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Abstract

In modern technological era image encryption has become an attractive and inter-

esting field for researchers. The work has been taken for improving the security

of image data from unauthorized sources. Chaos theory, due to its randomness

and unpredictable behaviors, is considered favorite for the purpose of image en-

cryption. This study presents various image encryption schemes based on simple

as well as compound chaotic maps. These techniques use S-box for confusion and

Boolean function XOR for diffusion purpose.

Another aspect of this study is the use of chaotic map to deal with the images

in telemedicine. In telemedicine, images based on patient diagnostic tests and

reports are usually required to broadcast securely so that recipient can receive

them without any error. For the secure communication of sensitive medical data,

there is a need of authenticated and unforgeable cryptosystem. A novel medical

image signcryption algorithm is presented that provides confidentiality, integrity,

authentication, non repudiation, forward secrecy for sensitive data transmission.
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Chapter 1

Introduction

Due to rapid development in the field of information technology, the secure com-

mercial and private communication has become an essential requirement. 21st

century is the century of innovation and technology. In its early years, a rapid

progress is seen in every aspect of life. Social media and communication sector

revolutionized in previous two decades. They have completely changed the way

people communicate and socialize on the internet. Social networking does, un-

fortunately, have certain drawbacks. Some of these are cyberbullying [1] online

harassment [2] and privacy theft. Giving personal information on social media

sites might expose users to crimes such as stalking, identity theft, and other forms

of harassment.

The current era of digital technology, such as the internet, the internet of things

(IoT), and big data, has virtually transformed all nations’ culture. With the ad-

vancement of technology and its widespread usage to preserve, store, and transfer

a large amount of sensitive and important information in all sectors of life, main-

taining information confidentiality has become a serious concern. Due to the rapid

increase in computing power, the stakes for digital security are now higher than

ever. The fast and efficient technology enables people to secure their valuable

information. Adversaries are always there to thwart secret information during the

communication. To combat the data breaching, a strong defense is essential.

1
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Cryptography has been crucial in the secure transmission of sensitive information

between two or more persons. Cryptography’s basic goal is to share information

among participants in such a way that adversarial threats are minimized.

The next section gives a brief introduction and literature review of cryptogyaphy,

encryption and signcryption techniques to protect the multi-media information.

Section 1.2 presents the contribution of the thesis and, finally layout of the thesis

is provided in Section 1.3.

1.1 Literature Review

The literature review covers various aspects of multimedia content security. In the

first section cryptography its introduction and types with historical background

is presented. In Section 1.1.2 image encryption and related work from the litera-

ture is discussed. Section 1.1.3 describes the origination and progressive work for

the security of image based data. Medical images, their importance and encryp-

tion techniques from the literature are stated in Section 1.1.4, while the Section

1.1.5 covers the introduction and related research for medical image signcryption

techniques.

1.1.1 Cryptography

Cryptography is the study of methods and strategies for changing a secret message

so that only an authorised recipient with a secret key can decrypt it. If a third

party (enemy or hacker) intercepts the message during transmission, he should not

be able to extract the original information.

The term ‘cryptosystem’, a short for ‘cryptographic system’ is a computer system

that is used to protect data during the communications. The important ingredients

of cryptosystem are: the message which has to be encrypted is known as plaintext,

encryption algorithm transforms data into another form, called a ciphertext, that

is very difficult to understand by unauthorized people.
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Figure 1.1: Information security systems

The above mentioned Figure 1.1 is taken from [3] that depicts the information

security system and different techniques adopted for this purpose. According to

the above figure a security system can provide data protection between commu-

nicating parties using two different ways, that are information hiding techniques

and cryptographic modes. The information hiding techniques involves the meth-

ods of water marking and steganography. In water marking techniques, a water

mark sign is dispatched on the secret information that fully or partially hides the

original information. The main purpose of using this technique for information

security is that it gives copyright protection. It is famous for providing multi-

media authentication. It provides protection against fraud and temper detection

and makes secure the identity of the sender, while in steganography the origi-

nal message is changed into another coded form using a defined coding pattern.

The steganographic techniques provide the way for secure information communi-

cation and also provide secure information storage. Cryptography is a secret key

based secure communication technique that provides many security features like

confidentiality, authentication, non repudiation, integrity etc.

In cryptography a secret key is a part of information that is used to provide the

output of any cryptographic algorithm or cipher. Without the use of a secret key,
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a cryptographic algorithm would not generate any useful information. During

the encryption process a particular transformation takes secret key and turns

plaintext into ciphertext, or vice versa during decryption. In decryption process

an encrypted message (ciphertext) is transformed into its original shape.

The two main branches of cryptography are called, symmetric (secret) key cryp-

tography and asymmetric (public) key cryptography. In symmetric (secret) key

cryptography, the key which is used to encrypt and decrypt data is shared be-

tween two (or more) parties. The security of symmetric key cryptography relies

on keeping the key secret by each communicating party. DES (Data Encryption

Standard) [4], introduced in 1977, is the most well-known cryptographic method

in the literature. It was a block cipher that had been widely used until, it was dis-

covered to be insecure and superseded by AES (Advanced Encryption Standard)

[5]. AES is also a block cipher that runs through three different rounds. The S-box

is the main component that provides non-linearity and confusion in the resulting

ciphertext.

S-box can be used in a variety of ways in image encryption [6, 7], low profile mobile

applications [8], multimedia encryption [9], watermarking [10], and steganography

[11]. Nowadays researchers use different optimization approaches [12–15] to opti-

mize the performance of S-box.

On the other hand in asymmetric (public) key cryptography, a pair of keys for

each party is being used. In this set, one key is kept “public” and the other is

kept “secret”. The secret key is maintained as a secret and only known by the

communication parties, the public key is known to both parties. Asymmetric key

cryptography uses, for instance: Diffie Hellman key exchange protocol [16], RSA

[17], Elliptic curve cryptography (ECC) [18] etc.

1.1.2 Image Encryption

Another aspect of cryptography is its huge use for the security in multimedia

communication over the internet. Security of confidential image based data has

become an essential requirement for communication purpose and images stored in
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different databases [19]. Image encryption is the process of transforming a plain-

image into a cipherimage, whereas image decryption is its opposite process. Image

encryption schemes are mainly used to maintain image security by converting plain

images into another images, that are difficult to recognize. For maintaining im-

age confidentiality between two users, it is required that nobody else could meet

the content of image without having proper key for decryption. Image and video

encryption have vast application in many fields like internet communication [20],

medical imaging [21], multimedia systems [22], telemedicine [23] etc.

Figure 1.2: Classification of image encryption schemes

In Figure 1.2 a classification of image encryption techniques is shown. According

to the scope of this study, image encryption techniques are divided into three

ma in categories that are multimedia image encryption techniques, medical image

encryption techniques and image signcryption techniques. Different structures are

used for the encryption purposes of multimedia images for example using DNA,

Zhang and Wang [45] devised a multi-image encryption technique. The use of DNA

was suggested as a method of image encryption by Yousif et al. [46]. Elliptic curve

cryptography is also used for the encryption purpose of multmedia images. Luo

et al. [42] proposed image encryption method based on elliptic curve Elgamal

cryptosystem. A unique image encryption method based on the elliptic curve
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over finite rings was developed by Hayat et al. [47]. Use of chaotic maps for

the encryption of multi-media information has become a recent trend. A chaotic

sequence-based image encryption method related to plaintext was proposed by

Ma et al. [40]. Another technique is proposed by Li et al. [41] that uses Arnold

chaotic map for multi media image encryption.

Security of medical information is another aspect of image encryption mechanism

as shown in Figure 1.2. Many encryption techniques are proposed for this purpose.

Chen and Hu [55] used multiple chaotic maps to protect medical images. Reyad et

al. [56] used hash enhanced elliptic curve based medical image encryprtion scheme.

Wong [68] also used hash function to generate cryptography based trust center for

securing medical images. Image signcryption is another way used for secure image

transmission. Saini and Vaisla in [87] presented an elliptic curve based image

signcryption technique. Recently Ali and Ali [76] developed a method for securely

transmitting medical images that uses chaos theory-based signcryption.

In 1989, Matthews [24] initiated the concept that, under certain conditions, easy

non-linear iterative functions have tendency of producing chaotic sequences of

random numbers. He created a chaotic function and suggested that it would

be useful for cryptography. He developed and applied a key stream based on a

well-known logistic chaotic chaotic map [25] also used it for encryption of secret

information. Habutsu [26] introduced the use of chaos for cryptography in 1991.

His proposed symmetric key encryption scheme involves one dimensional chaotic

map and its iteration known as tent map [27].

Later on 1998 Fridrich [28] developed a method for encrypting images that makes

use of chaotic maps. The main aspects of his proposed encryption scheme were

large block size, variable key length and efficient encryption. The cipherimage

was generated by using two dimensional chaotic maps. He had used these chaotic

maps to produce complex, key dependent permutations. Then in 2004 Chen et al.

[29] and Mao [30] used 3D chaotic cat map and baker map for generating permu-

tations in image encryption scheme. Guan et al. [31] in 2005 employed 2D cat
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map and Chen’s map for permutation in pixel position and also for pixel value

masking. In 2009 Patidar et al. [32] suggested substitution-diffusion type image

encryption scheme that employs chaotic logistic and standard maps as part of its

encryption scheme. The proposed scheme was robust having confusion and diffu-

sion properties. He also put forth a modified version [33] of his technique that was

more resistant to known and chosen attacks using plaintext. In 2011 Francois et

al. [34] used coupling of chaotic functions and XOR operator in image encryption

scheme. The main features of his scheme were the ability of producing large key

space, possessing confusion and diffusion properties and encrypt images with any

entropy structure. Zhang et al. [35] developed a spatial-temporal chaos of mixed

linear-nonlinear coupled map lattices-based encryption technique in 2014. In pro-

posed scheme he used the technique of bit level pixel-permutation that enables

the permutation of pixels’ lower and higher-bit planes in an image. In [36], an

encryption approach made use of a parametric switching chaotic system and its

accompanying transforms.

The growing popularity of digital images has increased the problems concerning

with the security, storage and transportation of secret images. A variety of crypto-

graphic schemes such as image steganography [37], copy detection [38] and image

encryption [6, 7, 39–48] for the protection of secret images during communication

are proposed.

1.1.3 Medical Image Encryption

With the advancement in tele-medicine field the security of medical images is

becoming more important. The use of modern computer based technology has

revolutionized the health-care system. Recent advancements in public health-care

system provides an easy way to access patient’s health record, treatment history,

and medicine used records through cloud storage for effective health delivery. The

malicious activities on cyber infrastructure are increasing day by day, therefore

the security requirements of health-care sector are also rising. Medical images

are dominant part of health infrastructure. In e-health system DICOM (digital
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images communication in medicine) [49] is considered as standard (ISO 12052

[50]) for medical imaging. It provides the details about the bio-medical structure

of organ, being examined. Many advanced tools are invented for the diagnostic

purpose of pre-medical analysis and examination using DICOM system. These

tools are based on imaging technology using signal processing to get the vision of

internal body systems. Nowadays surgical operations are guided by sensors and

artificial intelligence [51]. These real time information systems collaborate in real

time surgical operations.

As medical data is mostly occurred in image format, therefore a rigorous secu-

rity approach is required to secure it. In e-health care system, there are serious

threats to data containing secret information of a patient’s health reports. During

the management and transmission of health-care data to third parties like pri-

vate/public or hybrid clouds, there may occur many problems about the safety

and security of this data. Therefore an efficient and robust approach is required to

provide secure transmission of sensitive medical data along-with its authentication

over public networks.

Many conventional approaches like DES, AES, RSA etc, are not suitable to pro-

tect sensitive records in DICOM system [52] due to large storage requirements

and long computational time. In 2012 Mohamed et al. [53] suggested an image

encryption system based on chaos and compared the simulation results with AES

against NPCR (number of pixel change rate), UACI (unified average changing

intensity) [54], correlation among the pixels in cipher image, histogram analysis

and encryption time. On the basis of the above security tests it was concluded

that for digital multimedia data, the traditionally used cryptographic schemes are

less suitable. Recently in 2017 Chen and Hu [55] used multiple chaotic mappings

for adaptive medical image encryption. A hash-based method of medical image

encryption was presented by Rayed et al. [56]. Rajendran et al [57] in 2021 pro-

posed a secure medical image transmission model based on chaos theory for the

use in IoT-Powered healthcare systems.
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1.1.4 Signcryption

Encryption and authentication are two essential primitives of cryptography. These

are vastly used for maintaining privacy of communication. Authenticated encryp-

tion (AE) [58] simultaneously offers encryption along with data authenticity and

confidentiality of secret data. For this purpose authenticated encryption combines

symmetric encryption scheme and message authentication code (MAC) [59]. Other

methods used for protection and authentication are; sign-then-encrypt, encrypt-

then-sign, sign and encrypt and authenticated encryption with associated data

(AEAD). But these cryptographic protocols take extra computational efforts. In

1997 Zheng [60] combined these primitives in a single operation and named it

“signcryption”. It takes less computational cost and effort. Signcryption pro-

vides confidentiality, integrity, authentication of information and non-repudiation.

Therefore, the signcryption technique is used in many applications like electronic

transaction protocols [61], key management [62], routing protocols [63] etc. It also

plays an important role in cloud computing [64] and internet of things [65].

In contrast to signing then encrypting, Deng and Bao’s [66] suggested signcryption

approach reduces computational cost to 16% and communicational cost to 85%.

But their proposed scheme is less efficient than that of Zheng [60]. Mahmood

and Dony [67] have proposed an enhanced segmentation based medical image

encryption scheme. Region of interest (ROI) and region of background (ROB)

are the two categories into which medical images are classified in this method.. It

uses AES and Gold code (GC) algorithm to reduce computational time and also

to provide hybrid design of encryption. Wong [68] proposed the idea of a digital

trust center in 1996. It provides confidentiality and authenticity of digital images

in hospitals.

In order to encrypt data, Eldayem et al. [69] in 2013 presented an encryption

method. They used watermarking technique and MD5 hash function for integrity

of images. Their proposed scheme provides patient authentication, image integrity

and patient information confidentiality. Bhopi et al. [70] in 2016 proposed a

method for the security of medical images. In this proposed work, medical image
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encryption (MIE) is taken in two stages. In the first stage rotation is performed

row-wise, column-wise and diagonally using binary keys. In the second phase four

chaotic logistic maps are used to generate pseudo random sequences. Pixel value

permutation is performed with these generated sequences.

Singh and Singh [71] used elliptic curve cryptography for encryption, decryption

and digital signature of cipher image to give the authenticity and integrity. Shukla

et al. [72] proposed an image encryption scheme that uses Elgamel elliptic curve

encryption with smaller key size. It reduces storing and transmission requirements.

The scheme also provides confidentiality, authentication and integrity.

Cao et al. [73] proposed a method of medical image encryption using edge maps.

The proposed method consists of bit plane decomposition, chaotic sequence gen-

eration and scrambling technique.

Many other methods based on chaos theory such as proposed by Dhall et al. [74]

offers a probabilistic symmetric encryption method that takes a customized block

size and appropriate for image encryption. It is computationally efficient because

it uses a Random Bits Insertion phase. Additionally, this stage aids in boosting

entropy and uniforming the intensity distribution within the cipher. The size of

the created ciphertext is two times that of plaintext. The results demonstrate that

the technique provides good resistance to statistical and cryptographic attacks.

In 2018 Ye et al. [75] introduce a novel and effective pixel-level picture encryp-

tion technique. The proposed method improves the relationship between position

shifting for pixels and value shifting for greyness in comparison to the conventional

permutation-diffusion architecture.

Before performing the diffusion operation, a rewriting function is performed to

the permuted image as a workaround for permutation’s inability to alter the fre-

quency of pixels. Additionally, the plainimage is a requirement for the keystream’s

architecture. Consequently, the suggested technique can interfere with the chosen

plainimage and known plainimage attacks.
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A one time key based technique was proposed by Liu and Wang [77]. In order

to enhance dynamical deterioration and obtain excellent security, they Used the

piecewise linear chaotic map to produce a pseudo-random key-stream sequence.

The MD5 of the mouse positions, which are actual random number generators,

produced the initial conditions. They used the technique to encrypt the color

image and achieved the desired level of security. The resulting cipherimage is

resistant to noise and renders known attack impractical.

Liu and Wang [78] suggested a method for image encryption that makes advantage

of high-dimensional chaotic maps and bit level permutation. The key space of this

scheme is sufficiently large to fend off typical attacks.

DNA sequence operations were used by Wang et al. [79] for image encryption

scheme. They suggestion the creation and the use of the new initial conditions

for the CML, which can cause the encryption outcome to be highly dependent on

each pixel of the original image. Then, the DNA matrix’s rows and columns are

switched around. Once more, the perverted DNA matrix is confused. Finally, by

utilizing DNA decoding rule, a cipher image is acquired. Experimental findings

demonstrate the scheme’s ability to fend against different attacks.

An image encryption method based on the dynamic random growth methodology

was suggested by Wang et al. [80] in 2015. The image block, in this technique is

used to calculate an intermediate parameter in the diffusion process. The inter-

mediate parameter is used as the initial parameter of chaotic map. As a result,

the created key streams depends on plainimages.

Wang et al. use perceptron model [81] for the encryption of multi-media im-

ages. There are some non chaos based methods for image encryption that use

compressive sensing [82], non adjacent coupled mapped lattices [35, 83], parallel

computing system [84], based on the principle of the matrix semi-tensor product,

synchronously updating Boolean networks [85] and JPEG compression algorithm

[86]. All these methods do not provide information about the key distribution or
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the authentication, non repudiation, integrity, unforgeability, forward secracy etc.

In 2014 [87] proposed an image signcryption scheme based on ECC that fulfills

the above discussed security parameters. Another signcryption scheme based on

chaotic maps and ECC [76] for medical images is proposed in Chapter 6 for the

security of sensitive medical images.

1.2 Contribution of Thesis

With the recent developments in the field of wireless network communication tech-

nology, digital image transfer over the internet has become widely used source of

communication in many public and private services like medical imaging, satellite

communication, military intelligence sharing, confidential multimedia messaging

etc. Meanwhile many activities took place to forge, get illegal access or intercept

the secret communication.

Therefore a high level, reliable and robust security mechanism is necessary to

prevent the unauthorised usage of digital images. Image encryption is a method

deployed to provide a secure way of image transmission. It provides security

in communication over open networks. The main contribution of the thesis is

presented below:

• Based on 1-dimensional chaotic maps, an image encryption scheme is pre-

sented in Chapter 4. A detailed security analysis is also performed that

tells the proposed scheme presented good results for correlation and entropy

analysis, while a comparable performance is observed against NPCR (num-

ber of pixel change rate), UACI (unified average changing intensity), noise

and data loss attacks. The investigated work is published as “A new chaos

based color image encryption algorithm using permutation substitution and

Boolean operation” in a well reputed international journal [7].

• A compound chaotic map is used to build an image encryption technique.

The compound chaotic map provides a large chaotic range than the tent
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and logistic maps. It does not have periodic windows and have uniformly

distributed output in [0, 1]. Use of this chaotic map in encryption scheme

increase the internal complexity and security of the proposed scheme. The

analysis results shows that hence generated scheme provides huge key space

and good complexity to resist the cryptographic attacks. While the other

analysis indicators shows the satisfactory results. This study [88] is published

in a reputed international journal.

• A new medical image signcryption scheme is proposed that uses two chaotic

maps. These maps have large Lyapunov exponents that ensures their chaotic

behavior, also provide uniformly distributed output. The proposed medical

image signcryption scheme provides key generation, digital signature and

authentication mechanism. These additional security features makes the

communication of sensitive medical image more safe and secure. Due to

these properties it seems to be the first image sincryption scheme that deals

with sensitive medical images. The work and its finding are published as

“A novel medical image signcryption scheme using TLTS and Henon chaotic

map” in IEEE ACCESS [76] and available in ‘open access’ for further study

and analysis.

1.3 Organization of Thesis

The rest of the work presented in this thesis is organized as follows:

• Chapter 2 presents the review of some fundamental concepts of mathe-

matics. It includes the introduction of elliptic curves, brief review of the

properties of elliptic curves and operations on elliptic curves. The introduc-

tion of chaos theory, its properties and some commonly used chaotic maps

are also the parts of this chapter.

• Chapter 3 covers certain essential features and background of cryptography.

The introduction of cryptography, its types, objectives, digital signature and

public key based cryptographic schemes and different possible cryptographic
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attacks are presented in this chapter. It also provides the information about

a digital image, its different features, encryption mechanism and analysis

techniques.

• Chapter 4 includes a proposed chaos based image encryption scheme. The

scheme contains the image encryption/decryption algorithm, results and dis-

cussion with the help of examples and figures, security analysis of the scheme

and its comparison with other such schemes.

• Chapter 5 shows a chaos based image encryption scheme. It contains S-

box and its construction technique, proposed image encryption and image

decryption algorithm results and discussions with the help of examples and

figures. The security analysis is provided with the help of key space analysis,

distribution of pixels in original and cipher images, correlation analysis, in-

formation entropy mean squared error, peak signal to noise ratio, complexity

analysis and the speed analysis of proposed encryption scheme.

• Chapter 6 introduces proposed signcryption scheme for medical images.

It consists of global parameter setting, the key generation process, image

signcryption/unsigncryption algorithm. The correctness of the proposed al-

gorithm and complete security analysis of the image encryption, signcryption

attributes their comparison and possible attack model are also discussed.

• Chapter 7 provides the conclusion of thesis and some suggestions for the

future work are accommodated.



Chapter 2

Mathematical Background

Modern cryptography uses the fundamental concepts of mathematics involving

algebra, number theory, chaos theory etc. Therefore it is necessary to review

some basic concepts of these scientific disciplines before the study of cryptography.

Section 2.1 is focused on the introduction of elliptic curve its types, also a brief

review of the properties of elliptic curves and operations on elliptic curve are

presented here. Then the introduction of chaos theory, types of chaotic maps,

their advantages and disadvantages, properties of some commonly used chaotic

maps and their selection criteria are given in Section 2.2.

2.1 Elliptic Curve

It is a smooth algebraic curve that is defined by a certain type of cubic equation

in two variables. The concept of elliptic curves is taken from algebraic geometry,

that is a sub-field of mathematics and focuses on the study of algebraic varieties.

An algebraic variety is actually the locus that is defined by a polynomial equation.

the collection of solutions of polynomial equations with real or complex numbers.

Algebraic curve is produced by dimension one’s algebraic variety. An algebraic

curve is a bivariate polynomial equation whose solution defines a set of points of

the Euclidean plane. Elliptic curves are not actually ellipses. They are so named

15
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because they are defined in cubic equations similar to that used for the measure

of ellipse circumference. The operations used in elliptic curve based schemes in-

clude point doubling and adding, are computationally more efficient than RSA

exponentiation. Elliptic curve theory is used in many computational problems

involving the group law and also in cryptographic applications. The main benefit

of using ECC is that, with significantly smaller key sizes, ECC can give the same

cryptographic strength as an RSA-based system [89] as shown in Table 2.1.

Table 2.1: Comparison of the key size of ECC with RSA

RSA key

size (bits)

ECC key

size (bits)

Key size

ratio
Cost ratio

1024 160 1:7 1:3

2048 224 1:10 1:6

3072 256 1:12 1:10

7680 384 1:20 1:32

15360 521 1:30 1:64

2.1.1 Elliptic Curve over R

It is defined as the set of all points (x, y) satisfying the following equation,

y2 = x3 + ax + b (2.1)

where the parameters a, b ∈ R follow the relation

4a3 + 27b2 ≠ 0.

In the above Equation (2.1) constants a, b and variables x, y are real numbers. The

set of points that satisfies the Equation (2.1) are denoted by ER(a, b). Cryptogra-

phy typically employs elliptic curves because they provide a large number of finite

abelian groups with rich algebraic structures. For the geometrical interpretation

of elliptic curve over real number R, an elliptic curve is considered as shown below:

ER(1,6) ∶ y
2 = x3 + x + 6 (2.2)
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In the above shown elliptic curve a = 1, b = 6 and variable x, y ∈ R. The set of

points satisfying Equation (2.2) are depicted through a graph in Figure 2.1.

Figure 2.1: Elliptic curve

In the next discussion the algebraic description of points of elliptic curves along

with its geometrical interpretation will be given.

Definition 2.1.1.

Let P = (x1, y1) and Q = (x2, y2) be two distinct elliptic curve points, that satisfy

the elliptic curve 2.1, then their addition is defined as:

R(x3, y3) = P (x1, y1) +Q(x2, y2)

x3 =m
2 − x1 − x2

y3 =m(x1 − x3) − y1

m =
y2 − y1
x2 − x1

(2.3)

The resulting point of addition R = (x3, y3) (the negative of S) can be obtained

by performing the calculations as shown in Equation (2.3).

For two points P (2,4) and Q(−1,2) of elliptic curve (2.2), their sum R i.e,

R = P +Q
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is represented in Figure 2.4. In this figure, for the addition of two points P and Q,

a tangent line through these points is drawn that intersects the curve at another

point S. To find the required point R, that is the sum of P and Q, first find

additive inverse of S i.e.,−S. The point R that is the sum of P and Q, is actually

−S.

Figure 2.2: Elliptic curve point addition

Definition 2.1.2.

For a point Q(x1, y1), where x1 ≠ 0, lying on the Elliptic curve 2.2, then its addition

with itself is called Elliptic curve point doubling and it is defined as:

P ′(x2, y2) = Q(x1, y1) +Q(x1, y1)

x2 =m
2 − 2x1

y2 =m(x1 − x2) − y1

m =
3(x1)2 + a

2y1

(2.4)

The resulting point of such addition is another point P ′(x2, y2), where P ′ = 2Q.

The coordinates of this point P ′ are obtained by taking the calculations shown in

Equation (2.4).

For a point Q = (−1,2) and its sum with itself can be displayed by drawing a

tangent line through Q intersecting the elliptic curve at another point P . Then
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the additive inverse of P i.e, P ′ will give the resulting point obtained from the

point doubling of Q. The geometrical interpretation of point doubling for Q is

shown in 2.5.

Figure 2.3: Elliptic curve point doubling

2.1.2 Elliptic Curve over a Finite Field

In cryptography, it is a general interest to define a group on elliptic curve over

a finite field denoted by EF (a, b). The concept of the use of elliptic curve in

cryptography was presented independently by Koblitz [90] and Miller [91] in 1985.

Over a finite field, an elliptic curve is defined by a two-variable cubic equation

using some coefficients. The equation for elliptic curve over GF(p) is:

Ep(a, b) = {(x, y) ∶ (y2 = x3 + ax + b) mod p} ∪ { O}, (2.5)

where the point (x, y) lies on the elliptic curve E and O is a point at infinity.

The determinant 4a3 + 27b2 ≠ 0 where a, b ∈ Fp ensures that this curve is not

singular and has distinct roots. It basically ensures that there are no vertices or

self-intersections in the curve. The advantage for working in Fp over R is that the

modulo p must be used in each operation, while the graph does not form a curve;

instead, it shows scattered points.
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Example 2.1.3.

An elliptic curve over GF(p) is considered as an example where the prime number

p = 23 is used in Equation (2.6) as mod and by using the constants a = 1 and b = 1

as well, the elliptic curve generated in this way is:

y2 = x3 + x + 1 (mod 23) (2.6)

Now the set of residues Z23 = {0,1,2,⋯,22} is used to calculate the quadratic

residue (i.e., an integer which is congruent to a perfect square modulo 23) Q23 as

in the table given below.

Table 2.2: Quadratic residue Q23 of Elliptic curve (2.6)

x2 mod 23 (p − x)2 mod 23 value

(1)2 (22)2 1

(2)2 (21)2 4

(3)2 (20)2 9

(4)2 (19)2 16

(5)2 (18)2 2

(6)2 (17)2 13

(7)2 (16)2 3

(8)2 (15)2 18

(9)2 (14)2 12

(10)2 (13)2 8

(11)2 (12)2 6

Hence Q23 = {1,2,3,4,6,8,9,12,13,16,18} are
p − 1

2
= 11 quadratic residues. A

necessary condition for Equation (2.6) is also verified to know about its behavior

as elliptic curve: i.e.,

4a3 + 27b2 ≠ 0 (mod 23)

= 4 × (1)3 + 27 × (1)2 (mod 23)

= 4 + 27 (mod 23)

= 31 (mod 23)

= 8 (≠ 0) (mod 23)
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Figure 2.4: Scatter diagram of elliptic curve

In the next step, for elliptic curve y2 = x3 + x + 1 (mod 23), where 0 ≤ x < p, it is

determined that y2 lies in Q23 or not.

Table 2.3: Points of elliptic curve

x 0 1 2 3 4 5 6 7 8 9 10 11

y2 1 3 11 8 0 16 16 6 15 3 22 9

y2 ∈ Q23?
√ √

×
√

×
√ √ √

×
√

×
√

y1 1 7 10 0 4 4 11 7 3

y2 22 16 13 0 19 19 12 16 20

x 12 13 14 15 16 17 18 19 20 21 22

y2 16 3 22 10 19 9 9 2 17 14 22

y2 ∈ Q23?
√ √

× × ×
√ √ √

× × ×

y1 4 7 3 3 5

y2 19 16 20 20 18

The elliptic curve E23(1,1) has these points,
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E23(1,1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,1), (0,22), (1,7), (1,16), (3,10), (3,13), (4,0),

(5,4), (5,19), (6,4), (6,19), (7,11), (7,12), (9,7),

(9,16), (11,3), (11,20), (12,4), (12,19), (13,7), (13,16),

(17,3), (17,20), (18,3), (18,20), (19,25), (19,18)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The points of elliptic curve E23(1,1) form a scatter diagram. Figure 2.4 depicts

the diagram of above discussed elliptic curve:

2.1.3 Basic ECC Operations

The use of elliptic curves in cryptography, requires certain operations over finite

field (Galois Field) with focus on prime field (e.g. Fp), as it gives a fast and precise

well defined arithmetic. This section focuses on the elliptic curve operations over

a finite field. Let P = (px, py), represents a point on an elliptic curve, where px

and py must satisfy Equation (2.5) and the coordinates of P must be integers in

Fp. One must initially be familiar with elliptic curve point calculations in order

to do any significant cryptographic operation. The three commonly utilized point

operations that are taken into account by ECC are as follows:

• Point addition: Considering the two points of an elliptic curve, P = (px, py)

and Q = (qx, qy), then there exists a point R = (rx, ry) such that R = P +Q

where P is distinct from Q. The coordinates of R can be calculated using

the following formulas:

s =
py − qy
px − qx

(mod p)

rx = s
2 − px − qx (mod p)

ry = s(px − rx) − py (mod p)

For each point P on the elliptic curve, there is a point O at infinity for which

P + (−P ) = O and P +O = P holds.
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• Point doubling: For any point P on elliptic curve, there exists another

point R such that R = 2P . By employing the following formulas the coordi-

nates of R can be calculated:

s =
3px + a

2py
mod p

rx = s
2 − 2px − qx mod p

ry = s(px − rx) − py mod p

• Point multiplication: One can get the result of a multiplication between

one point and a natural number k by only using point addition. The point

R can be found such that R = kP by applying k point additions. The

simple double and add approach can also be used for such multiplication,

which takes only O(log k) steps. The inverse of that point multiplication, is

known as discrete logarithm. Since the problem is computationally infeasible

therefore it is considered as the foundation of ECC cryptosystems. More

detail of is given in the next section.

Definition 2.1.4.

“Let g be a primitive root for Fp and let h be a nonzero element of Fp. The

Discrete Logarithm Problem (DLP) is the problem of finding an exponent x

such that
gx ≡ h (mod p).

The number x is called the discrete logarithm of h to the base g and is denoted

by logg(h).” [127]

2.1.4 Elliptic Curve Discrete Logarithm Problem

Elliptic curves provide hard problems like elliptic curve discrete logarithm problem

(ECDLP) etc. to use for cryptographic purposes. The (ECDLP) is defined as: for

given two values b and S∗ of an elliptic curve E, where

S = bS∗, (b < p).

It is easy to find the value of S, but it is it is computationally infeasible to find

the integer b knowing only S and S∗.
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2.2 Chaos Theory

Chaos is an interesting phenomenon found in nature (fluid flow, climate and

weather, population growth in ecology, time evolution in the magnetic field of

celestial bodies) as well as in the laboratories (chemical reactions, electric cir-

cuits, magneto mechanical devices, lasers). There are numerous applications of

chaotic behaviors in information and communication technologies [92], biology and

medicine [93], electrical and communication engineering [94] etc. Chaos theory is

the study of seemingly random or unexpected behaviors of the systems that are

being governed under the deterministic laws of nature. It is an important math-

ematical property of many dynamic systems. These are studied as mathematical

objects and often used to describe physical phenomenon, biological or economic

systems.

2.2.1 Dynamic System

The dynamic system is actually a deterministic mathematical model that uses time

as continuous or discrete variable. For the description of generic properties of a

dynamic system, it is preferred to take a low dimensional system. For a chaotic

map time is taken as an integer value i.e. n ∈ Z+ and F is the state function that

gives back the next state as shown below:

xn+1 = F (xn). (2.7)

The vector xn ∈ Rn shows the state of system and forms x(t) = (x1, x2, . . . , xk)

are known as state variables, while x0 or x(0) is the initial condition of the the

system is when t = 0. The space formed by x is usually known as phase space or

state space and considered as Euclidean space. The function F also consists the

parameters of map P = (p1, p2, . . . , pk). A trajectory or an orbit is the set of all

those point that start with the initial condition.

Definition 2.2.1.

Butterfly effect actually indicates the sensitivity of a dynamic system towards

its initial conditions. It implies that any point in a chaotic system can closely ap-

proximated by other points that have substantially different trajectories or future
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paths. Thus an arbitrarily small change or disruption in the current trajectory

can result a dramatically different behaviors in the future state. The name of this

phenomenon was suggested by Edward Lorenz in 1972, in his well known article

entitled “Predictability: Does the Flap of a Butterfly’s Wings in Brazil set off a

Tornado in Texas?” [95].

Definition 2.2.2.

A bifurcation diagram is a graphic representation of the succession of period-

doubling that occurs when control parameter grows. It compares the value of

a control parameter to the locations, where the output of dynamic system has

concentrated after a few iterations. It also tells about the chaotic region of dynamic

system. The chaotic region starts where the bifurcation diagram shows the infinite

period of attractors.

Definition 2.2.3.

The concept of Lyapunov exponent for a chaotic map was first presented by

Alexander Mikhailovich Lyapunov. He examined the equilibrium and motion of

mechanical systems, as well as the stability of rotating liquids. Lyapunov was also

interested in probability theory and potential theory. The mathematical descrip-

tion of the Lyapunov exponent of a point sequence xn is:

λ = lim
n→∞

1

n

n−1
∑
l=1
ln∣f ′(xl)∣. (2.8)

The values of f ′(xl) refer to as how fast the neighboring solutions xn and x̃n

(x̃n = xn + δxn) move away from each other (or move towards each other). The

Lyapunov exponent is an assessment tool that uses logarithm for the evaluation

of mean expansion rate per iteration of the difference between two infinitesimally

close trajectories. The first general analysis for the stability problem for the non-

periodic motions was presented by Russian mathematician Lyapunov in 1892 [96].

In the theory of nonlinear processes, the characteristic exponents proposed by

Lyapunov have played a central role. The case λ > 0 is of particular interest. A

dynamical system with a positive Lyapunov exponent is said to be chaotic [97].
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2.2.2 Some Important Chaotic Maps

Chaotic map are extensively studied as they are the simplest mechanism to gen-

erate a complex and chaotic behavior. Chaos theory due to its randomness and

unpredictable behavior is considered favorite for many engineering problems, dig-

ital communications, cryptographic designs, network behavior modeling etc.

There are mainly two types of chaotic maps.

• Discrete time systems

• Continuous time systems

In discrete chaotic systems change of state occurs only at regularly distributed

instants. A difference equation or a map can be used to represent a discrete-time

nonlinear dynamical system as follows:

xn+1 = f(xn, n;p), n = 0,1,2,⋯

where n is shows the time index; n = 0 represents the initial time and x0 is the

initial condition of the state x. This system’s current state, xn, is the result of

iterating over its prior state, xn−1, according to function f . The earlier state, xn−1,

uses the same mode as xn−2, and similarly, the current state of this system can be

determined by its initial condition. Examples of discrete time chaotic systems are

logistic map [98], pwlcm [99] etc. Computers can easily handle discrete maps, and

powerful available microcontrollers can process them. As a result, based on the

preceding factors, their employment in commonly used applications is becoming

viable nowadays.

A continuous-time nonlinear dynamical system is described by a differential equa-

tion:

ẋ = f(x, t;p), t ∈ [t0,∞)

where x = x(t) shows the state of system that belongs to a bounded region Ωx ⊂ Rr,

r is the dimension of x, the initial time is t0 and the initial condition x0 = x(t0) ∈ Ωx,
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p is the vector of system parameters, and f is a nonlinear or piece-wise linear

function. For a continuous time the required condition for its chaotic behavior is

that, it must have at least three degree. Some examples of continuous time chaotic

systems are Chua system [100], Chen system [101] etc. Continuous chaotic system

(Chen map, Chua circuit etc.) are more complex than discrete chaotic maps and

due to their complex structure they provide slow operational speed [102].

Many physical problems can be expressed and solved using fractional calculations.

Current studies reveal that fractional order differential equations are a useful tool

for defining complicated dynamics and can be used to better simulate a variety of

physical and engineering systems [103, 104]. Even though the system order is less

than three, chaotic behaviour happens in fractional-order (FO) nonlinear systems.

Examples of fractional order chaotic systems are fractional order Chua chaotic

system [105], fractional order Chen chaotic system [106] etc.

Fractional order chaotic systems [107] contain high complexity, therefore the de-

sign and hardware realization of these systems are hard and demands extensive

memory.

In this thesis the discrete chaotic systems are considered in the subsequent chap-

ters. These chaotic maps have also been frequently used in many cryptographic

schemes [76, 108–111]. Some other type of chaotic systems as continuous time,

fractional order, time delay etc will be considered as future work. The discrete

chaotic maps that are frequently used in many cryptographic schemes are discussed

below.

2.2.2.1 Logistic Map

A chaotic system shows deterministic, non-linear behavior in nature. Logistic map

[98] is a type of chaotic system. In this system, states change with iterations in a

deterministic way. Logistic map is one dimensional, discrete time and non-linear

map with quadratic non-linearity. The state equation of Logistic map with initial

state y0 is given by
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yn+1 = f(yn) = µyn(1 − yn), (2.9)

where y0 ∈ (0,1) shows the state of the system at any time n and µ ∈ (0,4), µ is

the control parameter also known as bifurcation parameter.

Term yn+1 expresses the next state and n shows the discrete time. The behavior of

Logistic map highly depends on the value of control parameter µ. For the values

of µ between 3.567 and 4 the logistic map gives chaos with infinite period.

Figure 2.5: Bifurcation diagram of logistic map

In this range there are uncountable initial points y0 that give non-periodic trajec-

tories, no matter how much long time series created by f(yn), generated pattern

never repeats itself. Sequences generated in this way are highly sensitive to initial

condition y0. Hence it can be characterized as deterministic system having long

term non-periodic behavior.

Lyapunov exponent [112] is used to measure sensitive dependence on initial con-

dition. Negative value of Lyapunov exponent expresses that the orbit converges

with time, while positive value of Lyapunov exponent shows that distance between

nearby orbit increases with time. For µ = 3.57 to 4 the value of Lyapunov exponent
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is mostly positive, which shows that in this interval logistic map exhibit chaotic

behavior.

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

 µ

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Ly
ap

un
ov

 e
xp

on
en

t

Figure 2.6: Lyapunov exponent of logistic map

Due to these properties, sequences generated by logistic map are considered highly

useful for image encryption purposes in cryptography. There are various short-

coming of logistic map [113] such as periodic window in its chaotic region, non

uniform distribution and limited chaotic range.

2.2.2.2 Piecewise Linear Chaotic Map

Piecewise linear chaotic map (PWLCM) is a multi segmental map.

Figure 2.7: Bifurcation diagram of piecewise linear chaotic map
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Li and Chen et al. [99] described that PWLCM has fantastic dynamic prop-

erties like large positive Lyapunov exponent, uniform invariant density function

and random like behavior. These properties look highly useful and applicable for

cryptographic purposes.

These properties are particularly valuable and useful for cryptographic purposes.

A piecewise linear chaotic map is given by:

xn+1 = f(xn,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn
m

if 0 ≤ xn <m

xn −m

0.5 −m
if m ≤ xn < 0.5

1 −m − xn
0.5 −m

if 0.5 ≤ xn < 1 −m

1 − xn
m

if 1 −m ≤ xn < 1

(2.10)

Here x0 ∈ [0,1) is the initial state/initial condition and m ∈ (0,0.5) is the control

parameter of chaotic map 2.10.

Figure 2.8: Lyapunov exponent of piecewise linear chaotic map

The output of PWLCM has uniformly continuous distribution, confusion and er-

godicity. From the Figure 2.7 it is evident that there are no blank windows or

periodic windows in the graph. As a result, PWLCM will produce a pseudo ran-

dom chaotic sequence with good statistical properties [114]. It can also be used to

generate good chaotic sequences for making strong S-boxes. Here xo is the initial



Mathematical Background 31

state/initial condition of chaotic map, when we use it for cryptographic purposes,

it will be considered as secret key. The output of PWLCM has ergodicity, con-

fusion and uniformly continuous distribution. It is used to generate good chaotic

sequence for making strong S-box.

2.2.2.3 Tent Map

Tent map [115] is the simplest chaotic iterative map.

Figure 2.9: Bifurcation diagram of tent map

It is one dimensional map and also known as triangle map defined as,

xn+1 =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

rxn if 0 ≤ xn ≤ 0.5

r(1 − xn) if 0.5 < xn < 1

(2.11)

Here x0 ∈ (0,1) is the state variable and r ∈ (0,2) is the control parameter. Note

that the tent map just doubles x in the left half of the range as shown in the Figure

2.9, while x is subtracted from 1 in the right half, and the result is then doubled.

Although the chaotic map 2.11 is simple having linear equations but for certain pa-

rameter values, it shows highly complex and even chaotic behavior. Short chaotic

range and lack of uniform distribution across output state values are some of the

disadvantages of the tent map.
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Figure 2.10: Lyapunov exponent of tent map

2.2.2.4 Henon Map

Henon map [116] is two dimensional invertible discrete time non-linear quadratic

chaotic map in R2. It was proposed by French mathematician Michel Henon in

1976.

Figure 2.11: Bifurcation diagram of Henon chaotic map
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The two dimensional invertible Henon map is defined as,

xn+1 =1 − ax2(n) + y(n),

yn+1 =b x(n), (2.12)

where x0 and y0 are the state variables and a and b are the control parameters of

chaotic map (6). For a ∈ (0.54,2), and b ∈ (0,1), it shows chaotic behavior.

Figure 2.12: Lyapunov exponent of Henon chaotic map

The bifurcation diagram of chaotic maps illustrated in Figure 2.11, if b = 0.3 is

fixed and a varies between 0 and 1.5. In Figure 2.12, the calculated Lyapunov

exponents have been shown against the parameter a, which is corresponding to

its behaviour (chaotic or periodic) and coherent with the bifurcation diagram

presented in Figure 2.11. Henon map has a simple implementation and it easily

accords itself to the numerical explorations. But it has also some shortcomings.

such as it shows chaotic behavior in the range of a ∈ [1.06,1.4] only and having

periodic windows in chaotic region [117].

2.2.2.5 The Tent Logistic System

Lu et al. [118] proposed a novel compound chaotic system by combining the tent

and logistic map to address issues with the logistic and tent maps. Tent logistic
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system is the new system that was subsequently created. The mathematical form

of this system can be presented as:

xn+1 =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

4(9 − µ)

9
(xn)(1 − xn) +

2µ

9
(xn), xn < 0.5

4(9 − µ)

9
(xn)(1 − xn) +

2µ

9
(1 − xn), xn ≥ 0.5

(2.13)

where µ ∈ [0,9] is the system parameter of the chaotic map 2.13. For µ = 0 the

above equation behaves like logistic map, while for µ = 9 the above described

equation degenerates to form the tent chaotic map. Due to this, both the logistic

and tent chaotic maps can be considered as the special cases of this system.

Figure 2.13: Bifurcation diagram of tent logistic chaotic map

Figure 2.13 and 2.14 show the bifurcation and state distribution diagram of said

chaotic system. From this figure it is evident that the whole range µ ∈ [0,9] has

chaotic behavior, also this chaotic region is much greater than the logistic and tent

map. The output of this system is uniformly distributed within [0,1].

This chaotic system is more suitable for the use in cryptographic application as

it provides a large chaotic range. Also if the control parameter is used as the

secret key for the generation of random chaotic sequences, then this key space for

the generation of such sequence would be much large to resist brute force attacks.

Also the output random sequence is uniformly distributed to give a good uniformly

distributed random sequence.
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Figure 2.14: State distribution of tent logistic chaotic map

2.2.2.6 Tent Logistic Tent Map

From the combination of tent and logistic chaotic maps, recently in [119] a new

chaotic system namely the tent logistic tent map is introduced.

The proposed system has more complex and chaotic characteristics than individual

chaotic maps. This chaotic system is defined as,

xn+1 =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(
r2

2
xn (1 −

r

2
xn) +

r

2
xn) r

14 mod 1, if 0 < xn < 0.5

(
r2

2
(1 − xn) (1 −

r

2
(1 − xn)) +

r

2
(1 − xn)) r

14 mod 1, if 0.5 ≤ xn < 1
(2.14)

where r ∈ (0,4) is the control parameter and x0 ∈ (0,1) is the state variable.

Here r14 is selected experimentally to generate a balance between optimal chaotic

behavior and speed of system.

In this system ‘+’ and ‘×’ are floating point addition and multiplication respec-

tively. The exponentiation rσ is a multiplier that is employed for better distribu-

tion of state variables.

Tent and logistic chaotic maps have limited chaotic ranges. Therefore, when their

control parameters are used as secret keys they provide limited key space. Also

it is known that they have periodic windows hence these are inclined towards

parameter estimation attacks
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Figure 2.15: Bifurcation diagram of tent logistic tent map

To overcome the weaknesses of tent and logistic maps, they are combined to gen-

erate a new stronger chaotic system [119].

Figure 2.16: Lyapunov exponenent of tent logistic tent map

In this system logistic chaotic map plays main role while tent map plays the role

of seed map. Hence generated chaotic system is called tent logistic tent system

(TLTS). The proposed chaotic system shows chaotic behavior without window of

periodicity in r ∈ (1.05,4) as presented in Figure 2.16. The Lypunouv exponent

of this new system is also greater than tent and logistic maps. Hence it shows

better results when used for cryptographic purposes.
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Table 2.4: Comparison of different chaotic maps in terms of their advantages,
disadvantages, strength, weaknesses, dimensions and complexity order.

Chaotic maps

Compl-

exity

order

Dim.
Advantages

(Strengths)

Disadvantages

(Weaknesses)

Logistic Map n2 one

∗ Easy implementation

∗ Initial conditions can

implicitly use as

secret keys

∗ Periodic windows

in chaotic region

Piecewise linear

chaotic map
n one

∗ High speed

implementation

∗ Error amplification

and precision

truncation

Tent map n one
∗ Simple in structure

∗ Easy implementation

∗ Small chaotic range

∗ No uniform distribution

of the output state

Henon map n2 two

∗ More chaotic

parameters can serve

as more security keys

∗ Multiple chaotic

parameters increases

difficulty of hardware

implementation

Tent Logistic map n2 one

∗ Good mixing

property

∗ Large key space

∗ Time consumption

is greater than

Logistic and Tent map

Tent Logistic

Tent map
n2 one

∗ Uniform random

distribution

∗ Lyapunov exp.

is greater than

Tent and Log. map

∗ Due to complex

internal structure utilize

more time in

implementation

The above shown Table 2.4 represents advantages and disadvantages of some

chaotic maps used in this study. For this purpose some simple chaotic maps like

logistic, tent, piecewise linear and Henon chaotic map as well as derived structures

from these simple maps like tent logistic and tent logistic tent map are discussed.

From the above table it is evident that the derived structures have complex internal

structures therefore time consuming but yield better chaotic performance.
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2.2.3 Application of Chaotic Maps and Selection Criteria

The sequences generated from chaotic maps are vastly used in the encryption

process of cryptographic schemes. To create cryptograms with sound statistical

features, the encryption process’s sequences must be checked and validated chaot-

ically. Their aperiodic and chaotic behavior produces good statistical properties

in cryptograms [120].

The initial conditions and control parameters are considered as the secret keys of

cryptographic schemes. Therefore they must be selected adequately to avoid non

chaotic regimes [121]. For instance, when the control parameter is between 3.57

and 4, the logistic map results a chaos. Nevertheless, the dynamics can take on a

periodic behavior at some points. In some circumstances, it is possible to adjust

the control parameter to ensure chaotic behavior. For instance, if the logistic

map’s control parameter begins at 3.9 and double precision (64 bits) floating-

point format is used, we can modify it to 14 digits, but it always results in chaotic

sequences (strong keys).

While using a chaotic map, a stong numerical evaluation must be presented [122]

such as Lyapunov exponent [112]. The positive value of Lyapunov exponent en-

sures its chaotic behavior. Bifurcation diagram is another useful way to see the

chaotic behavior of certain chaotic map in any specific region. According to [121]

a good chaotic map should satisfy these conditions:

• C1: The generated random numbers from the chaotic map should have

reasonably good statistical properties.

• C2: Knowing random number sub-sequences will not help anyone to calcu-

late predecessors or successors in practice.

• C3: One must not be able to practically compute “old” random numbers or

even a previous internal state with the internal state after having knowledge

of it.
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• C4: Even knowing the chaotic system’s internal state won’t actually let

anyone to calculate the next random number.

In a pure deterministic random number generator (DRNG), the initial internal

state (x1) is computed from the seed (x0) value via a seeding technique. The

output, which was generated using the output function, is the random integer

(n1). The next state, (x2), is calculated using the state transition function. Linear

feedback shift registers (LFSRs), hash function-based techniques, block cipher-

based techniques, number-theoretic techniques, and elliptic curve-based methods

are a few examples of DRNGs.

The output sequence of LFSRs has good statistical features. As a result, they

typically satisfy criterion C1, but an LFSR’s output sequence is the outcome of

a linear function. An attacker can simply calculate all random numbers if he/she

knows ‘t’ output bits. As a result, when such basic structures are helpful for

effective implementations, they contain significant security shortcomings.

The output function or state transition function must be sufficiently complex in

order to satisfy C2, and it must be nearly unfeasible to guess the seed or any inter-

nal state. Requirement of C4 (increased forward security) is preferable for some

specific applications. An attacker has the ability to access or alter a DRNG’s in-

ternal state undetected by the person using the DRNG to generate the subsequent

random numbers.

After the internal state has been compromised, a hybrid DRNG may satisfy C4 for

the random numbers that are created by following the initial update with random

data. Whenever necessary and upon an application’s requirement, additional input

is added to the hybrid random number generator (HRNG) design process after each

phase. Any condition C1-C3 that the corresponding pure DRNG satisfies will also

be satisfied by the hybrid DRNG.

By using relatively simple mathematical models, chaos theory has been developed

to simulate complicated behavior. In nonlinear dynamic systems, chaos is a deter-

ministic, random-seeming process. Long sequence storage is unnecessary because

chaotic sequences have been shown to be quick and simple to construct and store.
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The choice of chaos based number generator can also be justified theoretically

by their spread-spectrum characteristic [123], complex temporal behavior [124],

unpredictability [125], non-periodic behavior and ergodic properties.



Chapter 3

Cryptographic Background

The chaotic dynamic theory along with some low dimensional chaotic maps that

have a vast application in cryptography are introduced earlier. This chapter cov-

ers the certain essential features of cryptography with their implementations. A

discussion about the algebraic structures used in cryptography i.e., group, rings,

Galois field is presented in Section 3.1. The concepts of number theory and modu-

lar arithmetic are discussed in Section 3.2. After that The introduction of cryptog-

raphy, its types, objectives, digital signature and public key based cryptographic

schemes are presented in Section 3.3. The detail about different possible cryp-

tographic attacks is in Section 3.4. The information about image, its different

features and encryption mechanism is addressed in Section 3.5, while Section 3.6

provides the different analysis techniques about the encryption algorithm evalua-

tion. Then Section 3.7 shows the existing problems in image encryption schemes

and their solutions.

3.1 Algebraic Structures for Cryptography

Algebraic constructions are actively employed in many cryptographic protocols.

In algebraic cryptography the encoding and decoding process uses group homo-

morphism. Therefore, in this section some basic algebraic terms are introduced

41
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that will frequently be used in the coming chapters.

Definition 3.1.1.

A group G is essentially a collection of elements together with a binary operation

‘∗’ to combine any two elements in such a way that it forms another element

satisfying certain properties/axioms (closure, associative, identity, inverses). If

group (G,∗) meets the following criteria, then, it is a commutative group or an

abelian group.

x1 ∗ x2 = x2 ∗ x1, ∀ x1, x2 ∈ G

Example 3.1.2.

The example of abelian group under ordinary addition are ’the set of integers Z’

and ’the set of rational numbers Q’.

Definition 3.1.3.

A ring (R, +, ⋅) is a set with two binary operation ‘+’ (addition) and ‘⋅’ (multi-

plication), defined on R that follows the following axioms:

1. The set R, under addition ‘+’, is an abelian group.

2. Multiplication in R is associative.

3. For all a, b, c ∈ R, the left distributive law

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

and the right distributive law

(a + b) ⋅ c = (a ⋅ c) + (b ⋅ c)

hold.

In a commutative ring the operation of multiplication ‘⋅’ is commutative.

For a ring R with unity 1 ≠ 0, an element r in R is called a unit of R if it really

seems to have a multiplicative inverse in R. In a division ring every non zero

element of R has a multiplicative inverse. A commutative division ring is a field.
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Definition 3.1.4.

A field of finite order (containing finite numbers of elements) is known as finite

or Galois field. The order of a finite field is power of some prime number or a

prime number. For a Galois field, GF(pn), the number of elements are pn, where

p is prime number and n is a positive integer. There exists only one finite field

GF (pn) (or also written as Fpn) for each prime power pn.

GF(p) is a special type of Galois field and known as a order p prime field. It is also

referred to as the field of residue classes modulo p, where the elements of GF(p)

are 0,1,⋯, p − 1. Here a = b in GF(p) has the similar meanings as a ≡ b (mod p).

Example 3.1.5.

1. The examples of ring are, set of integers (Z, +, ⋅) and the set of matrices of

order n × n having entries from any ring also form a ring.

2. The set of real numbers (R), the set of rational numbers (Q) and the set of

integers (Zp) under modulo p (for a prime p) are examples of field.

3.2 Number Theory

This section will go through some basic definitions and terminologies of number

theory. In public-key cryptography, modular arithmetic has a major importance.

some fundamental concepts which are the basic necessity to describe and prove the

fundamental results concepts for example divisibility, largest common divisor etc

are discussed in this section. In addition, the division algorithm and the Euclidian

algorithm are thoroughly explored.

Definition 3.2.1.

The division of two integers can be defined as: let two integers a and d ∈ Z, where

d ≠ 0, then there exist some unique integers k and r, such that

a = kd + r, where 0 ≤ r < d.

Here k is the quotient that is obtained when a is divided by d with remainder r.
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3.2.1 Modular Arithmetic

A straightforward method for doing math operations with a finite set of integers

is modular arithmetic. The modulo operation in detail can be defined as,

Consider the set Z of integers, with a, r, m ∈ Z and m > 0. Then

a ≡ r mod m, (3.1)

if the integer m divides another integer a − r, where r is called the remainder and

m is the modulus. The definition can be described in a simple way as considering

the common rule of dividing by the modulus and taking the residual into account.

One can use the above definition to get the value of r from Equation (3.1). The

chosen value of the remainder r is such that

0 ≤ r ≤m − 1

By repeating the above defined division process, one can find the value of gcd

(greatest common divisor) of two integers. The well known method for finding

(gcd) is known as Euclidean Algorithm.

Algorithm 3.2.2. (The Euclidean Algorithm)

Input: Two positive integers s and t.

Output: gcd(s, t).

1. S ←Ð s, T ←Ð t

2. If T = 0 return S = gcd(s, t)

3. R = S mod T

4. S ←Ð T

5. T ←Ð R

6. Go to Step 2
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Definition 3.2.3.

For the given two integers s and t, the modular multiplicative inverse of s

modulo t is an integer u such that

s u ≡ 1 mod t.

The value of modular inverse u should be in{1, 2,⋯, t−1}. The inverse of s modulo

t exists when s and t are relatively prime i.e., gcd(s, t)=1. The extended form of

Euclidean Algorithm (3.2.2) is used to find s−1 = u mod t as follows:

Algorithm 3.2.4. (The Extended Euclidean Algorithm)

Input: Two positive integers s and t such that t > s.

Output: Multiplicative inverse of s mod t.

1. (X1, X2, X3)← (1, 0, s); (Y1, Y2, Y3)← (0, 1, t)

2. If X3 = 0 return Y3 = gcd(s, t); no inverse

3. If X3 = 1 return x3 = gcd(s, t); x2 = s−1 mod t

4. Q = ⌊
X3

Y3
⌋; (quotient Q is obtained when X3 is divided by Y3)

5. (Z1, Z2, Z3)← (X1 −QY1, X2 −QY2, X3 −QY3)

6. (X1, X2, X3)← (Y1, Y2, Y3)

7. (Y1, Y2, Y3)← (Z1, Z2, Z3)

8. Goto Step 2.

Definition 3.2.5.

There is a certain type of functions, referred to one way function, whose com-

putation is simple but the working in the reverse order is quite difficult. For

instance the value of f(x) for a given x value is all that a one-way function pro-

vides, whereas obtaining x from f(x) is quiet difficult. These are the essential

components of many modern cryptographic protocols such as digital signatures,

message authentication schemes, pseudo number generators etc.
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Definition 3.2.6.

One-way functions with a “back door” are referred to as trapdoor one-way

functions. These are simple to compute the function values for given data, just as

it is for conventional one-way functions, though it is extremely difficult to compute

their inverse functions. However If someone has extra secret information, then,

the inverse function can be easily computed. The prime factors of large numbers,

for example, are almost unfeasible to find. But knowing one of the factors, makes

calculating the others a breeze.

Definition 3.2.7.

In cryptographic primitives, researchers use one way trapdoor functions as hard

problems [126] to make their schemes safe and secure. Some of the famous hard

problems for cryptographic purposes are discrete log problem, integer factorization

problem etc.

Definition 3.2.8.

“Let g be a primitive root for Fp and let h be a nonzero element of Fp. The

Discrete Logarithm Problem (DLP) is the problem of finding an exponent x

such that

gx ≡ h (mod p).

The number x is called the discrete logarithm of h to the base g and is denoted

by logg(h).” [127]

Definition 3.2.9.

“The integer factorization problem is the following: given a positive integer

n, find its prime factorization; that is,

n = pe11 pe22 pe33 ⋯ pekk ,

where pi’s are pairwise distinct primes and each ei ≥ 1.” [128]
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3.2.2 Hash function

It accepts an arbitrary long input (document D) and gives back a small bit string

H. The result of hash function [48] is referred to as an image, hash, digest or

hash value. The term ‘hash’ is frequently used to refer, both the hash value

and the hash function, which is the result of applying this function to a specific

message. Cryptography highly depends on the hash functions. A hash function is

the absolute opposite of a pseudo random generator, that extends a short, fixed-

length string into an arbitrarily large one. To be a useful cryptographic tool, the

hash function needs to have the following characteristics.

• Preimage resistance: This property suggests that reversing a hash func-

tion should be computationally infeasible.

Figure 3.1: Hash function

• Second preimage resistance: It should be difficult to get another input

that has the same hash value as a given input.
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• Collision resistance: Finding two inputs should be a tough challenge of

different lengths that produce the same hash, it should be difficult to discover

any two different inputs u and v for a hash function ‘h’ such that h(u) = h(v).

• Avalanche effect: The original message’s single bit alteration must result

in an entirely different hash, (diffusion).

• Random function: Each hash function output must have an equal chance

of happening since the hash algorithm must evenly cover the whole hash

space. As a result, any value in the hash space could be a hash function

output.

3.3 Cryptography

Two Greek words, cryptos and graphein are the sources of the term “cryptogra-

phy”. According to Greek language, cryptos means hidden and graphein means

writing. Cryptography provides the secure communication techniques used for the

secret writing to secure the knowledge present in a secret document.

These techniques allow only the intended sender and recipient to view the contents

of sent message. The most fundamental and basic problem of cryptography is to

provide secret communication over insecure medium. The communication setting

comprises of two parties communicating over an insecure channel that has the

possibility to tap by an adversary, called the wire-tapper.

These communicating parties want to exchange the secret information with each

other, but they also wish to keep the wire-tapper as ignorant as it may possible

for the content of this information.
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Figure 3.2: Cryptography: encryption and decryption procedure

In other words, cryptography provides such protocols that allow these parties to

interact secretly with each other. Traditionally, a cryptographic scheme has a pair

of algorithms. Amongst this pair, one algorithm is called encryption, used by the

sender, whereas the other algorithm, called decryption, is used by the recipient.

From one of the communicating parties, the message is encrypted using the encryp-

tion technique before being sent over the insecure channel. The resulting hidden

script, called the ciphertext. After getting the ciphertext, the other party (i.e.,

the receiver) uses the decryption algorithm on it and recovers the original message

(known as the plaintext).

3.3.1 Cryptosystem

A cryptosystem is a combination of various cryptographic algorithms required for

the implementation of some specific security service. Usually it contains consists

of three different algorithms: a decryption algorithm, a key generation algorithm

and an encryption algorithm. A cryptosystem is a five-tuple (P, C, K, E, D),

consisting of the following components:

1. P is a finite set of plaintexts that can be used.
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2. K the keyspace, is a finite collection of keys.

3. C is the possible collection of ciphertexts.

4. There is an encryption technique, ek ∈ E and a corresponding decryption

technique dk ∈ D. For each plaintext element P , ek ∶ P → C and dk ∶ C → P

such that dk(ek(x)) = x, for every plaintext element x ∈ P.

3.3.2 Types of Cryptosystem

A cryptosystem (also known as cipher system) is used for the implementation of

cryptographic methods and techniques. On the basis of secret key a cryptosystem

can be characterized into two fundamental types.

1. Symmetric Key Cryptosystem

When two communication parties, such as Alice and Bob, are conversing

with each other, it ensures the confidentiality. The contents of the messages

of communicating parties intercepted by the adversary should not reveal

significant information. For this purpose, prior to establishing a secure com-

munication channel, Alice and Bob agree on a key, and make their shared

key k secret. Alice encodes m by using the encryption algorithm E and the

key k before sending it to Bob. After the encryption she obtains the cipher

as:

c = Ek(m),

and then delivers Bob with this cipher c. Then similar key and decryption

algorithm D is used to decrypt the cipher c. The plaintext is recovered by

following the relation:

m =Dk(c).

The fundamental issue with a symmetrical method is the only secure and

effective way for Bob and Alice to communicate, decide on a common secret

key, k. To tackle with this challenging issue of key exchange, a technique
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of public-key cryptography is required. It is required that, there exists the

ciphertext c as the only place where m can be found. Alternatively, a bi-

jective encryption map for a fixed key k, should exists. Some examples of

symmetric cryptographic systems are DES [153], AES [154] etc

2. Asymmetric Key Cryptosystem

It was first suggested by Diffie and Hellman [16] in 1976. They have designed

a public-key agreement protocol, which is widely used in modern cryptogra-

phy. The communicating parties have no need to divulge a secret key in an

asymmetric key based cryptosystem. There is a set of keys for each party,

including a private key sk, which is exclusively known to him and a public

key pk that is accessible to everyone.

If Alice wants to encrypt a message m for Bob and Bob has a key pair

(pk, sk), then Alice uses the encryption function E along with Bob’s public

key pk to compute the ciphertext as;

c = E(pk,m).

As stated earlier, the encryption is defined with a fixed key pk by Epk , i.e.,

E(pk,m) = Epk(m).

Obviously, the security of the encryption method can only be ensured if ex-

tracting m from c = Epk(m) is practically infeasible. The encryption function

must satisfy the property that, it is simple to utilise secret key sk to generate

the pre-image m from the ciphertext as, c = Epk(m).

Due to his possession of the secret key sk, Bob is the only one who can

decrypt the communication. Even if Alice, who had previously encrypted

the message, loses m, it will be impossible for her to retrieve m from Epk(m).
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The fundamental benefit of asymmetric cryptography is the increased data

security. It is a best method for secure encryption, because users are never

compelled to divulge or exchange their private keys, which reduces the possi-

bilities for cybercriminal discovering a user’s private key during transmission.

Asymmetric cryptography is used by many protocols, like the secure sockets

layer (SSL), transport layer security (TLS) protocols etc. This encryption

process is also employed in software applications, like browsers, that need to

create a secure connection over an unsecured network, such as the internet,

or validating a digital signature.

3.3.3 Public Key Based Elliptic Curve Cryptosystem

ECC (Elliptic curve cryptography) is a sort of public-key encryption that is based

on the algebraic structure of elliptic curves over finite fields. Elliptic curves are use-

ful for a variety of cryptographic tasks, including key agreement, pseudo-random

number generators, digital signatures etc. Here, in this section “public key based,

elliptic curve Diffie Hellman key exchange method (ECDH)” [129] is discussed.

In the (ECDH) scheme, for the given order n and base point G of elliptic curve,

the sender and receiver compute U = c1G, U∗ = c2G respectively by using their

private keys c1 and c2 (for c1, c2 < n), and send to each other. Now for the sender

it is easy to compute

V = c1U
∗ = c1c2G,

and similarly for the receiver to get

V = c2U = c2c1G.

But it is computationally infeasible to get the point V = c1c2G by having the

knowledge of G, U and U∗. For further details on ECC see [130].
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Definition 3.3.1.

One of the most crucial public key primitives: the digital signature, which

can provide authentication, non-repudiation and authorization properties. It is

similar to a written signature in the sense that the bearer can claim ownership of

a document as a result of the signature.

Figure 3.3: Digital signatures using Hash function

In today’s digital world, signed papers are typically text messages or binary files.

A key pair(two types of keys, private and public) is necessary for the signer to

create a signature. The Signature generation and signature verification are the

two algorithms that make up a signature scheme.

In the signature generation procedure, the private key is used. This key must be

kept confidential, otherwise, anyone with access to it can forge a valid signature.

Signature algorithm is then applied on the message digest generated by hash func-

tion. The signature verification procedure compares the signed message digest to

the newly calculated message digest.

Digital signature schemes are vastly used in cryptograhy to enhance the security

of encryption algorithm such as signature then encryption scheme, signcryption

etc. Further applications of digital signature will be discussed In the next section.
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Definition 3.3.2.

Encryption and authentication are two essential primitives of cryptography. These

are vastly used for maintaining privacy of communication. Authenticated encryp-

tion simultaneously offers encryption along with data authenticity and confiden-

tiality of secret data. For this purpose authenticated encryption combines symmet-

ric encryption scheme and message authentication. Commonly used methods for

the protection and authentication are; sign-then-encrypt, encrypt-then-sign etc.

These cryptographic protocols’ fundamental flaw is that they demand additional

computing work.

In 1997, Zheng [60] combined these primitives in a single operation and named

it ‘signcryption’. It takes less computational cost and effort. Signcryption pro-

vides confidentiality, authentication of information and non-repudiation integrity.

Therefore it is used in many applications like electronic transaction protocols, key

management, routing protocols etc. It also plays an important role in internet of

things and cloud computing. Further details about signcryption is given in the

next section.

3.3.4 Elliptic Curve Based Signcryption Scheme

Zheng et al. [131] presented a signcryption scheme based on elliptic curve based.

The scheme’s noteworthy signcryption attribute is that it satisfies both public key,

encryption, and digital signature requirements at a cost that is significantly less

than that of the signature-then-encryption approach. The signcryption scheme

uses two versions named as short elliptic curve based digital signature standard

(SEDS1) and (SEDS2) respectively. The global parameters for the signcryption

scheme are as follows:

• E ——– elliptic curve over GF (pm) where p ≥ 150 and m = 1,

• q ——— large prime with size approximately equal to ∣pm∣.

• G ——— taken randomly from the points of E, the order of G is q,

• hash —— one-way hash function of 128 bits output.
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• (E,D) — the encryption and decryption algorithms of a private key cryp-

tosystem.

The signcryption scheme is used by two participants say Alice and Bob for com-

munication over the insecure channel. For this purpose the keys used by Alice

are:

• xa — the private key, chosen uniformly at random from [1, 2, ..., q − 1],

• Pa — the public key (Pa = xaG, a point on E),

where the keys used by Bob are:

• yb — the private key, taken uniformly at random from [1, 2, ..., q − 1],

• Pb — the public key (Pb = ybG, a point on E).

The implementation of the signcryption is shown in the following table.

Table 3.1: Summary of the signcryption scheme

Signcryption of message Unsigncryption of (c, r, s)

by the sender (Alice) by recipient (Bob)

1. Select y ∈ [1, 2, ..., q − 1] and compute 1. Receive (c, r, s) and compute

(k′, k′′) = hash(y Pb). x = syb mod q.

2. Encrypt the message as: c = Ek′(m) 2. (k′, k′′) = hash(xPa + xrG).,

cipher image c as: c = EH(K)(I). if SEDS1 is used.

3. r =Hk′′(m,bind info) 3. (k′, k′′) = hash(xG + xrPa),

4. s = (y/(r + xa)) mod q if SEDS2 is used.

if SEDS1 is used. 4. m =Dk′(c).

5. s = (y/(1 + xa.r)) mod q 5. Accept the m only if

if SEDS2 is used. Hk′′(m,bind info) = r.

Two signcryption schemes are built as shown in Table 3.1. The points of elliptic

curve yPa, xPa + xrG and xG + xrPa are treated as binary string when used for
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hashing. The public keys or public key certificates of Alice and Bob can be stored

in the bind info component of the r during the computation.

3.3.5 Objectives of Cryptography

The fundamental goals of cryptography is to detect and prevent malicious, dis-

ruptive activities and cheating. Some of the important cryptographic security

attributes are described here as:

1. Confidentiality

Confidentiality means to secure the message containing plain image from

unauthorized sources. For this purpose, the contents of information are kept

hidden from everyone except those who have permission to see it. Secrecy

has the same meanings as confidentiality and privacy.

2. Data Integrity

It deals with data alteration that is not authorised, during its communica-

tion over unsecure media. In order to ensure data integrity, one must have

the ability to ascertain any rigging in the data from unauthorized parties.

Data rigging includes such things as manipulation, insertion, deletion, and

substitution.

3. Authentication

This service addresses the identification of both communicating parties the

sender and the the receiver and also the secret information itself. The two

communicating parties, that are entering into a communication should iden-

tify each other. Information transmitted over an insecure channel should be

authenticated as to origin, time sent, date of origin, data content, etc. As a

result of these considerations, this aspect of cryptography is usually divided

into two main categories: entity authentication and data origin authentica-

tion. Authentication based on the data origin utterly provides data integrity

(for if a message is altered, the source has changed).
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4. Non-Repudiation

This service prevents an entity from declining for earlier commitments or

actions taken by him. It also guarantees that the sender cannot deny from

something he had sent. For example, a dealing party may authorize the pur-

chase of property from the other party but after some time refuse and deny

such authorization was conceded. In case of denial, the recipient may send

the dispute to a trusted third party (judge) to verify it. In judge verification

process, the judge can decide about the authenticity of the sender.

5. Unforgeability

It ensures that, if a fake (unauthorized) user place himself between two com-

municating parties and tries to forge the communication by his generated

fake key, then the inbuilt structure of particular cryptographic scheme makes

it practically infeasible. And the fake user cannot get any meaningful infor-

mation from his generated fake keys.

6. Forward Secracy

It means that attacker cannot recover sender’s previous message even if he

gets access to the sender’s private key. For this a random number k is used

for key generation. Which is known only to the sender. Attacker does not

know about k, hence cannot find the decryption key k for decryption of the

cipher to get plaintext.

3.4 Cryptanalysis

Cryptanalysis addresses the attacks mounted on the cryptographic schemes. Suc-

cessful attacks may have the ability to extract the plaintext (or some portion of

the plaintext) from its encrypted form, substitute sections, or forge its digital sig-

natures. Cryptography and cryptanalysis are frequently grouped together by the

more general term cryptology. Kerkhoff [132] was the first to propose an underly-

ing assumption in cryptanalysis in the ending of nineteenth century. It is usually

known as Kerkhoff’s Principle.
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It asserts that the adversary has complete knowledge of the cryptosystem, includ-

ing algorithms and how they can be implemented. In accordance to the Kerkhoff

principle, the cryptosystem’s security is exclusively relied on the secret keys used

in it.

3.4.1 Cryptographic Attacks

Attacks against the secrecy of an encryption scheme attempt to get plaintexts

from ciphertexts, or even more radically, to retrieve the secret key. In this section,

some basic cryptographic attacks are discussed.

3.4.1.1 Brute Force Attacks

To obtain the ‘key’ to decrypt an encrypted message, brute-force method tests

every conceivable character combination. In brute-force assaults, it may take less

time with smaller key spaces, signature-then-encryption will take an immeasurable

length of time with larger key spaces. As a result, it is impossible to undertake

brute-force attacks on encryption methods with large keyspaces.

For example an image in digital form is taken as ‘I’ and a key matrix of same size

‘K’ is XORed to get a cipher image ‘C’, as:

K ⊕ I = C

Example 3.4.1.

The above discussed process is applied on a small image of size 4 × 4 as shown

below:

Key
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

01 03 07 08

04 05 09 02

07 06 03 06

00 02 04 05

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊕

Digital image
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

11 30 45 7

23 8 6 200

6 13 29 11

19 23 07 18

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

Cipherimage
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10 29 42 15

19 13 15 202

01 11 30 13

19 21 03 23

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.2)

Here in Equation (3.2) the key matrix has entries ki ∈ {0, 1, 2,⋯, 9}. An attacker,

who wants to use brute force attack, will have to try 10! = 3628,800 possible
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combinations of key matrix to get any meaningful image. If the key space is

sufficient, an attacker would have trouble obtaining any useful information during

the document’s valid period.

3.4.1.2 Ciphertext-only Attack

In this type of attack the adversary has the ability to obtain ciphertexts. This type

of cryptographic attack has the possibility to mount on any encryption situation.

Even if the adversary do not have the ability to perform the more sophisticated

attacks. It should be remembered that she has the ability to read encrypted mes-

sages. An encryption mechanism is regarded entirely unsafe, if it cannot withstand

a ciphertext-only attack.

For example an image in digital form is taken as ‘I’ and an S-box is used for the

value substitution of that image to convert it into a cipher image ‘C’, as:

S Ð→ I = C

Example 3.4.2.

The above discussed process is applied on a small image of size 4 × 4 as shown

below:

S-box
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

14 3 11 2

9 0 6 15

8 4 13 7

12 05 10 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ð→

Digital image
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

01 03 07 08

04 05 09 03

07 03 06 04

00 04 02 03

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

Cipherimage
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 2 15 8

9 0 4 2

15 2 6 9

14 9 11 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.3)

In the above discussed encryption example (Equation (3.3)), an attacker using

ciphertext only attack got access to the cipherimages. Now he analyzes the en-

cryption procedure and relationship of different cipherimages. Then the attacker

tries different statistical properties of data like frequency analysis, histogram anal-

ysis etc to get the access with decryption key or some part of it.
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For the security of such an attack it is sufficient to use Shanon’s [133] idea of

confusion and diffusion by incorporating both permutation and substitution op-

erations in the encryption scheme. This will make the resulting cipherimage a

random sequence with a uniform frequency distribution.

3.4.1.3 Chosen Plaintext Attack

In this type of attack, Eve is capable of obtaining ciphertexts from the plaintexts

of her choice. She then tries to decrypt a ciphertext whose plaintext is not known

to her. While this may seems unusual, even then, in some cases it is feasible. For

instance, an adversary sends her chosen victim some intriguing material about

whom she is confident that the receiver would encrypt and send out. In this type

of attack, Eve can get as many plaintext-ciphertext pairs as she likes and then

conduct her analysis without any further interaction. This means the adversary

just has to use the encrypting device once.

Example 3.4.3.

For example an image in digital form is taken as ‘I’ and an S-box is used for the

value substitution of that image to convert it into a cipher image ‘C’, as:

S Ð→ I = C

The above discussed process is applied on a small image of size 4 × 4 as shown

below: For example a digital image is encrypted as follows:

S-box
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

14 3 11 2

9 0 6 15

8 4 13 7

12 05 10 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ð→

Digital image
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

01 03 07 08

04 05 09 02

07 06 03 06

00 02 04 05

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

Cipherimage
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 2 15 8

9 0 4 11

15 6 2 6

14 11 9 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.4)

Now let Eve inputs a special type of digital image IS in encryption machine then

she can get the secret S-box, that was used to encrypt the image.
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S-box
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

14 3 11 2

9 0 6 15

8 4 13 7

12 05 10 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ð→

IS
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

Cipherimage
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

14 3 11 2

9 0 6 15

8 4 13 7

12 05 10 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.5)

The cipherimage obtained from the encryption of special image in Equation (3.5)

is actually the secret S-box. Eve then calculates its inverse S-box and uses it to

decrypt another cipherimage whose plainimage was unknown yet.

For the protection of such an attack it is necessary to use Shanon’s [133] idea

of confusion and diffusion by incorporating both permutation and substitution

operations in the encryption scheme. This will make the resulting cipher image

a random sequence with a uniform frequency distribution. Hence by using these

measures, one can make these types of attacks infeasible.

3.4.1.4 Chosen Ciphertext Attack

The attacker selects a piece of the decrypted ciphertext in the chosen ciphertext

attack. He then compares the plaintext with the decrypted ciphertext to determine

the key. The attacker has limited time access to decryption machine. He can enter

a cipher text to obtain its corresponding plaintext. This is a difficult sort of attack,

and it was used against earlier versions of RSA. For example an image in digital

form is taken as ‘I’ and a key matrix of same size ‘K’ is XORed to get a cipher

image ‘C’, as:

K ⊕ I = C

Example 3.4.4.

The above discussed process is applied on a small image of size 4 × 4 as shown

below:
Key

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

01 03 07 08

04 05 09 02

07 06 03 06

00 02 04 05

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊕

Digital image
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

11 30 45 7

23 8 6 200

6 13 29 11

19 23 07 18

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

Cipherimage
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10 29 42 15

19 13 15 202

01 11 30 13

19 21 03 23

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.6)
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Equation (3.6) shows the encryption process of a sample digital image. Now let

an attacker inputs cipherimage in the decryption machine to get the plainimage

as:

Key
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

01 03 07 08

04 05 09 02

07 06 03 06

00 02 04 05

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊕

Cipherimage
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10 29 42 15

19 13 15 202

01 11 30 13

19 21 03 23

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

Plainimage
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

11 30 45 7

23 8 6 200

6 13 29 11

19 23 07 18

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.7)

The attacker now has a cipherimage and its corresponding plainimage. As the

encryption algorithm and decryption algorithm are kept public and only the key

is a secret thing. Hence by carefully observing the decryption process the attacker

analyze underlying operation and relationship of plainimage and cipherimage. He

then perform the following operation:

Cipherimage
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10 29 42 15

19 13 15 202

01 11 30 13

19 21 03 23

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊕

Plainimage
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

11 30 45 7

23 8 6 200

6 13 29 11

19 23 07 18

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

Key
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

01 03 07 08

04 05 09 02

07 06 03 06

00 02 04 05

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.8)

By performing the XOR operation of the cipherimage and corresponding plainim-

age the attacker gets the secret key as shown in the Equation (3.8).

For the security of such an attack it is required to use Shanon’s [133] idea of confu-

sion and diffusion by incorporating both permutation and substitution operations

in the encryption scheme. This will make the resulting cipher image a random

sequence with a uniform frequency distribution. Hence it will effectively resist

against these types of attacks.
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3.5 Image Encryption

Image encryption is used to make image communication secure over the internet

such that no unauthorized person can decode it. Structure of images is quite

different from ordinary text data therefore conventional cryptographic encryption

schemes become ineffective for image encryption. Image encryption techniques

scramble images in such a way that they become unidentifiable. There are many

methods for this purpose to fulfill this requirement for instance stegnography,

packing, advanced watermarking, meaningful image encryption, image hiding etc.

Image encryption methodologies are used to change data using different algorithms

to make images ambiguous for anybody except those having the knowledge of

secret key. The advancement in image encryption techniques is going forward

towards the hope of absolute inconceivable outcome. Nowadays new improved,

strong and advanced encryption schemes are being developed. In this section the

structure of image, its use in computer application types and the structure of an

image encryption cryptographic scheme will be discussed.

3.5.1 Image Layout

The output of light stimulus created by a two-dimensional support is an image.

This phenomenon occurs when the image is created through an intermediate stage,

such as a photograph, or by projecting our three-dimensional world onto our retina

directly.

A mathematical model for the description of an image is defined on two dimen-

sional surface and taking values from a color space, to express a picture.

An image is represented by the map f ∶ U → C where U ⊂ R2 is a subset of the

plane and rectangle of plane where C is a vector space. The function f is the

image function, U is the support of the image, and the set of values of f are the

image color gamut. For one-dimensional color space C, the image is refer to as

monochrome or grayscale image.
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Figure 3.4: Quantization of image and its use in digital applications.

To use the image in a computer, image model is chosen with an image function f

that takes the values from a discrete subset of the color space C. The conversion

from continuous representation to discrete representation is called quantization.

3.5.2 Digital Image

The visual representation of an object processed digitally is known as a digital

picture. The numerical representation of a two-dimensional image is also known

as a raster image or a bit-mapped image. Picture elements, (also known as pixels),

are the digital values that make up raster images. Pixels are the shortest individual

elements of an image, storing numerical values that represent the brightness of a

given color at every given instant in time. The digital image has a specific number

of pixels in each row and column.
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3.5.3 Image Color

The intensity or color at a certain pixel location in an image is defined by one

or more color channels. In the most basic form, each pixel position includes only

a single numerical value that represents the signal level at that particular spot

in the image. A color map is used to convert this set of numbers into an actual

(displayed) image. A color map adds a specific shade of color to each numerical

level in the image to provide a visual representation of the data. The grayscale is

the most popular color map, which allocates all shades of grey from black (zero)

to white (maximum) based on the signal strength.

In addition to greyscale images, where each pixel has a single numerical value, there

are color images that have the most frequent use in the modern applications. True

color images are those in which the entire color spectrum is represented as a triplet

vector, with the (R, G, B) components at each pixel point. A color image can be

thought of as consisting of three, 2-D planes, with the color represented as a linear

combination of the basis colors or values.

3.5.4 Resolution and Quantization

The spatial resolution and color quantization of a picture are determined by the

size of the 2-D pixel grid and the data size recorded for each individual image

pixel. The resolution of an image determines its representational power (or size).

The resolution of an image source (such as a camera) can be expressed in three

ways.

• Spatial resolution: The number of image’s column (C) and row (R) specify

that how many pixels are employed to cover the visual space recorded by the

image. Digital resolution of an image is also a famous term used for it. C ×

R is a well-known formula to find the resolution (for example 640×480, 800×

600, 1024 × 768, etc.)
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• Bit resolution: The number of colors that a pixel can display is simply

referred to as its bit resolution. It tells the number of bits required for the

storage at a specific quantization level, e.g. binary is 2 bits, grey-scale is

8 bits, and color (most often) is 24 bits, is known as bit resolution. The

dynamic range of a image refers to the range of possible values that a pixel

can take.

3.5.5 Chaos-Based Image Cryptosystems

Lorenz in 1963 [134] investigated a non linear dynamic system that later on known

as chaos. In this system he observed that a little change in beginning condition

yields contrastive results. Chaotic sequences are random, non-periodic and highly

sensitive to system parameters.

Figure 3.5: Chaos based image cryptosystem

An image encryption scheme requires two essential properties that are confusion

and diffusion. These properties are extensively found in chaotic systems as ergod-

icity and sensitivity to initial condition therefore chaotic maps are highly useful

in image encryption cryptosystems.

3.5.5.1 Structure of Chaos Based Image Cryptosystem

Chaotic image encryption schemes mainly consist two mutually independent stages.

These stages are substitution and diffusion.
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Figure 3.6: Structure of chaos based image encryption scheme

• Confusion

In a natural image, adjacent pixels are highly correlated to each other. In

order to break the relationship of adjacent pixels, it is required to move

them on different positions. For this purpose permutation is performed to

all pixels. The relocation should be performed in such a way that it can

be reversed to decrypt the process. This relocation should also be irregular

and unpredictable. In this stage the values of pixels are not changed. To

eliminate correlation among neighboring pixels, rc permutation rounds are

used, where rc ≥ 1. After this step every pixel is changed by some other pixel

in the same image. Hence confusion effect is generated in image.

• Diffusion

Substitution phase does not change the histogram results. This phenomenon

gives rise to a risk of statistical attack. Therefore an additional step is re-

quired for the improvement of security against such types of attacks. In

diffusion stage, pixel values are changed. Chaotic maps due to their ran-

domness and unpredictable behavior are useful for this stage. After this

stage pixel values become random and histogram shows uniformity in data.
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3.6 Integral Analysis of Image Encryption Scheme

Several security analysis tests for chaos-based image cryptosystems are presented

in this section. The security analysis described here is based on a review of the

literature. These basic tests such as key size, sensitivity of the secret key and

plain picture, information entropy, histograms, and correlation were included by

the majority of authors. Further detail of these security aspects is given below:

3.6.1 Key Space

The key is a bit string that specifies how the algorithm will map the plain image

P to the image E, which is encrypted. It is considered very important from a

security perspective, because the opponent knows everything about the cryptosys-

tem except the key. The brute-force attack or exhaustive search attack in which

every potential key is employed until the cryptosystem is cracked, is the most

obvious attack on the cryptosystem. The adversaries, now, have the access to su-

percomputers. With the current technology, the key space is designed to be large

enough to withstand such an attack. For example, today’s fastest supercomputer

(Summit) can perform 200 PFLOPS (1015 floating-point operations per second),

or 200,000 trillion calculations per second. According to Alvarez and Li [135], the

key space must be larger than 100 bits. With the aforesaid supercomputer and

1000 FLOPS, it would take 1.99 × 1023.

Years =
Key combinatons × 1000

FLOPS
× 31536000, (3.9)

years to break this cryptosystem. All key spaces in the encryption design must

have chaotic behaviour (i.e., strong keys), and weak keys must be avoided. The

bifurcation diagram, or calculating the Lyapunov exponent to validate chaos, are

the methods for determining the strength of key spaces. Key space is considered an

important feature in any cryptosystem. The adequate key space for chaotic image

encryption scheme necessarily greater than 2100 to prevent brute force attacks.
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3.6.2 Key Sensitivity

An essential requirement for an ideal image encryption scheme is that, it should be

conscious about secret key. In case of the change of one bit in its secret key should

crop an entirely different encryption results. For the sensitivity analysis with

respect to secret key, a highly sensitive key is demanded. The high sensitivity in

an encryption scheme can be ensured by using a pseudorandom chaotic sequence in

encryption process. Chaos theory has the property of high sensitivity for its initial

state. By using properly a pseudorandom sequence generated from a chaotic map

in encryption process will yield to generate a key sensitivity effect in the encrypted

image.

3.6.3 Distribution of Pixels in Cipher Image

An image’s histogram is a visual analysis of statistical data and the image’s tone.

It graphically depicts the frequency of image pixel intensity values. In the his-

togram horizontal axis depicts intensity variations, while the vertical axis shows

the frequency of a specific intensity.

To avoid the leakage of statistical information related to the plain image and to

withstand statistical attacks, the graphic histogram of the encrypted image must

display identical frequencies for each pixel intensity value (uniform distribution).

From the histogram one can observe the dispersion of pixels in an image as the

number of pixels and their frequencies are plotted in an histogram. For all 256

intensity values, an ideal uniform histogram of an encrypted image must have the

same pixel frequency.

3.6.4 Correlation Analysis of Two Adjacent Pixels

The Pearson correlation coefficient (PCC) [136] is a statistical measure used to aid

visual correlation analysis. In statistics, PCC uses a numeric index that ranges

from [−1,1] to determine the grade of a linear relationship between two quantita-

tive variables. There is a perfect inverse relationship when it is −1, and a perfect

direct relationship when it is one. Also neither of the variables examined, exhibits
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a linear connection when PCC is zero (null correlation). As PCC is highly associ-

ated, therefore plain images do not depict PCC near to zero. Encrypted images,

on the other hand, must have a PCC close to zero in order to withstand statistical

attacks. The property of having high confusion and diffusion can be checked by

a test of correlation among neighboring pixels in the plain-image and similarly in

the associated cipherimage. For the calculation of correlation coefficients among

the neighboring pixels in horizontal, vertical and diagonal directions, the following

Pearson correlation coefficient [136] has been used,

Cr =
(n∑

n
t=1 xtyt −∑

n
t=1 xt∑

n
t=1 yt)

√
(n∑

n
t=1(xt)2 − (∑

n
t=1 xt)2)((n∑

n
t=1(yt)2 − (∑

n
t=1 yt)2)

. (3.10)

Here xt and yt are values of neighboring pixels in the image and n is the total

number of pixels taken for calculation of correlation.

3.6.5 Information Entropy

This feature of analysis measures the randomness in a cipher image. It also tells us

the average amount of information carried by cipher image. Let G be a ciphered

image then entropy value of image G can be calculated by the formula,

H(G) =
2N−1
∑
i=o

P (gi)log2(
1

P (gi)
). (3.11)

Here P (gi) shows the probability of appearing of symbol gi in cipher image G.

For exact random source having 256 different symbols, the ideal value of entropy

H(G) is 8.

3.6.6 Differential Analysis

An essential property for good performance image encryption scheme is that, im-

ages encrypted with that scheme should be totally different from plain images. To

check the difference in an encrypted image and encrypted by making a change of
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one pixel in plain-image, “number of pixel change rate” (NPCR). Also “unified

average changing intensity” (UACI) used on two encrypted images. The values of

NPCR and UACI can be calculated by;

NPCR =
∑i,jK(i, j)

w × h
× 100

UACI =
1

w × h
[∑
i,j

∣X(i, j) −X ′(i, j)∣
255

] × 100.
(3.12)

Here w and h show the width and height of the encrypted image respectively. X

and X ′ are cipher images generated by plain image and one pixel difference in

plane image respectively. If X = X ′ then Ki,j = 0 otherwise 1.

The results of this test show the capability of any image encryption scheme to

resist against differential attacks.

3.6.7 Encryption Quality

Quality measurement techniques such as mean-squared error (MSE) and peak

signal-to-noise ratio (PSNR) are used to objectively validate image encryption.

The MSE is a parameter that is used to calculate the difference between two

images.

MSE =
1

M ×N

M−1
∑
i=0

N−1
∑
i=0

(IP (i, j) − ID(i, j))2. (3.13)

where M×N represents image size, IP is the plain image, and ID denotes decrypted

image. The least value of MSE shows the minimum error by using any encryption

scheme. Hence the least MSE value, interprets the better encryption quality. The

MSE analysis is also applicable for a color RGB plain image and an decrypted

RGB color image with pixel values between 0 and 255.

PSNR = 10.log
2552

MSE
(db), (3.14)

The PSNR is the ratio of a signal’s maximum achievable power to the power of

distorting noise that influences the quality of its representation. It is a quantita-

tive measure used for the distinction between the original plain image IP and its
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decryption result ID. The greater value of PNSR indicates the higher fidelity of

decrypted image towards its original plain image.

3.6.8 Analysis of Algorithms

Algorithm analysis is considered as an important feature in the complexity analysis

of algorithm. A good problem solving algorithm possesses many qualities like

correctness, simplicity etc. If an algorithm does not provide satisfactory results

for simplicity and generality then it is required to redesign it to get these desired

properties. This analysis is also used for the performance comparison purpose of

different algorithm generated for the solution of same problem. For this purpose

the following two analysis are frequently used:

3.6.8.1 Algorithm Correctness

It must be shown that a newly designed algorithm always produce the intended

result in all legal cases of the problem. For this purpose usually these methods

are used.

• Counter examples

True-value configurations that interpret the formula or statement is false

are known as counterexamples. It is usually enough to present a counterex-

ample to prove that something is incorrect. A counterexample is supplied

when a system fails to satisfy the given properties, however counterexamples

are sometimes difficult to interpret manually. There are few and imperfect

automated ways for doing so. A manual effort is usually required for this

purpose.

The absence of a counterexample for a given algorithm does not imply that

the algorithm is right.

• Induction

In the analysis of algorithms, mathematical induction plays a prominent role.
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It is a direct method used to prove a formula or statement. It is based on

the rule of mathematical induction. The technique has two steps:

1. The initial case: It is to prove that the statement or formula is true

for 0 or 1.

2. Inductive step: In this step, it is required to prove that if a statement

or formula is true for n where n ∈ N (the set of natural numbers), then

it is also true for n + 1.

Once a theorem, formula is proved by mathematical induction, then it can

be used to build an algorithm. Mathematical induction is particularly used

to show the correctness of recursive algorithms.

• Loop Invariant

A loop invariant is a condition that must be true immediately before and

after each iteration of the loop. It is a condition that is true for each loop

iteration. The loop invariant supports the design of iterative algorithm,

When treated as an assertion that specifies important relationships among

the variables that must be true at the start of each iteration and when the

loop closes. If it holds then the computation is on the right track. But if it’s

false, the algorithm will not work.

• Lots of examples

The construction of examples by applying the implementation of an algo-

rithm on different structures is another method to prove the correctness. In

this method an algorithm is tested by implementing through various exam-

ples, and if it gives the correct desired results each time then it is considered

valid for the practical use.

3.6.8.2 Algorithm Complexity

The encryption algorithm is actually a step wise procedure written in a program-

ming language, whose internal structure should be complex. With big-O notation

‘O’, the complexity is asymptotically approximated as a function that depends on
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the input size n. The overall complexity of an encryption algorithm is the sum of

individual complexities of the series of sentences in that algorithm. To evaluate

the complexity some practical rules are considered.

• The simple input/output and ‘if’ sentences has the complexity O(1).

• The ‘for’ cycle for n iterations that is independent of the input n has the

complexity O(n).

• A double cycle nested ‘for’ has complexity order O(n2) for n iterations for

each cycle.

• For n iterations, the iterative cycles with divisive-multiplicative sentences

are of order O(log n).

• In the cycle ofO(logn) consisting of n iterations has the complexityO(nlogn).

Chaos-based image encryption algorithms mainly depends on the substitution-

permutation network, which may be approximated with complexity order O(mn),

where m and n are the input image’s pixel sizes.

3.7 Existing Problems and Solutions

Despite the fact that several chaos-based picture cryptosystems have been sug-

gested, some of them do not offer the high security that they claim and have been

shown to be vulnerable to particular attacks.

Farajallah et al. [137] investigated the security of a chaos-based image cryptosys-

tem [138] that employed the logistic map to perform dependent diffusion and

demonstrated that the diffusion effect can be removed because the argument is

visible in the ciphered image. As a result, key space was reduced, and a permuted

version of the ciphered image could be retrieved, allowing brute-force and selected

plaintext attacks.
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Zhou et al. [140] proposed a symmetric image encryption thai is based on skew

tent chaotic map and line map. In this scheme R, G, B components of a color

image are simultaneously encrypted at bit level. Chen et al. [139] analyzed the

security of [140] and found that it depends only on the permutation key that

reduces the keyspace and (H ×W + 1) chosen plain images can be used to obtain

the similar permutation key of one round encryption process. Here (H ×W ) is the

size of the image used for this purpose.

The encryption process containing two rounds, authors proposed two way differ-

ential comparison method. Under chosen-ciphertext conditions, authors suggested

a codebook attack, design the codebook with (H ×W ) differential binary images,

and completely break the multi-round cryptosystem using the XOR operation of

O(H ×W ) images.

Wang et al. [144] anayzed an image encryption technique that is proposed by using

a combination of one dimensional chaotic maps. In this scheme the main encryp-

tion mechanism was developed by using confusion, diffusion and linear transfor-

mation. The chaotic sequences used for confusion and diffusion are generated by

sine-sine system. The analysis of this schemes disclosed some algebraic weakness

also found that the linear transformation used there can be converted as a part

of permutation. For this purpose an equivalent encryption mechanism is designed

and chosen plaintext attack is successfully mounted on it. To improve the pro-

cess, authors omitted the linear transformation process. The complexity of hence

improved scheme is O(MN log(MN)).

The cryptanalysis approach presented in [148] has shown that [149, 150] contain

design flaws in confusion and diffusion, as well as a lack of complexity in the

avalanche effect, allowing an attacker to leak the key stream and defeat the sys-

tem using the chosen-plaintext attack. As the encryption technique proposed in

[151] can be downgraded to a diffusion-only algorithm and a permutation-only

algorithm, in [152] can be used as differential attack to break the scheme in [151].

By observing more closely these vulnerable cryptosystems, one can note the fol-

lowing major flaws.
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• Unsecure and insufficiently complex confusion and diffusion have the poten-

tial to leak key stream information, including the secret key [141–147] and

cryptologists can remove the effect of confusion or diffusion, resulting in a

simple to break diffusion-only or confusion-only scheme [144, 145, 148–152].

• Without cryptographic characteristics, a key stream can reveal the secret

key [141–147].

• Multiple rounds are required due to insufficient confusion and diffusion, re-

sulting in low efficiency, preventing these schemes from being used in real-

time applications [137, 138, 140].

The foregoing three issues necessitate effective solutions. Therefore, a good image

encryption technique should be equipped with a secure and complicated confusion

and diffusion structure, as well as a cryptographic key stream that is capable of

safeguarding the secret key. Also it is essential to use a PCNG that can creates

pseudo-chaotic key streams with good unpredictability and chaotic features. An-

other phenomenon that came into our knowledge is the transient effect lies in the

starting numbers of pseudo chaotic random sequence. To remove this effect some

starting numbers of the sequence are terminated. Hence the remaining sequence

shows good randomness. The fact is kept in mind, while working with chaos in

the subsequent chapters.



Chapter 4

A Chaos Based Color Image

Encryption Scheme

With the rapid growth in computer network technology, it becomes a trend to

transmit a lot of sensitive information over a public network. Therefore informa-

tion security has become very important in modern sciences. The rapid increase

in image transmission grabs the attention of scientists towards making efficient

and secure image encryption algorithms. The information carried by an image

is quite different from plaintext. Images have bulk data, high redundancy and

strong correlation between neighboring pixels. Therefore image encryption is far

different from ordinary text encryption [76]. Traditionally occurring encryption

techniques DES [153], AES [154], RSA [17] etc. are not beneficial for the purpose

of encryption of images.

Chaotic maps [155] have some very useful properties like sensitivity to initial con-

ditions, non-periodicity and random like behavior. Chaotic maps have been highly

appreciated for the generation of confusion and diffusion in image cryptography.

As a result, it has endorsed a huge application in image coding, decoding, encryp-

tion, image hiding etc.

Image encryption algorithms have vast applications to benefit in many real life

fields such as electronic medical record; this record is used to manage, transmit

77
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and even sometimes need to reproduce previous health history of the patients

securely. The use of chaotic maps in image encryption algorithms can enhance the

security of such encryption schemes.

In 2020, [156] proposed an image encryption technique that uses bit wise permuta-

tion of pixels and S-box for diffusion purpose. Recently [157] introduced a grey and

color medical image encryption technique. In this scheme authors first split image

into blocks then perform zig zag permutation, rotation and random permutation

then XOR is used for diffusion purpose. In this research chaos based permutation

technique is used then S-box is used for diffusion further diffusion is added in by

using XOR with chaos based sequence and recursion. Incorporating chaotic maps

in permutation and diffusion contributed significantly to the strength of resulting

cipher. The use of such combination makes the scheme more robust in comparison

with [156], [157] and many others.

The chapter is organized as: in Section 4.1 the image encryption scheme is de-

scribed. Section 4.2 contains the image decryption algorithm. Results and dis-

cussion with the help of examples and figures are in section 4.3. The security

analysis of the scheme and comparison with other schemes is discussed in Section

4.4. Finally the work is concluded in Section 4.5.

4.1 The Proposed Image Encryption Scheme

In this section, a new color image encryption algorithm is described. It contains

three cryptogrphic phases and uses two chaotic systems to control the structure

of the scheme for obtaining high encryption performance.

4.1.1 Global Parameters

The main advantage of the use of the chaos based cryptosystem is that, it facilitates

the key management approach. This method needs only the protection and the

secure transmission of secret keys i.e., the initial keys and parameters of chaotic
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maps. These secret keys have the small volume, therefore necessitating not only a

small memory to sustain it, but also more confidence during its transfer. During

data transmission over an insecure channel, unauthorized access to short length

keys is significantly less likely than it is to large length keys.

For the proposed image encryption three keys k1, k2, k3 are respectively used in

permutation, substitution and diffusion phases. The secret keys k1 and k2 use the

parameters y, y′ ∈ (0,0.5) and initial values x0, x′0 ∈ (0,1) for the chaotic map

(2.10) in Algorithm (4.1.1) and (4.1.2) of permutation and substitution respec-

tively. While the secret key k3 has the parameter µ and initial value w0 of chaotic

map 2.9 in Algorithm (4.1.3) of diffusion phase.

The proposed cryptosystem is symmetric in nature that uses same keys for the

encryption and decryption. Therefore Alice (the sender) and Bob (the receiver)

first agree to share secret keys securely and then communicate each other by using

the following encryption/decryption algorithms respectively.

4.1.2 Layout of the Proposed Cryptosystem

In the proposed image encryption scheme, initially the permutation is performed

by a permutation table generated by the chaotic map (2.10).

Then for substitution, a strong S-box generated by chaotic map (2.10) is used.

Finally, in diffusion phase an XOR function is used with another chaotic map

(2.9) to reinforce the statistical performance of the proposed scheme.

The flow diagram shown in Figure 4.1 describes the step-wise working procedure

of encryption scheme. In this flow diagram three keys k1, k2, k3 and the plainimage

I are given as input, while the noise like scrambled cipherimage P is received as

an output. A random chaotic sequence together with the sorted sequence are

obtained by iterating piece-wise linear chaotic map (PWLCM) using k1.
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Figure 4.1: Flowchart of image encryption algorithm
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Figure 4.2: Pixel change effect in various stages of encryption

The permutation sequence is formed by comparing position of numbers in the

chaotic sequence and sorted sequence. Plainimage is converted into 1-dimensional

array and permuted using the permutation sequence. Then another chaotic se-

quence is generated by iterating PWLCM using k2 and the S-box is constructed by

using this chaotic sequence. The S-box is applied on the permuted 1-dimensional

image sequence. Finally a chaotic sequence of real numbers is constructed by lo-

gistic map using k3 and converted into integers sequence. This sequence is XORed
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with the substituted 1-dimensional image array sequence. The cipher image is

received by converting this 1-dimensional array into image form. A sample 9 × 9

color image and effects of various encryption stages are depicted in Figure 4.2.

The structure of proposed image encryption scheme is shown in Figure 4.3, while

the summarized form of the procedure is depicted as block diagram and shown in

Figure 4.1.

Figure 4.3: General architecture of the proposed image encryption scheme

The above shown Figure 4.3 represents the general architecture of the proposed

image encryption scheme. Here the scheme inputs the plainimage, uses chaos

based image encryption technique involving the key stream generated by psudo

chaotic number generators (chaotic maps) and converts it into cipherimage. Then

image decryption algorithm inputs cipherimage and works vice versa to reveal

the plainimage. Figure 4.4 describes the internal structure of the proposed image

encryption scheme.

Figure 4.4: Structure of image encryption algorithm
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4.1.3 Permutation Phase

In this phase, the pixel positions of the color image I are altered by using a suitable

permutation. The permutation array is generated by using the piecewise linear

chaotic map (PWLCM).

Algorithm 4.1.1. (Algorithm for Permutation of image pixels)

Input: Color image I, secret key k1 = {x0, y}, chaotic map (2.10).

Output: Scrambled image vector P .

1. Convert the color (RGB) image I in its digital form M (containing three, two

dimensional matrices MR, MG and MB for the Red, Green and Blue color

channel respectively) of size N , where the entries of M i.e., mi ∈ [0, 255]

and a × b is the order of each component of M , while a, b are the numbers

of rows and columns of MR, MG and MB respectively.

2. Reshape the matrix M as one dimensional array,

M = {mR1 ,mR2 , . . . ,mRab
,mG1 ,mG2 , . . . ,mGab

,mB1 ,mB2 , . . . ,mBab
},

hence the new formed array is denoted as Z = {z1, z2, . . . , zN}.

3. Obtain the sequence A = {a1, a2, ..., aN} by iterating the chaotic map (2.10)

and discarding first 10000 numbers to avoid transient effect, using the key

k1.

4. Sort sequence A in ascending order to form B = {b1, b2, . . . , bN} as:

B = Sort(A)

5. Using the relationship of the sequences A and B, bi = ati , for i = 1,2, . . . ,N ,

compute permutation vector T = {t1, t2, . . . , tN}.

[B, T ] = Sort(A)
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6. Use T to permute the position of elements of vector Z.

P = Z(T )

7. After applying permutation on Z it becomes P = {p1, p2, ..., pN}.

4.1.4 Substitution Phase

In this step permuted pixel vector P undergoes the substitution by using a substi-

tution box as look up table. This technique is used to hide statistical properties

of data and reduces correlation between neighboring data.

Substitution box, in short, S-box is used as the main non-linear component of

algorithm. The purpose of using such S-box is to generate non-linearity in an

encryption process and also to generate confusion and diffusion (Section 3.5.5.1)

in cipher image. The use of S-box enhances the protection of scheme against linear

and differential cryptanalysis.

Here the given algorithm comprising the generation of S-box with the help of

chaotic map (2.10) and then its use as look up table for image encryption purpose.

It is slightly modified algorithm presented in [158]. The secret key k2 as described

in the Section 4.1.1, is used for this algorithm. The proposed algorithm is stated

below:

Algorithm 4.1.2. (Algorithm for the substitution of image pixel values using

S-box)

Input: Secret key k2, chaotic map (2.10), permuted image vector P = {p1, p2, ..., pN}.

Output: Pre-encrypted image S′.

Using the given chaotic map (2.10), an S-box is constructed and used for pixel

value substitution by executing the following steps.

1. Make 256 sub-interval regions of the interval [0.1,0.9] of fixed length △h.

That is,

△h = (0.9 − 0.1)/256 = 0.003125
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Label each sub-interval region as R0,R1, ...,R255.

Ri+1 = (0.1 + i.△ h, 0.1 + (i + 1)△ h); for i = 0,1,2,⋯,255

2. Use the parameters x′0 and y′ of the secret key k2 for chaotic map (2.10)

to generate a sequence xn (by reoving initial initial 10000 values to avoid

transient effect)of only those values that lies in [0.1, 0.9].

xn+1 = f(x′n, y
′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′n
y′

if 0 ≤ x′n < y′

x′n − y′

0.5 − y′
if y′ ≤ x′n < 0.5

1 − y′ − x′n
0.5 − y′

if 0.5 ≤ x′n < 1 − y′

1 − x′n
y′

if 1 − y′ ≤ x′n < 1

3. Initialize an empty array S.

init[ ] array S = new int[8];

4. Whenever a value xn of generated chaotic sequence belongs to some partic-

ular sub-interval Ri (i = 0,1, ...,255), store that sub-interval region’s index i

in S.

for xn ∈ Ri

S ← int[i];

Discard those values which does not fall in any sub-interval region or giving

repeated sub-interval region’s index-value.

S = unique(S, ‘stable’);

5. For each pixel pi in the permuted image P = {p1, p2, . . . , pN} replace pi by

S(pi) where i ∈ {1,2, . . . ,256}. The resulting array is then denoted by S′ =

{s1, s2, . . . , sN}.

S′ = S(pi)
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The output of this algorithm is the pre-encrypted image S′. Note that in Step 2

the use of a slightly different value of x′0 or y′ will result in an entirely different

S-box. Thus, the above algorithm can be used to generate infinitely many S-boxes.

One such S-box is constructed by setting parameter x′0 = 0.7666 and with fixed

value of y′ = 0.15 in (2.10). The resulting array after Step 5 is given in Table 4.1

as 16 × 16 matrix.

By using SET (S-box Evaluation Tool) [159], the properties of this S-box are ex-

amined. It is noted that S-box is balanced. Other characteristics of thus generated

S-box are as follows:

Table 4.1: S-box

44 48 61 97 202 76 139 253 196 92 186 120 113 245 251 213

49 64 106 226 5 219 27 2 195 95 185 123 54 78 145 237

19 42 50 66 111 239 18 17 174 154 43 47 58 90 181 134

94 192 104 220 25 193 99 207 60 96 197 89 177 147 231 126

108 233 187 119 91 184 125 20 56 83 161 102 215 38 31 11

162 188 114 249 223 16 23 248 230 141 224 12 109 234 69 121

159 198 87 172 160 88 175 152 216 34 21 65 143 242 217 255

24 130 157 203 72 128 67 15 3 201 77 142 246 209 144 22

82 158 199 74 135 221 240 1 116 117 137 156 206 107 229 63

200 205 68 133 75 138 153 214 39 35 112 243 124 37 28 232

254 194 98 167 45 247 238 4 212 46 53 180 122 110 118 150

136 131 140 250 84 163 129 183 7 169 170 236 59 155 208 190

79 105 222 14 55 81 211 6 151 26 165 93 0 182 132 40

171 73 86 168 101 32 13 228 210 51 173 100 115 252 71 191

218 204 70 30 8 36 176 225 10 148 179 166 52 57 103 164

127 29 9 241 189 41 33 227 244 146 235 80 178 149 62 85

Table 4.2: Comparison of properties of S-box

S-box
Non-linearity SAC BIC

nonlinearity

BIC-

SACMin Avg. Max Min Avg. Max

APA S-box [160] 112 112 112 0.4140 0.4987 0.6015 112 0.499

AES S-box [161] 112 112 112 0.3671 0.5058 0.5975 112 0.504

Gray S-box [162] 112 112 112 0.3906 0.5058 0.5781 112 0.502

Skipjack S-box [163] 104 105.7 108 0.3750 0.4980 0.6093 104.1 0.499

Residue Prime [164] 94 99.5 104 0.4062 0.5012 0.5937 101.7 0.502

Xyi S-box [165] 104 105 106 0.4218 0.5048 0.5937 103.7 0.503

Prop. S-box 100 103 106 0.4062 0.5029 0.6562 103.9 0.506
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4.1.5 Diffusion Phase

To scramble the internal structure of pixels, we use chaotic logistic map and a

Boolean operation XOR. For this purpose first a random sequence is generated

by using chaotic logistic map. This sequence is used to generates randomness in

pre-encrypted image S′.

Algorithm 4.1.3. (Algorithm for the diffusion of pre-encrypted image)

Input: Pre-encrypted image S′, secret key k3 = {w0, µ}, chaotic map (2.9).

Output: Final encrypted image C.

1. Input the secret key k3 = (w0, µ) in logistic map (2.9) and iterate it N+10000

times, discard initial 10000 values to remove transient effect for obtaining a

sequence R of N real numbers R = {r1, r2, ...,rN}.

2. The real number sequence rk where k = 1,2, ...,N is changed into integer

sequence using the relation,

Qk = int(254 × (rk −min(rk))/d) + 1, (4.1)

where d = max(rk) −min(rk).

3. Encrypt each element of array S′ by mixing with the corresponding element

of Q, using bitwise XOR i.e.,

for i = 1, i ++, i = N do

if i = 1, then

c(i)← s(i)⊕ q(i)

else

c(i)← c(i − 1)⊕ q(i)⊕ s(i);

end

end

4. By converting resulting matrix into image form, a cipher image C is obtained.

C = reshape(C,256,256,3).
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Example 4.1.4.

The above explained encryption process can be illustrated by a simple example.

Let us take a two dimensional matrix block I of order a × b as the original image,

where a, b = 4

I =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10 13 6 14

15 7 9 2

8 1 4 11

3 12 5 16

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

it is converted into one dimensional array Z as:

Z = {10,15,8,3,13,7,1,12,6,9,4,5,14,2,11,16}

Let the control parameter of chaotic map (2.10) be x0 = 0.766, y = 0.3432 as k1,

x′0 = 0.7666, y′ = 0.15 as k2 and that of chaotic map (2.9) be w0 = 0.7666, µ = 0.3432

as k3. Iterate the chaotic map (2.10) with the given parameters the following

sequence and its sorted sequence are obtained by using Algorithm (4.1.1)

A = {0.7660,0.2340,0.6818,0.3182,0.9217,0.0729,0.2129,0.6189,0.3811,0.2418,

0.7045,0.2955,0.8611,0.1389,0.4046,0.3915}

Then the chaotic sequence A is sorted in ascending order to get another sequence

B as follows:

B = {0.0729,0.1389,0.2124,0.2340,0.2418,0.2955,0.3182,0.3811,0.3915,0.4046,

0.6189,0.6818,0.7045,0.7660,0.8611,0.9271}

Using the relationship of the sequences A and B, bi = ati , hence computed per-

mutation sequence T is:

T = {6,14,7,2,10,12,4,9,16,15,8,3,11,1,13,5}
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Sequence T is then applied on Z to get permuted image array P . That is:

P = {7,2,1,15,9,5,3,6,16,11,12,8,4,10,14,13}

The S-box given in Table 4.1 is applied on the array P to get S′ as;

S′ = {253,61,48,213,92,76,97,139,49,120,113,196,202,186,251,245}

After this for diffusion purpose chaotic map (2.9) is used to generate a random

sequence R.

R = {0.7666,0.7157,0.8139,0.6058,0.9552,0.1713,0.5677,0.9816,0.0721,0.2675,

0.7838,0.6778,0.8735,0.4420,0.9865,0.0531}

The integer sequence Q from R is obtained by using the Step (2) of Algorithm

(4.1.3):

Q = {195,181,208,151,246,33,141,254,6,59,200,171,224,107,255,1}

Finally, by using Q, the cipher image C is obtained by following Step (3, 4) of

Algorithm (4.1.3).

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

62 190 125 194

182 211 62 19

86 63 135 23

20 74 232 227

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4.2 Decryption Algorithm

The ciphered image C can be converted back to its original color image by using

the decryption algorithm. Decryption process has a similar combination of three

stages as used in encryption scheme. The effects made by the XOR operation on

the pre-encrypted image are first removed during decryption. For this purpose
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a random sequence R of real number is generated using k3. The sequence is

converted into integers Q and bitwise XOR is performed with the cipher image

array including the preceding value.

In order to reverse the effects generated by substitution using S-box, an inverse

S-box of an S-box (generated by Algorithm (4.1.2)) is constructed. The use of

inverse S-box on the pre-encrypted image demolish all the effects generated by the

use of S-box. In this way the permuted image array is retrieved.

Finally a random sequence together with sorted sequence and the inverse permuta-

tion sequence is determined using Algorithm (4.1.1). The permutation effects are

reversed by applying inverse permutation sequence. After converting the resulting

array into image form, the original plain image is obtained.

Algorithm 4.2.1. (Image Decryption Algorithm)

Input: Color cipher image C, Secret keys k1, k2, k3, Algorithm (4.1.1, 4.1.2,

4.1.3), Chaotic map (2.9), Chaotic map (2.10).

Output: Original image I.

1. Convert the color (RGB) cipher image in digital form C (containing three,

two dimensional matrices CR, CG and CB for the Red, Green and Blue color

channel respectively) of size N = a × b × 3, where the entries of C i.e., ci ∈

[0, 255] and a × b is the order of each component of C, while a, b are the

numbers of rows and columns of CR, CG and CB respectively.

2. Reshape the matrix C as one dimensional array,

C = {cR1 , cR2 , . . . , cRab
, cG1 , cG2 , . . . , cGab

, cB1 , cB2 , . . . , cBab
}.

3. As in step 1 and 2 of Algorithm (4.1.3), the receiver by using common secret

key k3 generate the sequence R = {r1, r2 . . . , rN} of size N .
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4. Each element ci of C (in step 2) is pre-decrypted as:

for i = 1, i ++, i = N do

if i = 1, then

s(i)← c(i)⊕ r(i)

else

s(i)← c(i − 1)⊕ r(i)⊕ c(i);

end

end

5. Again using common secret key k2, generate S-box S as in step 5 of Algorithm

4.1.2.

6. Find the inverse S-box S−1 of S.

7. Using S−1 as lookup table each element of pre-decrypted image S′ is replaced

by corresponding element in S−1 that is pi = S−1(si), i = 1, 2, . . . ,N . The

resulting array is stored in P = {p1, p2, . . . , pN}.

8. Now using common secret key k1, iterate the chaotic map (2.10) for k1 to

get the sequence A = {a1, a2, . . . , aN}.

9. Sort sequence A in ascending order to form B = {b1, b2, . . . , bN}.

B = sort(A)

10. The permutation array is computed as in step 5 of Algorithm (4.1.1), then

the inverse permutation vector T −1 is calculated.

[B, T ] = sort(A)

[D, T −1] = sort(T ).

;11. Use T −1 to permute the position of elements of image array P of step (7) to

get pre-permuted array Z = {z1, z2, . . . , zN}.

Z = P (T −1)
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12. Store Zi in a matrix to form image I.

Example 4.2.2.

The above stated decryption algorithm wipes out all the effects of encryption on

the original image. For the illustration of working procedure a cipher image block

C is taken and the decryption Algorithm (4.2.1) is applied on it as follows;

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

62 190 125 194

182 211 62 19

86 63 135 23

20 74 232 227

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The one dimensional array of C is:

C = {62,182,86,20,190,211,63,74,125,62,135,232,194,19,23,227}

Let the control parameter of chaotic map (2.10) be x0 = 0.766, y = 0.3432 as k1,

x′0 = 0.7666, y′ = 0.15 as k2 and that of chaotic map (2.9) be w0 = 0.7666, µ = 0.3432

as k3. The chaotic map (2.9) is iterated with the given parameters in k3 for a real

sequence that is converted into an integer sequence R using Algorithm (4.2.1) as:

R = {195,181,208,151,246,33,141,254,6,59,200,171,224,107,255,1}

Bitwise XOR of R, C and its preceding elements are performed as described in

Step 4 of the Algorithm (4.2.1) to get S′ as:

S′ = {253,61,48,213,92,76,97,139,49,120,113,196,202,186,251,245}

By using k2 in chaotic map (2.10) and following Algorithm (4.1.2), an S-box is

constructed and then its inverse S-box is formed. To get the permuted array P an

inverse S-box is applied on S′, that is:

P = {7,2,1,15,9,5,3,6,16,11,12,8,4,10,14,13}
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Finally, chaotic map (2.10) is iterated with the given parameters in k1 to make a

random sequence, it is sorted and the inverse permutation sequence is determined

using Algorithm (4.1.1), that is,

T −1 = {14,4,12,7,16,1,3,11,8,5,13,6,15,2,10,9}

This inverse permutation sequence T −1 is applied on P to get Z, as:

Z = {10,15,8,3,13,7,1,12,6,9,4,5,14,2,11,16}

By converting it into a matrix form the original image I can be obtained as:

I =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10 13 6 14

15 7 9 2

8 1 4 11

3 12 5 16

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4.3 Results and Discussions

For the demonstration of the proposed scheme, Algorithm (4.1.1, 4.1.2, 4.1.3) and

Algorithm (4.2.1) are implemented on Matlab R2016b and applied on two images

as shown in the figures below. The MATLAB implementation code of image en-

cryption scheme is available at https://github.com/tahirsajjad?tab=repositories.

In the first example, as shown in the Figure 4.5(a), the standard color image of

Lena (256 × 256) is selected for the demonstration of proposed image encryption

scheme and also used for the comparison of the results with many other existing

schemes. After applying the proposed image encryption scheme, the resulting ci-

pher image is shown in Figure 4.5(b). Finally Figure 4.5(c) shows the result of

decryption algorithm by getting back the original image from the cipher image.

It is evident that the decryption results are same as the original image having

no distortion, noise or data loss effects. To see the further security aspects of

encryption results, the cipher image is split into red, green and blue channels. The
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distribution of pixels around the image can be observed by using the histogram.

Figure 4.8 shows the uniform distribution of cipher image component’s pixels.

This shows that the cipher image does not provide any information about the

distribution of pixel in the plain image. It is also important to see the correlation

in the neighboring pixels of cipher image.

From Figure 4.9 (b, d, f) it is evident that the neighboring pixels in RGB com-

ponents of plain image are highly correlated. Figure 4.9 (a, b, c) shows that the

RGB components of the cipher image’s pixels have almost no correlation with each

other.

It means that the neighboring pixel’s information of the original image is properly

concealed in the RGB components of the cipher image.

(a) (b) (c)

Figure 4.5: Image encryption algorithm performance for Lena image: (a)
original image, (b) encrypted image, (c) decrypted image.

Similarly, the proposed encryption and decryption algorithm are applied on the

second color image of Baboon (256×256) depicted as Figure 4.6(a). The resulting

cipher image is shown in Figure 4.6(b) and Figure 4.6(c) is the decrypted image.
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(a) (b) (c)

Figure 4.6: Image encryption algorithm performance for Baboon image: (a)
original image, (b) encrypted image, (c) decrypted image.

4.4 Security Analysis

This section is devoted to address the security properties of the proposed scheme.

4.4.1 Key Space

Key space is considered as an important feature in any cryptosystem. It should

be large enough to have the ability to resist against brute force attacks. In the

proposed encryption algorithm, secret key is a tuple of k = ( k1, k2, k3 ) comprising

of 3 secret keys, each for the different phase of encryption scheme. These secret

keys contain parameters of associated chaotic maps that is x0, y, x′0, y′, w0, µ.

If the precision of these parameters is taken as 10−15, the key space size will be

(1015)3 × (1015)3 = 1090 ≈ 2299. Alvarez et al [135] identified that the adequate

key space for image encryption scheme should be larger than 2100 to oppose brute

force attacks. Here the key space of the proposed algorithm is compared with other

image encryption techniques that use chaotic maps, for example [44] uses PWLCM

and XOR operation for encryption process, similarly [45] uses PWLCM’s generated

chaotic sequence for cyclic shift and then uses XOR operation for diffusion etc.

The key space of the proposed scheme is large enough to resist against brute force

attack.
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Table 4.3: Key space size comparison

Image encryption schemes Key Space

Zhang et al. [45] 2186

Wang et al. [44] 2149

Guesmi et al. [166] 2256

Zhu et al. [167] 2339

Proposed scheme 2299

Table 4.3 shows the key space comparison of the proposed image encryption scheme

with other existing image encryption schemes. For the recovery of the original

image the adversary needs to correctly guess all these six components of shared

secret key.

4.4.2 Key Sensitivity

An image encryption scheme should be highly conscious for its secret key and a

change of single-bit in its secret key should crop an entirely different encrypted

result. In the sensitivity analysis for secret key, a highly sensitive key is demanded.

(a) (b) (c)

Figure 4.7: Key sensitivity performance with: (a) encrypted image, (b) de-
crypted image, (c) decrypted by slightly changed key.
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Cipher image should not be decrypted accurately even if there is a very small

change in encryption key.

Note that in the proposed scheme, the output of decrypted Algorithm (4.2.1) com-

pletely changed even if there is a very minor change in any of the component of

used Key k = (k1, k2, k3). For example, by making a change in one parameter

x0 of k1 that is, on adding 0.0000000000000001, the new value of x0 will become

0.7660000000000001. Using this the decryption algorithm will not produce the

original image. Here the encrypted image is shown in Figure 4.7(a), decrypted

image in Figure 4.7(b) and the decryption result obtained by using slightly dif-

ferent key is shown in Figure 4.7(c).
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Figure 4.8: Experimental results for the histogram of red, green, blue compo-
nent of: (a, c, e) plain image, (b, d, f) cipher image.
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Similar effects can be seen for a slight change in any parameter of used chaotic

maps. From the decrypted image with the changed key, it is observed that, no

clue or gesture about the original image is found. Hence it is evident that the

proposed scheme is highly sensitive to secret keys.

4.4.3 Distribution of Pixels in Cipher Image

Image histogram displays the dispersion of pixels in an image. This can be ob-

served when the number of pixels are plotted in histogram. In the above examples

RGB component-wise histograms of the plain image of Lena and its cipher image

are shown in Figure 4.8 (a, c, e) and Figure 4.8 (b, d, f). From these figures

It is clear that, there does not exist any clue to mount a statistical attack on the

encrypted image.

4.4.4 Correlation Analysis

The property of having high confusion and diffusion can be checked by a test of

correlation among neighboring pixels in the plainimage and their corresponding

cipher image. The correlation is analyzed in the adjacent pixels of the plain image

as shown in Figure 4.9 (b, d, f) and cipherimage of Lena through Figure 4.9 (a,

c, e). For the calculation of correlation coefficients among the neighboring pixels

in horizontal, vertical and diagonal directions. Equation (3.10) has been used for

this purpose.

Table 4.4: Correlation coefficient of two neighboring pixels in plain and cipher
image

Red Green Blue

Direction Orig. Ciph. Orig. Ciph. Orig. Ciph.

Horizontal 0.9794 -0.0024 0.9806 -0.0009 0.9604 -0.0032

Vertical 0.9574 0.0052 0.9593 -0.0004 0.9237 -0.0017

Diagonal 0.9363 -0.0003 0.9400 -0.0012 0.8898 0.0027
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Figure 4.9: Row-wise correlation in: (a, c, e) cipher image red green, blue
color components, (b, d, f) plain image’s red, green, blue color component.

The values in resulting Table 4.4 obtained from the Equation (3.10) are closer to

zero for the cipher image. Hence neighboring pixels in encrypted image are almost

uncorrelated.

4.4.5 Information Entropy

This feature of analysis measures the randomness in a cipher image. It also tells

about the average amount of information carried by cipher image. Let g be a

cipher image then entropy value of image can be calculated by the Formula (3.11).
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Table 4.5: Statistical analysis of the proposed scheme for different types of
plain and encrypted images

Images
Correlation in the Dir. Correlation in the Dir. Entropy

of plainimage of cipherimage

Row Diag. Column Row Diag. Column Orig. Cipher

For gray 256 × 256 size images

1. Moon 0.9390 0.9037 0.9020 -0.0009 0.0046 0.0009 6.7093 7.9971

2. Aerial 0.8602 0.8213 0.9050 0.0107 0.0022 0.0021 7.3118 7.9969

3. Airplane 0.9366 0.8927 0.9571 -0.0038 0.0057 0.0022 6.4523 7.9970

4. Clock 0.9741 0.9389 0.9565 -0.0002 0.0010 -0.0087 6.7057 7.9968

5. Chemical plant 0.8984 0.8529 0.9466 -0.0014 -0.0023 -0.0065 7.3424 7.9972

6. Resolution chart 0.8667 0.7562 0.8722 -0.0089 0.0009 0.0027 1.5483 7.9969

For gray 512 × 512 size images

7. Couple 0.8926 0.8557 0.9371 -0.0007 -0.0047 0.0005 7.2010 7.9993

8. Stream 0.9275 0.8975 0.9404 -0.0002 0.0009 -0.0022 5.7056 7.9994

9. Aerial 0.8602 0.8031 0.9008 -0.0025 0.0016 -0.0014 6.9940 7.9992

10. Truck 0.9205 0.9074 0.9620 0.0001 0.0034 -0.0006 6.0274 7.9994

11. Airplane 0.9459 0.8962 0.9463 0.0001 0.0001 0.0028 4.0045 7.9993

12. Tank 0.9321 0.9017 0.9456 -0.0001 -0.0034 -0.0010 5.4957 7.9992

For color 256 × 256 × 3 size images

13. Female

Red 0.9294 0.9129 0.9779 0.0004 0.0042 0.0033 5.7150 7.9969

Green 0.9106 0.8941 0.9748 0.0027 0.0050 0.0030 5.3738 7.9967

Blue 0.9130 0.8958 0.9726 0.0024 -0.0057 -0.0051 5.7116 7.9969

14. House

Red 0.9353 0.9126 0.9671 -0.0011 -0.0005 -0.0016 6.4311 7.9969

Green 0.9474 0.9320 0.9805 -0.0025 -0.0019 0.0001 6.5389 7.9970

Blue 0.9749 0.9625 0.9820 0.0051 -0.0019 0.0008 6.2320 7.9970

15. Tree

Red 0.9361 0.9159 0.9590 -0.0052 0.0114 0.0022 7.2104 7.9968

Green 0.9457 0.9318 0.9687 -0.0045 0.0042 -0.0020 7.4136 7.9974

Blue 0.9406 0.9265 0.9612 -0.0011 0.0069 0.0095 6.9207 7.9974

16. Jelly bean

Red 0.9763 0.9537 0.9745 -0.0010 -0.0001 -0.0014 5.2626 7.9974

Green 0.9801 0.9603 0.9757 -0.0013 -0.0020 -0.0031 5.6947 7.9972

Blue 0.9880 0.9799 0.9890 -0.0001 0.0003 -0.0041 6.5464 7.9974

17. Couple

Red 0.9562 0.9176 0.9493 -0.0047 -0.0055 -0.0052 6.2499 7.9974

Green 0.9534 0.9002 0.9308 0.0073 0.0085 0.0048 5.9641 7.9973

Blue 0.9442 0.8890 0.9178 -0.0046 0.0012 0.0033 5.9309 7.9970

For color 512 × 512 × 3 size images

18. Splash

Red 0.9951 0.9894 0.9936 -0.0022 0.0044 0.0013 6.9481 7.9992

Green 0.9871 0.9711 0.9812 -0.0012 0.0001 -0.0042 6.8845 7.9994

Blue 0.9789 0.9649 0.9826 0.0005 0.0023 -0.0008 6.1265 7.9993

19. Mandrill

Red 0.8660 0.8543 0.9231 0.0036 0.0007 -0.0021 7.7067 7.9993

Green 0.7650 0.7348 0.8655 -0.0004 0.0011 -0.0015 7.4744 7.9993

Blue 0.8809 0.8399 0.9073 -0.0015 -0.0028 -0.0014 7.7522 7.9994

20. Airplane

Red 0.9568 0.9343 0.9726 0.0036 0.0007 -0.0021 6.7178 7.9993

Green 0.9678 0.9326 0.9578 -0.0004 0.0011 -0.0015 6.7990 7.9994

Blue 0.9353 0.9146 0.9640 -0.0015 -0.0028 -0.0014 6.2138 7.9994

21. Sailboat

Red 0.9541 0.9420 0.9558 0.0036 0.0007 -0.0021 7.3124 7.9994

Green 0.9663 0.9530 0.9715 -0.0004 0.0011 -0.0015 7.6429 7.9993

Blue 0.9694 0.9530 0.9710 -0.0015 -0.0028 -0.0014 7.2136 7.9993
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For exact random source having 256 different symbols, the ideal value of entropy

H(g) is 8. If the value of entropy is less than 8 in cipher image then it means

that there is a possibility of predictability of plain image, which is dangerous for

security of image encryption algorithm.

In the example of proposed scheme, the entropy of cipher image C (as shown in

Figure 4.5 (b)) with 2N as 255, using Matlab R2016b, turns out to be 7.9984. A

comparison of information entropy values of different image encryption schemes is

given in Table 4.6.

The result shows that entropy value of the encryption result is very near to the

ideal entropy value 8. It ensures that amount of information lost in proposed

image encryption scheme is almost zero.

Table 4.6: Entropy values comparison

Image encryption Schemes Entropy values

Zhang et al. [45] 7.9992

Wang et al. [44] 7.9975

Thiyagarajan et al. [43] 7.9943

Wu et al. [168] 7.9912

Proposed scheme 7.9984

4.4.6 Differential Analysis

An essential property of a good performance image encryption algorithm is that,

images encrypted with that algorithm should be totally different from plain images.

To check the difference in an encrypted image and making one pixel change in

original image then encrypted image, the number of pixel change rate (NPCR)

and unified average changing intensity (UACI) are used. The values of NPCR and

UACI can be calculated by using Equation (3.12).
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To resist against the differential attacks, NPCR and UACI values should large

and approach to their ideal values. It can be seen from the experimental results

obtained from Equation eqrefdiffer , that the proposed scheme gets high perfor-

mance for NPCR and UACI. Therefore it will give well resistance against “known

plain text attacks” and “chosen plain text attacks”.

Table 4.7: NPCR and UACI values comparison

Image encryption Schemes NPCR UACI

Luo et al. [42] 99.6113 33.4682

Luo et al. [169] 99.5815 33.6665

Wang et al. [44] 99.5956 33.5512

Zhang et al. [45] 99.61 33.35

Proposed scheme 99.6094 33.4635

4.4.7 Noise and Data Loss Attacks

A perfect encryption scheme ought to diminish the noise effects caused by differ-

ences in pixels in the dectypted image. For checking the capability of proposed

scheme in opposing noise and data loss attacks, a Lena image of size 256 × 256 is

taken as test case.

In the encryption result of test image, we add 1%, 5% and 10% salt and pepper

noise as shown in the Figure 4.10 (a, c, e). The decryption results of noised

cipher images are also shown in Figure 4.10 (b, d, f). From the figure, it is clear

that when the cipherimage endure salt and pepper noise or data loss attacks, the

decrypted image obtained by using our encryption scheme maintain vast majority

of original image information having only a small portion of uniformly distributed

noise.

The peak signal to noise ratio (PSNR) provides a quantitative measure for the

distinction between the original plain image IP and its decryption result ID.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Experimental results for the performance evaluation of data loss
attacks: (a, c, e) cipher images with 1%, 5% and 10% salt and pepper noise, (b,

d, f) decryption results of corresponding images using our scheme.
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The cumulative squared error between the decrypted image and the original image

can be measured by using mean square error (MSE).For an image of size MN the

PSNR and MSE values can be calculated using Equations (3.13) and (3.14).

The least value of MSE shows the minimum error by using the encryption scheme.

While the PSNR is usually employed to calculate the ability of rehabilitation.

Table 4.8: Performance of MSE and PSNR about salt and pepper noise

Salt & pepper noise 1% 5% 10%

MSE 108.7962 497.3975 1030.7

PSNR 27.7987 21.1978 18.0335

The greater value of PNSR indicates the higher fidelity of decrypted image towards

its original plain image. If ID and the IP are similar then the calculated value of

PSNR approaches to infinity.

The value above 30 db shows that ID and IP are not sensible for PSNR. For the

values above 35 db, it is difficult to differentiate between the original image and

decrypted image. For checking the cipher image’s robustness against noise attacks,

1%, 5% and 10% noise is added in the cipher image, as shown in Figure 4.10 (a,

c, e). The calculated values of PSNR for these modified cipher images are shown

in Table 4.8.

By observing the test results it can be seen that the encryption technique gives

good performance for anti data loss and noise attacks.

4.4.8 Analysis of speed

For any algorithm, security considerations are important but a good encryption al-

gorithm should also robust and efficient. The computational cost of the algorithm

depends on the major operations like permutation process, S box generation and

diffusion process. For an image of size M ×N , the time complexity for the number
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of floating point operations is O(5MN log(MN)) and for the other operations like

Bitwise XOR etc is O(7MN). The running speed of encryption algorithm also de-

pends upon the internal structure of algorithm. The internal structure of proposed

scheme is designed in such a way that it is efficient by computation. In permuta-

tion phase only single round is adopted, that gives efficiency in computation. In

second phase S-box is used as lookup table then XOR is used for generation of

randomness. All these stages are computationally efficient. By using the ‘tic’ and

‘toc’ commands of MATLAB for the execution time of algorithm. It is found that

the encryption algorithm approximately takes 0.25 sec while decryption algorithm

takes 0.27 sec for 256 × 256 (grayscale) Lena image. For a color image of size

256 × 256 the average encryption and decryption times are 0.64 and 0.67 seconds,

similarly for a grayscale image of 512 × 512 the encryption and decryption times

are 0.82 and 0.85 seconds. A 512 × 512 sized color image consume 2.42 and 2.47

seconds for encryption and decryption.

4.4.9 Modifications Required for implementation on Other

Types of Images

Different types of images, such as grayscale, RGB, or color (multi-channel) images,

can be encrypted using the suggested image encryption scheme. Here the proposed

encryption scheme is described for color images, but it can be implemented on gray

scales images after some modification. For a gray scale of size (m×n), in Algorithm

(4.1.1) the chaotic sequence of size (m × n) will be used for permutation and in

the same way in Algorithm (4.1.3), for diffusion purpose the sequence of length

(m × n) will be used. The rest part of the Algorithm works similarly as used for

a color image.

For the encryption of a multi-channel image of size (m × n × t), in Algorithm

(4.1.1) chaotic map (2.10) is iterated to produce a pseudo random sequence of

length (m × n × t) that will be used for the permutation purpose. Then in the

diffusion phase another pseudo random sequence of length (m × n × t) will be

generated and used through XOR operation.
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The proposed scheme is not valid for binay images in its current form. The im-

plementation at different types of images is further expressed in the next section.

4.4.10 Performance for Different Type Images

The proposed image encryption scheme can be used for the encryption of different

types of images like gray-scale, RGB or color (multi channel) images etc.

(a) (b) (c)

Figure 4.11: Encryption and decryption results of gray scale 256 × 256 size
Lena: (a) plain image, (b) encrypted image, (c) decrypted image.

(a) (b) (c)

Figure 4.12: Encryption and decryption results of RGB (color) 512 × 512 size
Lena: (a) plain image, (b) encrypted image, (c) decrypted image.
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(a) (b) (c)

Figure 4.13: Encryption and decryption results of RGB (color) 768 × 768
size: (a) plain image, (b) encrypted image, (c) decrypted image.

Different size images can be encrypted by using the proposed image encryption

scheme, for example 256 × 256, 512 × 512, 768 × 768 etc. Some results

regarding the encryption and decryption of different type and sizes are illustrated

in the above figures. For the performance evaluation, a Lena gray image of size

256 × 256 is taken as shown in the Figure 4.11 (a), encrypt it by using proposed

image encryption scheme. The encryption results are shown in Figure 4.11 (b),

then applied the decryption scheme to get the original image as shown in Figure

4.11 (c). The proposed encryption scheme is also implemented on RGB or color

(multi-channel) images of 256 × 256 size and encryption/decryption results are

depicted in Figure 4.5 and Figure 4.6. Here it is implemented on different size

images, for this purpose another Lena RGB 512 × 512 size image is chosen as

shown in Figure 4.12 (a). The encryption and decryption are performed under

the proposed encryption scheme and results are displayed in Figure 4.12 (b, c).

Another multi-channel 768 × 768 size image is taken. It is encrypted and decrypted

by using the proposed scheme and results are depicted in Figure 4.13. From these

results, it can be seen that the proposed scheme is implementable for various image

types of different sizes.

Comparison

Overall comparison of proposed image encryption scheme with some other image

encryption schemes is given below in Table 4.9:
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Table 4.9: Properties comparison of cipher generated by taking Lena as test
image

Algorithms NPCR UACI Correlation Keyspace Entropy

Proposed scheme 99.6094 33.4635 0.0020 1090 7.9984

Dhall et al. [74] 99.5808 33.5008 −0.0005 1076 7.9987

Luo et al. [42] 99.6113 33.4682 0.0018 10169 7.9993

Zhang et al. [45] 99.61 33.45 0.0038 1056 7.9993

S. Sun. [170] 99.61 33.46 0.0044 1090 7.9967

Wang et al. [44] 99.5956 33.5512 0.0038 1056 7.9975

4.5 Conclusion

In this chapter a color image encryption scheme is presented. This scheme firstly

used a chaotic map to generate permutation vector. Plain image pixels are per-

muted using this vector. Then an S-box is generated using chaotic map and used

for substitution purpose. The properties of confusion and diffusion can be ob-

served after the use of S-box. Finally a random sequence is generated by using

chaotic map and bitwise XOR is performed to each pixel value with the generated

sequence. By mixing of pixels in this way, has shown a significant change in re-

lationship of nearby pixels horizontally, vertically and diagonally. The proposed

algorithm has also offered resistance to different types of cryptographic attacks

as known plain text attack, brute force attack etc. Security analysis is done by

using statistical analysis, differential analysis, key space analysis, key sensitivity

analysis, entropy analysis and speed analysis. The calculated value of proposed

scheme for key space is 2299, average correlation in cipher image is 0.0020, while

NPCR, UACI and entropy values are 99.609, 33.46, 7.9984 respectively. From the

security analysis, it seems that the perfect original image cannot be recovered by

applying the known cryptographic attacks. Hence it is secure and implementable

on real time image encryption transmission applications.



Chapter 5

A Color Image Encryption

Scheme Based on Compound

Chaotic Map

Image encryption has emerged as a promising and fascinating subject for re-

searchers in the modern technology era. Using chaotic maps, this chapter gives a

diffusion-based picture encryption technique. A chaotic map (2.10) is first used to

create an S-box, and then it is utilised to modify the pixel values to create element

of non-linearity.

With the aid of the S-box for image data, non-linearity and diffusion are gen-

erated, and the pre-encrypted image is given more randomness with the help of

the Boolean operation XOR. Then a compound chaotic system (2.13) is used as

pseudo random number generator to produce three chaotic sequences that are used

to encrypt each component of color image individually. The encryption process

based on compound chaotic system mainly used Boolean function XOR to mix

the chaotic random sequence, substituted pixel value and preceding pixel value.

Image components are also mixed with each other to distribute the generated

randomness uniformly. The use of compound chaotic system in this encryption

technique provides good performance for the encryption of color images. It is a

109
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different approach that successfully addresses security concerns with the use of

chaotic maps in combination with S-box and Boolean operator XOR.

In 2020 [156] proposed an image encryption technique that uses bit wise permu-

tation of pixels and S-box for diffusion purpose. Recently [157] introduced a grey

and color medical image encryption technique. In this scheme authors first split

image into blocks then perform zig zag permutation, rotation and random per-

mutation then XOR is used for diffusion purpose. In [7] chaos based permutation

technique is used then S-box is used for diffusion further diffusion is added in

by using XOR with chaos based sequence and recursion. The current research

research replaces permutation with inversible self mixing operation. Then S-box

is applied and XOR operation is performed for further diffusion effects. Also a

compound chaotic map is used that has better chaotic properties and gives large

key space then above discussed used schemes.

In this chapter, Section 5.1 is concerned with the S-box and its generation tech-

nique. Remaining part of the chapter is arranged as: In Section 5.2 a proposed

image encryption and image decryption algorithm is discussed. Section 5.3 has

results and discussions with the help of examples and figures. Section 5.4 con-

sists of security analysis taken with the help of key space analysis, distribution

of pixels in original and cipher images, correlation analysis, information entropy

mean squared error, peak signal to noise ratio, complexity analysis and the speed

analysis of proposed algorithm. Section 5.5 gives the comparison with other such

schemes. Section 5.6 is the conclusion of above discussed work.

Key management

The proposed cryptosystem is hybrid in nature, it uses a symmetric and asym-

metric scheme for the security of images. For this purpose initial secret key is

developed by using the plain image. SHA 256 is implemented on the image that

gives 256 bits output.

H(I) = b255 b254 . . . b0 (5.1)
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This hash value will be used in the generation of secret keys. The output Hi is

split into 8 bit blocks hi as follows:

Hi = h1∣h2∣h3∣ . . . ∣h32. (5.2)

The initial states of used chaotic maps are derived from the above blocks as:

x′0 = 0. (h50 × 251 + h49 × 250 + ⋅ ⋅ ⋅ + h1 × 20). (5.3)

x0 = 0. (h100 × 251 + h99 × 250 + ⋅ ⋅ ⋅ + h51 × 20). (5.4)

y0 = 0. (h150 × 251 + h149 × 250 + ⋅ ⋅ ⋅ + h101 × 20). (5.5)

z0 = 0. (h200 × 251 + h199 × 250 + ⋅ ⋅ ⋅ + h151 × 20). (5.6)

While the control parameters m, µ1, µ2, µ3 are formed as:

m′ = 0.(b19 × 219 + . . . b1 × 21 + b0 × 20)

m =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

m′ m′ < 0.5

1 −m′ m′ ≥ 0.5

(5.7)

µ1 = (b23 × 23 + ⋅ ⋅ ⋅ + b20 × 20). (b43 × 219 + ⋅ ⋅ ⋅ + b24 × 20) mod 9 (5.8)

µ2 = (b47 × 23 + ⋅ ⋅ ⋅ + b44 × 20). (b67 × 219 + ⋅ ⋅ ⋅ + b48 × 20) mod 9 (5.9)

µ3 = (b71 × 23 + ⋅ ⋅ ⋅ + b68 × 20). (b91 × 219 + ⋅ ⋅ ⋅ + b72 × 20) mod 9 (5.10)

The secret random numbers T0, M0 and N0 used in encryption are generted as:

T0 = (b108 × 219 + . . . b90 × 21 + b89 × 20) mod 256 (5.11)

M0 = (b128 × 219 + . . . b110 × 21 + b109 × 20) mod 256 (5.12)

N0 = (b148 × 219 + . . . b130 × 21 + b129 × 20) mod 256 (5.13)

The SHA 256 value of plainimage is encrypted by RSA encryption algorithm.
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Figure 5.1: Flow diagram of the proposed cryptosystem

The asymmetric encryption technique is adopted for the secure transmission of

key. The receiver’s public key is used to encrypt the hash value in Equation (5.1).

The receiver only uses his private key for the decryption of the master key.

Kf =H
e
m mod (r).

Here Hm is the master key, Kf is its related encrypted key and (e, r) is the public

key of receiver. For the decryption receiver uses his private key (d, r) in the

following relation to get the master key as:

Hm =Kd
f mod (r).

After receiving H the receiver uses Equations 5.2-5.13 to form the subkeys and

then use them in decryption algorithm to get the secret image.
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5.1 S-boxes in Cryptography

Substitution boxes, in short, S-boxes are considered as the main component in

many conventional algorithms of cryptography like DES [153], AES [154] etc. The

design of S-box is based on Shannon’s theory of confusion and diffusion [133]. S-

boxes can also be used efficiently as look-up table for substitution in encryption

and decryption processes [171]. The objective of such substitution boxes is to

establish the element of non-linearity in the encrypted data and also to induce

confusion and diffusion [133] in cipher. Use of S-box gives high resistance for

linear and differential cryptanalysis. Cryptographically strong S-boxes play vital

role in the design of a secure cryptosystem. They increase security level against

known attacks. Many researchers have proposed different methods [158], [172]

to generate strong S-boxes. Chaotic maps, due to its properties as ergodicity,

sensitive to initial condition, randomness and ability to generate again with a

key are potential platform for the generation of a strong S-box. In this section

an algorithm for generating S-box using chaotic map (2.10) is presented. The

following shows the proposed algorithm:

Algorithm 5.1.1. (Algorithm for S-box generation using chaotic map (2.10))

Input: Chaotic map (2.10), x′0, m.

Output: S-box.

1. Divide the interval [0.1,0.9] into 256 sub-intervals each of fixed length △h,

i.e., △h = (0.9 − 0.1)/256 = 0.003125.

2. Classify each sub-interval as L0, L1, ..., L255.

3. Take an initial condition x′0 for (2.10) and a value m ∈ (0,0.5) to create a

sequence x′n of the values lying in [0.1, 0.9].

4. Start a void array S.

5. Whenever an output value x′n lies in a particular interval Li (i = 0, 1, ...,255),

give that sub-interval index i to S. Leave those values which do not belong

to any sub-interval or giving repeated sub-interval index value.
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6. Stop iterating chaotic map (2.10) when it traverses all the sub-intervals L0

to L255.

7. Return the elements of array as S in the range of 0 to 255, containing 256

distinct integers.

Note that in Step 3, a slightly different value of x′0 will provide a totally different S-

box. Thus, it is possible to create many S-boxes using the above stated Algorithm

(5.1.1).

One such S-box is generated by setting parameter x′0 = 0.76 and with fixed value

of m = 0.15 in (2.10). Table 5.1 displays the resulting S-box.

Table 5.1: S-box

50 65 110 238 134 95 195 94 192 102 215 38 33 17 113 246

241 52 71 126 2 96 197 89 177 147 233 97 202 75 138 98

74 133 82 156 205 67 114 248 231 191 106 225 8 120 109 235

51 69 121 157 93 189 243 112 104 221 20 61 116 255 187 118

154 213 43 47 57 86 170 166 178 142 245 250 18 10 228 1

103 216 34 19 21 70 124 16 55 81 44 48 201 77 252 206

62 100 209 63 32 15 23 244 171 164 183 130 14 73 131 22

190 236 11 169 168 165 180 136 132 80 152 217 31 13 84 162

188 36 27 0 186 146 101 198 176 149 227 200 153 107 9 53

167 174 155 79 4 211 66 111 49 108 240 92 151 219 26 159

85 158 218 28 210 68 117 35 24 99 207 208 59 91 143 184

115 175 220 125 78 232 214 40 37 12 54 87 173 76 139 254

25 242 90 137 212 46 239 7 234 145 204 122 3 253 196 140

127 135 179 141 128 119 230 237 226 6 5 199 83 160 203 64

229 249 58 181 172 161 72 129 223 251 56 182 105 222 42 29

39 148 185 247 193 45 41 30 224 88 144 123 150 194 60 163

The properties of this S-box are tested using SET (S-box Evaluation Tool) [159]. It

is observed that S-box is fairly balanced and holds reasonably strong cryptographic

characteristics.
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Table 5.2: Comparison of properties of S-box

S-box
Non-linearity SAC BIC

nonlineaity

BIC-

SACMin Avg. Max Min Avg. Max

APA S-box [160] 112 112 112 4140 0.4987 0.6015 112 0.499

AES S-box [161] 112 112 112 0.3671 0.5058 0.5975 112 0.504

Gray S-box [162] 112 112 112 0.3906 0.5058 0.5781 112 0.502

Skipjack S-box [163] 104 105.7 108 0.3750 0.4980 0.6093 104.1 0.499

Residue Prime [164] 94 99.5 104 0.4062 0.5012 0.5937 101.7 0.502

Xyi S-box [165] 104 105 106 0.4218 0.5048 0.5937 103.7 0.503

Prop. S-box 98 102 106 0.4063 0.4993 0.5938 103.07 0.502

5.2 Proposed Algorithm

In this section, a new image encryption algorithm for encrypting a digital im-

age of size I is presented. In the proposed algorithm an S-box generated by

PWLCM is used as lookup table for pixel substitution. Then three random se-

quences are generated and bitwise XOR is performed with substituted pixel values

of each image component. The algorithm is based mainly on two external secret

keys k1, k2 containing the parameters of both PWLCM (2.10) and chaotic tent

logistic map (2.13), that is k1 = (m, x′0), where m ∈ (0,0.5), x′0 ∈ [0,1) and

k2 = (µ1, µ2, µ3, x0, y0, z0), where µ1, µ2, µ3 ∈ (0, 4) and x0, y0, z0 ∈ (0, 1). The

parameters of both PWLCM (2.10) and tent logistic map (2.13) are kept secret.

Algorithm 5.2.1. (Image encryption algorithm)

Input: Image I, Secret keys (k1, k2), Algorithm (5.1.1), chaotic map (2.10),

chaotic map (2.13).

Output: Encrypted image C.

1. Read the given secret image I.

2. Convert the color (RGB) image I into its primary color components i.e.,

Red, Green and Blue components.
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Figure 5.2: Flow diagram of the proposed image encryption scheme
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3. Input m and x′0 from secret key k1 in Algorithm (5.1.1) to generate an S-box,

S.

4. Use S as lookup table, for the color components of I obtained in Step 1. That

is, replace each entry m ∈ I by S(m), pi ← S(mi) to get P = {p1, p2, ..., pN}.

5. Change the substituted color components into 1 dimensional array of num-

bers.

6. Iterate the tent logistic map for initial state x0, y0, z0 and control parameter

µ1, µ2, µ3 for L times.

7. Discard first n0 values to eliminate the harmful effects of transient process,

hence the remaining values are L∗ i.e., L∗ = L − n0.

8. Convert the obtained sequence to 8-bit integer values using the relation

xi = mod(floor(xi × 1014),256), i = 1,2, ..., L∗,

yi = mod(floor(yi × 1014),256), i = 1,2, ..., L∗,

zi = mod(floor(zi × 1014),256), i = 1,2, ..., L∗,

where mod gives back the remainder after dividing by 256, while the floor(x)

gives the largest integer less than or equal to x. Hence the output sequences

lie in the range of [0, 255].

9. Pre encrypt each color component separability by using the above generated

chaotic sequence as follows:

The scrambling process of the pre encrypted image’s red component:

for i = 1, i ++, i = L∗ do

if i = 1, then

R′(i)← R(i)⊕X(i)⊕ To

else

R′(i)← R′(i − 1)⊕R(i)⊕X(i);

end

end
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The green component of pre encrypted image is scrambled as follows:

for i = L∗, i −−, i = 1 do

if i = L∗, then

G′(i)← G(i)⊕ Y (i)⊕Mo

else

G′(i)← G′(i + 1)⊕G(i)⊕ Y (i);

end

end

The scrambling process of the pre encrypted image’s blue component:

for i = 1, i ++, i = L∗ do

if i = 1, then

B′(i)← B(i)⊕Z(i)⊕No

else

B′(i)← B′(i − 1)⊕B(i)⊕Z(i);

end

end

10. Mix pre encrypted color components to combine the diffusion effects as fol-

lows:

R′′(i) = R′(i)⊕G′(i)⊕B′(i)

G′′(i) = G′(i)⊕B′(i)

B′′(i) = R′(i)⊕B′(i)

11. Convert R′′, G′′ and B′′ into image form and concatenate these color com-

ponents, to get ciphered image C.

The ciphered image C can be converted back to its original image by using the

following decryption algorithm.

Algorithm 5.2.2. (Image decryption algorithm)

Input: Cipher image C, Secret key (k1, k2), Algorithm (5.1.1), chaotic map

(2.10), chaotic map (2.13).

Output: Original image I.
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1. Read the cipher image C.

2. Convert the cipher image into its primary color components i. e., R′′, G′′, B′′.

3. Transform these color components into their digital form and then reshape

into one dimensional array form.

4. Re-mix color components as follows to get the pre decrypted image compo-

nents R′, G′, B′

R′(i) = R′′(i)⊕G′′(i)

G′(i) = R′′(i)⊕B′′(i)

B′(i) = R′′(i)⊕G′′(i)⊕B′′(i)

5. Iterate the tent logistic map for initial states x0, y0, z0 and control parameters

µ1, µ2, µ3 for L times to get three chaotic random sequences.

6. Discard first n0 values to eliminate the harmful effects of transient process,

hence the remaining values are L∗ i.e., L∗ = L − n0.

7. Convert the obtained sequences to 8-bit integer values using these relations:

xi = mod(floor(xi × 1014),256), i = 1,2, ..., L∗,

yi = mod(floor(yi × 1014),256), i = 1,2, ..., L∗,

zi = mod(floor(zi × 1014),256), i = 1,2, ..., L∗,

where mod gives back the remainder after dividing by 256, while the floor(x)

gives the largest integer less than or equal to x. Hence the output sequences

lie in the range of [0, 255].
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8. Perform the initial decryption using chaotic random sequences of Step 7 as

follows:

The unscrambling process of red component of cipher image:

for i=1, i ++, i = L∗ do

if i = 1, then

R′(i)← R(i)⊕X(i)⊕ To

else

R′(i)← R′(i − 1)⊕R(i)⊕X(i);

end

end

The green component of the cipher image is unscrambled as follows:

for i = L∗, i −−, i = 1 do

if i = L∗, then

G′(i)← G(i)⊕ Y (i)⊕Mo

else

G′(i)← G′(i + 1)⊕G(i)⊕ Y (i);

end

end

The following shows the unscrambling procedure off the blue component of

cipher image:

for i = 1, i ++, i = L∗ do

if i = 1, then

B′(i)← B(i)⊕Z(i)⊕No

else

B′(i)← B′(i − 1)⊕B(i)⊕Z(i);

end

end

9. Convert the obtained one dimensional sequences into two dimensional array.

10. Input k1 for m and x′0 in Algorithm (5.1.1) to generate an S-box and then

generate its inverse S-box, S−1.
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11. By using inverse S-Box, (S−1) as lookup table for substitute values, obtained

after Step 5. That is, mi ← S−1(pi) to get I = {m1, m2, ...,mN}.

12. By converting resulting matrix I into image form, original image I is ob-

tained.

The validation of the proposed image encryption scheme is demonstrated by cor-

rectly recovering the original image from the encrypted image. The decryption

algorithm correctly reverses all the effects performed during encryption and only

the intended receiver can successfully recover the original image.

5.3 Results and Discussions

For the demonstration of proposed scheme, Algorithm (5.2.1) and (5.2.2) are ap-

plied on two different image files. The MATLAB implementation code is available

at https://github.com/tahirsajjad?tab=repositories. The proposed approach is

designed for the security of color images but it is also applicable for gray and

other images. For this purpose, the length of generated chaotic sequences should

be adjusted with image resolution. For gray images the process of invertible self-

mixing operation is omitted.

A main problem in chaos based encryption schemes is digital deterioration [122].

When a chaos is simulated on computer then its expected chaotic behavior is

negatively effected. Digital chaos implementation results finite numbers either

with fixed point arithmetic, floating point arithmetic or some other arithmetic

with reasonable word size.

To minimize this problem, while implementing on MATLAB, long format is used

that has 64-bit word size for fixed point algorithm [173]. Another format long E

provides 64-bit word size for floating. The use of format long E in the proposed

approach reduces affects of numerical deterioration problem.
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For image encryption we have selected the standard Lena 256 × 256 image. The

original Lena image shown in the Figure 5.3 is encrypted by using the proposed

Algorithm (5.2.1).

The resulting encrypted image is visible in Figure 5.3 (b). The figure shows

that the proposed encryption mechanism completely scramble the original image

without leaving any clue to reveal the original information. The decryption is

then performed by using the proposed image decryption Algorithm (5.2.1) and

displayed in Figure 5.3(c). The decryption result indicates that the proposed

scheme effectively works and perfectly recover the original image.

(a) (b) (c)

Figure 5.3: Experimental results for the Lena image (a) Original image (b)
Encrypted image (c) Decryption

In the next example a Pepper 256 × 256 image is taken. The original image is

shown in Figure 5.4 (a), the encryption result is displayed in Figure 5.4 (b).

The encryption result signifies that the proposed technique generates a noise like

structure that does not disclose any useful information about the original image.

The decryption result using Algorithm (5.2.2) is presented in Figure 5.4 (c). From

the decryption result it is evident that the proposed scheme is able to give a flawless

recovery.
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(a) (b) (c)

Figure 5.4: Experimental results for the Pepper image (a) Original image (b)
Encrypted image (c) Decryption

5.4 Security Analysis

This section is devoted to address the security properties of the proposed scheme.

5.4.1 Key Space

Key space in a cryptosystem is considered an essential feature. It should be suffi-

ciently large to withstand against brute force attack. For the designed algorithm,

secret key is actually a combination of two secret subkeys k1, k2 used in encryption

algorithm. These keys have the parameters of used chaotic maps, i.e., k1 = (x′0, m)

for chaotic map (2.10) and k2 = (x0, µ1, y0, µ2, z0, µ3) for tent logistic map (2.13).

In consonance with IEEE floating point precision [174] the precision of each key

should be greater than 10−15. The precision level for chaotic map’s parameters is

used as 10−15. Hence the keyspace size will be (1015)8 = 10120 ≈ 2398.

This keyspace is large enough to prevent brute force attack. The resulting keyspace

is bigger than minimum requirement of key size 2100 [135]. A comparison of key

space using the proposed technique with some other state of the art schemes is

also shown in Table 5.3.



Use of Dynamic Compound Chaotic Map in Image Encryption 124

Table 5.3: Key space size comparison

Image encryption schemes Key Space

Cuaric et al. [175] 2128

Wang et al. [44] 2149

Rehman et al. [176] 2209

Guesmi et al. [166] 2256

Ali et al. [7] 2299

Idress et al. [156] 8 × 2252

Kamal et al. [157] 2116

Proposed scheme 2398

5.4.2 Key Sensitivity

Another concern for any encryption scheme is about its highly sensitive behavior

towards the secret keys. For a good encryption system, a single-bit modification

in key gives totally changed encrypted result. In this research PWLCM and tent

logistic maps are used. For a very insignificant change in key or control parame-

ter, the resulting generated random sequence will completely changed. Which in

response gives entirely different encryption/decryption results.

In Figure 5.5 two different trial images Lena and Peppers are employed for key

sensitivity analysis. First these images are encrypted by using key components

x0 = 0.76 and m = 0.15 for PWLCM and x0 = 0.479, µ1 = 4.5, y0 = 0.596, µ2 =

6.2, z0 = 0.964, µ3 = 7.9 for tent logistic map.

Figure 5.5 (c, g) shows the result of using slightly different key than original

key, that is x0 is changed from 0.479 to 0.47900000000000000009. Figure 5.5 (d,

h) depicts the difference between the encryption results and modified key based

encryption results.

From these results it is evident that the encryption results are significantly changed

by taking a minor modification in any of the key component.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5: Experimental results of proposed encryption method for the minor
modification in the secret key: (a, e) original images of Lena and Peppers (b,
f) encrypted images (c, g) encrypted images using slightly modified key (d, h)

absolute intensity difference images

5.4.3 Distribution of Pixels in Cipher Image

Image histogram tells about the dissemination of pixels in an image. From the

above discussed experiment 1, Lena image, Figure 5.3 (a) is taken as original

image, with size (256 × 256).

(a) (b) (c)

Figure 5.6: Histogram of encrypted image (a) red component (b) green com-
ponent (c) blue component
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Histograms of its corresponding ciphered image components are shown in Fig-

ure 5.6 (a, b, c). From the histogram it is clear that, there does not exist any

information to mount a statistical attack on the cipherimage.

5.4.4 Correlation Analysis

The quantitative analysis for the evaluation of having high confusion and diffu-

sion among neighboring pixels in plainimage and the corresponding cipherimage

is evaluated by a test of correlation. The correlation in the adjacent pixels in

Lena cipherimage is examined here. Figure 5.7 shows row-wise correlation in com-

ponents of encrypted Lena image. For its calculation in vertical, horizontal and

diagonal in cipherimage, Equation (3.10) has been used.

Table 5.4: Correlation Coefficient of two neighboring pixels in the original and
cipherimage

Direction proposed scheme Wang et al. [80] Wang et al. [44] Zhang et al. [177]

Horizontal 0.0019 0.0019 0.0037 0.0036

Vertical 0.0035 0.0038 0.0029 0.0023

Diagonal 0.0008 0.0019 0.0047 0.0039

The values in resulting Table 5.4 tells that correlation coefficient of cipher image

approaches to zero. Hence neighboring pixels in cipher image are almost uncorre-

lated.

(a) (b) (c)

Figure 5.7: Correlation (row-wise) in the encrypted Lena image (a) red com-
ponent (b) green component (c) blue component
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5.4.5 Information Entropy

This feature of analysis is used to test the randomness in the encrypted image. It

also indicates an average amount of information contained in ciphered image.

Table 5.5: Statistical analysis of different encrypted images

Images
Correlation in the Dir. of Correlation in the Dir. of Entropy

plainimage cipherimage

Row Diagonal Column Row Diagonal Column Orig. Ciph.

Moon 0.9390 0.9037 0.9020 0.0003 -0.0001 -0.0057 6.7093 7.9888

Aerial 0.8602 0.8213 0.9050 -0.0023 0.0051 -0.0001 7.3118 7.9894

Airplane 0.9366 0.8927 0.9571 -0.0036 -0.0046 -0.0072 6.4523 7.9893

Clock 0.9741 0.9389 0.9565 -0.0034 0.0038 -0.0023 6.7057 7.9894

Chemical plant 0.8984 0.8529 0.9466 0.0038 0.0003 -0.0004 7.3424 7.9891

Resolution chart 0.8667 0.7562 0.8722 -0.0011 0.0040 -0.0012 1.5483 7.9897

Female

Red 0.9294 0.9129 0.9779 0.0033 0.0032 -0.0009 5.7150 7.9890

Green 0.9106 0.8941 0.9748 0.0010 0.0037 -0.0066 5.3738 7.9902

Blue 0.9130 0.8958 0.9726 -0.0035 -0.0100 0.0095 5.7116 7.9451

House

Red 0.9353 0.9126 0.9671 -0.0037 -0.0008 -0.0033 6.4311 7.9900

Green 0.9474 0.9320 0.9805 -0.0020 -0.0004 0.0007 6.5389 7.9898

Blue 0.9749 0.9625 0.9820 0.0056 0.0044 0.0044 6.2320 7.9881

Tree

Red 0.9361 0.9159 0.9590 0.0053 0.0062 -0.0009 7.2104 7.9891

Green 0.9457 0.9318 0.9687 -0.0018 0.0026 0.0006 7.4136 7.9902

Blue 0.9406 0.9265 0.9612 0.0135 0.0036 0.0013 6.9207 7.9868

Jelly bean

Red 0.9763 0.9537 0.9745 -0.0077 0.0008 0.0028 5.2626 7.9897

Green 0.9801 0.9603 0.9757 0.0017 -0.0030 -0.0020 5.6947 7.9892

Blue 0.9880 0.9799 0.9890 -0.0072 -0.0078 -0.0048 6.5464 7.9517

Couple

Red 0.9562 0.9176 0.9493 -0.0038 -0.0007 -0.0066 6.2499 7.9886

Green 0.9534 0.9002 0.9308 -0.0070 -0.0059 -0.0059 5.9641 7.9896

Blue 0.9442 0.8890 0.9178 0.0421 0.0062 0.0101 5.9309 7.9533

For the cipher image C the entropy value can be computed with the Formula

(3.11). In exact random source emitting 256 symbols, entropy’s optimal value is

eight. If value of entropy less than 8 in cipherimage then it means that there is a

possibility of predictability of plainimage, which is dangerous for security of image

encryption algorithm.
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Table 5.6: Entropy values comparison

Encryption Schemes Entropy values

Fu et al. [178] 7.988

Wu et al. [179] 7.997

Choi et al. [180] 7.819

Wu et al. [168] 7.991

Proposed scheme 7.995

In the proposed algorithm entropy for cipher image C, is checked. The calculated

value of entropy of ciphered image C with comparison to other images is shown

in Table 5.6.

The outcome demonstrates that the cipherimage’s entropy is close to the optimum

entropy value. Therefore the suggested encryption technique has minimum risk of

information leaking. Hence it is secure enough.

5.4.6 Sensitivity Analysis of the Proposed Algorithm

NPCR and UACI are used to measure the effects of varying a pixel of the plain-

image on the cipherimage. These indicators are calculated by the Formula (3.12).

In this scheme, for Lena 256×256 image the calculated values are 99.62 and 33.46

respectively. The proposed scheme shows high performance for these indicators.

Therefore it will provide well resistance against “known plaintext attacks” and

“chosen plaintext attacks”.

5.4.7 Noise and Data Loss Attacks

A good encryption system also has the property to minimize the noise effects

generated due to the pixel discrepancies in the decrypted image. For the capacity

evaluation of the proposed method against the resistance of noise and data loss
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attacks, the color Lena image is used as test case of size 256× 256. The encrypted

test image is noised by adding 1%, 5% and 10% salt and pepper noise as shown

in the Figure 5.8.

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Experimental results for the performance evaluation of data loss
attacks: (a, c, e) cipher images with 1%, 5% and 10% salt and pepper noise, (b,

d, f) decryption results of corresponding images using our scheme.

It is obvious from the figure that when the encrypted image encounter the salt

and pepper noise, the decryption results retains a significant majority of original
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information and also contains a small portion of evenly distributed noise. The

quantitative analysis for the difference between the plain image IP and the de-

crypted image ID is carried out by using peak signal to noise ratio (PSNR). While

the mean square error (MSE) is used to measure the cumulative squared error

between the original image and the decrypted image.

For the calculation of PSNR and MSE of MN sized image, Equations (3.13) and

(3.14) are used. The smaller MSE value calculated from Equation (3.13) indicates

the minimal error in the decryption results. Whereas the higher PNSR value

obtained from Equation (3.14) reveals the higher decrypted image fidelity against

its original plain image.

Table 5.7: Performance of MSE and PSNR about salt and pepper noise

Salt & pepper noise 1% 5% 10%

MSE 392.49 1845.3 3357.43

PSNR 22.2370 15.5095 12.9098

The calculated values of PSNR for these modified cipher images by 1%,5% and

10% salt and pepper noise are shown in Table 5.7. The findings show that the

encryption strategy provides reasonable efficiency for data loss and noise attacks.

5.4.8 Complexity Analysis

There is a strong relationship between the complexity in the chaotic system and

the robustness of the cryptosystem based on that chaotic system. In this encryp-

tion scheme, two chaotic maps are used, the piecewise linear chaotic map (2.10)

and tent logistic map (2.13). The chaotic map (2.10) is used to generate a random

sequence of length MN , where as chaotic map (2.13) gives 3 random sequences,

floor function is used to convert these values into integer form. The XOR function

is used to generate randomness in the image and also to accumulate the generated
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randomness in different components of image. Thus the calculated complexity

value for used chaotic maps and applied operations, is 10(MN)+3MN log2(MN).

The high complexity of the proposed scheme ensures good quality encryption re-

sults.

5.4.9 Encryption/Decryption Time

For any algorithm, security considerations are important but a good encryption

algorithm should also robust and efficient. The running speed of encryption algo-

rithm is an important aspect. Using the proposed algorithm, the encryption/de-

cryption time of Lena image is measured. The time analysis is done on CORE

i3-3110M, 2.40GHz CPU with 4GB RAM notebook running on Windows 8, 64 bit

operating system using Matlab R2013a (8.1.0.604). The average time taken for

encryption/decryption of proposed algorithm for Lena image of size 256 × 256 is

0.277 second.

5.5 Comparison

A deep and detailed overall comparison of the proposed scheme with other image

encryption schemes is given below.

Table 5.8: Properties comparison of cipher generated by taking Lena as test
image

Algorithms NPCR UACI Correlation Keyspace Entropy

Proposed scheme 99.62 33.46 0.002066 10120 7.995

Ali et al. [7] 99.6094 33.4635 0.0020 1090 7.998

Kanwal et al. [39] 99.61 33.46 0.002977 1084 7.999

Chai et al. [181] 99.63 – 0.0037 1051 7.998

Wu et al. [168] 100 33.47 0.00603 10112 7.991

Wang et al. [44] 99.5956 33.5512 0.0038 1056 7.997
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The comparison presented in Table 5.8 shows that the proposed scheme has better

results for correlation analysis and key space while the performance against entropy

analysis, NPCR and UACI is also comparable with many other state of the art

encryption techniques.

5.6 Conclusion

An alternative method of image encryption is presented in this chapter. This

algorithm firstly takes PWLCM to produce an S-box. The role of this S-box in

the encryption is for the substitution of image pixel values. This substitution can

be observed after S-box substitution. The tent logistic system is used as PRNG

for the generation of random chaotic sequence. Then a mixing technique employed

for the mixing of this generated sequence with substituted image pixels values and

their preceding values. Finally XOR is used to generate uniformly random pixel

values distributed components for stable noise like effects in the cipherimage.

This technique has provided resistance to different types of cryptographic attacks.

The security analysis of proposed scheme is performed by using statistical and

differential analysis. On the basis of this analysis, it is found that the proposed

scheme is safe and operable in applications for transmission of images in real time.



Chapter 6

A Novel Medical Image

Signcryption Scheme

Images based on patient-diagnostic tests and their reports are securely broad-

cast in telemedicine, so that recipients can get them without any error. For this,

an authenticated and unforgeable cryptosystem is required for the secure com-

munication of sensitive medical data. This chapter proposes a new signcryption

technique for medical images that uses a tent logistic tent system (TLTS) (2.14)

and a Henon chaotic map (2.12) to meet the security needs of sensitive medical

data during transmission.

A hybrid cryptography technique is used for the development of a the medical

image signcryption scheme. To generate secret encryption key, public key cryp-

tography (PKC) using elliptic curves is employed. The proposed technique utilizes

chaotic maps for the encryption of these images and elliptic curve cryptography

for their signcryption. It provides a combined mechanism for the chaotic image

encryption technique, key exchange and digital signature.

For pixel scrambling, the image encryption step includes permutation and dif-

fusion. The cryptographic properties like authentication, non-repudiation, confi-

dentiality, forward secrecy, integrity and unforgability are provided through the

suggested image signcryption mechanism. The application of a symmetric image

133
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encryption technique based on chaos yields good results for statistical and dif-

ferential analysis. The suggested signcryption technique is strong and offers good

security for sensitive medical images, according to the findings of above mentioned

analyses.

In this chapter, the introduction of proposed signcryption scheme, its global pa-

rameter setting and the key generation process, detailed image signcryption al-

gorithm, decryption algorithm and correctness of the proposed algorithm is given

in Section 6.1. Results and discussion with the help of examples and figures, are

discussed in the Section 6.2. The complete security analysis of image encryption,

signcryption attributes their comparison and possible attack model are discussed

in Section 6.3. Finally the work is concluded in Section 6.4.

6.1 The Proposed Signcryption Scheme

In this scheme, the patient/user uses the public key of health-care center to gen-

erate common secret encryption key ‘K’. Then the patient (sender) encrypts the

desired medical image/report by using secret key ‘K’ in the proposed chaos-based

medical image encryption scheme,

The patient/user signs the cipher image ‘C’ and send it along with the digital

signature ‘s’ and authentication parameter ‘G′’ to the health care center. Figure

6.1 shows the proposed signcryption model, while Figure 6.2 and Figure 6.3 are

the block diagrams of the proposed signcryption and unsigncryption schemes.

At the receiver’s end, the signature ‘s’, the center’s private key ‘sb’, the public

key of sender Pa and authentication parameter ‘G′’ are used to generate common

secret key K. Following that, the image is recovered by symmetric decryption

using that key, also verified by using G′ and accepted, if it is authenticated.
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Figure 6.1: Proposed signcryption model

6.1.1 Global Parameters

In this phase following parameters are selected and published:

p: A large prime number, where p > 2256.

E(a, b): The used elliptic curve over finite field Fp,

y2 = x3 + ax + b mod p.

Here a and b are two integers that are smaller than p and satisfy

4a3 + 27b2 ≠ 0 mod p.

G: The base point of elliptic curve E(a, b) with order n.

O: The point of E(a, b) at infinity.

n: The order of G, i.e., n G = O.

H: A one-way hash function.

6.1.2 Key Generation

Patient selects a random integer sa < n as private key and generates public key

Pa = saG. Similarly health-care center chooses a random integer sb < n as private

key and gets the public key Pb = sbG. These public keys will be used at both the

sender and the receiver ends to generate a common secret key K.
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6.1.3 Signcryption Phase

For sending a medical image to health-care center, the patient uses symmetric

chaos-based image encryption scheme to generate cipher image. To signcrypt the

medical image, following steps will be performed:

Figure 6.2: Block diagram of the proposed medical image signcryption scheme

6.1.4 The Proposed Image Signcryption Algorithm

In this section an image signcryption algorithm is presented. It takes the medical

image/report I of patient, public key of receiver Pb and returns the encrypted

image C, digital signature s and authentication parameter G′ that will be sent

through the public network to the health care center. The detailed working process

of the algorithm is given below:

Algorithm 6.1.1. (Image Signcryption Algorithm)

Input: Image I, Hash function (SHA-256), public key of receiver Pb , chaotic map

(2.12) and chaotic map (2.14).
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Output: Encrypted image C, signature s, authentication key G′.

1. Select a random integer k ∈ Fp, multiply it with health-care authority’s public

key Pb to generate the secret key as,

K = kPb = (k′, k′′).

2. Apply the hash function H (using SHA-256) on the components of secret

key K = (k′, k′′), as:

H(k′) = b′255, b
′
254, . . . , b

′
1, b

′
0,

H(k′′) = b′′255, b
′′
254, . . . , b

′′
1 , b

′′
0 ,

where b′i, b
′′
i ∈ [0,1] for i ∈ 0,1, . . . ,255 are used to get the parameters of the

chaotic maps (2.12) and (2.14) as stated below:

(a) Compute the parameters r ∈ (0,4) and x0 ∈ (0,1) of the chaotic map

(2.14) from the two halves of 256-bits of H(k′) as follows:

r = (b′255 × 21 + b′254 × 20). (b′253 × 2125 + . . . + b′128 × 20),

similarly compute x0 ∈ (0,1) as:

x0 = 0. (b′127 × 2128 + b′126 × 2127 + ⋅ ⋅ ⋅ + b′0 × 20).

(b) Generate the initial values, control parameters of Henon chaotic map

(2.12) and the subkeys M0, N0 (for encryption of the first pixel and the

last pixel of pre-encrypted image D respectively). Use the output of

H(k′′) to get the values of a ∈ (0.54,2), b, x′0, y0 ∈ (0,1) and M0, N0 ∈

[0,255] as follows:

a′ = (b′′239 × 21 + b′′238 × 20). (b′′237 × 245 + ⋅ ⋅ ⋅ + b′′192 × 20),

a =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2 − a′ if 0 ≤ a′ < 0.54

a′ if 0.54 ≤ a′ < 2
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b = 0.(b′′191 × 247 + b′′126 × 246 + ⋅ ⋅ ⋅ + b′′144 × 20),

x′0 = 0.(b′′143 × 247 + b′′142 × 246 + ⋅ ⋅ ⋅ + b′′96 × 20),

y0 = 0.(b′′95 × 247 + b′′94 × 246 + ⋅ ⋅ ⋅ + b′′48 × 20),

M0 = b
′′
47 × 27 + b′′46 × 26 + ... + b′′40 × 20,

N0 = b
′′
39 × 27 + b′′38 × 26 + ... + b′′31 × 20.

Encryption Process

3. Convert the image I in digital form as the matrix D′ of order M ×N , where

M and N are the dimensions of the image.

4. Rewrite the matrix D′ as one dimensional array,

Z = {z1, z2, . . . , zMN}.

5. Iterate the chaotic map (2.14) using the parameters from Step 2 (a) to obtain

the sequence:

A = {ai}
MN
i=1 ,

and sort sequence A in ascending order to form,

B = {bi}
MN
i=1 .

6. Using the relationship of the sequences A and B,

bi = ati , for i = 1, 2, . . . ,MN,

compute permutation vector,

T = {t1, t2, . . . , tMN}.
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7. Use T to permute the position of elements of the array Z. After applying

permutation on Z it becomes,

D = {g1, g2, ..., gMN},

convert D into two dimensional array of order M ×N.

8. Use parameters generated from H(k′′) in Step 2(b) for Henon chaotic map

(2.12) to generate two random sequences,

X = {xk}
MN
k=1 and Y = {yk}

MN
k=1

9. Convert the real number sequences xk and yk where k = 1,2, ...,MN into

integer sequences using these relations:

xk = int(254 × (xk −min(xk))/d) + 1,

where d = max(xk) −min(xk).

yk = int(254 × (yk −min(yk))/d) + 1,

where d = max(yk) −min(yk).

10. Express {xk} and {yk} as two dimensional arrays of order MN .

11. Mix these two dimensional arrays with permuted image D (obtained from

Step 7). This process will be done in two steps to get encrypted image C:

• For the generation of diffusion effects in ‘D’, start from the first value

and XOR it with its corresponding value of X and Mo, then other values

of first column will be altered by using XOR with the corresponding X

values and preceding values. After this the same process will be used

with next columns to get C ′ as:
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for r = 1 : M do

for c = 1 : N do

if r = 1, c = 1 then

C ′(r, c)←D(r, c)⊕X(r, c)⊕Mo

else

if r ≥ 2 and c = 1 then

C ′(r, c)←X(r, c)⊕C ′(r − 1, 1)⊕D(r, c);

else

C ′(r, c)←X(r, c)⊕C ′(r, c − 1)⊕D(r, c);

end

end

end

end

• For the generation of further diffusion effects in ‘C ′’, start from the last

value and XOR it with its corresponding value of Y and No, then other

values of row will be altered by using XOR with the corresponding Y

values and preceding values. After this the same process will be used

for all other rows while going backward to get C as:

for c = N, N−−,c = 1 do

for r = M, M−−, r = 1 do

if r = M, c = N then

C(r, c)← C ′(r, c)⊕ Y (r, c)⊕No

else

if r =M and c < N then

C(r, c)← C ′(r, c)⊕C(r, c + 1)⊕ Y (r, c);

else

C(r, c)← C ′(r, c)⊕C(r + 1, c)⊕ Y (r, c);

end

end

end

end
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Signature Generation :

12. Compute h by applying hash function H on I, C and K. That is:

h =H(I,C,K).

13. Also find digital signature s as:

s =
k

h + sa
mod p.

14. Calculate authentication parameter G′ as:

G′ = hG.

15. Send (C, s, G′) to the health-care authority.

6.1.5 Image Unsigncryption Phase

The health-care authority receives cipher image C, digital signature s and verifi-

cation parameter G′. Then it uses the following steps to get plain image I with

its authentication.

Algorithm 6.1.2. (Image Unsigncryption Algorithm)

Input: Encrypted image C, Hash function (SHA-256), signature s, authentication

parameter G′, public key of sender Pa, chaotic map (2.12), chaotic map

(2.14).

Output: Original image I.

1. Solve

sb s G
′ + sb s Pa =K,

to generate the secret key K.
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2. Use hash function H to get sub-keys as described in Step (2) of above sign-

cryption algorithm.

Decryption Method:

3. Generate {xk} and {yk}, two dimensional arrays of order M ×N by following

the Step (8) and Step (9) of above used signcryption algorithm.

4. To eliminate diffusion effects, apply Step (10) of the above mentioned scheme,

by replacing G with C to obtain permuted array G.

5. Perform Step (5, 6) of the signcryption phase to get permutation vector T ,

also calculate inverse permutation vector i.e., T −1.

6. Apply T −1 on D to get original medical image I.

7. Take the hash value of plain image I, cipher image C and secret key K to

find h as:

h =H(I, C, K).

8. Calculate another authentication parameter A′ as:

A′ = h G.

Authentication:

9. The received image is accepted, if the calculated value of A′ and received G′

are same, that is, accept the image if i.e.,

A′ = G′.

The above described unsigncryption algorithm first generates the key then by using

it decrypt the cipher image to get the original plain image and finally authenticate

it for its originality. The image decryption process correctly reverses all the ef-

fects performed during encryption and only the health care center can successfully

recover the original image by using the generated key K.
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Figure 6.3: Block diagram of the proposed medical image unsigncryption
scheme

6.1.6 Correctness

The health-care center receives (C, s, G′) from patient. It calculates key by

using its private key sb, patient’s public key Pa, received digital signature s and

authentication parameter G′.

sb s G′ + sb s Pa = sb
k

h + sa
h G + sb

k

h + sa
sa G mod p

=
sb k h G

h + sa
+
sb k G sa
h + sa

mod p

=
(sb k G)(h + sa)

h + sa
mod p

= (sb k G) mod p

= k Pb =K
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6.1.7 Summary of Proposed Scheme

A brief summary of the whole process is given in Table 6.1. It shows the working of

signcryption algorithm that uses public key of receiver to generate secret key that

is used for encryption then a digital signature along with authentication parameter

is generated and sent to the health care center where the unsigncryption algorithm

used them to recover the key and use it to decrypt the cipher image and finally

authenticate the information.

Table 6.1: Summary of proposed image signcryption scheme

Signcryption Unsigncryption

1. Select a random integer k ∈ Fp and compute 1. Receive (C, s,G′) from the sender.

K = kPb = (k′, k′′). 2. Use s, G′ to compute the shared key K,

2. Encrypt the medical image I to obtain the K = sbsG′ + sbsPa.

cipher image C as: C = EH(K)(I). 3. Decrypt the cipher image C to get the

3. Use the hash function H to generate the signature medical image I as: I = DH(K)(C).
s = k

h + sa
mod p, where h = H(I,C,K). 4. Use the hash function H to compute,

4. From the above values of h compute also G′ = hG. h = H(I,C,K) and calculate A′ = hG.

5. Send (C, s,G′) to authority. 5. Accept the medical image if A′ = G′.

6.2 Results and Discussions

For the performance evaluation, it is applied on four different medical images

(i.e., CT Paranasal, Cervical X-Ray, CT Abdomem, Knee X-Ray). These test im-

ages are taken from open-access medical image repositories/Ayland.org [182] image

database. All the related experiments and simulations are taken on a laptop CORE

i7-3520M, 2.90GHz CPU with 8GB RAM running on Windows 8, 64 bit operating

system using environment of MATLAB R2013a (8.1.0.604). The MATLAB imple-

mentation code is available at https://github.com/tahirsajjad?tab=repositories.

The encryption results of these four images are shown in Figure 6.4. The proposed

method can be used for different types/sizes of medical images. Further analysis

for the evaluation are given in the next section.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.4: (a, b) CT Paranasal and its cipher image, (c, d) Pair of Cervical X-
Ray image with the corresponding cipher image, (e, f) CT Abdomem image with
the corresponding cipher image, (g, h) Knee X-Ray image with its corresponding

cipher image
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6.3 Analysis of the Proposed Scheme

In this section, firstly, the security features of chaos-based encryption are ad-

dressed, then signcryption attributes and possible attacks on the proposed scheme

are discussed.

6.3.1 Security Features of Chaos-based Encryption

In the proposed scheme a novel chaos-based encryption mechanism is adopted for

secure transmission of medical image. Figure 6.4 shows the encryption results of

various medical images. Performance evaluation tests like key space, key sensitiv-

ity, ability of resisting against differential attacks, histogram analysis, correlation

analysis and information entropy are also employed in this section.

6.3.1.1 Key Space Analysis

Analysis of key space is a crucial feature in any cryptosystem. It produces the

ability to resist against brute force attacks. In this encryption model, two chaotic

maps are used. For tent-logistic-tent map (2.14) control parameter r and initial

state x0 are used. Another chaotic map used in proposed encryption scheme is

Henon map (2.12).

It uses a and b as control parameters and two state variables x′0 and y0. M0 is the

key used for encryption of first pixel. According to IEEE floating format precision

[174] each key component should be greater than 10−15. If the precision of these

parameters is taken as 10−15, the key space size will be (1015)6 = 1090 ≈ 2299.

Alvarez et al. [135] identified that the adequate key space for image encryption

scheme should be larger than 2100 to oppose brute force attacks.

The key space of this scheme is sufficiently large to fend off brute force attack. In

order to decrypt the medical image correctly, the adversary has to guess all these

six components.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 6.5: Experimental encryption results with a small change in secret key
component, (a, e, i, m) original images, (b, f, j, n) cipher images Ic, (c, g, k,
o) encrypted images by slightly changed key I′c, (d, h, l, p) absolute intensity

difference images ∣Ic − I′c∣.
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6.3.1.2 Key Sensitivity Analysis

For secret keys, an encryption system should be sensitive. In this scheme, tent

logistic tent map (2.14) has key components a = 1.4, b = 0.3, x′0 = 0.7666 and y0

= 0.3, while Henon map (2.12) takes r = 3.78 and x0 = 0.5748.

For testing the key sensitivity, four medical images are used in Figure 6.5 of size

256×256 as a test case, and modify only one key component i.e. x′0 from 0.7666 to

0.7666000000000001. Figure 6.5 shows the experimental results of key sensitivity

for encryption process using slightly changed key. From here it is evident that the

outcomes of the encryption are completely different. Similar results can be seen

by making a small change in any other component of used secret key. Hence the

obtained results show that this scheme is sensitive for secret keys.

6.3.1.3 Correlation Analysis

A test of correlation between adjacent pixels in the plainimage and their matching

encrypted image is used to determine whether there is confusion or diffusion.

For the calculation of correlation coefficients in horizontal, vertical and diagonal

directions, Equation (3.10) has been used.

The correlation in the adjacent pixels of the plainimage and cipherimage is also

analyzed in Figure 6.6. From the results of Table 6.2 and Figure 6.6, it is seen

that cipher image has very low correlation among neighboring pixels.

Table 6.2: Correlation coefficient of two neighboring pixels in Plain and Ci-
pherimage

Figure 6.4 CT Paranasal Cervical X-Ray CT Abdomen Knee X-Ray

Direction Orig. Ciph. Orig. Ciph. Orig. Ciph. Orig. Ciph.

Horizontal 0.9776 0.0359 0.9960 0.0299 0.9580 0.0126 0.9994 0.0920

Vertical 0.9432 0.0025 0.9979 0.0043 0.9710 0.0030 0.9989 0.0045

Diagonal 0.9310 0.0037 0.9942 -0.0043 0.9311 0.0011 0.9986 0.0027
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.6: Correlation among neighboring pixels in (a, b) CT Paranasal with
its corresponding cipherimage, (c, d) Cervical X-Ray with its corresponding
cipherimage (e, f) CT Abdomen with its corresponding cipherimage (g, h) Knee

X-Ray with its corresponding cipherimage.
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6.3.1.4 Histogram Analysis

It tells about the dispersion of pixels. The uniform dispersion can be observed

by analyzing the shape of histogram, generated by plotting the pixels of image.

Figure 6.7 depicts the histograms of the original images and their corresponding

encrypted images. From histogram analysis it is clear that, there does not exist

any clue to mount a statistical attack on the encrypted image.

However the histogram visual effects are not sufficient to validate the random-

ness of pixel value in cipher image. Therefore the histogram is also evaluated

quantitatively by using chi-square (χ2) test. Chi-square (6.1) can be defined as:

χ2
exp =

S

∑
i=1

(oi − ei)2

ei
, (6.1)

ei =
M ×N

S
(6.2)

where S indicates grayscale (S = 256 in this case), oi represents the frequency

of occurrence of each level observed on the histogram of cipherimage, ei is the

expected frequency of occurance, based on uniform distribution of occurrence and

M × N is the total length of image sequence in Equation (6.2).

Table 6.3: Results of chi-square test for cipherimage

Chi-square test scores

Figure 6.7 Image type Image size Theoretical Proposed Results

value scheme

CT Paranasal Gray 256 × 256 293 257 Pass

Cervical X-Ray Gray 256 × 256 293 268 Pass

CT Abdomen Gray 256 × 256 293 214 Pass

Knee X-Ray Gray 256 × 256 293 244 Pass
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.7: Histogram of (a, b) CT Paranasal image with its corresponding
cipherimage, (c, d) Cervical X-Ray image with its corresponding cipherimage,
(e, f) CT Abdomen image with its corresponding cipherimage, (g, h) Knee

X-Ray image with its corresponding cipherimage
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It is expected that The experimental chi-square value is less than its theoretical

value (293 with significance level 0.05). Table 6.3 indicates the output of chi-

square test and pass rate. The chi-square test is passed by all the test images.

It is therefore clear that the redundancy of plainimage is fully concealed, which

demonstrates the inability of stability of statistical attacks.

6.3.1.5 Entropy Analysis

This feature of analysis measures the randomness in a cipherimage. It also tells

us the average amount of information carried by cipher image. Let g be a cipher

image then entropy value of g can be calculated by the Formula (3.11).

Table 6.4: Entropy values comparison

Image # Figure 6.4 Image size
Entropy values

Orig. image Encrypted image

1 CT Paranasal 256 × 256 5.2795 7.9975

2 Cervical X-Ray 256 × 256 7.1655 7.9973

3 CT Abdomen 256 × 256 5.8963 7.9970

4 Knee X-Ray 256 × 256 7.3071 7.9969

For exact random source having 256 different symbols, E(g) has an optimum value

of 8 for entropy. If the calculated value of entropy is significantly less than the

ideal value of entropy in cipherimage then it means that there is a possibility

of predictability of plainimage. In this scheme entropy values for cipherimage

g, is checked. The calculated values of entropy for the plainimages and their

corresponding cipherimages are shown in Table 6.4.

In the example of proposed scheme, the entropy value of cipherimages with 2N

as 255, turn out to be ≈ 8. Hence it is assumed that proposed scheme is robust

having minimum information dissipation.
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6.3.1.6 Local Shannon Entropy

It is used to measure the randomness of a cipherimage. Higher entropy values

generally indicate a stronger encryption result.

Table 6.5: Comparison with theoretical mean and standard deviation of LSE
scores

Sr. # Figure 6.4 Type
Block LSE of Random Grayscale values

size(TB) cipher µH(k,TB)(R)
σH(k,TB)(R)

Gray 16 × 16 7.1756 7.174966353 0.052437999/
√
k

1 CT Paranasal Gray 32 × 32 7.8121 7.808756571 0.017246343/
√
k

Gray 64 × 64 7.9542 7.954588734 0.004024888/
√
k

Gray 16 × 16 7.1741 7.174966353 0.052437999/
√
k

2 Cervical X-Ray Gray 32 × 32 7.8081 7.808756571 0.017246343/
√
k

Gray 64 × 64 7.9543 7.954588734 0.004024888/
√
k

Gray 16 × 16 7.1698 7.174966353 0.052437999/
√
k

3 CT Abdomen Gray 32 × 32 7.8090 7.808756571 0.017246343/
√
k

Gray 64 × 64 7.9546 7.954588734 0.004024888/
√
k

Gray 16 × 16 7.1828 7.174966353 0.052437999/
√
k

4 Knee X-Ray Gray 32 × 32 7.8084 7.808756571 0.017246343/
√
k

Gray 64 × 64 7.9559 7.954588734 0.004024888/
√
k

The values obtained from the GSE (global Shannon entropy) test sometimes does

not represent the true randomness [183] in an image.

Local Shannon entropy is capable of capturing the randomness in local image block

that could not be accurately reflected in GSE score. Also GSE is also considered

incompatible for images of different sizes, thus inappropriate for universal measure.

Local Shannon entropy tests the randomness of an image with the same parameters

irrespective to the size of test image and offer relatively fair random comparison

between multiple images. The local Shannon entropy can be measured by following

these steps: (1) Take Sk, non overlapping image blocks containing TB pixels each.
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(2) Find the entropy value H(Sk) of each image block Sk. (3) Find the average of

all the calculated entropy values H(Sk).

Table 6.6: Local Shannon entropy values of 8-bit gray medical images with k
= 30 and TB = 1936 and their comparison with significance level 0.05 and 0.01

LSE of Theoretical LSE critical values

Figure 6.4 cipher Significance level = 0.05 Significance level = 0.01

image hl∗left hl∗right hl∗left hl∗right

CT Paranasal 7.901874247 7.901901305 7.90303732 7.901722822 7.903215812

Cervical X-Ray 7.902626309 7.901901305 7.90303732 7.901722822 7.903215812

CT Abdomen 7.902892198 7.901901305 7.90303732 7.901722822 7.903215812

Knee X-Ray 7.901989084 7.901901305 7.90303732 7.901722822 7.903215812

In this test the parameters (k, TB, α) are used, where k is number of blocks taken,

TB shows number of pixel in each block and α is the significance level. By taking

different block size the local Shannon entropy values of test images are checked

and compared the results with standard random local Shannon entropy values

with the mean and variance in Table 6.5.

The cipherimage passes the test if result falls in the interval otherwise it fails, Also

by using the standard parameters i.e., (k, TB) = (30, 1936) the local Shannon

entropy for various medical images is calculated and found in range as shown in

Table 6.6. Cipherimages obtained from proposed encryption scheme goes in the

critical interval. It shows that the proposed image encryption scheme produces

cipher images that results high randomness for non overlapping blocks.

6.3.1.7 Differential Analysis

An essential property of a good performance image encryption algorithm is that,

images encrypted with that algorithm should be totally different from plain images.
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Table 6.7: NPCR values of 8-bit 256 × 256 gray medical images and their
comparison with theoretical values of significance level 0.05, 0.01 and 0.001

Theoretical NPCR critical values

Sr. # Images NPCR Significance level

values 0.05 0.1 0.01

1 CT Paranasal 99.6014% 99.5693% 99.5527% 99.5341%

2 Cervical X-Ray 99.5755% 99.5693% 99.5527% 99.5341%

3 CT Abdomen 99.5976% 99.5693% 99.5527% 99.5341%

4 Knee X-Ray 99.6189% 99.5693% 99.5527% 99.5341%

Table 6.8: UACI values of 8-bit 256 × 256 gray medical images and their
comparison with theoretical values of significance level 0.05 and 0.01

Theoretical UACI critical values

Sr. Images UACI Signif. level 0.05 Signif. level 0.01

# values u∗−0.05 u∗+0.05 u∗−0.01 u∗+0.01

1 CT Paranasal 33.4385% 33.2824% 33.6447% 33.2255% 33.7016%

2 Cervical X-Ray 33.3571% 33.2824% 33.6447% 33.2255% 33.7016%

3 CT Abdomen 33.4123% 33.2824% 33.6447% 33.2255% 33.7016%

4 Knee X-Ray 33.5643% 33.2824% 33.6447% 33.2255% 33.7016%

The values of NPCR and UACI for differential analysis can be calculated by using

Equation (3.12).

It can be seen from the experimental results shown in Table 6.7 and Table 6.8,

that the proposed scheme gets high performance for NPCR and UACI. Therefore

it will give well resistance against “known plain text attacks” and “chosen plain

text attacks”.
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6.3.1.8 Noise and Data Loss Attacks

The perfect encryption scheme ought to diminish the noise effects caused by differ-

ences in pixels in the decrypted image. For checking the capability of the proposed

scheme in opposing noise and data loss attacks, a medical image from Figure 6.4

(g) of size 256 × 256 is taken as test case.

In the encryption result of test image, 1%, 2% and 5% pixels are replaced with the

dark part as shown in the Figure 6.8 (a, c, e). The decryption results of noised

cipher images are also shown in Figure 6.8 (d, e, f).

From the Figure 6.8 it is clear that when the cipher image endure data loss attacks,

the decrypted image obtained by using the encryption process maintain vast ma-

jority of original image information containing only a small portion of uniformly

distributed noise.

The peak signal to noise ratio (PSNR) provides a quantitative measure for the

distinction between the original plain image IP and its decryption result ID. The

cumulative squared error between the decrypted image and the original image can

be measured by using mean square error (MSE).

For an image of size MN the PSNR and MSE values can be calculated using

Equations (3.13) and (3.14). The least value of MSE (3.13) shows the minimum

error by using the proposed encryption scheme, while the PSNR (3.14) measure

is usually employed to calculate the ability of rehabilitation. The greater value of

PNSR indicates the higher fidelity of decrypted image towards its original plain

image. If ID and IP are similar then the calculated value of PSNR approaches to

infinity. The value above 30 db shows that ID and IP are not sensible for PSNR.

For the values above 35 db, it is difficult to differentiate between the original image

and decrypted image.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Experimental results for the performance evaluation of data loss
attacks: (a, c, e) cipher images with 1%, 2% and 5% data loss, (b, d, f) decryp-

tion results of corresponding images using our scheme

For checking the cipher image’s robustness against noise attacks, 1%, 2% and 5%

noise is added in cipher image of Figure 6.4 (g), as shown in Figure 6.8 (a, c,

e). The calculated values of PSNR for these modified cipher images are 25.34,
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22.78 and 19.36 respectively. By observing the test results it can be seen that the

encryption technique gives good performance for anti data loss and noise attacks.

6.3.1.9 Computational Complexity

It is determined by analyzing the encryption scheme and sequence generation

method. The complexity of various image encryption schemes is analyzed by using

the identical approach as adopted in [184] and then compared their complexities

with the proposed encryption scheme. The overall complexity of the proposed

encryption scheme is O(3MN log2(MN) + 12MN), with the image size taken as

M ×N .

Table 6.9: Comparison of computational complexity with different encryption
schemes

Sr. no. Schemes
Computational complexity

Scrambling Diffusion

1 Ref [185] 2MN + 2MN log2(MN) 2MN

2 Ref [184] 4MN + 2log2(MN) 2MN

3 Ref [40] 10MN + 2log2(MN) 2MN

4 Ours 8MN + 3MN log2(MN) 4MN

The scrambling process of proposed encryption scheme consists of 3MN log2(MN)+

8MN times floating point operations, while 10MN floating point operations are

used in diffusion process. For time complexity computation one time floating point

operation indicates one bit level operation.

By comparing the complexity of the proposed scheme in Table 6.9, with the

schemes presented in [185], [184], [40], it can be seen that computational com-

plexity of the proposed image encryption schemes exceeds by [185], [184]. It shows

that the internal structure of proposed scheme is complex, hence resists against

various attacks.
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6.3.2 Signcryption Attributes

The security components of proposed signcryption scheme are:

6.3.2.1 Confidentiality

Confidentiality means to secure the message containing plain image from unau-

thorized sources. The proposed scheme is secure from unauthorized access as if

some unauthorized party/user wants to find secret key component k′ or k′′. It is

almost infeasible because for this he/she has to solve ECDLP.

6.3.2.2 Authentication

Authentication is the method by which receiver can authenticate the user by fol-

lowing the verification method. The authentication process works by using the

comparison of hash values. If the comparison returns true results, then it means

that the user and his sent medical image is authenticated.

In the proposed scheme the patient calculates hash value of image I, cipher image

C and key K, then multiply with base point of elliptic curve G to get authenti-

cation parameter G′. Patient sends this G′ to health-care center. The health care

center decrypt C with K to get image I. It also calculates hash value of I, C and

K, and multiply it with G to get A′. The patient along with his sent image I will

be authenticated if G′= A′.

6.3.2.3 Integrity

In this process data is maintained in its actual form, that could not be changed

by adversary during its communication. In the proposed scheme

h =H(I,C,K) and s =
k

h + Pa
mod p
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are used in signcryption stage. If a fake user changes some contents of cipher

image, then new cipher image will become C ′, so he sends (C ′, s,G′).

The related image I ′ is also changed, but one way hash function makes it in-

feasible. Also the change will be detected at the time of verification, hence changed

cipher image will be rejected. In this way the integrity of original image will be

confirmed.

6.3.2.4 Unforgeability

In the proposed signcryption scheme, a fake user can try to forge the signcryption

scheme as following:

1. The fake user chooses k1 and multiply it with health-care authority’s public

key Pb to get secret key Kf .

2. He/she takes the forged image I ′ and encrypt it with the hashed key as

C ′ = EH(Kf )(I
′).

3. Then he/she computes h′ and s′ as:

h′ =H(I ′,C ′,Kf), s′ =
k1

h′ + s′a
mod p

4. Also computes authentication parameter

G′
1 = h

′G

and sends (C ′,G′
1, s

′) to health-care authority.

The health-care center receives (C ′, s′,G′
1) from fake user. It tries to find key by

using its private key sb, patient’s public key Pa, received digital signature s′ and
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authentication parameter G′
1.

sb s
′ G′

1 + sb s
′ Pa

= sb
k1

h′ + s′a
h′ G + sb

k1
h′ + s′a

sa G mod p

=
sb k1 h′ G
h′ + s′a

+
sb k1 G sa
h′ + s′a

mod p

=
(sb k1 G)(h′ + sa)

h′ + s′a
mod p

≠ (sb k G) or k Pb =Kf

Hence the forged key is not rightly generated and image I cannot be decrypted

rightly.

6.3.2.5 Non-repudiation

Non-repudiation means that the sender cannot deny from something he had sent

earlier. In case of denial of sending the message by the sender, the recipient may

send (C, s,G′) requiring the judge to verify it. In judge verification process, the

judge can decide that signature is generated by the sender if the equation

K = (k′, k′′) = sb s G′ + sb s Pa,

holds. In the proposed signcryption scheme, digital signature

s =
k

h + sa

contains private key sa of the sender. Digital signature cannot be generated with-

out sender’s compliance. Therefore sender cannot deny from sending at any stage.

6.3.2.6 Forward Secrecy

It means that attacker cannot recover sender’s previous message even if he gets

access to the sender’s private key sa and (C, s,G′). Because a random number k
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is used for key generation. Which is known only to the sender. For the generation

of secret key anyone has to solve the following equation:

K = k Pb

Here Pb is the public key of receiver and k is the random number chosen by the

sender. Attacker does not know about k, hence cannot find key K and decrypt C

to get plainimage I.

The proposed scheme shows good result against authentication, confidentiality,

integrity, unforgeability and forward secrecy. The comparison of signcryption at-

tributes of proposed scheme with other signcryption schemes is shown in Table

6.12.

6.3.2.7 Analysis of Computational Cost

In the proposed signcryption scheme, the computational cost for sender and re-

ceiver is calculated. Table 6.10 gives a comparison for operations used by the

sender and receiver, while Table 6.11 shows average computational time of mainly

used operations.

Sender uses only 2 elliptic curve point multiplications, while receiver takes 3 elliptic

curve point multiplications hence it is more efficient than the schemes presented

in [66], [186], [187] .

The elliptic curve point multiplication requires 83 ms, while modular exponenti-

ation needs 220 ms as average computational time on infineon’s SLE66CUX640P

[188]. The computational time is calculated in Table 6.11 and compared with

other signcryption schemes. The proposed scheme provides some added functions

like forward secrecy and non repudiation without using another protocols with less

computational cost.
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Table 6.10: Comparison of computational cost of proposed signcryption
scheme

Signc. schemes Entity ECPM ECPA EXP DIV MUL ADD H

Proposed scheme sender 3 - - 1 2 1 2

receiver 4 - - - - 1 1

Zheng [60] sender - - 1 1 - 1 2

receiver - - 2 - 2 - 2

Zheng and Lmai [131] sender 1 - - 1 1 1 2

receiver 2 1 - - 2 - 2

Deng and Bao [66] sender - - 2 1 - 1 3

receiver - - 3 - 1 - 3

Gamage et al. [186] sender - - 2 1 - 1 2

receiver - - 3 - 1 - 2

Jung et al. [187] sender - - 2 1 - 1 2

receiver - - 3 - 1 - 2

The number of operations used for: ECPM (elliptic curve point multiplication), ECPA (elliptic

curve point addition), EXP (modular exponentiation), DIV (modular division), MUL (modular

multiplication), ADD (modular addition), H (one-way hash functions).

Table 6.11: Comparison of average computation time of main operations used

Signcrypt. schemes
Sender Recipient

Average computation Average computation

time(ms) time(ms)

Proposed scheme 3 × 83 = 249 4 × 83 = 332

Deng and Bao [66] 2 × 220 = 440 3 × 220 = 660

Gamage et al. [186] 2 × 220 = 440 3 × 220 = 660

Jung et al. [187] 2 × 220 = 440 3 × 220 = 660

Zheng [60] 1 × 220 = 220 2 × 220 = 440

Zheng and Lmai [131] 1 × 83 = 83 2 × 83 = 166
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6.3.3 Man in the Middle Attack

For an unauthorized user say “Mallory” that insert himself in communication

between patient and health-care authority. He intercepts (C, s,G′) sent by patient.

Then produces his own secret key and uses it for the generation of cipher image

(C ′), signature (s′) and authentication parameter (G′′). He alters patient’s sent

parameters (C, s,G′) by his generated tuple (C ′, s′,G′′) and sends it to the health-

care center. The center works for the the generation of secret key K∗ to decrypt

received C ′. This key does not provide any help to reveal the secret image. Also the

signature generated by the attacker will not be verified by signcryption algorithm.

Hence it can be seen that, man in the middle attack is not applicable for the

proposed scheme.

Table 6.12: Comparison of security properties of proposed signcryption
scheme

Signc. schemes Conf. Unforgability Integrity Non-repudiation F. Secrecy

Proposed scheme Yes Yes Yes Directly Yes

Zheng [60] Yes Yes Yes Another protocol No

Zheng and Lmai [131] Yes Yes Yes Another protocol No

Deng and Bao [66] Yes Yes Yes Directly No

Jung et al. [187] Yes Yes Yes Another protocol Yes

Gamage et al. [186] Yes Yes Yes Directly No

6.4 Comparison of Proposed Schemes

A color image encryption approach by implementing permutation, substitution

and XOR is presented in Chapter 4. Then, another image encryption scheme by

taking a new dynamic compound chaotic is given in Chapter 5, while for medical

data, an image signcryption scheme using TLTS and Henon chaotic map is given

in Chapter 6. A structural comparison of these approaches is given below in Table

6.10.
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Table 6.13: A structural comparison of different image encryption schemes

Chapters Permutation S-box XOR
Invertible

Self Mixing
Recursion

Chapter 4 Yes Yes Yes No Yes

Chapter 5 No Yes Yes Yes Yes

Chapter 6 Yes No Yes No Yes

6.5 Conclusion

In this chapter, a novel medical image signcryption scheme is proposed. It uses

hybrid cryptographic technique for the signcryption of image based data. Firstly

patient/sender uses his private key and health-care center’s public key to make

symmetric encryption key and then he/she uses its hash value for chaos based

medical symmetric image encryption. The health-care center also uses the same

key for decryption. Hash value of cipher image is signed and exchanged for au-

thentication of communication.

The proposed scheme provides authentication, confidentiality, unforgability, in-

tegrity, and non-repudiation, While chaos-based symmetric encryption is checked

against key space analysis, key sensitivity, correlation analysis, NPCR and UACI,

local and global Shannon entropy analysis, histogram analysis, noise and data loss

attacks and its complexity.

On the basis of results obtained from all these analysis, it is believed that the pro-

posed signcryption scheme is robust, provides good security for sensitive medical

images.



Chapter 7

Conclusion and Future Work

The security aspects of multi-media information are discussed in this thesis. Par-

ticularly, Chapter 1 presents the introduction of this thesis, Chapter 2 and 3 pro-

vides background of mathematical and cryptographic concepts, the chaos based

image encryption schemes and a signcryption scheme for medical images are pro-

posed in Chapter 4, 5 and 6.

7.1 Conclusion

The internet, the internet of things (IoT) etc, are the examples of technologies that

have virtually changed every nations’ culture. In the modern age, digital image

have gained a lot of importance in every aspect of life. These images are gener-

ated and used in the diverse areas as weather forecasting, commerce research, gov-

ernment and diplomatic missions, personal affairs, tele-medicine, military, space

sciences etc. These images are frequently saved and transmitted through a public

network. Their storage and transmission has serious consequences if they are very

sensitive and hacked by attackers or enemies. Therefore, protecting these images

has become an urgent and serious task. As a result, researchers are constantly

exploring new approaches to find a perfect answer to this problem. The use of

chaos theory is thought to be a suitable platform in this regard. By keeping in
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mind all these things, some methods for the security of secret images are proposed

in this thesis. The following shows some more concluding remarks of this thesis.

• A new chaos based encryption scheme for color image is proposed. Simple

one dimensional chaotic maps i.e., PWLCM and logistic map are employed

in it. S-box is used for confusion purpose while XOR operation is used for

diffusion purpose. It is a lightweight encryption scheme that has an easy

implementation. The security analysis shows that it has fairly good results

against the correlation, information entropy, key space, NPCR and UACI,

and noise and data loss attacks.

• The analysis of some well known one dimensional chaotic maps (e. g., tent

map, logistic map etc) shows that they have certain drawbacks like short

chaotic range, open periodic windows in chaotic region etc. To handle with

these problems a new color tent logistic chaotic system based image encryp-

tion scheme is designed. This system is generated by combining the tent

and logistic map in such a way that it provide a huge key space with no

periodic window in its chaotic region. The diffusion stage of encryption also

contains a novel mixing technique that makes the internal structure of en-

cryption more complex. Due to the uses of tent logistic map the proposed

scheme provides a high key sensitivity and big key space, while other analysis

indicators also provide comparative results with other proposed algorithms

• A medical image signcryption scheme is proposed in this study, that provides

additional security attributes for the sensitive medical data. It not only gives

encryption but also provides a complete mechanism of key generation, digital

signatures and authentication process of the sent image in a single algorithm.

In the chaos based encryption phase, the use of tent logistic tent system

results in hyper chaotic behavior in the encrypted image. Due to these

salient features it seems to be the first scheme in literature providing key

management, confidentiality, authentication, unforgeability, forward secrecy,

integrity and non repudiation of medical images.
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7.2 Suggestion for Future Work

The current research proposed in this thesis and its contribution in literature along

with future directions is given as followings.

The method proposed in Chapter 4 uses simple one dimensional chaotic maps,

chaotic permutation technique, S-box as look up table and bitwise XOR operation

for encryption of color images. In 2020, Wang and Liu [189] introduced a new

image encryption scheme that takes large parameter interval for one dimensional

sine chaotic system. In this technique, by using dynamic parameter Arnold map,

the image is first scrambled. Then dynamic formulas are suggested through one

dimensional chaotic sine map. Suman et al. [190] presented an approach for

secure color image encryption that uses chaotic Duffin map for the pseudo random

numbers to perform permutation and diffusion of image pixels.

A medical image encryption scheme is developed by Rajendran et al. [191] that

uses novel cross cosine map for dynamic bit level diffusion. Chaotic series is

generated by proposed two dimensional cross cosine map and then utilized in

confusion and diffusion architecture. Recently in 2022, Vidhya and Brindha [111]

presented an image encryption approach that is based on bit level substitution

and block level permutation.

These encryption approaches and many others [110, 192–194] use the approach

presented in Chapter 4 in their research. As the method proposed in Chapter 4

uses simple one dimensional chaotic maps, chaotic permutation technique, S-box

as look up table and bitwise XOR, that makes it lightweight in comparison to

the above discussed approaches. A comparison of cryptographic properties of this

approach with other existing schemes is given in Table 4.9.

The approach [88] given in Chapter 5 is recently published. Guler[195] uses this

research in graphical coded algorithm in secure communication applications based

on memristor-based chaotic circuit. A comparison of cryptographic properties of

this approach with other existing schemes is given in Table 5.8.
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In Chapter 6, a novel signcryption scheme based on chaos for medical images

is proposed that provides security features like authentication, forward secrecy,

unforgeability, integrity, non repudiation etc. Ghosh et al. [196] analyzed sev-

eral chaotic systems used for image encryption purposes and also described their

advantages and disadvantages.

Authors claimed that chaotic, low-dimensional maps based imaging security ap-

proaches have less ability to handle the attacks also provides less security. They

also presented solution of this problem by multiple broad chaotic charts. Henon

chaotic map is used by Masood et al. [109] for a medical image encryption scheme

that uses, Brownian motion, and Chen’s chaotic system with elevated security. A

mechanism developed by Harshitha et al. [108] for secure medical image encryp-

tion. This uses linear feedback shift register and logistic map for the protection of

medical images.

For IoT-powered healthcare systems Rajendran et al. [57] proposed medical image

transmission model based on chaotic maps used. Combined chaotic maps are used

by Kari et al. [197] presented a novel multi-image cryptosystem that also uses

weighted plainimages. The degree of correlation between their neighboring pixels

is utilized to give a certain weight to the plainimages.

These medical image encryption approaches and many others [198–200] use the

approach presented in Chapter 6 in their research. In comparison to above med-

ical image encryption techniques, the image signcryption technique presented in

Chapter 6 has many additional security features like authentication, forward se-

crecy, unforgeability, integrity, non repudiation etc that other medical encryption

schemes lacks. Due to the presence of these security features it is more secure and

robust then other ones.

As a future work the following ideas are suggested to improve the performance

and the effectability of the recent work.
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• The proposed image encryption schemes presented in Chapter 4, 5 can be

extended to signcryption schemes for providing extra confidential security

features and authenticated communication, simultaneously.

• Most of the existing proposal of image cryptosystem only give the encryption

mechanism while lacking the key exchange protocol. A key exchange protocol

can be developed and accommodated with these encryption scheme.

• Optimization techniques can be applied on the existing encryption algo-

rithms to optimize their performance.

• The use of chaotic neural network and artificial intelligence in the proposed

encryption schemes may enhance their security level.

• Image encryption schemes proposed in this study can be extended to video

and speech encryption schemes.

• As a future work, the security aspects of proposed encryption techniques

presented in this thesis will be compared with current researches in this

field.
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