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Abstract

Video Coding has evolved over the years and new compression standards are being

developed at regular intervals. Latest video codecs such as High Efficiency Video

Coding (HEVC) have improved compression efficiency to reduce the bit-rates of en-

coded streams. This improvement has resulted in high computational complexity

that becomes a bottleneck in real-time implementation of these codecs. Reduction

in this computational complexity without compromise on the video quality is a

challenge. Another challenge in fast video encoding is the diverse nature of video

content. Hence, there is need for development of intelligent techniques to reduce

the computational complexity of latest video codecs that also adapt to the diverse

nature of video data.

Research in this thesis focuses on identification of local and global features ex-

tracted from video data that can be used to characterize the diverse content in

video sequences. Texture variations and motion content in video sequence are

quantified to categorize it into simple and complex video sequence. This informa-

tion is used to develop a content adaptive fast encoding framework to reduce the

computational complexity of HEVC. Proposed framework performs equally well

both for sequences with simple or complex video content without compromising

on video quality. It has been tested with a large set of video sequences and shows

promising results as compared to the other recent works.

This research work also focuses on the use of machine learning based algorithms for

fast encoding to significantly reduce the complexity of video codecs while keeping

bit-rate and PSNR within limits in recent video standards like HEVC. Machine

learning based techniques formulate encoding process as a classification problem

and use features extracted from video data to model the classifiers that can assist

in early predictions during encoding. A large set of spatial and temporal features is

extracted from video data and a systematic approach is applied for optimal feature

selection. Resultant optimal features are used to train a Random Forests based

ensemble classifier for early selection of prediction modes and coding unit sizes in

HEVC. Proposed technique has been evaluated with publicly available video data



x

sets. Experimental results show that the proposed approach significantly reduces

the complexity of different profiles in HEVC without compromising on video qual-

ity and performs better than other existing fast video encoding implementations.

Fast encoding methods developed in this research have also been validated using

emerging applications of HEVC such as compression of light field images. Detailed

analysis of different formats in light field image representation has been carried

out to identify unique aspects that differentiate them from natural videos. These

unique features are used in fast coding of light field images in various formats

using HEVC. Experimental results show that proposed technique can be applied

in fast coding of light field images without compromise on image quality. These

results can be used as benchmark for future research on fast encoding of light field

images. Hence, the fast video encoding methods developed in this research can be

extended to other applications of image and video coding. These techniques can

also be integrated in real life video encoding solutions to enable implementation

of latest video codecs on embedded hardware platforms with limited processing

power and memory.
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Chapter 1

Introduction

1.1 Overview of Video Coding

With the adoption of multimedia technologies such as high definition television

(HDTV), online video sharing and video storage in recent years, video coding has

become an integral part of broadcast and entertainment media. Applications like

video conferencing, video-on-demand, video streaming and social networking web-

sites all use digital video as the main form of media. In all these applications,

motivation is to develop video codecs that provide high degree of compression

without compromising the quality. MPEG-2 video standard, which was devel-

oped about 2 decades ago as an enhancement of MPEG-1, was the first prominent

standard adopted world-wide that enabled adoption of digital television systems.

MPEG-2 is still used for high definition (HD) and standard definition (SD) tele-

vision broadcast on satellite, cable networks, and video content storage on DVDs

and Blu-Ray disks [1]. Video coding for multimedia applications has evolved over

the years through the development of a series of video codecs like ITU-T H.261,

MPEG-2, H.263, MPEG-4 and H.264. Every new video standard helped in in-

creasing the coding efficiency albeit the increase in computational complexity. To

1
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meet the increasing demand of diverse video services and popularity of high def-

inition multimedia content, there is constant need for efficient video codecs and

sophisticated implementation methodologies.

H.264 or MPEG-4 AVC [2] is currently the most commonly used video codec world-

wide. Because of high coding efficiency and other salient features of H.264, nearly

half the bits sent on communication networks and stored on video content websites

are encoded using H.264 and its share is still growing. H.264 provides 50% coding

gain over earlier standard MPEG-2 and 47% coding gain as compared to H.263

baseline profile. This coding efficiency also increased computational complexity of

H.264. Nevertheless, usage of H.264 in multimedia applications results in better

video quality at much lower bit rates, saving bandwidth and storage costs. H.264

is being used in high definition (HD) TV, Blu-ray storage discs, video conferencing,

mobile network video and video content acquisition devices such as camcorders.

High efficiency video coding (HEVC) also known as H.265 [3] is the latest video

codec that provides 50% coding gain as compared to its predecessor H.264 while

maintaining the same video quality. Main objectives behind the development of

H.265 are support for all existing multimedia applications that use H.264 and

providing support of new applications like Ultra High Definition (UHD) TV with

display resolutions 4kx2k or higher, multi-view video capture and display and

support for higher dynamic range and precision for higher quality in terms of

color content.

Increase in coding efficiency of H.265 and its predecessors like H.264 has increased

computational complexity of these codecs manyfolds. This makes codec imple-

mentation on different hardware platforms very difficult and challenging.

1.2 Motivation

There has been an enormous increase in the usage of digital video in recent years.

Digital video accounts for more than 60% traffic on the Internet. This percentage
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is expected to cross 80% by the year 2022 [4, 5]. Social media applications like

Facebook, Twitter and online video sharing websites like YouTube, movie content

sites like Netflix and online education sites like Edx and Coursera use video as the

main medium for sharing information. Video conferencing solutions like Skype and

WhatsApp provide video streaming in addition to audio communication. Increase

in the processing power of multimedia devices and high network bandwidths has

also fueled the increase in demand of video content. This high demand is also

fueling the constant drive for increase in compression efficiency of recent video

codecs to reduce transmission bandwidths and improve storage capacity for video

data.

High efficiency video coding (HEVC) has improved coding efficiency of earlier

standards like H.264 by 50%. This high compression efficiency has also increased

the computational complexity of the codecs by many times. This computational

complexity is the main limiting factor in widespread usage of HEVC in consumer

electronics with limited power and processing capability. Hence, there is need

for intelligent algorithms to reduce the complexity of these video codecs to enable

their implementation in real-time multimedia applications. Diverse nature of video

content is another challenge that degrades the performance of fast video encoding

techniques. Content adaptive fast encoding schemes are required to enable fast

encoding methods to handle all sorts of video data. Together these fast encoding

methods can enable widespread adaptation of recent codecs like HEVC on the

Internet and multimedia devices with limited resources.

1.3 Applications of Video Coding

Applications of multimedia content and video coding are everywhere. Reduction

in bit-rate of latest video codecs and increase in processing power of computing

devices has increased these applications many-fold. Today video traffic is the

biggest load on wired and wireless communication networks. Below are some of

the applications where video coding is being used.
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Video Conferencing and Telemedicine: Low bit-rate video coding is used in

video conferencing and telephony applications for live video communication. Video

standards like H.263, MPEG-4 or H.264 are used in video conferencing solutions

like Skype and WhatsApp. Telemedicine solutions use video streaming to provide

remote health care to distant patients.

Digital Video Storage: Digital video content in the form of movies and video

clips is often stored on DVDs and Blu-Ray Discs. These videos are encoded using

Video Codecs like MPEG-2, MPEG-4 and H.264. Online video content sharing

websites also store videos on web servers. Efficient video coding methods can

reduce the storage space requirements.

Internet Video Streaming: Applications of Video on world wide web (www) are

large in number. Video content websites like Youtube, Dailymotion, Social media

sites like Facebook, P2P networks, live streaming sites like Netflix and MOOC

sites like Coursera and Edx, all use digital video . Video codecs used are MPEG-4

and H.264.

Digital Television Broadcast (DTB) : Digital television broadcast is being

used all over the world in the form of high definition TV (HDTV) and standard

definition TV (SDTV). Video Codecs used are MPEG-2 and H.264. Similarly,

digital videos and video encoding is being used in high definition (HD) and ultra-

high definition cinema for higher quality multimedia experience.

Video over 3G Wireless: Video on cellular and 3G Networks is being used for

telephony and surveillance applications. Supported video standards are H.263,

H.264.

Home Surveillance and Security: Security and Surveillance systems are being

used in homes and offices. Digital cameras capture and store video content for

offline viewing. Video standards being used are MPEG-2 , MPEG-4. Storage

of long hours of surveillance videos requires extra storage space. Hence, efficient

coding can reduce storage requirements.
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Virtual Reality and 3D Games: Virtual reality systems and 3D game consoles

like Xbox and Play-station use digital video and video encoding in graphics and

simulations. These applications often use high quality videos with resolutions upto

720p and 1080p. Video Codecs used are MPEG-4, H.264.

Multi-view Videos and Light Field Images: Multiview video captures the

same scene from different viewpoints to give more realistic view of the scene.

Similarly, light view images is an other emerging field in image representation

that captures more than 2D information in a visual scene. Both multiview videos

and light field images contain huge amount of data. Efficient coding of this data

is a challenge for future video and image coding standards. Recent developments

in efficient coding of light field images have shown that using new video codecs

like HEVC give more compression efficiency for light fields as compared to image

coding standards like JPEG [6].

These applications of video coding are summarized in the Fig. 1.1.

Video 

Conferencing and 

Telemedicine

Home 

Surveillance and 

Security

Internet Video 

Streaming

Digital Television 

Broadcast (DTB)

Virtual Reality and 

3D Games

MultiView Videos /

Light Field Images

Applications of 
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Figure 1.1: Applications of Video Coding
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1.4 Research Objectives

There are two main challenges in video coding using newest video codecs like

HEVC. One is the computational complexity of the codec because of the complex

structure of coding tree units (CTUs) at multiple depth levels and its sub-partition

in coding units (CU) and prediction units (PU). This quad-tree structure makes

selection of optimal CU size, prediction modes and block size highly complex.

Second challenge is the diverse nature of the video content. Focus of this research is

the development of intelligent algorithms to reduce the computational complexity

of HEVC. This reduces the encoding time that ultimately enables implementation

of video encoders in real-time on multimedia devices with limited computational

capabilities.

Main Objectives of this research are :

• Development of a content adaptive fast video encoding framework that can

adapt to diverse characteristics of video data and gives equally good perfor-

mance both for simple and complex video content without degradation in

RD performance.

• Identification of appropriate local and global features in spatial and temporal

domain of video frames that can efficiently characterize video content and

help in effective prediction of complex decisions during video encoding.

• Development and formulation of fast encoding algorithms based on classifi-

cation methods to reduce the complexity of latest video codecs while main-

taining good RD performance.

• Design of a systematic feature selection methodology for video data that can

be used to reduce the feature space for classification problems. Using score

fusion technique to combine multiple feature selection methods for selection

of optimal features.

• Application of fast video encoding methods developed in this research to

other emerging domains like compression of light field images for effective
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and computationally efficient encoding of various light field image formats

using HEVC.

1.5 Research Contributions

Main contributions of this research work are :

• Development of a content adaptive fast video encoding technique for HEVC

to handle the variations in video content. Proposed technique uses local

and global parameters extracted from video data to characterize the video

content. Spatial and temporal information in video frames is used to fine

tune the fast encoding framework according to the video content. Resulting

framework better adapts to the simple and complex video sequences and

performs better than other existing implementations. Our contributions are

submitted in [7].

• Development of a Random Forests based ensemble classification approach for

fast encoding in HEVC with low computational overhead. Random Forests

based classifier works as ensemble of online and offline trained classifier mod-

els in different configurations and is robust to changes in video content. A

systematic approach has been used for tunning of classifier parameters. Pro-

posed ensemble classifier has low run-time overhead and can be used in real-

time implementations. Results of the proposed work outperform other state

of the art implementations for different HEVC profiles without sacrificing

video quality. Our contributions have been published in [8].

• Comprehensive comparative analysis of different feature selection methodolo-

gies for selection of optimal features in video data for classifier training and

evaluation is carried out. A score fusion technique is developed to combine

feature selection techniques for improved results. Classifier models trained

using the resultant optimal feature set show improved performance with low

computational overhead. Our contributions have been published in [8].
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• Application of fast video encoding techniques for low-complexity coding of

light field images in different representation formats using HEVC. Detailed

analysis of multiple light field image formats has been carried out and unique

features are identified that can assist in fast coding of light field images

using video codecs like HEVC. Findings of this investigation show that fast

encoding methods developed in this research can be used to reduce the coding

complexity of emerging media like light field images without degradation of

image quality. These novel results can also be used as a benchmark for future

research. Our contributions are submitted in [9].

1.6 Thesis Organization

This thesis is composed of seven chapters. Chapter 1 starts with the introduction

of video coding and significance of the topic under consideration in this research.

Applications of video coding are discussed in detail. Research objectives and major

contributions of the research are outlined.

Chapter 2 gives detail of background on video coding. Main blocks of a hybrid

video codec model are discussed. This is followed by brief history of video coding

standards and overview of the tools introduced in video codecs over the years.

Main challenges in video coding are described followed by brief overview of different

machine learning methods used in fast video coding. Different evaluation methods

used for performance evaluation of video codecs are also discussed. Chapter also

gives detail of different publicly available data sets used in the experimentation

and performance evaluation.

Chapter 3 discusses the literature survey. Different methods used for fast cod-

ing of high efficiency video coding are discussed in detail. These methods have

been divided into three main categories namely, statistics based methods, machine

learning based methods and content adaptive methods. Chapter also gives detail

of recent research done in the area of Light Field Images. Deficiencies in each
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category are highlighted. Chapter also discusses the gap in the research, problem

statement of the proposed research methodology.

In Chapter 4, a comprehensive framework for content adaptive fast coding of

video data is described. Computational complexity of different blocks in HEVC

is discussed. Usage of spatial and temporal features in video data to develop a

content adaptive technique to reduce the computational complexity of HEVC is

discussed. Proposed framework for fast coding of video data handles both simple

and complex video streams. Video frame is first categorized into simple or complex

frame using global and local parameters. Based upon this categorization, frame

specific techniques are used for fast encoding of prediction modes and early CU

size prediction. Results of the proposed method are discussed and compared with

other similar implementations.

Chapter 5 describes proposed methodology for fast coding of HEVC standard using

machine learning methods. A detailed feature selection procedure is given where

comparative analysis of filtering and wrapper based approach for video data is

described in detail. Design and formulation of Random Forests Classifier for CU,

TU Split Decision and Skip mode selection is described. Accuracy of RF classifier

and selection of optimal classifier parameters is discussed. Results of the proposed

fast coding method are described for different HEVC profiles and performance is

compared with other recent works.

In Chapter 6, fast video coding techniques developed in this research are applied

in fast coding of Light Field images. Different representations of light field images

are discussed and analysis has been done on light field data to extract the features

and analyze the trends in light field image representation that can be used for

fast coding. Detail of the proposed method for feature selection is given that

uses combined score of filtering and wrapper based approach as the measure to

rank and select the optimal features. Design of proposed Random Forests based

classifier for fast selection of prediction mode and CU depth is described. Results

section describes the speed-up and RD performance of the proposed fast coding
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method for Light Field Images for different Light Field representations and HEVC

profiles.

Chapter 7 is last chapter of the thesis that gives the concluding remarks about the

research and also discusses how this research work can be extended in the future.



Chapter 2

Video Coding Standards and

Performance Evaluation

This chapter describes different formats for representation of digital video. Build-

ing blocks of a video codec are explained and brief overview of various video coding

standards is given. HEVC, that is the focus of this research is discussed in detail.

Chapter also describes challenges in video coding. Various machine learning based

methods used in fast video coding and evaluation matrices for video coding are

briefly discussed. Chapter also gives overview of the video data sets used in this

research work.

2.1 Digital Video Representation

Digital video is composed of color images sampled over time. These images are

generally called video frames. Each video frame is composed of pixels and the total

number of pixels in horizontal and vertical dimensions determine frame resolution.

Similarly, number of frames per unit time determiners the video frame rate. Color

space of a video sequence determines how image brightness (luminance) and color

(chrominance) information is described in the video. Two well known color space

formats for video representation are [10]:

11
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• RGB Color Space

• YUV Color Space

2.1.1 RGB Color Space

In the RGB color space, each pixel in video frame is composed of RED (R),

GREEN (G) and BLUE (B) components. Red, green and blue are primary colors

for representation of color information. In RGB color space, proportions of red,

green and blue components are same. RGB color space is adequate for video

capture and display devices. In video capturing devices, separate sensor arrays

are used for each of the red, blue and green components.

2.1.2 YUV Color Space

YUV color space decomposes a video frame into brightness and color components

and stores them separately. Human visual system (HVS) is more sensitive to

brightness than color information in a video frame. YUV color space exploits this

limitation of HVS and represents brightness component with full resolution while

color component is stored in lower sub-sampled resolutions. This results in less

number of bits to represent video data. Video codecs often process videos in YUV

color space.

In YUV color space, Y represents the luminance (luma) component and U, V rep-

resent the two color (chroma) components. In YUV420 format, Y component has

the same resolution as size of video frame. U and V components are sub-sampled

and have lower resolution. This also results in reduced storage and transmission

requirements. In YUV420 format, Y, U and V component are calculated from

R,G,B components in a video frame according to following formulas [11].

Y = 0.299R + 0.587G+ 0.114B, (2.1)
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U = 0.564(BY ), (2.2)

V = 0.713(RY ). (2.3)

2.1.3 Digital Video Resolutions

Digital video uses various spatial and temporal resolutions. Spatial resolution de-

fines size of the video frame in horizontal and vertical dimensions in terms of pixels.

Temporal resolution specifies number of frames to be captured/displayed per unit

time. Video resolutions highly depend upon applications and available storage or

transmission capacity. With increase in demand for high quality multimedia like

HDTV and increase in processing power of multimedia devices, demand for large

frame resolution and high frame rates is continuously increasing. Common frame

resolutions used in video applications are shown in the Table 2.1 [11].

Table 2.1: Video Frame Resolutions

S.No. Frame
Resolution

Dimensions Comments

1 QCIF 176x144 Quarter Common Intermediate Format
2 CIF 352x288 Common Intermediate format
3 SD 640x480 Standard Definition
4 HD 1280x720 High Definition Video
5 UHD 4096x2160 Ultra High Definition Video

Frame rates in video sequences also depend upon the application. Common frame

rates used in digital video are 25 fps, 30 fps, 60 fps and 100 fps.

2.2 Building Blocks of Video Codec

A video codec is composed of an encoder and a decoder. Encoder encodes source

video frames into a compressed bitstream. Encoder exploits spatial and temporal

redundancy in the video data in order to compress it. Job of the decoder is to

decode the encoded bitstream to reproduce uncompressed video. Block diagram

of a generic video encoder and decoder is shown in the Figs. 2.1 and 2.2 [1].
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Figure 2.1: Generic Video Encoder Building Blocks

Majority of the current video coding standards are based on the hybrid video

coding model because the techniques being used are a hybrid of picture coding

methods and motion handling[12]. Each video frame is first divided into square

shaped blocks called macroblocks (MB). Video frame is processed block by block

using the principal of predictive coding [13]. Video encoding and decoding is done

separately on luma and chroma components in a video frame. All steps in video

encoding or decoding are applied on macroblocks in a video frame in the raster

scan order.

VLD IQ IDCT

Compressed 
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+

Frame Store
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Figure 2.2: Generic Video Decoder Building Blocks

Main components in a block based hybrid video codec include residual generation,

motion estimation and compensation, transform and quantization, entropy coding

and rate distortion optimization. These components are explained in the following

subsections.

2.2.1 Residual Generation

According to predictive coding principal, difference between macroblock in the

current frame and its predicted value from the previous frame is called residual or
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error signal. This error signal has reduced dynamic range and requires less number

of bits to encode. At encoder, residual signal is transformed and coded to generate

the encoded bitstream. At the decoder, after decoding and inverse transformation

the residual signal is added to a prediction value to reproduce the macroblock

in the video frame. Macroblocks that are predicted from neighboring blocks in

the current frame are called intra MBs. On the other hand, those predicted from

blocks in previous frames are called inter MBs.

2.2.2 Motion Estimation and Compensation

Motion estimation is the process of finding position of a macroblock in the pre-

vious frame. Position in previous frame is marked using a displacement vector

called motion vector. Sum of absolute differences (SAD) operation is performed

to find the position of a macroblock in previous frame. Motion estimation is the

most complex operation in video encoding. Motion compensation is the reverse

of motion estimation where motion vectors are used to get motion compensated

macroblock from previous frame. Motion estimation is performed on the luma

block(Y) in the video frame. A scaled version of the motion vector is than used

for the chroma blocks U and V.

2.2.3 Transform and Quantization

Residual signal is transformed to further exploit spatial redundancy. Energy in a

video frame is concentrated in the low frequency region. Transform operation is

applied to isolate this low frequency component from the high frequency compo-

nent. In video codecs, Discrete Cosine Transform (DCT) is used on block by block

basis to get frequency coefficients. This transformation is followed by quantiza-

tion operation that further reduces the insignificant high frequency components.

Quantization is a lossy operation that reduces number of non-zero coefficients and

results in further compression with insignificant data loss.
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2.2.4 Entropy Coding

Entropy coding also know as variable length coding (VLC) is the last block in

video encoding. DCT coefficients, motion vectors and other data in video encoder

is entropy encoded to generate the compressed stream. Two well-know methods

for entropy encoding used in video codecs are Context Adaptive Variable Length

Coding (CAVLC) and Context Adaptive Binary Arithmetic Coding (CABAC).

Variable length decoding (VLD) is the reverse of entropy encoding. In video

decoder, first VLD is performed on encoded stream to get residual coefficients,

motion vectors and other data.

2.2.5 Rate Distortion Optimization

In latest video codecs, a macroblock can be encoded in one of many ways. These

video codecs support many MB types, prediction modes and block partition sizes.

Rate distortion optimization (RDO) is used to select the optimal choices that

reduce distortion for generation of minimum number of bits [14]. A Lagrangian

cost function is computed with parameter λ according to the Eq. 2.4 [15, 16].

J = D + λR. (2.4)

For every MB, distortion D and bitrate R is computed for all the possible predic-

tion modes, block partitions and MB types. These values are used to compute the

Lagrangian cost J and the mode or the partition type with minimum Lagrangian

cost is selected as the best option. Parameter λ is empirically found using quanti-

zation parameter QP. All the latest video encoder implementations use this RDO

process to exhaustively evaluate all the available options and selection the optimal

one. This exhaustive search results in increase in the complexity of the encoding

process. With increase in the number of prediction modes, MB types and block

partitions in current video codecs, this complexity has enormously increased.
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2.3 Video Coding Standards Over the Years

Video coding standards have evolved over the years. Applications like real time

video communication, video storage and broadcast of digital multimedia content

are the major driving force behind this evolution. Many video coding standards

have been released over the years. Fig. 2.3 shows the time line of the major video

codecs developed over the years [17, 18]:

Figure 2.3: Video Codecs over the years

Following subsections briefly describe the major video codecs.

2.3.1 MPEG-2

MPEG-2 was the first significant video coding standard that was jointly developed

by ISO/IEC and ITU-T in 1995 as ISO/IEC 13818-2 [19, 20]. Although there were

earlier video standards like H.261 and MPEG-1 but MPEG-2 was a major success

with significant enhancements. MPEG-2 used macroblocks of size 16x16 and inter-

frame prediction with residual transform coding (DCT) of size 8x8. Other tools

included in the standard were quantization and variable length coding. MPEG-2

also employed the concept of profiles and levels for encoded video streams. MPEG-

2 was backward compatible with MPEG-1 and was largely used for multimedia

video storage on CR-ROMs .
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2.3.2 H.263

H.263 was developed by ITU-T in 1996 and was a dominant standard as compared

to its predecessors [21]. Main application of H.263 was video conferencing solutions

at low bit rate. Prominent features in the standard include bi-direction prediction,

arithmetic entropy coding and median motion vector prediction. New features like

error resilience, deblocking filter mode and improved coding tools were introduced

in the standard. Coding efficiency of H.263 was further enhanced in later versions

known as H.263+ and H.263++.

2.3.3 MPEG-4

MPEG-4 is an ISO/IEC standard that was developed by MPEG in 1999 [22, 23].

MPEG-4 was better than MPEG-2 in coding efficiency and flexibility. Core com-

pression tools supported in the standard were based on H.263. MPEG-4 introduced

new features like coding of irregular shaped objects in natural scenes and anima-

tion sequences. Support for coding of still images and scalable video coding was

also introduced in MPEG-4 in addition to coding of video sequences. MPEG-4

had support for multiple profiles lie simple profile, advanced simple profile and

simple scalable profile.

Using a large set of new coding tools, MPEG-4 targeted applications like high

definition television broadcast, DVD storage, low resolution surveillance cameras

and network bandwidth adaptive video streaming.

2.3.4 H.264

H.264 standard also know as advanced video coding (AVC) / MPEG-4 part 10 was

jointly developed by ITU-T and MPEG group in 2003 [2, 24]. H.264 improved cod-

ing efficiency upto 50% as compared to prior coding standards. This improvement

in coding efficiency also increased in codec complexity. Improvement in coding

efficiency of H.264 was a result of many unique features that were introduced for
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the first time. Significant features in H.264 include introduction of context adap-

tive binary arithmetic coding (CABAC) for high compression, multiple reference

frames for inter-frame motion estimation, variable block size motion compensa-

tion, integer discrete cosine transform (DCT) quarter-pel motion compensation

and in-loop deblocking filter. Features introduced for error resilience were flexible

macroblock ordering (FMO), arbitrary slice ordering (ASO) and data partitioning

in extended profile. Block diagram of the codec is shown in the Fig. 2.4.

.

Figure 2.4: H.264 Block Diagram [2]

H.264 also introduced the concept of network abstraction layer (NAL) to make the

encoding stream network friendly in addition to video coding layer (VCL). Each

NAL unit in H.264 encapsulates VCL and non-VCL packets [11]. H.264 supported

both progressive and interlaced frames. Each frame was further divided into slices

and macroblocks. H.264 supported three profiles namely baseline, main and ex-

tended profiles. H.264 was followed by two extensions. First one was Scalable

Video Coding (SVC) in 2007 [25] and second one was Multiview Video Coding

(MVC) in 2009 [26].
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2.4 High Efficiency Video Codec (HEVC)

High efficiency video codec (HEVC) a.k.a H.265 is the latest video codec that was

jointly developed by ITU-T and ISO MPEG group [3, 27]. It is also based on

the hybrid codec architecture that offers many advanced features. Development

of HEVC targeted two main areas. One is processing of high resolution video con-

tent. Second is codec implementation on parallel processing hardware platforms.

Enhancements and modifications done in HEVC focus on these areas. It supports

demanding applications and services like Ultra High Definition TV (UHD-TV)

with display resolutions 4Kx2K, or higher, and multi-view video capture and dis-

play with higher dynamic range in terms of color content. HEVC has 50% more

coding efficiency as compared to H.264 while offering the same perceptual visual

quality. Main building blocks of the codec are shown in Fig. 2.5.

. .

Figure 2.5: HEVC Block Diagram [3]

Detail of the new coding tools introduced in HEVC, quad-tree structure, prediction

modes and entropy coding is described in following subsections.
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2.4.1 Video Coding Layer

In HEVC, like the earlier standards, video frame is first partitioned into blocks.

Concept of macroblock with fixed size of 16x16 is replaced with larger blocks called

coding tree units (CTUs). Size of CTU can vary from 64x64, 32x32 down to 8x8

[28]. CTUs are further divided into square size coding units (CUs) in a hierarchical

quad tree structure that exists at different CU depth levels. The CU size at depth

level 0 is 64x64 whilst at depth level 3, it is 8x8. This hierarchical structure is

shown in in Fig. 2.6.
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Figure 2.6: HEVC CU and TU Quad-tree Structures

2.4.2 Coding Units

In HEVC, several new coding structures are introduced to improve the coding ef-

ficiency. These units include Coding Unit (CU), Prediction Unit (PU) and Trans-

form Unit (TU). CTU is first divided into square shaped CUs at different depth

levels. Each CU may contain one or more PUs. For each PU, several intra and in-

ter prediction modes are evaluated and various partition sizes are evaluated. These

partitions can be symmetric and asymmetric partitions. Symmetric partitions in-

clude inter 2Nx2N, Nx2N, 2NxN and NxN. In HEVC, asymmetric partitions have

also been introduce to increase the coding efficiency in the inter mode. These

partitions are inter 2NxnU, inter 2NxnD, inter nLx2N and inter nRx2N . For intra

modes, only symmetric partitions 2Nx2N and NxN are used [3]. These partition

sizes are shown in Fig. 2.7.
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Figure 2.7: Partition sizes in HEVC Prediction Units (a) Inter Partitions (b)
Intra Partitions

HEVC also introduced variable TU sizes. Inside each PU, TUs of different sizes

are evaluated. These sizes include 4x4, 8x8, 16x16 and 32x32. Together these TUs

at various depth levels form a quad-tree structure like the CU quad-tree, as shown

in Fig. 2.6.

2.4.3 Slices, Tiles and Wavefront Processing

In HEVC, a video frame can be partitioned into slices, tiles and wavefronts. A

slice can be coded independently and it can be part of a video frame or an entire

frame. Slices are further partitioned into CTUs that are processed in raster scan

order. Slices provide error resilience against data loss during video transmission.

In addition to slices, new partitions have been introduced in HEVC to support

parallel processing on highly parallel hardware platforms. These partitions include

Tiles and Wavefront parallel processing (WPP). Tiles are rectangular partitions

that can be independently decoded like slices. CTUs inside a tile are processed

in raster scan order. Partition of video frame into slices and tiles is shown in the

Fig. 2.8 [3].

In WPP, a slice is divided into rows of CTUs that can be processed in parallel.

With WPP, processing of CTUs in the second row can start, when two CTUs in

first row have been processed. This helps in parallel processing of CTUs inside a
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Figure 2.8: Video Frame Partitions [3] (a) Slices (b) Tiles

slice and multiple rows of CTUs can be processed using multiple processor cores or

multiple software threads inside an application. Concept is shown in the Fig. 2.9.

Figure 2.9: Wavefront Parallel Processing in HEVC [3]

2.4.4 Intra-picture prediction

HEVC like its predecessors, supports block based intra prediction to exploit spatial

correlations inside a video frame. There are 35 intra prediction modes in HEVC,

that include DC prediction, planer mode and 33 angular prediction modes [29].

Orientation of angles in these prediction modes is shown in Fig. 2.10. Prediction

units inside an intra predicted CU can be of size 2Nx2N or NxN.
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Figure 2.10: HEVC Intra Prediction Mode Directions [3]

2.4.5 Inter-picture prediction

In inter-prediction, temporally collocated blocks in neighboring frames are used

to predict the block in the current frame. Neighboring frame is considered as the

reference for the prediction of the block in the current frame. In HEVC, PUs

in the inter-predicted CUs can use symmetric and asymmetric partitions sizes as

shown in Fig. 2.7. Each PU is represented using a set of attributes that include

motion vectors and index of reference frame. HEVC supports 1/2 pixel and 1/4

pixel interpolation for luma samples [3]. Interpolation filters with 8 and 7 taps are

used for half pel and quarter pel interpolation, respectively. Integer and fractional

sample positions for luma interpolation in HEVC is shown in Fig. 2.11. Motion

vectors can be predicted from spatially and temporally collocated neighboring PUs

[30].

Skip inter-prediction mode is used to infer motion attributes of the current block

from the blocks in the reference frame. In HEVC, a special merge mode is also in-

troduced where motion attributes of spatially and temporally collated neighboring

PU blocks are used to signal the motion information of the current PU block [3].

Hence in HEVC, Skip mode is a special case of merge mode when coded residual

of the PU block is zero. Skip mode is mostly selected as the optimal prediction

mode for homogeneous regions in video frames with very little or no motion.
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Figure 2.11: HEVC Luma Interpolation: Integer and fractional Sample Posi-
tions [3]

2.4.6 Transform and Entropy Coding

HEVC also uses discrete cosine transform (DCT) to encode the prediction residual.

In the TU quad-tree structure, TUs are recursively divided into sub partitions.

Size of TUs can vary from 32x32 down to 4x4. For 4x4 luma intra predicted TU

blocks, a discrete sine transform is also incorporated [31]. After transformation,

prediction residual coefficients and syntax elements are entropy coded. HEVC only

uses context adaptive binary arithmetic coding (CABAC) for coding of prediction

residual.

2.4.7 In-Loop Filtering

Loop filters are used in video codecs to remove the blocking artifacts introduced by

the quantization and block prediction. HEVC also uses a deblocking filter in the
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prediction loop [32]. Deblocking filter is applied on 8x8 boundaries only. In addi-

tion to deblocking filter, HEVC also uses a Sample Adaptive Offset (SAO) after

the deblocking filter which is a nonlinear amplitude mapping to better reconstruct

the original signal.

One of the issues with HEVC is the royalty and patent fees. Therefore, Google

initiated the work on open-source and royalty free codecs by releasing a series of

codecs named VP8, VP9 and VP10. Coding efficiency of VP9 is comparable to

the HEVC. Later Google co-founded an alliance for open media (AOM) with a

consortium of more than 30 tech companies. Open-source video codec AV1 was

launched by AOM. Work on the successor of HEVC is also in progress and the

codec is known as Versatile Video Coding (VVC). VVC is supposed to be finalized

by the year 2020 and the goal is to provide better coding efficiency than HEVC.

2.4.8 Comparison of HEVC with other Video Codecs

During the evolution of video codecs, many new coding structures, prediction

modes, filtering operations and entropy coding techniques have been introduced,

as described in the previous section. These tools and techniques have increased the

compression efficiency of the codecs. Table 2.2 gives a comparison of the coding

tools used in HEVC with earlier video coding standards [33].

According to the table, new features introduced in HEVC are quad-tree structures

for CU and TU blocks, extra intra and inter prediction modes and partition sizes

and multiple filters. These features have improved coding efficiency of HEVC as

compared to earlier standards like H.264 or MPEG4. However, computational

complexity of HEVC has increased enormously. This complexity is a bottleneck

in its widespread usage on the Internet and multimedia solutions.
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Table 2.2: Comparison of HEVC with other Video Coding Standards

Features MPEG-2 MPEG-4 H.264 HEVC

Partition Size MB(16x16) MB(16x16) MB(16x16) CU(64x64 to 8x8)

Picture Coding Type I,P,B I,P,B I,P,B I,P,B

Intra-Prediction DC Prediction DC and Simple AC
Prediction

9 Prediction Modes 35 Prediction Modes

Inter-Prediction 16x16 8x8 to 16x16 4x4 to 16x16 8x4,4x8 to 64x64

Entropy Coding VLC VLC CAVLC, CABAC CABAC

MV Resolution 1/2 Pel 1/4 Pel 1/4 Pel 1/4 Pel

Transform Unit 8x8 DCT 8x8 DCT 4x4 DCT 32x32 to 4x4
DCT,DST

Deblocking Filter Out of Loop Out of Loop In-Loop In-Loop , SAO Filter

Partition Block Size Symmetric Symmetric Symmetric Symmetric and Asym-
metric

Multi Reference Prediction 2 2 16 16

Parallel Processing Tools Slices Slices Slices Wavefronts,Tiles,Slices

Interlaced Coding Yes Yes Yes No

Max Frame Rate (fps) 15 30 59.94 300



Video Coding Standards and Performance Evaluation 28

2.4.9 HEVC Extensions

Many extensions have been added to the High Efficiency Video Coding (HEVC)

standard to increase its capability, throughput and flexibility. HEVC Rext ex-

tension enabled coding of videos in monochrome 4:2:2 and 4:4:4 chroma formats.

Other HEVC extensions include processing of 3D and multi-view videos, scalable

video coding and screen content coding. Details of these extensions is provided

following sub-sections.

2.4.9.1 Multi-View and 3D Video Coding

In order to compress multi-view videos and depth based 3D videos, two HEVC

extensions have been finalized. These are called Multi-view extension of HEVC

(MV-HEVC) and 3D extension of HEVC (3D-HEVC) [34]. MV-HEVC exploits re-

dundancy between the video feed of multiple cameras that capture the same scene

information from different angles to compress it efficiently. Similarly, new tools

have been introduced in 3D-HEVC to efficiently compress depth information in

addition to 2D video. These tools exploit dependencies between video texture and

depth maps. Both MV-HEVC and 3D-HEVC use a multi-layer coding structure

that uses the redundancy between multiple layers to achieve higher compression.

Multi-View and 3D coding has applications in stereoscopic displays and 3D TV.

2.4.9.2 Scalable Video Coding

Scalable Video Coding extension of HEVC (SHVC) encodes video data according

to the decoder configurations and network conditions [35]. SHVC can also assist

in error resilience where data may be lost because of network errors. In SHVC,

video data is encoded in multiple layers that consist of one base layer and mul-

tiple enhancement layers. SHVC is based upon a multi-loop coding architecture

with support for inter layer prediction. Different scalability options available in

SHVC include spatial scalability that deals with resolution of video frame, tem-

poral scalability that is related to reducing the number of frames per second and
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SNR scalability that is about changing the video quality and bit depth scalability

such that the base layer has lower and enhancement layers have higher bit depth.

2.4.9.3 Screen Content Coding

Screen content coding (SCC) extension of HEVC deals with efficient coding of

computer generated graphics, computer animations and videos with mixture of

camera captured content and computer generated graphics [36]. These videos

often contain large uniform areas and repeated patterns with sharp edges and

high contrast. Number of unique colors in screen content videos is limited as

compared to the camera generated videos. HEVC SCC extension inherits many

features of HEVC like CU quad tree structure and coding tools. For efficient

coding of screen content, new tools have been introduced. These include Intra

Block Copy (IBC), Palette mode, adaptive color transform and adaptive motion

vector resolution [37–39]. Because of these added tools, coding efficiency of HEVC

SCC extension is approximately twice as compared to the HEVC Rext for videos

with computer generated graphics and text.

2.5 Challenges in Video Compression

With the increase in usage of multimedia and advancements in imaging technology,

demand for video systems and video compression is continuously increasing. Ser-

vices like high speed broadband, HD display technology, web-based video content

and availability of low cost computing devices like smart phones and mobile In-

ternet devices, are another driving force that require innovation and improvement

in video compression techniques.

Video compression is being used in applications like video conferencing, high defi-

nition video storage in the form of DVD and Blu-Ray, security systems, computer

vision, digital cinema and digital television. Video Encoding in latest video codecs
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such as HEVC presents a challenging problem of providing high compression ef-

ficiency and magnificent video quality while fulfilling limitations of underlying

hardware platforms.

Main challenges in video encoding using newest video codecs include:

2.5.1 Real-time Performance

With the increase in compression efficiency and complexity of video codecs, real

time implementation of codecs like HEVC is one of the biggest challenges that

designers are facing in video applications. High definition (HD) and ultra high

definition (UHD) television broadcast is targeting FPS figures of 50, 60 , 100

upto 120. Applications like Video conferencing require minimum possible delay in

video encoding and decoding in order to compensate for network delays. Video

security applications target an end to end delay of less than 150 ms. Meeting these

timing requirements even with fast processor architectures is a tough challenge to

implement. Dedicated hardware platforms for video technology and intelligent

encoding algorithms are being designed to meet these challenges.

2.5.2 Video Quality

Demand for high definition video in multimedia solutions is increasing. On-line

video streaming websites like Youtube, Dailymotion offer upto 4K video resolu-

tions. Video gaming consoles like Play station and Xbox provide video with 720p

and 1080p resolution. Video conferencing applications provide 720p video with

bit-rate of of upto 1 Mbps. Smart-phones have capabilities of capturing and play-

back of 720p and 1080p videos. Video surveillance and security cameras also offer

HD resolution. Embedded devices used in these applications have to provide high

quality video with strict budget constraints and limited resources. Development

of intelligent algorithms that can maintain desired video quality and run these

applications on hardware platforms meeting desired budget is a challenge for the

designers.
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2.5.3 Power Consumption

Power consumption is another important performance metric in embedded devices.

When an embedded device provide support for high quality videos at higher frame

rates, 3D graphic intensive games, it requires high performance processors, GPUs

and large memory space which ultimately affects power consumption of the device.

In order to extend battery life in embedded platforms, optimal and intelligent

algorithms are required to reduce computational complexity of video encoding

and decoding tasks.

2.5.4 Diverse Video Content

Content in video sequences is another major challenge for video coding standards.

Video sequences vary both in terms of texture inside the video frame and motion

content among multiple frames. These variations impact the prediction modes,

partition sizes, motion estimation and ultimately the coding efficiency of the codec.

Similarly, performance of the fast encoding algorithms to reduce the complexity

of video codecs is also dependent on the video content. Complex variations in

video content may impact the RD performance or the speed-up of fast encoding

techniques used to speed-up video codecs.

2.5.5 Architecture of Video Codecs

To increase compression efficiency and to support higher frame resolutions, design

of video codecs is getting more and more complex. In HEVC, frames are divided

into variable sized blocks called CTUs. These CTUs are further divided into CUs

and PUs with multiple depth levels and partition sizes. Transform operation is

also done on variable size blocks. Multiple reference frames are used for motion

search. With increase in number of options, partition sizes and prediction modes,

encoding task becomes more and more complex. Real-time Implementation of

these standards is challenging, because it requires efficient meta-data structures,
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efficient usage of memory and optimal algorithms to reduce computational com-

plexity.

Above mentioned challenges are the bottleneck in widespread implementation of

latest video codecs. A great deal of research is being done on development of

fast algorithms and design of dedicated hardware architectures to reduce the com-

putational complexity of the video codecs to enable their usage in multimedia

solutions. These fast algorithms often use machine learning based classification

methods to take optimal decisions during the encoding process and hence, reduce

the computational complexity of the video codec. Next section gives overview of

popular machine learning methods being used in fast video coding.

2.6 Overview of Classification Methods

Classification and machine learning methods are employed in real-life problems to

assist in decision making and find optimal solutions. These classification methods

can be broadly divided in two categories [40]:

• Supervised Learning

• Un-supervised Learning

In supervised learning methods, data-set is explicitly labeled while un-supervised

learning methods use unlabeled data sets. Each instance in the data set has

multiple features or attributes that describe the data in different ways. Supervised

learning techniques first learn from representative features of given labeled data

set for a specific problem. This knowledge is used to predict and classify unseen

data. Supervised classification algorithm can be described as a learning function

’f’ that maps the input sample X to the output label Y according to the Eq. 2.5.

Y = f(X). (2.5)
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Comparative assessment of different classification methods is given in [41, 42].

Researchers have used classification algorithms in recent years to model complex

video encoding tasks as a classification problem to speed-up the encoding process.

These classification algorithms can early predict the optimal decisions and reduce

the encoder complexity.

Supervised learning based classification methods start with collection of sample

data set. Pre-processing is done on the data set to remove outliers and noisy

instances. Feature sub-set selection is also performed to remove the irrelevant

and redundant features. Feature sub-set selection reduces feature dimensions that

helps in reducing complexity of the algorithm and efficiency of the classification

problem. Resultant processed data set is partitioned into training and testing data.

Training data is used to train the classifier and a classifier model is generated for

given problem. Next the generated classifier model is employed to classify test

data-set. Sample framework of classification based methods is shown in Fig. 2.12.

Accuracy of the classification depends upon the relevance of extracted features,

size of test data and model of the classifier while complexity of algorithm depends

upon feature dimensions and classifier cost function.

Data Set Collection
Data 

Preprocessing
Classifier Design Classfier Training

Classifier Testing 

and Evaluation

Figure 2.12: Sample Classification Framework

Different criteria are used to evaluate the performance of classification techniques.

These include prediction accuracy, confusion matrices, region of convergence (ROC)

curve and N-fold cross validation. Detail of these can be found in [43, 44].

Below is given brief overview of various classification methods found in literature

related to fast video encoding.

2.6.1 Bayesian Classification

Bayesian classification forms a probabilistic classifier model that is based on Bayes

Rule [45] as described in the Eq. 2.6.
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P (C | X) =
P (C)P (X | C)

P (X)
, (2.6)

where X represents the set of attributes and C represents the Class. Classification

based on the Bayes theorem uses the maximum A posteriori (MAP) decision rule

and can be formulated as

ArgC [Max[P (C | X) = P (C)P (X | C)/P (X)]]. (2.7)

For a given set of features, a test sample is assigned the class that has the maximum

A posteriori probability. In the above expression, probability of the attributes

P(X) does not change for different classes and can be considered a normalization

constant.

Naive Bayes classifier [46] is a simplification in the Bayes classifier model that

assumes, all the class attributes are independent of each other .

2.6.2 Classification and Regression Trees

Decision trees are used in machine learning to label data by sorting its feature

values. Concept of classification and regression trees (CART) was introduced

by L. Breiman [47] in 1984. Classification trees are applied to label the data

based upon its feature values. On the other hand, regression trees are used for

continuous target values and predict value of the target. An example classification

tree is shown in Fig. 2.13 [48].

CART trees are generated using a set of questions and feature values. Tree gen-

eration starts at the root node. Each node is further split according to some rule

using one of the features. Heuristics like information gain and gini-index [49] are

used for selection of optimal feature to use for node split. Some stopping criteria
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Figure 2.13: CART model

is also used to decide, when not to split a node further. This also helps in control-

ling the size of decision tree. Terminal nodes of classification trees represent class

labels.

2.6.3 Support Vector Machines

Support vector machines (SVM) is another statistical algorithm for classification

[50]. SVM based classifiers can be used to solve problems like object detection,

text categorization and face recognition in machine vision. SVM uses the idea of

constructing a hyperplane that maximizes the margins between data points of two

classes [51]. Hyperplane is defined such that

wTxi + b ≥ 1, (2.8)

wTxi + b ≤ −1, (2.9)

where w is the weighted vector and b is the bias. SVM hyperplane and the margins

are shown in the Fig. 2.14 [52].

SVM based classification uses the decision rule defined by the discriminant function

in the Eq. 2.10.
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Support 

Vectors

Figure 2.14: Margins and support vectors in SVM model

f(x) = wTΦ(w) + b, (2.10)

where Φ(w) is a non-liner kernel function that maps the input xi into a higher

dimensional kernel space. This hyperplane can be constructed by minimizing the

cost function shown below.

J(w) =
1

2
‖ w ‖2, (2.11)

under the constraint

yi(w
TΦ(w) + b) ≥ 1. (2.12)

Common Kernel functions used in SVM are liner, radial basis functions (RBF)

and sigmoid functions.

Majority of the classification algorithms used for fast video encoding in the litera-

ture are based on single classifier models. Very few implementations use ensemble

classification methods that are more robust to changes in the video data.



Video Coding Standards and Performance Evaluation 37

2.7 Performance Evaluation Metrics for Video

Coding

For performance evaluation of video coding standards, comparison of coding effi-

ciency and assessment of optimizations done in video codecs, different subjective

and objective evaluation matrices are used [53]. These matrices quantify the extent

of distortions introduced in video frames because of quantization and predictive

coding blocks or the modifications done in the video codec to reduce its compu-

tational complexity. Also relative speed-up attained because of the reduction in

computational complexity can be computed for comparison of different fast coding

methodologies.

2.7.1 Subjective Assessment

Subjective assessment of video quality relates to human visual system (HVS) and

how a person perceives quality of video under test. One subjective assessment

technique is known as mean opinion score (MOS) [54]. In MOS assessment, a

panel of human observers assess the quality of video under test and rate it on a

scale of 1 to 5. Here 1 refers to ’Bad’ and 5 refers to ’Excellent’ quality. Ratings

assigned by multiple viewers are averaged to get the MOS figure. To get a reliable

MOS figure, a panel of 20 to 25 human observers is required. MOS score of

3.5 or above is considered acceptable for many broadcasting services [53]. Such

subjective methods of video quality assessment give reliable results despite being

time consuming and expensive. Therefore, majority of research on video coding

uses objective assessment measures.

2.7.2 Objective Assessment

Objective assessment methods of video quality rely on mathematical models.

Block based motion estimation and compensation and lossy operations like quan-

tization introduce distortions in encoded video frames. To measure these artifacts
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in decompressed video data and to compare the video quality of different video

compression techniques, a well-known quality assessment technique is Peak Signal

to Noise Ratio (PSNR). PSNR depends on the Mean Square Error (MSE) between

the blocks in original video frame and reconstructed frame during the encoding

process. MSE is computed using Eq. 2.13 and PSNR is measured on a logarithmic

scale according to the Eq. 2.14 [11].

MSE =
1

MN

M∑
i=1

N∑
j=1

[Y ref(i, j)− Y prc(i, j)]2, (2.13)

PSNR = 10 log

[
2552

MSE

]
. (2.14)

where Y ref(i, j) and Y prc(i, j) are the pixel values of the blocks in reference

frame and reconstructed frame, M and N are the block dimensions in terms of

number of pixels, respectively. In the equation, the peak signal magnitude with

an 8-bit pixel is 255, and the noise is the square of the difference (error) between

the blocks in reference and reconstructed frame. PSNR values of 31 dB and above

are considered acceptable for good quality videos [55]. PSNR is a simple and

straight forward method of video quality assessment that is commonly used in

video encoders for quality assessment and comparison.

2.7.3 Bjontegaard Delta Measurements

In order to compare the performance of two video encoding schemes, a method

was proposed by Gisle Bjntegaard [56, 57] that is based on Rate Distortion (RD)

curves as shown in Fig. 2.15. Proposed method calculates delta in overall bit-

rate savings (BDBR) and difference in video quality (BD-PSNR) between the two

encoding schemes by fitting a third order polynomial function. Rate distortion

curves for two encoding schemes are computed at four different quantization pa-

rameter (QP) values. Interpolation is used to extend the curves and calculations

are performed on logarithmic scale. For BDBR computation, difference in bit-rate
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is computed along the horizontal scale for a given PSNR and for BD-PSNR, dif-

ference is computed along the vertical scale for a given bit-rate on the RD curve.

Average BD-PSNR is computed as the approximate difference between the inte-

grals of the two RD curves i.e. D1(r) and D2(r) divided by the integration interval

between the upper rH and lower rL bounds according to the Eq. 2.15 [53]. Similar

calculations are used to compute the average BDBR on a logarithmic scale accord-

ing to the Eq. 2.16. Average BDBR percentage and BD-PSNR figures are used to

evaluate the RD performance of video coding methods and their comparison with

other similar schemes.

BDPSNR ≈ 1

rH − rL

∫ rH

rL

[D2 (r)−D1(r)] dr, (2.15)

BDBR ≈ 10
1

DH−DL

∫DH
DL

[r2(D)−r1(D)]dD − 1. (2.16)

Figure 2.15: Example rate distortion (RD) curve between PSNR and bit-rate

2.7.4 Speed-up

In fast encoding implementations, reduction in computational complexity of the

video codec is measured in terms of percentage increase in the processing speed of
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the codec, as given by the Eq. 2.17 [58, 59],

TS(%) =
(Tr − Tp) ∗ 100

Tr
, (2.17)

where TS% represents the percentage speed-up and Tr and Tp are the encod-

ing times of the reference implementation and the proposed complexity reduction

technique, respectively. Reduction in computational complexity of video encoding

algorithm results in degradation in the RD performance. Hence, an increase in the

speed-up will often lead to decrease in BDPSNR and increase in BDBR figures.

2.8 Data Set Characteristics

Data sets used to evaluate the performance of the proposed fast encoding tech-

niques in this research consist of openly available video sequences and images.

These video sequences and images have diverse characteristics both in terms of

content and resolutions. Detail of these data sets is provided in the following

subsections.

2.8.1 Video Coding Data Set

Video coding data set consists of 20 streams of various resolutions, diverse motion

content and texture as shown in Table 2.3.

These video sequences contain high, low and moderate motion content as well as

diverse texture and spatial information. These videos are divided into categories

A, B, C, D and E based upon frame resolution and according to the common test

conditions defined by ITU-T [60]. All the sequences are in YUV420 format with

8-bit pixel depth. Majority of fast video encoding implementations in literature

use the same data set for comparison with other existing implementations.
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Table 2.3: Video Coding Data-Set

S.No. Class Stream Resolution
1

Class-D

BasketballPass

416x240
2 BlowingBubbles
3 BQSquare
4 Flowervase
5

Class-C

BasketballDrill

832x480
6 PartyScene
7 BQMall
8 RaceHorses
9

Class-E

Johnny

1280x720

10 Vidyo1
11 Vidyo3
12 Vidyo4
13 FourPeople
14 KristenAndSara
15

Class-B

BasketballDrive

1920x1080
16 BQTerrace
17 Cactus
18 Kimono1
19

Class-A
PeopleOnStreet

2560x1600
20 Traffic

2.8.2 Light Field Images Data Set

For light field image coding, 12 light field images of diverse texture and content

have been used as shown in Table 2.4. This dataset is part of the Ecole Polytech-

nique Fdrale de Lausanne (EPFL) Light-Field Images Dataset and JPEG Paleno

Database [61, 62]. All images are taken using a Lytro Illum B01 (10-bit) camera.

Captured images were in raw format that were processed using MATLAB toolbox

for light field images [63]. Resultant light field images were transformed into YUV

format with resolution 9375x6510.

2.9 Summary

This chapter described building blocks of a video codec. Different video codecs

developed over the years and coding tools introduced were also discussed and

a comparison of these coding tools is given. Common machine learning based
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Table 2.4: Light Field Images Data-Set

S.No. Category Light Field Image Resolution
1 Color Charts Color Chart 1
2 Color Charts ISO Chart 12
3 Grid Danger de Mort
4 Mirrors and transparency Vespa
5 Nature Flowers

9375x6510
6 People Fountain and Vincent 2
7 People Friends 1
8 Studio Ankylosaurus And Diplodocus 1
9 Studio Desktop
10 Studio Magnets 1
11 Urban Bikes
12 Urban Stone and Pillars

techniques used in fast video encoding were briefly introduced and various subjec-

tive and objective evaluation matrices to assess the performance of video coding

standards and fast encoding techniques were discussed. Chapter also discussed dif-

ferent challenges in video coding. Finally, the chapter gave detail of the video data

sets used in this research. In next chapter, various fast video encoding techniques

available in literature will be discussed in detail.



Chapter 3

Literature Review

This chapter presents overview of different fast video encoding techniques and

survey of the latest research done in the literature. Recent work in coding of light

field images is also discussed. Limitations of earlier work are highlighted. Chapter

also discusses Problem statement for the research in this thesis and the proposed

methodology.

3.1 Fast Video Encoding Techniques

In majority of current video encoders, optimal prediction modes and partition

sizes in a macroblock are selected based on rate distortion optimization (RDO)

[14]. An exhaustive search method for selection of optimal modes, partition sizes

and motion vectors is implemented that tries to minimize an RDO cost function

and selects the option with minimum RD cost. This exhaustive search approach

increases computational complexity of video encoders like high efficiency video

coding (HEVC) that use the exhaustive search for selection of optimal depth levels

in CU and TU quad-tree structures in addition to prediction modes and motion

vectors.

Search for the optimal prediction modes, selection of optimal coding unit (CU) and

transform unit (TU) depth levels and motion estimation are main complex blocks

43
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in HEVC encoder [64]. To address this computational complexity, lots of research

is being done to find intelligent algorithms that can reduce the computation time.

Another challenge for fast video encoders is the content of video sequences. Many

fast video encoding methods find it hard to adapt to the abrupt changes in the

video texture or motion content. Some work is available in the literature on

content adaptive methods for fast encoding. Researchers have proposed many fast

encoding techniques for video codecs. These fast video encoding techniques can

be categorized into the following main classes as shown in the Fig. 3.1.

• Statistics based Techniques

• Learning and Classification Techniques

• Content Adaptive Techniques

Fast Video Encoding 

Techniques

Statistics based 

Techniques

Learning and Classification 

Techniques

Content Adaptive 

Techniques

Figure 3.1: Fast video encoding methods

Statistics based techniques collect information about spatial and temporal neigh-

boring blocks in a video sequences and use it to fix soft or hard thresholds for

taking fast encoding decisions. Learning and classification based techniques are

mostly employed in pattern classification, machine learning and signal processing

applications to find optimal solutions of complex problems. These techniques first

learn from representative features of a given data set. This knowledge is then

applied to generate classifier models to predict and classify new data. Both online

and offline training is used for generation of classifier models. Content adaptive

methods are based on fast encoding schemes that adapt to the changes in the con-

tent of video sequences. This adaptability helps in improving the RD performance

of fast encoding methods for a diverse set of video sequences.

Detail of these fast video encoding techniques is given in the following sections.
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3.1.1 Statistics based Techniques

It is a well known fact that frames in a video sequences have high spatial and

temporal correlations. Every macroblock or CTU within a frame resembles its

spatial neighbors i.e. adjacent blocks within current frame and temporal neighbors

i.e. co-located blocks in previous frames in texture detail and motion content.

These correlations increases in frames with slow motion and smooth areas and

decreases in regions with high motion content and more texture details. Because

of these correlations, prediction modes, partition sizes, motion vectors and residual

coefficients, a block tend to resemble its spatial and temporal neighbors. Similarly,

depth level of a CTU in current frame in HEVC tends to resemble depth levels of

its co-located CTUs in neighboring frames and adjacent CTUs in current frame.

Hence, information about prediction modes, block sizes and motion vectors of

neighboring blocks in current and previous frames can be used to get highly prob-

able prediction modes and block sizes for current block. This helps in avoiding

exhaustive RDO computations on unnecessary prediction modes and block sizes

or doing motion estimation searches in unnecessary regions of previous frames.

Researchers have explored many fast encoding techniques to speed up encoding

in latest video codecs. Chae Rhee et al. [65] have surveyed many fast encoding

algorithms for inter prediction and mode decisions in H.264. They have also ana-

lyzed the impact of using these algorithms in HEVC. Liquan et al. [66] proposed

an adaptive inter-mode decision scheme for HEVC that exploits the correlations

between spatio-temporal parameters of adjacent CUs and various CU depth lev-

els to predict mode of current CU. An early Skip mode decision is made based

upon correlation between Skip mode of neighboring CUs and Skip mode at dif-

ferent depth levels of current CU. Unnecessary prediction modes are avoided by

defining a mode complexity parameter. Mode decision for current CU is made

based upon correlation between RD cost of different CU depth levels and neigh-

boring CUs using an adaptive threshold. Method showed less performance gain

for video sequences with high motion content where complexity parameter used

by the approach continuously falls in complex mode.
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H. Zhang et al. [67] proposed micro and macro level approaches for fast encoding

of intra prediction in HEVC. At macro level, they performed early termination of

CU depth search based upon RD cost of sub CU blocks and avoid unnecessary

computations. At micro level, they perform a progressive rough mode search based

upon Hadammard cost to select an appropriate intra prediction mode and checks

a small set of 11 intra modes. This avoids unnecessarily checking all 35 intra

modes available in HEVC and results in computational efficiency. Approach used

for early termination of CU depth search only works for intra CTUs and cannot

be used for inter CU depth decisions with more probability of occurrence in an

encoded video stream.

Sangsoo et al. [59] proposed fast inter prediction in HEVC based upon spatial pa-

rameters like sample adaptive offset (SAO) and temporal parameters like motion

vectors, coded block flag (cbf) and transform unit size. SAO parameter values of

reference block were used to estimate texture complexity in video frame. Motion

complexity of current block was measured based upon motion vectors of 2Nx2N

PU blocks. Extracted information was employed to intelligently predict early

Skip mode and CU split decision. Similarly Jarno Vanne et al. [68] proposed

three techniques for efficient inter prediction in HEVC that do efficient prediction

of symmetric motion partition (SMP), selection of symmetric and asymmetric

motion partitions SMP and AMP based upon quantization parameter (QP), and

optimal SMP and AMP size selection based upon range limitations. Rate distor-

tion complexity (RDC) of inter prediction in HEVC was used to select optimal

partitions and mode decisions.

Liquan et al. [69] proposed a fast CU size decision algorithm and early termina-

tion of motion estimation schemes in HEVC. Their approach uses motion vectors,

RD costs and depth levels of neighboring CUs and uses it to devise early ter-

mination schemes. These early termination schemes check motion homogeneity,

Skip modes and RD costs to avoid motion estimation on unnecessary CU sizes.

This results in speed up of inter prediction in HEVC. Thresholds employed in Li-

quans method are fixed and do not adapt to changing conditions in video scenes.

Also this method uses spatial information of neighboring and collocated CUs so
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for regions with abrupt scene change and high motion content this will result in

performance degradation. Song-Hak Ri et al. [70] proposed a RD cost based ap-

proach to speed up inter mode decisions in H.264. They select two optimal best

mode candidates from spatial neighboring blocks and temporal neighboring blocks

respectively. Prediction mode with the lower RD cost is chosen as the appropriate

member. To avoid error propagation because of mis-prediction they periodically

use exhaustive mode decisions. Scheme was implemented in H.264 and cannot be

directly extended to HEVC because block sizes and prediction modes in HEVC

are different from H.264.

Xunhua et al. [71] proposed a fast CU depth prediction scheme for HEVC inter

coding that uses CU depth values of spatial neighboring blocks in current frame

and temporal neighboring blocks in collocated frame to predict the depth of current

CU. RD cost of neighboring CUs and parent CU at lower CU depth levels is also

employed to reduce the depth search range. B. Kim [72] proposed a fast algorithm

for Skip or Merge mode prediction in HEVC for smart surveillance applications.

The scheme used 9 neighboring CUs in the collocated frame and 4 CUs in the

current frame for fast prediction of Skip or Merge mode during CU encoding.

Optimal threshold was computed using the conditional probabilities of Skip or

Merge mode and used to skip evaluation of unnecessary prediction modes. J. Wu

et al. [73] have proposed a fast CU encoding scheme for HEVC based upon a set

of three different constraints to select between best and second best PU modes to

reduce search space in HEVC inter-coding.

T. Lin et al. [74] proposed two early termination algorithms for optimal CU

depth selection using PU residual histogram in current CU and Skip information

of neighboring blocks for early termination of CU depth search. Similarly, K.

Tai et al. [75] proposed an early CU Split scheme that also skips unnecessary

PU predictions to reduce computational complexity of HEVC. Their approach

uses depth information of co-located CUs and RD cost correlation of different

prediction modes for early termination of the CU Split procedure. F. Chen et

al. [76] also proposed a fast inter coding algorithm for HEVC. Their scheme first

divides the CU into static or motion block, then spatio-temporal correlations are
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used to determine the CU depth range and prediction mode. Hoyoung et al. [77]

proposed an early Skip mode decision scheme, with emphasis on video quality,

using thresholds on the RD cost of merge mode for early decision of Skip mode.

Similarly, [78–81] have used fast encoding approaches for mode decisions in HEVC,

based on spatio-temporal neighbors.

These statistics based techniques use the behavior of spatial and co-located neigh-

boring blocks for prediction and speed-up of encoding process and are often based

on fixed hard or soft thresholds for prediction and exit strategies. These schemes

relay on local features of neighboring blocks in a video frame for decision making.

Hence, their performance is susceptible to scene changes and do not easily adapt

to the inherent variability of video content.

3.1.2 Learning and Classification Techniques

Researchers have applied classification algorithms to model critical video encoding

decisions as a classification problem and find optimal solutions. Various classifier

based approaches have been used for fast encoding in latest video codecs. Xiaolin

Shen et al. [82] proposed a statistical approach for fast encoding of HEVC. They

have modeled the CU size decision as a classification problem with two classes

i.e. split and non-split. CU split decision is taken based upon Bayesian decision

rule. A set of feature vectors is calculated for each CU and split decision is

taken using class conditional probability functions (pdfs) of respective classes and

minimizing Baysian risk. This classification based approach results in reduction

of computational complexity. Approach requires calculations of class-conditional

probabilities using non-parametric estimation which requires excess training data,

also it requires various pre-computed thresholds for different frame resolutions in

Bayesian decision rule which becomes a limitation with change in data sets.

Jian Xiong et al. [83] proposed a pyramid motion divergence (PMD) based ap-

proach for CU size selection in HEVC. Motivation for this approach is, higher the

degree of motion in a video region, it is highly likely that region will be encoded
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using small CU sizes. Optical flow is estimated for down-sampled version of each

frame. PMD is estimated for each CU as variance of the optical flows of current

CU and sub CUs. Next a k-nearest neighbor (kNN) based classifier is used to

take the split decision for each CU as compared to neighboring CUs. Optical

flow calculations and PMD computations at pixel level over the entire frame is a

computation overhead in this approach.

Jui Chiang et al. [84] proposed a two stage hierarchical neural classifier for fast

mode decision in H.264 stereo coding. First stage of neural network predicted

probable block partitions while second stage neural network was used for reference

frame selection. Features extracted from temporal and neighboring view frames

were fed to the Neural network. Similarly, Eduardo Martinez et al. [85] proposed

a classification based approach for inter-prediction in H.264 that works in two

levels. First classifier takes a decision and selects Skip mode for P Slides and/or

DIRECT mode for B slices. If this decision is not taken, second classifier chooses

between large and small block sizes for inter-prediction. Both classifiers are based

on support vector machines (SVM). Classifiers work in binary mode and use a set

of features extracted from video data to take early decisions. Chen Kuo et al.

[86] proposed a statistical approach for fast encoding in H.264. SVM is employed

in inter-mode decision, reference frame selection for motion estimation (ME) in

multiple frames and intra mode decision. Representative features are selected from

video frames to train SVM based classifiers in offline mode. Next trained classifier

is used in H.264 for fast encoding in run-time. All these schemes were proposed for

H.264 and its variants and cannot be directly applied to HEVC because macroblock

structure and inter prediction in HEVC is quite different and complex as compared

to H.264 with multiple depths and partition sizes.

Yun Zhang et al. [87] proposed a machine learning based approach for fast CU

depth decision in HEVC. They model CU depth decision as a three level hier-

archical binary decision problem. They have selected SVM based approach for

classification. A three output joint classifier is designed to manage false predic-

tions. The approach also employed feature selection optimization. Output of this
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approach highly depends on prediction accuracy and right feature selection. Er-

rors in feature selection introduce RD degradations. M. Grellert et al. [88] also

used SVM for fast CU partition decisions in HEVC that uses offline training to

model the classifier, while H. Kim et al. [89] used online learning based on a

Bayesian decision rule, also for fast CU partitioning. Similarly, L. Zhu et al. [90]

have implemented multiple binary and multi-class SVM classifier models to speed-

up the CU Split decision and prediction mode selection, respectively. They also

employed a combination of online and offline trained models to achieve better clas-

sifier accuracy. X. Shen et al.[91] also employed weighted SVM for early CU split

termination in HEVC. In this case the weights are used to reduce misclassification

in the SVM model.

A data mining approach based on decision trees is used in [92] to allow early

termination of decision processes that find the best CUs, PUs and TUs. A separate

decision tree is applied for each case and their fixed structure does not allow

any form of adaptability to different types of content. Furthermore, using single

decision trees may lead to over-fitting during the training phase. D. Ruiz et al. [93]

have also employed decision trees to speed-up HEVC intra coding. Bochuan Du

et al. [94] used Random Forests to speed up intra prediction in HEVC. First CU

depth search is reduced by selecting a range using neighboring CU depth levels.

Then a Random Forests classifier takes a Split vs. Non-Split decision. The authors

have used the individual pixel values as feature vectors for the RF classifier, which

may contribute to expand the feature set because of the limited information gain

of individual pixels.

Table 3.1 gives summary of the resent research in the area of fast coding of video

data. A common aspect of earlier research using machine learning approaches is

that most of them use offline training and are based on a single classifier. These

offline-trained classifiers do not easily adapt to changing conditions in different

type of video sequences. Therefore, feature selection becomes highly critical and

this is the reason for the majority of machine learning approaches to compute a

large feature set from video data. Thus, some ranking mechanism should be used

to short-list the most appropriate and effective features to improve the classifier
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Table 3.1: Summary of research work in fast video encoding methods

Title Methods Reference

Adaptive inter-mode decision for HEVC jointly
utilizing inter-level and spatiotemporal correlations

Statistics based
Methods

Liquan et al.[66]

Efficient mode decision schemes for HEVC inter
prediction

Statistics based
Methods

J. Vanne et al.
[68]

A Novel Fast CU Encoding Scheme Based on
Spatiotemporal Encoding Parameters for HEVC
Inter Coding

Statistics based
Methods

Sangsoo et
al.[59]

Fast encoding algorithm for high-efficiency video
coding (HEVC) system based on spatio-temporal
correlation

Statistics based
Methods

JH. Lee et
al.[80]

A fast HEVC inter CU selection method based on
pyramid motion divergence

Motion
Pyramids-Optical

Flow

J. Xiong et
al.[83]

A fast inter coding algorithm for HEVC based on
texture and motion quad-tree models

Statistics based
Methods

F. Chen et al.
[76]

A Fast HEVC Encoding Method Using Depth
Information of Collocated CUs and RD Cost
Characteristics of PU Modes

Spatial-Temporal
Methods

K. Tai et al.
[75]

A Fast H.264 / AVC-Based Stereo Video Encoding
Algorithm Based on Hierarchical Two-Stage Neural
Classification

Neural Networks J. Chiang et al.
[84]

A two-level classification-based approach to inter
mode decision in H.264/AVC

SVM E.Martinez et
al. [85]

Machine Learning Based Coding Unit Depth
Decisions for Flexible Complexity Allocation in
High Efficiency Video Coding

SVM Y. Zhang et al.
[87]

CU splitting early termination based on weighted
SVM

SVM X. Shen et
al.[91]

Fast HEVC Encoding Decisions Using Data Mining Decision Trees G. Correa et
al.[92]

Fast CU Partitioning Algorithm for HEVC Using
Online Learning Based Bayesian Decision Rule

Bayesian Decision
Rule

H.Kim et al.
[89]

A unified architecture for fast HEVC
intra-prediction coding

Decision Trees D.Ruiz et al.
[93]
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accuracy. Although, some techniques use online training or cost functions based

upon misclassification error to improve classifier performance, using a single clas-

sifier may result in over-fitting of the classifier model. This leads to either poor

performance in terms of speed-up for low motion video or poor performance in

terms of quality for high motion videos. Moreover, computation of cost functions

for classifier accuracy adds to the overall computational complexity. Very few tech-

niques available in the literature employ ensemble classifiers. This may be due to

the common understanding that ensemble classifiers are more computationally in-

tensive. However, ensemble classifiers have the unique advantage of diversification

to avoid classifier over-fitting and result in better performance [95] besides being

quite computationally efficient [96].

3.2 Content Adaptive Techniques

Content in video sequences often has large variations. These variations include

changes in motion content, abrupt scene changes and texture variations in video

frames. This diverse content make task of fast encoding techniques more chal-

lenging because fast encoding methods do not perform well for complex video

sequences. HEVC reference, HM evaluates all prediction modes and exhaustively

searches all the CU depth levels to select optimal prediction modes and CU depth

levels. Both of these tasks have a major contribution in increasing the computa-

tional complexity of HEVC [97].

Various techniques for fast encoding of HEVC [71, 72, 98] have been proposed

by researchers in literature. These schemes use spatio-temporal features for fast

HEVC encoding and are based on precomputed fixed thresholds for early predic-

tion of CU depth levels and prediction modes. These schemes rely on local features

of neighboring blocks in a video frame for decision making and therefore do not

adapt well to changes in the video content. Machine learning based approaches

[90, 92, 99] have also been used to reduce the computational complexity of HEVC

in the literature. Majority of existing methods used for fast video coding are not
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content adaptive and compare parameters extracted from neighboring blocks to

precomputed thresholds to predict behavior of the current block during encoding.

These comparisons define early termination conditions to speed-up encoding in

video streams of different resolutions and video content. Hence, these implemen-

tations often do not adapt when motion content of video stream or texture of video

frame changes.

Some work has been done on content adaptive approaches for fast encoding in

HEVC. G. Tian et al. [100] have used content adaptive approach for prediction

unit size decision in HEVC intra coding, that works in two stages. In the first

stage, texture complexity of down-sampled LCU helps in filtering out unnecessary

PU sizes. In the second stage, PU sizes of neighboring encoded PUs are used

to short list candidate prediction units. HR Tohidypour et al. [101] have pro-

posed an adaptive scheme for motion search range reduction and early prediction

of intra and inter modes in 3D HEVC. Disparity between base and dependent

views is employed for early selection of optimal prediction modes. J. Leng et al.

[102] have proposed a fast CU decision algorithm that computes CU utilization

at frame level and neighboring CU information at block level to skip rarely used

CUs. Approach uses parameters extracted from neighboring blocks in a frame to

compare against fixed thresholds for fast prediction. C. Blumenberg et al. [103]

have also proposed a content adaptive scheme for tile partitioning in HEVC to re-

duce coding losses because of tile boundaries selection. DG. Fernandez et al. [104]

proposed a smooth region classification algorithm in video frames. Based upon

this classification, time complexity because of search of optimal CU size selection,

intra and inter prediction modes decision was reduced in HEVC. According to

their scheme, if current CU block falls in the smooth region, it is not further split

to reduce the computational complexity. Similarly, number of evaluated intra and

inter prediction modes are reduced for CUs in the smooth region. Methods based

on classification have also been used in [105, 106] to reduce the computational

complexity of HEVC.

Table 3.2 gives summary of the resent research in the area of content adaptive

coding of video data. Majority of these content adaptive techniques rely on local
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Table 3.2: Summary of Literature in Content adaptive fast video encoding

Title Methods Reference

Content adaptive prediction unit size decision
algorithm for HEVC intra coding

Content Adaptive
HEVC Intra

Coding

G. Tian et al.
[100]

A content adaptive complexity reduction scheme for
HEVC-based 3D video coding

Content Adaptive
Search Range

Selection for 3D
HEVC

HR Tohidypour
et al. [101]

Content based hierarchical fast coding unit decision
algorithm for HEVC

Content Adaptive
CU Size Selection

J. Leng et al.
[102]

Adaptive content-based Tile partitioning algorithm
for the HEVC standard

Content Adaptive
Tile Partitioning

C. Blumenberg
et al. [103]

Complexity reduction in the HEVC / H265
standard based on smooth region classification

Content Adaptive
Smooth Region
Classification

DG. Fernandez
et al. [104]

parameters to adapt the encoding of blocks in a video frame. No global information

at frame level is calculated to characterize the content in video sequences. Hence,

adaptability of these techniques suffer loss in RD performance or encoder speed-up

for video sequences with complex spatial and motion content.

3.3 Fast Coding of Light Field Images

Light field images represent the visual information in a scene as a function of

position and angle of light rays [107, 108]. Hence, light field images contain more

information as apposed to conventional 2D images. Because of this additional

information, light field images contain huge amount of data and its compression

and storage is a challenge. Researchers are experimenting with various light field

representation formats with the objective of improving the coding efficiency of

standard encoding techniques for light field imaging. I. Viola et al. [109] have

compared the performance of different light field coding algorithms using objective

and subjective quality assessment for lenslet and 4D light field images. Their

study concludes that compression of 4D light fields performs significantly better
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than lenslet images. Y. Li et al. [110] have used a displacement intra prediction

scheme based on HEVC for coding light field images. Their scheme achieves 60%

bit-rate reduction as compared to Intra coding of HEVC. L. Li et al. [111] and

C. Perra et al. [112] have proposed different methods based on a pseudo sequence

to represent light field images and use HEVC for compression. They first arrange

the Light field image views as a pseudo temporal sequence and use HEVC for

compression. Waqas et al. [113] have represented sub-aperture light field images as

multi-view sequences and multi-view extension of HEVC has been used for efficient

compression. A 2D prediction and rate allocation scheme has been employed to

achieve higher compression. Their approach gives a higher PSNR for compression

of light field images as compared to the compression achieved with HEVC. In

general, light field data formats have significant impact on coding efficiency. For

instance, it was found by A. Vieira [6], that higher compression ratios are obtained

when encoding light fields as sub-aperture images rather than using lenslet format,

because sub-aperture images can be organized temporally into a pseudo video

sequence and video codec like HEVC can be applied for compression. Similarly,

[114–116] have also used pseudo sequence of sub-aperture images along with HEVC

for efficient compression of light field images.

Table 3.3 gives summary of the resent research in the area of light fields coding.

Most compression schemes for light field imaging investigated so far, such as the

ones cited above, are based on HEVC standard coding techniques. In addition

to this, majority of research in light field images is focused on achieving higher

compression for huge amount of data in the light fields. Using HEVC for coding

of light fields gives better coding efficiency than still image coding standards like

JPEG. Nevertheless, it also results in increase in the computational complexity of

the encoding process. In this context, JPEG Pleno is working on standardization

activities to define a new compression standard that aims to not only achieve

efficient coding of light field images, but also low computational complexity [117,

118]. Many implementations in the literature [78, 104, 119] are available on fast

coding of video data using HEVC. However, to the authors knowledge there are
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Table 3.3: Summary of Literature in Coding of Light Field Images

Title Methods Reference

Comparison and evaluation of light field image
coding approaches

HEVC based
Compression of

Light Fields

I. Viola et al.
[109]

Coding of focused plenoptic contents by
displacement intra prediction

HEVC based intra
coding of Light

Fields

Y. Li et al [110]

Pseudo-Sequence-Based 2-D Hierarchical Coding
Structure for Light-Field Image Compression

Pseudo Sequence
based coding of

Light Fields

L. Li et al. [111]

High efficiency coding of light field images based on
tiling and pseudo-temporal data arrangement

Pseudo Sequence
based coding of

Light Fields

C. Perra et al.
[112]

Interpreting plenoptic images as multi-view
sequences for improved compression

Multi-view coding
of Light Fields

Waqas et al.
[113]

Data formats for high efficiency coding of
Lytro-Illum light fields

HEVC based
coding of Light

Fields

A. Vieira et
al.[6]

no research studies related to low-complexity or fast coding of light field images,

neither benchmark results to enable evaluation of new research in this area.

3.4 Gap Analysis

Majority of work done for fast video encoding is based on statistics based tech-

niques. These techniques often use soft or hard thresholds to predict block type,

prediction modes and motion vectors of current block. On the other hand, clas-

sification based techniques require extraction of relevant features and training of

classifier. Training of classifier is computationally intensive but can be done offline.

Main limitations of earlier literature are summarized below:

• Despite higher compression efficiencies and all the work done on fast encod-

ing methods, HEVC codec is still not in widespread usage in main-stream

video applications due to the higher computational complexity of the codec
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that limits its real-time implementation in multimedia devices. Fast imple-

mentation of HEVC with acceptable RD performance is still an open research

problem.

• Statistics based approaches for fast encoding, widely available in literature

do not require any training albeit being data dependent because thresholds

are often computed using experimentation with different video streams. Out-

come of these techniques is highly susceptible to sudden scene changes, high

motion content and inhomogeneous regions in video sequences.

• Little work is available in the literature on content adaptive fast encoding of

video sequences. Majority of existing approaches are susceptible to changes

in video texture or motion content. Existing methods usually rely on lo-

cal parameters in a video frame and with changes in video content, these

methods either compromise on encoding speed or the RD performance.

• Majority of existing classification based methods employed in fast video cod-

ing are based on single classifier models and use offline training. These tech-

niques do not easily adapt to changing conditions in video scenes. Therefore,

selection of features becomes highly critical. Very few techniques in litera-

ture use ensemble classifiers like Random Forests or Adaboost. Similarly,

work done in literature on classification based approaches on earlier video

standards like H.264 cannot be directly extended to HEVC because of many

differences in coding structure and prediction modes.

• Latest research on light field images is focused on compression efficiency and

HEVC is considered as the codec of choice. However, no contribution in

the literature is available that addresses the computational complexity of

HEVC for encoding light field images. Consequently, no benchmark results

are available for comparative analysis of fast light field encoding techniques.
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3.5 Statement of Problem

Latest video codecs have high computational complexity despite being compres-

sion efficient. This complexity results in implementation challenges when these

codecs are used in various multimedia solutions. These challenges are the major

bottleneck in widespread usage of newest video codecs like HEVC. Majority of

research done on fast video encoding either uses statistics based methods or clas-

sification techniques using single classifiers. These solutions do not adapt to the

spatial and temporal variations in video content and compromise either on speed

or the RD performance.

Hence, there is need for robust fast encoding methods using intelligent algo-

rithms with low computational overhead to reduce the computational complex-

ity of HEVC. Such algorithms should adapt to the variations in video content

and give speed-up without compromising on RD performance and should result in

generalizable solutions that can also be applied to future image and video coding

applications.

3.6 Proposed Research Methodology

Focus of this research work is the investigation of fast algorithms and intelligent

techniques to reduce the computational complexity of HEVC. Publicly available

data sets have been used for analysis of video data. Simulations are run using

the data set to identify the complex blocks in HEVC encoder. A large set of

spatial and temporal parameters is identified in video data that can be used to

correctly predict the behavior of current block in the video frame and characterize

the nature of video content. Preprocessing of this large feature set is carried out

to remove irreverent features and select the optimal ones. This preprocessing

helps in improving the performance of classifier models and reduction in overhead

of the fast encoding method. Resultant optimal features are used to train the

classifier model and the model is integrated in HEVC to intelligently predict and
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simplify the critical tasks to reduce the computations of complex encoding blocks.

Before integration, classifier models are evaluated for accuracy using offline data

extracted from video sets. After integration in the video codec, performance of the

fast encoding method is evaluated based upon the speed-up of encoding process

and RD performance of the resultant encoded stream.

Proposed research methodology is shown in the Fig. 3.2. Multiple iterations of this

process have been carried out to refine the classifier model and improve the perfor-

mance of the fast encoding technique. Using this methodology, a computationally

efficient fast encoding framework is developed that adapts to the changes in video

content without sacrificing the video quality or bit-rate and performs better than

other state of the art implementations. Proposed fast video encoding solution can

also be extended to other emerging applications of video codecs such as coding of

light field images.
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Figure 3.2: Proposed research methodology
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3.7 Summary

This chapter described the recent literature on various fast video encoding tech-

niques. The literature survey was categorized into statistics, classification based

methods and content adaptive fast coding. Recent research in coding of light field

images was also discussed. Limitations of earlier work were highlighted and gap in

the literature was identified. Based upon these limitations, problem statement of

this research was formulated and proposed research methodology was outlined. In

the following chapters, main contributions of the proposed work will be described.



Chapter 4

Content Adaptive Fast Video

Encoding

This chapter presents the first contribution of the research work. A content adap-

tive fast video coding technique is proposed. Spatial and temporal parameters

from video data are extracted that give information about the type of video con-

tent. These global parameters are used to categorize video frames into simple or

complex category content. Accordingly, content specific schemes for fast HEVC

encoding have been implemented. Proposed scheme shows promising results for

video data with diverse content.

4.1 Overview of HEVC Complexity

HEVC gives 50% more coding efficiency as compared to H.264. To achieve this

compression efficiency, many new features and coding tools have been introduced

in HEVC as discussed in Chapter 2. These tools include quad-tree structure of

CUs and TUs, that are different from MBs used in earlier standards. Size of CUs

in the quad-tree structure can range from 64x64 to 8x8. These CUs exist at 4 CU

depth levels. A similar quad-tree structure exists for TUs. Size of variable size

TUs can range from 32x32 to 4x4 at four depth levels.

61
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Similarly, new intra and inter prediction modes and partition sizes have been

introduced in HEVC. Intra prediction in HEVC has been increased from 9 modes

in H.264 to 35 modes. New PUs and partition sizes have also been introduced

including non-symmetric partitions. These prediction modes and partition sizes

are evaluated at each CU depth level. HEVC reference software HM, exhaustively

checks all the CU depth levels and prediction modes for selection of the optimal

ones. For example, 85 different CU size combinations at multiple depth levels

are evaluated to select the optimal CU size during encoding of one CTU. And

for each CU depth level, all the possible prediction modes and partition sizes

are evaluated. This makes the HEVC encoding task many times more complex

[120]. Encoding complexity of different blocks in HEVC encoder for Low delay

and Random Access profile are shown in Table 4.1 [121]. Average complexity of

different encoder blocks for both the profiles is shown in the Fig. 4.1. According to

these stats, inter prediction block that includes selection of optimal depth level in

CU quad-tree structure, motion estimation, selection of optimal inter prediction

mode and partition size, is the most complex block in HEVC encoder and accounts

for more than 80% complexity.

Table 4.1: Percentage Complexity of different Blocks in HEVC Encoder [121]

Encoding Block RA Profile (%) LD Profile (%)
Entropy Coding 2.98 2.4
Intra Prediction 2.25 1.95
Inter Prediction 79.03 82.23
Transform and Quantization 14.48 12.5
De-blocking Filter 0.08 0.08
Sample adaptive offset Filter 0.1 0.1
Others 1.28 0.93

4.2 Content Adaptive Fast Encoding Techniques

Video data has large variations both in texture complexity and motion content.

Texture in video frame may change from smooth to complex among different

frames in a video or among various video sequences. Similarly, motion content
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Figure 4.1: Complexity Analysis of HEVC Encoder

and the frequency of dynamic scene changes also vary from one video sequence to

another. These variations make the task of optimal prediction mode and appro-

priate CU size selection in HEVC highly complex. Majority of fast video encoding

techniques described in Chapter 3 often use fixed thresholds for early selection of

prediction modes and CU sizes. These thresholds are often based upon local block

level parameters and do not adapt to the changes in video texture or motion con-

tent. Therefore, such techniques result in poor RD performance or little speed-up

gains during fast video encoding.

Hence, researchers are working on content adaptive techniques to adapt the fast

encoding methods to the variations in the video content. These approaches se-

lect thresholds based on video data analysis that can be updated with change in

texture complexity of video frame or motion content. Some methods in literature

also update the threshold values at regular intervals after a fixed number of video

frames to handle the variations within the video sequence. Similarly, machine

learning based methods used for fast encoding sometimes use content specific fea-

ture selection. On-line training of classifier models has also been used to handle

the variations in video content among different video sequences. All these tech-

niques extract certain parameters from video data to get information about video

characteristics. These extracted parameters are used to adapt the fast encoding

methodology to the video data.
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4.3 Spatial and Temporal Parameters

Video data has high spatial and temporal correlations. These correlations are high

for videos with large smooth regions and slow motion content. On the other hand,

video sequences with complex texture and high motion content have relatively

less correlation. To access the texture complexity of a block in the video frame,

information about the spatial neighboring blocks can be used. Similarly, temporal

neighboring blocks in the collocated frame can be used to access the motion content

in the block being encoded. Spatial perceptual information (SI) and temporal

perceptual information (TI) measures represent the spatial details and temporal

changes in video sequences [122]. These parameters are computed at frame level

in video sequence.

4.3.1 Spatial Perceptual Information (SI)

Spatial Perceptual Information (SI) shows the spatial detail and texture complex-

ity in a video frame. SI parameter is based on the Sobel filter [123]. Sobel filters

are used for edge detection and texture orientation in images and video frames.

Luma component of each frame in the video sequence is filtered using Sobel filter-

ing and standard deviation of the Sobel filtered frame is computed. This process

is repeated for all the frames in the video sequence. Finally, SI is computed as

the maximum of the standard deviations of all the Sobel filtered frames over the

whole sequence as shown in the Eq. 4.1.

SI = Maxtime[Stdspace[Sobel(Fn )]]. (4.1)

Video sequences with large smooth regions inside video frames will have low SI

value. On the other hand, complex texture and high spatial detail in video frames

results in high SI values.
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4.3.2 Temporal Perceptual Information (TI)

Temporal Perceptual Information (TI) shows the temporal changes and variations

in motion content in the video sequence. For computation of TI, difference between

the pixel values of luma component in consecutive frames in video sequence is

computed. This is known as the difference frame. Standard deviation of the

difference frame is used in computation of TI. This process is repeated for all

the consecutive frame pairs in the video sequence. TI is equal to the maximum

of standard deviation of all the difference frames in whole sequence as shown in

Eq. 4.2.

TI = Maxtime[Stdspace[Dn (i, j)]], (4.2)

where

Dn (i, j) = Fn (i, j)− Fn−1 (i, j). (4.3)

Video sequences with static regions and low motion will have small TI values.

Similarly, large TI values represent high motion content in video sequences.

Both SI and TI are global parameters that can be used to quantify the spatial and

temporal changes in the video sequence.

4.3.3 Otsu Thresholding

Binarization is used in image segmentation to differentiate the foreground from the

background. Thresholding is used to convert gray level images into binary images.

Objective of an efficient binarization technique is to find an optimal threshold

value for binarization. Otsu thresholding is a well known algorithm for image

binarization that can be used for segmentation in images and video frames [124].

Foreground and background are considered as two classes for image binarization.
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First step in Otsu thresholding is computation of image gray level histogram.

Than, Otsu method searches for an optimal threshold by checking all the gray

levels in the image histogram as threshold values. Threshold that maximizes the

inter class variance is considered the optimal threshold as shown in the Eq. 4.4

[125].

Tth = max[ω0(t)ω1(t)[µ0(t)− µ1(t)]
2], (4.4)

where

ω0(t) =
t∑

i=1

P (i), (4.5)

ω1(t) =
L∑

i=t+1

P (i), (4.6)

µ0(t) =

∑t
i=1 i ∗ P (i)

ω0(t)
, (4.7)

µ1(t) =

∑L
i=t+1 i ∗ P (i)

ω1(t)
. (4.8)

P (i) is the probability of gray level in the image histogram. ωi(t) is the probability

of class occurrence and µi(t) is the average level of a specific class.

Otsu method shows good performance for the images with bi-modal gray level

histograms. Histogram of the ’Newscaster’ image and corresponding binarized

image using Otsu thresholding are shown in the Fig. 4.2.
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Figure 4.2: Otsu Thresholding (a) Histogram of ’Newscaster’ Image (b) Bi-
narized ’Newscaster’ image using Otsu Thresholding

4.4 Analysis of Video Data

In this section, an analysis has been carried out for video sequences of diverse

content to observe the variations in CU size and prediction modes with changes in

video content. Three video Sequences namely, ’RaceHorse’, ’BQMall’ and ’Johnny’

are used and 20 frames of each sequence is encoded at QP values 22,27,32 and 37

using HEVC low-delay profile.

Tables 4.2 shows percentage CU Split cases at different CU depth levels during

selection of optimal CU size. Percentage of CU Split cases at CU depth levels 0, 1

and 2 are considered because at depth level 3, CU is not further split. According

to the Table, there are large variations in average percentage of CU Split cases for

the three sequences. For ’RaceHorses’ sequence with high motion content, average

percentage of Split cases is upto 92.93% at depth level 0. For ’Johnny’ sequence

with large static regions and slow motion, this percentage is 27.23% at depth level

0. For ’BQMall’ with moderate motion content, average percentage is 49.18% at

CU depth level 0.

Table 4.3 shows percentage of Skip prediction mode at CU depth levels 0,1,2 and

3 for the three video sequences. Again there are large variations in percentage of

Skip mode depending on the video content. According to the Table, for videos

with low motion content and static regions like Johnny the percentage is upto

95.95% and for videos with high motion content like ’RaceHorses’ it is as low as
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Table 4.2: Percentage Distribution of CU Split Cases in Video Streams

Stream CU Depth Qp = 22 Qp = 27 Qp = 32 Qp = 37 Average (%)

RaceHorses
Depth 0 99.19 97.11 91.73 83.69 92.93
Depth 1 79.12 65.47 49.06 33.98 56.91
Depth 2 37.58 25.51 15.09 8.66 21.71

BQMall
Depth 0 67.67 53.21 42.63 33.2 49.18
Depth 1 41.47 29.18 21.13 13.79 26.39
Depth 2 16.56 11.41 6.98 3.81 9.69

Johnny
Depth 0 51.21 31.21 16.46 10.05 27.23
Depth 1 23.7 8.79 3.41 1.68 9.39
Depth 2 5.6 1.27 0.48 0.15 1.87

2.24% at CU depth level 0. For video sequence with moderate motion content like

’BQMall’, percentage of Skip mode is in between.

Table 4.3: Percentage Distribution of Skip Mode Cases in Video Streams

Stream CU Depth Qp = 22 Qp = 27 Qp = 32 Qp = 37 Average (%)

RaceHorses

Depth 0 0.00 0.87 2.02 6.07 2.24
Depth 1 0.89 8.85 21.47 34.30 16.38
Depth 2 9.51 32.03 51.76 66.61 39.98
Depth 3 31.12 60.28 76.36 86.53 63.57

BQMall

Depth 0 31.46 46.85 56.74 64.31 49.84
Depth 1 42.87 58.19 68.95 77.58 61.90
Depth 2 59.20 74.54 83.58 89.45 76.69
Depth 3 75.83 87.18 92.81 95.91 87.93

Johnny

Depth 0 48.79 66.92 78.43 87.68 70.45
Depth 1 64.31 82.17 90.49 94.92 82.97
Depth 2 77.46 91.87 96.71 98.67 91.17
Depth 3 87.96 97.00 99.19 99.66 95.95

Stats in Tables 4.2 and 4.3 indicate, majority of blocks in the video frame for

sequences with complex texture are encoded using small CU sizes as opposed

to the frames with homogeneous texture that are encoded using large CU size.

Similarly, large temporal variations and high motion content in video frames is

also encoded using small CU blocks. Video frames with complex texture and high

motion content also require diverse set of prediction modes and percentage of Skip

or merge mode is reduced. On the other hand, video sequences with homogeneous

regions and slow motion contain large percentage of Skip mode and are encoded

using large CU size. Hence, if spatial or temporal complexity of a video frame can

be calculated, this information can assist in fast encoding of the video sequence,

as unnecessary prediction modes and block sizes can be ignored.
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4.5 Proposed Fast Coding System

As discussed in the previous section, HEVC encoding decisions about CU depth

level and prediction modes selection are highly dependent on the video content. In

this work a content adaptive approach has been devised for fast HEVC encoding

that early terminates CU depth level search and fast selection of optimal pre-

diction modes to reduce the computational complexity of HEVC. Approach uses

both global and local parameters to adapt the fast encoding method to the video

content.

To take the advantage of the correlation between the neighboring CU blocks in

current and collocated frames, information of four neighboring CUs has been used.

These neighboring CU blocks include, upper (U), left (L), upper-left (L-U) CUs in

the current frame and collocated CU in the previous frame as shown in Fig. 4.3.

Colocated

CU

C

L-U

Current 

CU

U

L

Current FramePrevious Frame

Figure 4.3: Neighboring CU Blocks in Current and Previous Frame

4.5.1 Classification of Video Content

Encoding decisions in HEVC change with spatial and temporal content in the video

data. Global parameters like SI and TI are used to identify frames in video se-

quences with complex texture and high motion content. SI and TI parameters are

computed for the video and these values are normalized to bring them in the range

0 to 1. Normalized values of SI and TI have been computed for ten video sequences

of different texture and motion content and shown in the Fig. 4.4. These sequences
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include, ’BlowlingBubbles’, ’RaceHorses’, ’BQMall’, ’PartyScene’, ’Catcus’, ’Bas-

ketBallDrive’, ’BQTerrace’, ’FourPeople’, ’Traffic’ and ’Video4’. Video Sequences

with low motion and smooth texture like ’Video4’ and ’Traffic’ have normalized SI

and TI values less than 0.5. Similarly, video sequences with high motion content

and complex texture like ’BlowingBubbles’, ’RaceHorses’ and ’BQTerrace’ have

normalized SI and TI values above 0.5.

Figure 4.4: Classification of Video Content based on SI and TI Parameters

Hence, SI and TI parameters can be used to categorize the video frames into

simple or complex frames. In the proposed methodology, when sum of normalized

SI and TI values is greater than or equal to 1.0, video frame is considered complex,

otherwise it is considered a simple frame.

4.5.2 Otsu Difference Maps

Proposed approach uses Otsu thresholding for identification of static regions in

the video frame. First a difference frame is computed according to the Eq. 4.3.

Otsu thresholding is applied on the difference frame to categorize each pixel into
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foreground or background regions. Otsu threshold is computed using histogram of

pixel values in difference frame and used to binarize the difference frame as shown

in the Eq. 4.9. As a result, a binary difference map is generated. In the differ-

ence map, pixels with value of 0 belong to static region, while pixels with value

of 1 belong to non-static region. Example difference maps are shown in Figs. 4.5

and 4.6. These maps have been generated for frames in video sequences ’Basket-

BallDrill’ and ’BlowingBubbles’, respectively. According to these maps, frame in

the ’BasketBallDrill’ has more static regions than the frame in the ’BlowingBub-

bles’ sequence.

Map(i, j) = Dn (i, j) ≥ Tth . (4.9)

Figure 4.5: Otsu Threshold based Difference Map for ’BasketBallDrill’

Information in the difference maps can assist in early selection of Skip prediction

mode without exhaustively checking all the prediction modes for a specific CU

block.
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Figure 4.6: Otsu Threshold based Difference Map for ’BlowingBubbles’

4.5.3 Content Adaptive Fast Encoding

In order to adapt the fast encoding method to the video content, first normalized

SI and TI parameters are computed at frame level. If sum of normalized SI or TI

values is greater than or equal to 1.0, frame is categorized into complex video frame.

Otherwise it is categorized as a simple video frame and a specific fast algorithm

is used for each frame type according to the flow-chart in Fig. 4.7. Processing of

simple and complex video frames is described in the following sections.

4.5.4 Processing of Simple Video Frames

Simple video frames have low texture and motion content that results in more per-

centage of large CU sizes and Skip mode cases during HEVC encoding. Proposed

fast encoding method for simple video frames at each CU depth level is outlined

below:

• Compute average depth of neighboring CUs using the Eq. 4.10 below :
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Figure 4.7: Classification of Video Frame using spatio-temporal (SI, TI) Pa-
rameters

DepthN =
N∑
i=1

widi, (4.10)

where N = 4 and di is the depth level of neighboring CUs. Value of wi is

chosen as 0.25 to compute the average.

• Using the Otsu Difference map, check if current CU is static or not. If

current CU is static and depth level of current CU is greater than the average

neighbors depth, stop the CU depth search.

• For static CUs, if prediction mode of collocate CU in the previous frame is

Skip, select Skip as the optimal mode for current CU without exhaustively

checking all the other prediction modes.
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• For non-static CUs, after checking merge and 2Nx2N prediction modes, if

coefficient count of prediction residual is zero, skip checking of asymmetric

and intra prediction modes.

Above steps are repeated for CU depth levels 0, 1, 2 and 3 starting from CU depth

level 0.

4.5.5 Processing of Complex Video Frames

Complex video frames have high texture and motion content that results in more

percentage of small CU sizes and diverse set of prediction modes during HEVC

encoding. Proposed fast encoding method for complex video frames at each CU

depth level is outlined below:

• Compute average depth of neighbors using the Eq. 4.10. If average neighbors

depth is greater than the depth level of the current CU, skip searching for

optimal prediction modes at current CU depth level

• Using the Otsu Difference map, check if current CU is static or not. If

current CU is static and depth of current CU is greater than the average

neighbors depth, stop the search for optimal CU depth.

• For static CUs, if prediction mode of 4 neighboring CUs is Skip, select Skip

as the optimal mode for the current CU without exhaustively checking all

the other prediction modes.

• For non-static CUs, after checking merge and 2Nx2N prediction modes, if

coefficient count of prediction residual is zero, skip checking of asymmetric

prediction modes.

Above steps are repeated for CU depth levels 0, 1, 2 and 3 starting from CU depth

level 0.
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4.5.6 Overall Content Adaptive Algorithm

Proposed overall content adaptive algorithm for fast HEVC encoding first eval-

uates global parameters at frame level to categorize the video frame into simple

or complex category. Otsu threshold based difference map is also computed at

frame level and used to identify the static regions in the video frame. After cat-

egorization of the video frame, frame specific fast encoding methods described in

sections 4.5.4 and 4.5.5 are repeated for each CU in the video frame starting from

the depth level 0. Flow-chart of the fast encoding method at CU level is shown

in Fig. 4.8. According to the flow-chart, exhaustive search for optimal prediction

mode can be stopped if prediction residual after checking of Skip or 2Nx2N modes

is zero or there is a large percentage of Skip blocks in the neighbors. Similarly, for

static CUs, if current CU depth is greater than the average neighbors CU depth,

search for optimal CU depth level can also be terminated.

4.6 Results and Discussion

Proposed content adaptive approach for fast encoding of videos has been imple-

mented in HEVC reference software HM version 16.10 [126] and results are com-

puted on an Intel Core i5 machine running at 1.7 GHz with 8 GB of memory.

These results have been computed for HEVC Random Access (RA) and Low De-

lay (LD) profiles at Qp values 22, 27, 32 and 37 according to the HEVC common

test conditions [60]. Video streams of different resolutions and multimedia content

have been used for computation of speed-up in HEVC encoding and RD perfor-

mance. To compute the speed-up of the proposed approach as compared to the

HM reference, Eq. 4.11 has been used.

TS(%) =
(Tr − Tp) ∗ 100

Tr
, (4.11)

where Tr is the execution time of HM reference and Tp is the execution of the pro-

posed fast encoding method. For measurement of RD performance, Bjontegaard
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Figure 4.8: Flow chart of the fast encoding algorithm at CU Level

delta bit-rate, BDBR (%) and Bjontegaard delta PSNR, BDPSNR (dB) have been

used [56].

Table 4.4 shows performance of proposed approach for both RA and LD profiles.
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According to these results, proposed approach gives overall speed-up of 56.56% for

RA profile and 52.69% for LD profiles, respectively. This speed-up is achieved with

increase in BDBR of 1.67 and 2.94, respectively. These results also indicate that

proposed content adaptive approach shows equally good results both for simple and

complex content video streams. For simple video sequences with low motion and

smooth texture like ’FourPeople’, proposed approach gives speed-up of 83.52% for

RA profile with negligible increase in BDBR of 1.49 and 77.68% for LD profile with

increase in BDBR of 5.37, respectively. For video sequences with complex texture

and high motion content like ’BQTerrace’, proposed approach gives speed-up of

61.88% with increase in BDBR of 1.20 for RA profile and speed-up of 55.23% with

increase in BDBR of 1.81 for LD profile, respectively. Hence, proposed approach

gives good speed-up for simple video sequences and shows good RD performance

for videos of complex nature.

Table 4.4: Results of Proposed Approach for RA and LD Profiles

Stream Resolution RA Profile LD Profile
BDBR BDPSNR TS(%) BDBR BDPSNR TS(%)

BasketballPass
416x240

1.31 -0.062 47.67 1.73 -0.130 45.10
BQSquare 0.62 -0.027 46.18 1.51 -0.026 43.23
BasketballDrill

832x480
1.93 -0.081 57.46 3.89 -0.163 56.21

BQMall 2.18 -0.089 48.53 3.71 -0.172 46.54
RaceHorses 2.21 -0.086 35.04 2.11 -0.078 33.12
FourPeople

1280x720
1.49 -0.048 83.52 5.37 -0.198 77.68

KristenAndSara 1.33 -0.050 77.88 3.66 -0.125 66.89
BasketballDrive

1920x1080
3.14 -0.067 59.70 3.13 -0.082 58.01

BQTerrace 1.20 -0.025 61.88 1.81 -0.051 55.23
Cactus 1.50 -0.032 61.33 2.91 -0.092 57.85
PeopleOnStreet 2560x1600 1.52 -0.068 42.92 2.57 -0.126 39.78

Average 1.67 -0.058 56.56 2.94 -0.113 52.69

RD performance of the proposed approach against HM reference for ’Catcus’

stream is shown in the Fig. 4.9. According to the RD curve, RD performance

of the proposed approach is similar to the HM reference with an average encoding

speed-up of 61.33%.
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Figure 4.9: RD Performance Curve for ’Catcus’ (Qp : 22,27,32,37 )

4.7 Performance Comparison

Speed-up comparison of the proposed approach and J.Lee [80] has been shown for

’PeopleOnStreet’ and ’Catcus’ streams at Qp values 22, 27, 32, and 37 in Figs. 4.10

and 4.11. It is clear from these Figs. that proposed approach performance better

than the J.Lees method in terms of speed-up for both the streams at all Qp values.

Detailed performance comparison of the proposed approach with other existing

implementations is shown in the Table 4.5. According to the table, proposed

approach gives average speed-up of 56.56% at BD BR of 1.67% for RA profile.

Average speed-up of F.Chen [76], Sangsoo [59] and D. Fernandez [104] for the

same profile are 48.60%, 49.35% and 31.57%. Hence, overall speed-up of proposed

approach is better than all the three implementations with almost similar RD

performance.

For video streams with low motion content and simple texture like ’FourPeople’,

D. Fernandez [104] gives speed-up of 35.27%, F.Chen [76] 63.6% and Sangsoo [59]

74.1%. For the same sequence, proposed approach adapts better to the video

content and gives speed-up of 83.52%. Similarly, for video streams with high
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Figure 4.10: Speed-up Comparison for ’PeopleOnStreet’

Figure 4.11: Speed-up Comparison for ’Catcus’

motion content and complex texture like ’BQTerrace’, Sangsoo [59] gives speed-

up of 54.70%, F.Chen [76] 50.6% and DG Fernandez [104] 35.47%. On the other

hand, proposed approach adapts better to the complex video content and gives

speed-up of 61.88% for the same video sequence. Similar trend in performance

can be observed for videos with moderate complexity in terms of content like
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Table 4.5: Comparison of results of the proposed approach with existing works
for HEVC Random Access profile

Stream Resolution Proposed Approach F.Chen [76] Sangsoo [59] DG Fernandez [104]
BDBR TS(%) BDBR TS(%) BDBR TS(%) BDBR TS(%)

BasketballPass
416x240

1.31 47.67 1.8 35.5 1.50 33.60 1.4 30.49
BQSquare 0.62 46.18 2 34.5 0.60 45.10 0.7 20.43
BasketballDrill

832x480
1.93 57.46 1.6 47.7 1.90 45.20 2.1 32.33

BQMall 2.18 48.53 1.5 40.3 2.20 48.60 0.8 24.87
RaceHorses 2.21 35.04 1.8 43.6 2.2 33.9 0.5 16.76
FourPeople

1280x720
1.49 83.52 1.1 63.6 1.7 74.1 1.1 35.27

KristenAndSara 1.33 77.88 1.1 60.4 1.2 73.1 1.6 46.41
BasketballDrive

1920x1080
3.14 59.70 1.4 52.6 2.00 50.90 1.9 46.92

BQTerrace 1.20 61.88 0.8 50.6 1.60 54.70 1.2 35.47
Cactus 1.50 61.33 1.5 55.9 2.80 56.80 1.5 32.7
PeopleOnStreet 2560x1600 1.52 42.92 2.1 49.9 0.90 26.90 1.1 25.63

Average 1.67 56.56 1.52 48.60 1.69 49.35 1.26 31.57

’BasketBallDrill’ in the table.

4.8 Analysis of Results

In comparison to other state of the art implementations, proposed approach has

outperformed all of them in terms of average speed-up with negligible increase in

BDBR figures as shown in the Table 4.5. This is because, it adapts better to the

nature of video content both for simple videos and streams with high motion and

complex texture. Therefore, proposed content adaptive approach can be used in

video encoding solutions to reduce complexity of HEVC.

According to the Table 4.4, for LD profile BDBR figures of proposed approach are

on the higher side as compared to the RA profile. Similarly, for certain streams like

’BasketballDrive’ RD performance is not up-to the mark for both the profiles. For

streams like ’PeopleOnStreet’ with large temporal variations and complex texture,

speed-up needs further improvement. This is mainly because fixed thresholds

are being used in categorization of frames as simple or complex in the proposed

methodology and any miscalculation in the categorization ultimately affects the

speed-up or the RD performance. Using a machine learning based method for this

categorization may improve the results.
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4.9 Summary

A content adaptive fast video encoding technique was implemented in this chapter.

Global parameters SI, TI and Otsu Threshold at frame level were used to evaluate

the type of video content. Based upon these evaluations, content specific schemes

were implemented for simple and complex frames in the video sequence. Results

of this implementation showed that proposed approach adapts better to the video

content and gives promising results as compared to the existing implementations.

In the next chapter, machine learning based approaches will be explored for fast

coding of video data.



Chapter 5

Fast Video Coding using Random

Forests

This chapter presents the second major contribution of the research. A machine

learning based fast encoding method to reduce the computational complexity of

HEVC is proposed. The approach uses Random Forests (RF) based ensemble

classification for selection of prediction mode and early termination of CU size

search in HEVC. A large feature set for training of Random Forests classifiers is

extracted from video data. Comparative analysis of two feature selection methods

has been done to reduce the features set for training of the classifier model. The

chapter also presents the performance analysis of classifier models and comparison

of the proposed approach with other similar methods.

5.1 Machine Learning for Fast Video Coding

Machine learning based methods are being used for fast video encoding and usually

perform better than statistics base approaches that use hard or soft thresholds

for making early decisions. Researchers have experimented with different machine

learning algorithms to reduce the computational complexity of recent video codecs,

as discussed in chapter 3. These methods use features extracted from video data

82
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to generate a classifier model and use it for early prediction of critical decisions in

the video codec. Majority of literature on machine learning based methods uses

single classifiers for fast video encoding and these classifier models are trained

offline.

Commonly used machine learning methods in fast video encoding are Bayesian

classification, Decision Trees and SVM. Single Decision Tree is highly dependent on

input data and tend to overfit that affects its accuracy and performance. Bayesian

classification methods often use Naive Bayes classifiers. Naive Bayes assumes, all

the input features are independent of each other that is not always true for video

data. Another underlying assumption in Bayes classification is that input data

has normal distribution. Similarly, SVM heavily rely on the number of support

vectors selected from the training data. Secondly, because of slow training speed,

it is not preferred in online training scenarios [42].

5.1.1 Why Random Forests?

Little work is available in literature on using ensemble classification methods like

Random Forests for fast video encoding. Random Forests uses multiple decision

trees for classification and each tree is generated using randomly selected features.

Random Forests handles the over-fitting problem of single decision tree by major-

ity voting on the output of individual trees and biasness towards specific features

through randomness. Ensemble classifiers usually have more computational over-

head but Random Forests is computationally efficient and can be used in real-time

implementations [96]. Similarly, classifier models used in video codecs are usually

trained offline. Offline trained classifier models heavily rely on training data and

feature set used for training to handle the variations in video content.

To compare the performance of Random forests with other machine learning based

methods, simulations are run using MATLAB ’Classification Learner’ application.

In these simulations, features extracted from video data are used and accuracy of



Fast Video Coding using Random Forests 84

Table 5.1: Comparison of Random Forests with other machine learning meth-
ods

Classifier Model AUC Classifier Accuracy (%)
Linear Discriminant Function 0.92 84.2
Logistic Regression 0.93 85.7
SVM 0.93 86.4
Decision Tree 0.93 87.0
Random Forests 0.96 89.8

Random Forests is evaluated against Discriminant analysis based classifier, Deci-

sion Tree, SVM and logistic regression models. Simulations are run for CU split

decision in HEVC. Results of these simulations are shown in the Table 5.1. Accord-

ing to these results, Random Forests shows better accuracy and maximum area

under the curve (AUC) in receiver operating characteristics (ROC) curves than

all the other classification models. ROC curves of these simulations are shown in

Fig. 5.1. These results demonstrate that for video data, Random Forests shows

better performance as compared to other machine learning methods.

In this work, Random Forests has been used for fast video encoding. Both offline

and online trained classifier models are used to handle the variations in video

content and evaluate the impact of individual models on the performance of fast

encoding technique. Details of the Random Forests classifier and the proposed

methodology is given in the following sections.

5.2 Overview of Random Forests

Decision trees are used for classification and regression in machine learning based

methods. Random Forests (RF) is an ensemble classifier model [127, 128] that uses

multiple decision trees to form a forest, as shown in the Fig. 5.2. An ensemble

classifier, by definition, is a group of weak classifiers that collaborate to take a

strong decision. For classification, the input test sample is fed to all decision trees

and then each decision tree associates the sample to a specific class. Majority

voting is performed on the outcome of all decision trees to classify the test sample.
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Figure 5.1: Comparison of ROC Curves (a) Linear Regression Function (b)
Decision Tree (c) SVM (D) Random Forests

For training of the classifier model, samples are randomly selected from the train-

ing data with replacement and used for decision tree generation. This reduces the

correlation between the generated trees. Also a sub-set of features is used at each

node split while generation of decision trees in the forest. Features in the sub-set

are randomly selected [129, 130]. This randomness in decision tree generation,

along with majority voting on the outcome of all trees in the forest, adds diver-

sification to the Random Forests classifier and makes it immune to over-fitting.

During tree generation, an entropy-based impurity measure is used for split de-

cision at each node in the decision tree according to Eq. 5.1, where i(X) is the

impurity at node X, p(wi) is the fraction of samples that belong to class wi. The

decrease in impurity at node X is measured by using Eq. 5.2, where i(XL) and

i(XR) are the impurities of left and right children nodes XL and XR. PL is the

fraction of training samples that will go to the left child node after split. Eq. 5.3 is

used as a stopping criterion in decision tree generation during the training process,
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Figure 5.2: Random Forests (RF) with N Decision Trees

where β is a threshold value [131].

i (X) = −
n∑

i∈C

((p (wi)) log2 (p (wi))) , (5.1)

∆i (X) = i (X)− PLi (XL) + (1− PL) i (XR) , (5.2)

∆i (X) ≤ β. (5.3)

Random Forests uses randomly selected sub-set of features for node split in deci-

sion tree generation followed be majority voting on outcome of all decision trees.

Because of these randomly selected features, trees in the Random forest are less

correlated and perform better than other ensemble classification methods like

Bagging[132]. Samples from the training set that are not selected for tree gen-

eration can be used to validate the Random Forests classifier. This process is
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known as out-of-bag training accuracy and is often used to cross-validate the clas-

sifier model.

The accuracy of Random Forests classifier depends upon the number of trees in the

forest, number of features used for split at each node and depth of each decision

tree. A large number of fully grown trees may increase classifier accuracy but it also

increases the computational complexity of the classifier model. Hence, selection of

optimal number of trees, tree depth and other parameters is a trade-off between

accuracy of the classifier model and computational complexity.

5.3 Proposed Fast Encoding Method

As described in Chapters 2 and 4, testing all CU sizes at different depth lev-

els of the CU quad-tree structure, is one of the most computationally intensive

tasks during HEVC encoding. Similarly, within each CU, testing of TU quad-tree

structure and evaluation of all inter-prediction modes for different CU sizes at

all depth levels also adds to the computational complexity. Hence, the proposed

methodology targets these three tasks to reduce the computational complexity of

HEVC, based on the RF ensemble classification to intelligently predict early CU

and TU depth termination rather than testing all depth levels to find the optimal

one. Similarly, RF-based classifier is also used for early prediction of Skip mode

during inter coding. An ensemble of offline and online classifier models is used,

taking advantage of all the characteristics of these type of classifiers. First, it

intelligently predicts Skip mode at different CU depth levels. Secondly, it is used

to predict the optimal TU size within each CU. Lastly, the classifier is used for

prediction of early CU depth termination in the inter frames. The classification

problem is formulated as binary classification with two classes in each case. First,

a set of features is identified as containing the best ones to be extracted from the

video data and used to train the classifier. Than, the generated classifier model

is integrated in the HEVC encoder. The fast coding decisions are taken by the

classifier based upon the input features extracted from video data during encoding
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at runtime. Therefore, selection of features for classifier training is an important

process in this work, as described in the following section.

5.4 Feature Extraction and Feature Selection

In fast video encoding, the relevant features are derived from the inherent char-

acteristics of the video signal, coding process, mode decision and data structures.

These extracted features are used to train the classifier model. Homogeneous re-

gions in a video sequence with smooth texture and small motion content are more

often encoded as large CU blocks using HEVC. On the other hand, regions in

video frame with complex texture are encoded using small CU sizes. The depth

level of a CU is also highly correlated with spatial and temporal neighbors. TU

Split decision is highly correlated with the number of non-zero coefficients and

the absolute residue of a block. Similarly, Skip inter-prediction mode is usually

selected as the optimal mode for homogeneous or static regions in video frames.

Skip mode selection is also correlated with prediction modes of neighboring blocks

[69].

Selection of optimal features is also important in machine learning approaches due

to its strong influence on accuracy of classifier models. Dimensionality of the fea-

ture set is also important, because a large set may lead to overfitting and increases

the computational complexity. In this work, two different approaches were evalu-

ated for efficient feature selection. (i) Information gain filtering-based approach;

(ii) Wrapper-based approach using RF feature importance as elimination criterion.

The proposed methodology to select the best features comprises two steps. First,

a large set of relevant features is extracted from video data to predict CU and TU

depth levels and Skip inter prediction mode. Than, both the filtering-based ap-

proach and wrapper-based approach are used to find the most relevant features and

to drop those that do not significantly contribute to the decision process. Overall

the large set includes features about texture, motion and other parameters related
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to RD optimization and data structures. These include pixel variance and gra-

dient of the current block using the Sobel operator that gives information about

the texture in the block. The variance of current CU motion vectors (MV), av-

erage MV of neighboring CUs, sum of absolute differences (SAD) with co-located

blocks that give information about motion content and homogeneous regions is

also used [91]. Features related to RD optimization and data structures include

non-zero (NZ) coefficient count in the current block, RD cost of the current block,

quantization parameter (QP) and total bits to encode the current block. These

features give information about residual content in the current block. Also, the

depth of the neighboring CU blocks, partition size, average NZ coefficient count

of neighbors and count of Skip blocks in the neighbors give information about the

behavior of the neighboring blocks. To compute the features related to the neigh-

boring CU blocks, three spatio-temporal neighboring CU blocks are considered.

These include top and left CU in the current video frame and co-located CU in

the adjacent frame [87].

The large feature sets defined in this work are shown in Table 5.2 for: fast SKIP

mode selection (15 features), early CU depth termination (18 features) and early

TU depth termination (7 features).

5.4.1 Filtering based Approach

The first approach to selectively reduce the size of the large feature sets is the

filtering-based approach using the information gain [133, 134]. In the filtering-

based approach, individual features are ranked based upon information gain to

reduce the size of the feature set by only including those with higher rank. This

approach can be described as follows.

If Ai is an attribute and C is the class, a decrease in entropy of C reflects an

increase in the information about C because of the attribute Ai. This is known as

information gain and it is defined by Eq. 5.4 [135].

InformationGain = H (C)−H (C|Ai) , (5.4)
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Table 5.2: Large feature set for SKIP mode selection, CU and TU SPLIT
decision

Features Skip
Mode

CU
Split

TU
Split

Average Neighbors CU Depth X X –
Average Neighbors Partition Size X X –
Pixel Variance Partial (1/4) of Current Block X X –
Pixel Average of Current Block X X –
Pixel Variance of Current Block X X X
MV Variance of Current Block – X –
Average MV of Neighboring Blocks X X –
Non-Zero Coefficient Count of Neighbors X X –
NZ coefficients of Current Block X X X
SAD with co-located Blocks X X X
RD Cost of SKIP Mode Encoding – X –
Neighboring CUs average RD Cost X X –
RD Cost of Current Block X X X
Skip Mode Count of Neighboring Blocks X X –
Gradient of Current Block using Sobel X X –
Total Encoded Bits for Current Block X X X
QP of Current Block X X –
Skip Flag in Current Block – X –
Abs Sum of coefficients of Current Block – – X
Prediction Residual of Current Block – – X

where

H (C) = −
∑
c∈C

((p (c)) log2 (p (c))) , (5.5)

H (C|Ai) = −
∑
a∈A

p (a)
∑
c∈C

((p (c|a)) log2 (p (c|a))) . (5.6)

Eq. 5.5 and 5.6 represent entropy of class C, before and after observing the

attribute. Hence, information gain measures the importance of an individual at-

tribute Ai and how effectively it can discriminate between different classes. To

filter out the least important features, each feature Ai is assigned a score based

upon its information gain and then all features are ranked according to such score.
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5.4.2 Wrapper based Approach

In the wrapper-based approach, the combined effect of different feature subsets is

analyzed using a predefined classifier and than the least important ones are ex-

cluded [136, 137]. In this work Random Forests is used as the predefined classifier.

First a RF model is trained using all the features in the data set. To compute

the importance of each feature, it is permuted and the classifier accuracy is com-

puted with the resultant modified data set. A decrease in the classifier accuracy

because of the permuted feature represents the importance of that feature [127].

This process is repeated to compute the importance of all features in the data set

and then they are ranked according to their importance.

The information gain and feature importance of each feature was computed for

Skip mode, CU and TU Split decision for the following four different video se-

quences: ‘BasketBallDrive’, ‘BQMall’, ‘BlowingBubbles’ and

‘Johnny’. The relevant features are extracted for 20 frames in each video sequence

encoded at four different QP values i.e. 24, 28, 32, 38. The features are extracted

for all CU layers in the CTU i.e., from layer 0 (64x64) to layer 2 (16x16). Then

the information gain of each feature is computed as the average for all CU sizes.

Ranking of each feature based upon average information gain (filter) and average

feature importance (wrapper) is shown in Table 5.3 for CU Split, Skip mode and

TU Split cases. The rank order obtained for each feature, based on the informa-

tion gain is shown in columns “F”, while the rank order obtained from wrapper is

shown in columns “W”. Those features with the highest information gain/feature

importance are ranked as ‘1’ in the table, while higher rank values correspond to

lower information gain/feature importance.

To select the optimal reduced feature sets for CU Split, Skip mode and TU Split

cases, multiple RF classifier models were generated. Starting with the complete

feature set in each case, features were gradually eliminated based upon their rank

(according to information gain/feature importance shown in Table 5.3) and then

new RF classifier models were generated. The number of trees in these classifiers

was kept constant at 20 and the accuracy was calculated for each case. The
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Figure 5.3: CU Split Decision: RF classifier accuracy vs. Number of features
for filtering and wrapper based approaches

graphs of the classifier accuracy vs. number of features for filtering and wrapper

approaches are shown in Figs. 5.3, 5.4 and 5.5 for CU Split, Skip mode and

TU Split cases, respectively. In each graph, the number of features used in the

x-axis corresponds to the subset defined by the same rank order in Table 5.3.

For example, 6 features in the graphs of Figs. 5.3, 5.4 and 5.5 include those

numbered from 1 to 6 in Table 5.3 for each case. This can also be seen as building

the graph from the right to the left, by starting to compute the classifier accuracy

for both the filtering and wrapper approaches using the full set of features and

then removing those with lowest information gain/feature importance, one by one,

till a single feature is left.
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tures for filtering and wrapper based approaches
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Selection of optimal features is a trade-off between the most relevant features and

the feature set diversity. According to the graphs of Figs. 5.3, 5.4 and 5.5, as

irrelevant features are removed (moving in the graph from the right to the left),

classifier accuracy gradually increases up to a certain point. Then, beyond that

point it again starts decreasing because of the lack of diversity in the feature set.

Similarly, when features are gradually removed, the impact on accuracy depends

on their information gain/feature importance, which may not be same for all the

features. For instance in Fig. 5.3, for filtering based approach when feature no.

8 is removed, the classifier accuracy significantly decreases because this feature

has a relatively high feature importance as shown in Table 5.3. According to the

Figs. 5.3 and 5.5, the filtering-based approach reaches the maximum accuracy,

higher than the wrapper-based approach, at 9 and 4 features for CU Split and TU

Split, respectively. For CU Skip mode, as shown in Fig. 5.4, variations in accuracy

are small i.e. 91.5% to 92.3%, as features are reduced from 15 to 1. Despite

being small, this range of variability should not be neglected and approximated to

zero (i.e., horizontal lines in Fig. 5.4), as it would lead to an ambiguous solution

where any single feature would be equally good. Moreover, a very small feature

set may not guarantee enough diversity for all types of video content. In Fig. 5.4,

the filtering-based approach shows maximum accuracy at 10 features while the

wrapper-based approach shows maximum accuracy at 9 features.

Based upon this analysis, any of the two feature selection approaches can be used to

select the optimal features in video data. In this work the filtering based approach

has been used as it gives better accuracy out of the two. From the previous results

using the filtering-based approach, 9 features were found adequate to generate the

classifier model for CU Split decision, 10 features for Skip mode selection and 4

features for TU Split decision. The reduced feature sets for the three cases are

identified in Table 5.3 in bold figures, which also represent the rank order of the

selected features. Examples of other previous works that also followed a similar

type of heuristic approach for feature selection are [91] and [138].
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Table 5.3: Reduced feature set for SKIP mode, CU and TU Split decision
using the Filtering-based approach

Features CU
Split

Skip
Mode

TU
Split

F W F W F W
Total Encoded Bits for Current Block 1 4 1 2 2 3
NZ coefficients of Current Block 2 2 2 1 1 7
Average Neighbors CU Depth 3 16 5 13 - -
Skip Flag in Current CU Block 4 1 - - - -
Skip Mode Count of Neighbor Blocks 5 6 3 7 - -
Average Neighbors Partition Size 6 7 6 8 - -
NZ Coefficient Count of Neighbors 7 14 4 10 - -
MV Variance of Current Block 8 3 - - - -
Pixel Variance of Current Block 9 5 10 3 4 4
Average MV of Neighboring Blocks 10 8 7 5 - -
Gradient of Current Block using Sobel op-
erator

11 11 11 9 - -

SAD with co-located Blocks 12 12 8 4 5 2
Pixel Variance Partial (1/4) of Current
Block

13 10 12 11 - -

QP of Current Block, 14 17 9 12 - -
RD Cost of Skip Mode Encoding 15 13 - - - -
RD Cost of Current Block 16 9 13 6 7 6
Neighboring CUs average RD Cost 17 15 15 14 - -
Pixel Average of Current Block 18 18 14 15 - -
Abs Sum of coefficients of Current Block - - - - 3 1
Prediction Residual of Current Block - - - - 6 5
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Figure 5.5: TU Split Decision: RF classifier accuracy vs. Number of features
for filtering and wrapper based approaches
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5.5 Design of Random Forests Classifier and Pa-

rameter Optimization

The proposed method to achieve fast coding decisions is based on separate RF

classifiers trained for the Skip mode prediction and early termination of CU and

TU depth search.

5.5.1 Early Skip Mode Prediction

Skip mode in HEVC is usually chosen as the optimal prediction mode in smooth

image regions with low motion content. Moreover, Skip mode is the most likely

used mode at low bit-rates, i.e. high QP values. If Skip mode is selected as the best

mode at current CU depth level, then checking other inter prediction modes can be

skipped, avoiding further processing. The ultimate objective of early Skip mode

prediction is to determine the optimal mode, without exhaustively evaluating all

intra and inter prediction modes.

The proposed model for early Skip mode prediction uses RF classification to speed-

up selection of optimal prediction mode. The 10 input features shown in Table 5.3

are fed to the RF classifier model at run-time, where the Skip mode classification

is done before checking all other inter prediction modes at current depth level.

The outcome of the binary classifier is either Skip or Non-Skip. If Skip mode

is predicted as the optimal mode, checking of all other inter-prediction modes is

skipped at current depth level.

5.5.2 Early CU Depth Termination

In a full search implementation, such as the reference software HM, the CU depth

selection process starts from depth level 0 and then all depth levels (0-3) are

recursively evaluated based upon RD cost before selection of the optimal CU

depth level. Usually depth level 0 is selected for smooth regions in video frame
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and deeper depth levels i.e. 1,2 and 3 are selected for regions with more texture

detail and motion content. Due to the intrinsic nature of the search algorithm and

data structures, large depth levels and small CU sizes result in fewer encoding bits

but increased computational complexity.

The proposed method extracts the 9 features shown in Table 5.3, from the video

data and uses them as input to the RF classifier model. At each CU depth level,

after evaluation of all prediction modes, the RF binary classifier takes a Split vs.

Non-Split decision. If the classifier takes a Non-Split decision, all deeper CU depth

levels are skipped. This results in major speed boost as all unnecessary CU depth

levels are not checked.

5.5.3 Early TU Depth Termination

After prediction, a residual quad-tree is formed at the root of each CU, which

recursively divides each TU into four sub TUs starting from TU size 32x32. While

an exhaustive search approach checks all possible TU sizes to find the optimal

one, the proposed model takes an early TU Split decision at each TU depth level.

If a Non-Split decision is taken, then checking of sub TUs is skipped to speed up

encoding. The 4 features identified in Table 5.3 are extracted and fed to the RF

binary classifier model to speed-up the selection of best depth level in each TU

quad-tree.

5.5.4 Configurations of Ensemble Classifier Model

In the proposed approach, three different configurations were investigated for train-

ing and testing the RF classifier model. In the first configuration, the RF model is

trained offline and integrated in the HM Reference. In the second configuration,

the RF model is trained online at run-time. In this case, few initial frames from

each video stream are used for training and the remaining ones are encoded us-

ing the trained classifier model. In the third configuration, an ensemble of online

and offline classifier models is used, in order to achieve the best possible results.
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The combined classifier score is computed as a weighted average of both classifier

outputs according to the Eq. 5.7 . In this work a weight of 0.5 was used for each

one. For those configurations where only one classifier is used, the weight of the

enabled classifier is set to 1, while that of the disabled one is set to zero. The

generic diagram of such classifier is shown in Fig. 5.6, where the combined scores

obtained from both the online and offline classifier models are used to take the

CU/TU Split and Skip mode decisions.

C =
N∑
i=1

wiCi. (5.7)

Combined Classifier Score

Online RF 

Classifier

Offline RF 

Classifier

Input Features

Classifier Decision

Classifier 

Model 

(Online)

Classifier 

Model 

(Offline)

Figure 5.6: RF Ensemble Classifier with Online and Offline Classifier models

5.5.5 Overall Fast Encoding Algorithm

The proposed fast encoding decision algorithm based on ensemble classifiers for

Skip mode prediction, TU Split and CU Split early decisions is shown in the flow-

charts of Fig. 5.7 and 5.8. This algorithm is repeated during HEVC encoding for

each CTU in inter frames starting from depth level 0. The ensemble classifiers for

Skip mode prediction and early CU depth termination run at CU level as shown

in Fig. 5.7. After training the classifier models either offline or online, the main

steps of the proposed fast algorithm are summarized as follows:
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Step 1: Test the Skip prediction mode at current CU depth level and compute

its RD cost.

Extract Feature Set at CU 

Depth_n

CU Depth_n = CU Depth_n + 1

CU Split Decision

No

Yes

CU Depth_n < 

Max_CUDepth

Yes

No

Stop

Start

CU Split Decision
(RF Ensemble Classifier)

Loop over 

CTU’s

Extract Feature Set at CU 

Depth_n

SKIP Mode Decision

SKIP Mode Selection
(RF Ensemble Classifier)

No

Yes

Test Other Prediction Modes 

(2Nx2N, 2NxN, Nx2N,NxN,… 

Intra 2Nx2N, Intra NxN)  

Test SKIP Mode at CU 

Depth_n
Step 1

Step 2

Step 3

Step 4

Step 5

Select optimal Prediction 

Mode with minimum RD Cost

Figure 5.7: Flow-Charts of the Overall Fast Encoding Algorithm : Early Skip
mode selection and CU Split Decision at different depth levels in a CTU
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Step 2: Compute the feature set shown in Table 5.3 for early Skip mode selection

and run the RF ensemble classifier. If the outcome is Skip, then select Skip as the

optimal mode and goto Step 4, otherwise proceed to Step 3.

Step 3: Test all the other inter and intra prediction modes and possible PU sizes

at current depth level and select the optimal prediction mode with minimum RD

cost.

Step 4: Compute the feature set shown in Table 5.3 for early CU depth termi-

nation and run RF ensemble classifier. If classifier outcome is Non-Split, stop the

RDO process at current CU depth level and skip the next step for current CU

otherwise proceed to Step 5.

Step 5: Split the current CU into 4 sub-CUs, increment CU depth level by 1 and

repeat Steps 1 to 5 for the next CU depth level.

The ensemble classifier for early TU depth termination runs at PU level inside

every CU, as shown in Fig. 5.8. The main steps of the proposed fast algorithm

are summarized as follows:

Step 1: Compute the residual transform at current TU depth Level.

Step 2: Extract the feature set shown in Table 5.3 for early TU depth termination

and run RF ensemble classifier. If classifier outcome is Non-Split, stop the RDO

process at current TU depth level and skip the next step for current TU, otherwise

proceed to Step 3.

Step 3: Split the current TU into 4 sub-TUs, increment the TU depth level by 1

and repeat Steps 1 to 3 for the next TU depth level.

The RF ensemble classifier for fast selection of Skip mode is run for all the CU

depth levels from 0 to 3. On the other hand, the RF ensemble classifier for fast

CU Split decision is only run at CU depth levels 0,1, and 2 because CU is not

further split at depth level 3. Similarly, the RF ensemble classifier for fast TU

Split decision is only run at TU depth levels 1, 2, and 3.
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Figure 5.8: Flow-Charts of the Overall Fast Encoding Algorithm : TU Split
Decision in residual quad-tree inside a PU

The proposed ensemble classifier can also be run in offline-only mode or online-

only mode by disabling the other model. In offline-only mode, the online training

is disabled.

5.5.6 Classifier Training and Evaluation

Training of the RF classifier is done in both the offline and online modes to gen-

erate classifier models for Skip mode selection and TU and CU Split decision.

For offline training model, three video sequences ‘BasketBallDrill’, ‘Vidyo1’ and

‘PartyScene’ are used. ‘BasketBallDrill’ contain high motion content and large
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temporal variations. Similarly, ‘PartyScene’ contain scene change variations. On

the other hand, ‘Vidyo1’ has low motion content and static regions with homo-

geneous texture. Using three different sequences enables the classifier to train for

different type of video content. Similarly, to avoid overlap between training and

testing data and for better validation of classifier performance, training video se-

quences are encoded at QP values 24, 28, 32, 38, that are different from the QP

values used during classifier testing.

For all three sequences, 20 frames were encoded and the features previously se-

lected were extracted for training the three RF classifiers, i.e. for Skip mode

decision, TU Split decision and CU Split decision. To build the decision trees in

the forest, samples were randomly selected from the input data with replacement.

This random selection with replacement may result in replication of some samples

from the original data set while some others are left out. Samples that are left

out can be used for OOB training accuracy of the classifier. In the design of the

RF model, different parameters such as the number of trees in the forest, depth of

each decision tree, number of samples at the leaf node and the threshold β directly

affect the classifier accuracy. To get the optimal values for these parameters, mul-

tiple simulations were run for each of these parameters. In these simulations, one

parameter was varied at a time while keeping the others constant and its impact

on the classifier accuracy was observed. The results of these simulations are shown

in Figs. 5.9 to 5.12. The impact of the number of trees on the classifier accuracy

is shown in Fig. 5.9, where the number of trees is increased from 1 to 100. As

observed in the Fig., after 20 trees the classifier accuracy remains constant, hence

the optimum number of trees was defined as 20.

Similar simulations were run by varying the depth of each tree in the forest from

1 to 50 and results are shown in Fig. 5.10. From these simulations, it is clear that

increasing the depth of the decision tree beyond 10 does not significantly affect

the classifier accuracy but increases the tree size. Hence, the depth of the decision

tree was selected as 10. Similarly based upon the results shown in Fig. 5.11,

the optimal value for number of samples at the leaf node was defined as 100.

To minimize the correlation between different trees in the forest, the number of
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Figure 5.9: Relation of RF Classifier Accuracy with Number of Trees in the
Forest for Skip Mode, CU and TU Split Decisions
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Figure 5.10: Relation of RF Classifier Accuracy with Trees Depth in the
Forest for Skip Mode, CU and TU Split Decisions

features (K) for the Split decision at each node is kept less than or equal to the

total number features (N) according to the Eq. K ≤
√
N . Similarly, to terminate

the decision tree, the threshold β is used as stopping criteria at each node (Eq. 5.3).

Since the choice of this threshold influences the tree size and also the accuracy

of the classification, a simulation study was carried out to objectively evaluate its

influence on the accuracy, for the three types of fast decision. Based upon the

results shown in Fig. 5.12, β=0.3 was chosen as a good trade-off between speed

and accuracy. Moreover, it was found that small variations around this value do

not significantly influence the results.



Fast Video Coding using Random Forests 103

Using the previous optimal values for classifier parameters, the accuracy of the

classifier model was evaluated using five video sequences of different resolutions

and different video content in terms of texture and motion. Twenty frames of each

sequence were used for accuracy measurement. Based on the confusion matrix,

which is often used to evaluate the performance of binary classifier models, the true

positive rate TPR = TP
PP

and the true negative rate TNR = TN
NN

were computed.

The classifier accuracy was computed using Eq. 5.8, where (TP) represents true

positive (TP), (TN) represents true negative, (FP) represents false positive, and

(FN) represents false negative [43]. PP represents total positive cases and NN

represents total negative cases in the data set. For Skip mode decision, true

positive represents Skip mode predicted as Skip and true negative represents Non-

Skip mode predicted as Non-Skip. Similarly, for CU and TU Split decisions, true

positive represents a Split case predicted as Split and true negative represents

Non-Split case predicted as Non-Split by the classifier.

Accuracy(%) =
(TP + TN) ∗ 100

PP +NN
. (5.8)

For Skip mode decision, higher TNR rate means a large number of cases correctly

classified as Non-Skip, that leads to improvement in video quality. While higher

TPR rate means a large number of cases correctly classified as Skip, that results

in encoder speed-up. Similarly, for CU and TU Split decisions, a higher TPR rate

corresponds to a large number of cases correctly classified as Split, that results

in increased video quality. While speed-up gain from classification depends upon

higher TNR rate because a large number of cases are correctly classified as Non-

Split.

For CU Skip mode decision, the classifier model has an average accuracy of 90.04%,

average TPR of 0.88 and average TNR of 0.89 as shown in Table 5.4. Specially for

sequences with high motion content, like ‘PeopleOnStreet’ and ‘BlowingBubbles’,

where the percentage of Skip blocks is small, the proposed classifier achieves small

TNR values of ‘0.96 and 0.90’ respectively, as shown in Table 5.4. Small values

of TNR results in good video quality. Similarly, for sequences like ‘Johnny’, with
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static regions and low motion, the percentage of Skip blocks is large, which results

in TPR of 0.97 and good speed-up.
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Figure 5.11: Relation of RF Classifier Accuracy with Number of Leaf Nodes
in the Forest for Skip Mode, CU and TU Split Decisions
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Figure 5.12: Relation of RF Classifier Accuracy with Beta Threshold in the
Forest for Skip Mode, CU and TU Split Decisions

For CU Split decision, the classifier has an average accuracy of 85.55%, TPR of

0.88 and TNR of 0.83 as shown in Table 5.4. Similarly, for TU Split decision,

the classifier has an average accuracy of 82.35%, TPR of 0.74 and TNR of 0.82 as

shown in Table 5.4. For sequences with high motion content, like ‘BlowingBubbles’

and ‘PeopleOnStreet’ where Split CUs is often necessary, TPR of 0.93 and 0.96

results in good video quality. For sequences with low motion content like ‘Johnny’,

where Split CUs is rarely necessary, high TNR of 0.98 results in good speed-up.
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To select the optimal number of training frames for online RF model, several

simulations were run for Skip mode selection, CU and TU Split decision, while

increasing the number of training frames from 5 to 30. It was found that increasing

the number of training frames, results in lower bitrate increase (BDBR) and lower

speed-up, with all three cases following an almost linear relationship. A median

value of 15 frames was used in the experiments, which is also inline with other

previous works [139].

Table 5.4: RF Classifier evaluation for Skip Mode selection, CU and TU Split
decision

Stream Qp CU Split Decision Skip Mode Selection TU Split Decision
TPR TNR Accuracy(%) TPR TNR Accuracy(%) TPR TNR Accuracy(%)

BlowingBubbles
27 0.93 0.57 70.42 0.84 0.88 86.50 0.85 0.72 74.81
37 0.84 0.81 81.84 0.76 0.90 80.83 0.73 0.92 90.59

BQMall
27 0.92 0.82 84.38 0.94 0.89 92.42 0.80 0.79 79.00
37 0.89 0.90 90.39 0.92 0.89 91.19 0.72 0.92 90.95

Johnny
27 0.85 0.93 92.87 0.97 0.77 95.05 0.70 0.88 86.57
37 0.79 0.98 97.48 0.97 0.72 96.74 0.62 0.98 97.77

BasketBallDrive
27 0.86 0.86 85.59 0.88 0.96 91.44 0.85 0.64 65.54
37 0.80 0.94 93.66 0.87 0.96 88.96 0.77 0.93 92.23

PeopleOnStreet
27 0.96 0.67 77.39 0.90 0.95 93.09 0.79 0.53 62.49
37 0.94 0.79 81.43 0.76 0.96 84.13 0.58 0.89 83.52

Average 0.88 0.83 85.55 0.88 0.89 90.04 0.74 0.82 82.35

5.6 Results and Discussion

To evaluate the performance of the proposed method, the RF models for early Skip

mode selection, early TU Depth termination and early CU depth termination were

integrated in the HEVC reference software, HM version 16.10 [126]. Twenty video

sequences of different resolutions and diverse content have been used. The RF li-

brary ‘librf’ was used for generation of the proposed RF classifier model [140]. As

previously mentioned, offline RF classifier models for Skip mode prediction and

CU Split decision have been generated using three sequences, ‘BasketBallDrill’,

‘PartyScene’ and ‘Vidyo1’ using the bootstrap method. For online generation of

the RF model, 15 frames of each stream were used for training, assuming that

the video content characteristics do not significantly change during the limited

duration of these test sequences. In longer video sequences without real-time con-

straints, temporal segments (i.e., video shots) should be identified and retraining
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should be done at shot boundaries. Simulation results were obtained for Low-

Delay Main B profile and Random Access profile in HEVC for QP values of 22,

27, 32, 37 under the common test conditions [60]. The platform used for evaluation

is an Intel Core i5 machine running at 1.70 GHz with 8 GB of RAM.

Coding efficiency is measured using BDPSNR (dB) and BDBR (%) [56]. The

gain in processing speed (TS%) is measured in terms of the difference between the

coding time of the HM reference encoder and the proposed RF-based fast encoding,

as given by Eq. 5.9, where Tr and Tp are the encoding times of HM reference and

proposed RF, respectively. For comparison of different approaches, analyzing the

speed-up gains i.e. TS alone, does not provide an absolute and fully meaningful

performance measure because in general an increase in TS also increases BDBR.

Hence, we have used a fusion measure (FM) that merges both BDBR and TS into

a single performance indicator, defined by Eq. 5.10. Such indicator measures the

amount of bit rate overhead per complexity reduction unit. Therefore, any fast

coding method presenting a smaller value of FM means that complexity reduction

is achieved at a lower cost in terms of bit rate overhead.

TS(%) =
(Tr − Tp) ∗ 100

Tr
, (5.9)

FM =
BDBR ∗ 100

TS
. (5.10)

To evaluate the contribution of each RF classifier, the speed-up results individually

achieved by the Skip mode selection, CU Split and TU Split decisions, for Random

Access profile, are shown in Table 5.5. These results were obtained using RF offline

models for Skip mode, CU Split and TU Split decisions. According to these results,

the maximum contribution to speed-up is due to early Skip mode selection scheme

that gives an average speed-up of 47.47%. The speed-up due to early CU depth

termination is 47.01% while early TU depth termination scheme yields an average

speed-up of 10.48%.
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Table 5.5: Individual performance achieved by Skip mode selection, CU and TU Split decision (RA, Offline)

Stream Resolution
Skip Mode Selection CU Split Decision TU Split Decision

BDBR BDPSNR TS(%) FM BDBR BDPSNR TS(%) FM BDBR BDPSNR TS(%) FM
BasketballPass

416x240

0.51 -0.024 31.35 1.63 0.72 -0.035 30.42 2.36 0.20 -0.010 9.07 1.78
BlowingBubbles 0.49 -0.020 34.40 1.44 0.57 -0.024 34.05 1.67 0.07 -0.003 9.58 0.68
BQSquare 0.22 -0.009 30.76 0.72 0.33 -0.014 36.64 0.89 -0.04 0.002 10.95 -0.45
Flowervase 0.50 -0.027 66.93 0.75 0.15 -0.008 59.76 0.26 -0.01 0.000 12.22 -0.11
BasketballDrill

832x480

0.58 -0.025 36.06 1.61 0.60 -0.025 39.81 1.50 0.03 -0.001 9.81 0.32
PartyScene 0.29 -0.013 25.11 1.15 0.58 -0.026 29.33 1.97 0.18 -0.008 8.17 1.47
BQMall 0.39 -0.015 34.54 1.14 0.63 -0.023 40.07 1.57 0.12 -0.004 10.65 1.23
RaceHorses 0.32 -0.012 15.69 2.06 0.58 -0.022 24.60 2.37 0.39 -0.015 7.36 2.90
Johnny

1280x720

1.26 -0.035 73.12 1.72 0.26 -0.006 65.33 0.40 -0.02 0.001 12.64 -0.28
Vidyo1 0.54 -0.024 73.67 0.73 0.28 -0.012 64.63 0.43 -0.05 0.002 12.69 -0.61
Vidyo3 2.17 -0.097 71.76 3.03 0.31 -0.012 63.33 0.49 0.09 -0.004 12.58 1.08
Vidyo4 0.93 -0.038 71.14 1.31 0.30 -0.013 62.96 0.48 0.03 -0.001 12.19 0.36
FourPeople 0.62 -0.024 73.22 0.84 0.08 -0.003 63.55 0.12 -0.01 0.000 12.89 -0.12
KristenAndSara 0.72 -0.027 71.00 1.02 0.25 -0.010 64.52 0.38 -0.11 0.003 12.19 -1.31
BasketballDrive

1920x1080

0.67 -0.015 36.65 1.82 1.01 -0.022 45.84 2.20 0.33 -0.007 9.04 2.98
BQTerrace 0.62 -0.009 43.50 1.42 0.60 -0.010 48.09 1.24 0.19 -0.004 10.01 1.86
Cactus 0.53 -0.012 45.05 1.18 1.02 -0.022 46.44 2.20 0.16 -0.004 10.06 1.59
Kimono1 0.59 -0.018 41.00 1.43 0.83 -0.025 48.03 1.72 0.27 -0.008 8.82 2.39
PeopleOnStreet

2560x1600
0.31 -0.014 20.01 1.55 0.58 -0.026 22.12 2.63 0.36 -0.016 7.88 2.83

Traffic 0.93 -0.033 54.41 1.71 0.52 -0.018 50.72 1.03 0.08 -0.003 10.80 0.88

Average 0.66 -0.025 47.47 1.41 0.51 -0.018 47.01 1.30 0.11 -0.004 10.48 0.97
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Table 5.6: HEVC RD performance comparison for offline, online and ensemble classifier models (RA)

Stream Resolution
Offline Online Ensemble of Offline and Online

BDBR BDPSNR TS(%) FM BDBR BDPSNR TS(%) FM BDBR BDPSNR TS(%) FM
BasketballPass

416x240

3.91 -0.182 45.58 8.59 3.54 -0.164 46.45 7.62 2.44 -0.114 41.79 5.85
BlowingBubbles 3.72 -0.150 49.95 7.45 4.28 -0.172 50.25 8.51 2.85 -0.117 45.36 6.28
BQSquare 1.63 -0.069 51.61 3.16 2.92 -0.124 50.54 5.78 1.05 -0.045 45.16 2.33
Flowervase 2.24 -0.120 80.20 2.79 1.66 -0.090 72.24 2.30 1.28 -0.069 73.70 1.74
BasketballDrill

832x480

2.37 -0.099 54.08 4.38 2.74 -0.115 54.31 5.04 1.76 -0.074 50.13 3.51
PartyScene 2.48 -0.107 41.07 6.03 5.62 -0.243 52.39 10.72 2.96 -0.127 42.76 6.93
BQMall 2.29 -0.085 52.44 4.36 5.25 -0.193 56.51 9.30 3.00 -0.113 51.09 5.87
RaceHorses 2.20 -0.081 33.89 6.49 7.36 -0.264 47.88 15.37 4.51 -0.165 37.01 12.20
Johnny

1280x720

2.55 -0.072 84.40 3.03 1.18 -0.033 74.37 1.59 0.93 -0.026 77.18 1.20
Vidyo1 1.93 -0.085 84.73 2.28 0.86 -0.037 73.52 1.17 0.68 -0.030 76.40 0.89
Vidyo3 3.92 -0.166 83.23 4.71 2.43 -0.102 73.92 3.29 1.52 -0.065 76.61 1.98
Vidyo4 2.03 -0.080 82.77 2.45 0.80 -0.032 69.77 1.14 0.60 -0.024 73.73 0.82
FourPeople 1.71 -0.069 83.79 2.04 1.11 -0.046 69.83 1.59 0.77 -0.031 70.57 1.09
KristenAndSara 2.12 -0.079 83.25 2.55 1.03 -0.040 73.73 1.40 0.72 -0.027 76.63 0.94
BasketballDrive

1920x1080

2.41 -0.053 56.92 4.24 4.90 -0.105 63.32 7.74 2.81 -0.061 56.42 4.98
BQTerrace 2.53 -0.041 61.48 4.11 3.07 -0.049 56.92 5.40 1.79 -0.029 54.90 3.26
Cactus 3.26 -0.071 61.50 5.29 4.80 -0.101 66.86 7.18 3.22 -0.074 61.44 5.23
Kimono1 2.48 -0.075 59.74 4.16 5.59 -0.167 68.26 8.19 4.38 -0.131 62.67 6.99
PeopleOnStreet

2560x1600
2.57 -0.114 33.88 7.59 11.49 -0.497 51.75 22.20 5.55 -0.243 40.30 13.78

Traffic 3.20 -0.111 68.33 4.69 5.17 -0.168 73.80 7.00 3.00 -0.102 68.77 4.37

Average 2.58 -0.095 62.64 4.52 3.79 -0.137 62.33 6.63 2.29 -0.08 59.13 4.51
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Table 5.6 shows a comparison of HEVC implementation with the offline RF model,

online model and ensemble of online and offline models for Random Access profile.

It is clear from the table that, when implemented individually, both online and

offline approaches yield almost the same speed-up, however the online approach

produces higher BDBR that results in higher FM score of 6.63 as compared to the

FM score of 4.52 for offline implementation. Since the offline RF model has been

trained using samples from multiple video streams encoded at different QP values,

it adapts better to video sequences with diverse characteristics, such as the high

motion content of ’RaceHorses’ and ’PeopleOnStreet’. This is the main reason

that justifies the lower FM score obtained for these sequences when encoded with

the offline model and compared with the online model. On the other hand, the

online model performs better than offline, i.e., lower FM score, for video sequences

with low motion and homogeneous regions like ’Johnny’ and ’KristanAndSara’.

When the ensemble of both online and offline approaches is used, this results

in lower BDBR. Hence, the FM score of the ensemble approach shows improved

results as compared to either online or offline individual implementations.

5.6.1 Reduction in HEVC computation time and RF clas-

sifier overhead

In real-time implementation scenarios, computational overhead of fast encoding

scheme becomes critical. Table 5.7 shows the reduction in HEVC encoding times

and the computational overhead of RF classifier during fast HEVC encoding for

different video streams. ’Ref.Enc Time’ represents encoding time of HM refer-

ence without RF classifier. ’RF.Enc Time’ represents the encoding time with RF

Classifier integrated in the HM reference software. RTime1, RTime2 and RTime3

represent the reduction in HM Reference encoding time, when each of the three

RF classifier for Skip mode selection, CU Split Decision and TU Split Decision

are run one by one. OTime1, OTime2 and OTime3 represent the computational

overhead time for feature extraction and classification for each of the Skip mode

selection, CU Split Decision and TU Split Decision respectively. ’Total Overhead’
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represents the time for total computations involved in feature extraction and RF

classification during fast HEVC encoding. According to the Table, the computa-

tional overhead of TU Split Classifier is higher than the other two classifiers. This

is because TU Split Classifier is invoked multiple times for different prediction

modes in each CU at a specific depth level. These results show that the maxi-

mum overhead of proposed classifier model is 4.13% for ’Johnny’. This sequence

has homogeneous regions and low motion, which results in higher speed-up. As

a result, the classifier overhead time increases as compared to the total encoding

time. Overall, the percentage of classifier overhead for different sequences is far

less than the reduction in computational complexity of HEVC. Hence, the pro-

posed classifier design can be integrated in real-time video encoders with quite

small computational overhead.
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Table 5.7: Reduction in HEVC computation time (sec) and RF classifier overhead (%)

Stream Qp Ref.Enc
Time

RTime1
Skip

RTime2
C-Split

Rtime3
T-Split

RF.Enc
Time

OTime1
Skip

OTime2
C-Split

OTime3
T-Split

Overhead
Time

Overhead
(%)

BlowingBubbles
27 690.41 -188.33 -185.08 -55.96 402.10 1.51 0.84 8.20 10.55 2.62
37 521.06 -229.10 -257.43 -49.58 195.62 0.89 0.44 3.70 5.03 2.57

BQMall
27 2786.88 -711.56 -783.94 -215.59 1467.07 4.83 3.52 32.02 46.14 2.75
37 2246.71 -896.03 -1018.83 -234.39 815.92 3.69 2.26 16.34 25.47 2.73

Johnny
27 4365.71 -3145.84 -2822.22 -479.68 698.87 5.31 3.97 14.00 23.28 3.33
37 4031.16 -3297.01 -2972.77 -437.75 331.71 4.09 3.39 6.22 13.69 4.13

BasketBallDrive
27 14540.68 -4158.18 -6637.82 -1295.22 6692.79 21.05 15.34 136.99 173.38 2.59
37 11829.66 -5741.54 -7059.54 -1112.38 3512.49 14.70 10.79 63.30 88.79 2.53

PeopleOnStreet
27 24190.60 -4084.42 -4230.83 -1208.80 17432.04 58.56 34.30 401.96 494.82 2.84
37 19392.21 -5006.33 -6449.83 -1619.07 10817.29 41.53 29.13 224.36 295.02 2.73
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5.7 Performance Comparison

Tables 5.8 and 5.9 show comparison of the fast encoding method with other state

of the art implementations for Low-Delay and Random Access (Main profile),

respectively. Since the works of X. Huang [78] and F. Chen [76] do not fully cover

both coding configurations, their methods were implemented for the purpose of

this comparison. In the case of K.Tai [75], the comparison is made with the results

obtained by the authors.

For the case of Low Delay Main profile, the proposed approach gives a maximum

speed-up of 79.71% with an average of 54.57%, as shown in Table 5.8. For Random

Access profile, the results are slightly better. The maximum speed-up is 84.73%

with an average of 62.64%, as shown in the Table 5.9. For video sequences with low

motion content and homogeneous regions, such as ‘FourPeople’, where the number

of Skip CU blocks is large and the percentage of Split cases is lower, the proposed

approach achieves higher speed-up. For Low Delay Main profile, this is 78.98%

with an increase in BDBR of 1.83%, as shown in Table 5.8 for sequence ‘FourPeo-

ple’. In comparison with recent works, for the same video sequence, X.Huang [78]

and F. Chen [76] achieve lower speed-up (35.45%) with an increase in BDBR of

0.72% and 71.59% with an increase in BDBR of 7.03%, respectively. Similarly,

for the same sequence in Random Access profile, the speed-up of the proposed

approach is 83.79% with an increase in BDBR of 1.71%, as shown in Table 5.9.

X.Huang [78] reaches a speed-up of 36.47% with 0.36% of BDBR increase and

F. Chen [76] gives speed-up of 62.72% with 0.69% BDBR increase for the same

stream. Hence, for sequences with low-motion content, the proposed approach per-

forms better as compared to other fast encoding methods, in terms of speed-up in

both HEVC profiles. Similar results can be seen for other sequences like ‘Johnny’

and ‘Vidyo1’. This clearly shows that the proposed approach adapts better to

low-motion video content and gives higher speed-up with negligible increase in

BDBR as compared to the existing implementations, which under-perform both

in terms of speed-up and BDBR.
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Table 5.8: HEVC RD performance comparison for Low Delay profile

Stream Resolution Proposed Approach X.Huang [78] K.Tai [75] F.Chen [76]
BDBR BDPSNR TS(%) BDBR BDPSNR TS(%) BDBR BDPSNR TS(%) BDBR BDPSNR TS(%)

BasketballPass

416x240

3.12 -0.147 38.24 2.58 -0.120 32.93 0.60 -0.029 32.00 2.86 -0.133 36.21
BlowingBubbles 3.99 -0.154 39.87 1.85 -0.072 34.18 0.74 -0.030 33.00 5.39 -0.206 41.45
BQSquare 3.02 -0.117 34.30 2.71 -0.109 28.70 0.77 -0.028 34.00 0.93 -0.038 23.61
Flowervase 2.99 -0.140 67.83 1.68 -0.079 43.36 — — — 1.88 -0.086 45.59
BasketballDrill

832x480

2.24 -0.089 46.55 1.15 -0.046 36.25 0.53 -0.021 37.00 4.36 -0.170 58.19
PartyScene 2.58 -0.108 30.33 1.70 -0.074 27.10 0.64 -0.027 32.00 2.86 -0.124 33.74
BQMall 1.86 -0.071 43.32 2.08 -0.085 33.73 0.85 -0.033 41.00 4.55 -0.183 45.94
RaceHorses 1.25 -0.048 27.08 1.72 -0.071 28.19 0.62 -0.024 30.00 2.02 -0.082 31.06
Johnny

1280x720

5.45 -0.139 79.31 1.31 -0.036 38.77 0.88 -0.024 67.00 3.94 -0.101 60.40
Vidyo1 3.53 -0.140 79.71 0.93 -0.040 37.98 0.56 -0.017 61.00 6.59 -0.270 72.51
Vidyo3 6.96 -0.279 78.49 1.32 -0.059 36.73 1.30 -0.036 62.00 4.17 -0.177 66.09
Vidyo4 3.70 -0.130 78.29 0.99 -0.036 35.81 0.88 -0.021 63.00 3.96 -0.145 65.92
FourPeople 1.83 -0.063 78.98 0.72 -0.027 35.45 1.00 -0.034 63.00 7.03 -0.238 71.59
KristenAndSara 3.30 -0.108 77.58 1.30 -0.042 38.11 0.75 -0.024 63.00 3.78 -0.121 62.12
BasketballDrive

1920x1080

1.93 -0.046 49.16 0.63 -0.014 39.87 0.75 -0.017 41.00 3.41 -0.077 61.65
BQTerrace 1.74 -0.032 51.89 0.71 -0.014 39.48 0.95 -0.016 46.00 1.76 -0.036 47.89
Cactus 2.46 -0.060 53.06 1.14 -0.028 37.99 1.07 -0.025 43.00 3.07 -0.073 59.94
Kimono1 2.43 -0.079 50.49 0.73 -0.025 39.77 0.68 -0.022 40.00 2.23 -0.076 47.66
PeopleOnStreet

2560x1600
1.85 -0.085 27.22 1.49 -0.069 29.38 0.96 -0.030 50.00 3.01 -0.139 38.71

Traffic 3.20 -0.102 59.66 1.33 -0.044 39.52 0.39 -0.018 33.00 4.72 -0.157 52.23

Average 2.97 -0.107 54.57 1.40 -0.05 35.66 0.79 -0.025 45.84 3.63 -0.13 51.13
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Table 5.9: HEVC RD performance comparison for Random Access profile

Stream Resolution Proposed Approach X.Huang [78] K.Tai [75] F.Chen [76]
BDBR BDPSNR TS(%) BDBR BDPSNR TS(%) BDBR BDPSNR TS(%) BDBR BDPSNR TS(%)

BasketballPass

416x240

3.91 -0.182 45.58 1.78 -0.083 32.03 0.97 -0.047 34.00 1.03 -0.049 38.52
BlowingBubbles 3.72 -0.150 49.95 1.52 -0.062 32.20 1.42 -0.060 47.00 0.60 -0.024 27.95
BQSquare 1.63 -0.069 51.61 1.42 -0.062 34.73 1.11 -0.043 52.00 0.40 -0.017 26.30
Flowervase 2.24 -0.120 80.20 1.08 -0.058 46.93 — — — 0.66 -0.035 47.55
BasketballDrill

832x480

2.37 -0.099 54.08 0.90 -0.038 39.33 0.95 -0.039 42.00 1.70 -0.072 52.73
PartyScene 2.48 -0.107 41.07 1.31 -0.061 29.71 1.35 -0.058 46.00 0.46 -0.022 25.51
BQMall 2.29 -0.085 52.44 2.03 -0.083 33.62 1.59 -0.061 47.00 1.85 -0.076 40.93
RaceHorses 2.20 -0.081 33.89 1.94 -0.076 27.69 1.18 -0.044 32.00 1.94 -0.076 25.24
Johnny

1280x720

2.55 -0.072 84.40 0.75 -0.023 40.13 0.88 -0.024 67.00 1.67 -0.051 58.67
Vidyo1 1.93 -0.085 84.73 0.43 -0.019 38.28 1.44 -0.046 69.00 1.18 -0.054 66.66
Vidyo3 3.92 -0.166 83.23 1.11 -0.050 37.96 1.41 -0.046 69.00 1.03 -0.046 60.68
Vidyo4 2.03 -0.080 82.77 0.67 -0.026 36.83 1.26 -0.039 68.00 1.55 -0.061 61.51
FourPeople 1.71 -0.069 83.79 0.36 -0.015 36.47 1.00 -0.034 63.00 0.69 -0.026 62.72
KristenAndSara 2.12 -0.079 83.25 0.52 -0.021 39.78 0.75 -0.024 63.00 1.18 -0.046 59.03
BasketballDrive

1920x1080

2.41 -0.053 56.92 0.94 -0.021 39.93 1.57 -0.034 45.00 3.07 -0.066 55.43
BQTerrace 2.53 -0.041 61.48 0.78 -0.016 40.42 2.02 -0.032 56.00 0.95 -0.020 47.08
Cactus 3.26 -0.071 61.50 1.33 -0.030 38.87 1.84 -0.039 52.00 1.42 -0.031 55.18
Kimono1 2.48 -0.075 59.74 0.96 -0.031 39.72 1.25 -0.037 47.00 1.99 -0.064 42.89
PeopleOnStreet

2560x1600
2.57 -0.114 33.88 1.44 -0.064 28.54 1.11 -0.052 38.00 1.40 -0.063 33.54

Traffic 3.20 -0.111 68.33 0.84 -0.030 40.58 1.89 -0.062 60.00 0.73 -0.026 44.23

Average 2.58 -0.095 62.64 1.11 -0.04 36.69 1.32 -0.043 52.47 1.27 -0.05 46.62
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For sequences like ’PeopleOnStreet’ and ’RaceHorses’ that have high texture and

camera movement, the speed-up of the proposed approach is slightly lower than

the average. This is because these sequences are mostly encoded in small CU

blocks due to very high motion, which also results in a very low percentage of Skip

blocks. Therefore, despite accurate prediction of SPLIT and Non-Skip cases by

the classifier, the overall speed-up is relatively low. For video sequences with high

motion content like ‘BasketBallDrive’, the proposed approach achieves a speed-up

of 49.16% for Low Delay profile at BDBR rate of 1.93% and 56.92% at BDBR rate

of 2.41% for Random Access profile. For the same sequence, X.Huang [78] achieves

a lower speed-up of 39.87% at BDBR of 0.63% for Low Delay Profile and K.Tai

[75] achieves 45.0% at BDBR of 1.57% for Random Access profile. Hence, the

proposed approach also outperforms these recent works in terms of speed-up and

BDBR for video sequences with high motion content. Furthermore, the proposed

approach based on an ensemble of offline and online classifier models, reveals better

adaptation to changes in video content as compared to other approaches that are

only based on offline classifier models or use fixed thresholds for prediction.

Performance comparison of the RF based fast video encoding methodology with

the content adaptive techniques developed in Chapter 4 is also shown in the Ta-

ble 5.10. According to these results, RF classifier based technique performs better

than content adaptive method in terms of speed-up and gives average speed-up of

62.64% against 61.12% by the content adaptive approach for HEVC RA profile.

5.8 Analysis of Results

Overall the average speed-up of the proposed approach is higher than all the

other state of the art implementations under comparison in this work for both the

Random Access profile and Low Delay Main profile. This speed-up is achieved

while maintaining comparative RD performance. Taking into account that 20

video sequences with quite diverse content characteristics and formats were used

in the above experiments, generalization to other video sequences is expected to
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Table 5.10: Comparison of Classification based and Content Adaptive Meth-
ods

Stream Resolution RF Classifier Content Adaptive
BDBR BDPSNR TS(%) BDBR BDPSNR TS(%)

BasketballPass

416x240

3.91 -0.182 45.58 1.31 -0.062 47.67
BlowingBubbles 3.72 -0.150 49.95 0.80 -0.032 45.67
BQSquare 1.63 -0.069 51.61 0.62 -0.027 46.18
Flowervase 2.24 -0.120 80.20 0.87 -0.046 64.38
BasketballDrill

832x480

2.37 -0.099 54.08 1.93 -0.081 57.46
PartyScene 2.48 -0.107 41.07 0.63 -0.030 45.73
BQMall 2.29 -0.085 52.44 2.18 -0.089 48.53
RaceHorses 2.20 -0.081 33.89 2.21 -0.086 35.04
Johnny

1280x720

2.55 -0.072 84.40 1.98 -0.060 79.24
Vidyo1 1.93 -0.085 84.73 1.77 -0.082 83.84
Vidyo3 3.92 -0.166 83.23 1.54 -0.068 78.83
Vidyo4 2.03 -0.080 82.77 2.18 -0.084 78.51
FourPeople 1.71 -0.069 83.79 1.49 -0.048 83.52
KristenAndSara 2.12 -0.079 83.25 1.33 -0.050 77.88
BasketballDrive

1920x1080

2.41 -0.053 56.92 3.14 -0.067 59.70
BQTerrace 2.53 -0.041 61.48 1.20 -0.025 61.88
Cactus 3.26 -0.071 61.50 1.50 -0.032 61.33
Kimono1 2.48 -0.075 59.74 2.01 -0.065 53.04
PeopleOnStreet

2560x1600
2.57 -0.114 33.88 1.52 -0.068 42.92

Traffic 3.20 -0.111 68.33 1.34 -0.047 71.05

Average 2.58 -0.095 62.64 1.58 -0.058 61.12

yield very similar performance. Therefor, the proposed fast encoding method

is an efficient solution to ease real-time implementation of highly efficient video

encoders.

Proposed machine learning based fast video encoding methodology shows promis-

ing results both for Low Delay and Random Access profiles in HEVC. These results

are also better than the content adaptive methodology developed in Chapter 4.

Main difference in the results is because of the ensemble classification based ap-

proach used in this work. Random Forests based classifiers designed for CU size

selection and Skip mode early prediction perform well for a diverse set of video

sequences and have very little classifier overhead. Hence, it can be used both in

offline and online configurations as shown by the results. Although the results

for online configuration need further improvement in terms of RD performance,

especially for video sequences with high motion content. Main reason for poor

RD performance of online RF configuration for video sequences with high motion
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content is little data for classifier training. As classifier model is not updated once

trained, it does not adapt to the variations in video content. This performance

can be improved by updating the RF classifier model at regular intervals for video

sequences with large texture and motion variations.

The relative gain in encoding time, given as the percentage of computational time

reduction of the codec, is the most commonly used metric to evaluate and compare

results of fast video coding algorithms. Although, a direct link to real-time video

encoding cannot be established with such relative measure, it allows validation

and comparison of results obtained from different methods published in the litera-

ture. For instance, other works previously published within the scope of real-time

processing [74, 93, 141], also use percentage of computational time reduction to

evaluate the performance of different fast video coding methods. Nevertheless, a

relationship with real-time video processing can be established by measuring the

real-time performance of the reference video encoder, or equivalent implementation

running the same coding decision functions. Once the run-time of the reference

is known for any specific hardware platform, it is straightforward to infer the

processing time expected for an implementation using the proposed fast methods.

Therefore, an indirect link can always be established between the results presented

in this research and real-time performance on specific platforms.

5.9 Summary

In this chapter, a machine learning based fast encoding method to reduce the

computational complexity of HEVC was developed. Detailed comparative analysis

of filtering and wrapper based methods for selection of optimal features set was

carried out. According to this analysis, any of the two methods can be used for

feature selection. Random Forests classifier models were trained for prediction

mode selection and CU and TU quad-trees early termination. Both online and

offline trained classifier models were used, that can work in standalone or ensemble

configuration. Performance results showed that Random Forests classifier model
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is robust against changes in video content and performed equally well both for

low and high motion video streams. According to the results, classifier overhead

in HEVC implementation was minimal that helps in using such robust solutions

in real-time video applications. In the next chapter, this ensemble classification

based approach will be used for fast coding of light field images.



Chapter 6

Fast Coding of Light Field Images

This chapter presents the third contribution of the research work. Chapter 5

described Random Forests based fast video encoding of HEVC. Encoding of Light

Field (LF) images is an emerging field where HEVC can be used to get maximum

compression efficiency. In order to reduce the high computational cost of HEVC,

fast video encoding techniques developed in the last chapter are applied for low

complexity coding of Light field images. First, brief overview of different Light

field image representations is given. This is followed by detailed analysis of light

field images data to explore the unique features of light fields that can assist in

fast encoding. Proposed fast encoding methodology is based on machine learning

that encodes light field images in sub-aperture and pseudo video representations.

A score fusion based feature selection approach has been proposed for selection

of optimal parameters to train the classifier model. Selected features are used to

train Random Forests based classifiers that intelligently predicts CU depth level

and Skip prediction mode for fast encoding. At the end, results of the proposed

work for different light field image formats are presented and compared with other

state of the art.

119
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6.1 Overview of Light Field Images

Light field images provide a three-dimensional representation of visual scenes by

capturing the light intensity as well as the direction of the light rays, which gives

information about scene depth and volume in addition to spatial information and

color [142]. The multidimensional nature of light field images is characterized by

both spatial and angular resolutions expanding conventional 2D images beyond

light intensity representation. Light field imaging has applications in computer

vision, multimedia communications, depth estimation, medical imaging, object

recognition, computational photography and virtual reality [143, 144]. Light field

images are represented using a 4D plenoptic function L(u,v,s,t), where u and v rep-

resent the spatial dimensions and s and t represent the angular dimensions [145] .

These dimensions are described in the Fig. 6.1. This results in huge amount of data

to be stored, delivered and shared using different types of devices and networks.

Hence, efficient compression techniques for light field images are under investiga-

tion and further research is going on to meet the requirements of JPEG Pleno

standardization [117]. Since light fields can be represented in various formats, the

compression efficiency has been investigated for such representation formats be-

cause different data structures lead to significant variations in correlation among

various blocks in a light field image.

6.2 Light Fields Representation Formats

Various formats are used for representation of light fields data. The two most

common formats to represent light filed images are :

• Sub-Aperture Images

• Lenslet Images

According to the 4D plenoptic function L(u,v,s,t), s and t axes refer to the number

of viewpoints to visualize the same scene from various angles while u and v axes
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Figure 6.1: Light Field Image Axes

refer to the spatial dimensions. Thus the 2D array of images that represent the

slightly different perspectives of the visual scene are Sub-Aperture Image repre-

sentation of the light field. The second representation is a matrix of micro-images,

which result from the micro-lens structure of the optical acquisition system. This

representation known as Lenslet Images shows the collection of light rays coming

from different view points on to a single point [146]. These formats are shown in

Figs. 6.2 a and b, respectively.

Figure 6.2: Light Field Image Representation Formats (a) Sub-Aperture Im-
age (b) Light View Image
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A third representation of light field images is formed by arranging the sub-aperture

images over time to form a pseudo sequence of light fields. Raster or spiral scanning

order can be used to arrange the sub-aperture images into a pseudo-sequence [143]

as shown in the Fig. 6.3. Pseudo-sequence representation of light field images

enables their efficient encoding using latest video codecs like HEVC because of

high correlation among sub-aperture images in the pseudo-sequence.

Figure 6.3: Light Field Image Representation Formats - Pseudo Sequence

Many researchers [112, 113, 115] have shown that coding of light field images in

different representation formats using HEVC gives better coding efficiency as com-

pared to still image coding standards like JPEG. This has been discussed in detail

in Chapter 3. Using HEVC for coding of light fields increases the computational

complexity that can affect processing of light fields in real-time scenarios. In this

research, a machine learning based solution has been developed for fast encoding

of light field images using HEVC.

6.3 Analysis of Light Field Images

As mentioned in the Chapter 3, fast coding of light field images using standard

video coding algorithms and various representation formats has not been inves-

tigated so far. HEVC is the most efficient coding standard for coding of light

field images while lenslet and stack of sub-aperture images are mostly used for-

mats. It is known that HEVC achieves high compression efficiency at the cost
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of high computational complexity [64, 97]. Although many fast coding methods

have been investigated to reduce the computational complexity of HEVC for cod-

ing conventional video content that include statistics based methods [69, 147, 148]

and machine learning approaches, such as decision trees, support vector machines

(SVM) and Random Forests [87, 94, 138], the impact of the specific characteristics

of light field representation formats in the computational complexity of HEVC is

mostly unknown. For instance, pseudo video sequences generated from light fields

are quite different from conventional videos because the sub-aperture images are

highly correlated with little disparity among different views, as compared to the

high temporal variations and dynamic scene changes in natural video sequences.

Computational complexity of HEVC has been discussed in Chapter 4 and it is

known that the two main sources of high complexity in HEVC are selection of

optimal depth level in CU quad-tree structure and optimal prediction mode. No

study is currently available in the literature, relating the coding speed due to

algorithmic complexity and the coding efficiency of light field images. To study the

characteristics of standard light field encoding, a statistical analysis is presented

in this section using lenslet, sub-aperture and pseudo video formats. Pseudo video

is formed by temporally organizing the stack of sub-aperture views in raster or

spiral scan order [114]. For this analysis, two light field images, represented in

different formats were encoded at QP values 22, 27, 32 and 37, using HEVC still

image and low delay profiles.

In pseudo video format, high correlation exists among collocated sub-aperture im-

ages. To analyze the correlation between collocated neighboring blocks in pseudo

video using different scanning orders, the correlation between CU Depth levels in

current CU and collocated CU in the neighboring sub-aperture image was calcu-

lated and results shown in Fig. 6.4. These graphs show the correlation coefficient

for spiral and raster scan order for light field images ‘Friends 1’ and ‘StonePillar-

sOutside’. According to these graphs, higher correlation exists between CU depth

in current CU and neighboring collocated CU for the case of spiral scan order as

compared to the raster scan order.
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Figure 6.4: Correlation of CU Depth Levels with Spiral and Raster Scan
Orders (a) ‘Friends-1’ (b) ‘StonePillarsOutside’

6.3.1 Distribution of CU Split Decisions

In order to analyze the distribution of CU Split cases, only the percentage of CU

Split cases at CU depth levels 0, 1 and 2 is considered because at depth level 3,

CUs are not further split. As shown in Fig. 6.5, for light field pseudo videos, the

percentage of CU Split cases decreases with increase in QP value, however average

values almost remain the same for different Light Fields at CU depth levels 0, 1

and 2. Maximum percentage of CU Split cases exist at depth level 0 and Qp value

22.

According to the Fig. 6.5, average percentage of split cases for different light field

pseudo videos is less than 50% i.e. more than 50 cases are non-split. If these non-

split cases can be accurately predicted using a machine learning based approach,

it will greatly reduce the computational complexity in HEVC. Fig. 6.5 also shows,

for the light field pseudo videos, percentage of CU Split cases is less than 1 %

at depth level 2 and QP value 37. Hence this is a strong indication that for QP

values 37 and above, search for optimal CU depth level can be stopped at depth

level 2 without much loss in RD performance.

Light Field images in lenslet format were also encoded using HEVC still image

profile for the analysis. The distribution of CU Split Cases for lenslet images are

shown in Fig. 6.6, where it can be observed that the percentage of split cases at

different depth levels is always higher as compared to the pseudo video format.

For lower QP values, this percentage is more than 90%, which implicitly leads
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Figure 6.5: Distribution of CU Split Cases at various QP values in LF Pseudo
Video (a) ‘Firends-1’ (b) ‘StonePillarsOutside’

Figure 6.6: Distribution of CU Split Cases at various QP Values for Lenslet
Images (a) ‘Friends-1’ (b) ‘StonePillarsOutside’

to higher computational complexity. This also means that to efficiently encode

lenslet images with high percentage of split cases, Split vs Non-Split classification

accuracy will directly impact the RD performance. It is also clear from the Fig. 6.6,

that for depth level 0 and Qp = 22, the percentage of split cases is higher than

95%. Hence, this is also a strong indication that search for the optimal prediction

mode at depth level 0 can be skipped to speed-up the encoding without much loss

in RD performance.

Furthermore, for the stack of sub-aperture image format, there exists significant

correlation between the co-located CU blocks in the neighboring sub-aperture

images, in addition to the neighboring CU blocks in the current image. This

correlation between the collocated neighboring blocks in the stack of sub-aperture

images is shown in Fig. 6.7. CU blocks in the top, left and top-left sub-aperture

images are similar to the block in the current image and CU depth level of current
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Figure 6.7: Stack of Sub-Aperture Images: Colocated Neighboring CUs

Figure 6.8: ‘Bikes’: Distribution of Split and Non-Split CU Cases (Qp =
22,32)

CU block can be efficiently inferred from its co-located neighbors. Figs. 6.8 and

6.9 show distribution of split and non-split cases for ‘Bike’ and ‘Friends-1’ images

at QP values 22 and 32 in sub-aperture image format. This distribution has been

drawn by calculating the number of cases occurring for each difference (depth level

of current CU minus average depth level of collocated neighboring CUs).

This analysis provides significant insight about the occurrence of Split cases. When

the depth level of current CU is greater than or equal to the average depth level

of collocated neighboring CUs, the percentage of split CU cases is low. Similarly,
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Figure 6.9: ‘Friends-1’: Distribution of Split and Non-Split CU Cases (Qp =
22,32)

when depth level of current CU is less than the average neighboring depth level,

the percentage of split cases is high. If difference between the current CU depth

level and average neighboring depth level is -1 or lower, then the current block can

be split into 4 sub-blocks with high probability of being the correct decision.

6.3.2 Distribution of Prediction Modes

During HEVC encoding at each CU depth level, different inter and intra prediction

modes are evaluated for selection of the optimal mode inside each CU. Fig. 6.10

and 6.11 show the percentage of Skip and Intra modes in inter frames at CU depth

levels 0,1,2 and 3 for two Light Field pseudo-videos. According to Fig. 6.10, the

percentage of Skip mode for different light fields is greater than 60% on average.

At higher QP values and CU depth levels, this percentage is greater than 80%.

This shows consistent and high pseudo-temporal correlations in light field images.

If a machine learning based classifier can accurately predict the Skip mode, then

prediction of unnecessary PU modes can be skipped to speed up the HEVC en-

coding. Also the percentage of Skip mode is more than 95% for CU depth 3 at

QP = 37. Hence for depth level 3, if QP is equal to or greater than 37, the Skip

mode can be selected as the optimal mode without exhaustive search throughout

all prediction modes.
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Figure 6.10: Distribution of Skip mode at various QP values in LF Pseudo
Videos (a) ‘Friends-1’ (b) ‘StonePillarsOutside’

In HEVC inter frames, intra prediction modes are used for prediction of CU blocks

that cannot be optimally predicted from the co-located neighboring blocks. Ac-

cording to Fig. 6.11, the percentage of Intra modes at different CU depth levels is

around 0.1% on average, which clearly shows that high pseudo-temporal correla-

tion exists and checking of intra mode in the light field pseudo video format can

be skipped without much degradation in the RD performance.

Figure 6.11: Distribution of intra modes in inter frames at various QP values
in LF Pseudo Videos (a) ‘Friends-1’ (b) ‘StonePillarsOutside’

This distribution of prediction modes was confirmed with other light field images

from the data set. Overall this analysis indicates that in light field pseudo-video

representation, there are high percentages of non-split CU cases and Skip modes,

which can be used to reduce the encoding computational complexity, if accurately

predicted and used in early encoding decisions in HEVC. Also additional corre-

lations in stack of sub-aperture images can be exploited to further speed-up the

encoding process for still images. For the lenslet representation there is a high
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Figure 6.12: Neighboring CU Blocks in Current, forward and backward co-
located images

percentage of CU split cases, thus accuracy of the prediction scheme is also criti-

cal to preserve the RD performance. In the following sections, a new approach for

fast encoding of light fields is proposed, based on these specific characteristics and

using Random Forests for early prediction of the best coding mode decisions and

early CU depth termination. Feature selection methodology for classifier training

is also discussed in detail.

6.4 Feature Selection Methodology

In classification based methods, a set of relevant features is extracted from the

video data and a classifier model is trained to take the early decisions. Selection

of optimal features is critical to obtain better classifier accuracy, as the perfor-

mance of the classifier model highly depends upon the selected feature set. In

the proposed methodology, a large set of relevant features is first identified and

extracted from the light fields data. To exploit the high spatial and temporal

correlations in the light field pseudo-video, many features that depend on the

neighboring blocks are used in the feature set.

For computation of such features, top, left and co-located blocks in the forward

and backward sub-aperture images were used, as shown in Fig. 6.12. The feature

value is computed according to the Eq. 6.1 below [69]:
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F =
N∑
i=1

wiai, (6.1)

where N is taken as 4 and value of wi is 0.2 for top and left neighbors and 0.3

for co-located neighboring CU blocks in forward and backward reference images.

Features that depend on the neighboring blocks include average neighbors depth,

neighbors Skip mode count, neighbors average coefficient count and neighbors

average motion vectors.

Pixel Variance in a block gives information about texture and smoothness in the

video frame. Variance can be computed using the Eq. 6.2 below where M and N

represent the width and height of the CU block and µm,n represent the pixel mean.

V arm,n =
1

MN

M∑
i=1

N∑
j=1

(F (i, j)− µm,n)2, (6.2)

µm,n =
1

MN

M∑
i=1

N∑
j=1

F (i, j). (6.3)

Similarly Sobel gradient is also used as a texture feature of each CU block. [123].

Magnitude of Sobel edge can be computed using Eq. 6.4.

Magm,n =
1

MN

M∑
i=1

N∑
j=1

|Hi,j|+ |Vi,j|, (6.4)

where

Hi,j = ( Xi−1,j+1 + 2 ∗ Xi,j+1 + Xi+1,j+1)− (Xi−1,j−1 + 2 ∗ Xi,j−1 + Xi+1,j−1),

(6.5)
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Vi,j = ( Xi+1,j−1 + 2 ∗ Xi+1,j + Xi+1,j+1)− (Xi−1,j−1 + 2 ∗ Xi−1,j + Xi−1,j+1).

(6.6)

Hi,j and Vi,j represent horizontal and vertical components of the Sobel gradient.

Sum of absolute differences (SAD) among pixels of current and collocated block in

neighboring frame gives information about temporal variations in a video frame.

Hence, SAD with collocated CU has also been used as a feature.

Features related to the current block are non-zero coefficient count of current block,

motion vector variance of the current block, total encoded bits and RD Cost of

the current block.

A total of 19 features were used for early CU Depth prediction in inter frames, 13

features for early CU depth prediction in intra frames and 14 features for early

Skip mode prediction.

6.4.1 Score Fusion

For selection of the optimal features, information gain and Random Forests based

feature importance were used to rank the feature set [149]. Information gain pro-

vides a measure of the significance of each individual feature for classification.

While RF based feature importance measures the impact of a sub-set of features

on the classification. Using both the ranking criteria, a score fusion function was

implemented to combine the ranks assigned by information gain and feature im-

portance into a single measure of feature relevance. Combining both the methods

merges the goodness of each into a single metric. First information gain and Ran-

dom Forests based feature importance are used to assign different scores to each

feature. Then both scores are normalized according to the Eq. 6.7 [150], where

Fs(x) is the score to be normalized, Fmin and Fmax are the minimum and maxi-

mum scores obtained for each method, respectively. Fn(x) is the normalized score

obtained for each case.
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Fn(x)=
Fs (x)−Fmin

Fmax− Fmin
, x∈FeatureSet (6.7)

Finally, the normalized scores of both the methods are combined using the fusion

function in Eq. 6.8 below:

C(x) =
m∑
k=1

Fn(x)

m
, x∈FeatureSet. (6.8)

The algorithm proposed for optimal feature selection, using the combined score

C(x), is shown as pseudo code below. Initial feature set contains all the N features.

In each iteration of the feature selection loop, an RF classifier model is trained

using the feature set S and classifier accuracy is computed. Then the feature with

the minimum combined score is removed from the set S and classifier model is

generated again with the reduced set S. This process is repeated N times, till only

one feature is left. Among all the N classifier models, the feature set for which the

classifier accuracy is highest, is selected as the optimal feature set.

Algorithm 1: Optimal Feature Selection

input : Training Data, N Features, Combined Score
output: Optimal Feature Set

1 FeatureSet(S)←FeatureSet(N)
2 for i← 1 to N do
3 ClassifierModel ←RFTraining (FeatureSet)
4 Accuracy[i]←Accuracy of ClassifierModel
5 MinIndex← 1
6 for j ← 1 to S do
7 if CombinedScore[j]<MinScore then
8 MinScore←CombinedScore[ j ] MinIndex←j

9 Remove Feature at MinIndex from FeatureSet(S)

10 MaxAccuracy ←Accuracy[ 1 ]
11 MaxIndex← 1
12 for k ← 1 to N do
13 if Accuracy[k] >MaxAccuracy then
14 MaxAccuracy ←Accuracy[k]
15 MaxIndex←k

16 Optimal Feature Set←Feature Set with MaxAccuracy
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Table 6.1: Optimal Feature Set for Skip mode Selection and Early CU Depth
Termination

Skip Mode Selec-
tion

CU Split Decision
(Intra)

CU Split Decision
(Inter)

1 CU Depth Current CU Depth Current CU Motion Vectors
Variance

2 Neighbors Skip Count CU Neighbors Average
Depth

CU Neighbors Motion
Vectors Average

3 Sobel Gradient CU Pixel Average Prediction Mode of Cur-
rent Block

4 CU Pixel Variance CU Pixel Variance CU Pixel Variance
5 Total Encoded Bits Non-zero Coefficients of

Current Block
Non-zero Coefficients of
Current Block

6 – RD Cost of Current
Block

Neighbors Skip Count

7 – Sobel Gradient of Cur-
rent Block

Sobel Gradient of Cur-
rent Block

8 – Total Encoded Bits Total Encoded Bits
9 – – Skip Flag

Using the above algorithm for optimal feature selection, 5 features were selected

for Skip mode prediction, 8 features for early CU split decision in Intra blocks and

9 features for early CU split decision in inter blocks. These features are shown in

the Table 6.1.

6.5 Proposed Fast Coding System

This section describes the proposed fast encoding framework for low complexity

coding of light field images using HEVC, which uses Random Forests based en-

semble classifiers for early decisions about prediction modes and early CU depth

termination during HEVC encoding of light fields in different representation for-

mats. Based upon the detailed analysis of specific characteristics in light field im-

ages, certain fixed thresholds are also used to simplify the HEVC encoding process.

Random Forests has been selected because of the promising results obtained for

fast video coding using ensemble classification in the last chapter. Other reasons

for preference of Random Forests over various machine learning based methods
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for fast video encoding are already discussed in detail in Chapter 5, section 5.1.1.

Structure of Random Forests Classifier is also described in Chapter 5.

6.5.1 Proposed Fast Prediction Mode Selection

Light field pseudo videos have high percentage of Skip prediction units (PU) as

compared to all the other PUs at different CU depth levels as shown in Fig. 6.10.

Similarly, according to Fig. 6.11, percentage of intra PUs at different CU depth

levels in inter frames, is very low. The proposed methodology for fast prediction

mode selection comprises the following steps:

• If current CU depth level is 3 and Qp value is greater than or equal to 37,

Skip mode is selected as the optimal mode and checking of all the other

prediction modes is skipped. This is a fixed decision, which deals with an

extreme case, based on the evidence found in the previous statistical study.

• The generic case uses a binary classifier to take Skip vs. non-Skip decision

at each CU depth level. If classifier takes a Skip decision, checking of all the

other prediction modes at current CU depth level is skipped. In the case of

non-Skip decision, all other prediction modes are evaluated

• For inter frames, after evaluation of all the other prediction modes if value

of coded block flag (cbf) is zero, checking of intra modes is skipped.

6.5.2 Proposed Fast CU Split Decision for Intra and Inter

Frames

The percentage of non-Split CUs in Light Field Pseudo videos is high especially

at higher CU depth levels and high Qp values, as shown in Fig. 6.5. On the other

hand, in Lenslet images, the percentage of Split CUs is higher at lower CU depth

levels and lower Qp values, as shown in Fig. 6.6. The proposed methodology for
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fast CU split decision for different light field image formats comprises the following

steps :

• For Lenslet images, if Qp value is less than 27 and CU depth level is 0, search

for optimal prediction mode is skipped at current depth level and CU is split

into 4 sub CUs. This also is a fixed decision, which deals with an extreme

case, based on the evidence found in the previous statistical study.

• For sub-aperture images, if the difference between the average depth level of

neighboring blocks and current CU depth level is greater than or equal to

1, search for optimal prediction modes at current CU depth level is skipped

and CU is split in 4 sub CUs.

• For light field pseudo videos, if Qp value is greater than or equal to 37 and

current CU depth level is 2, CU is not further split.

• For all light field image formats, a binary classifier is used at current CU

depth level to take the Split vs. non-Split decision. If a non-split decision is

taken, searching of optimal CU depth at higher depth levels is skipped. The

proposed binary classifier works after all the prediction modes at current CU

depth have been evaluated.

6.5.3 Design of Random Forests Classifier

Proposed fast encoding framework is based on Random Forests. Three separate RF

classifiers were trained for early Skip mode selection, early CU depth termination

for intra and inter view coding, respectively. All the three classifiers work in binary

mode to take the Skip vs. non-Skip decision or Split vs. non-Split decisions. Light

field images in pseudo-video format, do not have scene changes or high temporal

variations, hence the RF classifier models were trained offline. Four light field

images, ‘Magnets-2’, ‘Bush’, ‘RustyHandle’ and ‘Sphynx’ were used as thr training

data-set. For classifier training, these images were encoded at QP values 22, 27, 32

and 37 using HEVC. Light field images used for classifier training were excluded

from the light field images used in testing of the fast encoding methodology.
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6.5.4 Overall Fast Encoding Algorithm

Overall, the proposed fast encoding framework for light field images is based on

three RF classifiers in addition to fixed decisions taken to speed up the encoding

process in different representation formats. The first RF classifier is used for early

CU depth termination in intra blocks. This classifier model is used in Lenslet and

stack of sub-aperture image formats for still image profile, and all intra profile in

pseudo video format. The second RF classifier works for early selection of Skip

mode while the third classifier works for early termination of CU depth, in inter

coding of sub-aperture images in pseudo video format. These classifiers are used

for fast encoding of light field images in LD Main B and RA profiles. All the three

classifiers work in binary mode and classifier models are trained offline. During

encoding at CU level, features are extracted from the video data at run-time and

fed to the classifier model. RF Classifier model for early Skip mode prediction

works at all CU depth levels i.e. 0,1,2 and 3. On the other hand, classifier models

for early CU depth termination in intra and inter modes work only at CU depth

levels 0, 1 and 2 as CU is not further split at depth level 3. Flow-charts of the

proposed overall algorithm at CU level are shown in Figs. 6.13 and 6.14.

6.6 Results and Discussion

The proposed fast encoding framework for encoding of light field images was inte-

grated in HEVC reference software HM version 16.10 [126]. The hardware platform

used for evaluation is an Intel Core i5 machine running at 1.70 GHz with 8 GB of

RAM. A set of twelve light field images of different texture and lighting conditions

is selected as test set from light field images dataset [62]. For sub-aperture image

format, the size of one sub-aperture image was cropped to make it multiple of 64.

The pseudo-video format was obtained by converting sub-aperture images into

a pseudo-temporal video sequence using the spiral scan order. Random Forests

(RF) classifier models described in previous section have been trained offline using

four light field images, ‘Bush’, ‘RustyHandle’, ‘Magnets-2’ and ‘Sphynx’. These
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Figure 6.13: Flow-Chart of the Fast Encoding Algorithm for All Intra Frame

training images are not part of the testing set. RD performance of the proposed

fast implementation and speed-up in terms of execution time are obtained for four

HEVC profiles, namely still image profile for lenslet and stack of sub-aperture im-

ages, All Intra profile, Low Delay Main B and Random Access profile for pseudo
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Table 6.2: Performance Results of early CU Split Decision for HEVC Still
Image Profile

Stream LensLet Image Sub-aperture Image
BDBR BDPSNR TS(%) BDBR BDPSNR TS(%)

Ankylosaurus & Diplodocus 1 0.36 -0.032 25.54 2.52 -0.067 73.46
Bikes 0.27 -0.018 27.68 0.64 -0.037 47.63
Color Chart 1 0.42 -0.035 28.08 4.05 -0.141 70.11
Danger de Mort 0.25 -0.013 28.75 0.53 -0.030 44.46
Desktop 0.10 -0.011 23.62 0.72 -0.041 54.95
Flowers 0.26 -0.016 30.08 0.25 -0.017 38.43
Fountain Vincent 2 0.27 -0.021 18.76 0.65 -0.036 54.45
Friends 1 0.17 -0.015 31.55 0.56 -0.029 53.32
ISO Chart 12 0.31 -0.027 23.57 1.56 -0.090 52.73
Magnets 1 0.33 -0.028 23.11 2.27 -0.077 70.95
Stone Pillars Outside 0.21 -0.015 30.33 0.74 -0.044 55.42
Vespa 0.22 -0.012 37.60 1.70 -0.078 58.85
Average 0.26 -0.020 27.39 1.35 -0.057 56.23

video format.

Speed-up in Execution Time (TS%) is measured in terms of the difference between

the coding time of the HM reference encoder and the proposed RF-based fast

encoding, as given by Eq. 6.9 below, where Tr and Tp are the encoding times of

HM reference and proposed RF implementations, respectively.

TS(%) =
(Tr − Tp) ∗ 100

Tr
. (6.9)

For RD performance measurement of the proposed scheme, light field images in

different formats were encoded using QP values 22, 27, 32 and 37 and BDBR (%)

and BDPSNR (dB) have been computed [56].

Results of the proposed approach for early CU split decision for still image profile

in the case of lenslet and sub-aperture image formats are shown in Table 6.2. Ac-

cording to these results, early CU split decision gives average speed-up of 27.39%

and 56.23% for lenslet and sub-aperture formats respectively. This speed-up is

achieved with an increase in BDBR of 0.26% for lenslet images and 1.35% for sub-

aperture images. The speed-up achieved for sub-aperture image format is high

as compared to the lenslet image format. This is because of the high correlation

between co-located neighboring blocks in top and left sub-aperture views, which
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has been exploited to avoid computations at unnecessary CU depth levels. More-

over, in lenslet images, complex texture pattern, even in the smooth regions of

the image, leads to small CU sizes and proportionally large percentage of CU split

cases during HEVC encoding. This large number of CU split cases reduces the

gain in speed-up.

Results of the prediction schemes for early CU split decision and early Skip mode

prediction for pseudo video format is shown in Table 6.3. According to these

results, early CU-Split decision for intra and inter frames give average speed-up

of 44.73% and 57.60% respectively. This speed-up is achieved at the expense of

increase in BDBR of 1.5 % and 1.44% respectively. Similarly, speed-up because of

early Skip mode selection is 39.68% with increase in BDBR of 0.76%. Speed up

for early CU split decision in inter frames is more than the intra frames because

for inter coding, high correlation among co-located neighbors in successive frames

result in higher percentage of non-split cases. Early prediction of these non-split

cases gives more speed up.

The overall performance of the proposed approach for pseudo videos in three

HEVC profiles is shown in Table 6.4. Average speed-up for All Intra, Low Delay

Main B and Random Access profiles is 44.73%, 56.54% and 62.18% respectively.

This speed-up is achieved at the expense of a small increase in BDBR of 1.5%,

2.20% and 1.5% respectively. A maximum speed-up of 71.68% is achieved for the

pseudo sequence ‘Magnet-1’ in Random Access profile, because it contains smooth

texture and plain background that results in higher percentage of Skip prediction

mode and non-split cases. On the contrary, pseudo sequence ‘Bike’ with high tex-

ture gives minimum speed up of 52.44% for Random Access profile as the high

texture increases number of CU split cases that leads to lower speed up. Over-

all, for encoding of pseudo video representation, maximum average speed-up is

achieved with Random Access profile as compared to other two profiles.
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Table 6.3: Performance Results of CU Split Decision Intra and Inter CU and Skip Mode Decision

Stream Resolution CU Split Decision Intra CU Split Decision Inter Skip Mode Decision
BDBR BDPSNR TS(%) BDBR BDPSNR TS(%) BDBR BDPSNR TS(%)

Ankylosaurus & Diplodocus 1 3.06 -0.089 67.71 3.05 -0.064 66.03 1.52 -0.031 42.20
Bikes 0.57 -0.035 29.60 1.18 -0.044 48.21 0.25 -0.009 31.91
Color Chart 1 4.62 -0.185 63.17 1.84 -0.045 56.10 1.72 -0.040 36.35
Danger de Mort 0.46 -0.026 30.17 1.39 -0.052 58.29 0.58 -0.022 40.94
Desktop 0.69 -0.040 42.52 1.33 -0.042 56.42 0.63 -0.020 42.94
Flowers 624x432 0.16 -0.011 20.64 0.68 -0.026 55.23 0.29 -0.011 41.53
Fountain Vincent 2 0.52 -0.031 39.63 0.99 -0.032 51.21 0.28 -0.009 31.56
Friends 1 0.56 -0.031 39.75 0.78 -0.027 59.35 0.57 -0.019 42.98
ISO Chart 12 2.13 -0.129 39.02 0.85 -0.024 56.67 0.34 -0.008 36.66
Magnets 1 2.70 -0.095 65.57 2.76 -0.062 65.88 2.39 -0.052 44.88
Stone Pillars Outside 0.69 -0.039 49.63 0.83 -0.026 58.37 0.37 -0.011 41.55
Vespa 1.78 -0.086 49.34 1.62 -0.051 59.47 0.17 -0.006 42.62
Average 1.50 -0.066 44.73 1.44 -0.041 57.60 0.76 -0.020 39.68
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Table 6.4: Performance Results for All Intra, Low Delay B and Random Access Profiles

Stream Resolution All Intra Profile Low Delay B Profile Random Access Profile
BDBR BDPSNR TS(%) BDBR BDPSNR TS(%) BDBR BDPSNR TS(%)

Ankylosaurus & Diplodocus 1 3.06 -0.089 67.71 1.99 -0.042 67.74 2.25 -0.045 71.14
Bikes 0.57 -0.035 29.60 2.33 -0.081 44.77 1.28 -0.048 52.44
Color Chart 1 4.62 -0.185 63.17 6.42 -0.146 57.54 2.33 -0.057 60.03
Danger de Mort 0.46 -0.026 30.17 1.98 -0.070 54.36 1.54 -0.057 62.13
Desktop 0.69 -0.040 42.52 1.68 -0.045 57.78 1.87 -0.059 62.75
Flowers 624x432 0.16 -0.011 20.64 1.71 -0.055 50.79 0.76 -0.030 59.47
Fountain Vincent 2 0.52 -0.031 39.63 1.21 -0.035 47.69 0.85 -0.028 54.90
Friends 1 0.56 -0.031 39.75 1.12 -0.031 58.47 0.88 -0.030 63.77
ISO Chart 12 2.13 -0.129 39.02 2.39 -0.060 55.89 1.39 -0.043 60.92
Magnets 1 2.70 -0.095 65.57 3.07 -0.056 67.75 2.17 -0.046 71.68
Stone Pillars Outside 0.69 -0.039 49.63 0.70 -0.018 57.08 0.71 -0.022 62.70
Vespa 1.78 -0.086 49.34 1.77 -0.050 58.59 1.93 -0.060 64.24
Average 1.50 -0.066 44.73 2.20 -0.057 56.54 1.50 -0.044 62.18
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Figure 6.15: CU Partitions in All Intra Profile ‘Friends-1’ (a) HM Reference
(b) Proposed Scheme

Figure 6.16: CU Partitions in RA Profile ‘StonePillarsOutside’ (a) HM Ref-
erence (b) Proposed Scheme

Results of the proposed RF based CU partition decisions for Intra and Inter frames

are shown in Fig. 6.15 and 6.16. Fig. 6.15 shows CU partitions in one frame of

light field image ‘Friends-1’ after HM reference encoding and after proposed fast

encoding for intra CUs at Qp value 27. According to these results, both for smooth

regions and the regions with high texture in the frame, CU partitions of proposed

scheme are similar to those of the HM reference encoder partitions.

Fig. 6.16 shows similar results for inter CU partitions for RA profile in one frame of

light field image ‘StonePillarOutside’ after encoding at Qp value 27. These results

indicate that the proposed approach closely adapts to different texture and scene

depth conditions without compromising the RD performance.
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Figure 6.17: RD Performance Curves for All Intra Profile at Qp 22,27,32,37
(a) ‘Friends-1’ (b) ‘StonePillarsOutside’

Figure 6.18: RD Performance Curves for Random Access Profile at Qp
22,27,32,37 (a) ‘Friends-1’ (b) ‘StonePillarsOutside’

RD performance curves of the proposed approach and HM reference for all intra

profile are shown in Fig. 6.17 for two light field images ‘Friends-1’ and ‘StonePil-

larsOutside’. Fig. 6.18 shows similar results for Random Access Profile. These RD

performance curves have been drawn at Qp values 22, 27, 32, 37. According to

these curves, RD performance of the proposed approach closely resembles the HM

reference. Moreover, this RD performance is achieved with substantial speed-up

for all three HEVC profiles as shown in the Table 6.4.

6.6.1 Performance Comparison

For performance comparison of the proposed approach with other recent works,

three techniques [78, 104, 119] used for fast encoding of video sequences are consid-

ered. As no literature is available for low complexity coding of light field images,
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Table 6.5: Performance comparison of the proposed approach with recent
works

Proposed Approach X.Huang [78] D. Fernandez [104] T.Shi [119]
Stream BDBR TS(%) BDBR TS(%) BDBR TS(%) BDBR TS(%)

Ankylosaurus & Diplodocus 1 2.25 71.14 0.50 45.19 2.61 39.39 1.47 45.68
Bikes 1.28 52.44 1.26 37.32 0.77 32.74 0.43 38.36
Color Chart 1 2.33 60.03 0.94 42.54 1.90 34.01 1.36 43.53
Danger de Mort 1.54 62.13 1.56 41.72 1.00 36.04 0.50 42.75
Desktop 1.87 62.75 0.74 41.06 2.32 45.37 0.45 43.43
Flowers 0.76 59.47 0.76 38.64 0.75 38.68 0.30 42.87
Fountain Vincent 2 0.85 54.90 0.73 38.39 0.99 30.34 0.43 40.08
Friends 1 0.88 63.77 0.48 42.98 1.29 41.95 0.41 46.94
ISO Chart 12 1.39 60.92 1.44 39.81 1.67 37.62 0.95 46.22
Magnets 1 2.17 71.68 0.63 45.91 2.12 42.25 1.44 47.15
Stone Pillars Outside 0.71 62.70 0.44 41.43 0.98 36.86 0.34 45.60
Vespa 1.93 64.24 0.71 44.51 1.70 36.83 0.61 45.48

Average 1.50 62.18 0.85 41.62 1.51 37.67 0.72 44.01

the comparison is made with approaches developed for fast coding of video data.

These techniques have been implemented and results are compiled for light fields

data. Comparison of these techniques with the proposed method is shown in the

Table 6.5. These results are for light fields in pseudo video format encoded using

HEVC Random Access profile.

According to the results, the average speed-up of the proposed approach is 62.18%.

While speed-up of X.Huang et al.[78] is 41.62%, T.Shi et al. [119] 44.01% and D.

Fernandez et al.[104] 37.67%, for the same profile. T.Shi et al.[119] used machine

learning technique based on decision trees at different CU depth levels to reduce

the complexity of HEVC encoding. Similarly, the statistics based analysis per-

formed by X.Huang et al. [78] and D. Fernandez et al.[104] was also specifically

done for video sequences. However in the proposed approach, selection of optimal

features was performed for light field images. Moreover, Random Forests classi-

fiers in different representation formats were also designed for light field data and

the statistics based analysis was carried out using Lenselet, stack of sub-aperture

images and light fields pseudo videos. Methods developed for fast coding of video

data do not fully exploit the spatial and temporal correlations available in the

light field images. This is the major reason, the proposed approach performs bet-

ter than the three implementations in terms of speed-up with comparative BDBR

figures.
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6.7 Analysis of Results

Overall, the proposed fast encoding approach based on ensemble classifiers signif-

icantly reduces HEVC encoding complexity for all the light field image represen-

tation formats. Percentage of speed-up for pseudo video formats is better than

the lenslet and sub-aperture image formats, because in pseudo videos early pre-

diction of Skip mode gives extra speed-up. Maximum average speed is achieved

for Random Access profile in pseudo videos i.e. 62.18%. For Still Image profile,

sub-aperture image format gives more speed-up as compared to the lenslet format.

This is because the lenslet format does not have spatial correlation present within

the sub-aperture image or among neighboring sub-aperture images. This makes it

difficult to predict the CU sizes and prediction modes during encoding. Increase

in BDBR for all the image formats is less than 2.5%. Hence, the proposed scheme

for fast encoding of light field images finds useful application in fast coding for

storage and delivery of light fields using HEVC, with negligible degradation in RD

performance.

Performance comparison of the proposed methodology with other recent works

also shows that proposed approach performs better than the previous works for

light fields data. This also shows that fast coding techniques developed for video

sequences may not necessarily ensure better performance when applied to light

field images without content specific enhancements. Nevertheless, novel results

obtained in this research can be used as benchmark for future work on the fast

coding of light field images. This implementation also demonstrates that fast

video encoding schemes developed in this research can be seamlessly applied in

fast coding of visual media in other fields related to image and videos.

6.8 Summary

In this chapter fast video encoding techniques were used to reduce the compu-

tational complexity of light field images coding using HEVC. Light field image
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representations, stack of sub-aperture images and pseudo videos were used as the

input to the HEVC. Unique features of light field image representations were iden-

tified and used as input to the RF classifier. Score fusion was applied to select

the optimal features for classifier training. Proposed RF classifiers were used for

prediction mode selection and CU depth level prediction in Still Image, Low Delay

and Random Access profiles of HEVC. According to the results, extra correlations

in stack of sub-aperture images helped in speed-up of encoding in Still image pro-

files. Overall, light filed images encoded as pseudo videos using Random Access

profiles gave the highest speed-up. These findings also indicate, fast video en-

coding techniques developed in this research can be extended to other image and

video coding fields.



Chapter 7

Conclusion and Future Work

In this research, multiple fast encoding techniques have been developed to reduce

the computational complexity of HEVC. These techniques are based on machine

learning based algorithms. Systematic approach has been used for selection of rel-

evant features and classifier parameters. Findings of this research show that pro-

posed classifier models are robust against changes in video content and outperform

other recent implementations in terms of encoder speed-up and RD performance.

Modern trends in video coding are usage of HD and UHD frame resolutions in

online video streaming and high frame-rate in multimedia applications. Compu-

tational complexity of HEVC is the major limiting factor in its widespread usage

on the Internet and end-user multimedia products despite 50% decrease in bit-

rates as compared to earlier standards like H.264. Promising results obtained in

this research can help in real-time implementation of HEVC in multimedia players

and other end-user products with limited processing power and memory. This

chapter summarizes and concludes the contributions of the research work. Future

enhancements in the research are also discussed.

148
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7.1 Concluding Remarks

Overall, this research can be divided into three parts. Focus of first two parts is

the development of fast encoding techniques to reduce the encoding complexity of

HEVC. Third part is application of the fast encoding techniques in low complexity

coding of light field images.

First part of this research is the development of a content adaptive fast encoding

framework for HEVC that can be used for video sequences of diverse nature and

content. Changes in the video content are a major challenge for fast encoding

methods as it may degrade the RD performance or the speed-up. Proposed ap-

proach uses global and local spatio-temporal parameters extracted from the video

data and intelligently uses them to predict CU depth level and inter prediction

modes for fast encoding. Otsu threshold based difference maps are used to quantify

the motion content in video frames. Approach intelligently adapts to the changes

in video frames for a variety of video sequences. Experimental results show that

the proposed approach reduces computational complexity of HEVC by 56.34% on

average with negligible increase in BDBR of 1.64% for Random Access profile and

performs better than existing implementations. Usage of both global and local

parameters to characterize the video data enables better adaptation of the pro-

posed approach to the video content. Hence, video sequences with diverse texture

and motion content can be encoded without compromising on video quality or

encoding speed.

Second part of this research is the development of a fast encoding method for

HEVC based on Random Forests based ensemble classification. A customizable

framework of online and offline trained Random Forests classifier models is pro-

posed that can work in multiple user selected configurations. A detailed analysis

is carried out for selection of optimal features from video data using filtering and

wrapper based approach and a consistent and reproducible methodology is devel-

oped to select the best feature sets. Classifier design parameters are optimized

through a systematic procedure. The proposed approach models CU and TU
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splitting decision and Skip mode selection as a binary classification problem, us-

ing Random Forests for early splitting decision and Skip mode prediction. The

results provide a conclusive evidence that RF ensemble classifier shows good per-

formance both for sequences with high and low motion content. Particularly, the

experimental results demonstrate that the proposed approach achieves increased

speed-up for low and high motion video streams while ensuring comparative video

quality as compared to the other state of the art. Maximum and average speed-up

achieved by the proposed approach is 84.40% and 62.64%, for Random Access pro-

file while for Low Delay Main profile is 78.98% and 54.57%, respectively. Taking

into consideration that these gains are obtained with an average BDBR of 2.58%

(Random Access) and 2.97% (Low Delay Main), the overall results demonstrate

that Random Forests despite being an ensemble classifier, has low classifier over-

head and provides an efficient solution for fast video encoding that can be used in

multimedia applications and real-time implementations.

Third and the last part is the application of fast video encoding methods developed

in this research to the fast encoding of emerging image processing domain like com-

pression of light field images. A machine learning approach has been implemented

for low-complexity coding of light field images using HEVC with lenslet, matrix

of sub-aperture images and pseudo video formats. Detailed analysis is carried out

to identify unique features of light field images that can assist in low complexity

encoding and a score fusion based technique is proposed for selection of optimal

classifier features. An ensemble classifier using Random Forests is designed for

early prediction of CU split decision for Intra and Inter blocks and early Skip

mode prediction in inter blocks. The proposed method gives average speed-up of

56.23% for Still Image profile, 62.18% for Random Access, 56.54% for Low Delay

Main B and 44.73% for All Intra profile. These results have been obtained with

negligible increase in BDBR and negligible change in BDPSNR. These findings

can be used as benchmark for further research on fast coding of light field images.

Overall, this work demonstrates that using ensemble classifiers to speed-up high

efficiency coding of light fields, is an efficient solution to significantly reduce the
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computational complexity that enables coding and transmission of light field im-

ages in real-time. These promising results also show that fast encoding methods

developed in this research can be seamlessly applied to other areas of image and

video coding.

7.2 Future Work

Findings of the research carried out in this thesis on development of fast video

encoding techniques using machine learning are promising in many ways. This

work can be used in real-time applications of video coding. This research can be

extended in the future in following directions.

• A comprehensive content adaptive framework has been developed for fast en-

coding that performs equally well for video sequences with simple or complex

texture or motion content. Proposed framework only works for HEVC inter

profile. Performance of this content adaptive framework can be improved

in the future by fast prediction of intra coded frames. Impact of machine

learning methods on content adaptive encoding can also be explored in the

future.

• Fast encoding techniques developed in this work using ensemble classifier

models are robust against changes in video content. These classifiers help

in reducing the encoding overhead in HEVC. One limitation of this imple-

mentation is that online classifier model is trained only once. To make the

scheme more robust against abrupt scene changes, in future implementations

classifier model can be updated by retraining it at regular intervals. Simi-

larly, extensions of HEVC such as screen content coding (SCC) or multi-view

(MV) coding use the same coding structure as HEVC. Hence, proposed fast

encoding methods can be extended in the future to reduce the computational

complexity of latest HEVC extensions.
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• In this research, Random Forests based machine learning method has shown

promising results for fast video encoding. In literature, people have used

other machine learning methods such as support vector machines (SVM),

decision trees and Bayesian classification for fast encoding. A comparative

analysis can be done in the future to compare the performance of Random

Forests with other commonly used methods in fast video encoding to analyze

the classifier accuracy, overhead of classifier model and impact of various

machine learning methods on speed-up and RD performance of the video

codec.

• Random Forests classifiers used in this research are based on decision trees.

These decision trees are implemented using nested if-else structures in soft-

ware and no complex mathematical operations like multiplication or devision

are required. Such control structures support parallelism and can be easily

mapped in Field Programmable Gate Array (FPGA) based hardware imple-

mentations [151, 152]. Hence, dedicated hardware based fast video coding

solutions can use the proposed research in video playback devices or set-top

multimedia boxes in the future.

• For smooth exchange of video content over heterogeneous networks and to

match the diverse capabilities of end user devices, video transcoding or tran-

sratting solutions are implemented [153, 154]. These solutions enable ad-

justments of video format, bit-rate or frame resolutions according to the

requirements of receiving devices. Such video transcoders are composed of

video decoder and encoder running back to back, making it a computation-

ally intensive framework. Fast video encoding methods developed in this

research can also be employed in such video transcoding solutions for fast

processing.
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