
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Optimization of Semantic Cache

Query Processing System

by

Munir Ahmad

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Computing Science

Department of Computer Science

August 2017

https://cust.edu.pk/
https://cust.edu.pk/
munirahmad83@gmail.com
https://cust.edu.pk/academics/faculty/type/Computing
https://cust.edu.pk/academics/Department/type/Computer+Science

i

Copyright c© 2017 by Munir Ahmad

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

Acknowledgements

I pay my sincere thanks to my supervisor who supported me in my thesis with

his patience and knowledge. I attribute the completion of my degree to his en-

couragement and effort and without him this thesis would have not been possible.

One simply could not wish for a better or gracious supervisor.

I am profoundly thankful to CDSC research group for their guidance, counselling

and tremendous help which contributed to give final form to my work.

I am also thankful to HEC for providing me the opportunity to play a role in

contributing to the knowledge base of Pakistan. May our country prosper.

iv

v

List of Publications

It is certified that following publications have been made out of the research work

that has been carried out for this thesis.

Journal Papers

1. Ahmad, M., Qadir, M.A., and Ali, T. (2017). Indexing for Semantic Cache

to Reduce Query Matching Complexity. Journal of the National Science

Foundation of Sri Lanka, 13-22 March 2017.

Conference Papers

1. Ahmad, M., Asghar, S., Qadir, M. A., and Ali, T. (2010). Graph Based

Query Trimming Algorithm for Relational Data Semantic Cache. The Inter-

national Conference on Management of Emergent Digital EcoSystem, MEDES10,

2010. Pages-47-52

2. Ahmad, M., Qadir, M.A., and Sanaullah, M. (2009). An Efficient Query

Matching Algorithm for Relational Data Semantic Cache. 2nd IEEE con-

ference on computer, control and communication, IC409, 2009.

3. Ahmad, M., Qadir, M.A., and Sanaullah, M. (2008). Query Processing

over Relational Databases with Semantic Cache: A Survey. 12th IEEE In-

ternational Multitopic Conference, INMIC 2008, IEEE, Karachi, Pakistan,

December 2008.

4. Ahmad, M., Qadir, M.A., Razzaque, A., and Sanaullah, M. (2008). Efficient

Query Processing over Semantic Cache. Intelligent Systems and Agents,

ISA 2008, indexed by IADIS digital library (www.iadis.net/dl). Held within

IADIS Multi Conference on Computer Science and Information Systems

(MCCSIS 2008), Amsterdam, Netherland. 22-27 July 2008.

vi

Book Chapters

1. Ahmad, M., Qadir, M. A., and Ali, T., Abbas, M. A., Afzal, M.T. (2012).

Semantic Cache System. In Semantics – Book 2, ISBN 980-953-307-286-4,

Published by INTEC – Open Access Publisher, 2012.

August 2017 Signatures

Munir Ahmad

Reg. No PC091006

vii

Abstract

High availability and low latencies of data are major requirements in accessing con-

temporary large and networked databases. However, it becomes difficult to achieve

high availability and reduced data access latency with unreliable connectivity and

limited bandwidth. These two requirements become crucial in ubiquitous environ-

ment when data is required all the times and everywhere. Disconnectivity with

data is more likely with multimedia streaming, especially with frequent queries

and low bandwidth. Inter-queries common data is one of the important qualities

of consecutive queries. Cache is one of the promising solutions to improve avail-

ability and reduce latencies of remotely accessed data by storing and reusing the

results of already processed similar queries. Conventional cache lacks in partial

reuse of already accessed & locally stored data, while semantic cache overcomes

the limitation of conventional cache by reusing the data for partial overlapped

queries by storing description of queries with results. There is a need of an ef-

ficient cache system to improve the availability, reduce the data access latencies

and the network traffic by reusing the already stored results for fully and partially

overlapped queries. An efficient cache system demands efficient query processing

and cache management.

In this study, a qualitative benchmark with four qualities as Accuracy, Increased

Data Availability, Reduced Network Traffic and Reduced Data Access Latency is

proposed to evaluate a semantic cache system, especially from query processing

point of view. The qualitative benchmark is then converted into six quantitative

parameters (Semantics and Indexing Structure IS, Generation of Amending Query

GoAQ, Zero Level Rejection ZLR, Predicate Matching, SELECT CLAUSE Han-

dling, Complexity of Query Matching CoQM) that help in measuring the efficiency

of a query processing algorithm. As the result of evaluation, it is discovered that

existing algorithms for query trimming can be optimized.

Architecture of a semantic cache system is proposed to meet the benchmark cri-

teria. One of the important deficiencies observed in the existing system is the

storage of query semantics in segments (indexing of the semantics) and the orga-

nization of these segments. Therefore, an appropriate indexing scheme to store

the semantics of queries is needed to reduce query matching time. In the existing

indexing schemes the number of segments grows faster than exponential, i.e., more

than 2n. The semantic matching of a user query with number of segments more

viii

than 2n will be exponential and not feasible for a large value of n. The proposed

schema-based indexing scheme is of polynomial time complexity for the matching

process.

Another important deficiency observed is the large complexity of query trimming

algorithm which is responsible to filter the semantics of incoming query into local

cache and remote query. A rule based algorithm is proposed for query trimming

that is faster and less complex than existing satisfiability/implication algorithms.

The proposed trimming algorithm is more powerful in finding the hidden/implicit

semantics, too.

The significance of the proposed algorithms is justified by examples/case studies

in comparison with the previous algorithms. Correctness of proposed algorithms is

tested by implementing a prototype and executing a number of case studies. The

final outcomes revealed that the proposed scheme has achieved sufficient accuracy,

increased availability, reduced network traffic, and reduced data access latency.

Contents

Author’s Declaration ii

Plagiarism Undertaking iii

Acknowledgements iv

List of Publications v

Abstract vii

List of Figures xi

List of Tables xii

Abbreviations xiii

1 Introduction 1

1.1 Introduction to the domain . 1

1.2 Problem Statement . 9

1.3 Research Questions . 10

1.4 Research Methdology . 11

1.5 Definitions and Notations . 12

2 Criteria to Evaluate Existing Techniques 15

2.1 Quantitative Parameters . 15

2.2 Association between Benchmark and Parameters 21

3 Related Work 24

3.1 Godfrey’s Scheme . 25

3.2 Ren’s Scheme . 25

3.3 Wan’s Scheme . 28

3.4 Cai’s Scheme . 29

3.5 Jonsson’s Scheme . 29

ix

x

3.6 Bashir’s Scheme . 30

3.7 Sumalatha’s Scheme . 30

3.8 Ehlers’s Scheme . 31

4 sCacheQP 33

4.1 Query Matching . 35

4.2 Query Trimming . 37

4.3 Query Rebuilding . 42

4.4 Schema Based Indexing Scheme . 43

5 Analysis of Proposed System 47

6 Case Study and Experimental Results 54

6.1 Case Study . 54

6.2 Experimental Results . 66

6.2.1 Database and Semantic Cache at Same Machine 67

6.2.2 Database and Semantic Cache at Different Machine 70

7 Conclusion and Future Work 74

Bibliography 78

List of Figures

1.1 Nearest Restaurants . 2

1.2 Working of Semantic Cache . 4

1.3 Data Stored in Cache . 5

1.4 Probe and Remainder Query . 6

1.5 Satisfiability and Implication . 13

4.1 Semantic Cache Architecture . 34

4.2 Schema based content matching . 44

5.1 Worst case complexity analysis . 51

5.2 Best case complexity analysis . 52

5.3 Hit Ratio Comparison by increasing Select ∗ queries 52

5.4 Time Comparison on the base of Incorrect Queries 53

5.5 Space Complexity Analysis . 53

6.1 Schema for University Database . 55

6.2 Analysis with increasing number of segments 67

6.3 Analysis with increasing number of records 68

6.4 Analysis for Varying Hit Ratio . 68

6.5 Analysis for Exact Match . 69

6.6 Analysis for Subset Match . 69

6.7 Analysis for Partial Match . 70

6.8 Analysis with increasing number of segments 71

6.9 Analysis with increasing number of records 71

6.10 Analysis for Varying Hit Ratio . 72

6.11 Analysis for exact match . 72

6.12 Analysis for Subset Match . 73

6.13 Analysis for Partial Match . 73

xi

List of Tables

1.1 Notations . 12

1.2 Segments on Cache . 14

2.1 Association between Qualitative Benchmark and Quantitative Pa-
rameters . 23

3.1 Analysis Matrix of Existing Techniques 32

4.1 Schema for Library . 43

4.2 Updated indexed schema . 44

6.1 Possible segments for given database 56

6.2 Schema Based Indexing . 56

6.3 Employee Table in Database . 57

6.4 Contents on Cache in Case-I . 57

6.5 Contents on Cache in Case-II . 58

6.6 Contents on Cache in Case-III . 61

6.7 Contents on Cache in Case-IV . 62

6.8 Contents on Cache in Case-V . 63

6.9 Contents on Cache in Case-VI . 64

xii

Abbreviations

GoAQ Generation of Amending Query

sCacheQP Semantic Cache Query Processing

ZLR Zero Level Rejection

xiii

To my family and my supervisor. . .

xiv

Chapter 1

Introduction

This chapter presents the introduction about the domain, problem statement,

research methodology is and some definitions and notations.

1.1 Introduction to the domain

One of the economical ways to develop a very large-scale database is to distribute

it among multiple server nodes [1]. The main problem with these types of systems

is slow retrieval of data due to added network latency; especially when network

or server load is very high [2, 3]. There could be many clients (may be in 1000s

accessing a popular website) accessing the server with the same data at the same

time. The example below provides a clear overview regarding the understanding

of accessing the server with the same data at the same time.

Assume that, four users search the nearest restaurants while staying in Rawalpindi

city Pakistan. The results of the searched query are shown in 1.1.

As in 1.1, it is depicted that same data is accessed by multiple users. The challenge

is to minimize the access time in order to show the result immediately. There exist

many techniques that minimize the access time. One technique is the replication

of data on many servers and the other is the use of cache near the client. Energy

could also be saved by using a cache [4].

1

2

Query by user 1

Query by user 4

Query by user 2

Query by user 3

Figure 1.1: Nearest Restaurants

Use of a cache near the client is a cost-effective solution especially for the repeated

requests of the same data and can be used with or without replication [5]. The

cache can be designed at different levels by using different techniques.

Historically, a cache was introduced at the processor level (in hardware) to transfer

a block of instructions or data from primary storage to processor to speed-up the

execution of a program [5]. This hardware level cache (in processor) is normally

used for small amount of data. For larger blocks of data, a cache may be imple-

mented at the primary storage level (in memory) if the original data is stored in

secondary storage. A cache may be organized as secondary or primary storage

level [6] on the local machine depending upon the required performance and avail-

able resources (e.g., size of primary storage) for a remotely stored data (networked

storage).

Different techniques that organize a cache, whether it is processor level, primary

storage level, or secondary storage level are associative cache [7], and address-

based cache linked with description tags [8, 9]. In associative cache, contents are

used to address the location of the data and in address-based cache; the address

of a storage location is mapped on a tag. That is, the location of a cache can be

accessed by using tags. The description tags describe the contents stored in the

corresponding location and it could be syntactic or semantic. In syntactic tags,

the data is accessed if the tags for requested contents exactly match with the tags

3

of the stored contents. In semantic tags, the access system would be able to check

the meanings of the tags for requested contents (semantics) with the meanings of

the tags (semantics) of the stored contents, and then the stored data is accessed

according to the matched semantics [10, 11]. In the context of databases cache,

the syntactic cache may be organized as page or a tuple cache [12, 13]. The

organization which processes the meanings of requested and stored tags is termed

as semantic cache.

Database cache [14] is used to reduce the data retrieval time. Typically, in database

cache a portion of secondary memory is used to store the already fetched data and

reuse the stored data in the future for similar queries [15]. In order to understand

the concept of cache in databases and to know the difference between syntactic

and semantic cache, the following example would be helpful:

Assume the following query is executed on a relation that has all the required

columns and the data retrieved against the query is stored in a cache along with

the tag, which is the query itself.

SELECT age, name FROM student WHERE age< 28

Afterwards, when the exactly same query is submitted, the cache system after

matching both the tags (stored and query submitted) can work out that the data

is available in the cache and it can be returned against the query. This is an

example of a syntactic cache.

Assume a new query is submitted for execution as given below:

SELECT age, name FROM student WHERE age< 25

This query does not exactly match with the tag of the previously stored data in the

cache. Therefore, the syntactic cache system will miss the contents from the cache

and send a request to the server. However, we can see the meanings of both the

query and tag stored and can easily see that all the data is available in the cache

which is described by the query semantics. The semantic cache will return the

result from the cache. Working of semantic cache is shown in 1.2. The concept of

semantic cache was first introduced to answer the queries partially from local site

by Dar [10]. One of the important parameters used to evaluate the performance

of a cache is hit ratio, that is, the number of queries answered locally from the

cache out of the total number of queries posed.

4

Result from Server

User Query
A

p
p

lic
at

io
n

Semantic Cache

Database

Server

Remainder Query

Probe Query

Cached Result
Query Result

Cache

WWW

Figure 1.2: Working of Semantic Cache

Semantic cache has an ability to increase the hit ratio up to the maximum possible

extent [16, 17] as compared to the page and tuple cache [12] due to having the

ability to answer partially overlapped queries by using the meanings/semantics.

Semantic caching provides significant workload reduction in distributed systems,

especially in mobile computing and it improves the overall performance [18]. The

claim is still valid as shown by the results of the research presented in this thesis.

There are two major activities to manage a semantic cache; one is query processing

and the second is cache management. The efficiency of a semantic cache system

depends upon the efficiency of these two activities. Query processing is the process

which returns the result against user posed query. Semantic cache query processing

is done by dividing a user query into the probe and remainder queries on the basis

of query matching with the stored semantics of the cache. In order to understand

the working and the significance of a semantic cache system, the following example

would be helpful.

Assume the following query is executed on a relation that has all the required

columns and the data retrieved against the query is stored in a cache.

SELECT *FROM Employee

WHERE age > 20 AND age≤ 40 AND salary > 20000 AND salary≤ 40000

Data against above query can be visualized as shown in 1.3.

Assume a new query is submitted for execution as given below:

5

60000

age

sa
la
ry

20 40

40000

20000

60

Figure 1.3: Data Stored in Cache

SELECT *SELECT Employee

WHERE age > 35 AND age≤ 45 AND salary > 35000 AND salary≤ 55000

Data required in this query is partially overlapped with data stored in semantic

cache. Here query will be divided into two sub queries, probe query (data available

at cache) and remainder (data retrieved from the server) query as shown in 1.4.

In fact, the efficiency of query processing depends upon the efficiency of the division

process (query trimming) of a user query into sub queries (probe and remainder)

as well as on retrieval time against both probe and remainder queries. Efficiency of

query trimming depends upon the semantic indexing (explained in detail in Chap-

ter 2), too. Actually, semantic indexing is a major activity of cache management.

In this context, we can say that efficient semantic caching demands efficient query

processing and indexing schemes.

In this research study, our aim is to analyze the query processing and semantic

indexing scheme for semantic cache system in terms of efficiency point of view.

6

60000

age

sa
la
ry

20 40

40000

20000

60

Probe Query

Remainder Query

Figure 1.4: Probe and Remainder Query

Moreover, it was also observed that there is a need to define efficiency matrix,

which is also performed in this study. Then, the focus would be on the designing

of an efficient semantic cache query processing and indexing system.

An efficient semantic caching must ensures following four qualities:

• Accuracy

• Increased Data Availability

• Reduced Network Traffic

• Reduced Data Access Latency

We set these four qualities as a benchmark to evaluate the semantic caching sys-

tem. These four points of benchmark are qualitative. We have associated some

quantitative parameters to measure each of qualitative measure for the semantic

cache system. Associated quantitative parameters are discussed in Chapter 2 and

all qualitative measures of semantic caching system are discussed below one by

one.

7

Accuracy: A semantic cache system must ensure that there is no extra data

included in the result and there is no missing data from the produced result. This

quality is termed as the production of the correct result. Correctness of a semantic

cache system is achieved by applying the following rule.

DataRemainderQuery ∪DataProbeQuery =⇒ DataUser Query (1.1)

Rule in Equation 1.1 depicts that the collective data against remainder and probe

queries must always be equal to the data being requested by the user query.

Increased Data Availability: As the cache is a local copy of the frequently

accessed data, an additional advantage of the increased availability in case of the

failure of remote data accesses can be adopted as well. Availability of the system

with limited size of the cache can be increased by ensuring that cache does not

store redundant data as it is evident by rule given in Equation 1.2.

Segmentj-cahce ∩ Segmenti-cache =⇒ ∅ ∀i, j when i 6= j (1.2)

Reduced Network Traffic: Data access time would be reduced by the decreased

network traffic on average. Less number of remainder queries and the increased hit

ratio would result in a less amount of network traffic for the same data access. The

following two rules would ensure the decreased network traffic, too. By ensuring

following two rules given in Equation 1.3 and 1.4, the network traffic would be

minimized too.

DataReminderQuery ∩Datacached =⇒ ∅ (1.3)

Segmenti-cache ∩ Segmentj-cache =⇒ ∅ ∀i, j when i 6= j (1.4)

Reduced Data Access Latency: Data access Latency of query, is the total time

used to retrieve the result against the user query. Data access time depends on hit

ratio, query trimming algorithm complexity, semantic indexing, network traffic,

network bandwidth and size of the database. These parameters are discussed here

one by one.

8

Data access time decreases with the increase of hit ratio as there will be more

number of local accesses and less number of remote accesses. Hit ratio would be

maximized by ensuring the rules given in Equation 1.5 and 1.6.

DataReminderQuery ∩Datacached =⇒ ∅ (1.5)

Segmenti-cache ∩ Segmentj-cache =⇒ ∅ ∀i, j when i 6= j (1.6)

The first rule says that none of the data against remainder query ever overlapped

with cached data and the second rule depicts that data in each segment of cache

must be disjoint with the data of the remaining segments of the cache.

Data access time also depends on the time taken by the algorithm that divides

the user query into the probe and remainder queries. A faster query trimming

algorithm would result into the lesser data access time. The efficiency of a query

trimming algorithm depends on its complexity and ensuring rule is given in Equa-

tion 1.7 in the implementation of the algorithm.

DataReminderQuery ∩Datacached = ∅ (1.7)

Query trimming is based on semantic matching of posed queries with the stored

semantics in the cache. Semantic matching demands efficient indexing scheme

to the index semantics of already processed queries. Efficient indexing scheme

significantly contributes towards faster query trimming algorithm.

Concept of cache has been used already as a mid-tier for database management

systems to reduce the data latency [19–21]. However, cache used for database

management system is a syntactic cache. Due to syntactic cache, partially over-

lapped queries cannot be answered from the cache; as a result data latency cannot

be reduced up to the maximum extent. Partially overlapped queries can be an-

swered from the cache by using semantic cache as a mid-tier instead of syntactic

cache. Due to having ability to answer partially overlapped queries from the cache;

semantic cache reduced the data latency more than the syntactic cache [18]. This

research study is emphasized on SELECT-PROJECT queries. Rest of relational

operations like Join, Set Operation, Cartesian product and others can be solved

9

by transforming them into SELECT-PROJECT. For example, if there is a Join

or Cartesian product between two tables, then first we have to project from one

table, then project from another table, and finally do selection on obtained results.

Similarly, set operations can be transformed into SELECT-PROJECT operations.

Hence, it became obvious from above example, that any complex or simple query

is actually some variation of simple SELECT PROJECT operations, if our scheme

deals with SELECT PROJECT correctly, then it will be capable enough to provide

a solution for any other operations even in complex situations.

In this study, we focused on SELECT-PROJECT queries only for relational databases.

In fact, the proposed solution can be applied to rest of the databases like, XML

database [22], column database [23] in which, data retrieved in SELECT-PROJECT

fashion, too.

In this study, the existing techniques of query processing and semantic indexing

are analyzed on the basis of above qualities (Accuracy, Increased Data Availabil-

ity, Reduced Network Traffic, and Reduced Data Access Latency). The in-depth

analysis of literature has led us towards the identification of existing gap, which

include, there exist are major limitations in existing schemes of semantic cache

query processing. A query processing algorithm is proposed which discovers even

the hidden semantics of query and hence maximizes the hit ratio. A scheme to

index the semantics in the cache is also proposed, which reduces the query match-

ing time significantly if the number of segments in cache increases. The proposed

scheme has been implemented and results are presented. On the basis of the

results, it is concluded that the proposed technique performs better in terms of re-

ducing data access time, increasing data availability, producing the correct result,

and reducing network traffic.

1.2 Problem Statement

Analysis of the state-of-the-art semantic cache system on some defined benchmark

is not available. So, this study focuses on the analysis of the state-of-the-art cache

systems against benchmark given in Equation 1.8, 1.9, 1.10 and 1.11:

DataReminderQuery ∪DataProbeQuery =⇒ DataUserQuery (1.8)

10

DataReminderQuery ∩DataCache =⇒ ∅ (1.9)

Segmenti-cache ∩ Segmentj-cache =⇒ ∅∀i, j whenever i 6= j (1.10)

DataReminderQuery ∩DataProbeQuery =⇒ ∅ (1.11)

From the analysis, it is concluded that there exist no system that satisfies all

points of benchmark given above. So, propose a system which complies with the

above benchmark.

1.3 Research Questions

In order to solve the problem stated in Section 1.2, we have to address the following

research questions.

1. What should be the criterion to evaluate the existing semantic cache sys-

tems?

2. How existing system should be evaluated on the defined criterion?

3. What are the limitations in the existing systems?

4. How a semantic cache system should be designed to overcome the limitations

in existing systems? (To improve hit ratio, reduce network traffic, enhance

data reusability, and improve time efficiency).

5. Can we design the algorithms (with reduced complexity) to overcome the

limitations of existing systems?

6. In which area the proposed system performs better than existing systems?

11

1.4 Research Methdology

In order to answer the research questions raised in Section 1.3, to conduct the anal-

ysis of the problem given in Section 1.2 and to develop a new scheme/algorithm,

following research methodology is followed.

1. A detailed criterion is defined to evaluate the existing schemes.

Some benchmarks [24, 25] exist to evaluate query processing for databases

but does not work for semantic cache query processing. In this study, we

have defined the criterion to evaluate the semantic caching query processing.

2. Evaluation of existing semantic cache query processing schemes for relational

queries.

(a) Evaluation of implication/satisfiability algorithms

(b) Evaluation of semantic indexing schemes

(c) Evaluation of query matching algorithms

(d) Evaluation of query trimming algorithms

3. Proposed an architecture for the semantic cache system with the proper

placement of the designed algorithm

4. Developed efficient and less complex algorithm to:

(a) Perform implication/satisfiability

(b) Perform query matching

(c) Perform query trimming

5. Designed a scheme to store and index query semantics intelligently

6. Evaluated the correctness of the algorithms by using case studies.

7. Performed a complexity analysis of the algorithms and compare it with ex-

isting algorithms.

8. Implemented an experimental test bed to demonstrate the working as well

as to get real results.

9. Analyzed and reported the results.

12

Notation Description Notation Description

S Segment on Cache QC Cache Query

QU User posed query MC Matching Column

QA Set of Attributes in user query NMC Non Matching Column

QP Condition NMCC Non Matching Column in QC

QR Relation of user query NMCU Non Matching Column in QU

Aq Amending query OPC Operator in predicate of Cache Query

Rq Remainder query OPU Operator in predicate of User Query

Pq Probe query DV C Data Value of Cache Predicate

PA Predicate attribute DV U Data value of User Predicate

SA Attributes of segment RV Relationship between Data Value

SP Predicate of segment OOP Opposite operator in Nature

SR Relation of segment KA Key attribute of segment

SSA Status of Attribute ←− Assignment Operator

CA Common Attributes DA Difference Attributes

PAS Predicate Attributes of Cache Query PAU Predicate Attributes of User Query

Table 1.1: Notations

1.5 Definitions and Notations

This section presents some definitions by using relational algebraic notations that

are used in the thesis. Some notational symbols may be found in Table 1.1.

Definition 1.1. User Query (QU) will be represented by 5-tuple 〈D,QA, QP , QR, PA〉
where D is the name of database, QA is a set of required attributes, QR is a rela-

tion, QP is a condition and PA is set of attributes in predicate.

Definition 1.2. Given a database D = {Ri} and its attributes set A = ∪ARi
, 1 ≤

i ≤ n, Semantic Enabled Schema, QC will be 6-tuple 〈D,SA, SP , SR, SSA, C〉
where D is the name of database, SR is name of the relation, SA is a set of

attributes, SSA is a status of attributes, SP is predicate (condition) on which data

has been retrieved and cached, and C is the reference of contents.

Definition 1.3. Given a user queryQU 〈D,QA, QP , QR〉 andQC 〈D,SA, SP, SR, SSA,C〉;
Data Set, DU and DC will be the retrieved rows in the execution of QU and QC

respectively.

Definition 1.4. Given a user query QU and cached query QC , Probe Query

(pq) will be QU ∩QC and data set against pq will be DU ∩DC .

Definition 1.5. Given a user query QU and cached query QC , Remainder

Query (rq) will be QU - QC and data set against rq will be DU −DC .

Definition 1.6. Given a user predicate QP and cached predicate SP , Predicate

Implication (QP −→ SP) holds if and only if (QP ∩ SP) = ∅.

13

Definition 1.7. Given a user predicate QP and cached predicate SP , Predicate

Satisfiability holds if and only if QP ∩ SP 6= ∅.

Definition 1.8. Given a user predicate QP and cached predicate SP , Predicate

Unsatisfiability holds if and only if QP − SP = QP .

Definition 1.9. Given a user query QU and cached query QC , Query Implica-

tions (QP −→ QC) holds if and only if QA ⊆ SA and QP −→ SP .

Figure 1.5 would be helpful to understand the concept of query implication.

Definition 1.10. Given a user query QU and cached query QC , Query Satisfi-

ability holds if and only if QA ∩ SA 6= ∅ and QP ∩ SP 6= ∅.

Again, Figure 1.5 would be helpful to understand the concept of query satisfiability.

Implication Case Satisfiability Case

Cache
Query

User
Query Cache

Query

User
Query

Figure 1.5: Satisfiability and Implication

Definition 1.11. Given a user query QU and cached query QC , Query Unsat-

isfiaility holds either when QP ∩ SA = ∅ or QP ∩ SP = ∅.

Definition 1.12. Given a user query QU and cached query QC , Common At-

tributes (CA) is a set of attributes which are common among user and cached

query and will be computed as CA = QA∩ SA.

Definition 1.13. Given a user query QU and cached query QC ; Difference At-

tributes (DA), the set of attributes which exists in user query, but not in cached

query and will be computed as DA = QA − SA

14

S.No. SR SA SP SC
S1 Student age, name age< 28∧gpa> 3.4∨gpa< 3.4 1
S2 Student age, city age> 28 2

Table 1.2: Segments on Cache

Definition 1.14. Given a database D = {Ri} and its attributes set A = ∪ARi
,

1 ≤ i ≤ n, Semantic Segment, S is 4-tuple 〈SR, SA, SP , SC〉 where SC is ref-

erence of contents, SR is name of the relation, SA is a set of attributes, and

Sp = P1 ∨ P2 ∨ . . . ∨ PN where each Pi is a conjunction of simple predicates, i.e.

Pj = Pj1 ∧ Pj2 ∧ . . . ∧ PjN [18].

In order to understand the concept of a Semantic Segment in cache, the following

example would be helpful.

Assume the cache has stored the data with semantics given in Table 1.2 and new

query (QU) is posed by user as given below.

QU : SELECT city, gpa FROM student WHERE age≥ 28

In the result of query trimming the above user query will be divided into the probe

and the remainder query as follows.

pq: SELECT city, gpa FROM student WHERE age> 28

rq:SELECT city, gpa FROM student WHERE age= 28

Chapter 2

Criteria to Evaluate Existing

Techniques

In Chapter 1, we have defined four qualitative measures as benchmark to evaluate

the semantic cache system. These four qualitative points are generic. In order to

quantify the evaluation of the semantic cache system, we have defined eight (six to

measure four qualitative points of benchmarks and two qualitative points defined

the scope of the system to evaluate) domain specific quantitative parameters in this

chapter. These defined quantitative parameters would help to measure the four

points of benchmark (Accuracy, Increased Data Availability, Reduced Network

Traffic, and Reduced Data Access Latency) as illustrated in Chapter 1.

This chapter provides an answer for the first research question, listed in Section 1.3.

This chapter is further divided into two subsections, 2.1 and 2.2. In section 2.1,

eight quantitative parameters are discussed in detail and Section 2.2 presents the

association between six quantitative parameters and four points of benchmarks.

In other words, section 2.2 presents discussion that how four qualitative points of

benchmark can be ensured by using some of the six quantitative parameters.

2.1 Quantitative Parameters

This section presents the six quantitative parameters which would be helpful to

measure the benchmark to evaluate the semantic cache system, defined in Chap-

ter 1. These quantitative parameters are selected to ensure the accuracy of the

15

16

semantic cache system, to increase the data availability, to reduce the network

traffic, and to reduce the data access latency of the semantic cache system. Fol-

lowing are the eight quantitative parameters, first six are used to ensure the four

qualitative points of benchmark and last two are used to define the scope of the

semantic cache system.

• Semantics and Indexing Structure (IS)

• Generation of Amending Query (GoAQ)

• Zero Level Rejection (ZLR)

• Predicate Matching

• SELECT CLAUSE Handling

• Complexity of Query Matching (CoQM)

• Query Type

• Predicate Formulae

Each quantitative parameter is discussed below, one by one.

Semantics and Indexing Structure

As discussed in Chapter 1 that semantic cache stores the data as well as semantics

extracted from the query. In future, the semantics of a new user query are matched

with the semantics of stored query in cache. This matching process really depends

on two things. First, which type of semantics is stored and secondly the structure

used to store the semantics in cache for previous queries. Unstructured storage

of semantics in the cache will lead difficulty to write an algorithm to match the

semantics of cached query with semantics of a new user query. Similarly, structured

storage of semantics facilitates to write matching easily. The efficient indexing

structure of semantics ensures efficient query matching algorithm.

Initially, semantics were indexed in a flat structure [10]. Query matching with

flat structure proved costly therefore, semantics of queries were stored in segments

to improve the efficiency of query matching [18]. Further improvement in query

matching efficiency is achieved by 3-Level hierarchal indexing scheme [26, 27] and

then by four-level scheme as 4-HiSIS [28]. In this research study, we proposed a

17

schema based indexing scheme which is an enhancement of 4-HiSIS. So values for

this parameter in the comparison table will be Flat Structure, Segments, 3-Level

Hierarchal, 4-HiSIS and schema based indexing.

Generation of Amending Query

Idea of amending query is introduced in [18] with key contained segments. An

amending query will be generated if projected attributes are present in the se-

mantic cache, but a selection criterion of the query is not in the semantic cache.

Following examples provide better overview to understand the concept of amend-

ing query.

Assume following query has been executed and the result is stored in the cache

with its semantic description.

SELECT ename age FROM employee WHERE sal > 30000

Note that “sal” attribute is not stored in cache.

Now suppose that user poses a new query to process as follows;

SELECT ename age FROM employee WHERE sal > 35000

If we analyze the above scenario, all of data against new user query is available

in cache, but attribute used in the selection criterion is not in the cache i.e. sal

is not stored in cache. Due to which, data cannot be retrieved as query cannot

be executed without the availability of ‘sal’ attribute in cache. In this situation,

only key attribute is retrieved on given selection criterion is retrieved instead of

all projected attributes. In this way, reusability of existing data is increased. This

concept is useful in increasing the overall efficiency of the query processing [18].

Values for this parameter in the comparison table will be Yes, No or N.A (not ap-

plicable). Not applicable value is assigned in those cases where SELECT CLAUSE

is not handled.

Concept of amending query may increase the cost in case of the composite key. In

case of the composite key, if a user requires only one attribute, which is available

in cache, but selection criteria is not available, then according to procedure; key

attribute will be retrieved against selection criteria. In this case, two or more than

two attributes will be retrieved instead of a single attribute.

18

Zero Level Rejection

Rejection of incorrect queries at the initial stage without further processing is

referred as zero level rejection (ZLR). This parameter is defined to avoid the re-

dundant processing and hence, to improve the overall query processing time. In

some cases, users may pose the query with incorrect attributes (attributes that

are not part of particular relation), database name, invalid condition or relation

(relation that is not part of a particular database) name. For example, if user

poses following incorrect queries to process:

SELECT ename age FROM emMloyee WHERE age> 30

(relation not exist in database)

SELECT ename age FROM employee WHERE gpa> 3.0

(gpa is not field of employee)

SELECT ename sal FROM student WHERE age> 30

(sal is not field of student)

In these cases, the query should be rejected at zero level and should not be con-

tinued further because at the end, there would not be any retrieved result due

to incorrect queries. Time can be saved by avoiding the useless processing of

incorrect queries. Rejection of incorrect queries at the initial stage will increase

the efficiency of the query processing [17] by stopping useless processing. In the

comparison table, the value for this parameter is “Yes” or “No”.

Predicate Matching

Predicate matching is processed to determine the rows available at cache (selec-

tion criterion for probe query) and not available in the cache (selection criterion

for remainder query). In the result of predicate matching, it is decided which

rows should be retrieved from the server and which rows should be retrieved from

the cache. In order to understand the concept of predicate matching, following

example could be helpful.

Assume following cached query QC and user query QU .

QC = SELECT enameWHERE (age> 40)

QU = SELECT enameWHERE (age< 50)

In above queries, SP (the predicate of cache query) is age> 40 and QP (the pred-

icate of user query) is age< 50.

19

In predicate matching process, matching between SP and QP will be performed

and predicate for the remainder and probe query will be decided. If computed

predicate for probe query is not NULL, then the cache will hit otherwise cache

will miss.

In this example, predicate for probe query will be “age< 50 and age> 40” (cache

hit) and predicate for the remainder query will be “age≤ 40”.

This process should be accurate to produce the correct result and should be quick

to reduce the overall query processing time. The predicate matching process must

be intelligent enough so that, it must ensure the reusability of the available data

in the cache [17]. In another study [18], predicate matching is based on the impli-

cation and satisfiability [29, 30] and also some dynamic rule sets [27] were defined

for predicate matching. Predicate attribute (PA) and predicate data value (PDV)

are used in these dynamic rules (Sumalatha et al., 2007). Due to inefficiencies

in implication/satisfiability and dynamic rule sets, required hit-ratio cannot be

achieved [31]. The example below provides better overview to understand the

inefficient predicate matching.

Here, we assume a user query (QU) and a segment on cache (S) predicates for the

same elements are given as below:

QC = SELECT enameWHERE (age> 40∧ Sal> 50000)

QU = SELECT enameWHERE (age< 50∧ Sal> 50000)

In this example, the cache will hit and probe and remainder queries will be gen-

erated according to defined dynamic rule set and implication/satisfiability.

Meanwhile, if users pose queries having different attributes in selection criteria

(WHERE CLAUSE) like:

QU = SELECT enameWHERE Name = ‘Komal’

Then defined dynamic rule set and implication/satisfiability determines that pred-

icate attribute of both (user query and cached query) are different. On the basis

of this result, cache will not hit and probe query will be determined as NULL.

Even some of the data may exist in the cache with following predicate:

20

(age> 40∧ Sal> 50k) ∧ (eName = ‘Komal’)

From the above example, it can be concluded that dynamic rules and implica-

tion/satisfiability is not able to achieve the required hit ratio. Hence, there should

be a mechanism to generate probe query in these types of cases to increase the hit

ratio. In the comparison table, the values for this parameter are complexities of

each algorithm used to match predicate.

SELECT ALL Handling

In Select queries, select clause is important. This parameter will reduce the net-

work traffic, and improve the response time. There is an important issue in the

matching of SELECTCLAUSE “∗” with selected attributes. For example;

QC : SELECT ename age FROM employee WHERE age> 30

(Cached Query)

QU : SELECT ∗ FROM employee WHERE age> 30

(User posed query)

Now, the question crops up that how “∗” of user query and “ename & age” of

cached query will be matched? The efficient handling of SELECT “∗” increases

the hit ratio [17]. As best of our knowledge there exist no cache system in the

literature, that deals with matching SELECT “∗” of QU with stored semantics in

the cache. In the comparison table, the values for this parameter will be Yes, No,

or N.A (not applicable). Not applicable value is assigned in those cases where

SELECT CLAUSE is not handled.

Query Type

This parameter defines the scope of the particular semantic cache system. Query

type mentions that which type of query is handled. Values against this parameter

are SELECT and PROJECT, TOP, JOIN, etc.

Complexity of Query Processing

This parameter defines the overall query processing complexity for particular se-

mantic caching system. Complexity is computed, if an algorithm is given in a

particular technique. Only two techniques we have found which consists of an

algorithm for query processing over the semantic cache.

21

Predicate Formulae

This parameter mentions that which type of a predicate formula (WHERE CLAUSE)

is handled. To get the answers from cache, semantic views have to be found as

similar, equivalent or supersets of the query. Values across this parameter are con-

junctive (C), disjunctive (D), all formulas (A) and simple (without any disjunct

and conjunct) predicate (S)

2.2 Association between Benchmark and Param-

eters

This section describes how and which quantitative parameter ensures which point

of qualitative benchmark. Accuracy, Availability, Network traffic, and access la-

tency can be ensured by six domain specific parameters as discussed below.

Accuracy: Accuracy can be ensured by

• Predicate Matching

• Semantics and Indexing Structure

The accurate predicate matching algorithm ensures accurate cache system. The

inaccurate predicate matching algorithm may lead to retrieve more or less data

than required data against a query. In order to understand the concept of accurate

predicate matching, following example would be helpful.

QC : SELECT ename WHERE age> 40

QU : SELECT WHERE age< 50

In the above example, if some predicate matching process generates age> 40 for

probe query and age< 40 for remainder query then the retrieved result will be

inaccurate. Hence, a predicate matching process should be accurate that ensures

accurate semantic cache system.

Semantics and Indexing structure also ensures accuracy of the semantic cache

system.

22

To generate accurate result for semantic cache system, correct and complete se-

mantics should be stored. If some semantic indexing scheme stores incorrect de-

scriptions of query in the cache, then it may generate incorrect results.

Increased Data Availability: Following domain specific parameters may help

to increase the data availability for a semantic cache system.

• Semantics and Indexing Structure

• Amending Query

• SELECT ALL Handling

The semantic Indexing scheme may increase data availability by minimizing the

redundant semantics in cache. Generation of amending query also increases the

data availability because due to amending query maximum available data in cache

is reused as discussed above. SELECT ALL also has the ability to maximize the

utilization of available data in the cache.

Reduced Network Traffic: Network traffic can be reduced with the help of the

following parameters.

• Zero Level Rejection

• Amending Query

• SELECT ALL Handling

• Semantic and Indexing Structures

Network traffic can be reduced by rejecting the incorrect queries at client side

instead of sending the incorrect queries to the server which causes increased traffic

in the network. Amending query is another parameter to reduce the network traffic

due to retrieving only the key attributes from the server in amending query instead

of all the required attributes. SELECT ALL handling maximizes the utilization of

available data and least amount of data is retrieved from the server which reduces

the network traffic. The efficient indexing structure also reduces network traffic

by maximizing the utilization of available data in the cache.

Reduced Data Access Latency: Data access time of the semantic cache system

can be reduced by applying following parameters.

23

Qualitative
Benchmark

Quantitative Parameters

Accuracy
Predicate Matching & Semantic and

Indexing Structures

Increased Data
Availability

Semantic and Indexing Structures,
Generation of Amending Query, &

SELECT ALL Handling

Decreased
Network Traffic

Zero Level Rejection, Generation of
Amending Query, SELECT ALL
Handling, Semantic and Indexing

Structures

Decreased Data
Access Latency

Semantic and Indexing Structures,
Predicate Matching, Complexity,

Generation of Amending Query, Zero
Level Rejection, & SELECT ALL

Handling

Table 2.1: Association between Qualitative Benchmark and Quantitative Pa-
rameters

• Semantics and Indexing Structure

• Predicate Matching

• Complexity of Query Matching

• Amending Query

• Zero Level Rejection

• SELECT ALL Handling

The efficient semantic indexing structure reduces the complexity of query matching

process significantly as the incoming query will have to be matched with stored

semantics. Faster predicate matching ensures quick response time and reduced

data access latency. If a semantic cache system facilitates zero level rejection, the

response time will be reduced as the incorrect queries will be rejected at the local

machine. Amending query and SELECT ALL handling maximizes the utilization

of cached data which results in reduction in data access latency.

Table 2.1 summarizes the association between four points of qualitative benchmark

and six domain specific quantitative parameters.

Chapter 3

Related Work

This chapter presents the contemporary state-of-the-art approaches related to se-

mantic cache systems. Existing semantic cache systems designed for database are

evaluated based on the defined quantitative parameters.

This chapter presents the solution to the second and third research questions (see

Section 1.3), via evaluating the existing systems on defined criteria and discussing

the limitations in the existing system.

Existing semantic cache systems have been reviewed by Kumar et al. [32], too.

Kumar et al. have presented only the summary of each of the existing semantic

cache system. Existing semantic cache systems are not evaluated on any defined

criteria due to which, it is difficult to select the appropriate system to implement

the semantic cache. In fact, there is a need to evaluate the existing systems on

some defined criteria which results in expressing the strengths and limitations

of the systems. In this research study, we are aimed at evaluating the existing

systems upon some defined criteria.

Semantic cache is used in a variety of platforms, such as, on the Web [33], dis-

tributed environment [34], in mobile applications [35], and in location based databases [36].

Sync kit has been presented as a toolkit by Benson et al. [37]. This toolkit has been

designed for web browsers to enhance the performance of client-side by caching the

data. Another technique has been introduced [38] to store the paths of query in

the cache and enhance the efficiency of web systems by finding sub paths from the

saved paths in cache. To enhance the efficiency of search engines, a cache based

technique has been described by Cambazoglu et al. [39]. To cache the dynamic

24

25

web contents, Soundararajan and Amza have designed a technique that enhances

the performance of client-side [40]. To answer the XML queries over semantic

cache work is done by Sumalatha et al. [41], Chen et al. [42], and Sanaullah et

al. [43] Lui et al. have presented a cache based method is presented for mobile

applications to enhance the efficiency in offline mode [44]. In this research study,

we evaluated techniques for client-server databases one be one on the basis of

the defined criteria. However, the techniques on web and mobile applications are

beyond the scope of this study.

3.1 Godfrey’s Scheme

A technique [16] on query processing over semantic cache is presented by Godfrey

and Gryz. In this technique authors discuss the SELECT and PROJECT queries.

There is no discussion about SELECT “*” type queries and generation of amend-

ing. They have not discussed the rejection of incorrect queries at zero level. No

algorithm is presented for query processing. Query processing is discussed theo-

retically / given in plain English. Query indexing is used to make results more

efficient. Query trimming policy is described for generating probe and remainder

query. Flat structure is used to index the semantics. There are some limitations

in this scheme [16], as listed below.

• Query matching is performed at the cache level, which is an expensive tech-

nique.

• No algorithm is provided for predicate matching.

• There is no amending query generation in the query processing system.

• The scheme is not able to reject an incorrect query at initial level.

3.2 Ren’s Scheme

Another technique on query processing over the semantic cache with detailed algo-

rithms is presented by Ren et al. [18]. In this technique, an algorithm is presented

to process SELECT and PROJECT queries over the semantic cache. The main

26

concept of this technique is the generation of amending query with key-contained

segments to increase the hit ratio. I/S (implication/satisfiability) algorithms are

used to match the predicate. They claimed that their proposed algorithm is capa-

ble to handle the disjunction of conjunction formulae, but referred papers where

from they borrowed implication/satisfiability [29]. Authors of [45] claimed that

the algorithms are able to handle only conjunctive formulas. Cache is divided into

segments for indexing the semantics of previously executed queries. Strong con-

cept of this technique is generation of amending query via key-contained segments.

Generation of amending query made the technique efficient [17, 18]. By amending

query, stored data can be reused efficiently. The algorithm in this technique is not

capable of handling the SELECT “∗” type queries and there is no way to reject

incorrect queries at zero level. Query matching algorithm of this technique has

following flaws:

A. Implication of Satisfiability In the given algorithm, query matching pro-

cedure is based on implication/satisfiability (Sun et al., 1989), (Chen and Rous-

sopoulos., 1994) to match the predicate of query. The implication and satisfiability

algorithm has the following problems:

1. In the reference [29, 45] it is clearly mentioned that these algorithms work

only for conjunctive formulae, but this technique [18] claims that the query

processing algorithm will work for the disjunction of conjunctive predicates.

So, there is a clear contradiction in both studies. If referred algorithms are

not able to handle the disjunctive expressions [29] then how would query

matching algorithm work according to the claim of Ren et al. [18]?

2. Referenced algorithms for implication/satisfiability assume that variables of

segment predicate must be included in the user’s predicate. i.e. PAS = PAU ,

where, PAS is a set of variables of segment predicate and PAU is a set of

variables of user’s predicate. In other words, we can say that if predicate

attributes of both user and cached segment are same then satisfiability will

return YES otherwise it will return NO.

Example

QC = SELECT enameWHERE (age> 40∧ Sal> 50000)

QU = SELECT enameWHERE (age< 50∧ Sal> 50000)

27

In this example, algorithm will return YES.

Meanwhile, if users pose queries with different attributes like:

QU = SELECT ENAMEWHERE EName = “Komal”

Then algorithm will return NO because PAS 6= PAU . Even some of the data exist

in the cache with following predicate: (age> 40∧ Sal> 50k) ∧ (Ename = Komal).

From this example, we can say that this technique is not able to achieve required

hit ratio.

B. Useless Processing In the given query matching algorithm, there is a chance

of useless processing, especially when there is no data available in the cache. It

can be explained clearly with the following example.

Example We assume that there is a segment ‘S’ in cache with following query.

S = SELECT ename, Salary FROM employee WHERE age> 30

SA = {ename, Salary}, SP = age> 30, SR = employee

Now, user poses following query ‘QU ’

QU = SELECT age FROM employee WHERE age> 30

QA = {age}, QP = age> 30, QR = employee

According to case 3 of query matching algorithm [18] and based on above example,

QA is a not a subset of SA, so true result will be evaluated on the basis of this

condition. Then implication will be checked. Result of implication will also be

true because conditions (predicate) of both (QP and SP) are same. Hence, the

query will be divided into the probe and remainder query. At the end, there will

be no result across probe query. So, there is a useless processing and wastage of

resources. Even a single attribute does not exist, then how processing is done?

If there would be n segments on cache, then same process would be executed n

times, which would increase the run time complexity.

In these situations, a query should not proceed after checking the first condition

that declares that there are no common attributes of posed query and cached

segment.

C. Inefficient Generation of Amending Query In the given algorithm, a

strong concept of the generation of amending query is proposed with the help

28

of key-contained segments, but this idea is not handled efficiently in the query

matching algorithm of [18].

Example

Suppose there is a segment on the cache as given below.

QC = SELECT Salary FROM employee WHERE age> 30

SA = {ename, Salary}, SP = age> 30, SR = employee

Now, user poses following query ‘QU ’

QU = SELECT ename, post FROM employee WHERE age> 30

QA = {ename}, QP = age> 30, QR = employee

As conditioned attribute (Age) is not present in the segment, then how the result

would be retrieved against probe query as given in case 3 of query matching

algorithm without any amending query generated in this case? To improve the hit

ratio, an efficient algorithm has been designed [31] to generate amending query.

3.3 Wan’s Scheme

A technique on semantic caching has been presented by Wan and colleagues [46].

In this technique authors also discussed the query processing of SELECT queries.

SELECT “∗” type queries and generation of amending query is not applicable for

this technique because PROJECT queries are beyond this technique. There is

no defined way to reject incorrect queries at zero level. An algorithm has been

presented to generate probe and remainder query on the basis of implication/sat-

isfiability. The main focus of the technique is managing the cache contents. User

posed query is matched with stored segments.

There are some weak points in this technique [46], which are listed below.

• Query matching is performed at the segment level, which is an expensive

technique.

• Predicate matching is based on the implication and satisfiability, which is

not comprised of disjunctive queries.

It is not possible to reject incorrect queries at initial level.

29

3.4 Cai’s Scheme

A semantic cache system for aggregate queries [47] has been presented in by Cai

and colleagues. An aggregate query is the composition of SELECT and PROJECT

queries having some operation (count, max, min, etc). In this research activity,

we consider that how SELECT and PROJECT portion of query is handled in this

technique. SELECT “∗” type queries and generation of amending query are not

handled properly. There is no defined way to reject incorrect queries at zero level.

An algorithm is provided to generate probe and remainder query on the basis of

implication/satisfiability.

There are some weak points in this technique [47], which are listed below.

• An amending query is not generated. Due to this stored data on cache cannot

be reused efficiently. Predicate matching is based on implication/satisfiabil-

ity, which is not comprised of disjunctive queries.

3.5 Jonsson’s Scheme

A technique on query processing over semantic cache has been presented by Jon-

sson et al. [48]. The focus of this technique is SELECT (WHERECLAUSE)

queries and projections of queries are considered as static. SELECT “∗” type

queries and generation of amending query are not applicable to this technique,

because PROJECT queries do not lie under the scope of this technique. There is

no defined way to reject incorrect queries at zero level.

No specific rule is used to match the predicate in this technique. Probe and

remainder predicates are generated simply by taking conjunct of user’s and se-

mantic predicates. Semantics of previous queries are stored in a flat structure,

which proved costly at the time of query matching [18].

There are some weak points in [48], which are listed below.

• It is expensive due to the flat structure indexing scheme.

• It only works for SELECT queries (WHERECLAUSE) and makes the PROJECT

queries (SELECTCLAUSE) static.

30

• It has no ability to reject the query at initial level.

3.6 Bashir’s Scheme

Bashir and Qadir presented a technique [49] on query processing over the semantic

cache. The focus of this technique is on the SELECT (WHERECLAUSE) queries

and projection of queries is considered static (projected attributes for user and

cached queries are same). In this technique, 112 possible scenarios have been

described on the basis of six basic operators (<,≤, >,≥,=, 6=). On the basis of

112 possible scenarios, a predicate matching algorithm is designed, which is able

to compare simple predicates [49]. A hierarchal (4-HiSIS) approach [28] is used for

indexing the semantics. According to 4-HiSIS posed query is matched with cache

in four hierarchal steps. SELECT “∗” type queries and generation of amending

query are not applicable for this technique, because PROJECT queries are not

included in the scope of this technique. There is no way to reject incorrect queries

at zero level. There are some weak points in [49], which are listed below.

• Predicate matching rules are defined only for simple queries. There is no

defined strategy for matching conjunctive and disjunctive predicates.

• It only works for SELECT queries (WHERECLAUSE) and makes the PROJECT

queries (SELECTCLAUSE) static.

• It is not capable of rejecting the incorrect queries at initial level.

3.7 Sumalatha’s Scheme

M. R. Sumalatha et al. presented a technique [26, 27] on query processing over the

semantic cache. The focus of this technique is SELECT and PROJECT (SELEC-

T/WHERECLAUSE) queries. Given algorithm in this technique is not capable of

handling the SELECT “∗” type queries as well as there is no method of rejecting

incorrect queries at zero level.

PDV (predicate data value) is used to match the predicate in this technique. There

is no defined way to generate an amending query in the absence of conditioned

31

attribute. A 3-level hierarchal approach has been proposed to index the semantics

of previous queries (Sumalathal et al., 2007a), (Sumalathal et al., 2007) [26, 27].

There are some weak points in [26, 27], which are listed below:

• The PV; predicate matching is not efficient because it is unable to achieve

required hit ratio.

• No clear rule has been defined to make the predicates of probe and remainder

queries.

• It is not capable of generating amending query, which increases the runtime

complexity.

• It is not capable to reject incorrect queries at initial level.

3.8 Ehlers’s Scheme

Ehlers and Freitag presented a technique [50] to process a query that retrieves top

rows by using concept to top-k semantic caching scheme. The Initial concept of

cache for top-k query was introduced by Xie et al. [51] but this concept was not

for semantic cache. Ehlers introduced this concept for semantic cache. In this

technique, top-k queries are processed by saving semantics of already processed

queries. Concept of segments is used to store the segments. So the complexity of

query matching for this technique is exponential. Presented technique is not able

to handle SELECT ∗ type queries as well as there is no idea of amending query in

this technique. Due to these two deficiencies, hit ratio is not up to the mark. In

this technique, satisfiablity/implication algorithms are used which are expensive

for query processing.

Table 3.1 presents the summary of all reviewed state-of-the-art techniques dis-

cussed so far. Table 3.1 concludes that Ren et al. presented complete system for

query processing over semantic cache. Moreover, the system presented by Ren et

al. has some limitations in the context of predicate matching and complexity of

query matching.

32

P
a
ra

m
e
te

rs

T
e
ch

n
iq

u
e
s

P
re

d
ic

at
e

G
oA

Q
Z

L
R

S
E

L
E

C
T

P
re

d
ic

at
e

In
d
ex

in
g

C
oQ

M
Q

u
er

y
T

y
p

e
F

or
m

u
la

A
L

L
H

an
d
li
n
g

M
at

ch
in

g
S
tr

u
ct

u
re

R
en

et
al

.
A

Y
es

N
o

N
o

O
(n237

6
+
k
) S

eg
m

en
ts

O
(m×

n
×

2n
+
(n237

6
+
k
))

S
E

L
E

C
T

an
d

P
R

O
J

E
C

T

B
as

h
ir

an
d

Q
ad

ir
S

N
.A

N
o

N
.A

O
(n
∗ k

)
4-

H
iS

IS
N

.A
S

E
L

E
C

T
an

d
P

R
O

J
E

C
T

S
u
m

al
at

h
a

et
al

.
A

N
.A

N
o

N
.A

O
(n237

6
+
k
) 3-

le
ve

l
h
ie

ra
rc

h
ia

l
N

.A
S

E
L

E
C

T
an

d
P

R
O

J
E

C
T

J
on

ss
on

et
al

.
A

N
.A

N
o

N
.A

N
R

S
eg

m
en

ts
N

.A
S

E
L

E
C

T

G
o
d
fr

ey
an

d
G

ry
z

A
N

o
N

o
N

o
N

R
F

la
t

S
tr

u
ct

u
re

N
.A

S
E

L
E

C
T

an
d

P
R

O
J

E
C

T

C
ai

et
al

.
C

N
o

N
o

N
o

O
(n237

6
+
k
) 3-

le
ve

l
h
ie

ra
rc

h
ia

l
N

.A
S

E
L

E
C

T
an

d
P

R
O

J
E

C
T

W
an

et
al

.
A

N
.A

N
o

N
.A

O
(n237

6
+
k
) S

eg
m

en
ts

N
.A

S
E

L
E

C
T

an
d

P
R

O
J

E
C

T

E
h
le

rs
an

d
F

re
it

ag
A

N
o

N
o

N
o

O
(n237

6
+
k
) S

eg
m

en
ts

O
(m×

n
×

2n
+
(n237

6
+
k
))

T
op

-k

T
a
b
l
e
3
.1
:

A
n

al
y
si

s
M

at
ri

x
of

E
x
is

ti
n

g
T

ec
h

n
iq

u
es

Chapter 4

sCacheQP

In the previous chapter, we have discussed the scholarly works of various re-

searchers. By summing up the last chapter; we evaluated the existing semantic

cache systems against the parameters as, Indexing Structure (IS), Generation of

Amending Query (GoAQ). Zero Level Rejection (ZLR), Predicate Matching, SE-

LECT CLAUSE Handling, Complexity of Query Matching (CoQM), Query Type,

and Predicate Formulae. In this chapter, with the help of algorithms and diagrams,

we will discuss the proposed semantic cache system which overcomes limitations

of existing systems as discussed in previous chapters.

This chapter provides answers of research questions 4 and 5 listed in Section 1.3 by

developing algorithms (query matching and query trimming) and indexing (store

semantics) scheme that overcomes the limitations of existing semantic cache sys-

tems.

Proposed Semantic Cache System: sCacheQP This section presents the

sCacheQP, which is a complete architecture of the query processing system. Com-

plete working of proposed system is depicted in Figure 4.1. We have divided the

working of the system in four major building blocks; Query Matching, Query Trim-

ming, Rebuilder, and Semantic Cache (which elaborates schema based indexing

scheme).

There are four major building blocks in the proposed architecture. Detailed de-

scription of Query matching is presented in Section 4.1, Query trimming is pre-

sented in Section 4.2, rebuilder is further explained in Section 4.3, and schema

33

34

Figure 4.1: Semantic Cache Architecture

based indexing scheme is elaborated in Section 4.4. The basic driver algorithm is

given in Algorithm 1.

Algorithm 1 accepts user posed query and cached query and returns the final result

of the user query. At Step 4, variables are initialized. In the next, Split Query(QU)

algorithm is called, which accepts user query and returns different portions of the

query. Working of Split Query is given in Algorithm 2. In Step 6, validity of

the query is checked. If user posts a valid query, then this algorithm returns false,

otherwise returns true. If returned result is false then sCacheQP moves on Step 12

otherwise it moves on Step 30. In Step 12, common and different attributes are

computed. If set of difference attributes is empty, then Step 18 will be skipped

otherwise rq1 will be computed. In case of emptiness of common attributes set

there will be no probe query, otherwise probe query and rq2 will be computed

in Steps 24 to 28. Working of each step is given next steps along with their

algorithms. Working of each building block of sCacheQP with their algorithm is

presented in further subsections.

35

Algorithm 1 Running Algorithm for sCacheQP

1: Inputs:
QU , QC

2: Outputs:
FR (Result against QU)

3: Procedure:
4: Initialize:

pq ←NULL
rq1 ←NULL
rq2 ←NULL

5: PORTIONS← SPLIT QUERY (QU);
6: Reject← CHECK REJECTION (PORTIONS);
7: if Reject = false then
8: goto Line 12;
9: else

10: Reject Query and goto Line 30;
11: end if
12: CA, DA ← 1st Level Query Rewriter (QA,SA);
13: if DA 6= empty then
14: goto Line 18;
15: else
16: goto Line 19;
17: end if
18: rq1 ← πDAσQP (QR) ;
19: if CA 6=empty then
20: goto Line 24;
21: else
22: goto Line 29;
23: end if
24: MC , NMCC , NMCU , Dvc,Dvu,Opc,Opu, Coc, Cou←Semantic Extraction(QP , SP);
25: C1, NC1 ←ExplicitySemanticMatching(MC , Dvc,Dvu,Opc,Opu);
26: C2, NC2 ←ImplicitSemanticMatching(MC , NMCC , NMCU , C1, NC1)
27: Cached, N -Cached←PredicateMerging (C2, NC2, Coc, Cou)
28: pq, rq2 ← 2nd Level Query Rewriter (QF , CA,Cached, N -Cached);
29: aq ← GEN AMEND QUERY ();
30: FR ← Rebuilder(pq, rq1, rq2);

4.1 Query Matching

In semantic cache, user posed query is matched with the stored semantics on the

cache. Through this process, the decision is taken whether the data is available in

the cache or not. Query matching process is accomplished in two sub processes,

splitter and rejecter. Splitter accepts the user query QU from the user interface

and splits the query on the basis of three clauses of the query SELECT, FROM,

36

and WHERE. These three portions are called QA (SELECT: projected attributes

in the user query), QR (FROM : Relation) and QP (WHERE : selected rows/tuples

on specific conditions); and sends to the rejecter for initial level checking. QP will

be empty, if there is no condition on user posed query [31, 52]. An Algorithm for

splitting the user query was presented by Ahmad et al. and is given in Algorithm 2.

Algorithm 2 Split Query()

1: Input:
QU

2: Outputs:
QA, QP , QR

3: Procedure:
4: QA ← SELECT CLAUSE ;
5: QP ← WHERE CLAUSE ;
6: QR ← FROM CLAUSE ;
7: Return ← QA, QP , QR;

Responsibility of rejecter is to check the validity of user posed query by sending

the list of selected attributes (QA), relation (QP) and predicate attributes (PA) on

the schema based indexing semantics. Predicate attribute is extracted by rejecter

from QP and included in the list. If attributes list of QA, QR and PA matches the

stored schema, then processing would continue, otherwise query would be rejected

and processing would stop. Rejecter also builds QA in the case of ‘∗’ by retrieving

all attributes from schema as a list if predicate attribute exist in schema [31].

Algorithm to validate the user query was presented by Ahmad et al. [31] and

is given in Algorithm 3. This algorithm may be helpful to decrease the network

traffic as well as to reduce the data access latency by rejecting the incorrect queries

locally (no need to send request to the server), which leads to a reduction of the

network traffic and data access latency.

37

Algorithm 3 Check Rejection
1: Inputs:

QA, QP , QR QU

2: Output:
True/False

3: Procedure:
4: if all attributes of QA present in schema then
5: if relation of QR present in schema then
6: if PA is present in schema then
7: if QA = ∗ then
8: Return false and build QA from schema;
9: else

10: Return true;
11: end if
12: else
13: Return true;
14: end if
15: else
16: Return true;
17: end if
18: else
19: Return true;
20: end if

4.2 Query Trimming

When it has been decided that data is available in the cache, then second step

of sCacheQP is performed. In this step query is divided into two sub queries

called probe and remainder queries, this process is named as query trimming.

This process is accomplished in two stages. At first stage, vertical partition takes

place and the attributes that are not available (DA) at cache are directly sent to

the server as rq1 (remainder query) with original predicate.

We called it 1st level query rewriter [31] and its algorithm is given in Algorithm 4.

The query rq1 is computed as follows:

rq1 = πDAσQP (QR)

Rest of attributes; that are common in both user and cached query, are forwarded

to the predicate processor, which works on the second stage. Predicate proces-

sor consists of four sub modules; semantic extractor, Explicit Semantic Matcher,

Implicit Semantic Matcher, and Predicate Merger. At this stage, predicate is

38

Algorithm 4 1stLevel Query Rewriter (QA, SA)

1: Inputs:
QA, SA

2: Outputs:
CA, DA

3: Procedure:
4: CA ← QA ∩ SA ;
5: DP ← QA − SA ;
6: Return ← CA, DA;

simplified by just separating the portions of it on the basis of conjunctive and

disjunctive operators. Then semantics of user’s query predicate with respect to

the cached predicate is extracted in the form of matching columns (MC – sim-

ilar in both user query predicate and cached predicate), non-matching columns

of cache (NMC – columns in cached query that do not match with user query)

and non-matching columns of user query (NMu – columns in user query that do

not match with cached query). Some other information is also collected like; data

values of the cache predicate (DV C), data values of the user predicate (DV U), com-

parison operators in the cache predicate (Opc), comparison operators in the user

predicate (Opu). Algorithm to extract the semantics of predicate is given below

in Algorithm 5.

Algorithm 5 Semantics Extractor

1: Inputs:
QP , SP

2: Outputs:
Coc[n], Cou[n],MC [n], NMCC [n], NMCU [n], Opc[n], Opu[n], Dvc[n], Dvu[n]

3: Procedure:
4: MC[n]← List of Columns Present in both QP , SP ;
5: NMCC [n]← List of Columns Present in SP but not in QP ;
6: NMCU [n]← List of columns present in QP but not in SP ;
7: Opc[n]← operator set of SP ;
8: Opu[n]← Operator present set of QP ;
9: Dvc[n]← Data values in SP ;

10: Dvu[n]← Data values in QP ;
11: Coc[n]← Connective Operators in SP ;
12: Cou[n]← Connective Operators in QP ;
13: Return Coc[n], Cou[n],MC [n], NMCC [n], NMCU [n], Opc[n], Opu[n], Dvc[n], Dvu[n];

After extraction of semantics Mc,DV C , DV U , Opc, andOpu are sent to the Explicit

Semantic Matcher. Explicit Semantic Matcher trims the predicate into two por-

tions; one for the remainder (C1) and other for probe query (NC1). The explicit

39

Semantic Matching algorithm is based on the boundary values as well as on the

nature of the comparison operators instead of satisfiability/implication. There are

112 rules defined on the basis of boundary values and basic comparison operators

(<,≤, >,≥,== and 6=). Rule based Algorithm is given in Algorithm 6, which is

designed to match the explicit semantics of predicates. Designed algorithm divides

the predicate into cached predicate (predicate for probe query) and non-cached

predicate (predicate for remainder query). This algorithm proved to be helpful to

ensure all the four points of benchmark as discussed below.

Algorithm 6 ExplicitSemanticMatching

1: Inputs:

Mc[n], OPc[n], OPu[n], DV c[n], DV u[n], CC [ni], CU [n]

2: Outputs:

C1[n], NC1

3: Procedure:

4: Initialize:

C1[n]←Null, NC1[n]← Null

5: for i = 0 to n do

6: if DVC
[i] < DVU

[i] then

7: if (OPC [i] ∈ {6=, >,≥}) ∧ (OPU [i] ∈ {>,≥,=}) then

8: C1[i]← CC [i] OPC [i] DVC
[i]

9: NC1[i]←Null;

10: else if (OPU [i] ∈ {<,≤, 6=}) then

11: C1[i]← CC [i]OPC
[i]DVC

[i]

12: NC1[i]← (CU [i] OPUDVU
[i]) ∧ (CC [i]Rev (OPc[i])DV c[i])

13: elseC1[i]←Null NC1[i]← (CU [i]OPu[i]DVU
[i])

14: end if

15: else if DVC
[i] > DVU

[i] then

16: if (OPC [i] ∈ {6=, <,≤}) ∧ (OPU [i] ∈ {<,≤,=}) then

17: C1[i]← CC [i]OPC
[i]DVC

[i];

18: NC1[i]←Null;

19: else if (OPC
[i] ∈ {6=, >,=, <,≤}) ∧ (OPU

[i] ∈ {>,≥, 6=}) then

20: C1[i]← CC [i]OPC
[i]DVC

[i]

21: NC1[i]← (CU [i] OPUDVU
[i]) ∧ (CC [i]Rev (OPC

[i])DVC
[i])

22: else

23: C1[i]←Null

24: NC1 [i]← (CU [i]OPU
[i]DVU

[i])

40

25: end if

26: else if DVC
[i] = DVU

[i] then

27: if ((OPC
[i] ∈ {≥}) ∧ (OPU

[i] ∈ {>, ,=}))
28: ∨ (OPC

[i] = OPU
[i]) ∨ ((OPC

[i] ∈ {≥})
29: ∧ (OPU

[i] ∈ {<,=}) ∨ ((OPC
[i] ∈ {6=}) ∧ (OPU

[i] ∈ {<,>})) then

30: C1[i]← CC [i]OPC
[i]DVC

[i];

31: NC1[i]←Null;

32: else if (OPC
[i] ∈ {>,≤}) ∧ (OPU

[i] ∈ {≥, 6=})
33: ∨ ((OPC

[i] ∈ {<,≥}) ∧ (OPU
[i] ∈ {≤, 6=}))

34: ∨ (OPC
[i] ∈ {6=,=}) ∧ (OPU

[i] ∈ {≤,≥}) then

35: C1[i]← CC [i]OPC
[i]DVC

[i]

36: NC1 [i]← (CU [i] OPU
DVU

[i]) ∧ (CC [i]Rev (OPC
[i])DVC

[i])

37: else

38: C1[i]←Null

39: NC1 [i]← (CU [i]OPU
[i]DVU

[i])

40: end if

41: else if (DVC
[i] 6= DVU

[i]) ∧ ((OPC
[i] ∈ {=, 6=}) ∧ (OPU

[i] ∈ {6=})) then

42: C1[i]← CC [i]OPC
[i]DVC

[i];

43: NC1 [i]← (CU [i] OPU
DVU

[i]) ∧ (CC [i]Rev (OPC
[i])DVC

[i])

44: else

45: C1[i]←Null

46: NC1 [i]← (CU [i]OPU
[i]DVU

[i])

47: end if

48: end for

Accuracy is ensured because the algorithm divides the user query predicate into

cached predicate and non-cached predicate accurately. The algorithm ensures two

qualities while dividing the user query predicate; firstly, nothing is overlapped

between cached queries and non-cached predicates. Secondly, nothing is included

or excluded unnecessarily in resultant cached and non-cached predicates.

This algorithm maximizes the utilization available data in the semantic cache by

dividing the user query predicate into cached predicate and non-cached predicate.

Due to a maximum utilization of data, availability of the system is increased; less

data retrieval from server causes the reduction in network traffic and data access

latency.

41

The output of a predicate matching algorithm is a predicate that is available at

cache (C1) and predicate that is not available in the cache (NC1). The working

of the algorithm is explained below. As we have discussed that Explicit Semantic

Matching algorithm is based on the boundary value and basic comparison operator.

On the basis of boundary value and comparison operators; Algorithm 6 will trim

the predicate into the probe and remainder queries.

Remember that predicate matching algorithm having better time complexity is

an alternative of satisfiability/implication [30] used to help process query in the

literature [18, 53]. Computed values C1, NC1 and NMU are sent to the Implicit

Semantic Matching algorithm to remove the additional information. Algorithm

for performing this job is given below in Algorithm 7.

Algorithm 7 Implicit Semantic Matching

1: Inputs:
MC [n], NMCC [n], NMCU [n], C1[n], NCq[n]

2: Outputs:
C2[n], NC2

3: Procedure:
4: Initialize:

C2 ← Null, NC2 ←null
5: for i = 0 to n do
6: if (NMCC [i] = null) ∧ (NMCU [i] = null) then
7: C2 ← C1[i];
8: NC2 ← NC1[i]
9: else if (NMCC [i] 6= null) ∧ (NMCU [i] = null) then

10: C2 ← (C1[i]) + (NMCC[i]);
11: NC2 ← ((C1[i] + R (NMCC [i])) ∨ (NC1[i])
12: else if (NMCC [i] = null) ∧ (NMCU [i] 6= null) then
13: C2 ← (C1[i]) + (NMCU [i]);
14: NC2 ← NC1[i] +NMCU [i];
15: else if (NMCC [i] 6= null) ∧ (NMCU [i] 6= null) then
16: C2 ← (C1[i]) + (NMCU [i]) + (NMC

[i]);
17: NC2 ← ((C1[i]) + R (NMCU)) ∨ ((NC1) + (NMCU [i]));
18: else if MC [i] == null then
19: C2 ← (NMCC [i]) + (NMCU [i]);
20: NC2 ← NMCU [i] + R (NMCC[i]);
21: end if
22: end for

Due to extraction of hidden semantics, this algorithm maximizes the utilization of

available data which results in increased data availability, reduced network traffic,

and reduced data access latency.

42

Generated cached (C2) and non-cached (NC2) predicates by the Implicit Semantic

Matcher are combined by predicate merger. Algorithm to merge the predicate is

given in Algorithm 11.

The computed predicates are then sent to the 2nd level query rewriter. Finally,

probe and remainder queries are computed by the 2nd level query rewriter as given

in Algorithm 8.

Algorithm 8 2ndLevel Query Rewriter (QA, SA)

1: Inputs:
QA, CA,Cached, N -Cached

2: Outputs:
pq, rq2

3: Procedure:
4: pq ← πCA

σCached (QR);
5: rq2 ← πCA

σN−Cached (QR);
6: Return pq, rq2

pq is executed locally and rq2 is sent to the server. Then results of both are sent

to the rebuilder to combine the result. If the predicate attribute of user query

(PA) is not available in the cache then amending query will also be generated as

given in Algorithm 9. This algorithm may be helpful to maximize the utilization

of available data in the cache, which leads to increased data availability, reduced

network traffic, and reduced data access latency.

Algorithm 9 GEN AMEND QUERY

1: Inputs:
pq, SP , QR, QP , PA, KA

2: Output:
aq

3: Procedure:
4: if SP ⊆ QP‖SP = QP‖pq =null ‖PA ⊆ SP then
5: aq ←null;
6: else
7: aq ← πKσQP (QP);
8: end if

4.3 Query Rebuilding

Rebuilder receives the result form server (SR), which is retrieved, against the

remainder queries (rq1 and rq2) and results from cache (CR) against the probe

43

query (pq), combines both as a final result FR. The final result is shown to the

user and also updated in the cache contents, if required.

4.4 Schema Based Indexing Scheme

This section describes the schema based hierarchal indexing scheme for contents

matching over the semantic cache. One of the challenges of query processing is an

efficient query matching over the semantic cache. So to make the query processing

efficient, there is a need to make the process of query matching accurate and

effective. As discussed in Section 2, there are five different strategies adopted

previously. 4-HiSIS (Bashir and Qadir., 2006) approach is more efficient than

remaining schemes. This approach is used to find out whether required attributes

are available from the cache or not. After finding the status of required attributes,

this scheme also moves to segment based scheme for building probe and remainder

queries, which is costly.

As we need a schema in semantic cache to process the query [17], we have enhanced

indexing the scheme that will use schema to maintain the semantics of previous

queries instead of storing semantics and schema separately. This research study

introduces a way by which semantics of queries can be preserved efficiently by

managing schema. This scheme is named as schema based indexing scheme for se-

mantic cache and is able to reduce the query matching complexity into polynomial

from exponential (Ahmad et al. 2016)[reference not found].

Initially schema for each database is stored in the cache with database names,

relation names and attributes names with false status. Semantic enabled schema

can be managed for any database. Here we have managed the schema of the library

with semantics as given in Table 4.1.

Now suppose, that user enters a query as given below.

Database
Name

Relation
Names

Attribute
Names

Attribute
Status

Condition
Content

Reference

Library
Books

Author FALSE
Title FALSE
ISBN FALSE

Journals
Author FALSE
Title FALSE

Table 4.1: Schema for Library

44

Database
Name

Relation
Names

Attribute
Names

Attribute
Status

Condition
Content

Reference

Library
Books

Author TRUE Author=‘Ali’ 1
Title TRUE Author=‘Ali’ 1
ISBN FALSE

Journals
Author FALSE
Title FALSE

Table 4.2: Updated indexed schema

SELECT Author, Title FROM Books WHERE Author=‘Ali’

The stored contents will be updated as given in Table 4.2 on the basis of above

queries.

Schema based semantics on cache are updated on the basis of a query. Author

and Title across books are posed to retrieve the query result, so their status will

be changed to true, and condition and content reference will also be updated.

After managing semantics; next step is to use the managed semantics on the

cache. For content matching; first of all database names will be matched exactly.

Secondly, if database names get matched, then relation names will be matched

exactly otherwise, processing will be stopped. If relation names get matched, then

attribute names will be matched. If required attributes are part of the schema

then their status will be checked. If the status is true, then data across particular

attribute will be available, otherwise it will be retrieved from the server. If the

status of the attribute is also true, then condition across the attributes is matched.

Finally, probe query is generated by generated conditions from referenced contents.

A generic approach for schema based content matching is presented in Figure 4.2.

Figure 4.2: Schema based content matching

Proposed schema based indexing scheme is basically an enhancement of previous

work 4-HiSIS [28].

There is a simple driving algorithm (sMatch) given to perform the query matching

in Algorithm 10.

45

Algorithm 10 sMatch
1: Inputs:

DA, QW , P, CA

2: Output:
sMatch

3: Procedure:
4: if DA 6= ∅ and CA 6= ∅ then
5: rq1 ← πDA

σQP
(QR) and pq ←NULL and rq2 ←NULL;

6: else if QW → P and DA 6= ∅ and CA 6= ∅ then
7: rq1 ← πDA

σQP
(QR) and pq ← πCA

σQP
(QR) and rq2 ←NULL;

8: else if QW → P and DA = ∅ and CA 6= ∅ then
9: rq1 ←NULL and pq ← πCA

σQP
(QR) and rq2 ←NULL;

10: else if QW ∧ P is satisfiable and CA 6= ∅ and DA 6= ∅ then
11: rq1 ← πDA

σQP
(QR) and pq ← πCA

σQP
(QR) and rq2 ← πCA

σQP¬P (QR);
12: else if QW ∧ P is satisfiable and CA 6= ∅ and DA = ∅ then
13: rq1 ←NULL and pq ← πCA

σQP
(QR) and rq2 ← πCA

σQP¬P (QR);

Algorithm 11: Predicate Merging
1: Inputs:

C2[n], NC2[n], Coc[n], Cou
2: Outputs:

Cached, N -cached
3: Procedure
4: If Coc ∧ Cou ∈Null then
5: Cached← C2;
6: N -Cached← NC2;
7: If Coc∧Cou∈ Λ then
8: Cached← ∧Ci;
9: N -Cached← ∨ (Ci ∧NCj)

where 1 < i, j < n and i 6= j;
10: If Coc∧Cou∈ V then
11: Cached← ∨Ci where 1 < i < n;
12: N -Cached← ∨NCi where 1 < i < n;
13: If Cou∈ V ∧ Coc∈ Λ then
14: Cached← ∧Ci;
15: N -Cached← ∨ (Ci ∧NCj)

where 1 < i, j < n and i 6= j;
16: If Cou∈ V ∧ Coc∈ Λ then
17: Cached← ∧Ci;
18: N -Cached← ∨ (Ci ∧NCi) ∨ (Ui ∧R (Uj)) where 1 < i, j < n and i 6= j;

Proposed schema based hierarchical semantic indexing scheme has following ad-

vantages:

• Minimize the redundant semantics on a cache, which results in increased data

availability.

46

• Query matching becomes faster and accurate, which leads to reduced data

access latency and accuracy of the system.

• Rejects incorrect queries due to having schema at the cache, which achieves

reduced network traffic and reduced data access latency.

• Handles SELECT ∗ type queries, which achieves reduced network traffic and

reduced data access latency.

• Reduce overall complexity of query processing for semantic cache which re-

sults in reduced data access latency.

Chapter 5

Analysis of Proposed System

In this chapter, analysis of the proposed system is presented. Comparative

study of the proposed sMatch with previous work done by Q. Ren et al.

[18] and Ahmad et al. [54] is presented in this chapter. The comparison is

performed in terms of different aspects: run time complexity, hit ratio, and

handling of incorrect and “SELECT ∗” type queries.

First of all, we compared the query matching complexity of proposed semantic

indexing scheme with segment based semantic indexing scheme. We have

computed the complexity of both the schemes as follows.

Theorem 5.1. For a relation R having attribute set A = ∪Ai, where 1 ≤
i ≤ n; query matching complexity for segment based scheme is m×n×2n−1

where m is number of required attributes in user query and n is the number

of total attributes in a relation.

The proof for Theorem 5.1 will be constructive nature. We shall begin with

a lemma.

Segment based query matching scheme depends on the number of segments

and number of attributes in each segment. Number of segments in cache

depends on the number of attributes in a relation. Possible segments for a

relation having n attributes are proved in Lemma 5.2.

Lemma 5.2. For a relation R having attribute set A = ∪Ai, where 1 ≤ i ≤ n;

the maximum number of segments is 2n − 1

Proof. Number of attributes in a relation R = n Number of subsets, P , for

n attributes can be computed as given in Equation 5.1,

P (n) = 2n (5.1)

47

48

Number of disjoint queries (DQU) on relation will be equal to the subsets

except the empty set.

DQU = P (n)−∅ (5.2)

There will only one empty subset in P (n) namely ∅. By replacing values in

Equation 5.2 from 5.1 we get;

DQU = 2n − 1 (5.3)

As we know [18] that the number of segments |S| on cache will be equal to

the number of disjoint queries. i.e.

|S| = DQU (5.4)

By replacing the value into Equation 5.4 from 5.1, we get;

|S| = 2n–1 (5.5)

Hence Lemma 5.2 is proved.

Comparisons required to find a single attribute over segments |S| in the worst

case are proved in Lemma 5.3

Lemma 5.3. For a relation R having attribute set A = ∪Ai, where 1 ≤ i ≤ n;

n× 2n − 1 number of comparisons (NoCn) required to find a single attribute

Ai over |S|

Proof. Finding a single attribute Ai over |S| is required to visit each and

every attribute in each segment. For a single attribute in a relation; there

can be only one segment (according to Lemma 5.2) and number of comparison

(NoCn) required for query matching will also one and can be computed as

NoCn = 21 − 1 (5.6)

For two attributes; there will be three segments (according to lemma 1.1).

49

Number of comparisons (NoCn), in this case, will be required for query match-

ing are 4 and can be computed as

NoCn = 22 − 1 + (21 − 1) (5.7)

= 22 − 1 + 20(21 − 1) (5.8)

= 22 − 1 + 20(22−1 − 1) (5.9)

For three attributes; there will be three segments and number of comparisons

(NoCn) required for query matching are 12 and can be computed as

NoCn = 23 − 1 + 22 − 1 + 21 − 1 + 21 − 1 (5.10)

= 23 − 1 + 22 − 1 + 2(21 − 1) (5.11)

= 23 − 1 + 20(22 − 1) + 21(21 − 1) (5.12)

= 23 − 1 + 20(23−1−0 − 1) + 21(23−1−1 − 1) (5.13)

For four attributes; there will be three segments and number of comparisons

(NoCn) required for query matching are 32 and can be computed as

NoCn = 24 − 1 + 23 − 1 + 22 − 1 + 21 − 1 (5.14)

+21 − 1 + 22 − 1 + 21 − 1 + 21 − 1 (5.15)

= 24 − 1 + 23 − 1 + 22 − 1 + 22 − 1 + 21 − 1 (5.16)

+21 − 1 + 21 − 1 + 21 − 1 (5.17)

= 24 − 1 + 23 − 1 + 2(22 − 1) + 4(21 − 1) (5.18)

= 24 − 1 + 20(23 − 1) + 21(22 − 1) + 22(21 − 1) (5.19)

= 24 − 1 + 20(24−1−0 − 1) + 21(24−1−1 − 1) + 22(24−2−1 − 1)(5.20)

Similarly, for five attributes; number of comparisons can be computed as:

NoCn = 25 − 1 + 20(24 − 1) (5.21)

+21(23 − 1 + 22(22 − 1) + 23(21 − 1) (5.22)

= 25 − 1 + 20(25−0−1 − 1) (5.23)

+21(25−1−1 − 1 + 22(25−2−1 − 1) + 23(25−3−1 − 1) (5.24)

50

For n attributes number of comparisons (NoCn) can be computed as follows

NoCn = 2n − 1 + 20(2n−0−1 − 1) + 21(2n−1−1 − 1) + 22(2n−2−1 − 1) + . . .(5.25)

+2n−3(2n−n−3−1 − 1) + 2n−2(2n−n−2−1 − 1) (5.26)

We can write it as

NoCn = 2n − 1 +
r=n−1∑
r=0

(
2r
(
2n−r−1 − 1)

))
(5.27)

= 2n − 1 +
r=n−1∑
r=0

(
2r.2n−r−1)− r=n−1∑

r=0

2r = 2n − 1 (5.28)

+
r=n−1∑
r=0

2n−r+r−1 −
r=n−1∑
r=0

2r (5.29)

= 2n − 1 +
r=n−1∑
r=0

2n−1 −
r=n−1∑
r=0

2r (5.30)

By using geometric series we get

= 2n − 1 + 2n−1.
r=n−1∑
r=0

1− 2n − 1

n− 1
(5.31)

= 2n − 1 + 2n−1.n− 2n + 1 (5.32)

= n.2n−1 (5.33)

Hence Lemma 5.3 proved.

In Lemma 5.3, we have proved that query matching complexity of finding a

single attribute over |S| is n× 2n − 1

It is obvious that this complexity will be m × n × 2n − 1 to find out the m

attributes over relation R having n attributes. The above calculated com-

parisons are derived from the stored segments in cache. Now, if there are ‘m’

attributes required in user query, then total comparison will be m×n×2n−1.

Hence, the computation complexity of segments based will be m×n×2n−1;

where m is the number of attributes in user posed query and n is the number

of attributes in a relation.

Hence Theorem 5.1 proved.

Corollary 5.4. In the best case the query matching complexity for segment

based scheme will be m× 2n − 1. In best case, each required attribute will be

51

found out at first location of segment. According to Lemma 5.2, total numbers

of segments (|S|) will be 2n− 1. For each attribute m we have to visit 2n− 1

segments. In this case query matching complexity will be m× 2n − 1.

Theorem 5.5. For a relation R having attribute set A = ∪Ai, where 1 ≤
i ≤ n; query matching complexity for 6-HiSIS based scheme is m × n where

m is the number of required attributes in user query and n is the number of

total attributes in a relation.

Proof. This proof is very straightforward; because 6-HiSIS indexes the se-

mantic enabled schema instead of semantic segments. Number of attributes

will always be n irrespective of the number of disjoint queries. The number

of comparison (NoCn) to find out m attributes over R will be m×n in worst

case.

As proved that query matching complexity is reduced from exponential to

polynomial. In result of a faster query matching algorithm, data access la-

tency for query is reduced.

Worst case complexity analysis of 6-HiSIS, graph based and segment based

scheme given in Figure 5.1. We have assumed that each comparison will take

one millisecond to compute.

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10

Ti
m
e 6-HiSIS Based

Segment Based

Graph Based

Figure 5.1: Worst case complexity analysis

Similarly; best case complexity analysis of 6-HiSIS and segment based scheme

is given in Figure 5.2. We assumed that each comparison will take one mil-

lisecond to compute.

In Figure 5.3, comparison between segment based [18], graph based [54] and

6-HiSIS based schemes on the base of hit ratio is given. In this comparison,

we assume that all of the data is available (hit ratio should be 100%. Now,

52

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Ti
m

e

No. of Attributes in Relation

6-HiSIS Based

Segment Based

Graph Based

Figure 5.2: Best case complexity analysis

assume user poses queries with ‘∗’ operator (Select ∗ type queries), which

indicates that user needs all of the attributes. As soon as we will increase

this type of queries hit ratio for graph based and segment based will decrease,

while hit ratio for 6-HiSIS based scheme will remain at 100%. This happens

because both Segment & Graph Based techniques are unable to handle “Select
∗” type queries and retrieve all the data from the remote server. Whereas, 6-

HiSIS based scheme evaluates this type of queries by using schema. Therefore,

hit ratio by 6-HiSIS remains at 100%.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

H
it

 r
a

ti
o

 in
 p

e
rc

en
ta

ge
 (%

ag
e

)

%age of "Select *" type Queries

6-HiSIS Based

Graph Based

Segment Based

Figure 5.3: Hit Ratio Comparison by increasing Select ∗ queries

In Figure 5.4, time comparison between segments based [18], graph based [54]

and 6-HiSIS schemes on the basis of incorrect user queries is presented. Here,

we assume that the user is going to pose incorrect queries. As soon as we

will increase number of incorrect queries, computing time for graph based

and segment based will be increased while hit ratio for 6-HiSIS based scheme

53

will remain at 100%. This happens because both segment & graph based

techniques are unable to handle the zero level rejection. Whereas, 6-HiSIS

based scheme evaluates this type of queries by using schema.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

Ti
m

e

No. of Incorrect Queries

6-HiSIS Based

Graph Based

Segment Based

Figure 5.4: Time Comparison on the base of Incorrect Queries

In Figure 5.5, space complexities of segment [18], graph based [54] and 6-HiSIS

based schemes [55] is compared. As we have discussed earlier in the proposed

work section that space complexity will be higher than previous schemes until

n attributes are retrieved or n distinct queries have been processed and their

semantics are cached in semantic cache.

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35 40 45 50

Sp
ac

e
 in

 b
yt

e
s

No. of Queries Processed

6-HiSIS Based

Segment Based

Graph Based

Figure 5.5: Space Complexity Analysis

Chapter 6

Case Study and Experimental

Results

In this chapter, the validation of proposed technique is presented with the

assistance of a case study and experimental results. Case study is utilized

to explain and prove the correctness of the proposed algorithms in Chap-

ter 4 and experimental results help to prove the efficiency and effectiveness

of the proposed techniques. Question 6 from research questions (listed in

Section 1.3) is answered in this chapter. This section is further divided into

two subsections; Section 6.1 presents the validation of the proposed system

with case study and 6.2 presents the experimental results.

6.1 Case Study

This section validates our proposed semantic indexing and query processing

techniques with the help of a case study. Here we have used the schema of

University instead of Library to ensure that proposed technique is generic

rather than specific. Figure 6.1 presents the schema of a university with two

relations employee and students having 4 and 3 fields respectively.

For the above given schema of university, there are 15 and 7 segments possible

across employee and students relations respectively, according to previous

work [18]. In simple words, we can say that there are 15 queries possible

against employee and similarly 7 for students, as given in Table 6.1.

In the above example, there are 22 possible queries that make separate seg-

ments. So the formula to calculate possible segments across a single relation

54

55

University

employee

students

e_ID eName Sal

sName Gender Grade

Age

Figure 6.1: Schema for University Database

over n attributes is 2n − 1. Then add segments across each relation. As in

example, 15 + 7 = 22 : (24 − 1 = 15&23 − 1 = 7). Hence, 22 segments are

to be visited to check the availability of data in the cache in the worst case

which increases the response time drastically.

Schema based hierarchal scheme reduces the number of comparisons to find

out whether data are available in the cache or not. Only n comparisons

are required to check the availability of data in the cache. Table 6.2 can

be rearranged according to our proposed schema based semantic indexing

scheme as in Table 6.2.

Table 6.2 represents the structure of a schema based semantic indexing in-

stead of actual contents. There is a need to compare/match only 4 and 3

fields instead of 15 and 7 segments respectively according to the previous

schemes. Also it has the ability to reject invalid queries at the initial level

instead of further processing.

For detailed discussion and simplicity, we consider only employee table of

university database. Let us consider there is an employee table on a server

with 4 fields defined in the university schema in Figure 6.1. An employee

table on server is given in Table 6.3.

Now, we divide our case study into five cases in such a way that one can

easily understand our contribution and novelty of the proposed approach. For

simplicity, each of seven cases has been discussed standalone and not linked

with each other. Each case should be considered separately. We considered

that cache is managed from the initial state for each case.

Case-I: Zero Level Rejection In this case we have taken an example that

covers the query rejection at initial level.

56

SR S SA SP SC
E

m
p

lo
ye

es
S1 e ID Condition 1 1
S2 eName Condition 1 2
S3 Sal Condition 1 3
S4 Age Condition 1 4
S5 e ID, eName Condition 3 5
S6 e ID, Sal Condition 4 6
S7 e ID, Age Condition 5 7
S8 e ID, eName Sal Age Condition 6 8
S9 e ID Sal Age Condition 7 9
S10 e ID, eName Age Condition 8 10
S11 eName Sal Condition 9 11
S12 eName Age Condition 10 12
S13 Sal Age, eName Condition 11 13
S14 e ID, eName, Sal Condition 12 14
S15 Sal, Age Condition 3 15

S
tu

d
en

ts

S16 sName Condition 21 16
S17 Grade Condition 21 17
S18 Gender Condition 21 18
S19 Gender, Grade Condition 22 19
S20 Gender, sName Condition 23 20
S21 sName, Gender Condition 24 21
S22 sName, Grade, Gender Condition 25 22

Table 6.1: Possible segments for given database

Database
Name

Relation
Names

Attribute
Names

Attribute
Status

Condition
Content

Reference

University

Employee
eName TRUE Condition 1 1

Age FALSE Null Null
Sal TRUE Condition 2 2

Student
e ID TRUE Condition 1 1

Gender FALSE Null Null
Grade FALSE Null Null
sName FALSE Null Null

Table 6.2: Schema Based Indexing

57

e ID eName Age Sal
110 Asad 20 25000
111 Ali 22 22000
112 Kashif 25 25000
113 Abid 30 15000
114 Adeel 31 42000
115 Komal 37 17000
116 Mehreen 39 30450
117 Tabinda 39 28850
118 Yaseen 40 24450
119 Anees 45 30000
120 Komal 50 30000

Table 6.3: Employee Table in Database

e ID eName Age Sal
114 Adeel 31 42000
115 Komal 37 17000
116 Mehreen 39 30450
117 Tabinda 39 28850
118 Yaseen 40 24450
119 Anees 45 30000
120 Komal 50 30000

Table 6.4: Contents on Cache in Case-I

Let us consider that user has already posed the following query and result

has been stored in the cache.

SELECT ∗ FROM employee WHERE age > 30

Data on the cache will be in the form as given in Table 6.4.

Now let us consider that user is going to pose following three queries.

1. SELECT eName, Age FROM employee

WHERE age > 30 (relation is incorrect)

2. SELECT eName, Age FROM employee

WHERE gpa > 3.0 (predicate attribute is incorrect)

3. SELECT eName, rollno FROM employee

WHERE age > 30 (project attribute is incorrect)

All of the three queries should be rejected at initial level, but according to

the previous work query will be posted on server due to unavailability of data

on cache.

58

e ID eName Age
114 Adeel 31
115 Komal 37
116 Mehreen 39
117 Tabinda 39
118 Yaseen 40
119 Anees 45
120 Komal 50

Table 6.5: Contents on Cache in Case-II

It is a beauty of our proposed schema based indexing scheme that all of three

queries will be rejected and query processing time will be saved. According

to our proposed semantic caching architecture, the list of projected attributes

(eName, Age in first query), relation (employee in first query) and predicate

attributes are checked from schema based indexing scheme; and query will be

rejected due to unavailability of “employee” relation in the schema. Similarly,

query 2 and 3 will be rejected due to unavailability of “gpa” and “rollno” in

employee table respectively and there will be no probe and remainder queries.

The proposed semantic cache system never sends the incorrect queries to the

server while previous semantic cache systems send the incorrect queries to the

server, which results in increased network traffic and increased data access

latency. So, due to zero level rejection, proposed system performs better to

reduce the network traffic as well as to reduce the data access latency.

Case-II: SELECT * Handling In this case, we have taken an example

that covers the handling of queries having ∗ in SELECT CLAUSE.

Let us consider that user has already posed the following query and result

has been stored in the cache.

SELECT eName, Age FROM employee WHERE age > 30

Data for above query will be retrieved and stored on cache will be in the form

as given in Table 6.5.

In the above query, e ID is not required but retrieved. It is due to the

requirement of a key-contained [18] contents. Now, let us assume that a user

has posed the following query.

SELECT ∗ FROM employee WHERE age > 30

Now, all of the fields of employee are required, but according to previous

work common set will be calculated (intersection of cached attributes and

59

user’s query attributes). There is no way to calculate the common set of ‘∗’

and some attributes. Here we can say that all of the cached attributes for

employee are required, but how can it be decided that which of the attributes

are not in the cache, and should be retrieved from the server.

Here again we need a schema at cache (first we need a schema for zero level

query rejection). If a schema is available in the cache then SELECT CLAUSE

with ‘∗’ can be handled easily.

By handling SELECT ALL type queries, utilization of available data will be

maximized that result in improved hit ratio. Splitter splits the query and

sends it to the rejecter. Rejecter checks the list of the fields with relation and

predicate attribute from schema based indexing semantics. Query will not

be rejected due to availability of all member of list in the schema. Common

and difference set of attributes will be computed and shall be sent to the 1st

level query matcher. i.e. CA and DA will be computed. Remainder query

(rq1) with difference attributes (here is only one difference attribute that is

‘Sal’) will be generated by 1st level query matcher like below.

rq1 =SELECT Sal FROM employee WHERE Age> 30

Common attributes (e ID, Age, eName) will be sent to the Query Generator

(QG). Query Generator will generate probe and a remainder query on the

base of predicate matching. Conditioned attribute (Age) is already retrieved;

so there is no need of amending query in this case.

First of all, the semantics of predicate will be computed by semantic extractor

as follow.

MC = Age

NMCC =NULL

NMCU =NULL

DV U =30

DV C =30

OpC =>

OpU =>

After computation of predicate semantics, predicate for probe and remain-

der query will be computed by using an ExplicitSemanticMatching algorithm

(actually 112 rules are used here). At first, main class of algorithm is se-

lected, here data value of user (DV U = 30) is equal to the data value of cache

(DV C = 30). So, the algorithm will be executed as given in Algorithm 11.

60

Algorithm 11 Algorithm executed for Case II

1: if DV C [i] = DV U [i] then
2: if (((OPC [i] ∈ {≥}) ∧ (OPU [i] ∈ {>,=})) ∨ (OPC [i] = OPU [i]) ∨ ((OPC [i] ∈ {≤}) ∧ (OPU [i] ∈ {<,=})) ∨ (OPC [i] ∈ {6=} ∧OPU [i] ∈ {<,>}))

then
3: C![i]← CCOPCDV C NC1[i]←NULL;
4: end if
5: end if=0

Predicate for probe and remainder will be computed we say it C1 (for cached)

and NC1 (for non-cached).

C1 = Age> 30

NC1 =Null

Due to simple predicate, rules defined for complex queries will not be applied.

Finally, ImplicitSemanticMatching algorithm will be applied to generate final

predicate for probe and remainder queries. As it is computed that NMc and

NMu both are Null. So, first case of ImplicitSemanticMatching algorithm

will be applied.

If (NMC = Null) and (NMU = Null) then

C2 = C1

NC2 = NC1

There will be no change in the predicate of probe and remainder query. Then,

probe query (pq) and second remainder query (rq2) will be generated as below.

pq =SELECT eName, Age FROM employee WHERE Age> 30

rq2 =Null

In the last step results of rq1, pq and rq2 are combined by rebuilder.

Due to handling of SELECT ALL type queries, the proposed system maxi-

mizes the utilization of available data at cache, while the existing systems are

not able to handle these types of queries, which result in minimum utilization

of available data at cache. Maximum utilization of available data on cache

results in increased data availability, decreased network traffic (as minimum

data will be retrieved from the server), decreased data access latency.

Case-III: Generation of Amending Query (QU ⊆ QC)

In this case the generation of amending query is elaborated.

Let us consider that user has already posed the following query and the result

has been stored in the cache.

61

e ID eName Sal
114 Adeel 42000
115 Komal 17000
116 Mehreen 30450
117 Tabinda 28850
118 Yaseen 24450
119 Anees 30000
120 Komal 30000

Table 6.6: Contents on Cache in Case-III

SELECT eName, Sal FROM employee WHERE age> 30

Data for above query will be retrieved and stored in the cache will be as given

in Table 6.6.

Note that e ID is not required, but retrieved. It is due to the requirement of

a key-contained [18] contents. Now, let us assume that a user has posed the

following query.

SELECT eName, Sal FROM employee WHERE age> 35

Here, generation of amending query is discussed. Remaining procedure will

be same as discussed in the case-II.

Note that data across eName and Sal is available in the cache, but predicate

attribute (Age) is not available. Now, one cannot select data from cache due

to absence of the predicate attribute, because one cannot decide that which

of the data satisfies the selection criteria (Age> 35). To solve this problem,

another query called amending query [18] to retrieve primary attribute from

server on user selected criteria (as below) will be generated.

aq =SELECT e ID FROM employee WHERE Age> 35

Then retrieved primary keys will be mapped with keys in the cache and data

will be presented to the user. By this, hit ratio is increased.

Case-III: Generation of Amending Query (Exact Match)

In this case, generation of amending query is elaborated in which user query

is exactly equivalent to the cached query.

Let us consider that user has already posed the following query and result

has been stored in the cache.

62

e ID eName Sal
115 Komal 17000
116 Mehreen 30450
117 Tabinda 28850
118 Yaseen 24450
119 Anees 30000
120 Komal 30000

Table 6.7: Contents on Cache in Case-IV

SELECT eName, Sal FROM employee WHERE Age> 35

Data for above query will be retrieved and stored in the cache will be as given

in Table 6.7.

Note that e ID is not required, but retrieved. It is due to the requirement of

key-contained [18] contents. Now, let us assume that a user has posed the

following query which is exactly similar to the cached query.

SELECT eName, Sal FROM employee WHERE Age> 35

Here, only the generation of amending query has been discussed. Remaining

procedure will be same as discussed in Case-II.

Algorithm to generate amending query proposed by Ren et al. perform same

processing as done in Case-III and generates amending query as follow.

aq =SELECT e ID FROM employee WHERE Age> 35

In fact, there is no need of amending query in this scenario because following

query can be executed on cache without amending query with accurate result.

pq =SELECT eName, Sal FROM cache-ref

As we know that in cache only those rows are stored whose age¿35 and in user

query all those rows are required whose age¿35. So this query will generate

the accurate result from cache without retrieving anything from the server.

Due to this network traffic and data access latency will be reduced.

Case-V: Generation of Amending Query (QC ⊆ QC)

In this case generation of amending query is elaborated.

Let us consider that user has already posed the following query and result

has been stored in the cache.

63

e ID eName Sal
116 Mehreen 30450
117 Tabinda 28850
118 Yaseen 24450
119 Anees 30000
120 Komal 30000

Table 6.8: Contents on Cache in Case-V

SELECT eName FROM employee WHERE age> 37

Data for above query will be retrieved and stored in the cache will be as given

in Table 6.8.

Note that e ID is not required, but retrieved. It is due to the requirement

of key-contained [18] contents. Now let us assume that a user has posed the

following query.

SELECT eName, Sal FROM employee WHERE age> 35

Here, only generation of amending query is discussed. Remaining procedure

will be same as discussed in the Case-II.

Algorithm to generate amending query proposed by Ren et al. [18] perform

same processing as done in Case-III and generates amending query as follows.

aq =SELECT e ID FROM employee WHERE Age> 35

In fact, there is no need of amending query in this scenario because follow-

ing probe query can be executed on cache without amending query with a

remainder query to retrieve data which is not available in the cache.

pq =SELECT eName FROM cache-ref

rq =SELECT eName,Sal FROM employee WHERE Age> 35 and

Age< 37

As we know that in cache only those rows are stored whose age¿37 and in

user query all those rows are required whose age¿35. So this query will

generate the accurate result from cache with result of remainder query. As

algorithm by Ren et al. generates amending query in this case, while our

proposed algorithm solves this query without any amending query. Due to

this network traffic and data access latency will be reduced as compared to

the semantic cache system by Ren et al. [18].

64

e ID eName Age
114 Adeel 31
115 Komal 37
116 Mehreen 39
117 Tabinda 39
118 Yaseen 40
119 Anees 45
120 Komal 50

Table 6.9: Contents on Cache in Case-VI

Case-VI: Hidden Semantics

Here efficient predicate matching to improve the hit ratio by using Implicit-

SemanticMatching algorithm is elaborated with an example.

Let us consider that user has already posed the following query and the results

have been stored in cache.

SELECT eName, Age FROM employee WHERE Age> 30

Data for above query will be retrieved and stored in the cache as given in

Table 6.9.

Note that e ID is not required, but retrieved. It is due to the requirement of

a key-contained [18] contents. Now let us assume that a user has posed the

following query.

SELECT eName, Age FROM employee WHERE eName=‘Komal’

Here all of the required fields are matched with cached query. Splitter splits

the query and sends it to the rejecter. Rejecter checks the list of the fields

with relation and predicate attribute from schema based indexing semantics.

Query will not be rejected due to availability of all member of list in the

schema. Common and difference set of attributes will be computed and sent

to the 1st level query matcher. i.e. CA and DA will be computed. Remainder

query (rq1) will be null due to an empty set of difference attributes (All

required attributes exist in the cache). So, remainder query by 1st level

query matcher will be like below.

rq1 =Null

Common attributes (Age, eName) will be sent to the Query Generator (QG).

Query Generator will generate probe and a remainder query on the basis of

65

predicate matching. Conditioned attribute (Age) is already retrieved; so

there is no need of amending query in this case.

First, semantics of predicate will be computed by semantic extractor as follow.

MC = NULL

NMC =Age

NMU =eName

After computation of predicate semantics, predicate for probe and remainder

query will be computed by using predicate matching algorithm (actually 112

rules are used here). Probe and remainder query is based on these rules:

C1 = Null

NC1 =Null

Due to simple predicate, rules defined for complex queries will not be applied.

Finally, ImplicitSemanticMatching algorithm will be applied to generate final

predicate for probe and remainder queries. As it is computed, NMC and NMC

both are not null. So, fourth case of ImplicitSemanticMatching algorithm will

be applied.

4. Else If(NMC 6=null) and (NMU 6=null) then a.

C1=(C1) + (NMU) + (NMC) b.

NC2=(C1) +R (NMC) + (NMU) ∨ ((NC1) + (NMU))

So, predicate for probe and remainder query will be like below.

C1:=(Age> 30 and (eName=‘Komal’)

C1:=(Age≤ 30 and (eName=‘Komal’)

Then, probe query (pq) and second remainder query (rq2) will be generated

as below.

pq =SELECT eName, Age FROM employee WHERE Age> 30 and

(eName=‘Komal’)

rq2 =SELECT eName, Age FROM employee WHERE Age≤ 30 and

(eName=‘Komal’)

In the last step, results of rq1, pq and rq2 are combined by rebuilder.

Due to having the ability to find hidden semantics, proposed system utilizes

the maximum data available data in the cache, which results in minimum

66

data retrieval from the server. As a proposed system retrieves lesser data

from the server as compared to the existing system, therefore, the proposed

systems perform better to reduce the data access latency, reduce the network

traffic and increases the availability of the system.

6.2 Experimental Results

In this section we have examined the performance of proposed system. In

order to do this, we created a database with a relation Product having 22 at-

tributes; id, category, itemname, barcode, manufacturingPrice, shipingcost,

salestax, totalprice, purchaseprice , salesprice, discount, profit, itemdes, ven-

dor, itemweight, itemsize, quantity, location, expdate, manfdate, ingredients,

and manufacturer.

We have inserted 10 million records into product. Total size of database on

memory is 14 GB.

We have issued 10-12 different queries in each scenario. Each query is issued

10 times and noted the latency time, each time then averaged the result. Size

for each query is varied from scenario to scenario.

Memory allocated to Semantic cache is 4GB.

Experimental activity has been done in two directions; in first complete

database and semantic cache has been managed at same machine and in sec-

ond database was located on one machine and semantic cache was managed

on second machine.

We have implemented three systems;

– without semantic cache

– Proposed by Ren et al. (existing system)

– Proposed system (sCacheQP).

Without semantic cache mean we have executed queries without managing

any caching. In case of existing system, we have implemented technique

proposed by Q. Ren et al (we have used Q. Ren in legends of graphs in next

sections) which is the only complete available system for query processing

over semantic cache.

In the following sub sections we have presented the scenarios and results.

Results in graph are based on 10-12 discrete values. However, these discrete

values are joined to show the trend.

67

6.2.1 Database and Semantic Cache at Same Machine

In this section, we present the efficeincy of the proposed system by developing

a prototype. In the developed enviornment, we have maintained original

database and cache at same machine, and then examined the performance of

system (proposed, existing and without semantic cache).

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
 in

 m
ili

se
co

n
d

s

No. of Attributes

Without-Cache

Q. Ren

Proposed

Figure 6.2: Analysis with increasing number of segments

In Figure 6.2, we have presented the analysis by fixing the hit ratio as 100%

and growing the segments form 1 to 4095. On x-axis, number of attributes

are increasing. As we discussed and proved in Chapter 5, that 2n− 1 (here n

is number of attributes) segments can be created. With increase in number of

attributes, number of segments increased exponentially [55]. System proposed

by Ren et al. [18] perform matching with each of the segments in semantic

cache which results in increased data access latency with increasing number

of segments on cache. Our proposed semantic cache system reduces the data

access latency as depicted in Figure 6.2.

In the next scenario, techniques are compared with respect to growth of

required data by user. In this scenario, we fixed the number of segments

which are 100 and increased the size of query in term of required data. Size of

query is varying from 100000 records to 1000000 records. Result is presented

in Figure 6.3.

In the following scenario, we compared the techniques by fixing the no. of

segments and do variation in hit ratio. Hit ratio varies from 10 percent to

100 percent. Result is depicted in Figure 6.4. In result we have examined

that semantic cache performs worse with a decrease in hit ratio.

68

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10

Ti
m

e

No. of Records (unit is 100000)

Without-Cache

Q. Ren

Proposed

Figure 6.3: Analysis with increasing number of records

0

200

400

600

800

1000

1200

100 90 80 70 60 50 40 30 20 10

Ti
m

e

Hit Ratio in %

Without-Cache

Q. Ren

Proposed

Figure 6.4: Analysis for Varying Hit Ratio

Advantage of amending query is depicted in Figure 6.5. In this scenario we

have established a situation where user queries are exactly similar to cached

queries, but data about predicate attributes is not stored in cached queries.

One of the examples for cached and user query is given below:

Cached query: Select profit, discount from product where

salprice> 200

and

User query: Select profit, discount from product where salprice> 200

In this case, data is stored for profit and discount not for salprice. In this

situation existing system [18] generates amending query in which data for sal-

price is retrieved from original database. In fact, there is no need of amending

query (data about salprice) in this case. Proposed system did not generate

69

0

100

200

300

400

500

600

700

800

900

1000

10 20 30 40 50 60 70 80 90 100

Ti
m

e

Percentage of Queries in Cache in which PA ∩ SA !=PA

Without-Cache

Q. Ren

Proposed

Figure 6.5: Analysis for Exact Match

any amending query due to exact match. Due to that the proposed technique

performs better as given in Figure 6.5.

In next scenario, we examined the performance of the system for sub set

match. In other words in this case user’s posed queries are sub set of cached

query. In this case, existing system generates amending query but our pro-

posed system have no need of amending query. Results are given in Figure 6.6.

0

200

400

600

800

1000

10 20 30 40 50 60 70 80 90 100

Ti
m

e

Percentage of Queries in Cache in which PA ∩ SA !=PA

Without-Cache

Q. Ren

Proposed

Figure 6.6: Analysis for Subset Match

In the above two cases, hit ratio is 100 percent. In a scenario, where con-

ditioned attribute is absent, and hit ratio is not 100 percent, as shown in

Figure 6.7. In this case, both techniques (proposed and Q. Ren) generate

amending queries. Results are presented in Figure 6.7

70

0

200

400

600

800

1000

10 20 30 40 50 60 70 80 90 100

Ti
m

e

Percentage of Queries in Cache in which PA ∩ SA !=PA

Without-Cache

Q. Ren

Proposed

Figure 6.7: Analysis for Partial Match

6.2.2 Database and Semantic Cache at Different Ma-

chine

In this case, we stored database at one machine and managed cache at another

machine and analyzed the performance of the system.

In Figure 6.8, we presented the analysis by fixing the hit ratio as 100% and

growing the segments form 1 to 4095. System proposed by Ren et al. manages

semantics in segments [18] and extract informatin by matching the semtnics

of user query with semantics stored in segments. As the number of segments

grows exponentially [55] which results in exponential query matching. Due

to the exponential query matching process, data access time increased expo-

nentially with increase in segments exponentially as depicting in Figure 6.8.

Due to efficient semantic indexing scheme by our proposed system, query

matching performed in polynomial time [55]. Due to faster query matching

process, we achieved reduced data access latency as shown in Figure 6.8.

In the next scenario, techniques are compared with respect to growth of

required data by the user query. Here, we have fixed the number of segments

which are 100 and increased the size of query in term of required data. Size

of the query is varying from 100000 records to 1000000 records. The result

is presented in Figure 6.9.

Next, we compared the techniques by fixing the number of segments and did

variation in the hit ratio. Hit ratio varies from 10 percent to 100 percent.

The result is depicted in Figure 6.10. The results show that the semantic

cache performs nearly equal to the system without cache with decrease in hit

ratio, ie. 10% hit ratio.

71

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e

No. of Attributes

Without-Cache

Q. Ren

Proposed

Figure 6.8: Analysis with increasing number of segments

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10

TI
m

e

Number of Records (unit is 100000)

Withou-Cache

Q. Ren

Proposed

Figure 6.9: Analysis with increasing number of records

Advantage of amending query is depicted in Figure 6.11. In this scenario,

we have designed queries, which are exactly similar to stored query in cache

but these queries have not stored conditioned attribute. In case of existing

system, amending query will be generated, but proposed system will not

generate amending query due to the exact match. Therefore, the proposed

technique performs better, as given in Figure 6.11.

In Figure 6.12, the results of the system for sub set match are shown. Here,

the users posed queries are sub set of cached queries. The existing system

generates amending query, but our proposed system does not require amend-

ing query.

In above two cases, hit ratio is 100 percent. In a scenario where conditioned

attribute is absent as well as hit ratio is not 100 percent, as shown in Fig-

ure 6.13. In this case, both techniques (proposed and Q. Ren) generates

amending queries.

72

0

2000

4000

6000

8000

10000

12000

100 90 80 70 60 50 40 30 20 10

Ti
m

e

Hit Ratio in %

Without-Cache

Q. Ren

Proposed

Figure 6.10: Analysis for Varying Hit Ratio

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90 100

Ti
m

e

Percentage of Queries in Cache in which PA ∩ SA !=PA

Without-Cache

Q. Ren

Proposed

Figure 6.11: Analysis for exact match

Implemented systems achieve the all four points (Accuracy, increased data

availability, reduced network traffic, and reduced data access latency) of

benchmark. Let us discuss how each point is achieved by implemented sys-

tem.

Accuracy: Proposed implemented system ensures accuracy by generating ac-

curate result, nothing more or less than the user required result. Implemented

system generates probe and remainder queries accurately. Accuracy of the

system is verified by experts.

Increased Data Availability: Data Availability is increased by reducing the

redundant semantics and by maximizing the utilization of available data in

the cache. Our system generates probe and remainder query in such a way,

that data is never retrieved from the server if this available in the cache. This

is verified by experts

73

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90 100

TI
m

e

Percentage of Queries in Cache in which PA ∩ SA !=PA

Without-Cache

Q. Ren

Proposed

Figure 6.12: Analysis for Subset Match

0

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80 90 100

Ti
m

e

Percentage of Queries in Cache in which PA ∩ SA !=PA

Without-Cache

Q. Ren

Proposed

Figure 6.13: Analysis for Partial Match

Reduced Network Traffic and Reduced Data Access Latency: Through im-

plementation, it is verified by results (from Figure 6.2 to 6.3) that proposed

system reduces the data access latency. This reduced data access latency

becomes possible due to maximizing the utilization of available data from

cache. Due to maximum utilization of available data, there was least data

retrieved from the server, which results in reduced network traffic.

Chapter 7

Conclusion and Future Work

Cache is an important service to reduce the data access latency, especially

for the retrieval of same data frequently in a distributed environment. Re-

duction in data access latency is directly proportional to the increase in hit

ratio. Semantic cache has a potential to maximize the hit ratio. There are

multiple components of a semantic cache system, such as, indexing of seman-

tics of stored queries, query processing, and contents storage. In this study, a

framework to evaluate the semantic cache system and the impact of different

parameters on the performance, have been presented. Serious limitations of

the existing approaches have been identified.

Assessment of Research Questions

Let us first conclude the answers of the research questions presented in Chap-

ter 1. Firstly, what should be the criterion to evaluate the existing semantic

cache systems? After critically analyzing the literature, we could not find

any comprehensive criteria to evaluate a semantic cache system. In order to

maximize the hit ratio, a cache system must ensure four relations given in

Equation Equation 7.1, 7.2, 7.3 and 7.4:

DataReminderQuery ∪DataProbeQuery =⇒ DataUserQuery (7.1)

DataReminderQuery ∩DataCache =⇒ ∅ (7.2)

Segmenti-cache ∩ Segmentj-cache =⇒ ∅∀i, j whenever i 6= j (7.3)

74

75

DataReminderQuery ∩DataProbeQuery =⇒ ∅ (7.4)

Second question was how existing system should be evaluated on the defined

criterion? In order to ensure the above four expressions (rules), we have

extracted a few parameters from a cache system and their relation with the

above defined criterion; the parameters are SELECT ALL handling, zero level

rejection, predicate handling, generation of amending query, query matching

complexity, indexing structure and query processing complexity that influ-

ence the efficiency of a query processing algorithm.

Thirdly, what are the limitations in the existing systems? The in-depth

analysis of literature revealed that there are some serious limitations in terms

of these parameters. Due to their indexing approach for storing the semantics,

the complexity of query matching may grow exponentially. Query trimming

has limitations due to the use of the satisfiability & implication algorithm.

Zero level rejection and generation of amending query with scheme enabled

semantic storage are not available in these schemes.

The next question was how a semantic cache system should be designed to

overcome the limitations in existing systems? A semantic caching architec-

ture has been proposed to process the SELECT and PROJECT queries over

relational distributed databases.

Question five was: what are the algorithms (with reduced complexity) to over-

come the limitations of existing systems? We have formulated algorithms for

sCacheQP; Splitter Algorithm, Rejecter Algorithm, 1st Level Query Rewriter,

Semantic Extractor, ExplicitSemanticMatching, ImplicitSemanticExtractor,

2nd Level Query Rewriter, Generation of Amending Query, and Predicate

Merging.

Finally, in which area the proposed system performs better than existing

systems? The proposed technique has been implemented and results are

scrutinized carefully. On the basis of results, it is concluded that the proposed

technique performs better in term of producing correct results, reducing data

access time, increasing data availability, and reducing network traffic for the

queries with overlapped results (common data in multiple queries).

Accuracy: Accuracy is achieved by designing, accurate predicate matching

algorithm efficient semantic indexing scheme. The efficient semantic indexing

scheme ensures to store complete and accurate semantics for already executed

76

queries in the cache. Accurate and complete stored semantics results in accu-

rate semantic cache system as discussed in Chapter 2. In Chapter 6, results of

implemented system also depict that proposed system is more accurate than

the existing systems due to accurate predicate matching. Accurate semantic

cache system results in reducing the data access latency, as depicted in the

results in Chapter 6.

Increased Data Availability: Data availability of proposed system is in-

creased by developing an effacing semantic indexing scheme, by developing

efficient algorithm to generate amending query, and by providing the facility

to SELECT ALL handling. Increased data availability ultimately reduces

the data access latency, which is depicted in results presented in Chapter 6.

Reduced Network Traffic: Network traffic is reduced in proposed system,

by developing efficient query matching process, which has ability to reject in-

correct queries at initial level, by developing an efficient algorithm to generate

amending query, by handling SELECT ‘∗’ type queries, and due to design

of efficient semantic indexing scheme. Due to reduction in network traffic,

data access latency is reduced, which can be witnessed through the results in

Chapter 6.

Reduced Data Access Latency: Data access time for the semantic cache

system is reduced by efficient semantic indexing structure reduces the com-

plexity of query matching process significantly as the incoming query will

have to be matched with stored semantics. Faster predicate matching en-

sures quick response time and reduced data access latency. Proposed seman-

tic cache system facilitates zero level rejection, due to which, the response

time is reduced as the incorrect queries are rejected at the local machine.

Amending query and SELECT ALL handling maximizes the utilization of

cached data, which results in reduction in data access latency. Implemented

system depicts that proposed system performs better to reduce the data ac-

cess latency as compared to the existing systems, as given in Chapter 6.

For future direction, semantic caching management and data replacement

policies is an important area to explore. By current region-based data re-

placement policies; cache often results in poor cache utilization, because it

discards entire regions from the cache. We are currently studying the use of

region “shrinking” as a technique to alleviate this problem. In this study, we

have examined the utility of orthodox value, as well as some semantic value

in old-fashioned workloads and a mobile navigation workload. Our future

77

plan comprises of further development of semantic value functions for this

and other applications. An interval based predicate matching algorithm is

another option which needs to be explored.

Bibliography

[1] A. A. Amer and A. A. Sewisy, “An extended technique for data partition-

ing and distribution in distributed database systems (ddbss),” Journal of

Communications Technology, Electronics and Computer Science, vol. 12,

pp. 13–19, 2017.

[2] N. H. Ryeng, J. O. Hauglid, and K. Nørv̊ag, “Site-autonomous dis-

tributed semantic caching,” in Proceedings of the 2011 ACM Symposium

on Applied Computing. ACM, 2011, pp. 1015–1021.

[3] C. Coronel and S. Morris, Database systems: design, implementation, &

management. Cengage Learning, 2016.

[4] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and A. Ntoulas,

“Pocketweb: instant web browsing for mobile devices,” in ACM

SIGARCH Computer Architecture News, vol. 40, no. 1. ACM, 2012,

pp. 1–12.

[5] D. A. Patterson and J. L. Hennessy, Computer Organization and Design

RISC-V Edition: The Hardware Software Interface. Morgan kaufmann,

2017.

[6] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-memory

big data management and processing: A survey,” IEEE Transactions on

Knowledge and Data Engineering, vol. 27, no. 7, pp. 1920–1948, 2015.

[7] R. E. Hooker, D. R. Reed, J. M. Greer, C. Eddy, and A. J. Loper, “Fully

associative cache memory budgeted by memory access type,” May 16

2017, uS Patent 9,652,400.

[8] S. B. Edlund, M. L. Emens, R. Kraft, and P. C.-S. Yim, “Labeling and

describing search queries for reuse,” Nov. 19 2002, uS Patent 6,484,162.

78

Bibliography 79

[9] M. Qiu, Z. Ming, J. Li, K. Gai, and Z. Zong, “Phase-change memory

optimization for green cloud with genetic algorithm,” IEEE Transactions

on Computers, vol. 64, no. 12, pp. 3528–3540, 2015.

[10] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, M. Tan et al.,

“Semantic data caching and replacement,” in VLDB, vol. 96, 1996, pp.

330–341.

[11] Q. Fan, K. Zeitouni, N. Xiong, Q. Wu, S. Camtepe, and Y.-C. Tian,

“Nash equilibrium-based semantic cache in mobile sensor grid database

systems,” IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 2016.

[12] Y. Lu and W. Wang, “Abortable transactions using versioned tuple

cache,” Jun. 26 2015, uS Patent App. 14/752,175.

[13] M. F. Bashir, R. A. Zaheer, Z. M. Shams, and M. A. Qadir, “Scam:

Semantic caching architecture for efficient content matching over data

grid,” in Advances in Intelligent Web Mastering. Springer, 2007, pp.

41–46.

[14] K. Elhardt and R. Bayer, “A database cache for high performance

and fast restart in database systems,” ACM Transactions on Database

Systems (TODS), vol. 9, no. 4, pp. 503–525, 1984.

[15] M. U. Ahmed, R. A. Zaheer, and M. A. Qadir, “Intelligent cache manage-

ment for data grid,” in Proceedings of the 2005 Australasian workshop

on Grid computing and e-research-Volume 44. Australian Computer

Society, Inc., 2005, pp. 5–12.

[16] P. Godfrey and J. Gryz, “Semantic query caching for hetereogeneous

databases.” in KRDB, 1997, pp. 6–1.

[17] M. Ahmad, M. A. Qadir, and M. Sanaullah, “Query processing over

relational databases with semantic cache: A survey,” in Multitopic

Conference, 2008. INMIC 2008. IEEE International. IEEE, 2008, pp.

558–564.

[18] Q. Ren, M. H. Dunham, and V. Kumar, “Semantic caching and query

processing,” IEEE transactions on knowledge and data engineering,

vol. 15, no. 1, pp. 192–210, 2003.

Bibliography 80

[19] S. Ghandeharizadeh, J. Yap, and H. Nguyen, “Strong consistency in

cache augmented sql systems,” in Proceedings of the 15th International

Middleware Conference. ACM, 2014, pp. 181–192.

[20] T. Lahiri, M.-A. Neimat, and S. Folkman, “Oracle timesten: An in-

memory database for enterprise applications.” IEEE Data Eng. Bull.,

vol. 36, no. 2, pp. 6–13, 2013.

[21] P.-A. Larson, J. Goldstein, and J. Zhou, “Mtcache: Transparent mid-tier

database caching in sql server,” in Data Engineering, 2004. Proceedings.

20th International Conference on. IEEE, 2004, pp. 177–188.

[22] M. A. Alghobiri, H. U. Khan, T. A. Malik, and S. Iqbal, “A comprehen-

sive framework for the semantic cache systems,” International Journal

of Advanced and Applied Sciences, vol. 3, no. 10, pp. 72–78, 2016.

[23] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, S. Madden et al., “The

design and implementation of modern column-oriented database sys-

tems,” Foundations and Trends R© in Databases, vol. 5, no. 3, pp. 197–

280, 2013.

[24] S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons, R. Johnson,

I. Pandis, and R. Stoica, “Tpc-e vs. tpc-c: characterizing the new tpc-

e benchmark via an i/o comparison study,” ACM SIGMOD Record,

vol. 39, no. 3, pp. 5–10, 2011.

[25] C. A. Curino, D. E. Difallah, A. Pavlo, and P. Cudre-Mauroux, “Bench-

marking oltp/web databases in the cloud: The oltp-bench framework,”

in Proceedings of the fourth international workshop on Cloud data

management. ACM, 2012, pp. 17–20.

[26] M. Sumalatha, V. Vaidehi, A. Kannan, M. Rajasekar, and M. Karthi-

gaiselvan, “Hash mapping strategy for improving retrieval effectiveness

in semantic cache system,” in Signal Processing, Communications and

Networking, 2007. ICSCN’07. International Conference on. IEEE, 2007,

pp. 233–237.

[27] ——, “Dynamic rule set mapping strategy for the design of effective

semantic cache,” in Advanced Communication Technology, The 9th

International Conference on, vol. 3. IEEE, 2007, pp. 1952–1957.

Bibliography 81

[28] M. F. Bashir and M. A. Qadir, “Hisis: 4-level hierarchical semantic in-

dexing for efficient content matchingover semantic cache,” in Multitopic

Conference, 2006. INMIC’06. IEEE. IEEE, 2006, pp. 211–214.

[29] X.-H. Sun, N. N. Kamel, and L. M. Ni, “Processing implication on

queries,” IEEE Transactions on Software Engineering, vol. 15, no. 10, p.

1168, 1989.

[30] S. Guo, W. Sun, and M. A. Weiss, “Solving satisfiability and implication

problems in database systems,” ACM Transactions on Database Systems

(TODS), vol. 21, no. 2, pp. 270–293, 1996.

[31] M. Ahmad, M. A. Qadir, M. Sanaullah, and M. F. Bashir, “An ef-

ficient query matching algorithm for relational data semantic cache,”

in Computer, Control and Communication, 2009. IC4 2009. 2nd

International Conference on. IEEE, 2009, pp. 1–6.

[32] P. M. Kumar, T. Das, and D. Vaideeswaran, “Survey on seman-

tic caching and query processing in databases,” in Proc. of the

Second Intl. Conf. on Advances in Computer, Electronics and Electrical

Engineering–CEEE 2013, 2013.

[33] Q. Luo, J. F. Naughton, R. Krishnamurthy, P. Cao, and Y. Li, “Active

query caching for database web servers,” WebDB (Selected Papers), vol.

1997, pp. 92–104, 2000.

[34] C. Lubbe, A. Brodt, N. Cipriani, M. Großmann, and B. Mitschang,

“Disco: A distributed semantic cache overlay for location-based

services,” in Mobile Data Management (MDM), 2011 12th IEEE

International Conference on, vol. 1. IEEE, 2011, pp. 17–26.

[35] S. Cluet, O. Kapitskaia, and D. Srivastava, “Using ldap

directory caches,” in Proceedings of the eighteenth ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database

systems. ACM, 1999, pp. 273–284.

[36] A. Peters and A. Heuer, “Blues: usability of semantic caching ap-

proaches in pervasive ad-hoc scenarios,” in Proceedings of the 4th

International Conference on PErvasive Technologies Related to Assistive

Environments. ACM, 2011, p. 33.

Bibliography 82

[37] E. Benson, A. Marcus, D. Karger, and S. Madden, “Sync kit: a per-

sistent client-side database caching toolkit for data intensive websites,”

in Proceedings of the 19th international conference on World wide web.

ACM, 2010, pp. 121–130.

[38] J. R. Thomsen, M. L. Yiu, and C. S. Jensen, “Effective caching of short-

est paths for location-based services,” in Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data. ACM,

2012, pp. 313–324.

[39] B. B. Cambazoglu, I. S. Altingovde, R. Ozcan, and Ö. Ulusoy, “Cache-

based query processing for search engines,” ACM Transactions on the

Web (TWEB), vol. 6, no. 4, p. 14, 2012.

[40] G. Soundararajan and C. Amza, “Using semantic information to im-

prove transparent query caching for dynamic content web sites,” in Data

Engineering Issues in E-Commerce, 2005. Proceedings. International

Workshop on. IEEE, 2005, pp. 132–138.

[41] M. Sumalatha, V. Vaidehi, A. Kannen, M. Rajasekar, and M. Karthigai-

selven, “Xml query processing–semantic cache system,” IJCSNS, vol. 7,

no. 4, p. 164, 2007.

[42] L. Chen, E. A. Rundensteiner, and S. Wang, “Xcache: a semantic

caching system for xml queries,” in Proceedings of the 2002 ACM

SIGMOD international conference on Management of data. ACM, 2002,

pp. 618–618.

[43] M. Sanaullah, M. A. Qadir, and M. Ahmad, “Scad-xml: Semantic cache

architecture for xml data files using xpath with cases and rules,” in

Multitopic Conference, 2008. INMIC 2008. IEEE International. IEEE,

2008, pp. 361–367.

[44] C. Liu, B. C. Fruin, and H. Samet, “Sac: Semantic adaptive caching

for spatial mobile applications,” in Proceedings of the 21st ACM

SIGSPATIAL International Conference on Advances in Geographic

Information Systems. ACM, 2013, pp. 174–183.

Bibliography 83

[45] C. M. Chen and N. Roussopoulos, “The implementation and perfor-

mance evaluation of the adms query optimizer: Integrating query re-

sult caching and matching,” in International Conference on Extending

Database Technology. Springer, 1994, pp. 323–336.

[46] H. Wan, X.-W. Hao, T. Zhang, and L. Li, “Semantic caching services

for data grids,” Lecture notes in computer science, pp. 959–962, 2004.

[47] J. Cai, Y. Jia, S. Yang, and P. Zou, “A method of aggregate query match-

ing in semantic cache for massive database applications,” in International

Workshop on Advanced Parallel Processing Technologies. Springer,

2005, pp. 435–442.

[48] B. T. Jonsson, M. Arinbjarnar, B. Thorsson, M. J. Franklin, and D. Sri-

vastava, “Performance and overhead of semantic cache management,”

ACM Transactions on Internet Technology (TOIT), vol. 6, no. 3, pp.

302–331, 2006.

[49] M. Bashir and M. Qadir, “Proq–query processing over semantic cache

for data grid,” Center for Distributed and Semantic Computing, 2007.

[50] C. Ehlers and B. Freitag, “Top-k semantic caching.” Ph.D. dissertation,

University of Passau, 2015.

[51] M. Xie, L. V. Lakshmanan, and P. T. Wood, “Efficient top-k query

answering using cached views,” in Proceedings of the 16th International

Conference on Extending Database Technology. ACM, 2013, pp. 489–

500.

[52] M. Ahmad, M. A. Qadir, T. Ali, M. A. Abbas, and M. T. Afzal, “Seman-

tic cache system,” in Semantics in Action-Applications and Scenarios.

InTech, 2012.

[53] S.-W. Kang, J. Kim, S. Im, H. Jung, and C.-S. Hwang, “Cache strategies

for semantic prefetching data,” in Web-Age Information Management

Workshops, 2006. WAIM’06. Seventh International Conference on.

IEEE, 2006, pp. 7–7.

[54] M. Ahmad, S. Asghar, M. A. Qadir, and T. Ali, “Graph based query

trimming algorithm for relational data semantic cache,” in Proceedings

Bibliography 84

of the International Conference on Management of Emergent Digital

EcoSystems. ACM, 2010, pp. 47–52.

[55] M. Ahmad, M. A. Qadir, and T. Ali, “Indexing for semantic cache to

reduce query matching complexity,” Journal of the National Science

Foundation of Sri Lanka, vol. 45, no. 1, 2017.

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	List of Publications
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Introduction to the domain
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Research Methdology
	1.5 Definitions and Notations

	2 Criteria to Evaluate Existing Techniques
	2.1 Quantitative Parameters
	2.2 Association between Benchmark and Parameters

	3 Related Work
	3.1 Godfrey’s Scheme
	3.2 Ren’s Scheme
	3.3 Wan's Scheme
	3.4 Cai’s Scheme
	3.5 Jonsson’s Scheme
	3.6 Bashir’s Scheme
	3.7 Sumalatha’s Scheme
	3.8 Ehlers’s Scheme

	4 sCacheQP
	4.1 Query Matching
	4.2 Query Trimming
	4.3 Query Rebuilding
	4.4 Schema Based Indexing Scheme

	5 Analysis of Proposed System
	6 Case Study and Experimental Results
	6.1 Case Study
	6.2 Experimental Results
	6.2.1 Database and Semantic Cache at Same Machine
	6.2.2 Database and Semantic Cache at Different Machine

	7 Conclusion and Future Work
	Bibliography

