
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Formalization of a Use Case

Model to Kripke Structure and

LTL Formulas

by

Qamar uz Zaman

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Computing

Department of Computer Science

2022

www.cust.edu.pk
www.cust.edu.pk
qamar.zaman@cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Formalization of a Use Case Model to Kripke

Structure and LTL Formulas

By

Qamar uz Zaman

(PC133001)

Dr. Muhammad Taimoor Khan, Senior Lecturer

University of Greenwich, London, United Kingdom

(Foreign Evaluator 1)

Dr. Wasif Afzal, Professor

Mälardalen University, Väster̊as, Sweden

(Foreign Evaluator 2)

Dr. Aamer Nadeem

(Thesis Supervisor)

Dr. Nayyer Masood

(Head, Department of Computer Science)

Dr. Muhammad Abdul Qadir

(Dean, Faculty of Computing)

DEPARTMENT OF COMPUTER SCIENCE

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2022

ii

Copyright © 2022 by Qamar uz Zaman

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

iii

Dedication

vii

List of Publications

It is certified that following publication(s) have been made out of the research

work that has been carried out for this thesis:-

1. Zaman, Qamar uz, Aamer Nadeem, and Muddassar Azam Sindhu. ”For-

malizing the use case model: A model-based approach.” Plos one Vol. 15

Issue 4 pp 1-29 (2020).

2. Qamar uz Zaman, Muddassar A. Sindhu, and Aamer Nadeem, ”Formal-

izing a Use Case to Kripke Structure.” Proceedings of the IASTED Interna-

tional Symposium Software Engineering and Applications Volume 829 Issue

17 pp 232-239 (SEA 2015), 2015.

Qamar uz Zaman

(PC133001)

viii

Acknowledgement

PhD is an academic as well as a personal activity. Without the supervision and

backing, the concepts and working is never complete. In this regard, I would

like to thank first and the foremost my honourable supervisor Professor Dr.

Aamer Nadeem who made my work an easy endeavour when it seemed to me

an uphill task. Dr. Aamer Nadeem proved to be not only an academician but

also a very humble and motivating personality for me. Not only did he guide me

but also introduced new discipline in my research work. His technical support

for me opened a new era in the field for me. I would like to express my special

gratitude to Dr. Muddassar Azam Sindhu. I always found him ready for

discussion, guidance and review for my work. The reviewers guidance is specially

acknowledged for providing their valuable suggestions. My special and humble

thanks to my Computer Science Department of Capital University of

Science and Technology which proved a catalyst for me to boost my knowledge.

My best wishes in this regard are for my family who provided me a very conducive

and disturbance free environment that helped me pursue my research.

ix

Abstract

Software reliability can be ensured by using software verification techniques in-

cluding model checking. A model checker takes a software model along with for-

mal specifications and verifies either the provided model satisfies the input formal

specifications or not. The cost and effort required to generate a software model

and formal specifications may not be feasible in all software development. This

opens the door for the approaches that can transform informal software require-

ments to formal specifications and model. There are a number of approaches to

transform informal software requirements into semiformal or formal software speci-

fications. However, the existing approaches require informal software requirements

in a controlled natural language. Some approaches, require additional skills like

understanding of object-oriented paradigm and domain knowledge. A number of

theses approaches generate semiformal models which may not be suitable to be di-

rectly used by software verification techniques. Some of these approaches generate

formal model as an output. But formal specifications, against which the model is

to be verified, are still required. There is a need for an approach that generates a

model along with formal specifications from the informal software requirements.

The generated model, however, is a primitive model of a software, along with the

generated formal specifications can be used for model checking. This facilitates

the software verification process and can help to develop a reliable software.

This work proposes an approach that generates a Kripke structure and Linear

Temporal Logic (LTL) formulas from a use case model. A use case model is a de

facto industry standard to specify software requirements. The presented approach

is a metamodel-based approach. It performs model-to-model transformation. In

addition to it, a GUI tool is also developed to support this approach. The user

of this approach has to specify the input use case in a proposed template and the

tool automatically generates the resultant Kripke structure and LTL formulas.

This approach does not require any additional software development artefacts for

the transformation. Two pedagogical and two industrial case studies are used to

generate the resultant formal artefacts. The proposed approach is also compared

x

with the existing approaches on the basis of the user efforts required to specify

informal software requirements, ability to handle use case relationships and useful-

ness of the generated artefacts. It is found that four existing approaches meet this

criteria. Only two out of these approaches are able to handle all use cases of these

case studies and examples. Whereas, other two are unable to handle 41 out of 50

input use cases, because these approaches do not handle use case relationships. In

addition to it, the existing approaches generate only the behavioural model of the

software. None of these approaches generate formal software specifications of the

software. However, the proposed approach transforms all input use cases. This ap-

proach generates a behavioural model along with the formal software specification

of a software.

Contents

Dedication iii

Author’s Declaration v

Plagiarism Undertaking vi

List of Publications vii

Acknowledgement viii

Abstract ix

List of Figures xiv

List of Tables xvii

Abbreviations xviii

1 Introduction 1

1.1 Software Requirements Documentation 2

1.2 Formalization of Informal Software Requirements 3

1.3 Motivation . 5

1.4 Research Methodology . 5

1.4.1 Phase 1: What to Research? 7

1.4.2 Phase 2: Research Planning 7

1.4.3 Phase 3: Implementation . 7

1.5 Problem Statement . 7

1.6 Research Questions . 8

1.7 Thesis Layout . 9

2 Background 10

2.1 Informal Software Requirements . 10

2.1.1 User Story . 11

2.1.2 Concept of Operations Document (ConOps) 11

2.1.3 Requirements Statement . 11

xi

xii

2.2 Semiformal Software Requirements 11

2.2.1 Flowchart . 12

2.2.2 Data Flow Diagram (DFD) 12

2.2.3 Decision Tables . 12

2.2.4 Use Case Model . 12

2.3 Formal Software Specifications . 14

2.3.1 History-based Specification 14

2.3.1.1 Linear Temporal Logic 14

2.3.1.2 Computational Tree Logic 14

2.3.2 Transition Based Representation 15

2.3.2.1 Moore Model . 15

2.3.2.2 Mealy Model . 15

2.3.2.3 Kripke Structure 16

2.3.2.4 Labelled Transition System 16

2.3.3 State based Specifications 17

2.3.3.1 Z Specification Language 17

2.3.3.2 X-machine . 17

2.3.4 Functional Specification . 18

2.3.4.1 OBJ . 18

2.3.4.2 Larch . 18

2.3.4.3 HOL . 18

2.3.4.4 PVS . 19

2.3.5 Operational Specification . 19

2.3.5.1 Gist . 19

2.3.5.2 Petri Nets . 19

2.4 Informal to Formal Specification Transformation 19

2.4.1 Metamodel-based Transformation 20

2.5 Summary . 21

3 Literature Review 22

3.1 State of the Art Approaches . 23

3.1.1 Approaches Generating Semiformal Artefacts 23

3.1.2 Approaches Generating Formal Artefacts 29

3.2 Analysis . 36

3.3 Summary . 39

4 Use Case to a Kripke Structure and LTL Formulas Generation 41

4.1 Use Case Template . 42

4.2 Use Case Meta Model . 45

4.3 Kripke Structure Meta Model . 47

4.4 Linear Temporal Logic (LTL) Formula Meta Model 49

4.5 Proposed Approach . 50

4.5.1 Use Case Flattener Process 51

4.5.2 Use Case to Kripke Structure Transformation Process 54

xiii

4.5.3 Use Case to LTL Formula Transformation Process 59

4.5.4 Proof of Soundness and Completeness 65

4.5.5 Time Complexity . 67

4.6 Summary . 71

5 Tool Support 72

5.1 Architecture Diagram . 72

5.2 Class Diagram . 74

5.3 User Interface . 76

5.4 Summary . 79

6 Case Studies and Results Validation 80

6.1 ATM Cash Withdrawal Example 80

6.2 SIM Dispensing Machine Example 81

6.3 Work Flow Manager Case Study . 84

6.3.1 Request New Letter . 85

6.3.2 Business Analyst Review Letter Request 86

6.3.3 Letter Writer Develops New Letter 88

6.3.4 Business Analyst Review Developed Letter 90

6.3.5 Requester Approves Developed Letter 92

6.4 Touch’D Case Study . 94

6.4.1 User Makes a Profile . 94

6.4.2 User Calls a Contact . 99

6.4.3 User Views a Contact . 100

6.5 Generated Artefacts and Their Validation 103

6.5.1 Conformance of the Generated Artefacts 106

6.5.1.1 ATM Cash Withdrawal Example 106

6.5.1.2 Work Flow Manager 109

6.6 Comparison With the Existing Approaches 120

7 Conclusions and Future work 125

7.1 Answers to Research Questions . 125

7.2 Conclusions . 126

7.3 Limitations and Future Work . 127

Bibliography 139

A ATM cash withdrawal example generated artefacts 140

A.1 Generated Kripke Structure in .dot Format 141

A.2 Generated Kripke Structure in .gml Format 145

A.3 Generated Linear Temporal Logic Formulas 152

List of Figures

1.1 Customized Design Science Methodology. 6

2.1 A Typical Use Case Diagram. 13

4.1 Proposed Use Case Template. 43

4.2 Extended Backus-Naur Form (EBNF) Grammar for the Use Case
Template. 44

4.3 Flatten Use Case Meta Model. 46

4.4 Kripke Structure Meta Model. 48

4.5 LTL Formula Meta Model. 50

4.6 Proposed Approach Schematic Diagram. 51

4.7 Use Case Flattener Process Schematic Diagram. 52

5.1 Tool Architecture Diagram. 73

5.2 Tool Class Diagram. 75

5.3 User Interface. 76

5.4 GraphViz Directory Selection Interface. 77

5.5 Use Case Selection Interface. 77

5.6 Syntax Correct Message on the Interface. 78

5.7 Generated Kripke structure and LTL formulas on the Interface. . . 78

6.1 ATM Cash Withdrawal Use Case Diagram. 81

6.2 ATM Cash Withdrawal Use Case Description. 81

6.3 SIM Vending Machine Use Case Diagram. 82

6.4 Start a Transaction Use Case Description. 83

6.5 Check SIM Registered Use Case Description. 83

6.6 Purchase SIM Use Case Description. 83

6.7 View Balance History Use Case Description. 84

6.8 Change Plan Use Case Description. 84

6.9 Request New Letter Use Case Diagram. 85

6.10 Request New Letter Use Case Description. 85

6.11 Login Use Case Description. 86

6.12 Save New Letter Features Use Case Description. 86

6.13 Business Analyst Review Letter Request Use Case Diagram. 86

6.14 Business Analyst Review Letter Request Use Case Description. . . . 87

6.15 Login Use Case Description. 87

6.16 Call Meeting Use Case Description. 87

xiv

xv

6.17 Add Letter Information Use Case Description. 88

6.18 Edit Letter Information Use Case Description. 88

6.19 Save Letter Information Use Case Description. 88

6.20 Letter Writer Develops a New Letter Use Case Diagram. 89

6.21 Login Use Case Description. 89

6.22 Letter Writer Develops a New Letter Use Case Description. 89

6.23 Add Information Use Case Description. 90

6.24 View Requester Information Use Case Description. 90

6.25 View Business Analyst Information Use Case Description. 90

6.26 Business Analyst Review Developed Letter Use Case Diagram. . . . 91

6.27 Business Analyst Review Developed Letter Use Case Description. . 91

6.28 Login Use Case Description. 91

6.29 Approve Developed Letter Use Case Description. 92

6.30 Login Use Case Description. 92

6.31 Requester Approves Developed Letter Use Case Diagram. 92

6.32 Requester Approves Developed Letter Use Case Description. 93

6.33 Login Use Case Description. 93

6.34 Letter Approval Use Case Description. 93

6.35 Letter Rejection Use Case Description. 93

6.36 User Makes A Profile Use Case diagram. 94

6.37 User Makes Profile Use Case Description. 95

6.38 View Recently Contacted Use Case Description. 95

6.39 Set Age Use Case Description. 95

6.40 Set Marital Status Use Case Description. 96

6.41 Set Company Use Case Description. 96

6.42 Set Working Status Use Case Description. 96

6.43 Set Birthday Use Case Description. 97

6.44 Set Education Use Case Description. 97

6.45 Set Gender Use Case Description. 97

6.46 Update Privacy Level Use Case Description. 97

6.47 Set Status Use Case Description. 98

6.48 View Last Week Summary Use Case Description. 98

6.49 View Today Interaction Summary Use Case Description. 98

6.50 User Calls Contact Use Case Diagram. 99

6.51 User Calls a Contact Use Case Description. 99

6.52 View a Note Use Case Description. 99

6.53 User Views a Contact Use Case Diagram. 100

6.54 User Views a Contact Use Case Description. 101

6.55 View Last Interaction Type Use Case Description. 101

6.56 Add Note Use Case Description. 101

6.57 View Communication Summary Use Case Description. 102

6.58 View Communication Starter Summary Use Case Description. . . . 102

6.59 Send Message Use Case Description. 102

6.60 View Relationship Health Use Case Description. 102

xvi

6.61 NuSMV Model Checker Output for The ATM Cash Withdrawal
Example. 104

6.62 NuSMV Model Checker Counterexample Screenshot. 105

A.1 Kripke Structure for ATM Cash Withdrawal Example. 140

List of Tables

3.1 Approaches Generating Semiformal Artefacts 26

3.2 Approaches Generating Formal Artefacts 35

4.1 Transformation Rules Effecting Source Target Meta Model
Summary . 59

4.2 Transformation Rules Effecting Source Target Meta Model
Summary . 64

6.1 Input Examples and Case Studies Features 103

6.2 ATM Cash Withdrawal Use Case Conformance to the Gen-
erated Artefacts . 107

6.3 Request New Letter Conformance to the Generated Kripke
Structure and LTL Formulas 110

6.4 Business Analyst Review Letter Request Use Case Confor-
mance to the Generated Artefacts. 113

6.5 Letter Writer Develops New Letter Use Case Conformance
to the Generated Artefacts. 115

6.6 Business Analyst Review Developed Letter Use Case Con-
formance to the Generated Artefacts. 118

6.7 Requester Approves Developed Letter Use Case Confor-
mance to the Generated Artefacts. 119

6.8 Analysis of the Existing Approaches to the Proposed Ap-
proach . 121

xvii

Abbreviations

Acronym What (it) Stands For

ATM Automated Teller Machine

ConOps Concept of Operations Document

CTL Computation Tree Logic

DFD Data Flow Diagram

EBNF Extended Backus-Naur Form

HOL Higher Order Logic

Larch Larch: Languages and Tools for Formal Specification

LTL Linear Temporal Logic

NuSMV New Symbolic Model Verifier

OBJ OBJ First-order Functional Language

PVS Prototype Verification System

SAL Symbolic Analysis Laboratory

SIM Subscriber Identity Module

SPIN Simple Promela Interpreter

xviii

Chapter 1

Introduction

The Software requirements document provides the foundation for the software

development process. Documentation of software requirements makes it easy to

refer and revisit the software requirements throughout the software development

process by the different stakeholders of the software. A Software requirements

document is required to be understandable, unambiguous, complete, consistent,

verifiable, traceable and testable [1–3]. It also provides the basis for a reliable

software. Software requirements can be documented as informal, semiformal or

formal specifications [4, 5]. The choice to document is dependent on its user,

i.e., technical or non-technical. In addition to this, the nature of the document

is also dependent on the software development phase, where it is intended to use.

Formal specifications are unambiguous. These can also be verified for consistency

and completeness [6–10]. Formal specifications are also used to verify the design

artefacts and software implementation. Formal specifications also facilitate the

automated test cases generation using specification-based testing [11–13]. The use

of formal specification can improve the software quality up to 92% [14].

Formal methods represent a software as mathematical entities. It is supported by a

variety of tools to model, analyse and synthesize these mathematical entities. The

mathematical entities are of different types including history-based specifications,

transition-based specifications, state-based specifications, functional specifications

and operational specifications [15, 16]. The tools allow syntactic, model and proof

1

Introduction 2

checking. A model checker takes a model and formal properties as input. It verifies

either the input model satisfies the formal properties or not. If the input model

does not satisfy the formal properties, it generates counter examples [17]. Formal

specifications also facilitate the conformance testing [18, 19] and learning-based

testing [20–22]. Formal methods are applicable to the different software develop-

ment phases including requirements analysis, software design and implementation

for the verification purposes. The later these are applied in the software devel-

opment process, the larger the cost of correction is added to the software cost

[23].

1.1 Software Requirements Documentation

Software requirements documented in unrestricted natural language are informal

requirements [24]. It is easy to document such requirements. But the inherent

features of natural language may make them inconsistent and ambiguous [25]. It

is also difficult to trace and verify informal requirements. Examples of informal

software requirements include user stories [26] and Software Requirements Spec-

ification (SRS) document [27]. These requirements can easily be understood by

non-technical stakeholders. But ambiguity, inconsistency and incompleteness in

them can cause failure of a software project [28]. Moreover, in the case of informal

software requirements, it is difficult to apprehend the software verification and

validation activities [29].

Semiformal software requirements are structured as diagrams or tables [30]. Ex-

amples include use case model [31], decision table [32] and flowchart [33]. The

structured presentation makes them clear and understandable. It is also easy to

trace and verify them in comparison to the informal software requirements [34].

Technical and non-technical users can understand informal software requirements.

Semiformal software requirements are useful for software verification and valida-

tion activities. But a verification engineer requires an in-depth knowledge of the

domain to develop and use semiformal software requirements as an input in the

Introduction 3

verification and validation activities. In addition to it, the informal segment of

these makes it difficult to comprehend the verification and validation process. [35].

Software requirements documented using precise mathematical notations are called

formal requirement. These mathematical notations include logic and algebraic no-

tations [36]. There are well-defined syntax, semantic and manipulation rules for

the formal software specifications [37]. The formal software specifications are ver-

ifiable. It is also possible to test formal software specifications for completeness

and correctness [38]. Clear, consistent and complete nature of formal software

requirements make them useful for verification and validation activities [39]. Ex-

amples of formal software specifications include Z-language [40], Linear Temporal

Logic (LTL) [41] and Computational Tree Logic (CTL) [42]. However, formal soft-

ware requirements are expensive in terms of time and cost [43–45]. This expense

may not be feasible in all software development projects [46]. There are a number

of approaches that formalize informal or semiformal software requirements into

formal software specifications to overcome this cost.

1.2 Formalization of Informal Software Require-

ments

Formalization of software requirements, transforms informal or semiformal soft-

ware requirements into formal software specifications [47]. This facilitates to over-

come the issues of informal software requirements. This transformation makes

informal software requirements to the corresponding formal software specifica-

tions [48]. Clear, consistent and complete software requirements are required for

verification and validation activities [49].

The formalization can be performed either at model level or at meta model level

[50]. In model-based formalization, rules are defined to transform an input model

to an output model [51]. Whereas, in meta model formalization, meta models for

input model and output model are defined along with the transformation rules.

Introduction 4

The transformation rules are also defined at meta model level. This allows to

perform transformation for all possible instances, definable, by the meta model

[52]. The defined meta model represents the features of a model and it can be

refined over the time. Additionally, definition of meta model is not dependent

on a platform and implementation. This allows to implement a meta model over

multiple platforms. The transformation rules are subject to a transformation

process only. Moreover, a meta model approach also supports the forward and

backward transformation and the transformation process can also manage single

or multiple models definable by input meta model(s) to be transformed in single

or multiple models of definable output meta model(s). Whereas a model-based

approach has to manage both the definition and the transformation process side

by side. The defined transformation rules can only transform a particular defined

model to some target model. The model definition and the transformation rules

are not independent of each other [53].

There are multiple approaches that formalize informal software requirements into

formal software requirements. These are discussed in Chapter 3. It is important to

note that the use case model is widely used in the software industry to document

software requirements [3]. There are several challenges in the formalization of a

use case model. These challenges include lack of a standard use case template for

the specification of a use case description. Moreover, the existing use case tem-

plates do not distinctly enlist the input and output for the software functionality

being specified. In addition to these, there is no standard meta model for a use

case description though UML specifies a meta model for a use case diagram. The

existing formalization approaches propose a use case template and/or use con-

trolled natural language to document the input use case [54–56]. The definition

of a use case template and the usage of controlled natural language smooth the

transformation process. Some of these approaches produce semiformal artefacts

[54, 55, 57, 58]. The generated semiformal artefacts are suitable for software design

and testing. The generated formal artefacts, by some transformation approaches,

are non-deterministic in nature [59–63]. It is also observed that some of these

transformation approaches are domain specific [64–66]. Besides all of these, the

Introduction 5

transformation approaches require additional artefacts other than the use case

model for the transformation activity [59, 60, 67]. Some of these approaches are

also not supported by a tool [59, 60, 63, 67].

1.3 Motivation

Formalization of a use case model makes it possible to generate formal notations

from a semiformal artefact. This formalization reduces the cost and time required

to document formal software specification manually. The generation of formal

notations introduces the usage of formal methods in the software development

process. The use of formal methods allows to trace and track the development

of the right software at this early stage of requirements engineering. The gener-

ated formal artefacts also allow to analyse and correct, if required, the software

behaviour at this early stage. The cost of correction at this early stage is less

than the cost to correct the errors at the later stages of the software development

process. The generated formal artefacts are also usable to verify the software de-

sign and implementation artefacts generated at the later stages of the software

development process. Formalization of a use case model at meta model allows

to perform transformation at meta model instead of at model level. Meta model

transformation is capable to transform all definable models of a meta model.

1.4 Research Methodology

The design science methodology [68] guides the development and evaluation of a

research project. A customized design science methodology for this work is shown

in Figure 1.1. The activities are divided into three phases. There are a number of

levels and tasks associated to each phase. There are three phases, i.e., Phase 1:

What to Research?, Phase 2: Research Planning and Phase 3: Implementation.

These phases are implemented in their ascending order. Each phase along with its

associated levels and tasks are discussed in the following subsections.

Introduction 6

Figure 1.1: Customized Design Science Methodology.

Introduction 7

1.4.1 Phase 1: What to Research?

This phase has one level, i.e., Level 1: Research Idea Formulation. This level is

discussed in the following paragraph. There are three tasks has to be accomplished

in this level. These include: Literature Review, Research Gap Identification and

Research Problem Formulation.

1.4.2 Phase 2: Research Planning

This phase has 3 levels. These levels include: Level 2: Proposed Approach and

Architecture, Level 3: Case Studies and Examples and Level 4: Benchmark Ap-

proaches. Level 2: Proposed Approach and Architecture has three tasks associated

to it. These tasks are Use case Template Definition, Source and Target Metamodel

Definition and Metamodel-based Transformation Rules Definition. Level 3: Case

Studies and Examples has one associated task, i.e, Case Studies and Examples Col-

lection. Level 4: Benchmark Approaches has two tasks and those are Benchmark

Criteria and Benchmark Selection.

1.4.3 Phase 3: Implementation

This phase has only one level associated to it and that level is Level 5: Tool

Formulation and Implementation. This level further has three tasks including Tool

Development, Case Studies and Examples Evaluation and the last one is Results

and Discussion.

1.5 Problem Statement

There are a number of approaches that transform informal or semiformal software

requirements to formal software specifications. These approaches either generate

behavioural model or formal software specification. Verification tools, like model

Introduction 8

checker, require both behaviour model and formal software specifications for soft-

ware verification. The generated artefacts of the existing approaches can not be

directly used for software verification.

1.6 Research Questions

� RQ1: What are the limitations of the existing formalization approaches?

� RQ2: How can a metamodel-based approach be proposed that generate a

behaviour model as well as formal software specification?

� RQ3: How can the generated artefacts be used for software verification?

RQ1 requires the study of the existing approaches, the required input and the

nature of the output along with the formalization process. RQ2 requires the def-

inition of an automated approach that can transform a use case model into a

deterministic formal model along with the formal software specifications by han-

dling the use case relationships. RQ3 requires the generation of output artefacts in

a format that can directly be used for software verification by using an automated

tool like a model checker.

This work introduces an approach that transforms a use case model into a Kripke

structure model and LTL formal specifications. The meta models for the use case

model, Kripke structure model and LTL formal specification are also defined. The

proposed approach is also supported by a platform independent tool. The gener-

ated artefacts can be provided as input to model checker like NuSMV, SPIN and

SAL. The generated LTL formal specifications are also useful for verifications of

software artefacts generated at the later stages of the software development pro-

cess. The generated formal artefacts are also useful for specification-based and

learning-based test case generation. Two pedagogical examples and two industrial

case studies are used to demonstrate the working of the approach. It is observed

that NuSMV model checker does not generate any counter example for the gen-

erated Kripke structure model and LTL formulas for the input use case model.

Introduction 9

This validates the generated LTL formulas and Kripke structure, generated by

two independent processes of the proposed approach.

1.7 Thesis Layout

This thesis is organized by providing some basic definitions in Chapter 2, the

state-of-the-art approaches are discussed in Chapter 3, the proposed approach is

presented in Chapter 4, the developed tool is presented in Chapter 5, examples

along with case studies are presented in Chapter 6 and the output Kripke structure

models as well as the generated LTL formulas for an example are provided as

appendix.

Chapter 2

Background

This discussion is aimed to provide the essential concepts required for the under-

standing of the target problem of this work: formalization of informal software

requirements to formal specifications.

Software requirements provide foundation for agreement between different stake

holders of a software, basically the client and the development team. These re-

quirements also provide foundation for different activities like software design,

implementation and testing. There are multiple users of software requirements

including the people with technical and non-technical knowledge. Software re-

quirements are documented using formal or informal formats depending on the

need of the intended users [69].

2.1 Informal Software Requirements

Informal software requirements are documented using unrestricted natural lan-

guage. Informal software requirements can be ambiguous, incomplete and incon-

sistent due to the inherent features of natural language. It is difficult to verify,

trace and test informal software requirements. There are multiple formats avail-

able to informally specify software requirements. These formats include user story,

10

Background 11

concept of operations document and requirements statement. These formats are

discussed in the following subsections.

2.1.1 User Story

A user story [70] describes a software feature from end-user perspective. A user

story is written in natural language. It describes, what feature a user requires and

why the user requires this feature. A user story can be written by a user, manager

or a member of development team.

2.1.2 Concept of Operations Document (ConOps)

ConOps [71] is used to document software requirements in a natural language. This

document describes a software functionality from user perspective. This document

is established by defence organizations for specifying their software requirements.

2.1.3 Requirements Statement

Software requirements are documented using a natural language. These require-

ments are numbered. These kinds of requirements are presented in software re-

quirements specification document [72] is a detailed document. This document

contains purpose, scope, plan, intended users, software requirements specification

including functional, non-functional and user interface requirements.

2.2 Semiformal Software Requirements

Semiformal software requirements are structured in the form of tables and dia-

grams to document a software requirements. These approaches include: flowchart,

data flow diagram, decision table and use case model. These approaches are dis-

cussed in the following subsections.

Background 12

2.2.1 Flowchart

Software features are described in the form of a flowchart[33]. A flowchart consist

of a number of graphical symbols. The semantics of these graphical symbols are

defined.

2.2.2 Data Flow Diagram (DFD)

A DFD [73] describes software’s functionality by describing how data flows in the

proposed system by specifying input and output of a software. It also describes how

data get transformed and stored in the software. This description is documented

by using distinct symbols for data flow, process, data store, and external entities

including data originator and data receiver.

2.2.3 Decision Tables

A decision table [32] is used to represent software requirements using logical rela-

tion between condition and actions along with their possible values. The relation

among conditions and actions are represented in a tabular format consisting of

conditions, condition entries, actions and action entries.

2.2.4 Use Case Model

Ivar Jacobson et al. [74] propose use case model to specify software requirements

using a natural language. A use case model consists of a use case diagram and use

case description(s). Unified Modelling Language (UML) [75] propose syntax of a

use case diagram. A use case diagram consists of actor, use case and relationship

symbols. A plain line is used to represent an actor’s interaction to a use case.

The relationship symbols are used to represent use case relationships including

include and extend relationship. An include relationship is used when a use case

includes the functionality of other use case. Whereas, an extend relationship is

Background 13

used to represent the extended functionality of some other use case based on some

criteria. These use case relationships allow to specify a software behaviour in

a more realistic way. A user software interaction and use case relationships are

specified as use case description using natural language. A typical use case diagram

is shown in Figure 2.1.

Figure 2.1: A Typical Use Case Diagram.

This figure shows an actor’s interacting with Use case 1, Use case 2 and Use case

4. There is an include relationship between Use case 2 and Use case 3 and an

extend relationship between Use case 4 and Use case 5.

A use case description for a distinct use case is required to be specified in a

natural language. A use case description is often specified, using a template. To

the best of our knowledge, UML does not specify a standard template for use case

description. There are a number of use case templates being used in the software

industry. These templates include: Jacobson [76], Duran et al. [77], Cockburn [78]

and RUP [79]. There are some common constructs that are used in all templates.

These constructs include use case name, actor, normal scenario, alternate scenario

and use case relationships.

The distinct listing of these constructs can not overcome the problem of ambiguity

in software requirements specification due to inherent issues of a natural language.

Moreover, these requirements can not be verified and validated.

Background 14

2.3 Formal Software Specifications

Formal software requirements are specified using set theory, propositional logic,

or algebraic notations. There are defined set of rules for syntax, semantics and

manipulation. Such requirements are unambiguous in nature due to defined vocab-

ulary, syntax and semantic rules. A background knowledge is required to specify

and understand requirements in this format. The additional cost and time are

also required to specify requirements formally. Formal software requirements can

be verified and validated. Formal software specifications can be history-based,

transition-based or state-based specifications [80].

2.3.1 History-based Specification

Software behaviour is defined over time. The time can be specified as linear or

branching. Examples of these are Linear Temporal Logic (LTL) and Computa-

tional Tree Logic (CTL).

2.3.1.1 Linear Temporal Logic

Linear Temporal Logic (LTL) [41] formulas are used to build LTL formal spec-

ifications. A LTL formula consists of atomic propositions, logical and temporal

operators. An atomic proposition is a statement that can either be true or false.

The logical operators include !, &, |, =, <, >, and − >. Whereas, temporal opera-

tors include: Next operator© or X, Eventually operator ♦ or F, Global operator

� or G and Until operator U.

2.3.1.2 Computational Tree Logic

Computational Tree Logic (CTL) [42] formulas are used to specify a software

behaviour. The possible functionalities in a software is considered as a tree. LTL

formulas along with ∃ and ∀ operators specify software behaviour on possible

Background 15

paths of the tree build from the possible combinations of software behaviour. The

∃ operator is used to state that at least one path satisfy the formal specification.

Whereas, ∀ operator states that all paths satisfy the formal specification.

2.3.2 Transition Based Representation

Software behaviour is represented in the form of a model consisting of state(s) and

transition(s). There are multiple model formats available including Moore model,

Mealy model, Kripke structure and labelled transition system. The selection of

these model for software behaviour representation is dependent to the nature of

software being developed.

2.3.2.1 Moore Model

A Moore model [81] is finite state machine. In Moore model, the output is deter-

mined by the current state of the model. It consists of a 6-tuple consists of 〈 Q,

q0, Σ, ∧, δ, λ 〉. Each of these tuple is described as:

� Q: set of finite states.

� q0 ∈ Q: an initial state.

� Σ: set of input symbols.

� ∧: set of output symbols.

� δ:Q×Σ→ Q is transition function.

� λ:Q → ∧ maps output symbols to states.

2.3.2.2 Mealy Model

A Mealy model [82] is finite state machine. In Mealy model, the output is deter-

mined by the current state and the value of input. It is a 6-tuple consists of 〈 Q,

q0, Σ, ∧, δ, λ 〉. Each of these tuple is described as:

Background 16

� Q: set of finite states.

� q0 ∈ Q: an initial state.

� Σ: set of input symbols.

� ∧: set of output symbols.

� δ:Q×Σ→ Q is transition function.

� λ:Q × Σ → ∧ maps input and output symbols to states.

2.3.2.3 Kripke Structure

A Kripke structure [83] models a software behaviour. It is used in model checking.

Its nodes represent the reachable states of a software and its edges represent state

transition. It is a 5-tuple consists of 〈 Q, Σ, δ, q0, λ 〉 where

� Q: set of states.

� Σ: set of input symbols.

� δ: Q × Σ → Q, a transition function.

� q0 ∈ Q: an initial state.

� λ: Q → 2AP , a labelling function.

The atomic propositions denoted as AP are used to represent the software prop-

erties on a state.

2.3.2.4 Labelled Transition System

A labelled transition system [84] is a 6-tuple consisting of 〈 S, Act, →, I, AP , L

〉. Each of these are described as:

� S: set of states.

Background 17

� Act: set of actions.

� → ⊆ S × AP × S, a transition relation.

� I ⊆ S: set of initial states

� AP : set of atomic propositions.

� L: S → 2AP , a labelling function.

2.3.3 State based Specifications

Software behaviour is represented in the form of mathematical notation using de-

fined set of symbols. There are multiple specification formats including Z- language

and X-machine. State of the system is expressed as schema or abstract data X. A

system state has pre- and post-assertions specified as pre- and post-conditions.

2.3.3.1 Z Specification Language

Z specification language [40] is used to specify a software. It is based on the

notations and operators of set theory and first order predicate logic. The software

is specified in the form of multiple schemas. A software can have only one state

schema and an initial schema. There could be multiple operational schema. Each

operational schema is responsible to update the state of the software. However,

there could be such schemas that do not change the sate of the software. An

extension of Z for object oriented paradigm is also proposed and is known as

Obj-Z.

2.3.3.2 X-machine

X-machine [85] is used to specify a software. A software is specified in the form of

fundamental data type or abstract data type. This is called X data type. A set of

operations on this data can be defined. These operations are called relations. The

Background 18

values of this abstract data type is manipulated as a result of execution of these

defined relations. The union of these relations defines the behaviour of a software.

An X-machine is capable to define finite computation and encoding functions.

2.3.4 Functional Specification

A software is specified as a collection of mathematical functions. Mathematical

representation allows to verify the specified requirements for consistency and com-

pleteness. There are two approaches including algebraic specification and higher-

order functions. Languages to specify algebraic functional specification include

OBJ [86] and Larch [87] languages. Whereas HOL [88] and PVS [89] languages

are used for higher order functions.

2.3.4.1 OBJ

OBJ [86] is a first-order functional language. It supports a declarative style to

represent software requirements using equational logic and parametrized program-

ming. A software’s requirements written in OBJ are verified using theorem provers.

2.3.4.2 Larch

Larch [87] allows to document software requirements formally using abstract data

types and associated operations. The software requirements represented in Larch

are verified using theorem provers.

2.3.4.3 HOL

HOL [88] offers an interactive environment for documentation and verification

of software requirements. Specified requirements are proved with the help auto-

mated theorem prover. Software requirements are written as meta concepts and

operations on these meta concepts are also defined.

Background 19

2.3.4.4 PVS

PVS [89] allows to write software requirements using higher order logic. It allows

a user to write software requirements using built in data types, user defined data

types and operations in the form of parametrized theories.

2.3.5 Operational Specification

In operational specification, a software is represented as a collection of processes.

Languages including Gist [90] and Petri nets [91] are used for this form of specifi-

cation.

2.3.5.1 Gist

Gist [90] allows to build a software prototype. A user writes a software require-

ments and functionalities as a collection of processes. The written processes are,

then, transformed into a prototype.

2.3.5.2 Petri Nets

A Petri net [91] is a place/transition model, used to represent a distributed system.

A Petri net is modelled by a defined set of notations for places, arcs and transitions.

2.4 Informal to Formal Specification Transfor-

mation

There are number of approaches that transform informal software specification

to formal and semiformal software notations. A number of these approaches are

listed in Chapter 3. Some of these approaches are manual and some are semi

automated.

Background 20

The transformation can be performed from an instance of a model to other in-

stance or it can be performed at model level. The instance transformation can

transform a particular instance only. Whereas, mode level transformation allows

the transformation of all definable models of a metamodel to corresponding model

of the target metamodel.It is also known as metamodel based transformation.

2.4.1 Metamodel-based Transformation

Informal software requirements can be transformed into corresponding formal soft-

ware notations. Model Driven Development (MDD) [92] allows to design models

for different software artefacts. This allows to build complex and big software

applications by integrating different models. A model must conform to its meta

model. A meta model defines the rules that a model of it must comply with.

MDD also supports model transformation of one or more models into some out-

put model(s). A simple transformation process is capable to transform only a

single instance into corresponding resultant instance. Whereas, a meta model

transformation is capable to define transformation process that is able to trans-

form all possible definable instances of a meta model to the corresponding possible

instances of resultant meta model.

There are multiple languages and technologies that allow to define meta model,

model and transformation rules. The examples of meta model transformation lan-

guages include ATLAS Transformation Language (ATL) [93], and Epsilon Trans-

formation Language (ETL) [94]. ATL supports both imperative and declarative

rules for the transformation. These rules are executed by ATL transformation en-

gine. QVT consists of QVT- relational, operative and core. QVT- relational and

operative are declarative in nature. Moreover, QVT-core is declarative and imper-

ative in nature. Whereas, ETL is a part of Epsilon model management framework.

This framework consists of Epsilon Object Language (EOL) [95], Epsilon Valida-

tion Language (EVL) [96], Epsilon Transformation Language (ETL) [94], Epsilon

Background 21

Wizard Language (EWL), Epsilon Generation Language (EGL) [97], Epsilon Com-

parison Language (ECL) and Epsilon Merging Language (EMG). EOL provides

model management activities. EVL allows model validation activities. ETL of-

fers model transformation activities. EWL allows construction and refactoring of

models. EGL supports model to text transformation. ECL allows comparison of

different models. EMG offers model merging activities.

2.5 Summary

This chapter lists the concepts of informal, formal and semiformal software spec-

ification and their different types. Concept of meta model transformation is also

discussed. These concepts are useful to understand the problem focused in this

work.

Chapter 3

Literature Review

There exist a number of approaches that transform informal software requirements

to corresponding formal or semiformal notations. The informal software require-

ments can be documented in the form of a paragraph, a user story or as a use case

description using a natural language.

A natural language lacks sound semantics. This lack of sound semantics adds

complexity in the formalization of a use case [61]. The formalization approaches

handle this complexity in a number of ways. Some of these approaches use Ob-

ject Constraint Language (OCL) to incorporate semantics in UML artefacts [98].

Some other approaches use formal language like B for the formalization [99]. The

approaches enlisted in this chapter take informal software requirements as an in-

put and generate formal or semiformal software notations. The informal software

requirements can be documented by using a plain natural language or controlled

natural language.

A controlled natural language constraints its use with a set of keywords and re-

striction rules. In addition to these, temporal annotation tags or boilerplate tuples

are also used to write informal software requirements. Some of these approaches

do not handle use case relationships. A number of listed approaches are domain

specific and perform transformation at model level. Moreover, a number of these

22

Literature Review 23

approaches require additional artefacts along with the informal software require-

ments. These approaches are summarized in the following section.

3.1 State of the Art Approaches

There are a number of approaches that take informal software requirements and

generate semiformal and formal artefacts. These approaches are classified on the

basis of the nature of the generated artefacts into the approaches that generate

semiformal artefacts and the approaches that generate formal artefacts. These

approaches on the basis of their classification are discussed in the following sub-

sections.

3.1.1 Approaches Generating Semiformal Artefacts

There are a number of approaches that take informal software requirements as

input and generate corresponding semiformal artefacts.

Harel et al., 2003

Harel et al. [58] transform informal software requirements into the corresponding

Live Sequence Charts (LSC). A LSC describes mandatory, forbidden and optional

scenarios among the software’s modules. They developed a tool, named Play-

Go, for the user to practice this approach. This tool takes informal software

requirements from a user and generates corresponding LSC(s). While writing the

informal software requirements, the user has to label the written nouns and verbs

as data members, function members or as class instances.

This approach requires in-depth knowledge of software’s domain and object ori-

ented paradigm for the annotation of the written nouns and verbs in informal

software requirements. The generated LSC(s) is a semiformal artefact. To the

Literature Review 24

best of our knowledge, there are no such tools that can process LSC(s) directly

for the software verification and validation activities.

Kaindl et al., 2009

Kaindl et al. [55] propose to transform a use case description to primitive sequence

diagram of a software. This approach requires to specify a use case description

in Requirement Specification Language (RSL). RSL consists of defined rules to

specify literals and expression operators along with a defined set of keywords. The

domain concepts definition using RSL requires the enlisting of distinct components,

operations and equations. The specification of operations requires the distinct

definition of input and output. In addition to it pre- and post-conditions for the

operations are required to be specified using predicate logic.

The user of this approach requires the knowledge and skill to use predicate logic,

expression operators and keywords of RSL. In addition to it, the generated se-

quence diagram is a semiformal notation. To the best of our knowledge, there

does not exist a tool that can use a sequence diagram for automated verification

and validation procedure.

Yue et al., 2010

Yue et al. [54] propose to specify a use case description, according to the template

and rules of Restricted Use Case Modelling Methodology (RUCM). This specified

use case is then transformed into an activity diagram of the software. RUCM

requires the use of a number of keywords including Name, Brief description, Pre-

condition, Primary actor, Secondary actors, Dependency, Generalization, Basic

flow, Post condition, Specific alternate flow, Global alternate and Bounded alter-

nate flow. The additional keywords to specify actions in a use case description in-

clude IF-THEN-ELSE-ELSEIF-ENDIF, MEANWHILE, VALIDATE THAT, DO-

UNTIL, ABORT and RESUME STEP. In addition to these keywords, the user

is constrained with a set of rules and the use of use case template to specify a

Literature Review 25

use case using RUCM. They also develop a framework named aToucan [100] to

practice this approach. The user of this approach has to specify a use case de-

scription with the defined constraints of RUCM. Some of the defined keywords are

not in common practice. Moreover, the generated activity diagram is a semiformal

notation and it can not be used for verification and validation activities.

Smialek et al., 2012

Smialek et al. [62] propose an approach that takes a use case description as

an input and generates a corresponding sequence diagram of a software. This

approach also requires to write the input use case description using RUCM. The

features of RUCM are already discussed in the previous subsection. The required

skills to specify a use case description using RUCM require the understanding of

keywords and rules of RUCM. In addition to it, the generated sequence diagram

is a semiformal diagram. This generated sequence diagram can not be used for

verification and validation activities like model checking.

Arora et al., 2019

Arora et al. [57] propose an approach that takes a use case description, specified

in a natural language, as an input and generates a corresponding domain model

of a software. They define a set of rules based on natural language processing

techniques to identify software’s objects and relations among the software objects

from the input use case description.

The generated domain model is a semiformal artefact. The user of this approach

is constrained to use domain concepts while specifying the use case specifications.

These approaches are evaluated against the required input, ability to handle use

case relationships, usage of controlled input language, domain specific, manual

efforts required, generated artefact, nature of the generated artefact, tool support

and ability to perform metamodel- based transformation. The evaluation criteria

and the approach features against the criteria are listed in Table 3.1.

L
iteratu

re
R

eview
26

Table 3.1: Approaches Generating Semiformal Artefacts

Year Author Input Arte-

facts

Use case Re-

lationships

Handled

Usage of

Controlled

Input Lan-

guage

Domain

Specific

Manual Re-

quired Effort

Generated

Artefacts

Nature of Gen-

erated Artefact

Tool Sup-

port

Metamodel-

based

Transfor-

mation

2003 Harel et al. Informal soft-

ware require-

ments

No No No A user of this

approach has to

manually identify

the specified

nouns and verbs

in the require-

ments. This

identification

facilitate the

transformation

process.

Live sequence

chart

Semiformal nota-

tion

Yes No

2009 Kaindl et al. Use case De-

scription

No Requirements

Specifica-

tion Lan-

guage(RSL)

No Distinct enlisting

of input, output

and operations

as use case state-

ments. Definition

of pre- and post-

conditions for

each operations

as predicates.

Sequence Dia-

gram

Semiformal nota-

tion

Yes No

continued . . .

L
iteratu

re
R

eview
27

. . . continued

Year Author Input Arte-

facts

Use case Re-

lationships

Handled

Usage of

Controlled

Input Lan-

guage

Domain

Specific

Manual Re-

quired Effort

Generated

Artefacts

Nature of Gen-

erated Artefact

Tool Sup-

port

Metamodel-

based

Transfor-

mation

2010 Yue et al. Use case De-

scription

No RUCM No A user has to de-

fine precondition

and postcondi-

tions of a use

case while speci-

fying a use case.

The user of this

approach also

has to enlist use

case name, actor

and use case

scenarios dis-

tinctly. The user

of this approach

is also required to

specify scenario

statements of use

case by following

the defined rules

and constraints of

RUCM language.

Activity Dia-

gram

Semiformal nota-

tion

Yes No

continued . . .

L
iteratu

re
R

eview
28

. . . continued

Year Author Input Arte-

facts

Use case Re-

lationships

Handled

Usage of

Controlled

Input Lan-

guage

Domain

Specific

Manual Re-

quired Effort

Generated

Artefacts

Nature of Gen-

erated Artefact

Tool Sup-

port

Metamodel-

based

Transfor-

mation

2012 Smialek et al. Use case De-

scription

No RUCM No A user of this

approach has

to define pre-

condition and

postconditions of

a use case while

specifying a use

case. Distinct

listing of use

case name, actor,

normal scenario

and alternate

scenario is also

required. Spec-

ification of use

case statements

as per the defined

constraint and

rules in RUCM.

Sequence Dia-

gram

Semiformal nota-

tion

Yes No

2019 Arora et al. Use case de-

scription

No Natural Lan-

guage

No No Domain Model Semiformal nota-

tion

Yes No

Literature Review 29

3.1.2 Approaches Generating Formal Artefacts

Informal software requirement can also be transformed directly to formal software

specifications. There exist a number of approaches that take informal software

requirements input and generate formal notations as an output. In this subsection,

such approaches are discussed with their strengths and weaknesses.

Dranidis et al., 2003

Dranidis et al. [59] transform a use case description into a corresponding X-

machine with the help of System Sequence Diagrams (SSD) and the domain model

of a software. The user of this approach has to map the constructs of input

artefacts to the constructs of an X-machine manually. The states and transitions

of the generated X-machine are defined from the success and alternate scenario(s)

of the provided use case description. Transitions are labelled with the functions

of the provided SSD. Whereas, the memories of the generated X-machine are

defined from the provided domain model. System level test case are defined from

the generated X-machine by using W-method [101] for the occurrence of possible

faults in the software.

A X-machine is an abstract data type and represents the state of a software being

specified. The possible operations to manipulate this state are also required to be

defined. The user of this approach has to manually map input artefacts to the

generated X-machined. The generated X-machine is a nondeterministic formal

notation. A domain model of a software gets evolved with the maturity and

evolution of the software development process. Eleftherakis et al. [102] transform

a X-machine into corresponding Computational Tree Logic (CTL) formulas. The

generated CTL formulas can not be directly usable for system verification. A

model checker requires CTL formulas along with a behavioural model for software

verification. Moreover, the required SSD diagram(s) are produced at later stage

of the requirements specification stage. The user of this approach has to wait till

the development of a domain model and a SSD before the usage of this approach.

Literature Review 30

Somé, 2003

Somé [60] transforms a use case description into a corresponding state transition

graph. This approach requires a domain model of the software for this transforma-

tion. The user of this approach requires to specify the input use case description

by using Definite Clause Grammar (DCG). DCG requires to specify the operations

in the form of active sentences. An action must be specified as a verb along with

the module effected by the action. In addition to these, this grammar also requires

to specify condition in the form of predicates.

The constraints of DCG requires the understanding and usage skill to write con-

ditions as predicates. In addition to it, the required domain model is also get

evolved with the progress of the software development process. The user of this

approach has to wait till the maturity of the domain model before practising this

approach. Moreover, the generated state transition graph is a nondeterministic

notation. A nondeterministic notation specifis the abstract behaviour of a soft-

ware with incomplete requirements specification. This abstract behaviour is not

suitable for verification and validation activities.

Somé, 2010

Somé [61] proposes an approach to transform a use case into a corresponding

Petri net [91]. This approach require to specify a use case description by using

a controlled natural language. The controled natural language requires to write

a use case pre- and post-conditions in the form of predicates. The operations

and conditions of these operations are defined by using IF-then keyword along

with a predicate. A use case follows list distinctly require the use of sync and

unsync keywords. This approach also consider use case relationships during the

transformation process.

The user of this approach requires the additional skill to apply predicate logic and

constructs of controlled natural language. These constructs are not in common use.

The generated Petri net is a nondeterministic formal notation. Model checkers like

Literature Review 31

ROMEO [103] and TAPAAL [104] take a Petri net as input for model checking.

But, for model checking a model checker also requires formal specifications of a

software. The user of this approach still requires to specify formal specification

before the model checking.

Simko et al., 2012

Simko et al. [63] propose a Formal Verification of Annotated use case Models

(FOAM) framework. This framework takes a use case description as an input

and generates a corresponding Labelled Transition System (LTS). This framework

uses a use case template proposed by Cockburn [78]. The user of this framework

is required to manually annotate the specified use case by using annotations tags.

The annotation tags can be defined by using the keywords create, use, goto, in-

clude, abort, mark and guard. In addition to these the services of an expert in

the field of temporal logic and an domain engineer is required to defined temporal

annotation tags. These domain experts specify formal notations of the software

in the form of CTL formulas.

This approach requires the services of the domain experts in the field of temporal

logic and in the domain of the software being developed. These experts define

the annotation tags and formal specification of the software. In addition to these,

the user of this approach also requires the skill to use the defined annotation tags

in a use case description prior to the transformation process. The annotation

tags evolve with the evolution of the domain. Moreover, the generated LTS is a

nondeterministic formal notation. Model checker like NuSMV can use a LTS as

an input model. But the formal specifications of the software is also required for

model checking.

Couto et al., 2014

Couto et al. [64] transform a use case description into an ontology instance. They

have also proposed a Restricted Use case Statement (RUS) language to specify a

Literature Review 32

use case description in their proposed template. This language allows to define

and label individuals, type, relationship and data properties specified in a use case

using a set of defined markup tags. These markup tags include <I> to specify

an individual, <R> to specify a relationship between two individuals, <D> for

specifying data properties and <T> to define a class instance. The labelled use

case description is then transformed into an ontology instance. This generated

ontology instance is used to check the correctness of instances, relations and prop-

erties specified in the input use case description using the SPARQL Protocol and

RDF Query Language (SPARQL).

This approach requires the services of a domain expert to describe the domain

concepts and relations among these instances in the required format. The services

of a domain expert is also required to write the SPARQL queries to be used for the

completeness and correctness. The user of this approach requires the additional

skill to annotate the input use case with the defined labels. The generated ontology

instance is required to be transformed into a Promela model and then can be

provided as a model input to SPIN model checker. Along with the transformation,

the model checking still requires the formal specification in the form of LTL or

CTL formulas.

Selway et al., 2015

Selway et al. [65] transform informal software requirements, written in a con-

trolled natural language, into Semantic of Business Vocabulary and Business Rules

(SBVR) model. SBVR model is proposed by Object Management Group (OMG)

for the specification of requirements of a business software. The controlled natural

language requires to adhere the defined fonts for the specification of term, name,

verb and keywords. The set of keywords includes each, at least one, at least n, at

most one, at most n and at least n and at most m. The allowable logical operators

include and, or, if then, if and only if.

This approach requires the services of a domain expert to define business con-

cepts and their relations. In addition to it, the user of this approach also requires

Literature Review 33

the additional skill to label and specify the informal requirements using the con-

structs of the controlled natural language. Moreover, the generated SBVR model

is required to be transformed into Business Process Modelling Notation (BPMN)

model. This generated BPMN model is then represented as a Promela model. A

Promela model can be used as an input to SPIN model checker. Moreover, the

model checking activity still requires LTL or CTL formal specifications.

Singh et al., 2016

Singh et al. [67] propose an approach to produce Z specifications from the UML

diagrams including use case, class and sequence diagrams of a software. The gen-

erated Z specification include static and dynamic views of a software. A software’s

static view is defined by parsing the information presented in the use case and the

class diagrams provided as input. The sequence diagram of a software is used to

generate the dynamic view of a software. The authors of this approach uses the

Z/Eves tool [105] for the analysis of the generated Z specifications.

This approach does not consider an actor’s role while generating the static and

dynamic views. The generated Z specifications can be used as input to Z2SAL

[106] tool. Z2SAL tool transforms Z soecifications into a model usuable for the

SAL model checker. In addition to it, SAL model checker still requires LTL formal

specifications to perform model checking.

Chu et al., 2017

Chu et al. [107] propose an approach that takes a use case description and a

class diagram as input. This approach generates a Labelled Transition System

(LTS). This approach also requires to specify the input use case description using

a Use case Specification Language (USL). The USL constructs include actor-input,

Literature Review 34

actor-request, system-display, system-input, system-state, system-output, system-

request, system-include and system-extend. The use case specifications are spec-

ified as pre- and post- conditions along with the operation statements. The use

case description is used to define operations on the objects of the class diagram.

The user of this approach requires additional skill to specify a use case description

using USL allowable constructs. The generated LTS is a nondeterministic formal

notation. It can be used as an input model to a model checker like NuSMV. But

for model verification, a user still requires the software formal specification as LTL

formulas.

Yang et al., 2019

Yang et al. [66] propose an approach to transform a use case specification into a

corresponding ontology instance. The input use case is required to be specified by

using a set of defined boilerplate. A boilerplate is expressed as a tuple consisting of

an object and its attributes. The allowable constructs to be used in the boilerplates

include system, function, precondition, action, quantity and state.

The user of this approach requires additional skill to describe and use boilerplate

constructs along with the values to specify a use case description. Model checker

like BLAST [108] uses an ontology instance as an input model. However, for model

checking procedure, a user is still required to provide formal specification in the

form of LTL formulas.

The approaches discussed in this subsection are also evaluated on the same criteria

listed in Subsection 3.1.1, i.e., the required input artefacts, ability to handle use

case relationships, usage of controlled input language, domain specific, manual

efforts required, generated artefact, nature of the generated artefact, tool support

and ability to perform metamodel based transformation. The evaluation criteria

and the approach features against the criteria is listed in Table 3.2.

L
iteratu

re
R

eview
35

Table 3.2: Approaches Generating Formal Artefacts

Year Author Input Artefacts Use case Rela-
tionships Han-
dled

Usage of Con-
trolled Input
Language

Domain
Specific

Manual Required
Effort

Generated
Artefacts

Nature of Gener-
ated Artefact

Tool Sup-
port

Metamodel-
based Trans-
formation

2003 Dranidis et
al.

Use case De-
scription, Sys-
tem Sequence
Diagram and
Domain Model

No No No Understanding of
X-machine mem-
ory and opera-
tions and ability
to manual define
these in the gen-
erated X-machine

X-machine Non-
deterministic
formal notation

No No

2003 Somé Use case De-
scription and
Domain Model

No Definite Clause
Grammar
(DCG)

No define pre- and
post conditions
as predicates and
specify a use
case description
using constructs
of DCG

State Transi-
tion Graph

Non-
deterministic
formal notation

No No

2010 Somé Use case De-
scription

Yes Controlled
Natural Lan-
guage (CNL)

No Describe pre- and
post- conditions
of a use case as
predicate and
specify a use
case description
using constructs
of CNL

Petri nets Non-
deterministic
formal notation

Yes No

2012 Simko et al. Use case de-
scription

Yes Annotation
tags

No Definition and us-
age of the an-
notation tags for
the specification
of the input use
case description

Labelled Tran-
sition System

Non-
deterministic
formal notation

No No

2014 Cuoto et al. Use case de-
scription

No Restricted Use
case Statement
(RUS)

Yes Define individ-
uals, relations,
terms and data
properties tags of
the domain and
also specify the
input use case
description using
RUS

Ontology
instance

Formal notation Yes No

continued . . .

L
iteratu

re
R

eview
36

. . . continued
Year Author Input Artefacts Use case Rela-

tionships Han-
dled

Usage of Con-
trolled Input
Language

Domain
Specific

Manual Required
Effort

Generated
Artefacts

Nature of Gener-
ated Artefact

Tool Sup-
port

Metamodel-
based Trans-
formation

2015 Selway et al. Informal specifi-
cation

No Controlled
Natural Lan-
guage (CNL)

Yes Specify a use case
description using
CNL

SBVR model Formal notation Yes No

2016 Singh et al. Use case, Class
and Sequence
Diagram

No No No Understanding of
UML diagrams

Z specifications Formal notation No No

2017 Chu et al. Use case de-
scription and
Class Diagram

Yes Use case
Specification
Language
(USL)

No Describe pre-
and post- condi-
tions and action
statements for
the specification
of a use case
description using
USL

Labeled Tran-
sition System

Non-
deterministic
formal notation

Yes No

2019 Yang et al. Use case De-
scription

No Boilerplates Yes Definition of
Boilerplates and
specification of
a use case de-
scription using
boilerplates

Ontology
instance

Formal notation Yes No

3.2 Analysis

The above discussed approaches are analysed on the basis of required input, usage of controlled input language, domain specific, ability

to handle use case relationships, manual efforts required, generated artefact, nature of the generated artefact, tool support and ability

to perform metamodel-based transformation. Some of these approaches require a use case model, whereas the others require a use

case model along with some other artefact(s). This analysis in listed in Table 3.1 and Table 3.2.

Literature Review 37

It is observed that only approach proposed by Simko et al. [63] uses a use case

description template proposed by Cockburn and all of the remaining approaches

define a template of their own to specify a use case. The approach of Singh et al.

[67] also uses a use case diagram along with the input use case descriptions for

the transformation process. It is also observed that the keywords used to specify

a use case descriptions in the approaches of Simko et al. [63] and Singh et al. [67]

are not common to non-technical stakeholders.

A number of the listed approaches use a variant of controlled natural language to

specify a use case description. These approaches include Somé [63], Kaindl et al.

[55], Yue et al. [54], Smialek et al. [62], Cuoto et al. [64], Selway et al. [65] and

Chu et al. [107]. A controlled natural language constrains the usage of defined

keywords and rules to structure the use case description sentences. This makes it

difficult to structure the sentences in comparison to structure the sentences in a

natural language. Moreover, the work of Simko et al. [63] and Yang et al. [66]

also require the services of a domain expert to define the annotation tags and

boilerplates prior to the specification of a use case description.

It is also observed that a number of the existing approaches require additional

artefacts along with a use case description for the transformation process. The re-

quired additional artefacts include system sequence diagram, domain model, class

diagram and sequence diagram. The system sequence diagram and domain model

of a software is evolved with the evolution of software development process. The

user of such approaches has to wait for comprehensive version of these artefacts

for the transformation process. In addition to it, the class and sequence diagrams

are developed at the design stage of the development process. The users of such

approaches can perform transformation after the design phase of software devel-

opment process.

In addition to the above, it is also observed that most of these approaches require

the user efforts to identify noun as an object or a data member and verb as a

function member. The users of some approaches are required to annotate a use

case description using annotation tags or with boiler plates.

Literature Review 38

It is also found that some of these approaches are domain specific and can not be

generalized for software development. These approaches also require the services

of a domain expert to define domain concepts that are used to specify the input

use case description.

On the other hand, the generated artefacts are semiformal or formal in nature. The

generated semiformal artefacts include LSC, sequence diagram, activity diagram

and domain model. To the best of our knowledge, these artefacts can not be used

for model checking. The generated formal artefacts including X-machine, state

transition graph, Petri nets, and labelled transition system are nondeterministic

in nature. A nondeterministic formal notation is used to specify the incomplete

behaviour of a software and it can also generate the unreachable states in a software

behaviour. A generated Petri net can be used as an input model to the ROMEO

and TAPAAL model checkers. Whereas, the generated labelled transition system

can be used as an input model to the NuSMV model checker. BLAST model

checker can take an ontology instance as an input model. The generated SBVR

model is required to be transformed into BPMN model prior to be used as an

input model to the BLAST model checker. The generated Z specifications can be

used as an input model to SAL model checker after processing. However, a model

checker also requires formal specifications along with the input model of a software

for model checking. It can be observed that the above generated artefacts can be

used as input model but the user of these approaches still requires the formal

specifications in the form of LTL or CTL formulas for model checking.

It is also important to note that these approaches produce formal specifications

or formal model only. A model checker requires a formal model as well as formal

specifications of a software. The user of the existing approaches has to develop

the formal specifications or a formal model depending on the generated output of

the approach. This is expensive in terms of cost and time.

It can also be observed that only a few of the existing transformation approaches

have a published tool. This limitation makes such transformation approaches

difficult to be practised in the software industry.

Literature Review 39

It is also observed that these approaches perform transformation at instance level

instead of metamodel-based transformation. A metamodel-based transformation

requires the definition of metamodel for input and output artefacts along with the

definition of transformation rules at metamodel-level.

There is room for a metamodel-based approach that transform use case to corre-

sponding formal model and formal specifications. The metamodel-based transfor-

mation approach can handle all the definable instances of input and can transform

these into instances of target metamodel. Whereas, the ability to generate formal

specification along with a formal model facilitates a quality engineer to verify a

software behaviour.

3.3 Summary

The transformation approaches, discussed in this chapter, take informal software

requirements as an input and generate semiformal or formal notations as an output.

It is observed that:

� Some of these approaches require additional software artefacts other than

informal software artefacts for the transformation process

– The additional artefacts also include such artefacts that are developed

in the design phase of software development. Such approaches can not

be practised prior to the design phase.

� It is also observed that some of these approaches require the use of a variant

of controlled natural language.

� Some of these approaches are domain specific.

– These approaches require the services of a domain expert for the defi-

nition of domain concepts.

Literature Review 40

� The generated artefacts of these approaches can not be used for model check-

ing directly.

– The user of these approaches also has to specify formal software speci-

fications as LTL or CTL formulas.

� In addition to these, the existing approaches do not perform metamodel-

based transformation.

� Moreover, only a few of the discussed approaches have a published tool.

This identified limitations of the existing approaches are discussed in this chapter

and this also answers RQ:1.

Chapter 4

Use Case to a Kripke Structure

and LTL Formulas Generation

This chapter discusses the proposed approach. This approach transforms infor-

mal software specifications into formal specifications. The approaches discussed

in Chapter 3 also transform informal software requirements. But, it is observed

that most of these approaches generate semiformal notations and some of these

are domain specific. A number of these approaches require additional artefacts

for the transformation. Whereas, only a few of these are capable to perform

metamodel-based transformation. These limitations offer an opportunity to pro-

pose an approach that is capable to produce formal notations by performing the

metamodel-based transformation. In addition to it, the proposed approach is not

limited to a domain and also not require any additional artefact. It is also sup-

ported with a tool. These features allow the proposed approach suitable for the

software industry.

A use case template proposed to specify an input use case along with the Extended

BackusNaur Form EBNF grammar to validate an input are discussed prior to

the transformation process. In addition to these metamodels for the proposed use

case template, Kripke structure and LTL formula as well as the metamodel-based

transformation process are presented in this chapter.

41

Proposed Approach 42

4.1 Use Case Template

The input use case is required to be specified in a proposed template. As discussed

in Chapter 2, there are multiple use case templates available for a use case spec-

ification. But none of these templates enlist inputs and outputs of the software

distinctly, these are already identified at specification stage. Moreover, normal

and alternate scenarios are listed in different sections. All these add process-

ing cost as the process has to manipulate different section iteratively. It is also

observed in the existing approaches that only the work of Simko et al. uses Cock-

burn’s template for writing a use case description. All other approaches propose

a customize template to specify a use case.

This approach proposes a use case description template to facilitate the transfor-

mation process. This template distinctly specify inputs and outputs. In addition

to this, normal and alternate scenario are listed in continuation to facilitate the

transformation process. The proposed template requires to use a set of keywords

to specify a use case. These keywords inclue: UseCase, ActorSet, InputSet,

OutputSet, Scenario, Alternate Scenario, End of AlternateScenario, Continue,

Include, Extend and End of Usecase. The proposed use case template is shown

in Figure 4.1.

UseCase construct is used to specify a use case name. ActorSet lists the ac-

tor(s) of a use case. InputSet specifies the input(s) of a software, specified in

a use case. OutputSet’s outputsymbol lists an output. The possible value(s)

this output is(are) listed alongside. There could be multiple OutputSet con-

structs in a use case to represent multiple outputs of a software. Scenario spec-

ifies the functionality of the use case consisting of actor and software ’s actions.

Alternate Scenario specifies an alternate scenario of a functionality. The end of

an alternate scenario is marked by End of AlternateScenario or Continue con-

structs. End of AlternateScenario marks the end of an alternate scenario, where

software terminates its execution. Whereas, Continue construct marks a software

allows a user to provide a valid input to continue its functionality. Include allows

to add another use case. Whereas, Extend construct extends another use case

Proposed Approach 43

UseCase: Use Case Name[unique]
ActorSet: List of Actor(s)
InputSet: Input1, Input2, , Inputk
OutputSet [outputsymbol1]: V alue1, V alue2, , V aluel
OutputSet [outputsymbol2]: V alue1, V alue2, , V aluem
.
.
.
OutputSet [outputsymbolz]: V alue1, V alue2, , V aluen
Scenario:
Actor action line
System action line
Alternate Scenario
Actor action line
System action line
End of AlternateScenario
Actor action line
System action line
Alternate Scenario
Actor action line
System action line
Continue
Actor action line
System action line
Include Use Case Name
Extend Use Case Name Condition Actor action line
Actor action line
System action line
End of Usecase

Figure 4.1: Proposed Use Case Template.

along with a Condition keyword that specifies a required user’s interaction for

this extension. End of Usecase is used to mark the end of a use case. Only one

Usecase, ActorSet, InputSet, Scenario and End of Usecase constructs are al-

lowed in a use case description. However, there is no restriction on the occurrence

of other constructs.

The input use case is required to be in the proposed template. An EBNF gram-

mar is also developed to ensure the validity of an input use case. The de-

veloped grammar consists of a set of terminal, nonterminal and literal values.

The set of terminals includes: aplha. The set of nonterminals includes: Id,

UcTemplate, UcName, OtherthanName, Actor, OtherthanActor, InputSymbol,

OtherthanInput, OutputSet, OtherthanOutputset, Label, OutputV alue, Scenario,

OtherScenarios, ScenarioLine, AlternateScenario, UserLine, SystemLine, and

EndAlternate. The literal values include: UseCase, ActorSet, InputSet, Output-

Set, Scenario, Alternate Scenario, End of AlternateScenario, Continue, Include,

Extend, Condition and End of Usecase. The production rules of the developed

grammar are listed in Figure 4.2.

Proposed Approach 44

alpha = ’a’..’z’ + ’A’..’Z’ + ’ ’.
Id= alpha {alpha}.
UcTemplate = ”UseCase:” UcName OtherthanName.
UcName = Id {Id}.
OtherthanName = ”ActorSet:” Actor {”,” Actor} OtherthanActor.
Actor = Id.
OtherthanActor = ”InputSet:” InputSymbol {”,” Inputsymbol} OtherthanInput.
InputSymbol = Id.
OtherthanInput = OutputSet {OutputSet} OtherthanOutputset.
OutputSet = ”OutputSet” ”[”Label ”]:” OutputValue {”,” OutputValue}. Label = Id.
OutputValue = Id.
OtherthanOutputset = ”Scenario:” Scenario {OtherScenarios} ”End of Usecase”.
Scenario = ScenarioLine {ScenarioLine} {AlternateScenario}.
ScenarioLine = UserLine | SystemLine.
AlternateScenario = ”Alternate Scenario” ScenarioLine ScenarioLine EndAlternate.
EndAlternate = ”End of AlternateScenario” | ”Continue”. UserLine = Id {Id}.
SystemLine = Id {Id}.
OtherScenarios = Scenario | ”Include” UcName | ”Extend” UcName ”Condition” UserLine.

Figure 4.2: Extended Backus-Naur Form (EBNF) Grammar for the Use Case
Template.

The non-terminal alpha allows English alphabets as well as . An Id consists of

one or more alpha. For the definition of non-terminal production, it starts with the

definition of UcTemplate. It produces a literal UseCase and two non-terminals

UcName and OtherthanName. OtherthanName is produced in a literal Ac-

torSet with one or more Actor terminal(s) and a non-terminal OtherthanActor.

OtherthanActor is produced to a literal InputSet with one or more non-terminal

InputSymbol and a non-terminalOtherthanInput. OtherthanInput non-terminal

is generated to one or more OutputSet and OtherthanOutputset non-terminal.

OutputSet is allowed to translate into an OutputSet literal with a non-terminal

Label terminal along with one or moreOutputV alue non-terminals. OtherthanO−

utputset is allowed to produce a Scenario literal with Scenario andOtherScenarios

non-terminals along with an End of Usecase literal. Scenario is generated to

one or more ScenarioLine non-terminals and into an AlternateScenario non-

terminal. ScenarioLine is allowed to generate a UserLine or a SystemLine non-

terminals. AlternateScenario is allowed to produce into Alternate Scenario lit-

eral with one or more ScenarioLine non-terminals along with EndAlternate non-

terminal. EndAlternate is allowed to generate into an End of AlternateScenario

or a Continue literals. OtherScenarios is allowed to produce into a Scenario

non-terminal or Include construct along with an UcName non-terminal. The

other possible production of OtherScenarios allows it to produce a Extend lit-

eral with UcName as well as a Condition literal with an UserLine non-terminal.

Proposed Approach 45

The non-terminals UcName, Actor, label, OutputV alue, UserLine, SystemLine

are allowed to produce Id. This developed grammar is also implemented in the

developed tool and if the input use case does not comply with the rules of this

grammar, the tool generates an error message.

The approach proposed by Simko et al. requires the definition of annotation tags.

This require the services of a domain expert. Furthermore, it is also tedious to

specify a use case using these annotation tags. Whereas, the approach of Sing et

al. requires the understanding of domain model along with a sequence diagram. A

practitioner with sound knowledge of UML can understand these UML artefacts.

Though, the proposed approach also requires use case specification in a proposed

template. But this specification only requires the identification of a software inputs

along with outputs and these are clear at requirements analysis phase. Moreover,

the used keywords are common in software development community. In addition

to these, the proposed approach does not require the services of a domain expert.

4.2 Use Case Meta Model

Meta model level transformation requires a meta model for the input, i.e, a use

case in this approach. The input use case can include or extend other use cases.

The UsecaseF lattener process discussed in the following Subsection 4.5.1, handles

the included and/or extended use cases and generates a flattened use case. A meta

model for the flattened use case is defined and is shown in Figure 4.3.

UseCase contains a name, an ActorSet, an InputSet, one or more OutputSet and

one or more Scnarioline(s). An ActorSet can have one or more Actor constructs.

Each of which have a name label. An InputSet can have one or more InputSymbol

and each InputSymbol has a name label. An OutputSet has a label and one or

more OutputSymbol(s). Each of OutputSymbol has a value. A ScenaioLine

can be an ActorActionLine, a SystemActionLine, an AlternateScenarioLine,

a ContinueLine, an EndAlternateScenarioLine, an ExtensionPointLine, an

Proposed Approach 46

Figure 4.3: Flatten Use Case Meta Model.

EndExtensionPointLine or an EndUseCaseLine. An ActorActionLine con-

tains Actor andInputSymbol in its contents. A ystemActionLine’s contents has

OutputSymbol. Whereas, theAlternateScenarioLine, ContinueLine, EndAlter−

nateScenarioLine, ExtensionPointLine, EndExtensionPointLine and EndUse−

caseLine contents specifyAlternate Scenario, Continue, End of AlternateSce−

nario, Extension Point, End Extension Point and End of Usecase respectively.

This defined use case meta model can be presented as:

UseCasemetamodel = 〈 namei, ActorSeti, InputSeti, (k × OutputSet)i, (` ×

ScenarioLine)i 〉. where i = 1, . . . , n , represents the ith instance of use case

meta model. namei is a use case model name. ActorSeti = { Actor1, Actor2, . . . ,

Actorj } and j ∈ N.

InputSeti = { InputSymbol1, InputSymbol2, . . . , InputSymbolm } where m ∈ N

and InputSymbolś is stored in name label.

A use case model have k OutputSet where k ∈ N. Whereas, OutputSet = { label,

OutputSymbol1, OutputSymbol2, . . . , OutputSymbolo } where o ∈ N and each

OutputSymbol = { value }.

Proposed Approach 47

A use case model have ` ScenarioLines and a ScenarioLine = ActorActionLine,

SystemActionLine, AlternateScenarioLine, EndAlternateScenarioLine, Conti−

nueLine, ExtensionPointLine, EndExtensionPointLine, EndUseCaseLine }.

The proposed meta model is implemented by using Eclipse Modelling Framework

(EMF) [109]. Epsilon is a family of Java-based scripting languages for model-to-

model transformation and model validation using EMF. It also includes Eclipse-

based editors for modelling and model visualization. There are number of other

options available including Xtext and Sirius. The use of editor is subjective,

however, the metamodels are developed using Ecore by utilizing Epsilon editors.

The input use case is transformed into a Kripke structure and LTL formulas. The

meta models for the Kripke structure, LTL formulas along with the transformation

rules are provided in the following sections.

4.3 Kripke Structure Meta Model

Meinke et al. [20] propose a variation to the standard definition of a Kripke

structure, provided in Chapter 2. They modified it by labelling the state of a

Kripke structure with a Boolean bitvector. This allows to represent a system

state in the corresponding binary format. The formal definition for this variant of

Kripke structure is:

� Q: set of states,

� Σ: set of input symbols,

� δ: Q × Σ → Q, a transition function,

� q0 ∈ Q: an initial state,

� λ: Q → Bk, a labelling function.

Bk is a Boolean bitvector and (b1, . . . , bk)and it is an indexing of a set APof k

atomic propositions.

Proposed Approach 48

The meta model transformation process requires meta model definition of the

models being used in the transformation. To the best of knowledge, there is no

meta model definition exist for a kripke structure. However, Arcaini et al. [56]

propose a meta model for a Finite State Machine (FSM). The developed meta

model represents a Mealy machine. Whereas, a Kripke structure is an extension

of a Moore machine with binary labels on it states to represent a system state in

the binary format. This work also define a meta model for the extended definition

of a Kripke structure proposed by Meinke et al. [20].

This work introduces a meta model for a Kripke structure to make this approach

suitable for meta model level transformation. The defined meta model for a Kripke

structure is shown in Figure 4.4.

Figure 4.4: Kripke Structure Meta Model.

A KripkeStructure contains a Lengthofbitvector ∈ N, a StateSet, an InputSet

and one or more Transition(s). A StateSet have one or more States including

an initialstate. A State have a name for state identification, a BitLable con-

sisting of one or more Bits. A Bit = { true, false }. An InputSet have one

Proposed Approach 49

or more InputSymbol. An InputSymbol have a name to identify the symbol. A

Transition have a fromstate, tostate and an InputSymbol.

This defined meta model is represented as:

KripkeStructuremetamodel = 〈 StateSeti, InputSeti, (k × Transition) i 〉 where

i ∈ N denotes the ith instance of the Kripke structure meta model.

A StateSeti = { qinitial, q1, q2, . . . , ql } where l ∈ N. The qinitial = { name =

Initial State and BitLabel } where BitLabel = { Bit1, . . . , Bitlengthofbitvector and

∀ Bit = false }. Each q = { name, BitLabel } where BitLabel = { Bit1, . . . ,

Bitlengthofbitvector and ∀ Bit = { true, false } }

InputSeti = { InputSymbol1, InputSymbol2, . . . , InputSymbolm } where m ∈ N

and each InputSymbol = name to identify it.

k ∈ N and Transition = { qfromstate, qtostate, InputSymbol }. The designed meta

model is implemented by using EMF [109].

4.4 Linear Temporal Logic (LTL) Formula Meta

Model

The meta model transformation also requires the meta model definition of output

artefacts. A meta model for LTL formula is proposed to make this meta model

level transformation. The developed meta model for LTL formula is shown in

Figure 4.5.

LTLForm have UntImpExpression, UnaryExpression, BinaryExpression and

Literal.A UntImpExpression have UnaryExpression, BinaryExpression and

Literal. A UnaryExpression is applied to aBinaryExpression, UnaryExpressi−

on and a Literal. A BinaryExpression consists of UnaryExpression, Literal or

a BinaryExpression.

This defined meta model is represented as:

Proposed Approach 50

Figure 4.5: LTL Formula Meta Model.

LTLFormmetamodel = 〈 UntImpExpressioni, UnaryExpressioni, BinaryExpres−

sioni, Literali 〉 where i ∈ N denotes the ith instance of the LTL formula meta

model.

A UntImpExpression = {UntImpopSymbol, UnaryExpression, BinaryExpre−

ssion, Literal }. and an UntImplopSymbo = { U, → }

A UnaryExpression = { uopSymbol, UnaryExpression, BinaryExpression,

Literal } and an uopSymbol = { !, X, F, G }.

A BinaryExpression = { { bopSymbol, BinaryExpression, UnaryExpression,

Literal } } and a bopSymbol = { |, & }

A Literal = { value } and value is an atomic predicate. The proposed meta model

is implemented by using EMF [109].

4.5 Proposed Approach

This work proposes a domain independent approach that is capable to perform

transformation at meta model level. This approach transforms a use case into a

Proposed Approach 51

Kripke structure and LTL formulas. The generated Kripke structure and the LTL

formulas are formal in nature and can be used as input for model checking. This

approach does not require any additional artefact for the transformation. This

approach performs transformation at meta model level and it is also supported

with a platform independent tool.

The schematic diagram of the proposed approach is shown in Figure 4.6.

Figure 4.6: Proposed Approach Schematic Diagram.

The user of this approach provides a use case model as an input. This ap-

proach also handles use case relationships, i.e., include and extend relationships.

UseCaseF lattener process takes the input use case. This process checks either

the provided use case include or extend other use case(s). This process flattens

the input use case by handling the use case relationships. This process output the

same use case, if no other use case being included or extended. This flattened use

case is provided as input to Use Case to Kripke Structure T transformation pro-

cess and Use Case to LTL Formula Transformation process. These processes

generate a Kripke structure and LTL formulas as output respectively. Use Case

F lattener process, Use Case to Kripke Structure Transformation process and

Use Case to LTL Formula Transformation process are discussed in detail in

the following subsections.

4.5.1 Use Case Flattener Process

Use Case F lattener process takes a use case as input and checks either this use

case include or extend other use cases. It handle the use case relationships and

Proposed Approach 52

generate a flattened use case as output. The schematic diagram of this process is

shown in Figure 4.7.

Figure 4.7: Use Case Flattener Process Schematic Diagram.

The input use case is required to be specified in the proposed template discussed

in Section 4.1. The input use case description is denoted by UC variable and

it is passed to Algorithm 1 and this algorithm returns a flattened use case as

output represented by UCflattened. The algorithm defines a UCtemp, UCflattened and

initializes UCflattened’s constructs namely ActorSet, InputSet, OutputSet with

the corresponding constructs of UC. It reads UC.Scenario line by line for the

occurrence of Include or Extend literals. If a line contains Include or Extend literal,

this algorithm stores the included or extended use case name to UCtemp and calls

IncludeUseCase or ExtendUseCase algorithms respectively. IncludeUseCase

and ExtendUseCase processes are presented as Algorithm 2 and 3 respectively.

Algorithm 1 UseCaseFlattener

Require: UC as a use case description in the proposed template

Ensure: UCflattened as a use case description in the proposed template

1: Define UCtemp, UCflattened.ActorSet← UC.ActorSet, UCflattened.InputSet←

UC.InputSet, UCflattened.OutputSet← UC.OutputSet

2: for ` in UC.Scenario do

3: if ` contains Include then

4: UCtemp ← Ucname

5: UCflattened ← IncludeUseCase(UCflattened,UCtemp)

6: else if ` contains Extend then

7: UCtemp ← Ucname

8: UCflattened ← ExtendUseCase(UCflattened,UCtemp,Userline)

Proposed Approach 53

9: else

10: UCflattened.Scenario← UCflattened.Scenario+ `

11: end if

12: end for

Algorithm 2 IncludeUseCase

Require: UCflattened, UCincluded as use case descriptions in the proposed template

Ensure: UCflattened as a use case description in the proposed template

1: UCflattened.ActorSet← UCflattened.ActorSet ∪ UCincluded.ActorSet

2: UCflattened.InputSet← UCflattened.InputSet ∪ UCincluded.InputSet

3: UCflattened.OutputSet← UCflattened.OutputSet ∪ UCincluded.OutputSet

4: UCflattened.Scenario← UCflattened.Scenario + UCincluded.Scenario

Algorithm 3 ExtendUseCase

Require: UCflattened, UCextended as use case descriptions in the proposed tem-

plate, Userline as scenario line

Ensure: UCflattened as a use case description in the proposed template

1: UCflattened.ActorSet← UCflattened.ActorSet ∪ UCextended.ActorSet

2: UCflattened.InputSet← UCflattened.InputSet ∪ UCextended.InputSet

3: UCflattened.OutputSet← UCflattened.OutputSet ∪ UCextended.OutputSet

4: UCflattened.Scenario← UCflattened.Scenario + Extension Point + Userline

5: UCflattened.Scenario ← UCflattened.Scenario + UCextended.Scenario +

End Extension Point

Algorithm 2 provides the working of IncludeUseCase process. This algorithm re-

quires UCflattend and UCincluded. UCtemp is referred as UCincluded. This algorithm

merges the ActorSet, InputSet and OutputSet constructs of UCincluded to the cor-

responding constructs of UCflattened. This algorithm also concatenates Scenario

of UCtemp to the Scenario of UCflattened and returns UCflattened.

Algorithm 3 provides the functionality of ExtendUseCase process. This algo-

rithm accepts the UCflattened, UCextended use case descriptions and UserLine a

Proposed Approach 54

scenario line passed from the UseCaseF lattener process. UCtemp is referred

as UCextended. This algorithm merges ActorSet, InputSet and OutputSet con-

structs of UCextended to the corresponding constructs of UCflattend. It concate-

nates ExtensionPoint UserLine at end of Scenario of UCflattened and then after

concatenates Scenario construct of UCextended to the updated Scenario construct

of UCflattened with End Extension Point to the end of it. This process returns

the updated UCflattened. This flattened use case is then passed to Use Case

to Kripke Structure Transformation process and Use Case to LTL Formula

Transformation process to generate a Kripke structure and LTL formulas. These

processes are discussed in the following subsections.

4.5.2 Use Case to Kripke Structure Transformation Pro-

cess

Use Case to Kripke Structure Transformation process takes an instance of use

case meta model as input and produces a Kripke structure as output. The input

use case instance is denoted by UC and the output Kripke structure instance is

denoted by KS. Meta models for the flattened use case and Kripke structure are

discussed in Section 4.2 and Section 4.3 respectively.

The proposed approach produces an instance of kripke structure meta model from

the provided instance of use case meta model. This transformation process is

discussed in the following paragraphs:

Rule 1 calculates the length of bitvector. This is calculated from the number of

OutputSet and OutputSymbol(s) in each OutputSet. This rule also calculates

distinct binary equivalent values for each OutputSymbol. In addition to it, this

rules copies the use case InputSet to Kriprke structure instance identified as KS’s

InputSet.

Proposed Approach 55

Rule 1 Calculate Binary Values, Bitvector Length and Copy Input Symbols

1: ucOPSetBinary : new UseCase!OutputSet, bitvectorlength← 0, InputSettemp

: new KripkeStructure!InputSet

2: for UC.OutputSet do

3: countoutput ← OutputSet.OutputSymbol.count

4: bitreq ← RequiredBitscountoutput; bitvectorlength += bitreq

5: for OutputSymbol do

6: ucOPSetBinary.value ← OutputSymbol.value

7: ucOPSetBinary.binaryvalue ← random binary value

8: end for

9: end for

10: for UC.InputSet.InputSymbol do

11: InputSettemp.InputSymbol.name ← UC.InputSet.InputSymbol.name

12: end for

13: KS.Inputset = InputSettemp

14: KS.bitvectorlength ← bitvectorlength

Rule 2 Define Initial and Dead States
1: BitLabeltemp : new KS.BitLable, statedead, qcurrent : new KS.State

2: for BitLabeltemp do

3: BitLabeltemp.Bit.val ← false

4: end for

5: KS.State.InitialState.BitLabel ← BitLabeltemp

6: statedead ← BitLabeltemp

7: qcurrent ← KS.State.InitialState

Rule 2 defines an InitialState and a dead state statedead of KS. This rule also

assigns all indices of BitLabel of these states to false and also marks InitialState

as qcurrent.

Rule 3 parses all the ScenarioLine of input use case UC. This rule marks isInput

and isActor turn on the flags marking that an input and actor symbols are

Proposed Approach 56

read. The read input symbol is stored as σtemp. This rule also stores the read

OutputSymbol in a scenario line in outputtemp variable.

Rule 3 Scan Actor, Input and Output Symbols

1: for UC.ScenarioLine do
2: for UC.InputSet do
3: if ` contains σ then
4: isInput ← true, σtemp ← InputSymbol.name
5: end if
6: end for
7: for UC.ActorSet do
8: if ` contains Actor then
9: isActor ← true

10: end if
11: end for
12: for UC.OutputSet do
13: for OutputSymbol do
14: if ` contains OutputSymbol then
15: outputtemp ← OutputSymbol.value
16: end if
17: end for
18: end for
19: end for

Rule 4 Define the New State and Transitions
1: if isInput AND isActor then
2: isInput← false, isActor ← false
3: Define qnew, BitLabeltemp ← qcurrent.BitLabel
4: BitLabeltemp ← BitLabelUpdater (outputtemp, ucOPSetBinary,
BitLabeltemp)

5: qnew.BitLabel ← BitLabeltemp

6: KS.State.add(qnew)
7: if isExtensionPoint then
8: KS.Transition.add(qbeforeExtension, qnew, σtemp)
9: else

10: KS.Transition.add(qcurrent, qnew, σtemp)
11: end if
12: for UC.InputSet - σtemp do
13: KS.Transitio.add(qcurrent, statedead, σ)
14: end for
15: qcurrent ← qnew
16: end if

Rule 4 checks for the marked flags isInput and isActor. This rule resets the

values of these flags, if they are marked true, it defines a new state qnew. This rule

Proposed Approach 57

copies the BitLabel of qcurrent to BitLabeltemp and it also update the corresponding

indices of BitLabeltemp with the corresponding binary value of read outputtemp.

This rule defines a transition from qbeforeExtension to this newly created state qnew

if isExtensionPoint flag is marked true true. This flag is marked true by Rule

8 on reading ExtensionPointLine, otherwise if isExtenstionPoint is false then

it defines a transition from qcurrent to qnew and adds qnew in KS.state. This

new transition is labelled with read input symbol σtemp. This rule then defines a

transition from qcurrent to qdead for each input symbol of InputSet else of σtemp and

marks the transitions with corresponding input symbols to makeKS deterministic.

All of these created transitions are added to KS.Transtion. The value of qcurrent

is updated to qnew.

Rule 5 checks for AltrenateScenaioLine and copies qcurrent in qhold and defines a

new state qnew. This rule copies the BitLabel of qcurrent to BitLabeltemp. It updates

the corresponding indices of BitLabeltemp for outputtemp and assigns this updated

BitLabeltemp as qnew’s BitLabel. A transition from qcurrent to qnew is defined and

is labelled with the value of σtemp. This rule also defines the transitions for each

input symbols else of σtemp in InputSet from qcurrent to stateddead and marks each

of this transition with corresponding input symbol. All of the new transitions are

added in KS.Transition and qcurrent is updated to qnew.

Rule 5 Process a Alternate Scenario Line
1: if `.typeOf(UC.AlternateScenarioLine) then
2: qhold ← qcurrent
3: Define qnew, BitLabeltemp ← qcurrent.BitLabel
4: BitLabeltemp ← BitLabelUpdater (outputtemp, ucOPSetBinary,
BitLabeltemp)

5: qnew.BitLabel ← BitLabeltemp

6: KS.State.add(qnew)
7: KS.Transition.add(qcurrent, qnew, σtemp)
8: for UC.InputSet - σtemp do
9: KS.Transition.add(qcurrent, statedead, σ)

10: end for
11: qcurrent ← qnew
12: end if

Rule 6 checks the occurrence of ContinueLine and adds a transition inKS.Transi−

tion from qcurrent to qcurrent and labels this transition with the value of σtemp. This

Proposed Approach 58

rule also updates qcurrent to qhold.

Rule 6 Process a Continue Line
1: if `.typeOf(UC.ContinueLine) then

2: KS.Transition.add(qcurrent, qcurrent, σtemp)

3: qcurrent ← qhold

4: end if

Rule 7 reads the EndAlternateScenarionLine and it adds a transition from qcurrent

to InitialState in KS.Transition. This transition is labelled with σtemp and the

value of qcurrents is updated to qhold.

Rule 7 Process End of Alternate Scenario Line
1: if `.typeOf(UC.EndAlternateScenarioLine) then

2: KS.Transition.add(qcurrent, KS.States.InititalState,σtemp)

3: qcurrent ← qhold

4: end if

Rule 8 Process Extension Point Line
1: if `.typeOf(UC.ExtensionPointLine) then

2: isExtensionPoint ← true

3: qbeforeExtenstion ← qcurrent

4: end if

Rule 8 marks the isExtenstionPoint to true and copies qcurrent to qbeforeExtension

on reading ExtensionPointLine line.

Rule 9 adds a transition in KS.Transition from qcurrent to qbeforExtension and labels

it with σtemp values. This rule also updates qcurrent with the value of qbeforeExtension.

It also marks the isExtensionPoint flag’s value to false. It is to be noted that

EndUsecaseLine does not have any impact in the transformation process and it

is only used to mark the end of a use case.

Proposed Approach 59

Rule 9 Process End Extension Point Line
1: if `.typeOf(UC.EndExtensionPointLine) then

2: KS.Transition.add(qcurrent, qbeforeExtension, σtemp)

3: qcurrent ← qbeforeExtenstion

4: isExtensionPoint← false

5: end if

Use Case to Kripke Structure Transformation process consists of a number of

rules and these rules are implemented in Epsilon Transformation Language (ETL).

ETL is a model-based transformation language. The transformation rules effecting

the input and output metamodel concepts are mapped in Table 4.1.

Table 4.1: Transformation Rules Effecting Source Target Meta Model
Summary

Sr.
No.

Source Metamodel Target Metamodel Applicable
Rule

1 UseCase.InputSet, Use-
Case.OutpuSet

KripkeStructure.InputSet, KripkeStruc-
ture.Lengthofbitvector

Rule1

2 – KripkeStructure.State Rule2
3 UseCase.InputSet, Use-

Case.OutpuSet
– Rule3

4 – KripkeStructure.State, KripkeStruc-
ture.Transition

Rule4

5 UseCase.Alternate-
ScenarioLine, Use-
Case.InputSet

KripkeStructure.State, KripkeStruc-
ture.Transition

Rule5

6 UseCase.Continue-
Line

KripkeStructure.Transition Rule6

7 UseCase.EndAlter-
nateScenarioLine

KripkeStructure.Transition Rule7

8 UseCase.Extensio-
nPointLine

– Rule8

9 UseCase.EndExte-
nsionPointLine

KripkeStructure.Transition Rule9

4.5.3 Use Case to LTL Formula Transformation Process

Use Case to LTL Formula Transformation process takes a flattened use case

meta model instance discussed in Section 4.2 as an input and it produces LTL for-

mulas as output. This approach also proposed a meta model for LTL formula and

is provided in Section 4.4. This process produces LTL formulas from the provided

of use case. Use Case to LTL Formula Transformation process consists of two

Proposed Approach 60

rules. One of these rule produces LTL formulas by handling X operator and the

other one generates LTL formulas by handling F operator.

Rule 1 takes a use case and it produces LTL formulas by handling X operator.

This rule processes the OutputSet of UC and generates an OutputLabel by con-

catenating the label of each OutputSet to null value. This rule processes sce-

nario lines one by one and scans for the occurrences of InputSymbol and actor.

It enables inInput and isActor flags to true on reading these. The read in-

put symbol is stored in InputSymbolread variable. The read OutputSymbol is

stored in OutputSymbolread variable and isOutput flag is marked to true. The

read OutputSymbol value is used to update the corresponding value of OutputSet

in OutputLabel. If an ExtensionPoint is read then OutputLabel is stored in

OutputLabelbeforExtension that is reverted when EndExtensionPoint line is read.

When an Alternatescenarioline is read, the value of OutputLabel is stored in

OutputLabelbeforeAlternate and this value is restored on reading Continue or End

Alternate Scenario line.

The values of the isActor, isInput and isOutput flags are marked to true and a

Formulacurrent is built by arranging the value of OutputLabel and other operators

as on written on the lines 46-49 of Rule 1.

Rule 1 LTL Next Specifications Generator

isInput← false, isActor ← false, isOutput← false

String OutputLabel, OutputLabelbeforeExtension, OutputLabelbeforeAlternate,

InputSymbolread, OutputSymbolread, Formulacurrent

1: for set in UC.OutputSet do

2: set.OutputSymbols ← set.OutputSymbols + null

3: OutputLabel ← OutputLabel + set.Label + ”= null”

4: end for

5: for ` in UC.ScenarioLine do

6: for inputsymbol in UC.InputSet do

7: if ` contains inputsymbol then

8: isInput← true

9: InputSymbolread ← inputsymbol

Proposed Approach 61

10: end if

11: end for

12: for set in UC.OutputSet do

13: for outputsymbol in set do

14: if ` contains outputSymbol then

15: isOutput← true

16: OutputSymbolread ← outputsymbol

17: for setavailable in UC.OutputSet do

18: if set.Label = setavailable then

19: Update OutputLabel.set.Label ← OutputSymbolread

20: end if

21: end for

22: end if

23: end for

24: end for

25: for actor in UC.ActorSet do

26: if ` contains actor then

27: isActor ← true

28: end if

29: end for

30: if `.typeof(UC.ExtensionPointLine) then

31: OutputLabelbeforeExtension ← OutputLabel

32: end if

33: if `.typeof(UC.EndExtensionPointLine) then

34: OutputLabel ← OutputLabelbeforeExtension

35: end if

36: if `.typeof(UC.AlternateScenarioLine) then

37: isAlternate← true

38: OutputLabelbeforeAlternate ← OutputLabel

39: end if

40: if `.typeof (UC.ContinueLine) OR `.typeof (”

UC.EndAlternateScenarioLine ”) then

Proposed Approach 62

41: isAlternate ← false

42: OutputLabel ← OutputLabelbeforeAlternate

43: end if

44: if isActor AND isInput AND isOutput then

45: if all OutputSet.Label.value = null then

46: Formulacurrent ← ”LTLSPEC G (state = Initial State & input =

” + InputSymbolread + ”− > X (” + OutputSymbolread + ”)”

47: else

48: Formulacurrent = ”LTLSPEC G (” OutputLabel + ”& input = ” +

InputSymbolread + ” − > X (” + OutputSymbolread + ”)”

49: end if

50: end if

51: LTL formulas = LTL formulas + Formulacurrent

52: isActor ← false, isOutput← false

53: end for

Rule 2 generates LTL formulas from a use case for LTL F operator.

Rule 2 LTL Future Specifications Generator

boolean isInput← false, isActor ← false, isOutput← false

String Inputfuture, Inputbeforefuture, InputbeforeExtension, InputbeforeAlternate,

OutputSymbolread, Formulacurrent

Counterinput ← 0, isF irstWritten← false, isAlternate← false

1: for ` in UC.ScenarioLine do

2: for inputsymbol in UC.InputSet do

3: if ` contains inputsymbol then

4: isInput← true

5: if Counterinput = 0 then

6: Counterinput++

7: Inputfuture ← ” (input =” + inputsymbol +”)”

8: else

9: Inputbeforefuture ← Inputfuture

Proposed Approach 63

10: Inputfuture ← Inputfuture + ” & X (input =” + inputsymbol +

”)”

11: end if

12: end if

13: end for

14: for set in UC.OutputSet do

15: for outputsymbol in set do

16: if ` contains outputSymbol then

17: isOutput ← true

18: OutputSymbolread ← outputsymbol

19: end if

20: end for

21: end for

22: for actor in UC.ActorSet do

23: if ` contains actor then

24: isActor ← true

25: end if

26: end for

27: if `.typeof(UC.ExtensionPointLine) then

28: InputbeforeExtension ← Inputfuture

29: end if

30: if `.typeof(UC.EndExtensionPointLine) then

31: Inputfuture ← InputbeforeExtension

32: end if

33: if `.typeof(UC.AlternateScenarioLine) then

34: isAlternate ← true

35: InputbeforeAlternate ← Inputfuture

36: Inputfuture ← Inputbeforefuture

37: end if

38: if `.typeof(UC.ContinueLine)

39: OR `.typeof(UC.EndAlternateScenarioLine) then

Proposed Approach 64

40: isAlternate ← false

41: Inputfuture ← InputbeforeAlternate

42: end if

43: if isActor AND isInput AND isOutput then

44: Formulacurrent ← ”LTLSPEC G (state = Initial State &” +

45: Inputfuture +” − > F (” + OutputSymbolread +”)”

46: end if

47: LTL formulas ← LTL formulas + Formulacurrent

48: isActor ← false, isOutput← false

49: end for

This rule parses each scenario line of the input use case and scans it for the

Inputsymbols. The read Inputsymbol is stored in Inputfuture by concatenat-

ing with inputfuture = literal. The Inputsymbols read after are concatenated

with it by adding a logical operator & and LTL X operator. The read Output

symbol is stored in OutputSymbolread. The value of Inputfuture is stored in

InputbeforeExtension on reading an ExtensionPoint line and this value is reverted

when an EndExtensionPoint line is read. The value of Inputfuture is stored in

InputbeforeAlternate and is reverted on reading a Continue or End of AlternateSc−

enario line. A Formulacurrent is generated after arranging the generated con-

structs as on line 43 of Rule 2.

Table 4.2: Transformation Rules Effecting Source Target Meta Model
Summary

Sr.
No.

Source Metamodel Target Metamodel Applicable
Rule

1 UseCase.ActorSet, Use-
Case.InputSet, Use-
Case.OutpuSet, Use-
Case.ScenarioLine

LTLForm.Literal, LTL-
Form.BinaryExpression, LTLUnaryEx-
pression, LTLImpExpression

Rule1

2 UseCase.ActorSet, Use-
Case.InputSet, Use-
Case.OutpuSet, Use-
Case.ScenarioLine

LTLForm.Literal, LTL-
Form.BinaryExpression, LTLUnaryEx-
pression, LTLImpExpression

Rule2

The transformation rules effecting the input and output metamodel concepts are

mapped in Table 4.2. Ecore metamodel is exportable as Java file. The exported

Java files for Use case, Kripke structure and LTL metamodels along with the

Proposed Approach 65

transformation rules are incorporated in the tool, and are presented in Chapter 5.

The usage of these exported Java files enables the definition of valid metamodel

instances only.

4.5.4 Proof of Soundness and Completeness

The soundness of Use Case to Kripke Structure Transformation Process can

be proved by the induction on the number of scenario lines of a use case description

and is listed below:

Base Case:

ScenarioLineCount = 1

KripkeStructure.InputSet := UseCase.InputSet by line 14 of Rule 1.

KripkeStructure.State := {Inital.State , state dead}

KripkeStructure.Transition := {} by line 5-6 of Rule 2.

KripkeStructure.State := KripkeStructure.State ∪ newState by line 6-14 of

Rule 4.

A single line use case cannot beAlternate Scenario, Continue, End of Alternat−

eScenario, Extension Point or End Extension Point line.

Inductive Case:

It is assumed that for n ScenarioLines a well formed Kripke structure is gener-

ated. For ScenarioLineCount = n + 1

KripkeStructure.State := KripkeStructure.State ∪ newState

KripkeStructure.Transition := KripkeStructure.Transition ∪ newTransition

if ScenarioLine = UseCase.ActorActionLine and it is dealt by line 6-14 of Rule

4.

KripkeStructure.State := KripkeStructure.State ∪ newState

KripkeStructure.Transition := KripkeStructure.Transition ∪ newTransition

if ScenarioLine = UseCase.AlternateScenarionLine and it is dealt by line 6-10

of Rule 5.

KripkeStructure.Transition := KripkeStructure.Transition ∪ newTransition

if ScenarioLine = UseCase.ContinueLine and it is dealt by Rule 6.

Proposed Approach 66

KripkeStructure.Transition := KripkeStructure.Transition ∪ newTransition

if ScenarioLine = UseCase.EndAlternateScenarioLine and it is dealt by Rule

7.

KripkeStructure.Transition := KripkeStructure.Transition ∪ newTransition

if ScenarioLine = UseCase.End of Extension PointLine and it is dealt by Rule

9.

The soundness of Use Case to LTL Formula Transformation Process is also

proved by the induction on the number of scenario lines of a use case description

and is listed below:

Base Case:

ScenarioLineCont = 1

LTLForm.Literal := UseCase.OutputSet = null by line 14 of Rule 1. and line14-

21 of Rule 2.

LTLForm.Literal := LTLForm.Literal ∧, input = readInputSymbol} by line

5-11 of Rule 1 and by line 1-13 of Rule 2.

LTLForm.Literal := readOutputSymbol by line 12-24 of Rule 1 and line 14-21

of Rule 2.

A single line use case cannot beAlternate Scenario, Continue, End of Alternat−

eScenario, Extension Point or End Extension Point line.

Inductive Case:

It is assumed that for ScenarioLineCoutn = n

a well formed LTL formula is generated. For ScenarioLineCoutn = n + 1

LTLForm.Literal := LTLForm.Literal ∧ input = readInputSymbol by line 5-

11 of Rule 1 and line 1-13 of Rule 2.

LTLForm.Literal := readOutputSymbol by line 12-24 of Rule 1 and line 14-21

of Rule 2.

LTLForm := LTLForm.UnaryExpression ∧ LTLForm by line 46, line 48 of

Rule 1 and line 10, line 21 of Rule 2

UseCase.AlternateScenarionLine is dealt by line 36-39 of Rule 1 and line 37-37

of Rule 2.

UseCase.ContinueLine and UseCase.End of AlternateScenarioLine are dealt

Proposed Approach 67

by line 40-43 of Rule 1 and line 38-41 of Rule 2.

UseCase.End of Extension PointLine is dealt by line 30-32 of Rule 1 and line

27-29 of Rule 2. ExtensionPointLine has no impact of LTLForm

It can be observed that the transformation process handles all the constructs of

the input use case. It is possible that a user inputs a use case with zero line. This

case is dealt at the input level. An EBNF grammar is proposed to check the input

use case prior to the transformation process. The proposed EBNF grammar does

not allow this type of use case input and an error message will be generated.

4.5.5 Time Complexity

Time complexity is a function that maps the growth of input to the number

of operations it performs to process the input. This approach consists of two

main processes including UseCase to Kripke Structure Transformation process

and Use Case to LTL Formula Transformation process. Use Case to Kripke

Structure Transformation process takes a use case as an input and generates a

Kripke structure. Whereas, Use Case to LTL Formula Transformation process

generates LTL formulas form the input use case. The UseCaseF lattener process

flattens the input use case by handling the included and/or extended use cases

and the flattened use case is provided as an input to these processes. A flattened

use case description consists of actors, input symbols, output symbols with their

possible values and scenario lines. The use case flattened process merges input

set, output set and scenario lines of input use cases. Its time complexity is always

smaller than the time complexity of other two process and thus this is not discussed

here. These are represented by following variables

� ac denotes the cardinality of an ActorSet

� ip denotes the cardinality of an InputSet

� opCount denotes the number of OutputSets

� osi denotes the cardinality of an OutputSet, where i = {1,2,. . . , opCount}

Proposed Approach 68

� ` denotes the number of scenario lines in Scenario

Time complexity of other two processes are discussed in the following subsections.

Use Case to Kripke Structure Transformation Process

This process consists of a number of rules and the time complexity of each rule is

as follows:

Rule 1 contains two main loops starting on line 2 and line 10. The loop on line

2 starts execution with an index i of value equals 1 to a maximum value equals

to opCount. This loop has a nested loop on line 5. This nested loop executes

for osi times, where i referred to the OutputSet being referred by the outer loop.

The worst case for loop on line 2 is opCount * max (osi). The loop on line 10

executes for ip times. The time complexity of this rule depends on the value of ip

or opCount * max(osi), whichever is greater. The time complexity of this rule is

O (max (ip, (opCount * max (osi))).

Rule 2 has a loop on line 2. This loop iterates for the size of BitLabeltemp and it

is denoted by BitLabelSize. The time complexity of Rule 2 is O (BitLabelSize).

Rule 3 has a loop on line 3 and this loop iterates for ` times. This loop has 3

nested loops on line 2, 7 and 12. The nested loop on line 2 iterates for ip times

and the loop on line 7 iterates for ac times. The loop on line 12 iterates for a

maximum to the value of opCount and this loop has an inner loop which iterates

for osi times, where i referred to the OutputSet being referred by the outer loop.

The worst case for loop on line 12 is opCount * max (osi) times. The value of ac

is equal to one and it can be ignored in the calculation of time complexity. The

time complexity of this rule depends on the value of ip or opCount * max(osi),

whichever is greater. The time complexity of this rule is O (max (ip, (opCount *

max (osi))).

Rule 4 has a loop on line 12 and it is executed for the size of ip − 1. The time

complexity of it is O (ip).

Proposed Approach 69

Rule 5 has a loop on line 8 and it is executed for ip−1 times. The time complexity

of it is O (ip).

Rule 6, Rule 7, Rule 8 and Rule 9 have a constant execution time, i.e., k.

In the transformation process, Rule 1, Rule 2 and Rule 3 execute one time and Rule

4 execute equal to the number of lines having an actor and an input symbol. It is

denoted by `acip. However, Rule 5 executes for the number of Alternate Scenario

and it is denoted by `alternatescenario. Rule 6 executes for the number of Continue

lines and it is denoted by `continue. Rule 7 executes for the number ofEnd of Alter−

nateScenario lines and is denoted by `endofalternatescenario. Rule 8 and Rule 9 ex-

ecute for the number of ExtnesionPoint and EndExtensionPoint lines, respec-

tively. These are denoted by `extensionpoint and `endextensionpoint, respectively. So,

the time complexity of Use Case to Kripke Structure Transformation process

is:

O ((max (ip , (opCount * max (osi)))) + (BitLabelSize) + (` * max(ip,

(opCount * max (osi)))) + (`acip * ip) + (`alternatescenario * ip)) + ((`continue +

`endofalternatescenario + `extensionpoint + `endextensionpoint) * k).

The smaller terms are ignored and the time complexity of this process becomes

O ((` * max(ip, (opCount * max (osi)))) + (`acip * ip) + (`alternatescenario * ip))

+ ((`continue + `endofalternatescenario + `extensionpoint + `endextensionpoint) * k).

The `continue + `endofalternatescenario = `alternatescenario. The `acip, `alternatescenario,

`extensionpoint, `endextensionpoint ⊂ `. So the O is

O (` * max(ip, (opCount * max (osi)))).

Use Case to LTL Formula Transformation Process

This transformation process consists of Rule 1 and Rule 2. These rules take a

use case as input and generate the LTL formulas as output. Rule 1 has two loops

starting on line 1 and on line 5. The loop on line 1 iterates for opCount times.

Proposed Approach 70

The loop on line 5 executes for ` times and it has the inner loops on lines 6, line

12 and line 25. The inner loop on line 6 executes for ip times. The loop on line

12 executes for opCount times. This loop has two nested loops on line 13 and on

line 17. The nested loop on line 13 executes for os times of op being referred by

the outer loop. The nested loop on line 17 executes for opCount times. Whereas,

the loop on line 25 executes for ac times. The value of time complexity of this

rule is dependent on the iterations of loop on line 5 and its nested loop on line

12 because the term opCount * max(osi) * opCount larger than ip. The loop on

line 5 executes for ` times and loop on line 12 executes for opCount * max(osi) *

opCount times. The time complexity of this rule is O (` * opCount2 * max(osi)).

Rule 2 has a loop and this loop starts on line 1. This loop executes for ` times.

This loop has the nested loops on line 2, line 14 and line 22. The loop on line 2

executes for ip times. The loop on line 14 executes for opCount times and this

loop has an inner loop on line 15 that executes for os times of op being referred

by the outer loop. The nested loop on line 22 executes for ac times. The time

complexity of this rules is dependent on the loop on line 1 and the nested loop on

line 14. The loop on line 1 executes for ` times and the loop on line 14 executes

for opCount * max(osi) times. The time complexity of this rule is denoted by O

(` * (opCount * max(osi))).

Use Case to LTL Formula Transformation process executes the Rule 1 and

Rule 2 for one time. The time complexity of this process is O ((` * opCount2 *

max(osi)) + (` * opCount * max(osi))). The smaller terms are ignored and the

time complexity of this process is O (` * opCount2 * max(osi).

Both the Use Case to Kripke Structure Transformation process and Use Case

to LTL Formula Transformation process execute for one time. The time com-

plexity of this approach is O((` * max (ip, (opCount * max(osi)))) + (` *

opCount2 * max(osi))). The smaller terms are ignored and the time complexity

of this approach is O (` * opCount2 * max(osi)) and it is quartic.

This approach generates both LTL formulas and behaviour model of a software.

The time complexity of this process is quartic and is relatively large. But the

Proposed Approach 71

generation of both behaviour model and LTL formulas make software verification

possible at the early stage of requirements engineering.

4.6 Summary

The proposed approach transforms a use case into a Kripke structure and LTL

formulas. This approach does not require any additional artefacts for the trans-

formation. The transformation process is performed at meta model level. The

generated formal artefacts are useful for software model verification and valida-

tion activities. This chapter presents meta models for input and output artefacts.

In addition to it, Use Case to Kripke Structure Transformation and Use Case

to LTL Formula Fransformation processes are presented. Time complexity

along with soundness and completeness of these processes are also discussed in

this chapter.

The discussed approach in this chapter generates both behavioural model and

formal software specifications of a software. This objective is set in RQ2 and is

achieved.

Chapter 5

Tool Support

This chapter discusses a tool, developed to implement the proposed approach. The

developed tool is platform independent. This tool takes a use case in the proposed

template and generates a Kripke structure in .dot, .gml, .smv and .png formats.

In addition to these, LTL formulas are generated and stored in .txt format for

further usage. The tool is available on Harvard Dataverse [110]. The developed

metamodels and the transformation rules are implemented using Eclipe tools for

Epsilon modelling framework [109]. Epsilon modelling framework does not provide

the constructs to develop a GUI. A GUI tool is developed in Java language. This

makes this tool a platform independent due to inherent features of Java language.

Tool’s architecture, class diagram along with other features are discussed in this

chapter..

5.1 Architecture Diagram

The tool consists of two layers including User Interface and Application Logic

Layer. The architecture diagram of the tool is shown in Figure 5.1.

The User Interface layer consists of a number of panels including Path, Usecase,

Progress Messages, Kripke structure, LTL Next Formulas and LTL Future

72

Tool Support 73

Figure 5.1: Tool Architecture Diagram.

Formulas panels. The user of the tool interacts with these constructs to process

the provided use case.

Path panel is responsible to collect the paths of GraphV iz API [111] and use case.

The GrpahV iz API is used to generate the output Kripke structure in .gml and

.png formats from the generated .dot format. The user of the tool selects these

paths by exploring the directory structure of the system. When a user selects a

use case, the directory path of the selected use case is automatically fetched. It

is required that the included or extended use cases with the main use case should

by in th same directory. The generated outputs of the software are also stored by

creating a subdirectory named Output in this directory.

The Use case panel displays the contents of the use case, provided as an input

to the software. The Progress panel displays the messages about the status of

the transformation along with the error messages, if generated. The progress

messages include, the flattening use case, generating Kripke structure, generating

LTL formulas and writing output files on the system. This panel also displays

error messages for the user. The error messages include invalid GraphV iz path,

provided use case description does not comply with the use case template, unable

to find included or extended use case(s). In addition to these, if some unexpected

error occurs during the execution of the software, an error message is also generated

for the user.

Tool Support 74

The generated Kripke structure and LTL formulas are displayed inKripke structure,

LTL Next Formulas and LTL Future4Formulaspanelsrespectively.

The Application layer consists of UserInterface, ApplicationPath and Usecase,

Kripkestructure and LTLFormla. The UserInterface is responsible to populate

the user interface and also manages provided input and the generated output.

ApplicatoinPath manages the provided paths by the user through Path panel.

The selected use case is handled by Usecase to and the contents of the selected

use case in Use case Panel and it is also used by Kripke Structure Generator

and LTL Formula Generator for the production of a Kripke structure and LTL

formulas.

The internal structure of the tool is discussed with the help of a class diagram.

This class diagram is discussed in the following section.

5.2 Class Diagram

Tool’s internal structure is shown, as a class diagram, in Figure 5.2. The Interface

Handler is the main construct and it contains an Application Path Handler, a

Use case, a Use case flattened, a Kripke structure and multiple LTL Formulas.

Whereas, Kripke structure consists of multiple state and Transition constructs.

The UserInterface’s responsibilities include PathV aluesCollector, usecaseLoader,

usecasV erifier, usecaseF lattener, kripkestructureGenerator, ltlNextSpecificat−

ionGenerator and ltlFutureSpecificationGenerator.

The PathV aluesCollector function is responsible to record the selected paths of

GraphV iz API and use case directory. These paths are used by Application Path

Handler’s graphvizPath and usecaseDirectory’s constructs respectively. This

function is also responsible to verify either the provided GrpahV iz API path is

valid or invalid. In case of the provided path is invalid, it generates an error

message. The usecaseLoader function is responsible to store the use case contents

to Use case’s actor, inputSymbols, outputSymbols and scenario constructs.

Tool Support 75

Figure 5.2: Tool Class Diagram.

An EBNF grammar is developed to verify the syntax of the input use case(s) and is

discussed in Section 4.1. The compiler generator Coco/R [112] is used to generate

Java files with the parsing abilities to parse the provided use case. These generated

files are then customized to generate customize messages and are embedded in the

developed tool as usecaseV erifier function.

The usecaseF lattener function flattens the provided use case by handling included

and extended use cases. The included and extended use cases are required to be

available in the provided use case directory. If any of the included or extended use

case are not found in the provided use case directory, an error message is generated.

The contents of resultant use case by usecaseF lattener is assigned to use case

flattened’s actor, inputSymbols, outputSymbols and scenario constructs.

The kripkestrucureGenerator function is responsible to generate a Kripke struc-

ture from the provided use case flattened. This function is also responsible to

write the generated Kripke structure in .dot and .smv formats. Both of these are

stored on the system in the OutputF iles subdirectory. It is automatically cre-

ated in the use case directory. In addition to it, this function also generates the

Kripke structure in .gml and .png formats using GraphV iz API. This function also

generates error message, if any of the above operation do not execute successfully.

Tool Support 76

The ltlNextSpecificationGenerator and ltlFutureSpecificationGernerator func-

tions are responsible to generate LTL formulas from the input use case. This

function writes the generated LTL formulas in .txt files. In addition to it, these

functions are also responsible to generate the error messages in case of any failure.

5.3 User Interface

A GUI based tool is developed to implement the proposed approach. The user

interface consists of a number of graphical panels including Path Info panel,

Use case panel, Progress Message panel, Kripke structure panel, LTL Next

Formulas panel and LTL Future Formulas panel. The interface is shown in

Figure 5.3. The interfaces panels are labelled with alpha characters.

Figure 5.3: User Interface.

The user of the tool provides a GraphV iz API path using Browse button as

shown in Figure 5.4. The software verifies for the existence of GraphV iz API

on the provided path. It enables the Browse button on occurrence of GraphV iz

Tool Support 77

API and the software displays a message in the Progress Message pane GrphV iz

detected.

Figure 5.4: GraphViz Directory Selection Interface.

Figure 5.5: Use Case Selection Interface.

The user of the software selects a use case to be transformed into a Kripke structure

and LTL formulas by clicking the Browse button as shown in Figure 5.5. When

the user of the software selects a use case, the software checks for the existence of

Tool Support 78

Figure 5.6: Syntax Correct Message on the Interface.

Figure 5.7: Generated Kripke structure and LTL formulas on the Interface.

included and extended use cases. The software displays a message All files found

in the Progress Message pane. The software then checks the provided use cases

against the proposed use case template. It creates a subdirectory OutputF iles in

the directory from where the use case description is selected. The tool displays

the contents of the selected use case in the Use case pane as shown in Figure

5.6. The tool, then, enables the Transform button. When, the user clicks this

Tool Support 79

button, the software generates the resultant Kripke structure and LTL formulas

and also displays the generated artefacts in Kripke structure pane, LTL Next

Formula pane and LTL Future Formula pane as shown in Figure 5.7. The tool

also saves the generated Kripke structure in .dot, .gml, .smv and .png formats in

the OutputF iles subdirectory. In addition to these, the software also writes the

generated LTL formulas in .txt in the OutputF iles subdirectory.

5.4 Summary

A GUI based tool is developed in Java language to implement the proposed ap-

proach. The inherit features make the developed tool platform independent. This

tool takes a use case as input and generates the corresponding Kripke structure

and LTL formulas. The tool, also, checks the provided use case description against

the proposed template before the transformation. The architecture diagram, class

diagram and features of the developed software are discussed in this chapter.

Chapter 6

Case Studies and Results

Validation

The developed tool discussed in Chapter 5 is used to formalize the use cases of two

pedagogical examples and two industrial case studies. The pedagogical examples

include ATM Cash Withdrawal example and SIM V ending Machine example.

Whereas, the industrial case studies include Work F low Manager, developed

by Elixir technologies, the other case study is Touch′D, an android application

developed by BitSol Inc. The use cases of these pedagogical examples and case

studies are presented in the following subsections. Some of the generated artefacts

are provided in appendices due to their large size.

6.1 ATM Cash Withdrawal Example

The user presents a card to the software. The software intimates about the validity

of the card. If the card is not valid, the software ejects the card. If the card is

valid, the software allows to enter a Personal Identification Number (PIN). The

software verifies the validity of the provided PIN and inform the user. If the

provided PIN is invalid, the software allows to re-enter a PIN. On provision of a

valid PIN the software allows the user to enter the amount to be withdrawn. If the

80

Case Studies 81

entered amount is valid, the software dispenses the amount along with the card.

If the provided amount is invalid, the software allows to re-enter a valid amount.

The use case diagram is shown in Figure 6.1 and the use case description in the

proposed template is shown in Figure 6.2.

Figure 6.1: ATM Cash Withdrawal Use Case Diagram.

UseCase: The ATM Cash Withdrawal
ActorSet: User
InputSet: Card,Void Card, Amount,Void Amount, Pin,Void Pin
OutputSet [cardMessage]: Valid Card,Invalid Card
OutputSet [amountMessage]: Valid Amount,Invalid Amount
OutputSet [pinMessage]: Valid Pin, Invalid Pin
OutputSet [cashMessage]: ejects Cash
Scenario:
User inserts Card
System notifies for the Valid Card
Alternate Scenario
User inserts Void Card
System notifies for the Invalid Card
System ejects the Card
End of AlternateScenario
User enters Pin
System notifies for Valid Pin
Alternate Scenario
User enters Void Pin
System notifies for Invalid Pin
Continue
User enters Amount
System notifies for Valid Amount
Alternate Scenario
User enters Void Amount
System notifies for Invalid Amount
Continue
System ejects Cash
End of Usecase

Figure 6.2: ATM Cash Withdrawal Use Case Description.

6.2 SIM Dispensing Machine Example

The user of the software provides a Computerized National Identification Number

(CNIC) and the software verifies the provided CNIC. The software intimates the

Case Studies 82

user about the validity of the provided CNIC. If the provided CNIC is invalid,

the software ends the transaction. The user can check the number of registered

Subscriber Identification Module (SIM) against the valid CNIC. The user of the

software can also purchase a new SIM, modify the SIM plan and can check the

balance history. The use case diagram of this is shown in Figure 6.3.

The use case descriptions of Start A Transaction is shown in Figure 6.4. The use

case Check SIM Registered includes Start A Transaction use case and its use

case description is shown in Figure 6.5.

Figure 6.3: SIM Vending Machine Use Case Diagram.

Case Studies 83

UseCase: Start A Transaction
ActorSet: User
InputSet: valid CNIC, invalid CNIC, purchase SIM option, balance check option, change plan option
OutputSet [cardMessage]: valid card message, invalid card message
Scenario:
User enters valid CNIC
System displays valid card message
Alternate Scenario
User enters invalid CNIC
System displays invalid card message
End of AlternateScenario
Include Check SIM Registered
Extend Purchase SIM Condition User selects purchase SIM option
Extend Balance History Condition User selects balance check option
Extend Change Plan Condition User selects change plan option
End of Usecase

Figure 6.4: Start a Transaction Use Case Description.

UseCase: Check SIM Registered
ActorSet: User
InputSet: number of registered SIMs
OutputSet [checkSIMMessage]: list of registered SIMs
Scenario:
User requests for the number of registered SIMs
System displays the list of registered SIMs
End of Usecase

Figure 6.5: Check SIM Registered Use Case Description.

The use case Purchase SIM is extended by Start A Transaction use case and

its use case description is shown in Figure 6.6.

UseCase: Purchase SIM
ActorSet: User
InputSet: SIM type option, valid amount, invalid amount, valid thumb impression, in-
valid thumb impression, dispense SIM
OutputSet [purchaseSIMOptionMessage]: available option
OutputSet [amountMessage]: deposit amount message, invalid amount message
OutputSet [thumbMessage]: thumb place message, valid thumb message, invalid thumb message
OutputSet [issueSIMMessage]: issues SIM
Scenario:
System displays available option
User selects SIM type option
System displays deposit amount message
User enters valid amount
System displays thumb place message
Alternate Scenario
User enters invalid amount
System displays invalid amount message
End of AlternateScenario
User scans valid thumb impression
System displays valid thumb message
Alternate Scenario
User scans invalid thumb impression
System displays invalid thumb message
Continue
User asks to dispense SIM
System issues SIM
End of Usecase

Figure 6.6: Purchase SIM Use Case Description.

Case Studies 84

UseCase: View Balance History
ActorSet: User
InputSet: valid mobile number,invalid mobile number
OutputSet [balanceHistoryMessage]: check balance, balance history, invalid mobile message
Scenario:
System asks for mobile number to check balance
User enters valid mobile number
System displays balance history
Alternate Scenario
User enters invalid mobile number
System displays invalid mobile message
End of AlternateScenario
End of Usecase

Figure 6.7: View Balance History Use Case Description.

UseCase: Change Plan
ActorSet: User
InputSet: SIM plan type
OutputSet [changePlanMessage]: SIM current plan, SIM plan option, SIM plan type change message
Scenario:
System displays the SIM current plan message
System displays available SIM plan option
User selects a SIM plan type
System displays SIM plan type change message
End of Usecase

Figure 6.8: Change Plan Use Case Description.

The use case V iew Balance History is extended by Start A Transaction use case

and its use case description is shown in Figure 6.7. The use case Change P lan is

extended by Start A Transaction use case and its use case description is shown

in Figure 6.8.

6.3 Work Flow Manager Case Study

Work Flow Manager is a customized application application developed by Elixir

Technologies. This application allows an organization to keep track of interac-

tion between its employees and clients. The application follows a sequence of

operations. It starts with a request from an employee, called requester in this

application. Requester’s request is viewed by Business Analyst (BA). BA can ask

for an opinion from Subject Matter Expert (SME). BA can approve or reject this

interaction request. Once BA approves a request it is forwarded to the client.

The application functionalities are described in the form of user stories. The use

Case Studies 85

case diagrams and along with use case descriptions are listed in the following

subsection.

6.3.1 Request New Letter

A requester initiates a new request. The requester is required to be logged-in

before the request initiation. The use case diagram is shown in Figure 6.9.

Figure 6.9: Request New Letter Use Case Diagram.

The use case description of Requester Request New Letter is shown in Figure

6.10.

UseCase: Requester Request New Letter
ActorSet: Requester
InputSet: new letter, complete features, save letter features, incomplete features
OutputSet [feature notification]: new features page
OutputSet [letter status]: registers letter
OutputSet [analyst status]: buisness analyst
OutputSet [error message]: error feature message
Scenario:
Requester initiates new letter request
System displays new features page
Include Login
Extend Save New Letter Features Condition Requester selects save letter features
Requester provides complete features of letter
System registers letter
System assigns buisness analyst
End of Usecase

Figure 6.10: Request New Letter Use Case Description.

Case Studies 86

Login use case included by Develop New Letter use case. Its use case description

is shown in Figure 6.11.

UseCase: Login
ActorSet: Requester
InputSet: valid credentials, Invalid credentials
OutputSet [screen notification]: main screen, error login message
Scenario: Requester provides valid credentials to login
System displays main screen
Alternate Scenario
Requester provides Invalid credentials to login
System displays error login message
End of AlternateScenario
End of Usecase

Figure 6.11: Login Use Case Description.

Save Letter Info extended by Request New Review Letter Request use case.

Its use case description is shown in Figure 6.12.

UseCase: Save New Letter Features
ActorSet: Requester
InputSet: no
OutputSet [save notification message]: letter features save message
Scenario: System displays letter features save message
End of Usecase

Figure 6.12: Save New Letter Features Use Case Description.

6.3.2 Business Analyst Review Letter Request

A business analyst reviews the request initiated by a requester. A business analyst

is required to be logged-in and cam call a meeting . A business analyst can view

requester information, add information or save letter information. The use case

diagram of this is shown in Figure 6.13.

Figure 6.13: Business Analyst Review Letter Request Use Case Diagram.

Case Studies 87

The use case description of Business Analyst Review Letter Request, in the

proposed template, is shown in Figure 6.14. The Login use case included by

Business Analyst Review Letter Request use case. Its use case description is

shown in Figure 6.15.

UseCase: Business Analyst Review Letter Request
ActorSet: Business Analyst
InputSet: selects letter, edit option, add info option, save info option
OutputSet [letterInfoMessage]: letter information
Scenario:
Business Analyst selects letter
System display letter information
Include Analyst Login
Extend Edit Letter Information Condition Business Analyst selects edit option
Extend Add Letter Information Condition Business Analyst selects add info option
Extend Save Letter Information Condition Business Analyst selects save info option
Include Call Meeting
End of Usecase

Figure 6.14: Business Analyst Review Letter Request Use Case Description.

UseCase: Analyst Login
ActorSet: Business Analyst
InputSet: valid credentials, Invalid credentials
OutputSet [loginMessage]: main screen, error login message
Scenario:
Business Analyst provides valid credentials to login
System displays main screen
Alternate Scenario
Business Analyst provides Invalid credentials to login
System displays error login message
End of AlternateScenario
End of Usecase

Figure 6.15: Login Use Case Description.

The Call Meeting use case included by Business Analyst Review Letter Request

use case. Its use case description is shown in Figure 6.16.

UseCase: Call Meeting
ActorSet: Business Analyst
InputSet: meeting details
OutputSet [meetingMessage]: meeting confirmation
Scenario:
Business Analyst provides meeting details
System displays meeting confirmation message
End of Usecase

Figure 6.16: Call Meeting Use Case Description.

The Add Letter Information use case is extended by Business Analyst Review

Letter Request use case. Its use case description is shown in Figure 6.17.

Case Studies 88

UseCase: Add Letter Information
ActorSet: Business Analyst
InputSet: additional letter information
OutputSet [addLetterInfoMessage]: additional info
OutputSet [infoMessage]: save info
Scenario:
System displays additional info box
Business Analyst adds additional letter information
System displays save info message
End of Usecase

Figure 6.17: Add Letter Information Use Case Description.

The Edit Letter Information use case is extended by Business Analyst Review

Letter Request use case. Its use case description is shown in Figure 6.18.

UseCase: Edit Letter Information
ActorSet: Business Analyst
InputSet: edited information
OutputSet [editLetterMessage]: edited letter information
OutputSet [updateLetterMessage]: updated letter
Scenario:
System displays edited letter information
Business Analyst provides edited information
System displays updated letter message
End of Usecase

Figure 6.18: Edit Letter Information Use Case Description.

The Save Letter Information use case is extended by Business Analyst Review

Letter request use case. Its use case description is shown in Figure 6.19.

UseCase: Save Letter Information
ActorSet: Business Analyst
InputSet: no
OutputSet [saveLetterMessage]: letter information save message
Scenario:
System displays letter information save message
End of Usecase

Figure 6.19: Save Letter Information Use Case Description.

6.3.3 Letter Writer Develops New Letter

A letter writer on the request of the requester develops a new letter, The letter

writer requires to be logged-in for the new letter development. The letter writer

can view requester and business analyst information. Moreover, letter writer can

add information. The use case diagram of this is shown in Figure 6.20.

Case Studies 89

Figure 6.20: Letter Writer Develops a New Letter Use Case Diagram.

UseCase: Letter Writer Login
ActorSet: Letter Writer
InputSet: valid credentials, Invalid credentials
OutputSet[screen notification]: main screen, error login message
Scenario:
Letter Writer provides valid credentials to login
System displays main screen
Alternate Scenario
Letter Writer provides Invalid credentials to login
System displays error login message
End of AlternateScenario
End of Usecase

Figure 6.21: Login Use Case Description.

The Login use case is included by Develop New Letter use case. Its use case

description is shown in Figure 6.21. The use case description of Letter Writer

Develops New Letter, in the proposed template, is shown in Figure 6.22.

UseCase: Letter Writer Develops New Letter
ActorSet: Letter Writer
InputSet:
view requester info, view bus analyst info, add info, generates letter, letter to stakeholders
OutputSet [letter completion]: final letter
OutputSet [stakeholder status]: submitted stakeholders
Scenario:
Letter Writer generates letter
System generate final letter
Include Letter Writer Login
Extend View Requester Information Condition Letter Writer select view requester info
Extend View Buisness Analyst Information Condition Letter Writer select view bus analyst info
Extend Add Information Condition Letter Writer select add info
Letter Writer submits letter to stakeholders
System displays submitted stakeholders list
End of Usecase

Figure 6.22: Letter Writer Develops a New Letter Use Case Description.

Case Studies 90

The Add Information use case is extended by Develops New Letter use case.

Its use case description is shown in Figure 6.23.

UseCase: Add Information
ActorSet: Letter Writer
InputSet: letter writer provided information
OutputSet[letter status]: letter information
OutputSet[information status]: information added
Scenario:
System asks to add letter information
Letter Writer provides letter writer provided information
System displays information added message
End of Usecase

Figure 6.23: Add Information Use Case Description.

The V iew Requester Information use case is extended by Develops New Letter

use case. Its use case description is shown in Figure 6.24.

UseCase: View Requester Information
ActorSet: Letter Writer
InputSet: noinput
OutputSet [information provide status]: requester provided information
Scenario:
System displays requester provided information
End of Usecase

Figure 6.24: View Requester Information Use Case Description.

The V iew Business Analyst Information use case is extended by Develop New

Letter use case. Its use case description is shown in Figure 6.25.

UseCase: View Buisness Analyst Information
ActorSet: Letter Writer
InputSet: no
OutputSet[business analyst status]: bus analyst provided information
Scenario:
System displays bus analyst provided information
End of Usecase

Figure 6.25: View Business Analyst Information Use Case Description.

6.3.4 Business Analyst Review Developed Letter

Once the letter writer develops the letter, the business analyst can review the

developed letter. The business analyst required to be logged-in to review the

developed letter. The business analyst can approve or reject the developed letter.

The use case diagram of this interaction is shown in Figure 6.26.

Case Studies 91

Figure 6.26: Business Analyst Review Developed Letter Use Case Diagram.

The use case description of Letter Writer Develops New Letter, in the proposed

template, is shown in Figure 6.27.

UseCase: Buisness Analyst Review Developed Letter
ActorSet: Business Analyst
InputSet: developed letter review, reject option, approve option
OutputSet [letter notification]: letter information
Scenario:
Business Analyst select a developed letter review
System displays letter information
Include Business Analyst Login
Extend Reject Developed Letter Condition Business Analyst selects reject option
Extend Approve Developed Letter Condition Business Analyst selects approve option
End of Usecase

Figure 6.27: Business Analyst Review Developed Letter Use Case Description.

The Business Analyst Login use case is included by Business Analyst Review De-

veloped Letter use case. Its use case description is shown in Figure 6.28.

UseCase: Business Analyst Login
ActorSet: Business Analyst
InputSet: valid credentials, Invalid credentials
OutputSet [loginMessage]: main screen, error login message
Scenario:
Business Analyst provides valid credentials to login
System displays main screen
Alternate Scenario
Business Analyst provides Invalid credentials to login
System displays error login message
End of AlternateScenario
End of Usecase

Figure 6.28: Login Use Case Description.

Case Studies 92

The Approve Developed Letter use case is extended by Business Analyst Review

Developed Letter use case. Its use case description is shown in Figure 6.29.

UseCase: Approve Developed Letter
ActorSet: Business Analyst
InputSet: noinput
OutputSet[Approval notification]: approval message
Scenario:
System displays approval message
End of Usecase

Figure 6.29: Approve Developed Letter Use Case Description.

The Reject Developed Letter use case is extended by Business Analyst Review

Developed Letter use case. Its use case description is shown in Figure 6.30.

UseCase: Reject Developed Letter
ActorSet: Business Analyst
InputSet: no
OutputSet[rejection status]: rejection message
Scenario:
System displays rejection message
End of Usecase

Figure 6.30: Login Use Case Description.

6.3.5 Requester Approves Developed Letter

The requester can approve the developed letter. The requester is required to be

logged-in. The requester can approve or reject the letter. The use case diagram

of requester approves developed letter is shown in Figure 6.31.

Figure 6.31: Requester Approves Developed Letter Use Case Diagram.

Case Studies 93

The use case description of Requester Approves Developed Letter, in the proposed

template, is shown in Figure 6.32.

UseCase: Requester Approves Developed Letter
ActorSet: Requester
InputSet: request,rejects request,accepts request
OutputSet [save notification]: save message
Scenario:
Requester initiates request
Include Requester Login
Extend Letter Rejection Condition Requester rejects request
Extend Letter Approval Condition Requester accepts request
End of Usecase

Figure 6.32: Requester Approves Developed Letter Use Case Description.

The Login use case is included by Requester Approves Developed Letter use case.

Its use case description is shown in Figure 6.33.

UseCase:Login
ActorSet: Requester
InputSet: valid credentials, Invalid credentials
OutputSet [screen notification]: main screen, error login message
Scenario:
Requester provides valid credentials to login
System displays main screen
Alternate Scenario Requester provides Invalid credentials to login
System displays error login message
End of AlternateScenario
End of Usecase

Figure 6.33: Login Use Case Description.

The Letter Approval use case is extended by Requester Approves Developed Letter

use case. Its use case description is shown in Figure 6.34.

UseCase: Letter Approval
ActorSet: Requester
InputSet: no
OutputSet [approaval notification]: approval message
Scenario:
System displays approval message
End of Usecase

Figure 6.34: Letter Approval Use Case Description.

UseCase: Letter Rejection
ActorSet: Requester
InputSet: suggestion
OutputSet [rejection status]: rejection comments
Scenario:
System asks to enter rejection comments
Requester adds suggestion
System displays save message
End of Usecase

Figure 6.35: Letter Rejection Use Case Description.

Case Studies 94

The Letter Rejection use case is extended by Requester Approves Developed Letter

use case. Its use case description is shown in Figure 6.35.

6.4 Touch’D Case Study

Touch’D is an android application, it allows a user to create a profile, view a

contact and call a contact. This application keeps a user updated regarding the

contacts in the contact list. It provides different summaries including the number

of interactions in a week, contact health. In addition to these, this application

also allows a user to record short notes about a contact. There are three kinds

of interactions broadly provided to the user. The interactions include User Makes

a Profile, User Views a Contact and User Calls a Contact. The use case dia-

grams along with the use case descriptions of these interactions are provided in

the following subsections.

6.4.1 User Makes a Profile

The User Makes a Profile, allows a user to create a profile by setting the personal

information and the privacy level. In addition to it, this interaction allows the

user to view recently contacted, view today and last week interaction summary.

The use case diagram of User Makes a Profile is shown in Figure 6.36.

Figure 6.36: User Makes A Profile Use Case diagram.

Case Studies 95

UseCase: User Makes a Profile
ActorSet: User
InputSet: makeProfileOption, setAge, setMarital, setCompanyName, setWorkingStatus, setBirthday, set-
Education, setGender, updatePrivacy, setStatus,viewweekSummary, viewTodayInteraction
OutputSet[profile status]: profileOptions
Scenario:
User selects makeProfileOption
System displays profileOptions
Extend Set Age Condition User select setAge option
Extend Set Marital Status Condition User selects setMarital option
Extend Set Company Condition User selects setCompanyName option
Extend Working Status Condition User selects setWorkingStatus option
Extend Set Birthday Condition User selects setBirthday option
Extend Set Education Condition User selects setEducation option
Extend Set Gender Condition User selects setGender option
Extend Update Privacy Level Condition User selects updatePrivacy option
Extend Set Status Condition User selects setStatus option
Extend View Last Week Summary Condition User selects viewweekSummary Option
Extend View Today Interaction Summary Condition User selects viewTodayInteraction Option
Include View Recentaly Contacted
End of Usecase

Figure 6.37: User Makes Profile Use Case Description.

The use case description of User Makes a Profile, in the proposed template, is

shown in Figure 6.37.

The View Recently Contacted use cases is included by User Makes a Profile. The

use case description of View Recently Contacted, in the proposed template, is

shown in Figure 6.38.

UseCase: View Recentaly Contacted
ActorSet: User
InputSet: recentlyContactedData
OutputSet [recent contact status]: recentlyContactedValue
Scenario:
User selects display recentlyContactedData option
System displays recentlyContactedValue
End of Usecase

Figure 6.38: View Recently Contacted Use Case Description.

The Set Age use cases is extended by User Makes a Profile. The use case descrip-

tion of Set Age, in the proposed template, is shown in Figure 6.39.

UseCase: Set Age
ActorSet: User
InputSet: ageEnterOption, validAge
OutputSet [age status]: updatedAge
Scenario:
System displays ageEnterOption
User provides validAge
System displays updatedAge
End of Usecase

Figure 6.39: Set Age Use Case Description.

Case Studies 96

The Set Marital Status use cases is extended by User Makes a Profile. The use

case description of Set Marital Status, in the proposed template, is shown in Figure

6.40.

UseCase: Set Marital Status
ActorSet: User
InputSet: maritalType
OutputSet [marital status]: maritalSelectOption
OutputSet [update marital]: updatedMaritalValue
Scenario:
System displays maritalSelectOption
User selects maritalType
System displays updatedMaritalValue
End of Usecase

Figure 6.40: Set Marital Status Use Case Description.

The Set Company use cases is extended by User Makes a Profile. The use case

description of Set Company, in the proposed template, is shown in Figure 6.41.

UseCase: Set Comapny
ActorSet: User
InputSet: companyTextBox, companyName
OutputSet [company status]: updatedCompanyName
Scenario:
System displays companyTextBox
User provide companyName
System displays updatedCompanyName
End of Usecase

Figure 6.41: Set Company Use Case Description.

The Set Working Status use cases is extended by User Makes a Profile. The use

case description of Set Working Status, in the proposed template, is shown in

Figure 6.42.

UseCase: Set Working Status
ActorSet: User
InputSet: workingStatusData
OutputSet [working Status]: workingStatusOption
Scenario:
System displays workingStatusOption
User selects workingStatusData
System displays updatedWorkingStatus
End of Usecase

Figure 6.42: Set Working Status Use Case Description.

The Set Birthday use cases is extended by User Makes a Profile. The use case

description of Set Birthday, in the proposed template, is shown in Figure 6.43.

Case Studies 97

UseCase: Set Birthday
ActorSet: User
InputSet: birthdayData
OutputSet [birthday stauts]: birthdayProvideOption
OutputSet [update birth status]: updatedBirthdayValue
Scenario:
System displays birthdayProvideOption
User provides birthdayData
System displays updatedBirthdayValue
End of Usecase

Figure 6.43: Set Birthday Use Case Description.

UseCase: Set Education
ActorSet: User
InputSet: educationTypeData
OutputSet [education staus]: educationProvideOption
OutputSet [update edu status]: updatedEducationValue
Scenario:
System displays educationProvideOption
User selects educationTypeData
System displays updatedEducationValue
End of Usecase

Figure 6.44: Set Education Use Case Description.

The Set Education use cases is extended by User Makes a Profile. The use case

description of Set Education, in the proposed template, is shown in Figure 6.44.

The Set Gender use cases is extended by User Makes a Profile. The use case

description of Set Gender, in the proposed template, is shown in Figure 6.45.

UseCase: Set Education
ActorSet: User
InputSet: educationTypeData
OutputSet [education staus]: educationProvideOption
OutputSet [update edu status]: updatedEducationValue
Scenario:
System displays educationProvideOption
User selects educationTypeData
System displays updatedEducationValue
End of Usecase

Figure 6.45: Set Gender Use Case Description.

UseCase: Update Privacy Level
ActorSet: User
InputSet: privacyTypeData
OutputSet [privacy status]: privacyProvideOption
OutputSet [update privacy value]: updatedPrivacyValue
Scenario:
System displays privacyProvideOption
User selects privacyTypeData
System displays updatedPrivacyValue
End of Usecase

Figure 6.46: Update Privacy Level Use Case Description.

Case Studies 98

The Update Privacy Level use cases is extended by User Makes a Profile. The use

case description of Update Privacy Level, in the proposed template, is shown in

Figure 6.46.

The Set Status use cases is extended by User Makes a Profile. The use case

description of set Status, in the proposed template, is shown in Figure 6.47.

UseCase: Set Status
ActorSet: User
InputSet: statusData
OutputSet [update status]: statusProvideOption
OutputSet [update status value]: updatedStatusValue
Scenario:
System displays statusProvideOption
User selects statusData
System displays updatedStatusValue
End of Usecase

Figure 6.47: Set Status Use Case Description.

UseCase: View Last week Summary
ActorSet: User
InputSet: nosymbol
OutputSet [week status]: lastweekData
Scenario:
System displays lastweekData
End of Usecase

Figure 6.48: View Last Week Summary Use Case Description.

UseCase: View Today Interaction Summary
ActorSet: User
InputSet: noinput
OutputSet [today interact status]: todayInteractionSummary
Scenario:
System displays todayInteractionSummary
End of Usecase

Figure 6.49: View Today Interaction Summary Use Case Description.

The View Last Week Summary use cases is extended by User Makes a Profile.

The use case description of View Last Week Summary, in the proposed template,

is shown in Figure 6.48.

The View Today Interaction Summary use cases is extended by User Makes a

Profile. The use case description of View Today Interaction Summary, in the

proposed template, is shown in Figure 6.49.

Case Studies 99

6.4.2 User Calls a Contact

The User Calls a Contact dials a contact number is the main use case and this

use case include the View a Note use case. The use case diagram of User Calls a

Contact is shown in Figure 6.50.

Figure 6.50: User Calls Contact Use Case Diagram.

The use case description of User Calls a Contact, in the proposed template, is

shown in Figure 6.51.

UseCase: User Calls a Contact
ActorSet: User
InputSet: contactNumber, incorrectContactNumber
OutputSet [contact notification]: dialingContactMessage, incorrectContactMessage
Scenario:
User provides a contactNumber to call
System displays dialingContactMessage
Alternate Scenario
User provides incorrectContactNumber
System displays incorrectContactMessage
End of AlternateScenario
Include View a Note
End of Usecase

Figure 6.51: User Calls a Contact Use Case Description.

UseCase: View a Note
ActorSet: User
InputSet: Number
OutputSet [save notification status]: lastSavedNote
Scenario:
User dialing a Number
System displays lastSavedNote
End of Usecase

Figure 6.52: View a Note Use Case Description.

The View a Note use cases is included by User Calls a Contact. The use case

description of View a Note, in the proposed template, is shown in Figure 6.52.

Case Studies 100

6.4.3 User Views a Contact

The User Views a Contact is the main use case and this use case include View Last

Interaction Type and extend View Communication Summary, View Communica-

tion Starter, View Relationship Health, Send Message and Add a Note use cases.

The use case diagram of User Views a Contact is shown in Figure 6.53.

Figure 6.53: User Views a Contact Use Case Diagram.

The use case description of User Views a Contact, in the proposed template, is

shown in Figure 6.54.

Case Studies 101

UseCase: User Views a Contact
ActorSet: User
InputSet: contact, addNewNote, viewCommunicationSummary, viewCommunicationStarterSummary,
sendNewMessage, viewRelationshipHealth
OutputSet [contactMessage]: selectedContactDetails
Scenario:
User selects a contact
System displays selectedContactDetails
Extend Add Note Condition User selects addNewNote option
Extend View Communication Summary Condition User selects viewCommunicationSummary option
Extend View Communication Starter Summary Condition User selects viewCommunicationStarterSum-
mary option
Extend Send Message Condition User selects sendNewMessage option
Extend View Relationship Health Condition User selects viewRelationshipHealth option
Include View Last Interaction Type
End of Usecase

Figure 6.54: User Views a Contact Use Case Description.

UseCase: View Last Interaction Type
ActorSet: User
InputSet: contacttoDisplay
OutputSet [lastInteractionTypeMessage]: lastInteractionTypeValue
Scenario:
User select a contacttoDisplay
System displays lastInteractionTypeValue
End of Usecase

Figure 6.55: View Last Interaction Type Use Case Description.

UseCase: Add a Note
ActorSet: User
InputSet: noteContents, saveNote, cancelNote
OutputSet [noteTextBoxMessage]: noteTextBox
OutputSet [saveNoteOptionMessage]: saveNoteOption
OutputSet [noteFinalMessage]: noteSaveMessage, noteCancelMessage
Scenario:
System displays noteTextBox
User types noteContents
System enables saveNoteOption
User selects saveNote
System displays noteSaveMessage
Alternate Scenario
User selects cancelNote
System displays noteCancelMessage
End of AlternateScenario
End of Usecase

Figure 6.56: Add Note Use Case Description.

The View Last Interaction Type use case is included by User Views a Contact.

The use case description of View Last Interaction Type, in the proposed template,

is shown in Figure 6.55.

The Add a Note use case is extended by User Views a Contact. The use case

description of Add a Note, in the proposed template, is shown in Figure 6.56.

Case Studies 102

The View Communication Summary use case is extended by User Views a Con-

tact. The use case description of View Communication Summary, in the proposed

template, is shown in Figure 6.57. The View Communication Starter Summary

use case is extended by User Views a Contact. The use case description of View

Communication Starter Summary, in the proposed template, is shown in Figure

6.58.

UseCase: View Communication Summary
ActorSet: User
InputSet: nosymbol
OutputSet [communicationDataMessage]: communicationSummaryData
Scenario:
System displays communicationSummaryData
End of Usecase

Figure 6.57: View Communication Summary Use Case Description.

UseCase: View Communication Starter Summary
ActorSet: User
InputSet: no
OutputSet [commStartSummaryDataMessage]: communicationstarterSummaryData
Scenario:
System displays communicationstarterSummaryData
End of Usecase

Figure 6.58: View Communication Starter Summary Use Case Description.

UseCase: Send Message
ActorSet: User
InputSet: messageContents, sendMessage, cancelMessage
OutputSet [messageTextBoxMessage]: messageTextBox
OutputSet [sendMessageOptionMessage]: sendMessageOption
OutputSet [messageFinalMessage]: messageSentMessage, messageCancelMessage
Scenario:
System displays messageTextBox
User types messageContents
System enables sendMessageOption
User selects sendMessage
System displays messageSentMessage
Alternate Scenario
User selects cancelMessage
System displays messageCancelMessage
End of AlternateScenario
End of Usecase

Figure 6.59: Send Message Use Case Description.

UseCase: View Relationship Health
ActorSet: User
InputSet: noinput
OutputSet [relationshipHealthMessage]: relationshipHealthData
Scenario:
System displays relationshipHealthData
End of Usecase

Figure 6.60: View Relationship Health Use Case Description.

Case Studies 103

The Send Message use case is extended by User Views a Contact. The use case

description of Send Message, in the proposed template, is shown in Figure 6.59.

The View Relationship Health use case is extended by User Views a Contact. The

use case description of View Relationship Health, in the proposed template, is

shown in Figure 6.60. The features of the input use cases are enlisted in Table 6.1.

Table 6.1: Input Examples and Case Studies Features

Sr.

No

Name NO.

of Use

Case

NO. of

Input

Symbol-

s/UC

NO.

of

Out-

put

Set/UC

NO. of

Output

Symbol-

s/UC

NO.

of

Sce-

nario

Lines/UC

NO. of

Alter-

nate

Scenar-

ios/UC

NO.

of In-

cluded

Use

Cas-

es/UC

NO.

of Ex-

tended

Use

Cas-

es/UC

1 ATM Cash With-

drawal Example

1 6 4 7 22 3 0 0

2 SIM Dispensing Ma-

chine Example

5 1-6 1-4 1-7 4-19 0-2 1 3

3 Work Flow Manage

Case Study

22 1-6 1-4 1-4 1-10 0-1 0-2 0-3

4 Touch’D Case Study 22 1-11 1-3 1-4 1-16 0-1 0-1 0-11

6.5 Generated Artefacts and Their Validation

The generated artefacts including a Kripke structure in .png, .gml and .dot formats

along with the .smv model file and LTL formulas for SIM Dispensing Machine,

Work Flow Manager and TouchD́ case studies are placed at Harvard data-verse

[110] due to their large size. However, the generated artefacts for ATM Cash

Withdrawal example are provided in Appendix A.

The proposed approach consists of two main processes and these are discussed in

4.5.2 and 4.5.3. These processes formalize the provided use case into the corre-

sponding Kripke structure and LTL formulas. The generated Kripke structure is

produced in different formats including .dot, .png, .gml and .smv formats. The

.dot file is used to generate .png file, using GraphViz API. The generated .png

file is useful for the visual representation of the generated Kripke structure. The

Case Studies 104

generated .gml format is useful for further graphical-based processing by using an

editor with capabilities to process graph markup language.

A model checker requires a model of a software and the formal specifications for

the validation of a software. Model checking is an automated process. It requires

minimal human intervention during the validation process. It also generates coun-

terexamples for the invalid scenarios. The generated .smv file is used to provide the

generated Kripke structure as a model to NuSMV model checker. The generated

LTL formulas are generated by following the syntax requirements of NuSMV model

checker and are used to specify formal specification to NuSMV model checker. The

generated .smv file for ATM Cash Withdrawn Example is provided as a model to

the NuSMV model checker. The generated LTL formulas for this example are used

as formal specification are used to verify the provided input model. NuSMV does

not generate any counter example and it is shown in Figure 6.61.

Figure 6.61: NuSMV Model Checker Output for The ATM Cash Withdrawal
Example.

It is observed that GraphViz API successfully generates the resultant .png file.

This generated .png is viewable in any photo editor. The generated .gml file is

successfully opened and editable in yEd graph editor, an editor to process graph

markup language. The generated .smv file is provided to NuSMV model checker

and the model checker successfully loaded the provided model without any error.

Case Studies 105

The generated LTL formulas are provided to the NuSMV model checker for the

verification of provided model. It is observed that NuSMV does not generate any

syntax errors for the provided LTL formulas. In addition to it, NuSMV model

checker does not generate any counter example for any provided LTL formulas. It

is important to note that both Kripke structure and LTL formulas are generated

by two independent processes from the provided use case model. The generated

formal artefacts by two different processes validate one an other.

It is also important to verify if an invalid LTL formula is provided as an input along

with the generated Kripke structure whether NuSMV model checker generates a

counterexample or not. An LTL formula for this purpose is selected randomly and

the selected LTL formula is:

LTLSPEC G (state = Initial State & (input = Card) & X (input = Pin)

→ F (pinMessage = V alid P in))

This formulas is modified and value of pinMessage is set to Invalid P in. The

modified formula becomes:

LTLSPEC G (state = Initial State & (input = Card) & X (input = Pin)

→ F (pinMessage = Invalid P in))

This altered formula along with the generated Kripke structure are provided as

input to NuSMV model checker. The model checker generates a counterexample

and is shown in Figure 6.62.

Figure 6.62: NuSMV Model Checker Counterexample Screenshot.

Case Studies 106

6.5.1 Conformance of the Generated Artefacts

Conformance of the generated artefacts requires that the generated artefacts are

valid and represents the information provided in the input use case model. A

Kripke structure is valid and deterministic in nature, if it has only one initial state,

all the generated states are unique in terms of their labelling function and there

should only be one transition from each state for each input symbol. Moreover,

the bit label of a state correspond to the binary equivalent values of the output

symbols. The transitions of the generated kripke structure are labelled with an

input symbol of a use case.

In addition to it, the generated LTL formulas specify a software behaviour. An

LTL formula represents a particular output after receiving an or combination of

input symbols on a particular state. The conformance of the generated artefacts

for ATM Cash Withdrawal Example, SIM Dispensing Machine Example , Work

Flow Manger case study and Touch’D case study are discussed in the following.

6.5.1.1 ATM Cash Withdrawal Example

The use case description for ATM Cash Withdrawal Example is shown in Figure

6.2. This use case allows a user to withdraw cash after presenting a valid card, a

valid PIN and a valid amount. The use case scenario lines, generated states along

with the transitions of resultant Kripke structure and the generated LTL formulas

are listed in Table 6.2.

C
ase

S
tu

dies
107

Table 6.2: ATM Cash Withdrawal Use Case Conformance to the Generated Artefacts

Scenario Lines States Transitions LTL formulas State Diagram

User inserts Card

System notifies for the Valid Card

s1 s0
Card−−−−→ s1 LTLSPEC G(state = Initial State & input = Card → X(cardMessage =

V alid Card))

User enters Pin

System notifies for Valid Pin

s3 s1
Pin−−−→ s3 LTLSPEC G(state = Initial State & (input = Card) & X(input = Pin) →

F (pinMessage = V alid Pin))

LTLSPEC G(state = Initial State & (input = Card) & X(input = Pin) →

F (pinMessage = V alid Pin))

User enters Amount

System notifies for Valid Amount

System ejects Cash

s5 s3
Amount−−−−−−−→ s5 LTLSPEC G(cardMessage = V alid Card & pinMessage =

V alid Pin & amountMessage = null &

cashMessage = null & input = Amount → X(amountMessage =

V alid Amount))

LTLSPEC G(state = Initial State & (input = Card) & X(input =

Pin) & X(input = Amount)→

F (amountMessage = V alid Amount))

continued . . .

C
ase

S
tu

dies
108

. . . continued

Scenario Lines States Transitions LTL formulas State Diagram

Alternate Scenario

User inserts Void Card

System notifies for the Invalid Card

End of AlternateScenario

s2 s0
V oid Card−−−−−−−−−→ s2 LTLSPEC G(state = Initial State & input = V oid Card →

X(cardMessage = Invalid Card))

Alternate Scenario

User enters Void Pin

System notifies for Invalid Pin

Continue

s4 s1
V oid Pin−−−−−−−−→ s4

s4
V oid Pin−−−−−−−−→ s4

s4
Pin−−−→ s3

LTLSPEC G(state = Initial State & (input = Card) & X(input =

V oid Pin)→ F (pinMessage = Invalid Pin))

LTLSPEC G(cardMessage = V alid Card & amountMessage =

null & pinMessage = null &

cashMessage = null & input = V oid Pin → X(pinMessage =

Invalid Pin))

Alternate Scenario

User enters Void Amount

System notifies for Invalid Amount

Continue

s6 s3
V oid Amount−−−−−−−−−−−→ s6

s6
V oid Amount−−−−−−−−−−−→ s6

s6
Amount−−−−−−−→ s5

LTLSPEC G(cardMessage = V alid Card & pinMessage =

V alid Pin & amountMessage = null &

cashMessage = null & input = V oid Amount → X(amountMessage =

Invalid Amount))

LTLSPEC G(state = Initial State & (input = Card) & X(input =

Pin) & X(input = V oid Amount) → F (amountMessage =

Invalid Amount))

Case Studies 109

Table 6.2 first row enlists the scenario line where a user inserts a Card and the

system notifies for the Valid Card. The system moves from the initial state s0 to

the state s1 with an input Card. This state represents a system’s state with a

Valid Card. A transition for this execution is represented by s0
Card−−−→ s1. The LTL

formula denotes the transition from Initial State to the state where the output

symbol cardMessage equals to Valid Card with input value equals to Card. The

other lines of the table represents the corresponding states, transitions and LTL

formulas to the enlisted scenario lines.

6.5.1.2 Work Flow Manager

The working of this case study is discussed in Section 6.3. This case study con-

sists of five user stories including Request New Letter, Business Analyst Review

Letter Request, Letter Writer Develops New letter, Business Analyst Review De-

veloped Letter and Requester Approves Developed Letter. The conformance of the

generated artefacts of these user stories are discussed in the following subsections.

Request New Letter

The use case description of Request New Letter is listed in Figure 6.10. This use

case allows to initiate a new letter. The use case scenario lines, generated states

along with the transitions of the resultant Kripke structure and the generated LTL

formulas are listed in Table 6.3.

Table 6.3 enlists scenario lines and the starting lines are, a requester initiates

new letter request and the system displays new features page. This system state

is represented by s1 that denotes the display of new features page. A transition

from s0 to the s1 is defined and it is labelled with the input symbol new letter. This

activity is represented by the LTL formula with input value equals to new letter

and with feature notification value equals to new features page. The remaining

scenario lines with the corresponding states, transitions and LTL formulas are

listed in the remaining table rows.

C
ase

S
tu

dies
110

Table 6.3: Request New Letter Conformance to the Generated Kripke Structure and LTL Formulas

Scenario Lines States Transitions LTL formulas State Diagram

Requester initiates new letter request

System displays new features page

s1 s0
new letter−−−−−−−−→ s1 LTLSPEC G(state = Initial State & input = new letter →

X(feature notification = new features page))

Include Login s2

s3

s1
V alid credentials−−−−−−−−−−−−−−→ s2

s1
Invalid credentials−−−−−−−−−−−−−−−−→

s3

LTLSPEC G(feature notification =

new features page & letter status = null &

analyst status = null & error message =

null & screen notification = null &

save notification message = null & input = valid credentials →

X(screen notification = main screen))

LTLSPEC G(feature notification =

new features page & letter status = null &

analyst status = null & error message =

null & screen notification = null &

save notification message = null & input = Invalid credentials

→ X(screen notification = error login message))

LTLSPEC G(state = Initial State & (input =

new letter) & X(input = valid credentials)

→ F (screen notification = main screen))

LTLSPEC G(state = Initial State & (input =

new letter) & X(input = Invalid credentials)

→ F (screen notification = error login message))

continued . . .

C
ase

S
tu

dies
111

. . . continued

Scenario Lines States Transitions LTL formulas State Diagram

Extend Save New Letter Fea-

tures Condition Requester selects

save letter features

s4 s2
save letter features−−−−−−−−−−−−−−−−→

s4

s4
save letter features−−−−−−−−−−−−−−−−→

s2

LTLSPEC G(feature notification = new features page

& screen notification = main screen &

letter status = null & analyst status = null & error message =

null & save notification message = null &

input = save letter features → X(save notification message =

letter features save message))

LTLSPEC G(state = Initial State & (input =

new letter) & X(input = valid credentials) &

X(input = save letter features) →

F (save notification message = letter features save message))

Requester provides complete features of

letter

System registers letter

s5 s2
complete features−−−−−−−−−−−−−−−→ s5 LTLSPEC G(feature notification = new features page

& screen notification = main screen &

letter status = null & analyst status = null & error message =

null & save notification message = null &

input = complete features→ X(letter status = registers letter))

LTLSPECG(state = Initial State & (input =

new letter) & X(input = valid credentials) &

X(input = complete features) → F (letter status =

registers letter))

Case Studies 112

Business Analyst Review Letter Request

The use case description of Business Analyst Review Letter Request is listed in

Figure 6.27. This use case allows to update the information of a selected letter

request, if required, and also allows to call a meeting. The use case scenario lines,

generated Kripke structure states along with the transitions and the generated

LTL formulas are listed in Table 6.4.

Table 6.4 enlists scenario lines and the starting lines are, a Business Analyst se-

lect letter and the system displays letter information. This system state is repre-

sented by s1 that denotes the display of letter information. A transition from s0 to

the s1 is defined and is labelled with the input symbol selects letter. This activity

is represented by the LTL formula with input value equals to selects letter and

with letterInforMessage value equals to letter information. The remaining sce-

nario lines with the corresponding states, transitions and LTL formulas are listed

in the remaining table rows.

Letter Writer Develops New Letter

This use case description specified in Figure 6.22. This use case allows a letter

writer to develop a new letter by providing the letter information. The letter

writer can also view the requester and business analyst information. The use case

scenario lines and the generated Kripke structure states along with its transitions

and the generated LTL formulas are listed in Table 6.5.

Table 6.5 enlists scenario lines and the starting lines are, a Letter Writer gener-

ates letter and the system generates final letter. This system state is represented

by s1 that denotes the display of final letter. A transition from s0 to the s1 is

defined and is labelled with the input symbol generates letter. This activity is

represented by the LTL formula with input value equals to generates letter and

with letter completion value equals to final letter. The remaining scenario lines

with the corresponding states, transitions and LTL formulas are listed in the re-

maining table rows.

C
ase

S
tu

dies
113

Table 6.4: Business Analyst Review Letter Request Use Case Conformance to the Generated Artefacts.

Scenario Lines States Transitions LTL formulas

Business Analyst selects letter

System display letter information

s1 s0
selects letter−−−−−−−−−−−→ s1 LTLSPEC G(state = Initial State & input = selects letter → X(letterInfoMessage = letter information))

Include Analyst Login s2

s3

s1
valid credentials−−−−−−−−−−−−−−→ s2

s1
Invalid credentials−−−−−−−−−−−−−−−−→ s3

LTLSPEC G(letterInfoMessage = letter information & loginMessage = null &

editLetterMessage = null&updateLetterMessage = null & addLetterInfoMessage = null &

infoMessage = null & saveLetterMessage = null & meetingMessage = null & input = valid credentials

→ X(loginMessage = main screen))

LTLSPEC G(letterInfoMessage = letter information & loginMessage = null &

editLetterMessage = null & updateLetterMessage = null & addLetterInfoMessage = null &

infoMessage = null & saveLetterMessage = null & meetingMessage = null & input = Invalid credentials

→ X(loginMessage = error login message))

LTLSPEC G(state = Initial State&(input = selects letter) & X(input = valid credentials)

→ F (loginMessage = main screen))

LTLSPEC G(state = Initial State & (input = selects letter) & X(input = Invalid credentials)

→ F (loginMessage = error login message))

Extend Edit Letter Information

Condition Business Analyst selects

edit option

s4

s5

s2
edit option−−−−−−−−−→ s4

s4
edited information−−−−−−−−−−−−−−−−→ s5

s5
edited information−−−−−−−−−−−−−−−−→ s2

LTLSPEC G(letterInfoMessage = letter information & loginMessage = main screen &

editLetterMessage = null & updateLetterMessage = null & addLetterInfoMessage = null &

infoMessage = null & saveLetterMessage = null & meetingMessage = null & input = edit option

→ X(editLetterMessage = edited letter information))

LTLSPEC G(letterInfoMessage = letter information & loginMessage = main screen &

editLetterMessage = edited letter information & updateLetterMessage = null &

addLetterInfoMessage = null & infoMessage = null & saveLetterMessage = null &

meetingMessage = null & input = edited information→ X(updateLetterMessage = updated letter))

LTLSPEC G(state = Initial State & (input = selects letter) & X(input = valid credentials) &

X(input = edit option)→ F (editLetterMessage = edited letter information))

LTLSPEC G(state = Initial State & (input = selects letter) & X(input = valid credentials) &

X(input = edit option) & X(input = edited information)→ F (updateLetterMessage = updated letter))

continued . . .

C
ase

S
tu

dies
114

. . . continued

Scenario Lines States Transitions LTL formulas

Extend Add Letter Information

Condition Business Analyst selects

add info option

s6

s7

s2
add info option−−−−−−−−−−−−−→ s6

s6
∗−→ s7

s7
∗−→ s2

(∗)additional letter inf−

ormation

LTLSPEC G(letterInfoMessage = letter information & loginMessage = main screen &

editLetterMessage = null & updateLetterMessage = null & addLetterInfoMessage = null &

infoMessage = null & saveLetterMessage = null & meetingMessage = null & input = add info option

→ X(addLetterInfoMessage = additional info))

LTLSPEC G(letterInfoMessage = letter information &

loginMessage = main screen & addLetterInfoMessage = additional info &

editLetterMessage = null & updateLetterMessage = null & infoMessage = null &

saveLetterMessage = null & meetingMessage = null & input = additional letter information

→ X(infoMessage = save info))

LTLSPEC G(state = Initial State & (input = selects letter) & X(input = valid credentials) &

X(input = add info option)→ F (addLetterInfoMessage = additional info))

LTLSPEC G(state = Initial State & (input = selects letter) & X(input = valid credentials) &

X(input = add info option) & X(input = additional letter information) → F (infoMessage = save info))

Extend Save Letter Information

Condition Business Analyst selects

save info option

s8 s2
save info option−−−−−−−−−−−−−−→ s8

s8
save info option−−−−−−−−−−−−−−→ s2

LTLSPEC G(letterInfoMessage = letter information & loginMessage = main screen &

editLetterMessage = null & updateLetterMessage = null & addLetterInfoMessage = null &

infoMessage = null & saveLetterMessage = null & meetingMessage = null & input = save info option

→ X(saveLetterMessage = letter information save message))

LTLSPEC G(state = Initial State & (input = selects letter) & X(input = valid credentials) &

X(input = save info option)→ F (saveLetterMessage = letter information save message))

Include Call Meeting s9 s2
meeting details−−−−−−−−−−−−−→ s9 LTLSPEC G(letterInfoMessage = letter information&loginMessage = main screen&editLetterMessage =

null&updateLetterMessage = null&addLetterInfoMessage = null&infoMessage = null&saveLetterMessage =

null&meetingMessage = null&input = meeting details→ X(meetingMessage = meeting confirmation))

LTLSPEC G(state = Initial State&(input = selects letter)&X(input = valid credentials)&X(input =

meeting details)→ F (meetingMessage = meeting confirmation))

C
ase

S
tu

dies
115

Table 6.5: Letter Writer Develops New Letter Use Case Conformance to the Generated Artefacts.

Scenario Lines States Transitions LTL formulas

Letter Writer generates letter

System generate final letter

s1 s0
generates letter−−−−−−−−−−−−−→ s1 LTLSPEC G(state = Initial State & input = generates letter → X(letter completion = final letter))

Include Letter Writer Login s2

s3

s1
valid credentials−−−−−−−−−−−−−−→ s2

s1
Invalid credentials−−−−−−−−−−−−−−−−→ s3

LTLSPEC G(letter completion = final letter & stakeholder status = null &

screen notification = null & information provide status = null & business analyst status = null &

letter status = null & information status = null & input = valid credentials

→ X(screen notification = main screen))

LTLSPEC G(letter completion = final letter & stakeholder status = null &

screen notification = null & information provide status = null & business analyst status = null &

letter status = null & information status = null & input = Invalid credentials

→ X(screen notification = error login message))

Extend View Requester Informa-

tion Condition Letter Writer select

view requester info

s4 s2
view requester info−−−−−−−−−−−−−−−−→ s4

s4
view requester info−−−−−−−−−−−−−−−−→ s2

LTLSPEC G(letter completion = final letter & screen notification = main screen &

stakeholder status = null & information provide status = null & business analyst status = null &

letter status = null & information status = null & input = view requester info

→ X(information provide status = requester provided information))

LTLSPEC G(state = Initial State & (input = generates letter) & X(input = valid credentials) &

X(input = view requester info)→ F (information provide status = requester provided information))

Extend View Buisness Analyst Infor-

mation Condition Letter Writer select

view bus analyst info

s5 s2
∗−→ s5

s5
∗−→ s2

(*)view bus analyst info

LTLSPEC G(letter completion = final letter & screen notification = main screen &

stakeholder status = null & information provide status = null & business analyst status = null &

letter status = null & information status = null & input = view bus analyst info

→ X(business analyst status = bus analyst provided information))

LTLSPEC G(state = Initial State & (input = generates letter) & X(input = valid credentials) &

X(input = view bus analyst info)→ F (business analyst status = bus analyst provided information))

continued . . .

C
ase

S
tu

dies
116

. . . continued

Scenario Lines States Transitions LTL formulas

Extend Add Information Condition Let-

ter Writer select add info

s6

s7

s2
add info−−−−−−−→ s6

s6
∗−→ s7

s7
∗−→ s2

(*)letter writer provided -

information

LTLSPEC G(letter completion = final letter & screen notification = main screen &

stakeholder status = null & information provide status = null & business analyst status = null &

letter status = null & information status = null & input = add info→ X(letter status = letter information))

LTLSPEC G(letter completion = final letter & screen notification = main screen &

letter status = letter information & stakeholder status = null &

information provide status = null & business analyst status = null & information status = null &

input = letter writer provided information→ X(information status = information added))

LTLSPEC G(state = Initial State & (input = generates letter) & X(input = valid credentials) &

X(input = add info)→ F (letter status = letter information))

LTLSPEC G(state = Initial State & (input = generates letter) & X(input = valid credentials) &

X(input = add info) & X(input = letter writer provided information)

→ F (information status = information added))

Letter Writer submits let-

ter to stakeholders

System displays submitted stakeholders

list

s8 s2
letter to stakeholders−−−−−−−−−−−−−−−−−−→ s8 LTLSPEC G(letter completion = final letter & screen notification = main screen &

stakeholder status = null & information provide status = null & business analyst status = null &

letter status = null & information status = null & input = letter to stakeholders

→ X(stakeholder status = submitted stakeholders))

LTLSPEC G(state = Initial State & (input = generates letter) & X(input = valid credentials) &

X(input = letter to stakeholders)→ F (stakeholder status = submitted stakeholders))

Case Studies 117

Business Analyst Review Developed Letter

The use case description of use case Business Analyst Review Developed Letter

is provided in Figure 6.27. This use case allows a user to accept or reject the

developed letter. The use case lines and the generated Kripke structure states and

its transitions along with the generated LTL formulas are presented in Table 6.6.

Table 6.6 enlists scenario lines and the starting lines are, a Business Analyst se-

lect a developed letter review and the system displays letter information. This

system state is represented by s1 that denotes the display of letter information. A

transition from s0 to the s1 is defined and it is labelled with the input symbol de-

veloped letter review. This activity is represented by the LTL formula with input

value equals to developed letter review and with letter notification value equals to

letter information. The remaining scenario lines with the corresponding states,

transitions and LTL formulas are listed in the remaining table rows.

Requester Approves Developed Letter

The use case description of Requester Approves Developed Letter is provided in

Figure 6.32. This use case allows a user to accept or reject the developed letter.

The use case scenario lines and the generated Kripke structure states along with

its transitions and the generated LTL formulas are listed in Table 6.7. Table 6.7

enlists a scenario line Include Requester Login. It includes Requester Login use

case. This use case displays main screen when a user login to the system with

the valid credentials. The system will notify the error login message if the user

provides invalid credentials. This system state is represented by s1 that denotes

the display of main screen. A transition from s0 to the s1 is defined and is labelled

with the input symbol valid credentials. This activity is represented by the LTL

formula with input value equals to valid credentials and with screen notification

value equals to main screen. This system state having invalid credentials is rep-

resented by s2 and denotes error login message.

C
ase

S
tu

dies
118

Table 6.6: Business Analyst Review Developed Letter Use Case Conformance to the Generated Artefacts.

Scenario Lines States Transitions LTL formulas

Business Analyst select a devel-

oped letter review

System displays letter information

s1 s0
∗−→ s1

(∗)developed letter revi−

ew

LTLSPEC G(state = Initial State & input = developed letter review

→ X(letter notification = letter information))

Include Business Analyst Login s2

s3

s1
valid credentials−−−−−−−−−−−−−−→ s2

s1
Invalid credentials−−−−−−−−−−−−−−−−→ s3

LTLSPEC G(letter notification = letter information & loginMessage = null &

rejection status = null & Approval notification = null & input = valid credentials

→ X(loginMessage = main screen))

LTLSPEC G(letter notification = letter information & loginMessage = null &

rejection status = null & Approval notification = null & input = Invalid credentials

→ X(loginMessage = error login message))

LTLSPEC G(state = Initial State & (input = developed letter review) & X(input = valid credentials)

→ F (loginMessage = main screen))

LTLSPEC G(state = Initial State & (input = developed letter review) & X(input = Invalid credentials)

→ F (loginMessage = error login message))

Extend Reject Developed Letter

Condition Business Analyst selects

reject option

s4 s2
reject option−−−−−−−−−−−→ s4

s4
reject option−−−−−−−−−−−→ s2

LTLSPEC G(letter notification = letter information & loginMessage = main screen &

rejection status = null & Approval notification = null & input = reject option

→ X(rejection status = rejection message))

LTLSPEC G(state = Initial State &

(input = developed letter review) & X(input = valid credentials) & X(input = reject option)

→ F (rejection status = rejection message))

Extend Approve Developed Letter

Condition Business Analyst selects

approve option

s5 s2
approve option−−−−−−−−−−−−→ s5

s5
approve option−−−−−−−−−−−−→ s2

LTLSPEC G(letter notification = letter information & loginMessage = main screen &

rejection status = null & Approval notification = null & input = approve option

→ X(Approval notification = approval message))

LTLSPEC G(state = Initial State & (input = developed letter review) &

X(input = valid credentials) & X(input = approve option)→ F (Approval notification = approval message))

C
ase

S
tu

dies
119

Table 6.7: Requester Approves Developed Letter Use Case Conformance to the Generated Artefacts.

Scenario Lines States Transitions LTL formulas

Include Requester Login s1

s2

s0
valid credentials−−−−−−−−−−−−−−→ s1

s0
Invalid credentials−−−−−−−−−−−−−−−−→ s2

LTLSPEC G(state = Initial State & input = valid credentials→ X(screen notification = main screen))

LTLSPEC G(state = Initial State & input = Invalid credentials

→ X(screen notification = error login message))

Extend Letter Rejection Condition Re-

quester rejects request

s3

s4

s1
rejects request−−−−−−−−−−−−→ s3

s3
suggestion−−−−−−−−−→ s4

s4
suggestion−−−−−−−−−→ s1

LTLSPEC G(screen notification = main screen & save notification = null &

rejection status = null & approaval notification = null & input = rejects request

→ X(rejection status = rejection comments))

LTLSPEC G(screen notification = main screen &

rejection status = rejection comments & save notification = null & approaval notification = null &

input = suggestion→ X(save notification = save message))

LTLSPEC G(state = InitialState & (input = request) & X(input = valid credentials) &

X(input = rejects request)→ F (rejection status = rejection comments))

LTLSPEC G(state = Initial State & (input = request) & X(input = valid credentials) &

X(input = rejects request) & X(input = suggestion)→ F (save notification = save message))

Extend Letter Approval Condition Re-

quester acceptsrequest

s5 s1
accept request−−−−−−−−−−−−→ s5

s5
accept request−−−−−−−−−−−−→ s1

LTLSPEC G(screen notification = main screen &

save notification = null & rejection status = null & approaval notification = null & input = accepts request

→ X(approaval notification = approval message))

LTLSPEC G(state = Initial State & (input = request) & X(input = valid credentials) &

X(input = accepts request)− > F (approaval notification = approval message))

A transition from s0 to the s2 is defined and it is labelled with the input symbol invalid credentials. This activity is represented by

the LTL formula with input value equals to invalid credentials and with screen notification value equals to error login message. The

remaining scenario lines with the corresponding states, transitions and LTL formulas are listed in the remaining table rows.

Case Studies 120

6.6 Comparison With the Existing Approaches

There are a number of approaches exist that formalize a use case into the corre-

sponding formal notations and these are discussed in Chapter 3. The discussed

approaches transform a use case into corresponding formal and semiformal nota-

tions. A number of these approaches are selected for the purpose to compare with

the proposed approach. The selected approaches take a use case and generate cor-

responding formal notation. Because, the proposed approach also takes a use case

as an input and generates formal notation including a Kripke structure and LTL

formulas as output. The selected approaches are the work of Somé [61], Simko

et al. [63], Cuote et al.[64] and the work of Yang et al. [66]. These approaches

are compared on the basis of Use case Relationships Handled, Usage of Controlled

Input Language, Domain Specific, Manual Required Effort, Generated Artefacts,

Nature of Generated Artefacts, Tool Support and Meta model Level Transforma-

tion Support. The selected approaches and the proposed approach with the values

of above mentioned attributes are listed in Table 6.8.

It is observed that only the proposed approach and the approach proposed by

Simko et al. [63] handle use case relationships. The use case relationships allow

to specify a use case model in more realistic way and enable to reuse of specified

use cases. The lack of ability to handle these relationships in the transformation

process restricts the approach to handle a single use case. The generated artefacts

do not reflect the complete software functionality performed due to lack of the

ability to handle use case relationships. However, the proposed approach handles

the use case relationships during the formalization process and as a result the

generated formal artefacts also represent the complete software functionality. It is

also important to note that the proposed approach does not require from its user

to use a controlled natural language for the specification of use case description.

All of the other listed approaches use controlled language for the specification of a

use case. It can be seen that the approach proposed by Somé [61] uses Restricted

Natural Language and the approach proposed by Simko et al. [63] uses RUCM.

C
ase

S
tu

dies
121

Table 6.8: Analysis of the Existing Approaches to the Proposed Approach

Author Use case Re-

lationships

Handled

Usage of

Controlled

Input Lan-

guage

Domain

Specific

Manual Re-

quired Effort

Generated

Artefacts

Nature of Gen-

erated Artefact

Tool Sup-

port Metamodel-

based

Transfor-

mation

Support

Somé Yes Controlled

Natural Lan-

guage (CNL)

No Describe pre- and

post- conditions

of a use case as

predicate and

specify a use

case description

using constructs

of CNL

Petri nets non deterministic

formal notation

Yes No

Simko et al. Yes Annotation

tags

No Definition and us-

age of annotation

tags for specifica-

tion of use case

description

Labelled Tran-

sition System

Non-

deterministic

formal notation

No No

continued . . .

C
ase

S
tu

dies
122

. . . continued

Author Use case Re-

lationships

Handled

Usage of

Controlled

Input Lan-

guage

Domain

Specific

Manual Re-

quired Effort

Generated

Artefacts

Nature of Gen-

erated Artefact

Tool Sup-

port Metamodel-

based

Transfor-

mation

Support

Cuoto et al. No Restricted Use

case Statement

(RUS)

Yes Define individ-

uals, relations,

terms and data

properties of

the domain and

specify a use case

description using

RUS

Ontology

instance

Formal notation Yes No

Yang et al. No Boilerplates Yes Definition of

Boilerplates and

specification of

a use case de-

scription using

boilerplates

Ontology

instance

Formal notation Yes No

Proposed Ap-

proach

Yes No No Definition of in-

put, output with

its possible val-

ues and specifica-

tion of use case in

the proposed tem-

plate

Kripke struc-

ture and LTL

formulas

Formal notation Yes Yes

Case Studies 123

The work of Cuoto et al. [64] requires the use of RUS and the approach of Yang

et al. [66] requires the usage of boiler plate for the specification of a use case.

Along with the controlled statement structure, all the approaches including the

proposed approach, use keywords. However, the keywords required by the pro-

posed approach for the specification of a use case are common to the requirements

engineers. The usage of controlled language and keywords, other than known to

requirements engineer, add additional efforts required from a user to practice these

approaches. However, the user of the proposed approach does not require usage

of any controlled natural language for the specification of the input use case. It is

important to note that the proposed approach also requires the specification of a

use case in the proposed template. But, this requires identification of input and

output symbols that are clear at the requirements engineering stage. A user can,

then, simply specify a use case scenario in natural language.

It is also noted that the work of Cuoto et al. [64] and Yang et al. [66] are

domain specific. However, the approaches proposed by Someé [61], Simko et al.

[63] and the proposed approach are domain independent. The domain specific

approaches are operable in the domain for which they are developed. Moreover

the concepts of a domain are get evolved with the evolution of a domain. This

requires to regenerate the input and output artefacts. It is important to note that

the proposed approach is a domain independent.

The generated artefacts produced by the approaches of Somé [61] and Simko et

al. [63] are nondeterministic in nature. However, these can be used as input to

a model checker. However, the formal specification are also required along with

the generated model for model checking. In addition to it, the nondeterministic

nature of the generated artefacts can generate unreachable states. Whereas, the

proposed approach produces a deterministic Kripke structure and LTL formulas

as formal specification and these two can be provided to a model checker for model

checking. The generated artefacts of the proposed approach can be provided as

input to NuSMV model checker. The task to use the generated artefacts directly

by a model checker, required in RQ3 is also achieved.

Case Studies 124

It is also notable that only the approaches proposed by Somé [61], Cuoto et al.

[64] and Yang et al. [66] along with the proposed approach are supported with

a developed tool form their authors. However, the tool developed along with the

proposed approach is published and it is freely available on Harvard data repository

for public use [110]. The developed tool is also platform independent.

It is also important to note that only the proposed approach is supported with

the developed meta models for input and output artefacts. Other approaches

including the work of Cuote et al. [64] and yang et al. [66] use ontology definition

of other authors. Moreover the transformation rules presented in all other works

perform instance level transformation. However, the proposed approach provides

meta models for input and output artefacts along with the transformation rules

at meta model level. This facilitate to transform all definable instance of input

meta models to the resultant meta models instances. This make this approach a

generalized approach.

Chapter 7

Conclusions and Future work

This work proposes an approach that takes a use case model as an input and

generates corresponding formal artefacts including a Kripke structure and the

LTL formulas. The input use case model is required to be specified in a template.

7.1 Answers to Research Questions

This work is initiated with a number of research questions to be answered. The

answers to these questions are enlisted in the following paragraphs:

� RQ1 is related to find the shortcomings of the existing approaches. It is that

the most of the existing approaches do not handle use case relationships and

are domain specific. A number of the exist approaches require additional

artefacts for the transformation process. Most of these approaches perform

transformation at model level. The findings for this research question are

discussed in Chapter 3.

� RQ2 requires to propose a metamodel-based approach that generates both

behavioural model and formal software specifications. This task is accom-

plished in Chapter 4. It also requires the definition of meta models for input

125

Conclusion and Future Work 126

use case along with the output Kripke structure model and LTL formulas.

Additionally, it also requires the definition of meta model level transforma-

tion rules. The meta models for the input and output artefacts are defined

and the transformation rules are also defined at meta model level. A platform

independent tool is also developed to practice this approach.

� RQ3 requires the definition of generated artefacts in such a format that can

be used for software verification. The generated artefacts are produced in

NuSMV model checker input format. The generated artefacts usage with

NuSMV model checker is discussed in Chapter 5.

7.2 Conclusions

Conclusions of this work is listed in the following paragraphs:

� The proposed approach handles use case relationships, i.e., include and ex-

tend relationships.

– This allows to generate artefacts that reflect use case model instead of

a single use case.

� This approach, also, does not require any additional artefacts like system se-

quence diagram, class diagram, sequence diagram or ontology of the domain

for the formalization.

– This allows to practise this approach at early stage of requirement anal-

ysis of software development process.

� The proposed approach is domain-independent.

– It does not require the definition of domain concepts for use case spec-

ification.

Conclusion and Future Work 127

� The proposed approach performs metamodel-based transformation.

– This facilitates to transform all definable instances of source metamodel

to instances of target metamodels.

� The generated artefacts, i,e. Kripke structure and LTL formulas are usable

for model checking.

– This allows to verify a software behaviour at the early stage of require-

ments analysis.

� A GUI tool is developed in Java to make this approach useful for the software

development industry.

7.3 Limitations and Future Work

The existing approach can only transform use case specified in the proposed tem-

plate. In addition to it, the generated artefacts are usable with NuSMV model

checker.

In future, the work can be extended to make this approach usable with the other

use case templates. UML does not provide a standard template for the use case

specification. However, the templates proposed by Cockburn, Duran and Ivar

Jacobson are commonly used in the industry. The approach can be enabled to

accept the input use model in these templates. Moreover, the proposed approach

can be extended to generate the CTL formulas. CTL formulas are extension of

LTL formulas. CTL allows to validate a software behaviour on all its execution

paths. In addition to these, the existing approach can be extended to generate

formal notation compatible to the model checkers like SPIN and SAL.

Bibliography

[1] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engi-

neering. Prentice Hall, 2002.

[2] C. Jones, Software engineering best practices. McGraw-Hill, Inc., 2009.

[3] H. v. Vliet, Software Engineering: Principles and Practice. Wiley Publish-

ing, 2008.

[4] R. Wleringa and E. Dubois, “Integrating semi-formal and formal software

specification techniques,” Information Systems, vol. 23, no. 3-4, pp. 159–178,

1998.

[5] R. H. Thayer, S. C. Bailin, and M. Dorfman, Software requirements engi-

neerings. IEEE Computer Society Press, 1997.

[6] K. E. Wiegers, “Writing quality requirements,” Software Development,

vol. 7, no. 5, pp. 44–48, 1999.

[7] V. A. de Santiago Júnior, “Solimva: A methodology for generating model-

based test cases from natural language requirements and detecting incom-

pleteness in software specifications,” Ph.D. dissertation, Thesis (PhD in ap-

plied computing), Instituto Nacional de Pesquisas Espaciais , 2011.

[8] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso, “Model checking

early requirements specifications in tropos,” in Proceedings Fifth IEEE In-

ternational Symposium on Requirements Engineering. IEEE, 2001, pp.

174–181.

128

Bibliography 129

[9] M. Kamalrudin, “Automated software tool support for checking the incon-

sistency of requirements,” in 2009 IEEE/ACM International Conference on

Automated Software Engineering. IEEE, 2009, pp. 693–697.

[10] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel, “Elaborating requirements

using model checking and inductive learning,” IEEE Transactions on Soft-

ware Engineering, vol. 39, no. 3, pp. 361–383, 2012.

[11] M. D. Fraser and V. K. Vaishnavi, “A formal specifications maturity model,”

Communications of the ACM, vol. 40, no. 12, pp. 95–103, 1997.

[12] F. Ipate, M. Gheorghe, and R. Lefticaru, “Test generation from p systems

using model checking,” The Journal of Logic and Algebraic Programming,

vol. 79, no. 6, pp. 350–362, 2010.

[13] B. Zeng and L. Tan, “Test criteria for model-checking-assisted test case

generation: a computational study,” in 2012 IEEE 13th International Con-

ference on Information Reuse & Integration (IRI). IEEE, 2012, pp. 600–607.

[14] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal meth-

ods: Practice and experience,” ACM computing surveys (CSUR), vol. 41,

no. 4, pp. 1–36, 2009.

[15] J. P. Bowen and M. G. Hinchey, “Ten commandments of formal methods,”

Computer, vol. 28, no. 4, pp. 56–63, 1995.

[16] C. Ghezzi, D. Mandrioli, and A. Morzenti, “Trio: A logic language for exe-

cutable specifications of real-time systems,” Journal of Systems and software,

vol. 12, no. 2, pp. 107–123, 1990.

[17] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model

checking. MIT press, 2018.

[18] B. Schürmann, D. Heß, J. Eilbrecht, O. Stursberg, F. Köster, and M. Althoff,

“Ensuring drivability of planned motions using formal methods,” in 2017

IEEE 20th International Conference on Intelligent Transportation Systems

(ITSC). IEEE, 2017, pp. 1–8.

Bibliography 130

[19] S. Liu and S. Nakajima, “Automatic test case and test oracle generation

based on functional scenarios in formal specifications for conformance test-

ing,” IEEE Transactions on Software Engineering, 2020.

[20] K. Meinke and M. A. Sindhu, “Lbtest: a learning-based testing tool for

reactive systems,” in 2013 IEEE Sixth International Conference on Software

Testing, Verification and Validation. IEEE, 2013, pp. 447–454.

[21] H. Khosrowjerdi and K. Meinke, “Learning-based testing for autonomous

systems using spatial and temporal requirements,” in Proceedings of the 1st

International Workshop on Machine Learning and Software Engineering in

Symbiosis, 2018, pp. 6–15.

[22] B. K. Aichernig, C. Burghard, and R. Korošec, “Learning-based testing of

an industrial measurement device,” in NASA Formal Methods Symposium.

Springer, 2019, pp. 1–18.

[23] M. Nanda, J. Jayanthi, and Y. Jeppu, “Formal methodsa need for practical

applications,” in Formal Methods for Safety and Security. Springer, 2018,

pp. 1–12.

[24] J. A. Bubenko, “Challenges in requirements engineering,” in Proceedings of

1995 IEEE International Symposium on Requirements Engineering (RE’95).

IEEE, 1995, pp. 160–162.

[25] T. Gilb and S. Finzi, Principles of software engineering management.

Addison-wesley Reading, MA, 1988, vol. 11.

[26] M. Cohn, User stories applied: For agile software development. Addison-

Wesley Professional, 2004.

[27] K. Pohl, Requirements engineering: fundamentals, principles, and tech-

niques. Springer Publishing Company, Incorporated, 2010.

[28] K. R. Linberg, “Software developer perceptions about software project fail-

ure: a case study,” Journal of Systems and Software, vol. 49, no. 2-3, pp.

177–192, 1999.

Bibliography 131

[29] D. R. Wallace and R. U. Fujii, “Software verification and validation: an

overview,” Ieee Software, vol. 6, no. 3, pp. 10–17, 1989.

[30] J. F. Peters and W. Pedrycz, Software engineering: an engineering approach.

John Wiley & Sons, Inc., 1998.

[31] D. Rosenberg and K. Scott, Use case driven object modeling with UML.

Springer, 1999.

[32] H. Kirk, “Use of decision tables in computer programming,” Communica-

tions of the ACM, vol. 8, no. 1, pp. 41–43, 1965.

[33] D. E. Knuth, “Computer-drawn flowcharts,” Communications of the ACM,

vol. 6, no. 9, pp. 555–563, 1963.

[34] S. L. Pfleeger and J. M. Atlee, Software engineering: theory and practice.

Pearson Education India, 1998.

[35] C. Wohlin et al., Engineering and managing software requirements. Springer

Science & Business Media, 2005.

[36] W. S. Humphrey, A discipline for software engineering. Pearson Education

India, 1995.

[37] K. Johannisson, Formal and informal software specifications. Department

of Computer Science and Engineering, Chalmers University of Technology

and Gteborg Univ., 2005.

[38] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and future

directions,” ACM Computing Surveys (CSUR), vol. 28, no. 4, pp. 626–643,

1996.

[39] C. M. Macal, “Model verification and validation, workshop on:” threat an-

ticipation: Social science methods and models,” The University of Chicago

and Argonne National Laboratory, 2005.

[40] J. M. Spivey, Understanding Z: a specification language and its formal se-

mantics. Cambridge University Press, 1988, vol. 3.

Bibliography 132

[41] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium

on Foundations of Computer Science (sfcs 1977). IEEE, 1977, pp. 46–57.

[42] E. A. Emerson and E. M. Clarke, “Using branching time temporal logic to

synthesize synchronization skeletons,” Science of Computer programming,

vol. 2, no. 3, pp. 241–266, 1982.

[43] N. Plat, J. van Katwijk, and H. Toetenel, “Application and benefits of formal

methods in software development,” Software Engineering Journal, vol. 7,

no. 5, pp. 335–346, 1992.

[44] A. Hall, “Realising the benefits of formal methods,” in International Con-

ference on Formal Engineering Methods. Springer, 2005, pp. 1–4.

[45] P. Rodrigues, M. Ecar, S. V. Menezes, J. P. S. da Silva, G. T. Guedes, and

E. M. Rodrigues, “Empirical evaluation of formal method for requirements

specification in agile approaches,” in Proceedings of the XIV Brazilian Sym-

posium on Information Systems, 2018, pp. 1–8.

[46] M. D. Fraser, K. Kumar, and V. K. Vaishnavi, “Strategies for incorporat-

ing formal specifications in software development,” Communications of the

ACM, vol. 37, no. 10, pp. 74–87, 1994.

[47] A. Fantechi, S. Gnesi, G. Ristori, M. Carenini, M. Vanocchi, and P. Mores-

chini, “Assisting requirement formalization by means of natural language

translation,” Formal Methods in System Design, vol. 4, no. 3, pp. 243–263,

1994.

[48] K. L. Heninger, “Specifying software requirements for complex systems: New

techniques and their application,” IEEE Transactions on Software Engineer-

ing, no. 1, pp. 2–13, 1980.

[49] J. S. Collofello, “Introduction to software verification and validation,”

CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGI-

NEERING INST, Tech. Rep., 1988.

Bibliography 133

[50] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software engineer-

ing in practice,” Synthesis lectures on software engineering, vol. 3, no. 1, pp.

1–207, 2017.

[51] S. Beydeda, M. Book, V. Gruhn et al., Model-driven software development.

Springer, 2005, vol. 15.

[52] C. Gonzalez-Perez and B. Henderson-Sellers, Metamodelling for software

engineering. Wiley Publishing, 2008.

[53] G. Wachsmuth, “Metamodel adaptation and model co-adaptation,” in Eu-

ropean Conference on Object-Oriented Programming. Springer, 2007, pp.

600–624.

[54] T. Yue, L. C. Briand, and Y. Labiche, “An automated approach to transform

use cases into activity diagrams,” in European Conference on Modelling

Foundations and Applications. Springer, 2010, pp. 337–353.

[55] H. Kaindl, M. Smia lek, P. Wagner, D. Svetinovic, A. Ambroziewicz, J. Bo-

jarski, W. Nowakowski, T. Straszak, H. Schwarz, D. Bildhauer et al., “Re-

quirements specification language definition,” ReDSeeDS Project, Project

Deliverable D, vol. 2, pp. 4–2, 2009.

[56] P. Arcaini, A. Gargantini, E. Riccobene, and P. Scandurra, “A model-driven

process for eineering a ttolset for a formal method,” Software: Practice and

Experience, vol. 41, no. 2, pp. 155–166, 2011.

[57] C. Arora, M. Sabetzadeh, S. Nejati, and L. Briand, “An active learning ap-

proach for improving the accuracy of automated domain model extraction,”

ACM Transactions on Software Engineering and Methodology (TOSEM),

vol. 28, no. 1, pp. 1–34, 2019.

[58] D. Harel and R. Marelly, Come, lets play: scenario-based programming using

LSCs and the play-engine. Springer Science & Business Media, 2003, vol. 1.

Bibliography 134

[59] D. Dranidis, K. Tigka, and P. Kefalas, “Formal modelling of use cases with x-

machines,” in Proc. 1st South-East European Workshop on Formal Methods,

2003, pp. 72–83.

[60] S. S. Some, “An approach for the synthesis of state transition graphs from

use cases.” in Software Engineering Research and Practice, 2003, pp. 456–

464.

[61] S. Some S, “Formalization of textual use cases based on petri nets,” Interna-

tional Journal of Software Engineering and Knowledge Engineering, vol. 20,

no. 05, pp. 695–737, 2010.

[62] M. Smialek, A. Kalnins, E. Kalnina, A. Ambroziewicz, T. Straszak, and

K. Wolter, “Comprehensive system for systematic case-driven software

reuse,” in International Conference on Current Trends in Theory and Prac-

tice of Computer Science. Springer, 2010, pp. 697–708.

[63] V. Simko, P. Hnetynka, T. Bures, and F. Plasil, “Foam: A lightweight

method for verification of use-cases,” in 2012 38th Euromicro Conference

on Software Engineering and Advanced Applications. IEEE, 2012, pp.

228–232.

[64] R. Couto, A. N. Ribeiro, and J. C. Campos, “Application of ontologies in

identifying requirements patterns in use cases,” in 11th International Work-

shop on Formal Engineering approaches to Software Components and Ar-

chitectures, France, 2014.

[65] M. Selway, G. Grossmann, W. Mayer, and M. Stumptner, “Formalising nat-

ural language specifications using a cognitive linguistic/configuration based

approach,” Information Systems, vol. 54, pp. 191–208, 2015.

[66] C.-W. Yang, V. Dubinin, and V. Vyatkin, “Automatic generation of control

flow from requirements for distributed smart grid automation control,” IEEE

Transactions on Industrial Informatics, 2019.

Bibliography 135

[67] M. Singh, A. Sharma, and R. Saxena, “Formal transformation of uml dia-

gram: Use case, class, sequence diagram with z notation for representing the

static and dynamic perspectives of system,” in Proceedings of International

Conference on ICT for Sustainable Development. Springer, 2016, pp. 25–38.

[68] R. Wieringa, “Design science methodology: principles and practice,” in

Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering-Volume 2, 2010, pp. 493–494.

[69] I. Sommerville and P. Sawyer, Requirements engineering: a good practice

guide. John Wiley & Sons, Inc., 1997.

[70] J. Shore et al., The Art of Agile Development: Pragmatic guide to agile

software development. ” O’Reilly Media, Inc.”, 2007.

[71] R. H. Thayer and P. Bjorke, “Concept of operations,” Encyclopedia of Soft-

ware Engineering, 2002.

[72] C. Hood, S. Wiedemann, S. Fichtinger, and U. Pautz, Requirements man-

agement: The interface between requirements development and all other

systems engineering processes. Springer Science & Business Media, 2007.

[73] D. Martin and G. Estrin, “Models of computations and systemsevaluation of

vertex probabilities in graph models of computations,” Journal of the ACM

(JACM), vol. 14, no. 2, pp. 281–299, 1967.

[74] I. Jacobson, I. Spence, and B. Kerr, “Use-case 2.0,” Communications of the

ACM, vol. 59, no. 5, pp. 61–69, 2016.

[75] O. CORBA and I. Specification, “Object management group,” Joint revised

submission OMG document orbos/99-02, 1999.

[76] B. Dobing and J. Parsons, “How uml is used,” Communications of the ACM,

vol. 49, no. 5, pp. 109–113, 2006.

[77] A. B. Durán, B. Ruiz, and A. Toro, “A requirements elicitation approach

based in templates and patterns.” in In proceedings 2nd Workshop on Re-

quirements Engineering (WER 99). Argentina, 1999.

Bibliography 136

[78] A. Cockburn, “Use case template,” CU-Boulder: Computer Science, 1998.

[79] P. Kruchten, The rational unified process: an introduction. Addison-Wesley

Professional, 2004.

[80] A. v. Lamsweerde, “Formal specification: A roadmap,” in Proceedings of

the Conference on The Future of Software Engineering, ser. ICSE 00. New

York, NY, USA: Association for Computing Machinery, 2000, p. 147159.

[Online]. Available: https://doi.org/10.1145/336512.336546

[81] E. F. Moore et al., “Gedanken-experiments on sequential machines,” Au-

tomata studies, vol. 34, pp. 129–153, 1956.

[82] G. H. Mealy, “A method for synthesizing sequential circuits,” The Bell Sys-

tem Technical Journal, vol. 34, no. 5, pp. 1045–1079, 1955.

[83] S. A. Kripke, “Semantical analysis of modal logic i normal modal propo-

sitional calculi,” Mathematical Logic Quarterly, vol. 9, no. 5-6, pp. 67–96,

1963.

[84] R. Gorrieri, “Labeled transition systems,” in Process Algebras for Petri Nets.

Springer, 2017, pp. 15–34.

[85] M. Holcombe, “X-machines as a basis for dynamic system specification,”

Software Engineering Journal, vol. 3, no. 2, pp. 69–76, 1988.

[86] J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud,

“Introducing obj,” in Software Engineering with OBJ. Springer, 2000, pp.

3–167.

[87] S. J. Garland, K. D. Jones, A. Modet, and J. M. Wing, “Larch: languages

and tools for formal specification,” Springer-Verlag Texts and Monographs

in Computer Science, 1993.

[88] M. J. Gordon and T. F. Melham, Introduction to HOL: a theorem proving

environment for higher order logic. Cambridge University Press, 1993.

https://doi.org/10.1145/336512.336546

Bibliography 137

[89] S. Owre, J. Rushby, N. Shankar, and F. Von Henke, “Formal verification

for fault-tolerant architectures: Prolegomena to the design of pvs,” IEEE

Transactions on Software Engineering, vol. 21, no. 2, pp. 107–125, 1995.

[90] R. M. Balzer, N. M. Goldman, and D. S. Wile, “Operational specification

as the basis for rapid prototyping,” ACM SIGSOFT Software Engineering

Notes, vol. 7, no. 5, pp. 3–16, 1982.

[91] J. L. Peterson, “Petri nets,” ACM Computing Surveys (CSUR), vol. 9, no. 3,

pp. 223–252, 1977.

[92] B. Selic, “The pragmatics of model-driven development,” IEEE software,

vol. 20, no. 5, pp. 19–25, 2003.

[93] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “Atl: A model transfor-

mation tool,” Science of computer programming, vol. 72, no. 1-2, pp. 31–39,

2008.

[94] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The epsilon transformation

language,” in International Conference on Theory and Practice of Model

Transformations. Springer, 2008, pp. 46–60.

[95] D. Kolovos, L. Rose, and R. Page, “The epsilon object language (eol),” in

European Conference on Model Driven Architecture-Foundations and Ap-

plications. Springer, 2006, pp. 128–142.

[96] L. M. Rose, R. F. Paige, D. S. Kolovos, and Polack, “Epsilon validation

language (evl),” The Epsilon Book2011, pp. 67–88, 2011.

[97] L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. Polack, “The epsilon gen-

eration language,” in European Conference on Model Driven Architecture-

Foundations and Applications. Springer, 2008, pp. 1–16.

[98] J. B. Warmer and A. G. Kleppe, The object constraint language: getting

your models ready for MDA. Addison-Wesley Professional, 2003.

Bibliography 138

[99] C. Snook and M. Butler, “Uml-b: Formal modeling and design aided

by uml,” ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 15, no. 1, pp. 92–122, 2006.

[100] T. Yue, L. C. Briand, and Y. Labiche, “atoucan: an automated framework

to derive uml analysis models from use case models,” ACM Transactions on

Software Engineering and Methodology (TOSEM), vol. 24, no. 3, pp. 1–52,

2015.

[101] T. S. Chow, “Testing software design modeled by finite state machines,”

IEEE Transactions on Software Engineering, no. 3, pp. 178–187, 1978.

[102] G. Eleftherakis and P. Kefalas, “Model checking safety critical systems

specified as x-machines,” Analele Universitatii Bucharest, Matematica-

Informatica series, vol. 49, pp. 59–70, 2000.

[103] G. Gardey, D. Lime, M. Magnin, and O. H. . Roux, “Romeo: A tool for

analyzing time petri nets,” in Computer Aided Verification, K. Etessami

and S. K. Rajamani, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2005, pp. 418–423.

[104] A. David, L. Jacobsen, M. Jacobsen, K. Y. Jørgensen, M. H. Møller, and

J. Srba, “Tapaal 2.0: Integrated development environment for timed-arc

petri nets,” in Tools and Algorithms for the Construction and Analysis of

Systems, C. Flanagan and B. König, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012, pp. 492–497.

[105] M. Saaltink, “The z/eves system,” in International Conference of Z Users.

Springer, 1997, pp. 72–85.

[106] J. Derrick, S. North, and A. J. Simons, “Z2sal-building a model checker

for z,” in International Conference on Abstract State Machines, B and Z.

Springer, 2008, pp. 280–293.

[107] M.-H. Chu, D.-H. Dang, N.-B. Nguyen, M.-D. Le, and T.-H. Nguyen, “Usl:

Towards precise specification of use cases for model-driven development,”

Bibliography 139

in Proceedings of the Eighth International Symposium on Information and

Communication Technology, 2017, pp. 401–408.

[108] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The software

model checker b last,” International Journal on Software Tools for Technol-

ogy Transfer, vol. 9, no. 5-6, pp. 505–525, 2007.

[109] F. Budinsky, R. Ellersick, D. Steinberg, T. J. Grose, and E. Merks, Eclipse

modeling framework: a developer’s guide. Addison-Wesley Professional,

2004.

[110] Q. Zaman, A. Nadeem, and M. A. Sindhu, “Use Case to Kripke Structure

and LTL Formulas Generator Tool (UCKSLTL),” 2020. [Online]. Available:

https://doi.org/10.7910/DVN/S9HQYD

[111] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,

“Graphviz-open source graph drawing tools,” in International Symposium

on Graph Drawing. Springer, 2001, pp. 483–484.

[112] H. Moessenboeck, “Coco/r: A generator for fast compiler front-ends,” ETH,

Eidgenössische Technische Hochschule Zürich, Departement Informatik, In-

stitut für Computer Systeme, vol. 127, 1990.

—————————————————————-

https://doi.org/10.7910/DVN/S9HQYD

Appendix A

ATM cash withdrawal example

generated artefacts

The generated artefacts for ATM cash withdrawal example are listed in this appendix. These

artefacts include a Kripke structure in png, dot, gml and smv formats. In addition to these the

generated LTL formal specifications are also included.

The generated Kripke structure in png format is shown in Figure A.1

Figure A.1: Kripke Structure for ATM Cash Withdrawal Example.

140

Appendix A 141

A.1 Generated Kripke Structure in .dot Format

The generated Kripke structure in dot format is listed below:

digraph g {
label=”The ATM Cash Withdrawal”
s0[label=”s0\n00000000”]
d0[label=”d0\n00000000”]
s1[label=”s1\n01000000”]
s2[label=”s2\n10000000”]
s3[label=”s3\n01000100”]
s4[label=”s4\n01001000”]
s6[label=”s6\n01100100”]
s5[label=”s5\n01010101”]
s[style=invis]
s − > s0
s0 − > s1[label = Card]
s0 − > s2[label = Void Card]
s1 − > s3[label = Pin]
s1 − > s4[label = Void Pin]
s4 − > s4[label = Void Pin]
s4 − > s3[label = Pin]
s3 − > s5[label = Amount]
s3 − > s6[label = Void Amount]
s6 − > s6[label = Void Amount]
s6 − > s5[label = Amount]
s0 − > d0[label = Amount]
s0 − > d0[label = Void Amount]
s0 − > d0[label = Pin]
s0 − > d0[label = Void Pin]
d0 − > d0[label = Card]
d0 − > d0[label = Void Card]
d0 − > d0[label = Amount]
d0 − > d0[label = Void Amount]
d0 − > d0[label = Pin]
d0 − > d0[label = Void Pin]
s1 − > d0[label = Card]
s1 − > d0[label = Void Card]
s1 − > d0[label = Amount]
s1 − > d0[label = Void Amount]
s2 − > d0[label = Card]
s2 − > d0[label = Void Card]
s2 − > d0[label = Amount]
s2 − > d0[label = Void Amount]
s2 − > d0[label = Pin]
s2 − > d0[label = Void Pin]
s3 − > d0[label = Card]
s3 − > d0[label = Void Card]
s3 − > d0[label = Pin]
s3 − > d0[label = Void Pin]
s4 − > d0[label = Card]
s4 − > d0[label = Void Card]
s4 − > d0[label = Amount]
s4 − > d0[label = Void Amount]
s6 − > d0[label = Card]

s6 − > d0[label = Void Card]
s6 − > d0[label = Pin]
s6 − > d0[label = Void Pin]
s5 − > d0[label = Card]
s5 − > d0[label = Void Card]
s5 − > d0[label = Amount]
s5 − > d0[label = Void Amount]
s5 − > d0[label = Pin]
s5 − > d0[label = Void Pin]}

The generated Kripke structure in smv format
is listed below.

MODULE main
VAR
input : { Card , Void Card , Amount ,
Void Amount , Pin , Void Pin };
cardMessage: {null , Valid Card , In-
valid Card};
amountMessage: { null , Valid Amount , In-
valid Amount};
pinMessage: {null, Valid Pin, Invalid Pin };
cashMessage: { null , ejects Cash};
state : { Initial State, Dead State , s1 , s2 , s3
, s4 , s6 , s5};
ASSIGN
init(cardMessage) := null;
init(amountMessage) := null;
init(pinMessage) := null;
init(cashMessage) := null;
init(state) := Initial State; next(state) := case
state = Initial State & input = Card : s1;
state = Initial State & input = Void Card : s2;
state = s1 & input = Pin : s3;
state = s1 & input = Void Pin : s4;
state = s4 & input = Void Pin : s4;
state = s4 & input = Pin : s3;
state = s3 & input = Amount : s5;
state = s3 & input = Void Amount : s6;
state = s6 & input = Void Amount : s6;
state = s6 & input = Amount : s5;
state = Initial State & input = Amount :
Dead State;
state = Initial State & input = Void Amount
: Dead State;
state = Initial State & input = Pin :
Dead State;
state = Initial State & input = Void Pin :
Dead State;
state = Dead State & input = Card :
Dead State;

Appendix A 142

state = Dead State & input = Void Card :
Dead State;
state = Dead State & input = Amount :
Dead State;
state = Dead State & input = Void Amount :
Dead State;
state = Dead State & input = Pin :
Dead State;
state = Dead State & input = Void Pin :
Dead State;
state = s1 & input = Card : Dead State;
state = s1 & input = Void Card : Dead State;
state = s1 & input = Amount : Dead State;
state = s1 & input = Void Amount :
Dead State;
state = s2 & input = Card : Dead State;
state = s2 & input = Void Card : Dead State;
state = s2 & input = Amount : Dead State;
state = s2 & input = Void Amount :
Dead State;
state = s2 & input = Pin : Dead State;
state = s2 & input = Void Pin : Dead State;
state = s3 & input = Card : Dead State;
state = s3 & input = Void Card : Dead State;
state = s3 & input = Pin : Dead State;
state = s3 & input = Void Pin : Dead State;
state = s4 & input = Card : Dead State;
state = s4 & input = Void Card : Dead State;
state = s4 & input = Amount : Dead State;
state = s4 & input = Void Amount :
Dead State;
state = s6 & input=Card:Dead State;
state=s6&input=Void Card:Dead State;
state = s6 & input = Pin : Dead State;
state=s6&input=Void Pin:Dead State;
state = s5 & input = Card : Dead State;
state=s5&input=Void Card:Dead State;
state=s5&input=Amount:Dead State;
state = s5 & input = Void Amount :
Dead State;
state = s5 & input = Pin : Dead State;
state=s5&input=Void Pin:Dead State;
esac;

next(cardMessage) := case
state = Initial State & input =
Card:Valid Card;
state=Initial State & input=Void Card : In-
valid Card;
state = s1 & input = Pin : Valid Card;
state=s1&input=Void Pin:Valid Card;
state = s4 & input = Void Pin : Valid Card;
state = s4 & input = Pin : Valid Card;
state = s3 & input = Amount : Valid Card;
state = s3 & input = Void Amount :
Valid Card;
state = s6 & input = Void Amount :

Valid Card;
state = s6 & input = Amount : Valid Card;
state = Initial State & input = Amount : null;
state = Initial State & input = Void Amount
: null;
state = Initial State & input = Pin : null;
state = Initial State & input = Void Pin : null;
state = Dead State & input = Card : null;
state = Dead State & input = Void Card :
null;
state = Dead State & input = Amount : null;
state = Dead State & input = Void Amount :
null;
state = Dead State & input = Pin : null;
state = Dead State & input = Void Pin : null;
state = s1 & input = Card : null;
state = s1 & input = Void Card : null;
state = s1 & input = Amount : null;
state = s1 & input = Void Amount : null;
state = s2 & input = Card : null;
state = s2 & input = Void Card : null;
state = s2 & input = Amount : null;
state = s2 & input = Void Amount : null;
state = s2 & input = Pin : null;
state = s2 & input = Void Pin : null;
state = s3 & input = Card : null;
state = s3 & input = Void Card : null;
state = s3 & input = Pin : null;
state = s3 & input = Void Pin : null;
state = s4 & input = Card : null;
state = s4 & input = Void Card : null;
state = s4 & input = Amount : null;
state = s4 & input = Void Amount : null;
state = s6 & input = Card : null;
state = s6 & input = Void Card : null;
state = s6 & input = Pin : null;
state = s6 & input = Void Pin : null;
state = s5 & input = Card : null;
state = s5 & input = Void Card : null;
state = s5 & input = Amount : null;
state = s5 & input = Void Amount : null;
state = s5 & input = Pin : null;
state = s5 & input = Void Pin : null;
esac;

next(amountMessage) := case
state = Initial State & input=Card:null;
state = Initial State & input=
Void Card:null;
state = s1 & input = Pin : null;
state = s1 & input = Void Pin : null;
state = s4 & input = Void Pin : null;
state = s4 & input = Pin : null;
state = s3 & input = Amount :
Valid Amount;
state = s3 & input =Void Amount:
Inv Amount;

Appendix A 143

state = s6 & input =Void Amount:
Inv Amount;
state = s6 & input = Amount :
Valid Amount;
state = Initial State & input = Amount :
null;
state = Initial State &
input = Void Amount : null;
state = Initial State & input = Pin : null;
state = Initial State & input = Void Pin :
null;
state = Dead State & input = Card : null;
state = Dead State & input = Void Card :
null;
state = Dead State & input = Amount : null;
state = Dead State & input = Void Amount :
null;
state = Dead State & input = Pin : null;
state = Dead State & input = Void Pin :
null;
state = s1 & input = Card : null;
state = s1 & input = Void Card : null;
state = s1 & input = Amount : null;
state = s1 & input = Void Amount : null;
state = s2 & input = Card : null;
state = s2 & input = Void Card : null;
state = s2 & input = Amount : null;
state = s2 & input = Void Amount : null;
state = s2 & input = Pin : null;
state = s2 & input = Void Pin : null;
state = s3 & input = Card : null;
state = s3 & input = Void Card : null;
state = s3 & input = Pin : null;
state = s3 & input = Void Pin : null;
state = s4 & input = Card : null;
state = s4 & input = Void Card : null;
state = s4 & input = Amount : null;
state = s4 & input = Void Amount : null;
state = s6 & input = Card : null;
state = s6 & input = Void Card : null;
state = s6 & input = Pin : null;
state = s6 & input = Void Pin : null;
state = s5 & input = Card : null;
state = s5 & input = Void Card : null;
state = s5 & input = Amount : null;
state = s5 & input = Void Amount : null;
state = s5 & input = Pin : null;
state = s5 & input = Void Pin : null;
esac;

next(pinMessage) := case
state = Initial State & input = Card : null;
state = Initial State & input = Void Card :
null;
state = s1 & input = Pin : Valid Pin;
state = s1 & input = Void Pin : Invalid Pin;
state = s4 & input = Void Pin : Invalid Pin;

state = s4 & input = Pin : Valid Pin;
state = s3 & input = Amount : Valid Pin;
state = s3 & input = Void Amount : Valid Pin;
state = s6 & input = Void Amount : Valid Pin;
state = s6 & input = Amount : Valid Pin;
state = Initial State & input = Amount : null;
state=Initial State&input=Void Amount:null;
state = Initial State & input = Pin : null;
state = Initial State & input = Void Pin : null;
state = Dead State & input = Card : null;
state = Dead State & input = Void Card :
null;
state = Dead State & input = Amount : null;
state=Dead State&input=Void Amount:null;
state = Dead State & input = Pin : null;
state = Dead State & input = Void Pin : null;
state = s1 & input = Card : null;
state = s1 & input = Void Card : null;
state = s1 & input = Amount : null;
state = s1 & input = Void Amount : null;
state = s2 & input = Card : null;
state = s2 & input = Void Card : null;
state = s2 & input = Amount : null;
state = s2 & input = Void Amount : null;
state = s2 & input = Pin : null;
state = s2 & input = Void Pin : null;
state = s3 & input = Card : null;
state = s3 & input = Void Card : null;
state = s3 & input = Pin : null;
state = s3 & input = Void Pin : null;
state = s4 & input = Card : null;
state = s4 & input = Void Card : null;
state = s4 & input = Amount : null;
state = s4 & input = Void Amount : null;
state = s6 & input = Card : null;
state = s6 & input = Void Card : null;
state = s6 & input = Pin : null;
state = s6 & input = Void Pin : null;
state = s5 & input = Card : null;
state = s5 & input = Void Card : null;
state = s5 & input = Amount : null;
state = s5 & input = Void Amount : null;
state = s5 & input = Pin : null;
state = s5 & input = Void Pin : null;
esac;

next(cashMessage) := case
state = Initial State & input = Card :
null;
state = Initial State & input = Void Card :
null;
state = s1 & input = Pin : null;
state = s1 & input = Void Pin : null;
state = s4 & input = Void Pin : null;
state = s4 & input = Pin : null;
state = s3 & input = Amount : null;
state = s3 & input = Void Amount : null;

Appendix A 144

state = s6 & input = Void Amount : null;
state = s6 & input = Amount : null;
state = Initial State & input = Amount : null;
state = Initial State & input = Void Amount
: null;
state = Initial State & input = Pin : null;
state = Initial State & input = Void Pin : null;
state = Dead State & input = Card : null;
state = Dead State & input = Void Card :
null;
state = Dead State & input = Amount : null;
state = Dead State & input = Void Amount :
null;
state = Dead State & input = Pin : null;
state = Dead State & input = Void Pin : null;
state = s1 & input = Card : null;
state = s1 & input = Void Card : null;
state = s1 & input = Amount : null;
state = s1 & input = Void Amount : null;
state = s2 & input = Card : null;
state = s2 & input = Void Card : null;
state = s2 & input = Amount : null;
state = s2 & input = Void Amount : null;

state = s2 & input = Pin : null;
state = s2 & input = Void Pin : null;
state = s3 & input = Card : null;
state = s3 & input = Void Card : null;
state = s3 & input = Pin : null;
state = s3 & input = Void Pin : null;
state = s4 & input = Card : null;
state = s4 & input = Void Card : null;
state = s4 & input = Amount : null;
state = s4 & input = Void Amount : null;
state = s6 & input = Card : null;
state = s6 & input = Void Card : null;
state = s6 & input = Pin : null;
state = s6 & input = Void Pin : null;
state = s5 & input = Card : null;
state = s5 & input = Void Card : null;
state = s5 & input = Amount : null;
state = s5 & input = Void Amount : null;
state = s5 & input = Pin : null;
state = s5 & input = Void Pin : null;
esac;

Appendix A 145

A.2 Generated Kripke Structure in .gml Format

The generated Kripke structure in gml format is listed below:

graph [version 2 directed 1
bb ”0,0,1696,778.18”
label ”The ATM Cash Withdrawal”
lheight 0.21 lp ”848,11.5” lwidth 2.18
node [id 0 name ”s0” label ”s0\n00000000”
graphics [x 226 y 678.31 w 100.411 H 53.7401]
LabelGraphics [text ”s0\n00000000”]]

node [id 1 name ”d0” label ”d0\n00000000”
graphics [x 792 y 49.87 w 100.411 H 53.7401]
LabelGraphics [text ”d0\n00000000”]]

node [id 2 name ”s1” label ”s1\n01000000”
graphics [x 445 y 573.57 w 100.411 H 53.7401]
LabelGraphics [text ”s1\n01000000”]]

node [id 3 name ”s2” label ”s2\n10000000”
graphics [x 1477 y 154.61 w 100.411 H 53.7401]
LabelGraphics [text ”s2\n10000000”]]

node [id 4 name ”s3” label ”s3\n01000100”
graphics [x 687 y 364.09 w 100.411 H 53.7401]
LabelGraphics [text ”s3\n01000100”]]

node [id 5 name ”s4” label ”s4\n01001000”
graphics [x 1149 y 468.83 w 100.411 H 53.7401]
LabelGraphics [text ”s4\n01001000”]]

node [id 6 name ”s6” label ”s6\n01100100”
graphics [x 815 y 259.35 w 100.411 H 53.7401]
LabelGraphics [text ”s6\n01100100”]]

node [id 7 name ”s5” label ”s5\n01010101”
graphics [x 1042 y 154.61 w 100.411 H 53.7401]
LabelGraphics [text ”s5\n01010101”]]

node [id 8 name ”s” label ”s”
graphics [x 226 y 760.18 w 54 H 36 visible 0]
LabelGraphics [text ”s”]]

edge [id 1 source 0 target 1 label ”Amount” lp
”23,364.09”
graphics [Line [
point [x 175.84 y 675.88]
point [x 109.26 y 670.99]
point [x 0 y 651.29]
point [x 0 y 574.57]
point [x 0 y 574.57]
point [x 0 y 574.57]
point [x 0 y 153.61]
point [x 0 y 113.64]

point [x 30.982 y 109.83]
point [x 68 y 94.74]
point [x 128.62 y 70.032]
point [x 568.42 y 56.519]
point [x 731.43 y 52.316]
point [x 741.76 y 52.052]]]

LabelGraphics [text ”Amount”]]

edge [id 2 source 0 target 1
label ”Void Amount”
lp ”122.5,364.09” graphics [
Line [point [x 181.23 y 665.79]
point [x 138.96 y 651.9]
point [x 82 y 624.01]
point [x 82 y 574.57]
point [x 82 y 574.57]
point [x 82 y 574.57]
point [x 82 y 153.61]
point [x 82 y 100.88]
point [x 134.56 y 110.11]
point [x 185 y 94.74]
point [x 285.87 y 64.014]
point [x 598.43 y 54.532]
point [x 731.27 y 51.846]
point [x 741.66 y 51.642]]]
LabelGraphics [text ”Void Amount”]]

edge [id 3 source 0 target 1 label ”Pin”
lp ”208.5,364.09” graphics [
Line [point [x 215.33 y 651.62]
point [x 207.78 y 631.13]
point [x 199 y 601.5]
point [x 199 y 574.57]
point [x 199 y 574.57]
point [x 199 y 574.57]
point [x 199 y 153.61]
point [x 199 y 121.73]
point [x 212.34 y 110.61]
point [x 240 y 94.74]
point [x 281.85 y 70.727]
point [x 597.57 y 57.396]
point [x 731.85 y 52.762]
point [x 741.97 y 52.417]]]
LabelGraphics [text ”Pin”]]

edge [id 4 source 0 target 1
label ”Void Pin”
lp ”281,364.09” graphics [
Line [point [x 236.91 y 652.07]
point [x 244.77 y 631.59]

Appendix A 146

point [x 254 y 601.75]
point [x 254 y 574.57]
point [x 254 y 574.57]
point [x 254 y 574.57]
point [x 254 y 153.61]
point [x 254 y 112.28]
point [x 287.76 y 110.44]
point [x 326 y 94.74]
point [x 397.91 y 65.212]
point [x 622.63 y 55.316]
point [x 731.57 y 52.201]
point [x 741.75 y 51.921]]]
LabelGraphics [text ”Void Pin”]]

edge [id 5 source 0 target 2 label ”Card”
lp ”362,625.94” graphics [Line [
point [x 263.15 y 659.88]
point [x 300.62 y 642.3]
point [x 358.56 y 615.12]
point [x 398.94 y 596.18]
point [x 408.03 y 591.91]]]
LabelGraphics [text ”Card”]]

edge [id 6 source 0 target 3 label ”Void Card”
lp ”1507,416.46” graphics [Line [
point [x 276.12 y 675.86]
point [x 509.1 y 668.79]
point [x 1475 y 635.8]
point [x 1475 y 574.57]
point [x 1475 y 574.57]
point [x 1475 y 574.57]
point [x 1475 y 258.35]
point [x 1475 y 236.27]
point [x 1475.5 y 211.53]
point [x 1476 y 191.86]
point [x 1476.2 y 181.79]]]
LabelGraphics [text ”Void Card”]]

edge [id 7 source 1 target 1 label ”Card”
lp ”874.2,49.87” graphics [Line [
point [x 842.26 y 51.438]
point [x 852.7 y 51.273]
point [x 860.2 y 50.75]
point [x 860.2 y 49.87]
point [x 860.2 y 49.32]
point [x 857.27 y 48.909]
point [x 852.53 y 48.639]
point [x 842.26 y 48.302]]]
LabelGraphics [text ”Card”]]

edge [id 8 source 1 target 1
label ”Void Card”
lp ”920.2,49.87” graphics [Line [
point [x 842.07 y 53.056]
point [x 866.26 y 53.403]
point [x 888.2 y 52.341]
point [x 888.2 y 49.87]

point [x 888.2 y 47.746]
point [x 872 y 46.663]
point [x 852.09 y 46.621]
point [x 842.07 y 46.684]]]
LabelGraphics [text ”Void Card”]]

edge [id 9 source 1 target 1 label ”Amount”
lp ”975.2,49.87” graphics [Line [
point [x 841.68 y 53.956]
point [x 890.52 y 55.79]
point [x 952.2 y 54.428]
point [x 952.2 y 49.87]
point [x 952.2 y 45.624]
point [x 898.66 y 44.152]
point [x 851.85 y 45.453]
point [x 841.68 y 45.784]]]
LabelGraphics [text ”Amount”]]

edge [id 10 source 1 target 1
label ”Void Amount”
lp ”1038.7,49.87” graphics [Line [
point [x 841.4 y 54.745]
point [x 905.13 y 57.995]
point [x 998.2 y 56.37]
point [x 998.2 y 49.87]
point [x 998.2 y 43.713]
point [x 914.69 y 41.93]
point [x 851.71 y 44.522]
point [x 841.4 y 44.995]]]
LabelGraphics [text ”Void Amount”]]

edge [id 11 source 1 target 1 label ”Pin”
lp ”1088.7,49.87” graphics [Line [
point [x 841.45 y 55.168]
point [x 927.25 y 60.248]
point [x 1079.2 y 58.482]
point [x 1079.2 y 49.87]
point [x 1079.2 y 41.586]
point [x 938.61 y 39.637]
point [x 851.53 y 44.021]
point [x 841.45 y 44.572]]]
LabelGraphics [text ”Pin”]]

edge [id 12 source 1 target 1
label ”Void Pin”
lp ”1125.2,49.87” graphics [Line [
point [x 841.16 y 55.906]
point [x 932.48 y 62.394]
point [x 1098.2 y 60.382]
point [x 1098.2 y 49.87]
point [x 1098.2 y 39.738]
point [x 944.24 y 37.503]
point [x 851.34 y 43.164]
point [x 841.16 y 43.834]]]
LabelGraphics [text ”Void Pin”]]

edge [id 13 source 2 target 1 label ”Card”

Appendix A 147

lp ”322,311.72” graphics [Line [
point [x 402.45 y 559.07]
point [x 387.05 y 552.22]
point [x 370.81 y 542.38]
point [x 360 y 528.7]
point [x 356.28 y 524]
point [x 308.73 y 325.17]
point [x 308 y 319.22]
point [x 307.19 y 312.6]
point [x 307.43 y 310.86]
point [x 308 y 304.22]
point [x 316.03 y 210.1]
point [x 274.82 y 159.07]
point [x 344 y 94.74]
point [x 371.85 y 68.846]
point [x 616.29 y 56.968]
point [x 731.9 y 52.761]
point [x 742.01 y 52.4]]]
LabelGraphics [text ”Card”]]

edge [id 14 source 2 target 1 label ”Void Card”
lp ”391,311.72” graphics [Line [
point [x 433.35 y 547.39]
point [x 413.36 y 502.65]
point [x 373.3 y 405.84]
point [x 359 y 319.22]
point [x 343.78 y 227.05]
point [x 304.45 y 197.15]
point [x 431 y 94.74]
point [x 475.89 y 58.411]
point [x 640.99 y 51.601]
point [x 731.56 y 50.673]
point [x 741.69 y 50.591]]]
LabelGraphics [text ”Void Card”]]

edge [id 15 source 2 target 1 label ”Amount”
lp ”468,311.72” graphics [Line [
point [x 445 y 546.39]rpoint [x 445 y 525.63]
point [x 445 y 495.87]
point [x 445 y 469.83]
point [x 445 y 469.83]
point [x 445 y 469.83]
point [x 445 y 153.61]
point [x 445 y 122.94]
point [x 455.36 y 111.57]
point [x 481 y 94.74]
point [x 521.13 y 68.388]
point [x 653.21 y 57.532]
point [x 731.74 y 53.322]
point [x 741.99 y 52.794]]]
LabelGraphics [text ”Amount”]]

edge [id 16 source 2 target 1
label ”Void Amount”
lp ”534.5,311.72” graphics [Line [
point [x 453.9 y 546.76]
point [x 455.75 y 540.87]

point [x 457.56 y 534.6]
point [x 459 y 528.7]
point [x 469.67 y 484.79]
point [x 511.71 y 170.26]
point [x 527 y 127.74]
point [x 532.73 y 111.81]
point [x 532.15 y 104.47]
point [x 546 y 94.74]
point [x 575.34 y 74.129]
point [x 669.35 y 61.844]
point [x 732.29 y 55.727]
point [x 742.49 y 54.762]]]
LabelGraphics [text ”Void Amount”]]

edge [id 17 source 2 target 4 label ”Pin”
lp ”630.5,468.83” graphics [Line [
point [x 482.85 y 555.71]
point [x 497.57 y 548.36]
point [x 514.17 y 539.06]
point [x 528 y 528.7]
point [x 580.53 y 489.35]
point [x 631.68 y 432.39]
point [x 661.22 y 397.1]
point [x 667.9 y 389.05]v]]
LabelGraphics [text ”Pin”]]

edge [id 18 source 2 target 5
label ”Void Pin”
lp ”866,521.2” graphics [Line [
point [x 493.11 y 565.55]
point [x 618.37 y 547.27]
point [x 954.29 y 498.25]
point [x 1090.5 y 478.37]
point [x 1100.7 y 476.88]]]
LabelGraphics [text ”Void Pin”]]

edge [id 19 source 3 target 1
label ”Card”
lp ”1354,102.24” graphics [Line [
point [x 1432 y 142.5]
point [x 1404.7 y 134.95]
point [x 1369.5 y 123.79]
point [x 1340 y 109.74]
point [x 1329 y 104.5]
point [x 1328.5 y 98.702]
point [x 1317 y 94.74]
point [x 1232.5 y 65.744]
point [x 971.37 y 55.457]
point [x 852.29 y 52.209]
point [x 842.25 y 51.943]]]
LabelGraphics [text ”Card”]]

edge [id 20 source 3 target 1 label ”Void Card”
lp ”1423,102.24” graphics [Line [
point [x 1440.6 y 136.09]
point [x 1425.1 y 128.38]
point [x 1407 y 118.98]

Appendix A 148

point [x 1391 y 109.74]
point [x 1380.4 y 103.63]
point [x 1379.6 y 98.66]
point [x 1368 y 94.74]
point [x 1273.9 y 62.831]
point [x 980.43 y 54.036]
point [x 852.56 y 51.69]
point [x 842.55 y 51.513]]]
LabelGraphics [text ”Void Card”]]

edge [id 21 source 3 target 1 label ”Amount”
lp ”1489,102.24” graphics [Line [
point [x 1473.8 y 127.73]
point [x 1470.9 y 115.76]
point [x 1465.4 y 102.49]
point [x 1455 y 94.74]
point [x 1407.3 y 59.277]
point [x 1007 y 52.481]
point [x 852.5 y 51.178]
point [x 842.25 y 51.097]]]
LabelGraphics [text ”Amount”]]

id 22 source3 target1 label”Void Amount”
lp ”1560.5,102.24” graphics [Line [
point [x 1505.1 y 132.19]
point [x 1517.3 y 120.43]
point [x 1526.6 y 105.99]
point [x 1516 y 94.74]
point [x 1493.4 y 70.703]
point [x 1021.9 y 56.607]
point [x 852.22 y 52.296]
point [x 842.2 y 52.044]]]
LabelGraphics[text ”Void Amount”]]

edge [id 23 source 3 target 1 label ”Pin”
lp ”1620.5,102.24” graphics [Line [
point [x 1525.8 y 147.48]
point [x 1572.7 y 139.73]
point [x 1632.5 y 123.77]
point [x 1605 y 94.74]
point [x 1579.2 y 67.487]
point [x 1036.1 y 55.252]
point [x 852.25 y 51.88]
point [x 842.21 y 51.698]
]]
LabelGraphics [text ”Pin”]]

edge [id 24 source 3 target 1 label ”Void Pin”
lp ”1669,102.24” graphics [Line [
point [x 1526.7 y 150.58]
point [x 1584.8 y 145.31]
point [x 1668.7 y 131.27]
point [x 1634 y 94.74]
point [x 1607.1 y 66.445]
point [x 1040.9 y 54.85]
point [x 852.43 y 51.765]
point [x 842.15 y 51.6]

]]
LabelGraphics [text ”Void Pin”]]

edge [id 25 source 4 target 1 label ”Card”
lp ”543,206.98” graphics [Line [
point [x 655.19 y 343]
point [x 644.87 y 335.95]
point [x 633.61 y 327.67]
point [x 624 y 319.22]
point [x 572.98 y 274.37]
point [x 517.81 y 266.48]
point [x 529 y 199.48]
point [x 537.11 y 150.93]
point [x 527.84 y 127.02]
point [x 565 y 94.74]
point [x 589.47 y 73.476]
point [x 673.46 y 61.579]
point [x 732.1 y 55.695]
point [x 742.37 y 54.699]]]
LabelGraphics [text ”Card”]]

edge [id 26 source 4 target 1
label ”Void Card”
lp ”612,206.98” graphics [Line [
point [x 662.9 y 340.08]
point [x 636.48 y 312.98]
point [x 595.75 y 265.18]
point [x 580 y 214.48]
point [x 567.77 y 175.1]
point [x 547.66 y 150.74]
point [x 603 y 94.74]
point [x 621.01 y 76.509]
point [x 684.4 y 64.451]
point [x 732.84 y 57.669]
point [x 742.93 y 56.301]]]
LabelGraphics [text ”Void Card”]]

edge [id 27 source 4 target 1 label ”Pin”
lp ”656.5,206.98” graphics [Line [
point [x 679.6 y 337.2]
point [x 667.57 y 294.65]
point [x 644.76 y 211.66]
point [x 641 y 181.48]
point [x 636.23 y 143.23]
point [x 617.85 y 125.57]
point [x 641 y 94.74]
point [x 652.47 y 79.46]
point [x 696.55 y 67.773]
point [x 734.15 y 60.318]
point [x 744.04 y 58.422]]]
LabelGraphics [text ”Pin”]]

edge [id 28 source 4 target 1
label ”Void Pin”
lp ”716,206.98” graphics [Line [
point [x 686.87 y 337.14]
point [x 686.79 y 273.47]

Appendix A 149

point [x 688.08 y 113.36]
point [x 703 y 94.74]
point [x 712.36 y 83.051]
point [x 725.63 y 74.242]
point [x 739.07 y 67.704]
point [x 748.36 y 63.534]]]
LabelGraphics [text ”Void Pin”]]

edge [id 29 source 4 target 6
label ”Void Amount”
lp ”798.5,311.72” graphics [Line [
point [x 714.15 y 341.3]
point [x 733.32 y 325.91]
point [x 759.19 y 305.14]
point [x 779.93 y 288.5]
point [x 787.89 y 282.11]]]
LabelGraphics [text ”Void Amount”]]

edge [id 30 source 4 target 7 label ”Amount”
lp ”1038,259.35” graphics [Line [
point [x 737.09 y 361.1]
point [x 798.55 y 356.27]
point [x 903.18 y 340.08]
point [x 973 y 286.22]
point [x 1003.8 y 262.44]
point [x 1022.4 y 220.92]
point [x 1032.3 y 191.07]
point [x 1035.4 y 181.44]]]
LabelGraphics [text ”Amount”]]

edge [id 31 source 5 target 1 label ”Card”
lp ”1145,259.35” graphics [Line [
point [x 1142.3 y 442.1]
point [x 1132.1 y 398.48]
point [x 1115.2 y 307.47]
point [x 1131 y 232.48]
point [x 1144.5 y 168.13]
point [x 1228.8 y 143.75]
point [x 1185 y 94.74]
point [x 1163.2 y 70.414]
point [x 956.94 y 58.021]
point [x 852.28 y 53.255]
point [x 842.18 y 52.805]]]
LabelGraphics [text ”Card”]]

edge [id 32 source 5 target 1 label ”Void Card”
lp ”1222,259.35” graphics [Line [
point [x 1153.8 y 442.05]
point [x 1169.1 y 359.72]
point [x 1214.7 y 107.76]
point [x 1203 y 94.74]
point [x 1180 y 69.149]
point [x 960.73 y 57.278]
point [x 852.22 y 52.934]
point [x 842.07 y 52.537]]]
LabelGraphics [text ”Void Card”]]

edge [id 33 source 5 target 1 label ”Amount”
lp ”1304,259.35” graphics [Line [
point [x 1191.9 y 454.5]
point [x 1230.4 y 439.54]
point [x 1281 y 411.12]
point [x 1281 y 365.09]
point [x 1281 y 365.09]
point [x 1281 y 365.09]
point [x 1281 y 153.61]
point [x 1281 y 114.96]
point [x 1252.2 y 110.61]
point [x 1217 y 94.74]
point [x 1153.3 y 66.058]
point [x 953.42 y 55.835]
point [x 852.11 y 52.434]
point [x 842.04 y 52.107]]]
LabelGraphics [text ”Amount”]]

edge [id 34 source 5 target 1
label ”Void Amount”
lp ”1380.5,259.35” graphics [Line [
point [x 1195.3 y 458.01]
point [x 1219.1 y 451.3]
point [x 1247.5 y 440.54]
point [x 1269 y 423.96]
point [x 1283.2 y 413.05]
point [x 1283.7 y 406.8]
point [x 1292 y 390.96]
point [x 1346.3 y 287.33]
point [x 1365.3 y 221.24]
point [x 1295 y 127.74]
point [x 1279.7 y 107.34]
point [x 1271.9 y 103.59]
point [x 1248 y 94.74]
point [x 1177 y 68.49]
point [x 959.34 y 57.019]
point [x 852.48 y 52.864]
point [x 842.18 y 52.473]]]
LabelGraphics [text ”Void Amount”]]

edge [id 35 source 5 target 4 label ”Pin”
lp ”954.5,416.46” graphics [Line [
point [x 1103 y 457.6]
point [x 1017.7 y 438.62]
point [x 835.04 y 398.01]
point [x 742.79 y 377.5]
point [x 732.8 y 375.28]]]
LabelGraphics [text ”Pin”]]

edge [id 36 source 5 target 5
label ”Void Pin”
lp ”1244.2,468.83” graphics [Line [
point [x 1195.9 y 478.48]
point [x 1208 y 477.89]
point [x 1217.2 y 474.67]
point [x 1217.2 y 468.83]
point [x 1217.2 y 464.82]

Appendix A 150

point [x 1212.9 y 462.04]
point [x 1206.2 y 460.51]
point [x 1195.9 y 459.18]]]
LabelGraphics [text ”Void Pin”]]

edge [id 37 source 6 target 1 label ”Card”
lp ”729,154.61” graphics [Line [
point [x 797.98 y 234.02]
point [x 788.75 y 222.28]
point [x 776.48 y 208.76]
point [x 763 y 199.48]
point [x 744.23 y 186.56]
point [x 727.98 y 200.21]
point [x 715 y 181.48]
point [x 693.04 y 149.79]
point [x 695.63 y 128.07]
point [x 715 y 94.74]
point [x 721.1 y 84.244]
point [x 730.76 y 76.05]
point [x 741.19 y 69.737]
point [x 750.09 y 64.867]]]
LabelGraphics [text ”Card”]]

edge [id 38 source 6 target 1
label ”Void Card”
lp ”807,154.61” graphics [Line [
point [x 802.19 y 233.15]
point [x 780.87 y 191.19]
point [x 740.39 y 111.4]
point [x 740 y 109.74]
point [x 738.46 y 103.25]
point [x 737.19 y 100.79]
point [x 740 y 94.74]
point [x 742.94 y 88.407]
point [x 747.3 y 82.659]
point [x 752.26 y 77.564]
point [x 759.87 y 70.574]]]
LabelGraphics [text ”Void Card”]]

edge [id 39 source 6 target 1 label ”Pin”
lp ”863.5,154.61” graphics [Line [
point [x 831.1 y 233.72]
point [x 847.5 y 205.23]
point [x 867.33 y 158.32]
point [x 843 y 127.74]
point [x 820.85 y 99.898]
point [x 787.15 y 137.58]
point [x 765 y 109.74]
point [x 758.63 y 101.74]
point [x 760.2 y 91.993]
point [x 764.86 y 82.752]
point [x 770.12 y 74.121]]]
LabelGraphics [text ”Pin”]]

edge [id 40 source 6 target 1
label ”Void Pin”
lp ”913,154.61” graphics [Line [

point [x 839.86 y 235.78]
point [x 867.2 y 208.23]
point [x 903.9 y 161.19]
point [x 877 y 127.74]
point [x 853.62 y 98.665]
point [x 819.12 y 138.21]
point [x 795 y 109.74]
point [x 789.59 y 103.36]
point [x 787.33 y 95.045]
point [x 786.76 y 86.689]
point [x 786.8 y 76.601]]]
LabelGraphics [text ”Void Pin”]]

edge [id 41 source 6 target 6
label ”Void Amount”
lp ”923.7,259.35” graphics [Line [
point [x 861.86 y 269]
point [x 874.03 y 268.41]
point [x 883.2 y 265.19]
point [x 883.2 y 259.35]
point [x 883.2 y 255.34]
point [x 878.87 y 252.56]
point [x 872.2 y 251.03]
point [x 861.86 y 249.7]]]
LabelGraphics [text ”Void Amount”]]

edge [id 42 source 6 target 7 label ”Amount”
lp ”987,206.98” graphics [Line [
point [x 857.18 y 244.49]
point [x 880.21 y 236.5]
point [x 909.04 y 225.81]
point [x 934 y 214.48]
point [x 956.43 y 204.3]
point [x 980.57 y 191.34]
point [x 1000.3 y 180.18]
point [x 1009.1 y 175.19]]]
LabelGraphics [text ”Amount”]]

edge [id 43 source 7 target 1 label ”Card”
lp ”824,102.24” graphics [Line [
point [x 1004.7 y 136.51]
point [x 996.07 y 133.13]
point [x 986.84 y 129.95]
point [x 978 y 127.74]
point [x 941.58 y 118.62]
point [x 838.95 y 133.65]
point [x 810 y 109.74]
point [x 802.94 y 103.9]
point [x 798.58 y 95.375]
point [x 795.92 y 86.61]
point [x 793.58 y 76.746]]]
LabelGraphics [text ”Card”]]

edge [id 44 source 7 target 1 label ”Void Card”
lp ”893,102.24” graphics [Line [
point [x 1004.3 y 136.68]
point [x 995.75 y 133.33]

Appendix A 151

point [x 986.67 y 130.12]
point [x 978 y 127.74]
point [x 927.27 y 113.79]
point [x 908.83 y 131.65]
point [x 861 y 109.74]
point [x 852.6 y 105.89]
point [x 837.42 y 93.217]
point [x 823.43 y 80.607]
point [x 815.83 y 73.664]]]
LabelGraphics [text ”Void Card”]]

edge [id 45 source 7 target 1 label ”Amount”
lp ”971,102.24” graphics [Line [
point [x 1003.4 y 137.09]
point [x 986.19 y 129.33]
point [x 965.79 y 119.63]
point [x 948 y 109.74]
point [x 937.33 y 103.81]
point [x 936 y 100.03]
point [x 925 y 94.74]
point [x 900.06 y 82.746]
point [x 871.01 y 72.746]
point [x 846.43 y 65.337]
point [x 836.55 y 62.423]]]
LabelGraphics [text ”Amount”]]

edge [id 46 source 7 target 1
label ”Void Amount”
lp ”1051.5,102.24” graphics [Line [
point [x 1027.4 y 128.72]
point [x 1019.1 y 116.69]
point [x 1007.6 y 103.08]
point [x 994 y 94.74]
point [x 951.19 y 68.474]
point [x 894.81 y 57.815]
point [x 852.5 y 53.549]
point [x 842.33 y 52.619]]]

LabelGraphics [text ”Void Amount”]]

edge [id 47 source 7 target 1 label ”Pin”
lp ”1109.5,102.24” graphics [Line [
point [x 1076.6 y 135.03]
point [x 1093.5 y 123.57]
point [x 1107.9 y 108.47]
point [x 1096 y 94.74]
point [x 1065.2 y 59.153]
point [x 932.25 y 51.787]
point [x 852.73 y 50.641]
point [x 842.36 y 50.523]]]
LabelGraphics [text ”Pin”]]

edge [id 48 source 7 target 1
label ”Void Pin”
lp ”1154,102.24” graphics [Line [
point [x 1084.7 y 140.37]
point [x 1112 y 129.73]
point [x 1139.4 y 113.5]
point [x 1123 y 94.74]
point [x 1105.4 y 74.694]
point [x 942.28 y 60.809]
point [x 851.78 y 54.578]
point [x 841.65 y 53.892]]]
LabelGraphics [text ”Void Pin”]]

edge [id 49 source 8 target 0
lp ”” graphics [Line [
point [x 226 y 741.85]
point [x 226 y 734.12]
point [x 226 y 724.7]
point [x 226 y 715.54]
point [x 226 y 705.41]]]]]

Appendix A 152

A.3 Generated Linear Temporal Logic Formulas

The generated LTL formal specifications are listed below:

LTLSPEC G (state = Initial State & (input = Card) & X (input = Pin)

→ F (pinMessage = Valid Pin))

LTLSPEC G (state = Initial State & (input = Card) & X (input = Void Pin)

→ F (pinMessage = Invalid Pin))

LTLSPEC G (state = Initial State & (input = Card) & X (input = Pin) &

X (input = Amount) → F (amountMessage = Valid Amount))

LTLSPEC G (state = Initial State & (input = Card) & X (input = Pin) &

X (input = Void Amount) → F (amountMessage = Invalid Amount))

LTLSPEC G(state = Initial State & input = Card → X (cardMessage = Valid Card))

LTLSPEC G(state = Initial State & input = Void Card

→ X (cardMessage = Invalid Card))

LTLSPEC G(cardMessage = Valid Card & amountMessage = null & pinMessage = null

& cashMessage = null & input = Pin → X (pinMessage = Valid Pin))

LTLSPEC G(cardMessage = Valid Card & amountMessage = null & pinMessage = null

& cashMessage = null & input = Void Pin → X (pinMessage = Invalid Pin))

LTLSPEC G(cardMessage = Valid Card & pinMessage = Valid Pin &

amountMessage = null & cashMessage = null & input = Amount

→ X (amountMessage = Valid Amount))

LTLSPEC G(cardMessage = Valid Card & pinMessage = Valid Pin &

amountMessage = null & cashMessage = null & input = Void Amount

→ X (amountMessage = Invalid Amount))

	Dedication
	Author's Declaration
	Plagiarism Undertaking
	List of Publications
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Software Requirements Documentation
	1.2 Formalization of Informal Software Requirements
	1.3 Motivation
	1.4 Research Methodology
	1.4.1 Phase 1: What to Research?
	1.4.2 Phase 2: Research Planning
	1.4.3 Phase 3: Implementation

	1.5 Problem Statement
	1.6 Research Questions
	1.7 Thesis Layout

	2 Background
	2.1 Informal Software Requirements
	2.1.1 User Story
	2.1.2 Concept of Operations Document (ConOps)
	2.1.3 Requirements Statement

	2.2 Semiformal Software Requirements
	2.2.1 Flowchart
	2.2.2 Data Flow Diagram (DFD)
	2.2.3 Decision Tables
	2.2.4 Use Case Model

	2.3 Formal Software Specifications
	2.3.1 History-based Specification
	2.3.1.1 Linear Temporal Logic
	2.3.1.2 Computational Tree Logic

	2.3.2 Transition Based Representation
	2.3.2.1 Moore Model
	2.3.2.2 Mealy Model
	2.3.2.3 Kripke Structure
	2.3.2.4 Labelled Transition System

	2.3.3 State based Specifications
	2.3.3.1 Z Specification Language
	2.3.3.2 X-machine

	2.3.4 Functional Specification
	2.3.4.1 OBJ
	2.3.4.2 Larch
	2.3.4.3 HOL
	2.3.4.4 PVS

	2.3.5 Operational Specification
	2.3.5.1 Gist
	2.3.5.2 Petri Nets

	2.4 Informal to Formal Specification Transformation
	2.4.1 Metamodel-based Transformation

	2.5 Summary

	3 Literature Review
	3.1 State of the Art Approaches
	3.1.1 Approaches Generating Semiformal Artefacts
	3.1.2 Approaches Generating Formal Artefacts

	3.2 Analysis
	3.3 Summary

	4 Use Case to a Kripke Structure and LTL Formulas Generation
	4.1 Use Case Template
	4.2 Use Case Meta Model
	4.3 Kripke Structure Meta Model
	4.4 Linear Temporal Logic (LTL) Formula Meta Model
	4.5 Proposed Approach
	4.5.1 Use Case Flattener Process
	4.5.2 Use Case to Kripke Structure Transformation Process
	4.5.3 Use Case to LTL Formula Transformation Process
	4.5.4 Proof of Soundness and Completeness
	4.5.5 Time Complexity

	4.6 Summary

	5 Tool Support
	5.1 Architecture Diagram
	5.2 Class Diagram
	5.3 User Interface
	5.4 Summary

	6 Case Studies and Results Validation
	6.1 ATM Cash Withdrawal Example
	6.2 SIM Dispensing Machine Example
	6.3 Work Flow Manager Case Study
	6.3.1 Request New Letter
	6.3.2 Business Analyst Review Letter Request
	6.3.3 Letter Writer Develops New Letter
	6.3.4 Business Analyst Review Developed Letter
	6.3.5 Requester Approves Developed Letter

	6.4 Touch'D Case Study
	6.4.1 User Makes a Profile
	6.4.2 User Calls a Contact
	6.4.3 User Views a Contact

	6.5 Generated Artefacts and Their Validation
	6.5.1 Conformance of the Generated Artefacts
	6.5.1.1 ATM Cash Withdrawal Example
	6.5.1.2 Work Flow Manager

	6.6 Comparison With the Existing Approaches

	7 Conclusions and Future work
	7.1 Answers to Research Questions
	7.2 Conclusions
	7.3 Limitations and Future Work

	Bibliography
	A ATM cash withdrawal example generated artefacts
	A.1 Generated Kripke Structure in .dot Format
	A.2 Generated Kripke Structure in .gml Format
	A.3 Generated Linear Temporal Logic Formulas

