. For RGB-D salient object

detections, various models [18, 24, 25, 38, 39], used encoder-decoder architecture.

The innate forte of CNN is extraction local details. Although some work [25, 39]

suggest the use of dilated convolution to capture global details with CNN but

proficiency of these models are not up-to the mark. The global semantic details

are not well projected due to spatial loss in pooling operation of CNN.

3.1.1.2 Modality-specific Features Extraction using Transformer

To overcome the paucity of capturing long range dependencies the Transformer

architecture [91] was proposed for natural language processing task. After that

[66] proposed visual tranformer (ViT) to process images. As for SOD task global

semantic information is very important to subjugate visually prominent object,

therefore, several new models [17, 26, 27, 76, 77, 92] of RGB-D SOD utilize trans-

former as backbone network. The Transformer architecture is good for the mani-

festation of long range dependencies but lacks to capture local details. However,

the intrinsic nature of RGB modality suggest to incorporate local information in

saliency detection task. Subsequently, RGB features are not well represented using

Transformer based backbone network.
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3.1.1.3 Modality-specific Features Extraction using Conformer

Considering the intrinsic properties of RGB and depth modalities, recently pro-

posed the Conformer [93] architecture is opted for modality-specific features ex-

traction. The Conformer network captures local and global details simultaneously.

The Conformer architecture has two streams: one is CNN stream and other is

Transformer stream. Instead of using two Conformers for two modalities, a sin-

gle Conformer is employed and consign RGB modality to CNN stream and depth

modality to Transformer stream. In this way, not only modality-specific features

are well represented but also the number of parameters are reduced. To illustrate

the value of concurrently recording local and global features in a Conformer net-

work, two scenarios are shown in Fig. 3.1. When salient and non-salient objects

can’t be separated because of a complicated background and low contrast, as is the

scenario in the first test case in Fig. 3.1, our Conformer-based model effectively

captures the salient object. However, CNN-based joint learning and densely coop-

erative fusion (JL-DCF) [25] model, do not perform well due to preponderance of

CNN for extracting local details than global contextual representation. Moreover,

for low textured multiple objects at equal distance from viewpoint as shown in

second test case of Fig. 3.1, the Transformer based model [26] fails to separate the

objects, however, my proposed Conformer-based network utilizes both local and

global representation.

 RGB  Ground Truth Proposed Cvit-Net TriTransNet  JL-DCF

a b c d e

Figure 3.1: Comparison of saliency maps obtained from CNN-based model JL-
DCF [25], transformer-based model TriTransNet [26] and proposed Conformer-

based model.
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3.1.2 Inter-modality Features Correlation

The second challenge for an efficient multi-modal salient object detection model

design, is the selection of appropriate fusion strategy that can boost the inter-

modality features correlation. Recent research has demonstrated that multi-level

(middle) [17, 25, 39] fusion strategies outperform more traditional early fusion

strategies [33–35] and late fusion strategies [18, 36, 37]. However, the features

extracted from the shallow layers of backbone network are rich in modality-specific

information while deep features contain saliency cues. Therefore, fusion of relevant

patterns is crucial. Considering the discrepancy of shallow and deep features, we

opt for a two-way feature aggregation strategy. Shallow layers are handled in local

detail enhancement (LDE) module using bottom-up approach while deep layers

are handled in global detail enhancement (GDE) module in a top-down way.

3.1.3 Quality of RGB and Depth Images

In contrast to uni-modal SOD models, structural information extracted from depth

modality when combined with color and textural details extracted from RGB

modality, plays a crucial role in boosting the performance of SOD model. How-

ever,depth is not a panacea, as noise and errors are introduced during acquisition

process. Utilizing low quality depth maps significantly reduces the detection ac-

curacy. Therefore, it is necessary to assess the depth quality before fusing it with

RGB modality. Previously, only few models [24, 33] focus to consider depth qual-

ity before fusion. Thus, we evaluate the quality of depth image data using edge

guidance and introduce adaptive aggregation to emphasize the inter-modality cor-

relation. Our proposed model learns the correlation of RGB and depth features

in a supervised manner and thus explicitly learns the depth quality. As depicted

in Fig. 3.2, the edge map of corresponding depth map explicitly guide about the

quality of depth map. The edge map of good quality depth maps preserves all

structural details as shown in Fig. 3.2 (a). In case (b) of Fig. 3.2, the depth

image quality is somewhat deteriorated, and hence, its corresponding edge image
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(a)

(b)

(c)

Depth Map Edge Map Depth Map Edge Map

Figure 3.2: (a) Good quality depth maps and their edge maps (b) Less noisy
depth maps and their edge maps (c) More noisy depth maps and their edge

maps.

losses some details. While in case (c) of Fig. 3.2, very poor quality depth map

fails to retain most of geometric cues in edge map.

3.1.4 Research Contribution Overview

Driven by above challenges, we propose a novel RGB-D Salient Object Detection

Model (CVit-Net) that utilizes global contextual representation and multi-modal

local discrepant representation in parallel top/down and bottom-up manner. Brief

description of key contributions are as follows:

1. We opt encoder-decoder architecture for multi-modal saliency detection task.

To fully comprehend local details along with effectively capturing long range

dependencies, a recently proposed Conformer network [93] is used as encoder.

Conformer is a two stream network. RGB enhanced feature representations

are obtained from CNN stream of Conformer, while for depth manifestation

Transformer stream of Conformer is used.

2. We handled shallow RGB-D features in Local Detail Enhancement (LDE)

module. We propose a novel operation-wise shuffle channel attention scheme

that correlates edge features of both modalities in a supervised manner. The

motivation behind this is to assess depth quality explicitly. Moreover, we
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streamlined the model by incorporating end-to-end training for edge guid-

ance using ground truth edge maps. This simplifies the model as in real

world scenarios depth quality labels are not usually available.

3. We handled deep RGB-D features in Global Detail Enhancement (GDE)

module. GDE module apprehend global details using reverse attention in

recurrent top/down approach.

4. To integrate the representations obtained from LDE and GDE module, we

designed a lightweight decoder that combines multi-level LDE and GDE

outputs considering the features alignment legitimation.

3.2 Proposed Method

Keeping in view the three challenging aspects of RGB-D salient object detection

framework, we propose a novel model CVit-Net using Conformer as backbone. The

overall architecture is presented in Fig. 3.3. The proposed model is an enocder-

decoder framework. In encoder part, the RGB and depth features are extracted

using Conformer network. Conformer consists of two streams, one is CNN stream

and other is Transformer stream. CNN stream is used to extract RGB features,

which are rich in textural details. And Transformer stream is used to extract depth

features. Shallow layers are handled separately in local detail enhancement (LDE)

module while features from deep layers are processed in global detail enhance-

ment (GDE) module. The quality of depth images is assessed explicitly in LDE

module. LDE module consists of novel operation-wise shuffle channel attention

module, which correlates the RGB and depth edge features in a supervised man-

ner. Features are derived from the RGB modality using a CNN-based architecture

that incorporates dilated convolutions and pooling with diverse kernel sizes and

dilation rates. This approach enhances the receptive field of the extracted rep-

resentations. The depth modality employs shuffle channel attention, which seeks

to identify the inter-channel interaction of depth information in order to uncover

heuristic depth signals.Therefore, inspired by [94], in order to handle any type of
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Figure 3.3: Encoder is shown on the left which consists of Conformer backbone
for feature extraction. Shallow features of Conformer encoder are fused in LDE
module. Deep features are enhanced in GDE module. Decoder is shown on the
right. ‘UP’ represents upsampling and ‘+’ represents element-wise addition.

distortion without reference depth map, the proposed innovative operation-wise

shuffle channel attention network executes a number of operations concurrently,

weighted by shuffle channel attention. GDE module consists of reverse attention

mechanism for semantic saliency detection. A lightweight decoder combines the

outputs of LDE and GDE module for final saliency map prediction. The training

pipeline of proposed model is given in Algorithm 1

3.2.1 Raw Feature Extraction through Backbone Network

Beforehand, it is explored that high-level computer vision tasks need a suitable

backbone network for informative features extraction. Mostly, classification net-

works like VGG [29], Resnet, Visual transformer, Swin transformer etc. are used

as backbone feature extractor framework. The pre-trained modules of above men-

tioned classification networks are fine-tuned for object detection task. The Con-

former for Visual Recognition is incorporated as the backbone network because of

its capability to simultaneously learn both local and global details. We choose to

use Conformer-B with 9 heads in the multi-head self-attention (MHSA-9) block of

the transformer, along with a feature pyramid structure of convolutions, organized

into 4 stages. RGB and depth images are fed as input to stem module of Con-

former. Stem module generates two outputs, one is fed to CNN branch and other
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Algorithm 1
Training pipeline of CVit-Net for salient object detection

Input:
(1) Training dataset D = {(Xc, Yc)}Nc=1, Ground truth saliency maps
GT = {Sc}Nc=1, Ground truth edge maps obtained from ground truth saliency
maps Edge GT = {EdgeGTc}Nc=1 where c indexes images and N is training
dataset size (2) Number of epochs Epochs (3) Hyper-parameter of edge loss α2,
α3, α4 (4) Learning-rate λ

Output:
Final saliency map Sf , RGB coarse saliency map Srgb, Depth coarse saliency
map Sd, Edge saliency maps {SEi}4i=2, where i represents backbone layer number.

1: Initialize backbone Conformer network N with pretrained Conformer-B [93]
weights for image classification.

2: for e← 1 to Epochs do

i) Sample input images {(Xc, Yc)}Nc=1

ii) Sample corresponding ground truth saliency maps {Sc}Nc=1 and ground
truth edge maps {EdgeGTc}Nc=1

iii) F i
d, F

i
rgb ← N (X, Y ;w), obtain ith feature maps from Conformer network

N

iv) Sample {rgbilj}
5
j=1 and {Ai

dj
}5j=1 following Eq. 1 and 3 respectively.

v) ldeiout ← c((Ai
d1
× rgbil1), (A

i
d2
× rgbil2), (A

i
d3
× rgbil3), (t4(A

i
d4
×

rgbil4), (t5(A
i
d5
× rgbil5))), Generate encoder output signals from Local

Detail Enhancement (LDE) module

vi) Obtain Srgb and Sd following Eq. 5 and 6 respectively.

vii) gdeioutm ← (1− Sigmoid(UP (Sm)))× Ei
m , Generate encoder output

signals from Global Detail Enhancement (GDE) module

viii) Sf ←
∑

i UPi(lde
i
out)+UP ((gdeloutd+gdeloutrgb)+UP ((gdemoutd+gdemoutrgb)+

(UP (gdehoutd + gdehoutrgb)))), Decode (v) and (vii) output signals and
Predict final saliency map

ix) Lt ← Lf (Sf ) + αiLEi(SEi) + Ld(Sd) + Lr(Srgb), loss function

x) Update model parameters using Lt

3: end for
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is fed to Transformer branch. Instead of combining multi-model RGB-D input

or using two separate Conformer for each modality, we fed RGB images to CNN

stream and depth images to Transformer stream. Initial RGB features are cap-

tured using convolution operation with stride 2, kernel size 7x7 and max pooling

operation with kernel size 3x3. The depth input image is converted to 20x20 patch

embeddings, using linear projection layer. Initial depth features are processed by

same stem module as of RGB followed by convolution of kernel size 4x4 and stride

4 to generate patch embeddings. Fully-connected layer of Conformer is removed.

Features are extracted from last layer of each stage of Conformer in a side-out

manner. While for shallow features processing, all three layers in stage c2 are used

for low level details enhancement. In proposed model these features are denoted

as low, mid, high and coarse features. The features’ resolution of CNN branch

in form of H ×W,C (Height, Width and Channels) and Transformer branch in

form of E, (K + 1) (K, 1 and E are number of image patches, class tokens and

embedding dimensions) for each stage is presented in Table 3.1. The resolution

and channel number of the side-outs in the CNN branch vary, with increasing

channels and decreasing resolution, which does not align with the side-outs of the

transformer stream. We ignore the class tokens as it is not relevant to our SOD

task.

Table 3.1: Output features shape of Conformer-B and configuration used:
multi-head self attention (MHSA) with 9 number of heads, patch size of 16,

channel ratio of 6 and embedding dimensions of 576.

Stage Features
Notation

CNN Branch
Output

Transformer
Branch Output

c1 stem 160x160,64 160x160,64

80x80,64 80x80,64

c2 low 80x80,384 401,576

c3 mid 40x40,768 401,576

c4 high 20x20,1536 401,576

c5 coarse 10x10,1536 401,576

Proposed CVit-Net model describes ith side-out layer feature from CNN and Trans-

former streams with 𭟋i
rgb and 𭟋i

d respectively.
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3.2.2 Local Detail Enhancement Module

Intuitively, depth images captures structural details and object location. As a

result, in shallow layers, the depth map presents more distinct feature represen-

tations in contrast to RGB. However, there is a possibility of increased depth es-

timation error when salient and non-salient objects are in close proximity to each

other or when non-salient objects are closer to the viewpoint. Additionally, depth

images also suffer from noise during acquisition. Hence, fallacious feature mani-

festations are obtained if low quality depth maps are used for detection. There

are also several reasons of depth image quality degradations and the reference

depth maps are not usually available in real world scenarios. Therefore, a novel

operation-wise shuffle channel attention is proposed in local detail enhancement

module. The detail architecture is provided in Fig. 3.4. Operation layer consists

of five parallel operations to supplement depth with affluent RGB manifestations.

Besides, shuffle channel attention subjugates depth degradations. Overall, LDE

module follows following steps:

� Three side-outs of Conformer backbone (described by i=2,3,4) are selected

for shallow RGB and depth features extraction.

� Five parallel operations including convolution and pooling operation with

different kernel and stride values are implemented on CNN stream of Con-

former.

� For each operation-wise learning of RGB modality, depth features are ex-

tracted using shuffle channel attention with different number of groups.

� The hierarchical shallow RGB and depth representations are multiplied and

concatenated. The intuition behind this is to effectively select the comple-

mentarity of cross-modalities.

� The low level details are trained in a supervised manner. For this purpose

edge ground truth are generated from saliency ground truth using Sobel

operator [95].
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Figure 3.4: Detailed architecture of proposed Local Detail Enhancement
(LDE) Module.

The motivation behind LDE module is to correlate edge details of RGB and depth

modality to mitigate the impact of low quality depth images. The adaptive training

of RGB and depth boundary cues guides the SOD model about depth quality in

an explicit manner.

3.2.2.1 Extraction of Color/Textural Encoded Patterns from RGBModal-

ity

Following the conventional computer vision modelling approach that involves ex-

ploiting a backbone network to extract raw RGB features, we leverage the CNN

branch within the Conformer network. Typically, feature maps acquired through

convolution operations with sliding window kernels tend to lack a robust repre-

sentation of effective global contextual information. Therefore, to obtain effective

global details, receptive field of RGB features are enhanced using parallel convolu-

tional layers with different kernel sizes, accompanied by dilated convolution. As a

result, the computational cost is reduced. The modality-specific patterns of RGB

images are processed in five parallel operation layers shown in Eq. (3.1). The first

layer consists of convolutional operation Convo1 having kernel size (7x7), stride

1, padding 6 and dilation rate 2, followed by ReLU activation σ. The convolu-

tional operation Convo2 in second layer have kernel size(5x5), stride 1, padding 4
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and dilation rate 2. The third layer has convolutional operation Convo3 of kernel

size(3x3), stride 1, padding 2 and dilation rate 2. Fourth and fifth layers are pool-

ing layers. AvgPoolo4 and MaxPoolo5 corresponds to Average and Max Pooling

operations with kernel size (4x4) and stride 4. These operations are performed on

three shallow conformer side-outs levels represented by i, where i is (2 to 4).

rgbil1 = σ(Convo1(𭟋i
rgb)), (3.1a)

rgbil2 = σ(Convo2(𭟋i
rgb)), (3.1b)

rgbil3 = σ(Convo3(𭟋i
rgb)), (3.1c)

rgbil4 = AvgPoolo4(𭟋i
rgb), (3.1d)

rgbil5 = MaxPoolo5(𭟋i
rgb). (3.1e)

It is apparent in visual representation of encoded RGB patterns (given in Fig. 3.5

(a)) that parallel operation can capture rich local details. Convolutional opera-

tions help emphasize boundary cues based on texture or color variations, while

pooling operations strengthen appearance details that are advantageous for em-

phasizing salient objects. For low quality depth images (Row 3 and 4 of Fig. 3.5

(a)), concurrent operations on RGB data generate diverse patterns and acquire

informative cues to supplement depth modality.

3.2.2.2 Extraction of Depth Quality Aware Attentive Maps from Depth

Modality

Although, shallow layers provide rich geometrical details of depth modality,however,

noisy depth maps loose several boundary cues and contribute in redundant infor-

mation. Therefore, it is crucial to extract depth quality aware representations.

With regard to the mentioned scenario, Shuffle Channel Attention is proposed

to depict ‘what’ features matters. Analogous to various Channel Attention algo-

rithms, Shuffle Channel Attention approach comprehend the spatial information

by applying Global Average Pooling. The dimension of resultant feature map is

C × 1× 1. Afterthat, C channels are divided into g groups, such that, each g

group has n Channels (presented as (g × n× 1× 1) ). Channels are then shuffled
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Ad1 Ad2 Ad3 t_4(Ad4) t_5(Ad5)

rgbl1 rgbl2 rgbl3 rgbl4 rgbl5

RGB DEPTH Ground Truth

(a) Feature Maps after Convolution and Pooling Operations on RGB Modality

(b) Shuffle Channel Attention Maps of Depth Modality

Figure 3.5: Demonstration of five parallel operation results on RGB and depth
modality.

to maximize the information exchange among g groups. The new representation

has n × g × 1 × 1 dimension. Afterwards, shuffle channels are reshaped to origi-

nal dimension of C × 1 × 1. Mathematically, shuffle channels operation SC (.) is

presented in Eq. 3.2

Di
sc = SC(GAP (𭟋i

d)), (3.2)

Furthermore, SC (.) operation is forwarded to multi-layer perceptron (MLP) net-

work. MLP is designed to have a single hidden layer. Parallel to shuffle channel
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operation branch, a residual connection is provided to optimize training process.

Each parallel branch is equipped with Sigmoid activation to generate attention

map. Original depth features are multiplied and added with attention map as

shown in Eq. 3.3

Ai
dj

= [ {Sigmoid(MLP (Di
sc)) + Sigmoid(GAP (𭟋i

d))} ×𭟋i
d] + 𭟋i

d, (3.3)

where j represent layer (1 to 5) and i represent Conformer side-out levels (2 to 4).

To validate the performance of proposed shuffle channel attention, the intermediate

features from five shuffle channel operations are shown in Fig. 3.5 (b). Group size

of (4,8,16,32,64) are used in five parallel operations. It can be visualized that,

even for low quality depths with almost zero informative details, proposed scheme

can extract salient object effectively.

3.2.2.3 Fusion of Shallow Features in LDE Module

As mentioned earlier, shallow RGB features are extracted using five parallel opera-

tions including convolution and pooling operations. While, shallow depth features

are extracted from shuffle channel attention module. This operation-wise attention

learning is performed on three low level layers of Conformer backbone represented

with superscript i. In our implementation, we have selected 2 to 4 side-out levels

of Conformer. The complementarity of RGB and depth is selected by adaptively

fusing parallel multi-modal representations. As described in Eq. 3.4, all layers

are concatenated after element-wise multiplication of realigned depth and RGB

features.

ldeiout = c((Ai
d1
× rgbil1), (A

i
d2
× rgbil2), (A

i
d3
× rgbil3),

(t4(A
i
d4
× rgbil4), (t5(A

i
d5
× rgbil5))),

(3.4)

3.2.3 Global Detail Enhancement Module

It is well established that, features extracted from shallow layers of backbone net-

work exhibit modality-specific properties while deeper layer representations are
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Figure 3.6: Detailed architecture of proposed Global Detail Enhancement
(GDE) Module.

more task agnostic. Therefore, in proposed model, deep RGB and depth fea-

tures are handled separately from shallow features in Global Detail Enhancement

(GDE) Module. GDE module captures global context aware information from 4,8

and 11 side-outs levels of Conformer backbone. It then performs reverse attention

on these and coarse level 12 side-out of Conformer representation in parallel man-

ner. Hence, coarse target localizations helps subsequent level to learn fine details.

Subsequently, it combines the enhanced hierarchical features in top-down manner.

The detailed architecture of GDE module can be visualized in Fig. 3.6. The GDE

module is designed to generate saliency maps at three levels, represented as low,

middle and high level. The reverse attention is performed in two steps:

� Coarse target localization generation.

� Reverse attention learning for saliency maps generation using transformed

𭟋i
rgb , 𭟋i

d, Srgb and Sd

3.2.3.1 Coarse Target Localization Generation

For reverse attention scheme opted in GDE module, firstly coarse localization is

carried out on high level RGB and depth features in a supervised manner. The

raw features from last layer of CNN and transformer streams of Conformer are
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supervised using salient ground truth. Then the enhanced target localization is

fed to previous layer for attention learning. In the training procedure of coarse

RGB and depth features several convolution and transformations are applied. The

applied loss function is described by RGB coarse loss Lrgb and depth coarse loss Ld

explained in section 3.7. The Eqs. 3.5 and 3.6 shows the relationship between the

raw RGB 𭟋c
rgb and raw depth 𭟋c

d with the generated coarse RGB saliency maps

Srgb and coarse depth saliency maps Sd.

Srgb = Convrs(σ(Convcr(𭟋c
rgb)))), (3.5)

Sd = Convds(σ(Convcd(ft(𭟋c
d)))), (3.6)

where superscript c=12. In Eq. 3.6 ft represents feature transformation function

used to align the transformer output with CNN output. Firstly, 1x1 convolution

(Convcr and Convcd) followed by σ ReLU activation , is applied on 𭟋c
rgb and

𭟋c
d. The resultant features are further enhanced for supervised learning using 1x1

convolution Convrs and 3x3,stride 2 convolution Convds operations on last RGB

and depth features of Conformer respectively.

3.2.3.2 Reverse Attention Learning

For reverse attention learning 𭟋i
rgb and 𭟋i

d from high level side-outs of Conformer

are utilized. In proposed model GDE i = 4, 8, 11 side-outs are considered. As in

Eq. 3.7 𭟋i
rgb is converted to single channel feature map using two convolution

operations Convg1 and Convg2 (1x1,1) followed by σ ReLU activation.

Ei
rgb = Convg2(σ(Convg1(𭟋i

rgb))), (3.7)

The enhanced depth features Ei
d are obtained at each saliency generation stage

by applying git and hi
t transformation functions given in Eq. 3.8. git and hi

t con-

verts patch embeddings of depth modality to match the RGB modality in spatial

resolution. To do so, transposed convolutions is performed to up-sample depth

feature maps with kernel size 4x4 and strides of 1,2,4 for high, middle and low
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level stage respectively. Along with that convolutional layer of (1x1,1) is used to

reduce channel dimension to 1.

Ei
d = hi

t(g
i
t(𭟋i

d)). (3.8)

For reverse attention Srgb and Sd are upsampled using transposed convolution.

Stride of 2,4 and 8 for high, middle and low level stage of GDE are implemented.

Thus a different upsampled version of RGB and depth coarse saliency followed by

Sigmoid are used in each reverse attention stage. As shown in Eq. 3.9, transformed

RGB and depth coarse saliency maps are inverted and then multiplied by trans-

formed side-out of RGB and depth feature map. This allows global contextual

details to spatially compensate with the intermediate finer details.

gdeioutm = (1− Sigmoid(UP (Sm)))× Ei
m, (3.9)

where m is rgb or d for RGB and depth modality, respectively.

3.2.3.3 Visualization and Discussion on Side-outs Inference of RGB

(Ei
rgb) and Depth (Ei

d)

Proposed reverse attention mechanism integrates (Sd, Srgb) from 12th layer with

low, middle and high level stage features. As each stage is responsible to capture

specific details, the parallel complementary details extraction boost the saliency

detection performance. Fig. 3.7 represents side-outs inference of RGB(Ei
rgb) and

depth(Ei
d) at different layers of backbone. Where, E11

rgb and E11
d represents high

level saliency maps at layer 11. At this layer, rich semantic details are obtained,

however, the resolution of feature maps is low. The side-outs E8
rgb and E8

d give

enhanced representation at middle layer 8. While E4
rgb and E4

d side-outs feature

maps capture finer details with extended spatial resolution. Therefore, the intrinsic

properties of low to high level features are when combined with RGB and depth

coarse saliency maps in reverse attention mechanism, the enriched global context

is achieved.
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Figure 3.7: Side-outs inference of RGB(Ei
rgb) and depth(Ei

d) at different levels
without combining with deeper levels in reverse attention module.

3.2.4 Integration of LDE and GDE in Decoder Module

To reduce the complexity of model, decoder only integrates the outputs of LDE

and GDE module after proper re-alignment. Given in Eq. 3.10, the depth and

RGB outputs from high level stage of reverse attention module is added and then

upsampled using Transposed convolution with stride of 2. The resultant feature

maps are added with middle level depth and RGB representation of GDE. Con-

currently, they are upsampled and combined with low level reverse attention stage

features and again upsampled. Thus, the hierarchical reverse attention features are

added to upsampled version of LDE output. The final output resolution matches

the ground truth.

Sf =
∑
i

UPi(lde
i
out) + UP ((gdeloutd + gdeloutrgb)+

UP ((gdemoutd + gdemoutrgb) + (UP (gdehoutd + gdehoutrgb)))).

(3.10)

3.2.5 Loss Function

The loss function is defined as:

Lt = Lf (Sf ) + αiLEi(SEi) + Ld(Sd) + Lr(Srgb), (3.11)
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The generated Final Sf , Coarse Depth Sd and Coarse RGB Srgb saliency prediction

maps respectively, are trained using ground truth saliency map, using binary cross-

entropy loss (Lf (Sf ), Ld(Sd) and Lr(Srgb)). For edge saliency map SEi training

is done using generated edge maps from ground truth maps using Sobel operator.

Here, i=2,3,4 for three LDE module outputs and LEi(SEi) is defined as smooth

L1 loss. αi is tuneable parameter.

3.3 Detail Evaluation of CVit-Net

3.3.1 Datasets and Evaluation Metrics

For the training of proposed CVit-Net, 1500 RGB and depth pairs from NJU2K

[45] and 700 from NLPR [22] dataset is used as followed by [1, 25, 39, 79]. The

proposed model is evaluated on following benchmark datasets: remaining samples

of NJU2K and NLPR, LFSD [46], SIP [33], STERE [47] and RGBD135 [21]. For

quantitative results evaluation, precision–recall [48], Structural measure (Smea-

sure) [49], maximum F-measure (Fmax) [50], maximum E-measure (Emax) [51],

and Mean Absolute Error (MAE) [52] are adopted. For qualitative analysis, vari-

ous scenarios reported by SOTA models [1, 33, 68, 71, 73] are used.

3.3.2 Experiment Settings

The implementation of proposed CVit-Net is done on Pytorch. The specification

of workstation used for training is given in Table 3.2. RGB and depth input

images are resized to 320 Ö 320 resolution. The single channel depth images are

replicated to three channels. Depth input is normalized between 0 to 255 range.

Additional data augmentations are added for a generalized solution, including

random crop and normalization. The initialization of backbone network is done

using Conformer-B [93] pretrained on ImageNet. Other coefficients are initialized

by default setting of Pytorch. The empirically selected learning rate of 5e-5 is



Depth-Aware Saliency Detection 61

used. The total training time is 24h and the proposed model converges in 100

epochs using Adam optimizer. A batch size of 4 is used.

Table 3.2: Specification of workstation used for training of CVit-Net.

OS Linux:Ubuntu 18.04.6 LTS
GPU Single NVIDIA GeForce RTX 3060 Ti
GPU Memory 8 GB
CPU Intel® Core�i7-10700K
RAM 16 GB
System Type 64 bit
Cuda Version 11.8
Interpreter Python 3.12

Conformer-base backbone configuration In the implementation of CVit-Net

for salient object detection, fully connected layers of Conformer-base backbone

network is removed. In the proposed model 12 conv-tran layers of backbone are

utilized. Other configuration parameters are listed in Table 3.3.

Table 3.3: Conformer-B Configuration.

Patch size 16
Channel ratio 6
Embedding dimensions 576
Depth 12
Number of Heads 9
MLP ratio 4

3.3.3 Quantitative Results

To verify the performance of the proposed CVit-Net, the model is compared with

22 SOTA models including SSRCNN[34], D3Net[33], ICNet[82], CMWNet[38],

PGARNet[24], BBSNet[81], ASIF-Net[96], CVAE[79], JL-DCF[25], BTSNet[39],

RD3D[97], BiANet[98], SSL[99], DIGRNet[100], SPSN[101], LIANet[73], DCMNet

[87] CNN-based model and TriTransNett[26], VST[76], MFormer[77], SiaTrans[27],

DFTR[102] transformer-based model. . The saliency maps of these models are pro-

vided by their corresponding authors. The quantitative comparison of results with

these SOTA models is shown in Table 3.4 against S-measure (Sα ↑), F-measure
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(Fmax
β ↑), E-measure (Emax

ζ ↑) and mean absolute error (MAE ↓). The upward

arrow accompanying the first three metrics indicates that higher values correspond

to favorable outcomes, while the downward arrow paired with MAE denotes that

lower values correspond to favorable outcomes. The aforementioned metrics offer

valuable insights into the precision, comprehensiveness, and overall efficacy of the

models in accurately identifying prominent objects within images.

Performance Metrics Analysis:

An in-depth quantitative analysis of the performance of the proposed CVit-Net is

presented below:

PR-Curve: The precision-recall curve of proposed CVit-Net and SOTA models

is presented in Fig. 3.8. It can be observed that the proposed model has shorter

curve in all datasets, indicating high recall.

S-measure (Sα): The significant performance improvement of the proposed model

in the S-measure metric for object-level errors indicates a high level of structural

similarity and spatial information correlation. Results presented in Table 3.4 shows

that proposed CVit-Net achieves a performance boost of 1.57% in NLPR dataset,

1.04% in LFSD dataset, 0.77% in SIP dataset, 0.56% in STERE dataset and 0.95%

in RGBD135 dataset in comparison to SOTA models.

F-measure (Fmax
β ): The F-measure combines precision and recall into a unified

metric, thereby offering a well-rounded evaluation of a model’s performance. Pre-

cision assesses the correctness of the identified salient regions, indicating how many

of the detected regions are truly relevant. Recall, on the other hand, evaluates the

model’s capacity to capture all the salient regions that exist in the ground truth,

indicating the completeness of the detection process. Results presented in Table

3.4 shows that proposed CVit-Net achieves a performance boost of 0.21% in NLPR

dataset, 0.53% in LFSD dataset,1.19% in SIP dataset,0.47% in STERE dataset

and 0.94% in RGBD135 dataset in comparison to SOTA models. Due to the

inherent imbalance between salient and non-salient regions in saliency detection

datasets, F-measure emerges as a robust metric for evaluating salient object de-

tection (SOD) models. Specifically, a significant improvement of 0.47% in STERE
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dataset can be observed, which is described as highly imbalanced RGB-D SOD

dataset. It can be observed in Fig. 3.9, that, the proposed CVit-Net accurately

identified salient regions while accounting for the scarcity of salient regions in the

provided examples.

E-measure (Emax
ζ ): The proposed model demonstrates superior delineation, lo-

calization, and segmentation accuracy of salient object regions, as evaluated by

the E-measure metric. The model outperforms state-of-the-art (SOTA) models by

1.04% in NJU2K dataset, 0.82% in NLPR dataset, 0.57% in LFSD dataset, 1.15%

in SIP dataset, 0.10% in STERE dataset and 0.50% in RGBD135 dataset.

Mean Absolute Error (MAE): It can be demonstrated that the proposed model

outperforms SOTA models. Specifically, mean absolute error has been decreased

by 15% in SIP dataset, 13.4% in LFSD dataset, 9.1% in STERE dataset, 5.6% in

NLPR dataset and 3.6% in RGBD135 dataset.

3.3.4 Qualitative Results

In order to evaluate proposed CVit-Net visually, the 9 different test cases which

include 8 complex scenarios are identified. These challenging scenarios have been

selected as pointed in various published studies [1, 24, 25, 39, 79, 80, 98]. Visual

comparison with SOTA models is provided in Fig. 3.9. In this figure, each row

describes different scenarios, provided with saliency maps of proposed and SOTA

models.

1. Depth quality is so poor that no object can be visualized: This

test case is shown in row (a) and (b) of Fig. 3.9. In this complex scenario

proposed model successfully captured the salient object. Although saliency

map of CVit-Net in row (b) are not only very close to ground truth saliency

but the proposed model expressed even small details like the legs of bird,

while other SOTA models have included the additional information.
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Figure 3.8: Precision-recall curves of SOTA methods and proposed CVit-Net
across 6 Datasets.

2. Depth has missed small details: Fig. 3.9 row (c) is image of chandelier

and its depth map has missed small details, still proposed model is able to

capture the whole object effectively.

3. Non-salient object adjoined in depth image: Bird and the rock in row

(d) of Fig. 3.9 are adjoined in depth image. Also legs of the bird and rock

have same color in RGB image. Even so, CVit-Net outperforms other SOTA

models.
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Table 3.4: Quantitative comparison of proposed CVit-Net with 22 SOTA CNN and transformer based RGB-D SOD modelson 6
benchmark datasets. Best results are represented by ‘Red’ color and second best results are represented by ‘Blue’ color. ‘-’ indicates

result is not available.

Quantitative Evaluation on NJU2K [45], NLPR [22]and LFSD [46] Datasets

Datasets NJU2K NLPR LFSD

Models/Metrics Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓ Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓ Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓

CNN-based Models

SSRCNN [34] 0.8827 0.8746 0.9087 0.0511 0.8932 0.8526 0.9354 0.0357 0.8587 0.848 0.8859 0.0763

D3Net [33] 0.895 0.889 0.932 0.051 0.906 0.885 0.946 0.034 0.825 0.81 0.862 0.095

ICNet [82] 0.894 0.891 0.926 0.052 0.923 0.908 0.952 0.028 0.868 0.871 0.903 0.071

CMWNet [38] 0.903 0.902 0.936 0.046 0.917 0.903 0.951 0.029 0.876 0.883 0.912 0.066

PGARNet [24] 0.909 0.893 0.916 0.042 0.93 0.885 0.955 0.024 0.853 0.852 0.889 0.074

BBSNet [81] 0.921 0.92 0.949 0.035 0.93 0.918 0.961 0.023 0.864 0.858 0.901 0.072

ASIFNet [96] 0.8887 0.9007 - 0.0471 0.8844 0.9002 - 0.0298 0.8391 0.8723 - 0.0754

CVAE [79] 0.902 0.893 0.937 0.039 0.917 0.893 0.952 0.025 0.868 0.857 0.904 0.065

JL-DCF [25] 0.903 0.903 0.944 0.043 0.925 0.916 0.962 0.022 0.862 0.866 0.901 0.071

BTSNet [39] 0.921 0.924 0.954 0.036 0.934 0.923 0.965 0.023 0.867 0.874 0.906 0.07

RD3D [97] 0.916 0.914 0.947 0.036 0.93 0.919 0.965 0.022 - - - -

......Continued on next page......
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Table 3.4: Quantitative comparison of proposed CVit-Net with 22 SOTA CNN and transformer based RGB-D SOD modelson 6
benchmark datasets. Best results are represented by ‘Red’ color and second best results are represented by ‘Blue’ color. ‘-’ indicates

result is not available.

Datasets NJU2K NLPR LFSD

Models/Metrics Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓ Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓ Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓

BiANet[98] 0.915 0.92 0.948 0.039 0.925 0.914 0.961 0.024 - - - -

SSL [99], 0.909 0.923 0.939 0.038 0.922 0.923 0.96 0.025 - - - -

DIGRNet[100] 0.933 0.939 0.966 0.026 0.931 0.923 0.964 0.021 0.869 0.869 0.905 0.067

SPSN [101] 0.918 0.92 0.95 0.032 0.923 0.91 0.958 0.023 - - - -

LIANet [73] 0.904 0.911 0.911 0.042 - - - - 0.862 0.884 0.889 0.07

DCMNet [87] - 0.899 0.92 0.036 - 0.883 0.954 0.024 - 0.867 0.906 0.064

Transformer-based Models

TriTransNet [26] 0.92 0.919 0.925 0.03 0.928 0.909 0.96 0.02 - - - -

VST [76] 0.922 0.92 0.951 0.035 0.932 0.92 0.962 0.024 0.882 0.889 0.921 0.061

Mformer [77] 0.922 0.923 0.954 0.032 0.932 0.925 0.965 0.021 0.872 0.879 0.911 0.062

SiaTrans [27] 0.923 0.921 0.956 0.035 0.929 0.918 0.964 0.024 0.871 0.876 0.907 0.069

DFTR [102] 0.922 0.923 0.954 0.034 0.941 0.934 0.972 0.018 - - - -

CVit-Net 0.924 0.926 0.966 0.03 0.956 0.936 0.98 0.017 0.8913 0.8937 0.9263 0.0528

......Continued on next page......



D
epth-A

w
are

S
alien

cy
D
etection

67

Table 3.4: Quantitative comparison of proposed CVit-Net with 22 SOTA CNN and transformer based RGB-D SOD modelson 6
benchmark datasets. Best results are represented by ‘Red’ color and second best results are represented by ‘Blue’ color. ‘-’ indicates

result is not available.

Quantitative Evaluation on SIP [33],STERE [47] and RGBD135 [21] Datasets

Datasets SIP STERE RGBD135

Models/Metrics Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓ Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓ Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓

CNN-based Models

SSRCNN [34] - - - - 0.8822 0.8632 0.9146 0.0499 - - - -

D3Net [33] 0.86 0.861 0.909 0.063 0.899 0.891 0.938 0.046 0.898 0.885 0.946 0.031

ICNet [82] - - - - 0.903 0.898 0.942 0.045 0.92 0.913 0.96 0.027

CMWNet [38] 0.867 0.874 0.913 0.062 0.905 0.901 0.944 0.043 0.934 0.93 0.969 0.022

PGARNet [24] 0.876 0.854 0.908 0.055 0.907 0.88 0.919 0.041 0.913 0.88 0.939 0.026

BBSNet [81] 0.879 0.883 0.922 0.055 0.908 0.903 0.942 0.041 0.933 0.927 0.966 0.021

ASIFNet [96] - - - - 0.8778 0.8953 - 0.0474 - - - -

CVAE [79] 0.883 0.877 0.927 0.045 - - - - 0.937 0.929 0.975 0.016

JL-DCF [25] 0.879 0.885 0.923 0.051 0.905 0.901 0.946 0.042 0.929 0.919 0.968 0.022

BTSNet [39] 0.896 0.901 0.933 0.044 0.915 0.911 0.949 0.038 0.943 0.94 0.979 0.018

RD3D [97] 0.885 0.889 0.924 0.048 0.911 0.906 0.947 0.037 0.935 0.929 0.972 0.019

......Continued on next page......
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Table 3.4: Quantitative comparison of proposed CVit-Net with 22 SOTA CNN and transformer based RGB-D SOD modelson 6
benchmark datasets. Best results are represented by ‘Red’ color and second best results are represented by ‘Blue’ color. ‘-’ indicates

result is not available.

Datasets SIP STERE RGBD135

Models/Metrics Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓ Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓ Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓

BiANet [98] 0.883 0.89 0.925 0.052 0.904 0.898 0.942 0.043 0.931 0.926 0.971 0.021

SSL [99] 0.888 0.909 0.927 0.046 0.904 0.914 0.939 0.039 0.936 0.944 0.978 0.017

DIGRNet [100] 0.882 0.892 0.925 0.051 0.914 0.916 0.957 0.035 0.936 0.932 0.972 0.019

SPSN [101] 0.892 0.899 0.934 0.042 0.907 0.9 0.943 0.035 0.937 0.936 0.974 0.016

LIANet[73] 0.884 0.912 0.923 0.048 0.906 0.914 0.929 0.037 0.929 0.938 0.969 0.021

DCMNet [87] - 0.883 0.926 0.047 - - - - - - - -

Transformer-based Models

TriTransNet [26] 0.886 0.892 0.924 0.043 0.908 0.893 0.927 0.033 0.943 0.936 0.981 0.014

VST [76] 0.904 0.915 0.944 0.04 0.913 0.907 0.951 0.038 0.943 0.94 0.978 0.017

MFormer [77] 0.894 0.902 0.932 0.043 - - - - - - - -

SiaTrans [27] 0.899 0.913 0.945 0.041 0.914 0.907 0.951 0.038 0.936 0.932 0.975 0.02

DFTR [102] 0.904 0.913 0.946 0.04 0.918 0.914 0.951 0.034 - - - -

CVit-Net 0.911 0.926 0.957 0.034 0.9232 0.9203 0.958 0.03 0.952 0.953 0.9859 0.0135
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Figure 3.9: Visual comparison of SOTA methods and proposed CVit-Net in different challenging scenes.
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4. Depth highlights additional details: Fig. 3.9 row(e) represents complex

scenario of low contrast RGB with poor quality depth. In this challenging

scene, CVit-Net perform pretty well as compared to other models.

5. Good contrast RGB and low contrast depth: Row (f) of Fig. 3.9

depicts that the proposed model can represent objects with low contrast

depth.

6. Good contrast RGB and depth: Although row (g) of Fig. 3.9 is simple

test case, however, many models fail to capture the details of fingers while

CVit-Net show impressive result.

7. Small objects: Row (h) of Fig. 3.9 shows that proposed model can effec-

tively capture small object.

8. Multiple objects: Another challenging case is multiple salient objects in

a scene presented in Fig. 3.9 row (i). Proposed CVit-Net well represented

all salient objects.

9. Complex background: Fig. 3.9 row (j) represent indistinguishable fore-

ground and background scenario due to same color appearance while row(k)

represents cluttered background test case. It can be visualized that the pro-

posed model notably performed well as compared to other SOTA models.

3.3.5 Ablation Studies

In this section, a comprehensive ablation studies is presented to verify the con-

tribution of each module of proposed CVit-Net. To conduct ablation analysis,

four datasets SIP and RGBD135 (having good quality depth maps), LFSD and

STERE (having poor quality depth map) are selected. The full implementation of

CVit-Net used as a reference model is denoted as ‘Model F’. All ablated models

are compared with ‘Model F’ and visual comparison is presented in Fig. 3.10.

Effectiveness of reverse attention module: The global contextual informa-

tion from deep layers of Conformer are processed in reverse attention module of
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CVit-Net. To verify the effectiveness of reverse attention module, the local de-

tail enhancement module is removed and model is trained with only global detail

enhacement module, denoted as ‘Model A’. The reverse attention utilize coarse

saliency from last hierarchy of Conformer and generate output in top-down man-

ner. Comparative analysis of ‘Model F’ and ‘Model A’ is provided in Table 3.5. It

is evident that results of LFSD and STERE (known for their poor quality depth

images) are very close to reference ‘Model F’, which depicts that reverse attention

itself is powerful technique to handle low quality depth map. Visual comparison

is given in Fig. 3.10.

Table 3.5: Ablation study about the role of reverse attention module in RGBD
SOD. The best result is in Bold. ‘Model A’ is model having only reverse

attention module and ‘Model F’ is full implementation of CVit-Net.

Datasets/Metrics Model Sα ↑ Fmax ↑ Emax ↑ MAE ↓

SIP
Modal A 0.8958 0.9018 0.9328 0.0432
Modal F 0.911 0.926 0.957 0.034

STERE
Modal A 0.9232 0.9203 0.956 0.032
Modal F 0.9232 0.9203 0.958 0.03

LFSD
Modal A 0.8867 0.8866 0.9171 0.0595
Modal F 0.8913 0.8937 0.9263 0.0528

RGBD135
Modal A 0.9499 0.9462 0.9806 0.0151
Modal F 0.952 0.953 0.9859 0.0135

Effectiveness of Depth Modality using ‘RGB only’: Does depth modal-

ity really enhances the model performance? To answer this question, a model is

trained, denoted as ‘Model B’, with only RGB input. The results of ‘Model B’

and reference model ‘Model F’ are compared and provided in Table 3.6. Results

validates the role of depth modality in enhancing the detection performance in

almost every dataset. With the exception in STERE dataset, where only slight

improvement is observed in ‘Model F’ when compared with ‘Model B’. This is

justifiable as STERE data has very poor quality depth maps. In next paragraph,

the proposed model is evaluated using ‘Depth only’ input. To conclude the ef-

fectiveness of RGB input over depth due to presence of rich information in RGB

modality, illustrated in 1st and 2nd row of Fig. 3.10 additional details are captured

due to rich textured RGB image.



Depth-Aware Saliency Detection 72

Table 3.6: Effectiveness analysis of multi-modal RGB-D input compared to
uni-modal input for SOD task. The best result is in Bold.

Datasets/Metric/Models Depth only ‘Model C’ RGB only ‘Model B’ ‘Model F’

SIP

Sα ↑ 0.8701 0.8823 0.911
Fmax ↑ 0.885 0.8871 0.926
Emax ↑ 0.9165 0.9283 0.957
MAE ↓ 0.0552 0.049 0.034

STERE

Sα ↑ 0.7674 0.924 0.9232
Fmax ↑ 0.7409 0.9198 0.9203
Emax ↑ 0.8576 0.9573 0.958
MAE ↓ 0.1015 0.0306 0.03

LFSD

Sα ↑ 0.7612 0.8699 0.8913
Fmax ↑ 0.7636 0.8691 0.8937
Emax ↑ 0.8277 0.9073 0.9263
MAE ↓ 0.1175 0.0676 0.0528

RGBD135

Sα ↑ 0.9186 0.908 0.952
Fmax ↑ 0.9109 0.8968 0.953
Emax ↑ 0.9676 0.9442 0.9859
MAE ↓ 0.0244 0.0254 0.0135

Replacement of Shuffle Channel Attention with Self Attention: The pro-

posed shuffle channel attention correlates the structural information of depth edge

saliency. To validate its importance, Shuffle Channel Attention is replaced with

the self attention mostly used in Transformer network and the results are demon-

strated in Table 3.7. It can be observed that it performed better than ‘reverse

attention only’ given in Table 3.5 but still inferior to CVit-Net. This proves that

Shuffle Channel Attention is best possible choice for depth images.

Without edge loss: In the proposed model, the edge details of RGB and depth

are correlated with saliency edges in supervised manner. To validate the impor-

tance of edge loss, the model is trained without edge supervision and denote it

as ‘Model E’. Results of ‘Model E’ and reference model ‘Model F’ is presented

in Table 3.8. The predictions obtained from SIP and RGBD135 are more infe-

rior in ‘Model E’ than the predictions of STERE and LFSD when compared with

reference ‘Model F’. It can be concluded that for good quality depth maps edge

guidance is more worthwhile in SOD task, while for low quality depth maps it is

slightly superior than model without edge guidance. As shown in Fig. 3.10 results,
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Table 3.7: Ablation study about the role of Operation-wise shuffle channel
attention in proposed CVit-Net. Channel shuffle attention is replaced with self
attention and the new model is called ‘Model D’. The best result is in Bold.

Datasets/Metrics/Models ‘Model D’ ‘Model F’

SIP

Sα ↑ 0.9022 0.911
Fmax ↑ 0.9093 0.926
Emax ↑ 0.9414 0.957
MAE ↓ 0.0389 0.034

STERE

Sα ↑ 0.923 0.9232
Fmax ↑ 0.9202 0.9203
Emax ↑ 0.9577 0.958
MAE ↓ 0.0312 0.03

LFSD

Sα ↑ 0.8817 0.8913
Fmax ↑ 0.8818 0.8937
Emax ↑ 0.9163 0.9263
MAE ↓ 0.0603 0.0528

RGBD135

Sα ↑ 0.9457 0.952
Fmax ↑ 0.9403 0.953
Emax ↑ 0.9757 0.9859
MAE ↓ 0.0158 0.0135

edge loss plays a vital role in accuracy of model. In Fig. 3.10, 1st row having low

contrast depth depicts that without edge loss results deteriorate more.

RGB DEPTH Ground Truth Refernce Model  F Model A Model B Model C Model D Model E

Figure 3.10: Visual examples for ablation studies. Reference ‘Model F’ is full
implementation of CVit-Net.

Model complexity analysis: In Table 3.9, a detailed analysis of time-space

complexity of proposed CVit-Net is provided and its comparison with other SOTA

models is presented. In the main contribution of research, operation-wise shuffle
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Table 3.8: Ablation study about the role of edge guidance in proposed CVit-
Net. ‘Model E’ is trained without edge loss. The best result is in Bold.

Datasets/Metrics/Models ‘Model E’ ‘Model F’

SIP

Sα ↑ 0.8963 0.911
Fmax ↑ 0.901 0.926
Emax ↑ 0.9355 0.957
MAE ↓ 0.0423 0.034

STERE

Sα ↑ 0.9238 0.9232
Fmax ↑ 0.919 0.9203
Emax ↑ 0.9557 0.958
MAE ↓ 0.0319 0.03

LFSD

Sα ↑ 0.8911 0.8913
Fmax ↑ 0.8897 0.8937
Emax ↑ 0.9233 0.9263
MAE ↓ 0.0547 0.0528

RGBD135

Sα ↑ 0.943 0.952
Fmax ↑ 0.9397 0.953
Emax ↑ 0.9746 0.9859
MAE ↓ 0.0161 0.0135

channel attention framework is proposed, which implements dilated convolution to

increase receptive field with fewer parameters. Mostly, single stream methodology

is opted to reduce the computational cost. But early or late fusion in single

stream have lower accuracies. Therefore, the choice of Conformer network has

twofold benefits: a multi-level fusion strategy can be utilized and using a single

Conformer network reduces the number of parameters . The number of parameters

of the proposed CVit-Net are 90.23M and inference speed in terms of frames per

second (FPS) is about 12 FPS. Mostly, backbone network highly influences the

performance of object detection models. Therefore, in Table 3.9 it can be observed

that computational complexity of the CVit-Net is mostly due to backbone network.

The performance of Conformer-S and Conformer-B as backbone network in the

proposed CVit-Net is also compared. Although, the number of parameters of

Conformer-B based CVit-Net is almost double of the CVit-Net with Conformer-S,

but it can be observed a 39% decrease in MAE metric in SIP dataset and 26%

decrease in MAE metric in STERE dataset. Furthermore, the MAE metric and

model size of other SOTA CNN and transformer based models are reported. It can
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Table 3.9: Ablation study about model complexity on three efficiency metrics
(Number of parameters, model size in MB and FPS computed on NVIDIA P100)

and MAE accuracy metric.

Methods Backbone Param.(M) Size(MB) FPS SIP(MAE) STERE(MAE)

JL-DCF [25] Resnet101 143.5 547.8 1.36 0.051 0.042
SwinNet [17] SwinTransformer 198.7 785.7 10 0.035 0.033

CVit-Net
(Backbone)

Conformer-B 83.2 318 - - -

CVit-Net
(Backbone+LDE)

Conformer-B 87.2 333.13 - - -

CVit-Net
(Backbone+LDE
+GDE)

Conformer-B 90.2 344 - - -

CVit-Net
(Backbone+LDE
+GDE+Decoder)

Conformer-B 90.23 344.3 12 0.034 0.03

CVit-Net
(Backbone+LDE
+GDE+Decoder)

Conformer-S 41.5 158.5 16 0.056 0.041

be seen that the proposed model achieves lowest MAE value with fewer number

of parameters.

Trade-off between accuracy and efficiency: Accuracy refers to how well a

model can identify and locate salient object while efficiency defines how much

time and computational resources it will take to do so. To visualize the efficiency

and efficacy comparison with SOTA models, max F-Measure is averaged over six

benchmark datasets (as provided in various published studies [74, 103]) and plots

of max F-measure against FPS and number of parameters are provided in Fig

3.11 and 3.12, respectively. Trade-off visualization of computational efficiency in

terms of frames per second and max F-measure shows a balance for proposed

CVit- Net. Although two SOTA models have high FPS than the proposed model,

but with highly compromised accuracy. For the graph between number of pa-

rameters versus max-Fmeasure, proposed CVit-Net, holds a favourable position in

the topleft quadrant of the chart, signifying a beneficial balance between accuracy

and efficiency. A comparison of max F-Measure, MAE, and Model Size of different

models are shown in Fig. 3.13. The size of the circle represents the model size.

It’s worth noting that superior models are situated in the top left corner, charac-

terized by a larger max F-measure and a smaller MAE. Methods with a smaller

size demonstrate inferior performance, highlighting the efficiency and accuracy of
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Figure 3.11: FPS vs max F-measure.

the proposed CVit-Net approach. All the efficiency parameters are computed on

machine with specifications provided in Table 3.3.

Figure 3.12: Number of Parameters vs max F-measure.

Failure cases: The failure cases of the proposed methodology are carefully anal-

ysed. It is observed that our Global Detail Enhancement (GDE) module covers

a large receptive field. Consequently, large salient foreground detection can lead

to false positive predictions. Specifically, when salient and less-salient objects are

prominent in both modalities. Therefore, in the future work, saliency ranking can

be considered to minimize the false positive predictions. Some examples of failure

cases are shown in Fig. 3.14.
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Figure 3.13: Average Max F-measure, MAE and Model SIze.

RGB DEPTH GT Proposed Cvit-Net

Figure 3.14: Failure cases.

3.4 Conclusion

In this chapter, explicit depth-aware salient object detection model was devel-

oped to mitigate the impact of low quality depth maps on detection accuracy.

The proposed CVit-Net effectively subjugate the local details via Local Detail

Enhancement (LDE) module and global details via Global Detail Enhancement

(GDE) module at the same time, which also benefit the modality-specific char-

acteristics of RGB and depth. For feature extraction, Conformer encoder is used

as the backbone, which consists of one CNN stream and one transformer stream.
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Keeping in mind the discrepancy of RGB and depth modality, rich textural de-

tails of RGB modality are extracted from CNN stream while straight forward

geometrical details of depth modality are extracted from transformer stream. Ad-

ditionally, novel operation-wise shuffle channel attention is proposed to make full

use of complementarity of two modalities, which plays vital role in edge guidance

network and enhance the local details along with explicitly assessing low quality

depth map. Moreover, salient object area details are captured in reverse attention

module in coarse to fine manner. A light-weight decoder network is designed to

refine the affluent saliency maps generated from GDE module, with the edge maps

generated from LDE module. The comprehensive evaluation of proposed CVit-

Net on six publicly available datasets demonstrated its efficacy in comparison to

the state-of-the-art RGB-D SOD models. Specifically, MAE metric has been de-

creased by 15% in SIP dataset, 13.4% in LFSD dataset, 9.1% in STERE dataset,

5.6% in NLPR dataset and 3.6% in RGBD135 dataset. CVit-Net also advances

the state-of-the-art RGB-D SOD models by an average of 1.0% (S-measure), 0.7%

(max F-measure) and 0.63% (max E-measure) across five datasets. Furthermore,

the visual comparison has been reported in 9 different complex scenarios, selected

according to the reported challenges in literature, and the comparison of the pro-

posed CVit-Net with SOTA RGB-D SOD models shows a notable performance

improvement. Ablation analysis shows that in the absence of novel operation-wise

shuffle channel attention and supervised edge guidance, the average Fmax
β /Sα drop

by 1.1% /0.7% and 1.2% /0.6% respectively across four datasets. The asymmetric

feature representation methodology presented in this work, will allow to effectively

fuse scarce depth data with large number of RGB data in the future work.



Chapter 4

Incomplete RGB-D Modality for

Saliency Detection

This chapter introduces the second major contribution of research, implement-

ing implicit depth-aware salient object detection model. Multi-modality learn-

ing has significantly improved detection accuracies, specifically, for inconsistent

foreground-background, illumination changes, cluttered background and similar

textures etc. RGB and depth are combined to overcome challenges posed by using

only RGB modality. However, depth has its own limitations. Noisy depth degrades

the performance. Earlier implicit depth quality aware models utilize weighting

approach or estimate saliency cue dependent depth images from RGB. Then the

rectified depths are used in saliency detection models. These methods lack gener-

alization ability, specifically, for low contrast RGB and cluttered background. To

address the challenges in existing work, a novel depth quality assessment model

is proposed to know the depth quality in advance. Based on the quality score,

low quality depth are discarded and salient object detection model is trained with

two types of data (i) complete RGB and depth pair and (ii) RGB present depth

missing. The novel framework is called incomplete RGB-D modality salient object

detection. Fig. 4.1 illustrates vanilla depth-quality aware models and incomplete

multi-modality model. Fig. 4.1 (a) shows DASNet [83] model which utilizes RGB

modality to generate depth correction matrix and adjusts the contribution of depth

79
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Figure 4.1: Depth quality aware SOD models comparison. (a) DASNet [83].
(b) DCF [85]. (c) CIR-Net [72]. (d) Proposed framework.

for noisy depth data. In Fig. 4.1 (b) DCF [85] model is represented that calibrates

the original depth using estimated depth, original depth and weighting approach.

In Fig. 4.1 (c) CIR-Net [72] model enhances the representation of two modalities

using refinement layer. Unlike these model, my proposed model presented in Fig.

4.1 (d) discards low quality depth and detects salient object using complete RGB-

D pair or with missing depth. Therefore, the proposed model is robust to data

scarcity and evaluation results show notable performance gain.

Research Contribution Overview

The main contributions of implicit depth-quality aware SOD is as follows:

1. A new learning paradigm called incomplete multi-modality saliency learning

for salient object detection is proposed. The proposed model is robust to

missing depth due to noisy depth or depth scarcity. To assess the quality

of depth images, each depth is passed to proposed depth quality assessment

regression (DQAR) module and based on its score, low quality depths are

discarded.

2. The saliency detection model operates on two types of training data, RGB

with high quality depth and RGB with missing depth.
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3. The Conformer as backbone network is utilized and shallow and deep features

are processed separately in proposed Shallow Common Latent Representa-

tion (SCLR) Module and Deep Common Latent Representation (DCLR)

module, respectively.

4.1 Proposed Model

The proposed incomplete multi-modality saliency detection framework consists of

two modules.

1. Depth quality assessment module: Existing methods rectify low quality

depth using RGB and saliency cues. Some depth images are so blurred and

noisy that meaningful information cannot be collected. Subsequently, the

appropriate solution is to discard the depth images. To distinguish between

low and high quality depth, a novel depth quality assessment regression

(DQAR) module is proposed, which generates a quality score for each depth

image. Large value of quality score represents depth images of high quality

and vice versa. In the proposed model, an empirically selected threshold is

used to apprehend depth quality. All depth images with quality score below

than threshold are treated as low quality and discarded.

2. Salient object detection module: This module is trained with two types of

training data based on output of DQAR module, complete RGB-D pair and

RGB with missing depth. A Conformer network is used to extract RGB and

depth features and separate processing modules for spatial and contextual

feature representations are proposed. The learning pipeline consists of three

steps as depicted in Fig. 4.2. Three step learning process is as follows:

(a) Conceal: The extracted features from backbone network are concealed

for saliency detection task. The shallow features are concealed keeping

in view that they exhibit modality-specific characteristics and are task

agnostic. Characteristics of deep features are opposite to shallow one,
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Figure 4.2: Proposed incomplete multi-modality SOD learning framework.

therefore, hybrid attentive encoding scheme is used. The discrimina-

tive RGB and depth features are forwarded to next module for further

processing.

(b) Correlate: Although RGB and depth have disparities but as they repre-

sent same scene therefore a strong correlation also exists between them.

The correlation between cross-modalities is utilized to perform incom-

plete RGB-D saliency detection. For this purpose, modality specific

information is mapped to set of independent parameters and multi-

modality is correlated.

(c) Fuse: Fusion is just a simple block with feature alignment and summa-

tion. In this way, effective fusion is done.

In the following subsections, the implementation of each module and parts will be

discussed in detail.

4.1.1 Depth Quality Assessment Module

The depth images have inherent uncertainty in their quality due to number of rea-

sons. During image acquisition assorted deteriorations can affect depth quality,

due to inaccurate depth measurement or various scene conditions such as occlu-

sion, lighting effect, appearance changes etc. The low quality depth has negative
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Figure 4.3: Proposed incomplete multi-modality SOD learning framework.

effect on detection accuracy. To overcome these challenges, a novel depth quality

assessment regression module is proposed, shown in Fig. 4.3.

Mostly in real world, ground truth depth images or subjective score such as mean

opinion score (MOS) are not available. Subsequently, no reference image quality

assessment methods came into existence. In the proposed model, a set of dis-

torted images from high quality SIP [33] dataset is generated. Then root mean

score error metric is used to generate a quality score for each distorted images with

respect to reference image. This score acts as a pseudo ground truth in training

stage. Common degradations such as noise, motion blur, occlusion, incomplete

depth, depth discontinuities and depth maps quantization of depth images are

added to SIP dataset. Distorted depth images along with quality score labels

train DQAR model. Framework of DQAR module consists of 2 convolution lay-

ers (kernel size:3x3 , stride:1), followed by activation function and pooling layer.

In proposed model Rectified Linear Unit(ReLU) is used as activation and Max

Pooling (kernel size:2x2) is applied. Two fully connected layers are added to gen-

erate quality score. Between linear layers ReLU non-linearity is applied. Model

is trained using Squared L2 Norm loss function. The proposed DQAR converges

within 40 epochs. Adam optimizer is used and learning rate of 0.001 is selected.

For inference, MCL-3D [104]: a database for stereoscopic image quality assess-

ment is used. This dataset consists of 648 images with their subjective MOS

labels. MCL-3D dataset covers 9 different scenes captured from 3 views. 6 dif-

ferent distortions are present in this dataset and there are 4 distortion levels. To

validate the performance of DQAR model, comparison with state-of-the-art depth
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quality assessment models including BIQA [105], SEP [106], BPR [107] and DSS

[108] is provided in Table 4.1. Evaluation metrics of Pearson linear correlation

coefficient (PLCC), Spearman rank order correlation coefficient (SRCC) and Root

mean squared error (RMSE) are used. Table 4.1 demonstrates that proposed

DQAR advances by 7.5%(Pearson linear correlation coefficient) and 18.6%(Spear-

man rank order correlation coefficient) when comparing to the latest depth quality

assessment SOTA models. Root mean squared error of proposed DQAR has been

decreased by 78%. Fig. 4.4 presents some examples of depth images with their

quality score. It has been noticed that good quality depth images have high qual-

ity score αq and usually salient object prominently stand out from its surroundings.

αq=0.1016

αq=0.061

αq=0.0601

αq=0.1417

Bad Quality Depth Good Quality Depth

Figure 4.4: Some depth image examples and their quality score αq computed
by proposed DQAR.
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Table 4.1: Proposed DQAR prediction performance comparison by PLCC,
SRCC and RMSE evaluation metrics. The top two results are highlighted in

‘Red’ and ‘Blue’, respectively.

Model

Pearson
linear

correlation
coefficient
(PLCC)

Spearman
rank order
correlation
coefficient
(SRCC)

Root mean
squared
error

(RMSE)

BIQA [105] 0.8094 0.6176 0.9307
SEP [106] 0.8744 0.7983 0.7722
BPR [107] 0.5938 0.5539 1.2637
DSS [108] 0.9263 0.835 0.5881
Proposed (DQAR) 0.996 0.9908 0.129

4.1.2 Salient Object Detection Module

In this section, the detail architecture of salient object detection module will be

discussed. The proposed salient object detection framework works for incomplete

RGB-D modality saliency learning. First of all the incomplete RGB-D problem

formulation will be presented. Afterwords, the implementation details of all parts

of proposed model will be discussed.

4.1.2.1 Incomplete RGB-D Problem Formulation

Given two modalities, X ∈ RC×H×W and Y ∈ RC×H×W with labels Z ∈ RH×W

represents RGB modality and depth modality with saliency maps respectively. The

proposed incomplete RGB-D modality learning framework consists of two types

of training data, complete pair of RGB and depth, RGB present depth missing,

denoted as T1 = {(X(i), Y (i), Z(i))}n1
i=1 and T2 = {(X(i), Z(i))}n2

i=1, respectively.

Total number of data samples can be obtained using Tc = {(T1+T2)}nc
i=1 expression.

Here nc = n1 + n2 represents size of data Tc. The missing depth samples are

represented by zero vector and then training data is fed to backbone network.

We have used Conformer [93] as a backbone network. Conformer is a parallel

hybrid two stream network . One is CNN stream and other is Transformer stream.

Conformer network has 12 repeated convolution and transformer blocks and they

are categorized in 5 stages. The dimension of CNN branch is C ×H ×W , where
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C,H and W represents channel, height and width of feature map, respectively.

From c1 to c5 stage number of channels increases while resolution decreases. The

dimension of Transformer branch is (K+1)×E, where K, 1 and E denotes number

of image patches, class token and dimensionality of embeddings, respectively [93].

The framework is shown in Fig. 4.5 where Conformer [93] network is used as

backbone for feature extraction. Mostly, for multi-modalities each modality is

fed to separate backbone network. However, in proposed model single Conformer

network is used by leveraging CNN stream of Conformer to extract color and

textural details from RGB images and feeding depth image to Transformer stream

for efficient geometrical cues. The use of single Conformer network reduces the

number of parameters. Moreover, the intrinsic nature of RGB modality gives

edges, textures and color details, therefore, efficiency of CNN framework for local

details extraction can be well exploited. While depth modality provides structural

cues, therefore, we opt Transformer to represent global contextual details from

depth images. The hierarchical features from the CNN stream fr and Transformer

stream fd are then leveraged in a side-output fashion i, denoted as F i
r and F i

d

with parameters φr and φd respectively. The extracted feature map pair (F i
r ∈

RC×H×W , F i
d ∈ R(K+1)×E) for each RGB and depth pair (X, Y ) are defined by

F i
r = fr(X;φr) and F i

d = fd(Y ;φd). For dataset T2, with missing depth, raw

depth data Y is initialized by zero vector. F i
r side-output has increasing channel

and decreasing resolution. Instead of using all layers, typically only the last layer of

each stage of the backbone network is selected for multi-level fusion. This ensures a

good balance between computational efficiency and the extraction of semantically

meaningful features. However proposed model utilizes (i = 2, 3, 4) for shallow

feature processing in SCLR block and the resultant feature maps is represented

by SCorri. For deep features processing in DCLR block utilize feature maps at

layers(i = 8, 11) and generate output DCorri as shown in Fig. 4.5. Furthermore

features at layer (i = 12) are used for supervised coarse saliency map generation.

The number of blocks in stage c2 of Conformer is three, which have been repre-

sented as side-output features (F 2
r , F

2
d ), (F 3

r , F
3
d ), and (F 4

r , F
4
d ). These features are

classified as low-level features, comprising modality-specific details. All the three
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Figure 4.5: Proposed framework.
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blocks of c2 stage are used in SCLR block for two reasons.

1. The shallow layers carry rich textural and edge details. Specifically, for

cluttered background, information from all blocks of c2 stage is beneficial.

2. For missing depth, low-level depth features gradually learn from RGB modal-

ity. To ensure that no important features are missed, all blocks from c2 have

been selected. Later, the hierarchical feature maps of all 12 blocks will be

illustrated to visualize (F 2
r , F

2
d ), (F 3

r , F
3
d ), and (F 4

r , F
4
d ) for complete and

incomplete RGB-D pairs in ablation studies.

For DCLR block, last layer of mid and high stage of Conformer network captures

affluent global context while the selection of last layer for supervised coarse saliency

map generation filters out distractions and highlight only the most salient objects

in the scene. Transformer hierarchical manifestations with F i
d side-output has fixed

dimension. Therefore, a transformationF i
dt = τ(F i

d) is applied to align the F i
r and

F i
d side-outputs. After transformation depth stream manifestations are presented

as F i
dt ∈ RE×

√
K×

√
K . From previous studies [1, 39], it is observed shallow and deep

features characteristics have disparities. Hence, proposed model process shallow

and deep features separately in Shallow Common Latent Representation(SCLR)

block and Deep Common Latent Representation(DCLR), respectively. There are

12 levels of Conformer network with 5 stages (details provided in Table 3.1 of

Chapter 3). Proposed model selects i = 2, 3, 4 as shallow feature, i = 8, 11 as deep

features and last layer i = 12 for coarse guidance. In SCLR block, RGB modality

X is fed to encoder pr and depth modality Y is input to encoder pd. The encoders

conceal the modality-specific representation, given by pr(F
i
r ;ω

i
r) and pd(F

i
dt;ω

i
d).

The encoder pr is parameterized by ωi
r, which represents learned parameters that

are optimized during the training process to minimize the loss function. While

the encoder pd is parameterized by ωi
d. The framework of pr and pd focus the in-

trinsic properties of RGB and depth. The local details such as edges and textures

etc. are aimed to be concealed by pr while pd conceals geometric cues. Architec-

tural details of pr and pd will be discussed later in this chapter. To correlate the

cross-modalities, firstly modality-specific features manifestations obtained from



Incomplete RGB-D Modality for Saliency Detection 89

encoders, given by pr(F
i
r ;ω

i
r)and pd(F

i
dt;ω

i
d), are mapped to independent variables

θir1, θ
i
r2, θ

i
d1, θ

i
d2. Later on, common latent representations from two modalities m1

and m2 is acquired by Eq. 4.1. This equation provides a softmax normalized

correlation representation.

NCorrim1
(F i

m1
;ωi

m1
)=σ(θim11

⊙ pm2(F
i
m2

;ωi
m2

) + θim12
), (4.1)

where σ is softmax function. In Deep Common Latent Representation Block,

encoder qr and qd are applied for RGB modality X and depth modality Y , re-

spectively. These encoders exhibit task-specific properties. Therefore, the output

of DCLR encoders captures global contextual characteristics and are presented

by qr(F
i
r ;ω

i
r)and qd(F

i
dt;ω

i
d). Further mapping to θ parameters and correlation

representation is similar to SCLR.

4.1.2.2 Shallow Common Latent Representation Block

The architectural diagram of Shallow Common Latent Representation(SCLR)

Block is shown in Fig. 4.6. The three modules of SCLR are implemented as

follows:

Conceal:

The innate quality of shallow features of any backbone network is incorporation of

modality-specific features. Subsequently, two distinct encoders are used to conceal

RGB and depth modality such that intrinsic properties of each modality can be

preserved in all conceivable manners. The focus of concealing shallow RGB (F i
r)

and depth features (F i
dt) from backbone Conformer network through encoders

pr and pd is to preserve edges of salient object. For this purpose, operation-

wise attention learning similar to [53] is applied. Although, the main focus of

shallow features processing is to pop-out boundaries of salient object, but, without

having a coarse global contextual information the real saliency cannot be efficiently

captured. To overcome this challenge, five parallel operations are performed on

(F i
r) and (F i

dt). The five parallel operations in the CNN stream consists of three
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Figure 4.6: Shallow Common Latent Representation Block.

convolutional operation with different dilation rate and two pooling operations,

given by Eq. 4.2.

F i
r1, F

i
r2, F

i
r3 = C(F i

r ;ω
i
7×7), C(F i

r ;ω
i
5×5), C(F i

r ;ω
i
3×3)

F i
r4, F

i
r5 = Poolavg(F

i
r ;ω

i
4×4), Poolmax(F i

r ;ω
i
4×4),

(4.2)
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here, C(∗;ωi
k×k) represents convolution operation with parameter ωi

k×k i.e. (k×k)

kernel size.

Similar to pr, pd encoder block also comprises of five parallel operations. However,

the intrinsic characteristics of depth modality is to showcase structural details,

therefore, shuffle channel attention with different number of groups are applied

to depth modality. This scheme effectively captures depth with varying quality,

from good to average or some times missing depth. Eq. 4.3 gives mathematical

representation.

F i
dt1, F

i
dt2, F

i
dt3 = SCA(F i

dt;g
i
4), SCA(F i

dt;g
i
8), SCA(F i

dt;g
i
16)

F i
dt4, F

i
dt5 = SCA(F i

dt;g
i
32), SCA(F i

dt;g
i
64),

(4.3)

where, SCA(∗;gi
o) represents shuffle channel attention with group g of size o. From

Fig. 4.7, it is evident the encoders preserve the modality-specific information to

the maximum extent.

C
N

N
 S

tr
ea

m
Tr

an
sf

o
rm

e
r 

 S
tr

ea
m

R
G

B
 Im

ag
e

D
ep

th
 Im

ag
e

Fm1
i Fm2

i Fm3
i Fm4

i Fm5
iInput

Figure 4.7: Five parallel RGB and depth concealed features preserves
modality-specific representation.

Correlate:

The distinct traits of concealed RGB and depth features are forwarded to modal-

ityspecific representation (MSR) block. Here, they are mapped to a set of inde-

pendent parameters, denoted asθir1, θ
i
r2, θ

i
d1, θ

i
d2. In MSR, the first step is global
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average pooling operation which can retain informative spatial cues and channel-

wise statistics. The θ parameters are obtained through the two fully connected

layers with ReLU activation. The boundaries activated feature representation are

converted into two distinct parameters, given in Eq. 4.4.

θim1, θ
i
m2 = (ReLU(GAP (F i

m) ·Wl1 + bl1)) ·Wl2 + bl2, (4.4)

where, m represents modality, GAP represents global average pooling, W is weight

and b is bias for linear layers. Afterwords, normalized correlation of RGB and

depth is obtained using Eq. 4.1.

Fuse:

From previous “correlate” block, two representations are obtained i.e. RGB-to-

depth correlation and depth-to-RGB correlation. The common latent represen-

tation of these two are highlighted using multiplication operation. Five parallel

layers are concatenated in fusion module. Eq. 4.5 presents the fusion module.

SCorri =concat((NCorrir1 ⊗NCorrid1), (NCorrir2 ⊗NCorrid2),

(NCorrir3 ⊗NCorrid3), (NCorrir4 ⊗NCorrid4),

(NCorrir5 ⊗NCorrid5)). (4.5)

4.1.2.3 Deep Common Latent Representation Block

The architectural diagram of Deep Common Latent Representation (DCLR) block

is given in Fig. 4.8. The description of each module of DCLR is given below:

Conceal:

As deep features of backbone network encapsulates task-oriented properties, there-

fore, salient object can be localized using these features. The architectures of qr

and qd are different from pr and pd. As the role of deep features is to repre-

sent saliency cues, therefore same encoders are used to conceal deep RGB (F i
r)

and depth (F i
dt) features. qr(F

i
r ;ω

i
r)and qd(F

i
dt;ω

i
d) first utilize spatial attention to
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Figure 4.8: Deep Common Latent Representation Block.

focus more on foreground and suppress background necessary for salient object

localization. After that channel attention finds the inter-channel dependencies.

To reduce the model complexity, convolution followed by ReLU non-linearity is

applied and k channels are obtained. As there can be multiple salient objects with

varying size and shape, inception module [65] is inserted to capture saliency at

granularities. The conceal module is presented in Eq.4.6.

qm = TF (ReLU(Conv(CA(UP (SA(F i
m;ωi

m)))))), (4.6)

where, m,SA,UP,CA and TF represents modality, spatial attention,upsampling,channel

attention and transformation using inception module, respectively. The resultant

feature map conceals object localization which can be depicted in Fig. 4.9. Irre-

spective of modality, deep features are task-oriented and proposed conceal module

effectively captures salient object in both modalities.

Correlate:

Similar to SCLR, DCLR also consists of modality-specific representation block

which tends to map concealed features to set of independent parameters given in
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Eq. 4.7. Correlation expressions are obtained using Eq. 4.1.

θim1, θ
i
m2 = ReLU(F i

m ·Wg + bg). (4.7)

Where, θim1 and θim2 are two parameters for m1 modality and m2 modality respec-

tively at ith layer.

Fuse:

Two correlation expressions representing RGB-to-Depth and Depth-to-RGB cor-

relation are concatenated in fusion module of DCLR. The equation representing

fusion in DCLR is given in Eq. 4.8.

DCorri = concat(NCorrir, NCorrid). (4.8)

4.1.2.4 Coarse Guidance

To further emphasize the positing of salient object, last layer of Conformer back-

bone guides the coarse localization. To achieve this, ground truth saliency map is

used to supervise the prediction at last hierarchy. The loss function used in coarse

guidance module is famous binary cross-entropy loss. The last layer is modified
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by applying convolution and ReLU activation given in Eq. 4.9.

Smc = C(ReLU(C(F i
m;ωi

mc
))). (4.9)

Where, C refers to convolution operation with kernel size (1x1), m refers to modal-

ity and S is saliency map. For RGB modality m is represented by r and for depth

modality m is represented by d. Therefore, Src and Sdc are coarse saliency maps

of RGB and depth modalities, respectively.

4.1.2.5 Fusion

A simple fusion module is fused that just combines the outputs of correlated

features SCorri and DCorri acquired from SCLR and DCLR blocks, respectively.

Before addition operation on these features, they are aligned to same channel and

spatial resolution. The final saliency map Sf is obtained using Eq. 4.10.

Sf = UP (SCorr2) + UP (SCorr3) + UP (SCorr4) + DCorr8 + DCorr11, (4.10)

here, upsampling operation UP is performed using transposed convolution (stride:4).

Correlated output from SCLR module is obtained at i = 2, 3, and 4 backbone levels

while in DCLR, i = 8 and 11 levels are used.

4.1.2.6 Loss Function

The total loss in the proposed model comprises of two components: the coarse

guidance loss for RGB and depth modality, denoted as L(Src) and L(Sdc), respec-

tively and the final loss, denoted as L(Sf ) and is defined in Eq. 4.11.

Lt = L(Sf ) + L(Src) + L(Sdc), (4.11)

where, L represents widely adopted binary cross-entropy loss.
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4.2 Detail Evaluation of INC-CorrNet

INC-CorrNet is multi-modality salient object detection model two types of data

(i) both RGB and depth available, (ii) RGB available but depth missing. Exten-

sive validation of proposed INC-CorrNet representing incomplete RGB-D saliency

detection framework is discussed below.

4.2.1 Datasets and Evaluation Metrics

RGB-D SOD datasets: Following the recent SOTA models [1, 25, 39, 79] same

1500 RGB and depth pairs from NJU2K [45] and 700 from NLPR [22] dataset

is used. Before feeding depth map to SOD model, their quality is checked and

low quality depth are discarded. Therefore, model utilize all RGB data but only

acceptable quality depth data. Remaining samples of NJU2K and NLPR are used

for testing. Furthermore, 4 benchmark datasets including LFSD [46], SIP [33],

STERE [47] and RGBD135 [21] for salient object detection are also used to test

the model performance.

RGB and RGB-D SOD datasets: The proposed model is also trained with

DUTS [41] RGB training samples along with RGB-D training datasets to check

the robustness of model with severely missing modality.

Results Evaluation Metrics: For quantitative results evaluation, precision–recall

[48], Structural measure (Smeasure) [49], maximum F-measure (Fmax) [50], max-

imum E-measure (Emax) [51], and Mean Absolute Error (MAE) [52] are adopted.

For qualitative analysis, various scenarios reported by SOTA models [1, 33, 68, 71,

73] are used.

4.2.2 Experiment Settings

This proposed model INC-CorrNet model is implemented on workstation with

specifications presented in Table 4.2. The backbone configuration and other pa-

rameters are stated in Table 4.3. The input consists of an RGB image and its
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corresponding depth map, both resized to a resolution of 320x320 pixels for com-

plete RGB-D pair. For missing depth either due to noise or data scarcity, depth

images are initialized by zero vector. Since the depth input is a single channel,

depth is replicated to three channels to match the RGB input. The depth values

are normalized to the range [0-255]. During the training phase, random crop and

normalization data augmentation techniques are applied. The backbone network’s

weights are initialized with those of Conformer-B [93], pretrained on ImageNet.

Other coefficients are initialized using the default settings in PyTorch. A learning

rate of 5e-5 with the Adam optimizer is chosen empirically to optimize model per-

formance. Stochastic Gradient Descent (SGD) is opted as the learning approach.

The model undergoes a complete training cycle, totaling 115 epochs.

Table 4.2: Specification of workstation used for training of INC-CorrNet.

OS Linux:Ubuntu 18.04.6 LTS
GPU Single NVIDIA GeForce RTX 3060 Ti
GPU Memory 8 GB
CPU Intel® Core�i7-10700K
RAM 16 GB
System Type 64 bit
Cuda Version 11.8
Interpreter Python 3.12

Table 4.3: Conformer-B Configuration.

Patch size 16
Channel ratio 6
Embedding dimensions 576
Depth 12
Number of Heads 9
MLP ratio 4

4.2.3 Quantitative Results

In this section, quantitative results analysis will be presented against five evalu-

ation metrics stated above. And a thorough comparison with 14 state-of-the-art

(SOTA) models including, D3Net [33], CalibD [85] , SwinNet [17] , CDNet [84] ,

SiaTrans [27] , CIR-Net [72] , DIGR-Net [100] , DTMINet [109] , SERANet [110],
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MIRV [111] , DCMNet [87] , FCFNet [86] , HiDAnet [74] , M2RNet [75]. The

saliency maps for these models have been provided by their respective authors.

Quantitative comparison of proposed INC-CorrNet with recent SOTA models is

presented in Table 4.4. Notable performance gain of INC-CorrNet is observed,

specifically, significant decrease in mean absolute error is marked by 3.8%, 8.3%,

14.4%, 5.7%, 22.5%, 0.8% on NJU2K, NLPR, LFSD, SIP, STERE and RGBD135

datasets, respectively, as compared to SOTA models. Also average increase of

1.1% (S-measure), 1.32% (max F-measure) and 1.3% (max E-measure) across five

datasets has been observed. It can be inferred that proposed INC-CorrNet has

achieved top performance in almost all metrics, with only two instances where it

ranks as the second best. The Precision-Recall Curve presented in Fig. 4.10 shows

that INC-CorrNet have high recall because of shorter curves across all datasets.

NJU2K NLPR

LFSD

SIP STERE

RGBD135

Figure 4.10: Precision-recall curves of proposed model and SOTA models for
six benchmark datasets.
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Table 4.4: Quantitative comparison of proposed INC-CorrNet model with 14 SOTA RGB-D SOD models on 6 benchmark datasets.
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Sα ↑ 0.9 0.922 0.935 0.918 0.923 0.925 0.933 0.929 0.916 0.89 – 0.918 0.926 0.91 0.9334

Fmax
β ↑ 0.9 0.884 0.922 0.919 0.921 0.9277 0.939 0.933 0.926 0.88 0.899 0.923 0.939 0.922 0.939

Emax
ζ ↑ 0.95 0.897 0.934 0.95 0.956 - 0.966 - 0.942 0.929 0.92 0.953 0.954 0.904 0.959

MAE ↓ 0.041 0.038 0.027 0.036 0.035 0.035 0.026 0.029 0.037 0.046 0.036 0.034 0.029 0.049 0.025

Quantitative Evaluation on NLPR [22] Dataset.

Sα ↑ 0.912 0.956 0.941 0.931 0.929 0.9334 0.931 0.939 0.932 0.914 - 0.924 0.93 0.918 0.9664

Fmax
β ↑ 0.897 0.892 0.908 0.92 0.918 0.9241 0.923 0.929 0.931 0.895 0.883 0.911 0.929 0.921 0.953

Emax
ζ ↑ 0.853 0.893 0.967 0.964 0.964 - 0.964 - 0.961 0.953 0.954 0.96 0.961 0.941 0.9841

MAE ↓ 0.03 0.023 0.018 0.025 0.024 0.0227 0.021 0.019 0.022 0.025 0.024 0.024 0.021 0.033 0.0165

......Continued on next page......
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Table 4.4: Quantitative comparison of proposed INC-CorrNet model with 14 SOTA RGB-D SOD models on 6 benchmark datasets.
Best results are represented by ‘Red’ color and second best results are represented by ‘Blue’ color. ‘-’ indicates result is not available.
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Mertic [33] [85] [17] [84] [27] [72] [100] [109] [110] [111] [87] [86] [74] [75]

Quantitative Evaluation on LFSD [46] Dataset.

Sα ↑ 0.825 - - 0.858 0.871 0.8753 0.869 - - 0.849 - 0.875 - 0.842 0.898

Fmax
β ↑ 0.81 - - 0.861 0.876 0.8828 0.869 - - 0.844 0.867 0.876 - 0.861 0.8968

Emax
ζ ↑ 0.862 - - 0.896 0.907 - 0.905 - - 0.889 0.906 0.913 - 0.874 0.9332

MAE ↓ 0.095 - - 0.073 0.069 0.0677 0.067 - - 0.072 0.064 0.061 - 0.088 0.0522

Quantitative Evaluation on SIP[33] Dataset.

Sα ↑ 0.86 0.92 0.911 - 0.899 0.8884 0.882 0.908 0.895 0.876 - - 0.892 0.882 0.9269

Fmax
β ↑ 0.861 0.85 0.912 - 0.913 0.8959 0.892 0.918 0.919 0.863 0.883 - 0.919 0.902 0.9321

Emax
ζ ↑ 0.909 0.877 0.943 - 0.945 - 0.925 - 0.93 0.924 0.926 - 0.927 0.921 0.9571

MAE ↓ 0.063 0.051 0.035 - 0.041 0.0523 0.051 0.037 0.045 0.049 0.047 - 0.043 0.049 0.033

......Continued on next page......
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Table 4.4: Quantitative comparison of proposed INC-CorrNet model with 14 SOTA RGB-D SOD models on 6 benchmark datasets.
Best results are represented by ‘Red’ color and second best results are represented by ‘Blue’ color. ‘-’ indicates result is not available.

Models D
3N

et

C
al

ib
D

S
w

in
N

et

C
D

N
et

S
ia

T
ra

n
s

C
IR

-N
et

D
IG

R
-N

et

D
T

M
I-

N
et

S
E

R
A

-N
et

M
IR

V

D
C

M
-N

et

F
C

F
-N

et

H
iD

A
n

et

M
2R

N
et

IN
C

-C
or

rN
et

/ (2020) (2021) (2021) (2021) (2022) (2022) (2022) (2023) (2023) (2023) (2023) (2023) (2023) (2023) (2023)

Mertic [33] [85] [17] [84] [27] [72] [100] [109] [110] [111] [87] [86] [74] [75]

Quantitative Evaluation on STERE [47] Dataset.

Sα ↑ 0.899 0.931 0.919 0.906 0.914 - 0.914 0.922 0.909 - - 0.906 0.911 - 0.933

Fmax
β ↑ 0.891 0.88 0.893 0.898 0.907 - 0.916 0.92 0.918 - - 0.906 0.921 - 0.931

Emax
ζ ↑ 0.938 0.89 0.923 0.942 0.951 - 0.957 - 0.943 - - 0.947 0.946 - 0.961

MAE ↓ 0.046 0.037 0.033 0.04 0.038 - 0.035 0.031 0.038 - - 0.038 0.035 - 0.024

Quantitative Evaluation on RGBD135 [21] Dataset.

Sα ↑ 0.898 - 0.945 0.936 0.936 - 0.936 - - 0.928 - 0.939 0.946 0.934 0.953

Fmax
β ↑ 0.885 - 0.926 0.928 0.932 - 0.932 - - 0.921 - 0.939 0.952 0.937 0.9539

Emax
ζ ↑ 0.946 - 0.98 0.969 0.975 - 0.972 - - 0.965 - 0.98 0.98 0.971 0.9867

MAE ↓ 0.031 - 0.016 0.02 0.02 - 0.019 - - 0.019 - 0.017 0.013 0.019 0.0129
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4.2.4 Qualitative Results

A qualitative results comparison is provided in Fig. 4.11, where some challeng-

ing samples are selected based on criteria highlighted in various published studies

[1, 25, 33, 39, 68, 75, 86, 98]. One of the complex test case scenario is cluttered

background. And if corresponding depth is also of low quality, then it becomes

more challenging. In Fig. 4.11 row (a), this complex scenario is presented. It is

evident that proposed INC-CorrNet performs best in this challenging scene. Ad-

ditional depth input source enhances SOD performance for similar appearance in

foreground and background. But for low quality depth as in row (b) and (c) ,de-

tection difficulty increases. As shown by predicted saliency maps of INC-CorrNet

and other SOTA models, the proposed model excels in both comprehensiveness

and clarity when compared to other methods. Several other challenging scenes

such as the case where salient and non-salient object are adjacent (row (d)), low

contrast RGB (row (e)), low contrast depth(row (f)), good quality RGB and depth

(row (g))and multiple small object with complex background (row (h)) are also

evaluated. The accuracy of proposed INC-CorrNet is much better than other

models.

4.2.5 Analysis of Model Robustness

To validate the robustness of the proposed model with severely missing depth

modality INC-CorrNet is tested on DUTS RGB [41] test dataset with only RGB

data and results are illustrated in Fig. 4.12. Two complex scenarios, where exist-

ing RGB-D SOD models based on augmenting estimated depth with raw depth,

fail are complex background and similar background-foreground appearance. Ex-

amples (a) and (c) are of complex background while examples (b) and (d) are of

similar background-foreground appearance. It can be observed that the proposed

INC-CorrNet shows a resilient solution for missing depth and captures the salient

objects with accuracy. Therefore, it can be concluded that the proposed model

presents a robust solution to incomplete RGB-D saliency detection application.
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Figure 4.11: Visual comparison of proposed model with SOTA models for various challenging scenarios.
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Figure 4.12: Visual examples of saliency predictions by proposed model with
missing depth.

4.2.6 Trade-off between Accuracy and Efficiency

In Table 4.5, efficiency comparison of proposed model with SOTA model against

Frames per second (FPS), number of parameters and model size is presented. All

these values are computed on machine specified in Table 4.2. Accuracy gauges

a model’s ability to precisely identify and pinpoint significant objects, whereas

efficiency defines the amount of time and computational resources required to ac-

complish this task.

To visualize the trade-off between accuracy and efficiency of proposed and SOTA

models, averaged max F-Measure value over six benchmark datasets (as provided

in various published studies [74, 103]) are used and plotted against Frames per

second (FPS) and number of parameters in Fig 4.13 and 4.14, respectively. Trade-

off visualization of computational efficiency in terms of frames per second and

max F-measure shows a balance for proposed INCCorrNet. Although some SOTA

models have high FPS than proposed model, but with highly compromised accu-

racy. Moreover, most of SOTA models have similar FPS as INC-CorrNet. For

the graph between number of parameters versus max-Fmeasure, proposed INC-

CorrNet, holds a favourable position almost in the top-left quadrant of the chart,
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Table 4.5: Efficiency comparison of proposed INC-CorrNet with SOTA models
on Frame per Second (FPS), number of parameters, and model size.

Model RGB Input Depth Input FPS
Param.
(M)

Model
Size (MB)

CDNet [84] 3x224x224 1x224x224 46 32.9 125.6

VST [76] 3x224x224 3x224x224 25 83.83 320.3

JL-DCF [25] 3x320x320 3x320x320 16.3 143 547.8

MIRV [111] 3x352x352 3x352x352 14.47 114 436.5

SwinNet [17] 3x384x384 3x384x384 18 199.1 785.7

AFNet [112] 3x352x352 1x352x352 19.3 254 971

SSL [99] 3x352x352 3x352x352 26.8 74.1 283.1

HINet [113] 3x352x352 1x352x352 26.13 98.9 377.76

RD3D [97] 2x3x352x352 36.1 46 179.1

SPNet [114] 3x352x352 1x352x352 23 175 669.2

INC-CorrNet 3x320x320 3x320x320 22 105 403

signifying a beneficial balance between accuracy and efficiency. A comparison of

max F-Measure, MAE, and Model Size of different models is shown in Fig. 4.15.

The size of the circle represents the model size. It’s worth noting that superior

models are situated in the top left corner, characterized by a larger max F-measure

and a smaller MAE. Methods with a smaller size demonstrate inferior performance,

highlighting the efficiency and accuracy of the proposed INC-CorrNet approach.

Figure 4.13: FPS vs max F-measure.
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Figure 4.14: Number of Parameters vs max F-measure.

Figure 4.15: Average Max F-measure, MAE and Model SIze.

4.2.7 Ablation Studies

In this section, a comprehensive ablation studies will be discussed, to examine the

impact each module of INC-CorrNet. The full implementation of INC-CorrNet is
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denoted as ‘Model A’, comprising DQAR + SCLR + DCLR (RGB-D) and trained

on NJU2K [45] and NLPR [22] RGB-D training samples.

Model performance with severely missing depth:

To validate the incomplete RGB-D modality for saliency learning with severely

missing depth, a ‘Model B’ is trained. This model comprises of DQAR + SCLR +

DCLR (RGB + RGBD) components and trained using NJU2K RGB-D [45], NLPR

RGB-D [22] and DUTS RGB [41] training sample. Low quality depth images from

NJU2K and NLPR are discarded, thus, model is trained with large number of

missing depth. Although ‘Model A’ and ‘Model B’ represent full implementation

of INC-CorrNet but later have large number of missing depth. The comparative

analysis of ‘Model A’ and ‘Model B’ is shown in Table 4.6 which depicts that MAE

has been decreased by 11.3%, 4.2%, 2.5% on LFSD, SIP and STERE datasets,

respectively. However for NLPR and RGBD135 datasets slight increase in MAE

value by 3% and 3.8%, respectively is observed. These two datasets contain high

quality depth images and low contrast RGB image. Due to the substantial absence

of depth modality, the training process is biased towards RGB patterns, posing

challenges in effectively training the model for low-contrast images.

Validity of Correlation Representation:

The primary strength of the proposed model lies in leveraging correlation repre-

sentation, enabling the discovery of latent correlations between RGB and depth

modalities to enhance the model’s robustness in scenarios involving missing depth.

To validate the effectiveness of proposed correlation representation, correlation ex-

pression is removed from full implementation of proposed model. Hence ‘Model C’:

DQAR + w/o correlation, represents model with correlation expression removed

from INC-CorrNet. The quantitative evaluation and visual comparison between

model A and C are presented in Table 4.7 and Fig. 4.16, respectively. It is observed

that performance of Model C degrades by 42%, 22%, 9.2%, 42%, 39.5%, 34.8%

on NJU2K, NLPR, LFSD, SIP, STERE and RGBD135 datasets, respectively for

MAE metric. This not only underscores the effectiveness of the proposed compo-

nent but also validates the assumption that a robust correlation exists in the latent
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Table 4.6: Quantitative evaluation of ablation studies regarding performance
of INC-CorrNet under severely missing depth. ‘Model A’: DQAR + SCLR +
DCLR (RGB-D) presents the reference model and ‘Model B’: DQAR + SCLR
+ DCLR (RGB + RGBD) presents the model with severely missing depth.

Dataset/Models/Metrics Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓

NJU2K
Model A 0.9334 0.939 0.959 0.025

Model B 0.9371 0.9419 0.9609 0.025

NLPR
Model A 0.9664 0.953 0.9841 0.0165

Model B 0.9643 0.9492 0.9806 0.0175

LFSD
Model A 0.898 0.8968 0.9332 0.0522

Model B 0.9056 0.9048 0.9389 0.0463

SIP
Model A 0.9269 0.9321 0.9571 0.033

Model B 0.9306 0.9343 0.9583 0.0316

STERE
Model A 0.933 0.931 0.961 0.024

Model B 0.9365 0.9338 0.9619 0.0234

RGBD135
Model A 0.953 0.9539 0.9867 0.0129

Model B 0.9505 0.9531 0.9845 0.0134

representation between RGB and depth modalities. The marginal improvement

in the performance of ‘Model A’ on the LFSD dataset can be attributed to the

limited number of samples and challenging nature of this dataset, characterized

by only 100 low-quality images with intricate backgrounds.

Validity of SCLR:

The correlation of two modalities highly depends on the modality-specific latent

representation. The shallow layers of backbone network exhibit modality-specific

and task agnostic characteristics as oppose to deep layers. Therefore, in SCLR and

DCLR of the proposed model, different encoders are used. To validate this point,

modality oriented encoder in SCLR block is replaced with task oriented encoder

used in DCLR. Hence, ‘Model D’: DQAR + DCLR, represents model with same

encoder in SCLR and DCLR, i.e. modality oriented encoder in SCLR block is re-

placed with task oriented encoder used in DCLR. The qualitative and quantitative
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RGB DEPTH GT DQAR+SCLR+DCLR DQAR+w/o Correlation DQAR+DCLR

Figure 4.16: Visual comparison among full implementation of proposed model
(‘Model A’: DQAR+SCLR+DCLR), proposed model without correlation repre-
sentation (‘Model C’: DQAR+w/o Correlation) and proposed model with same

encoder for shallow and deep features (‘Model D’: DQAR+DCLR).

evaluation of ‘Model A’ and ‘Model D’ are presented in Table 4.8 and Fig. 4.16, re-

spectively. The introduction of modality oriented encoder in SCLR block (‘Model

A’) has led to enhancement in performance. The MAE metric has been decreased

by 47%, 49%, 32%, 32%, 46.7%, 57.7% on NJU2K,NLPR,LFSD,SIP,STERE and

RGBD135 datasets, respectively.

Validity of DQAR:

To demonstrate the influence of low quality depth maps on detection accuracy,

the DQAR block is removed. Hence, ‘Model E’: w/o DQAR, presents model

without DQAR module. Consequently, the depth images will be directly input

into the proposed model to accomplish saliency prediction.The findings in Table

4.9 indicates that the absence of the DQAR block leads to a more substantial

performance degradation across all datasets compared to the removal of any other

block. Fig. 4.17 provides some visual examples for ablation studies about validity

of DQAR. The inaccurate predictions obtained without DQAR realizes the impact

of noisy depth maps.

Effectiveness of Conformer backbone network:

Despite the availability of various hybrid backbone networks combining CNN and

transformer architectures, opting for Conformer backbone network offers numerous
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Table 4.7: Quantitative evaluation of ablation studies regarding validity of
correlation representation. ‘Model A’: DQAR + SCLR + DCLR (RGB-D)
presents the reference model and ‘Model C’: DQAR+w/o Correlation presents

the proposed model without correlation representation.

Dataset/Models/Metrics Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓

NJU2K
Model A 0.9334 0.939 0.959 0.025

Model C 0.9179 0.9198 0.9521 0.0356

NLPR
Model A 0.9664 0.953 0.9841 0.0165

Model C 0.9363 0.927 0.9663 0.0202

LFSD
Model A 0.898 0.8968 0.9332 0.0522

Model C 0.8866 0.8892 0.9231 0.057

SIP
Model A 0.9269 0.9321 0.9571 0.033

Model C 0.8858 0.8898 0.9277 0.0469

STERE
Model A 0.933 0.931 0.961 0.024

Model C 0.9171 0.9111 0.9523 0.0335

RGBD135
Model A 0.953 0.9539 0.9867 0.0129

Model C 0.9364 0.935 0.967 0.0174

RGB DEPTH GT INC-CorrNet(with DQAR) INC-CorrNet(without DQAR)

Figure 4.17: Visual examples for ablation studies about validity of DQAR.

advantages.

1. High performing RGB-D salient object detection models select multi-level

fusion scheme using two stream network.The rationale behind this selection
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Table 4.8: Quantitative evaluation of ablation studies regarding validity of
SCLR. ‘Model A’: DQAR + SCLR + DCLR (RGB-D) presents the reference
model and ‘Model D’: DQAR + DCLR represents the model with the same

encoder in SCLR and DCLR.

Dataset/Models/Metrics Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓

NJU2K
Model A 0.9334 0.939 0.959 0.025

Model D 0.9026 0.9002 0.9434 0.0473

NLPR
Model A 0.9664 0.953 0.9841 0.0165

Model D 0.9103 0.8927 0.9513 0.0325

LFSD
Model A 0.898 0.8968 0.9332 0.0522

Model D 0.861 0.8494 0.888 0.0766

SIP
Model A 0.9269 0.9321 0.9571 0.033

Model D 0.8931 0.9004 0.9349 0.0486

STERE
Model A 0.933 0.931 0.961 0.024

Model D 0.9063 0.8982 0.9431 0.0451

RGBD135
Model A 0.953 0.9539 0.9867 0.0129

Model D 0.9075 0.8989 0.9532 0.0305

is disparities in cross-modalities. RGB modality gives color and texture de-

tails while depth modality provides structural information. Therefore, two

stream network can be exploited to obtain modality-specific feature represen-

tations. As Conformer already has two parallel streams, therefore, a single

Conformer network is utilized by feeding RGB modality to CNN stream

and depth modality to Transformer stream. This type of architecture is

not available in any hybrid backbone network. Other existing hybrid net-

work follows integration of CNN and Transformer in early, late or sequential

pattern. The utilization of any of these backbone architectures necessitates

the deployment of two backbones for each modality, thereby contributing

to an increase in the overall model size. Hence, number of parameters can

be greatly reduced using single Conformer backbone. The parameters and

computational complexity using FLOPs of several backbone networks are as

shown in Table 4.11.
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Table 4.9: Quantitative evaluation of ablation studies regarding validity of
DQAR. ‘Model A’: DQAR + SCLR + DCLR (RGB-D) presents the reference
model and ‘Model E’: w/o DQAR, presents the model without DQAR module.

Dataset/Models/Metrics Sα ↑ Fmax
β ↑ Emax

ζ ↑ MAE ↓

NJU2K
Model A 0.9334 0.939 0.959 0.025

Model E 0.8994 0.9 0.9385 0.0474

NLPR
Model A 0.9664 0.953 0.9841 0.0165

Model E 0.9222 0.9079 0.954 0.0281

LFSD
Model A 0.898 0.8968 0.9332 0.0522

Model E 0.8588 0.8568 0.8952 0.0772

SIP
Model A 0.9269 0.9321 0.9571 0.033

Model E 0.8624 0.8523 0.9075 0.0638

STERE
Model A 0.933 0.931 0.961 0.024

Model E 0.9051 0.8985 0.9428 0.0418

RGBD135
Model A 0.953 0.9539 0.9867 0.0129

Model E 0.9394 0.9357 0.9727 0.0178

Table 4.10: Effectiveness of Conformer backbone network.

Backbone Network Architecture FLOPs (G) #Params (M)

ResNet101 [30] CNN 15.6 44.5

ViT-B [66] Transformer 111 86

LeViT [115] Hybrid 2353 39

ResT [116] Hybrid 42.4 87

Conformer-B [93] Hybrid 46.6 83.3

2. The CNN’s adeptness at capturing local details can be effectively utilized by

inputting RGB modality into the CNN branch. This approach enables the

extraction of abundant information from the RGB input. While the Trans-

former stream efficiently captures the global context from depth structural

information. As illustrated in Fig. 4.18, the CNN stream primarily empha-

sizes capturing local details, whereas the Transformer stream is focused on

capturing global contextual information.
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3. In the parallel hybrid Conformer network, the CNN and Transformer streams

exchange significant information at the end of each stage through the feature

coupling unit (FCU). As a result, in scenarios where the depth modality is

missing and depth is initialized as zero vector, CNN imparts crucial insights

to the Transformer, effectively bridging the semantic disparity among cross-

modal features. Fig. 4.18 depicts two samples: one comprising a complete

61.8839 
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RGB-Depth Pair

Incomplete RGB-Depth 

Pair (Missing Depth)
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Figure 4.18: Hierarchical feature maps for complete and incomplete RGB-
Depth pair .
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RGB-Depth pair and the other an incomplete RGB-Depth pair with missing

depth. Additionally, hierarchical feature maps corresponding to these sam-

ples are presented. It can be observed that in case of missing depth after

block 2, transformer features learn significant information.

4.2.8 Analysis of Failure Cases

After carefully examining the shortcomings of proposed methodology and exam-

ples of failure cases are presented in Fig. 4.19. First two rows of Fig. 4.19 are

representative examples of contextual salience with cluttered background.

In first row, man walking on street is near the viewpoint and also prominent

Figure 4.19: Visual analysis of failure cases.

in the scene and in second row, the connectivity of boards with the vehicle make

them salient. Therefore, contextual saliency lead to false positive predictions and
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require saliency ranking to predict true positives only. As can be described by

third row of Fig. 4.19, that, one true salient object can be identified correctly by

proposed method in cluttered background. In fourth row of Fig. 4.19, although

the seat of bicycle is prominent in both RGB and depth but red logo identified

as salient object in ground truth map has high contrast with the seat of bicycle.

Therefore, this ambiguity can also be minimized using saliency ranking.

4.2.9 Model Complexity Analysis

In Table 4.11, a comprehensive complexity analysis of each module of proposed

INC-CorrNet is presented. The number of parameters of the proposed model is

105M and model size is 403MB. It can be observed that model complexity highly

depend on backbone network. Therefore, using a single Conformer plays active

role to reduce number of parameters.

Table 4.11: Ablation study regrading model complexity. Complexity analysis
of each component of proposed INC-CorrNet.

Complexity analysis of each component of proposed INC-CorrNet.

Model Backbone Backbone + Backbone + Backbone +

Coarse Guidance Coarse Guidance Coarse Guidance

+SCLR +SCLR+DCLR

Model
Size

(MB)↓
318 322.9 338 403

No. of
Param.
(M)↓

83.5 84.5 88.5 105

4.3 Conclusion

In this chapter, two components of implicit depth quality-aware model was pre-

sented. First was the depth quality assessment module to distinguish between
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good and bad quality depth. Based on the depth quality knowledge, only good

quality depths were utilized in second task which is salient object detection. Hence,

a distinctive RGB-D salient object detection framework aimed at alleviating the

influence of low-quality depth maps on detection accuracy has been developed. In

contrast to existing algorithms, the proposed approach involves formulating the

learning process for incomplete modality salient object detection by classifying

and discarding low-quality depth images. This marks the pioneering instance of

an incomplete multi-modality salient object detection model proficient in elucidat-

ing the shared latent correlation representation across RGB and depth modalities.

The proposed model comprises three stages: conceal, correlate, and fuse. Fur-

thermore, these stages are independently applied in both deep and shallow layers

of the backbone network. The SCLR block comprises of encoders crafted to ex-

tract distinct feature representations from RGB and depth images, enabling the

model to understand the contributions of these features to the object boundaries

prediction. While encoders in DCLR block enable the selective enhancement of

feature representations through channel attention and spatial attention for salient

object detection. Additionally, the proposed correlation model is employed to un-

veil latent correlations among feature representations from the RGB and depth

modalities. This enhances detection robustness for missing depth modality. Then

shallow and deep correlated representations are combined in fusion block. The

comprehensive experiments are conducted to assess the efficacy of the proposed

method. Both quantitative and qualitative analyses with SOTA models on six

widely used datasets underscore the effectiveness of the proposed approach. To

scrutinize the influence of the proposed components in the network, several abla-

tion experiments are conducted. The MAE metric for the proposed model has sig-

nificantly decreased by 3.8%, 8.3%, 14.4%, 5.7%, 22.5%, 0.8% on NJU2K, NLPR,

LFSD, SIP, STERE and RGBD135 datasets, respectively, as compared to SOTA

models. Notable performance gains have been realized with average increase of

1.1% (S-measure), 1.32% (max F-measure) and 1.3% (max E-measure) across five

datasets. This work is intended to be used as a catalyst to improve representations

from incomplete RGB-D modalities and advance saliency detection tasks.



Chapter 5

Conclusion and Future Work

Multi-modality salient object detection is the identification and highlighting of

visually distinct objects across various data modalities in an image. The devel-

opment of wide range of sensors to represent other modalities has contributed

to use cross-modalities in artificial intelligence applications. Hence, extracting

relevant features from the discrepancy of multi-modalities is a trending research

area. Although efforts have been made, multi-modality salient object detection

still presents unresolved challenges and continues to face new obstacles.

5.1 Summary and Contribution

In this research work, two salient object detection frameworks based on deep

learning have been developed. 1) A depth quality-aware and optimal cross-modal

fusion network for a saliency detection. 2) Identify and discard severely noisy depth

images and develop a model which is able to detect salient object with RGB missing

depth along with complete RGB-D pair. Thus to implement incomplete RGB-D

salient object detection framework. This chapter summarizes the accomplishments

of this research work and concludes the research achievements. Future directions

of this research work is also presented in this chapter.
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5.1.1 Research Summary

Everyday life has enormous amount of unstructured data that can take various

forms, called modality. The most widely available visual content is represented as

RGB modality. In recent years, with the advent of depth sensors such as Microsoft

Kinect and Time-of-Flight etc., depth modality is used in conjunction with RGB

modality for salient object detection. However, depth quality encounters degrada-

tions due to inaccurate measurements from depth sensors and several environmen-

tal conditions. Low quality depth degrades the performance of saliency detection.

Therefore, SOD framework should consider the depth quality along with real com-

plementarity features selection and fusion. Three major challenges in multimodal

SOD framework implementation have been discussed in this research. Major con-

tributions involve optimal selection of discriminant features from cross-modalities,

effective multi-modal fusion and depth quality awareness. Promising results have

been obtained for saliency detection task.

5.1.2 Research Contributions

1. CVit-Net depth quality-aware RGB-D saliency detection model: In

the first contribution, an end-to-end depth quality aware SOD model CVit-

Net is developed. CVit-Net correlates the edge saliency map with RGB edge

map and depth edge map to reduce the impact of low quality depth im-

ages in salient object detection application using novel operation-wise shuf-

fle channel attention. Contribution of low level features in deep learning

models is different from deep features. Therefore, the proposed CVit-Net

extracts low level details in Local Detail Enhancement (LDE) module and

high level details in Global Detail Enhancement (GDE) module. The raw

RGB and depth features are extracted using backbone network. In proposed

model, first time Conformer network is used as backbone. The intuition be-

hind using Conformer is its distinct two streams i.e. CNN and Transformer

streams, beneficial in parameter reduction and local and global context ex-

traction. RGB is a detailed modality specifying many low level features
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such as edges, patterns, color etc. while depth possesses straight forward

structural cues. RGB is fed to CNN stream and depth is fed to Trans-

former stream for modality-specific feature extraction. Edge details from

LDE are combined with saliency details extracted through reverse attention

from GDE. The comprehensive evaluation shows that mean absolute error

has been decreased by 15%, 13.4%, 9.1%, 5.6% and 3.6% in SIP, LFSD,

STERE, NLPR and RGBD135 datasets, respectively. While increase in S-

measure,max F-measure and max E-measure is observed by an average of

1.0% , 0.7% and 0.63% , respectively, across five datasets. Hence proposed

explicit depth quality-aware SOD model outperforms SOTA models.

2. INC-CorrNet incomplete multi-modality saliency detection: The

second contribution of this research work focuses on obstinate condition for

depth quality-aware SOD model. That is, the quality of some depth maps is

so poor that they are discarded and leading to incomplete modality saliency

learning problem. The proposed model consists of two modules. One is

depth quality assessment module which assigns a quality score to depth

images and based on a threshold value, low quality depths are discarded.

Second is salient object detection module which is trained using two types

of data, complete RGB and depth and RGB present depth missing. This

is the first incomplete multi-modality salient object detector, providing a

robust common latent correlation model. Proposed model consists of three

steps: conceal, correlate and fuse. Similar to first contribution the Con-

former is opted as backbone and treat low and high level features separately

in SCLR and DCLR modules respectively. The proposed model is robust to

missing depth due to noisy depth or due to scarcity of depth modality as

compared to RGB modality. Thorough evaluation demonstrates the efficacy

of proposed model. Specifically, the MAE metric for the proposed model has

significantly decreased by 3.8%,8.3%, 14.4%, 5.7%, 22.5%, 0.8% on NJU2K,

NLPR, LFSD, SIP, STERE and RGBD135 datasets, respectively, as com-

pared to SOTA models. Notable performance gains have been realized with

average increase of 1.1% (S-measure), 1.32% (max F-measure) and 1.3%
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(max E-measure) across five datasets. This work aims to enhance saliency

detection tasks through improved representations from incomplete RGB-D

modalities.

5.1.3 Future Directions

The outcomes of the research conducted in this thesis on RGB-D salient object

detection using deep learning are promising in several aspects. Some potential

future directions are listed below.

� Saliency Ranking: Additional depth source improves detection accuracy in

complex scenarios where RGB fails. They include illumination variation, low

contrast, cluttered background and appearance changes etc. However, due

to constraint of depth quality, depth quality-aware SOD model is proposed.

When features are extracted from, low quality depth and RGB with cluttered

background, multiple salient objects can be captured. However, even for

the case of RGB with cluttered background, some objects constitute to be

highly salient while others may be relatively less salient. Distance from

the viewpoint also defines saliency in some cases. Therefore, due to lack of

universal agreement about salient object, saliency ranking should be used to

avoid false positive predictions.

� Co-attention for incomplete RGB-D modality SOD: Co-attention has been

widely applied to extract the correlation of multi-modalities. One of the

reason of performance degradation in SOD is misalignment between RGB

and depth edges. Therefore, in future work, co-attention can be opted for

incomplete RGB-D modality saliency learning to better extract the correla-

tion of two modalities. And it can also be applied to align the edges of RGB

and depth for complete modality saliency learning.

� Task-Driven Datasets: Most of the salient object detection datasets consist

of varied indoor and outdoor scenes and only SIP dataset is task-driven com-

prised of salient-in-person dataset. Therefore, one of the potential direction



Conclusion and Future Work 121

for future is to develop task-driven datasets. For example in car driving

assistant model, a dataset of road-sign will be helpful. For wildlife moni-

toring task, specific animal specie dataset may be required. For industrial

inspection application, specific product dataset will be beneficial for defect

detection.

� Feasibility to Real-world Applications: Although the inference speed of pro-

posed model is acceptable for variety of applications such as i) certain image

processing tasks, such as image filtering and feature extraction etc. ii) re-

mote sensing iii) non-Interactive computer graphics tasks such as rendering

complex scenes or generating high-quality animations offline. However, for

real-world applications this speed is not feasible. Therefore, in future model

compression, knowledge distillation or light-weight backbone network adop-

tion can be used to increase the speed of model.

� Zero-shot learning: The applications of salient object detection are very

vast. And enormous amount of labelled data for each salient object detection

application is not feasible. Therefore, in future zero-shot saliency learning

model can be developed so that a generalized solution can be provided for

new object categories that are not present in training phase.
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