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Abstract
This dissertation is an attempt to analyze the phenomenon involved in the flow of

various fluids through deformable porous media. In particular, problems are mod-

eled using continuum mixture theory approach. First, our focus would be on the

study of compression molding process. A mathematical model has been developed

to study non-Newtonian fluid flow through preimpregnated pile. The governing

equation for solid volume fraction is solved numerically to highlight the rheological

effects of fluid flow. Graphical illustrations indicate that shear-thinning and shear-

thickening fluids induce the increase in solid volume fraction. But, final state of

solid volume fraction is homogeneous for shear-thickening fluid as compared to the

shear-thinning fluid. Furthermore, ion-induced deformation of articular cartilage

due to non-Newtonian fluid flow is investigated. Ionic effects are incorporated

with solid stress for biphasic modeling of tissue. Normalized quantities are used

to non-dimensionalize the equations for ion-concentration, fluid pressure and solid

displacement. First, analytical solution for ion-concentration has been presented.

Coupled system of equations for solid displacement and fluid pressure produces

complexity. This complexity is handled using numerical technique; Method of

Lines. Numerical results indicate that the shear-thickening fluid induces more

solid deformation but less fluid pressure as compared to the shear-thinning fluid.

In addition to this, a mathematical model has been developed to study rheological

effects on compressive stress-relaxation behavior of soft biological tissue. Bipha-

sic mixture theory is incorporated with strain-dependent permeability. Suitable

quantities are used to non-dimensionalize the coupled system of equations of solid

displacement and fluid pressure. Numerical results show that the solid deformation

increases with increase in power-law index. Results also indicate that linear perme-

ability induces more deformation as compared to the strain-dependent nonlinear

permeability. Finally, based on the geometry of previous problem, a mathemat-

ical model has been developed to study deformation of the biological tissue due

to flow of electrically conducting fluid from it. In the presence of Lorentz forces,

biphasic mixture theory is incorporated with strain-dependent permeability. Com-

plexity of governing equations is treated numerically. Graphical illustrations show



ix

that solid displacement decreases but fluid pressure increases by increasing the

strength of magnetic parameter. These results are more profound for the fast rate

of compression as compared to the slow rate of compression.
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Chapter 1

Introduction

1.1 Introduction

In this dissertation, flow-induced deformation in a deformable porous media is in-

vestigated using continuum mixture theory approach. Our focus was on the study

of the compression molding process, ion-induced swelling and stress relaxation

behavior of articular cartilage. In this study, deformable porous materials such

as preimpregnated pile and articular cartilage are modeled as nonlinear material

composed of a fluid and a solid phase. Apart from continuum mixture theory ap-

proach to model multiphase systems, there are many theoretical frameworks such

as pore scale network modeling, thermomechanics, membrane theory, finite elas-

ticity, the bundle of tubes approach, growth and remodeling and viscoelasticity

were devised to study the fluid flow in porous materials. Humphrey [1] has given

an excellent description of these theories in a review paper. He also mentioned

the past successes in biomechanics of soft biological tissues and identifies future

work in this area. He emphasized on the need for comprehensive and new theo-

retical frameworks, including computational approaches for modeling rheological

fluid flow through biological tissues by considering it as a porous material.

Contemporary studies [2–4] describe the behavior of rheological complex fluid flow

through a porous media. From these studies, several attempts have been made

1



Introduction 2

to study non-Newtonian fluid flow through porous media [5–7]. Non-Newtonian

fluid flow involves a variety of highly complex phenomena and proper description

requires sophisticated mathematical modeling. Further complications are added

to the phenomenon due to the non-Newtonian fluid flow through porous media.

Sochi [8] highlighted applications of non-Newtonian fluid flow in porous media

such as filtration of polymer solutions, removal of fluid pollutants from soil, and

enhanced oil recovery from underground reservoirs.

Continuum mixture theory is used to develop mathematical models for flow of non-

Newtonian and electrically conducting fluids through porous materials given in this

thesis. It is worth mentioning here that Siddique and Aderson [9, 10] were the first

ones to develop the power-law fluid model in combination with the mixture theory

approach. Keeping in view the importance of non-Newtonian fluid in medicine and

industry, the purpose of this dissertation is to examine the rheological effects on

different classes of porous media. In the following, we have presented the problem

statement, objective and scope with significance of the study. This is followed by

a detailed discussion of each chapter in Section 1.3.

1.1.1 Problem Statement

In this dissertation, mathematical models have been developed for flow of fluids

through deformable porous media by using continuum mixture theory with various

laws of Physics, i.e., conservation of mass, conservation of momentum and Darcy,

etc. In particular, models are formulated for flow of non-Newtonian and electri-

cally conducting fluids through articular cartilage and preimpregnated materials.

Biphasic mixture theory is used to handle mixture of fluid and solid which gives

the system of dimensional partial differential equations (PDEs) in terms of solid

volume fraction, fluid pressure and solid deformation. Suitable normalized param-

eters are used to non-dimensionalize the governing systems of equations. Moreover,

MATLAB built-in function pdepe (partial differential equation parabolic elliptic)

and Method of Lines are employed to solve these equations. Graphical illustrations
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have been presented for power-law index, permeability parameter and magnetic

parameter.

1.1.2 Objective and Scope

The aim of this research is to develop and analyze theoretical mathematical mod-

els that describe the effects of flow of non-Newtonian and electrically conducting

fluids through deformable porous materials. In particular, this permits us to con-

nect solid deformation of deformable porous material with the fluid flow. It has

also been intended to use knowledge gained from previous studies based on mod-

els that were developed using continuum mixture theory approach. In this regard,

mathematical models have been formulated to analyze fluid flow through preim-

pregnated pile and articular cartilage. Solution to these models can be achieved

by using numerical methods because of the complexity of equations. This theo-

retical study can be used to explore various industrial and biological applications

involving fluid flow in porous materials.

1.1.3 Significance of Study

The phenomenon of solid deformation in porous materials due to fluid flow is of

particular significance due to its role in agricultural and geophysical processes (for

example, flooding and land sliding), and modern technological applications (for

example, cleaning, medical diagnosing and filtering). Furthermore, by considering

the various fluid models and the articular cartilage as a porous material, study

encompasses the industry as well as biomechanics.

1.2 Historical Background

Porous material deforms when fluid flows through it. Due to deformation, proper-

ties of porous material such as permeability and porosity change which ultimately
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change the passage of fluid flow through porous material. This procedure creates

a complex coupling between fluid and porous material. This phenomenon can

be observed in various industrial and biological applications such as compression

molding [11], mechanical properties of asphalt concrete [12], fluidized beds [13],

capillary rise [9] and deformation of tissue due to fluid flow [14], etc. Usually,

this phenomenon can be modeled mathematically using continuum mixture the-

ory. Basic assumption of mixture theory is that each constituent of a mixture is

continuous and present at each point of mixture at each instant of time. Fick [15]

was the first one who laid down the foundation of mixture theory. Stefan [16] and

Darcy [17] extended the work of Fick. Truesdell and Noll [18] improved the pre-

vious work on mixture theory by using basic principles of continuum mixture and

included equation of conservation of mass for different constituents of mixture. In

fact, theory of Truesdell described the momentum and mass transfer between the

different constituents of the mixture. Muller [19] extended the mixture theory for

Newtonian fluid in thermodynamics version and developed the entropy and en-

ergy equation for a mixture. Atkin and Craine [20] presented revolutionary work

in the review paper by deriving the entropy inequality, momentum, and energy

equations along with the equation of conservation of mass. It is worth mentioning

here that Bowen [21] and Bedford and Drumheller [22] have given comprehensive

review on mixture theory. Moreover, Rajagopal and Tao [23] have derived different

conservation laws and analyzed several examples using mixture theory in a famous

book on mechanics of mixtures. All of the above mentioned studies were lacking

the application to non-Newtonian fluid flow in a porous media. Non-Newtonian

fluid flow in porous materials has various biological and industrial applications,

such as compression molding process [24], oil recovery process [25], petroleum en-

gineering [26] and ion-induced swelling behavior of soft tissue [27]. Deformation

in porous materials due to non-Newtonian flow can be handled by using contin-

uum mixture theory approach. For understanding the non-Newtonian fluid flow

in detail, previous studies need attention.

Due to complications, almost all the experimental and theoretical studies encom-

pass the one-dimensional flow of non-Newtonian fluid. Savins [28] presented a
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summary on non-Newtonian fluid flow through diverse types of porous media. For

different types of non-Newtonian fluids, Scheidegger [29] and Bird et al. [30] pre-

sented many rheological models. Gogarty [31] contributed the great work on flow

of non-Newtonian fluid through porous media and showed experimentally that per-

meability decreases with pseudoplastic fluid flow and stabilizes with flow. He also

showed that for a given porous media, high shear rate exists at the lower perme-

ability and caused low effective viscosity. Using lubrication assumption, Ikoku and

Ramey [32], and Odeh and Yang [33] were first one to give analytical solutions for

a slightly compressible non-Newtonian unsteady fluid flow. Ikoku and Ramey [34],

Lund and Ikoku [35], Ikoku [36], Gencer and Ikoku [37] and Vongvuthipornchai

and Raghavan [38] have applied their solutions to different complicated problems.

During recovery operations, Poolen and Jargon [39] have investigated the injec-

tion of non-Newtonian fluid into a reservoir using power-law model. In particular,

fluid considered is shear-thinning fluid. Equations presented are for radial, lin-

ear and steady-state flow. Nonlinear equations are obtained after mathematical

manipulation. Graphical illustrations are used to show finite difference solutions.

Kefayati et al. [40] used a power-law index to develop a lattice Boltzmann mathe-

matical model for the flow of thermal incompressible non-Newtonian fluids through

porous media. Results are obtained for porous cavity and also comparison has been

presented with previous studies. Yadav and Verma [41] developed a model for the

flow of Newtonian as well as non-Newtonian fluids through the specially designed

cylindrical pipe. They used Brinkman and Stoke’s equation, and Eringen equa-

tion to model the problem. The effects of various parameters such as viscosity

ratio, micropolar parameter and permeability parameter on the flow rate and lin-

ear flow velocity are illustrated graphically. Comparison has been presented with

the previous studies. Cheng it al. [42] used non-Newtonian rheology and theory

of electrokinetic transport to model non-Darcy fluid flow through porous media.

Numerical results show that effect of various parameters such as yield stress, capil-

lary radius and zeta potential is significant at high-pressure gradient as compared

to low-pressure gradient. The Non-Newtonian flow-foam behavior in porous ma-

terials has been studied experimentally by Omirbekov et al. [43]. They observed
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that apparent viscosity of foam increases with increase in permeability of porous

material. Above mentioned studies can be further extended for magnetohydrody-

namics fluids. We now turn our attention to the specific type of porous material,

i.e., deformable porus material.

As deformable porous material deforms due to flow. In various fields, deformable

porous material arises including soil science [44–46], paper and printing [47, 48],

geophysics [49], snow physics [50] and chemistry [51]. Biot’s [52] work on soil

settlement describes an early mathematical model of deformable porous media.

As due to fluid flow, solid deformation occurs in deformable media. So, he used

Darcy’s law to describe fluid flow coupled with a linear elasticity model to observe

solid deformation. He developed a mathematical model based on one-dimensional

as well as two-dimensional solid consolidation and solutions were obtained for per-

meable [53] and impermeable [54] rectangular loads. Process of a roll applicator is

used for coating flows in the printing and paper industry which has been mathe-

matically modeled by Chen and Scriven [47]. Their model not only addresses the

Newtonian fluid flow driven by external or capillary pressure in the deformable

receiving porous medium but also treats the effects of trapped air and air com-

pression in the substrate. Manzoli et al. [55] used finite elements to mathematical

model injection of fluid at high pressure in deformable porous material. Model

handled the high speed flow of fluid with deformation of material. Comparison

has been presented with analytical solution. Mou et al. [56] discussed the effects

of heat and mass transfer on the deformable porous media. Complex model was

developed using momentum balance equation and stress differential equations. Re-

sults were obtained using finite element method and comparison with experiments

has been presented. Bui and Nguyen [57] developed computational based and

mesh-free numerical technique to study fluid flow in a deformable porous mate-

rial. Their proposed model can handle the seepage flows. Predicted results show

excellent agreement with analytical and experimental results. We now turn our

attention to the process which incorporates fluid flow through deformable porous

material.
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An important process called compression molding is used for manufacturing of

composite materials such as plastic, fiberglass, concrete and reinforced concrete

and mud bricks. Manufacturing of composite material is more an art than engi-

neering [58, 59]. Flow of fluid in deformable porous material is involved in this

process. Several fibers are preimpregnated with a certain quantity of fluid, dis-

tributed in one-directional or multidirectional piles. Moreover, these piles are

placed in porous mold. The mixture of deformable porous material and fluid is

heated and then compressed. Piston is used to compress the deformable material

that produces fluid flow due to squeezing in the pile which pushes the fluid out

of the pile which in turn increases solid volume fraction [60–62]. To understand

process of compression molding, fibre-reinforced composites need attention.

Fibre-reinforced composites have received attention in the last couple of decades

due to their excellent mechanical properties, lower carbon footprint, and economic

fuel consumption. For typical automotive components where low cost, fast cycle

time, and large volume are desired, thermoplastic resin and chopped reinforcing

fibres are increasing in popularity [63–65]. Usually, these types of materials are

made using resin transfer molding, compression molding, and injection molding

methods [66, 67]. Of these methods, compression molding is a suitable method for

the manufacturing of composite materials as it offers the great potential to main-

tain longer fibers [68–70]. For the fibre-reinforced charge, there are two formats

in the compression molding method, i.e., (1) sheet charge, and the bulk charge.

In sheet charge, mats are formed by using dispersed chopped fibers on the resin

sheets. Moreover, a single or twin screw low shear plasticator is used to make bulk

charge; the required size of bulk comes out from the plasticator is collected and

placed in die for the compression molding process. Computer-aided engineering

(CAE), a numerical simulation has received attention due to increase use of fiber-

reinforced components. In the last three decades, many researchers used CAE

simulations to study fiber-reinforced polymer materials. Osswald and Charles [71]

developed the model for the compression molding process. The model consists of

the boundary element equations and on the assumption that fluid is isothermal
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Newtonian. The accuracy of the numerical results is discussed by comparing them

with experimental results.

Advani [72] developed CAE simulation for compression molding process. Numer-

ical results are verified by comparing them with experimental results. Due to

these remarkable research activities, a computer program Cadpress [73] was devel-

oped. Cadpress used hydrodynamic model [74], which was appropriate for sheet

molding compound (thermoset resin+ discontinues fibre). Ahmed and Alexan-

drou [75] investigated the compression molding of viscoelastic polymers using

Eulerian-Lagrangian approach. Equations of motion considered for analysis were

two-dimensional and unsteady. Constitutive behavior of the polymers is described

by White-Metzner model. Method of mixed Galerkin finite elements is used to ob-

tain a solution of the problem. Smith et al. [76] modeled manufacturing of plastic

components using compression molding and injection processes. Galerkin finite

element method and isothermal Hele-Shaw flow analysis are employed to form

nonlinear equations for the polymer melt pressure field and, Newton-Raphson

method is used to solve these equations. Kim et al. [77] analyzed compression

molding process of center-gated disc by developing physical model and numerical

analysis. Numerical results showed that with the rise in melt temperature bire-

fringence becomes smaller and significantly affected by mold temperature and flow

rate. Dweib and Bradaigh [78] investigated extensional as well as shearing behav-

ior under compression molding of glass mat-thermoplastic material using a model

specifically developed for no-slip wall conditions. Compression molding is modeled

on assumptions that it is a combination of shearing and extensional flow and two

shear and extensional velocities were determined. Allen and Jain [79] investigated

the manufacturing of precision optics using compression molding of glass aspher-

ical lenses. Finite element method not only used to create numerical models but

also used for analyzing molding processes. Experimental results predicted that

this process can be used for production of precision optical components. Compar-

ison of predicted results with experimental results shows that the finite element

method can be used as a tool for process analysis.
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Compression molding process is used to manufacture sheet molding compounds.

Meyer et al. [80] adopted direct bundle simulation (on a specimens having double

curved geometry) to model this process. Behrens [81] described the manufactur-

ing of glass mat thermoplastics using compression molding. Their work handled

the temperature distribution and interaction between materials involved in this

process. Jayavardhan et al. [82] discussed the manufacturing of glass microbal-

lon using compression molding. They observed that the increase of filler content

decreases the tensile strength. Jeong et al. [83] discussed the manufacturing of

carbon fiber reinforces plastic using process of preimpregnated compression mold-

ing. However, this process produces defects involving voids and micro grooves.

To avoids these defects, their main focus would be on the manufacturing of a

roof panels using vacuum-assisted preimpregnated compression molding. Wei et

al. [84] used Phan-Thien-Tanner model to study polymer melt flow in compression

molding process. Shear-thinning of polymer has been described by using analyt-

ical stress solution. Experiments are conducted to check the validity of solution.

Chuaynukul et al. [85] presented the comparison between solution casting and

compression molding methods. They used both methods for the preparation of

fish and bovine gelatins. Comparison shows that gelatins films made from casting

method had higher yellowness, water-vapor barrier and extensibility as compared

to those films made from process of compression molding.

Compression molding of deformable porous material preimpregnated with liquid

is difficult to analyze. As material deforms due to which permeability of material

changes, so mixture theory is the suitable choice for analyzing the process. Farina

et al. [11] used mixture theory to investigate the compression molding process in

which flow in the deformable porous material is involved. In this problem, piston is

used to compress preimpregnated layers of deformable porous material. First, the

problem was modeled using the Eulerian frame and then the problem is formulated

in Lagrangian formalism. Dynamics of the system is controlled either by applied

pressure on the piston or by the velocity of the piston. Moreover, mixture theory

is also applicable to soft biological tissues as these tissues behave like deformable

porous material.
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The journey of studying soft biological tissues using mixture theory is dated back

to the work of Kenyon [86–88], who investigated the radial flux of Newtonian

fluid flow through a porous cylinder following a mathematical model of fluid flow

through arterial wall. Similarly, Jayaraman [89] investigated theoretically water

transport in arterial wall with the assumption of constant permeability. Jain and

Jayaraman [90] studied the similar problem by considering the two layers for New-

tonian fluid flux through an artery. Similarly, Klanchar and Tarbell [91] investi-

gated the water transport in arterial tissue under the assumption that permeability

of arterial tissue is strain-dependent. Holmes et al. [92] formulated the kinemat-

ics for visco-elastic response of articular cartilage during loading circumstances.

They reported a nonlinear diffusive interaction between the fluid and porous solid

phases of the soft tissue during flow. In modeling governing dynamics, they consid-

ered interaction under uni-axial stress relaxation in compression. They employed

biphasic mixture theory in which strain-dependent permeability was incorporated

that was found in an earlier experimental study. Mow et al. [93–97] extended his

work and apply mixture theory on articular cartilage by considering the cartilage

composed of two phases: deformable porous material and synovial fluid. Ateshian

et al. [98] investigated the role of surface porosities and interstitial fluid pressur-

ization on the boundary friction of cartilage. They developed a theoretical model

of a boundary friction for soft biological tissue (articular cartilage). Their model

gives the insight of fluid pressure inside the tissue during confined compression.

Results gave an excellent agreement by comparing theoretical proposed model with

experimental results.

Based on the previous study, the behavior of a cavity during an injection of New-

tonian fluid into soft biological tissue is considered [99]. Due to high pressure,

fluid flows into the tissues which are near to cavity. However, it is absorbed

by lymphatics and capillaries. The absorption of the fluid depends on the local

pressure. Tissue is modeled by considering it as a deformable porous material.

Governing equations for solid displacement and fluid pressure are solved analyt-

ically and numerically. Barry and Aldis [100] studied the behavior of biological

tissues due to fluid flow. Flow-induced deformation due to pressure difference
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is analyzed for finite and as well as infinitesimal deformations. Solution is ob-

tained for one-dimensional compression and use experimental data for compari-

son. Matthew [101] used mixture theory to model lungs. Similarly, Oomens et

al. [102] used mixture theory to model skin by considered it to be a mixture of

fluid phase and a solid phase. A nonlinear system is obtained after mathematical

manipulation. A numerical technique is employed to solve the system of equation

describing the skin. Cornea [103] is modeled by considering it to be biphasic mix-

ture of a solid phase and a fluid phase Mathematical manipulation gives integral

solution, which shows that rate of swelling depends on the cornea permeability

and swelling pressure. Comparison of experimental and numerical results is also

given. For a future direction, experiment is suggested to test the validation of the

given theory. All the studies described above were subject to the assumption that

tissue is a biphasic mixture of solid and fluid, however, a revolutionary idea was

presented by Lai et al. [104] for articular cartilage to develop a triphasic mixture

theory by including ion phase in addition to solid-fluid phases, representing anion

and cation of NaCl salt.

Triphasic theory is formed by combination of two theories; biphasic mixture the-

ory and physico-chemical theory. Gu et al. [105] investigated ion transport and os-

motic flow using the triphasic theory in a steady diffusion process through charged

hydrated cartilage tissue and examined that solvent would flow from positive os-

mosis (i.e. high salt concentration side) to negative osmosis (i.e. low concentration

side), when the constant charge density within the cartilage separating the two

electrolyte solution was less than a critical value. Sun et al. [106] developed a

mixed finite element formulation for charged hydrated soft tissue using tripha-

sic mechano-electrochemical theory. Cation and anion, electrochemical potentials

for water and solid displacement are considered as degrees of freedom. Newton-

Raphson is used to tackle the nonlinear terms. Implicit Euler backward method is

employed to solve Ordinary Differential Equations. One-dimensional free swelling

and stress relaxation problems are investigated using finite element formulation.

Convergence and accuracy of formulation for one-dimensional problems are com-

pared with finite difference techniques. Comparison with other methods shows the
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excellent agreement of results of finite element formulation.

Recent studies suggest that variation of molecular level within the cartilage tissue

causes the degeneration of tissue [107]. Thus, it is important to understand the ma-

terial properties of articular cartilage and interaction among collagen-proteoglycan

matrices. Their physical parameters can be studied by examining the swelling dy-

namics of biological tissue. Various studies have been reported that tissue shrink-

age or expansion resulting from changes in ionic strength of articular cartilage due

to bathing solution [108, 109]. It is a well known established fact that swelling of

the cartilage is due to the ion imbalance between interstitial fluid, cartilage and

proteoglycans molecules which are enriched with negative charge. Elmore and

co-authors [110] discussed the imperfect elasticity of cartilage and reported the

change in deformation in tissue due to increase in cation concentration. Myers et

al. [27] studied ion-induced deformation of cartilage for constant permeability us-

ing continuum mixture theory. In particular, a set of experiments were performed

for isometric tension as well as free swelling states on a rectangular strip of car-

tilage subject to change in salt concentration of the bathing solution. This study

extended biphasic theory by adding the ion-concentration term in the solid stress

equation and reported that deformation of articular cartilage is inhomogeneous and

anisotropic in nature. Myers et al. [14] investigated the behavior of a sample of soft

tissue using triphasic theory due to change in ion-concentration in and around the

tissue. Under certain assumptions, the governing equations were reduced to cou-

pled partial differential equations which were given in spherical, cylindrical and

Cartesian geometries involving solid deformation and ion-concentration. Their

work predicted a lower ion concentration for Cartesian geometries as compared

to earlier work of Myers et al. [27]. They made a comparison between theoreti-

cal and experimental work for Cartesian geometry which deals with changing the

ion-concentration of NaCl salt solution shower on a strip of soft biological tissue.

Gu et al. [111] presented a triphasic mixture theory for biological tissues. They

modeled charged hydrated tissue by considering it as a mixture consists of three

phases, i.e., ion-phase, solvent phase (non-charged) and a solid phase (charged).

Result of their theory shows that various forces are involved in flow of solvent and
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ions through the soft tissues: 1) An electric force; 2) an electrochemical force; and

3) mechanochemical force. They also show that various material properties are

govern the transport rates of solvent and ions from the soft tissues. They have

also presented the fluid velocity field, stress and strain for an infinitesimal thick

tissue sample during diffusion process. Numerical results have been presented for

exchange of ions through the soft tissue.

Ricken et al. [112] presented a triphasic model for a biological tissue. They modeled

the tissue as it consists of water, nutrients and a solid phase. Equation of growth

is found by using theory of porous media by determining the factors on which mass

exchange depends, i.e., local ratio of nutrients and state of stress. After presenting

the detailed model using mathematical calculation, governing equation for large

deformations is presented. Also various numerical examples have been examined.

Gu et al. [113] developed a triphasic theory to study the behavior of soft biological

tissues containing various types of polyvalent ions. They used their theory to model

the transport of ions and fluid through tissues. Frijns et al. [114] extended the

triphasic theory to quadriphasic theory in which cations and anions are included as

separate phases along with solid and fluid phase to observe shrinking and swelling

behavior of the intervertebral disc. Recently, Cyron and Humphrey [115] used

mixture theory to study soft biological tissues. They have reviewed approaches

to model tissues, i.e., hybrid approach, continuum theory approach and mechano-

regulated approach. They have also discussed mechanobiological stability, a new

approach to model soft tissues. They have also discussed future direction for a

modeling of soft biological tissues. Latorre and Humphrey [116] formulated the

mechanobiologically modeling using mixture theory approach. This model used

to analyze the steady-state and time independent responses of soft biological tis-

sues. Governing equations that characterize mechanobiologically model, can be

expressed in terms of nonlinear and time-independent algebraic equations. Solu-

tion to these equations gives the long-term results of tissue growth. Truster and

Masud [117] developed a computational approach using mixture theory approach

to model soft biological tissues. They have considered the problems of soft tis-

sue engineering. They have considered two cases: 1) growth at fixed volume; 2)
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growth at fixed density to analyze the various types of tissues. Numerical study

is employed to study the effects of various parameters. Pourjafar et al. [118] have

numerically studied the linear stability of two-dimensional flow of viscous fluids

through channel. Viscoelastic bio-material layer is used to line the channel. Model

is developed using biphasic mixture theory to handle solid-fluid interaction. Basic

solution is obtained which was analyzed by using linear stability analysis. Af-

ter mathematical manipulation, eigenvalue problem has been obtained, which was

tackled using numerical technique. Numerical simulations show that anisotropy

has no effect on stability of viscous fluid flow. However, inhomogeneity causes

critical effect on Reynolds number. Due to importance of non-Newtonian fluid,

Aftab et al. [119] investigated the behavior of a spherical cavity during an injection

of non-Newtonian fluid. Governing equations are obtained in terms of fluid pres-

sure and solid displacement. Numerical results predicted that shear-thinning fluid

exhibits more fluid pressure and induces more solid deformation as compared to

shear-thickening fluid. Increase in the solid deformation increases the absorption

of the non-Newtonian power-law fluid in the biological tissue. Results are com-

pared with Newtonian fluid to magnify the effects. Farooq and Siddique [120] used

mixture theory to study the effects of permeability parameter and power-law index

on the articular cartilage due to non-Newtonian fluid flow. Results were presented

for solid deformation and fluid pressure. Graphical illustrations show that strain-

dependent nonlinear permeability induces less solid deformation as compared to

the linear permeability. Moreover, authors [121–125] used mixture theory to model

cancer, tumor growth and remodeling of soft biological tissue. Now we turn our

attention to the process of magnetohydrodynamics (MHD).

In magnetohydrodynamics process, magnetic fields can induce forces in a moving

conductive fluid, which in turn changing the magnetic field itself. In 2011, El-

dable and co-workers [126] presented revolutionary work by developing a model

for the flow of non-Newtonian fluid (bi-viscosity) through porous media under an

applied magnetic field. Model is based on the assumptions that porous material

is homogeneous, isotropic and linear elastic solid. Various laws of Physics are
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combined to form governing equations in terms of fluid velocity and solid displace-

ment. Fourier series has been used to solve these equations analytically. Graphs

are obtained to show the effects of interaction between solid phase and a fluid

phase, non-Newtonian parameters and magnetic field on the fluid flow.

Following this work, Siddique and Kara [127] discussed the capillary rise of MHD

fluid into deformable porous material. Due to capillary suction, fluid begins to

imbibe in a dry and undeformed sponge type porous material. They showed that

the force that induces a stress gradient is the pressure gradient across the evolving

sponge and causes solid deformation. Problem is formulated into nonlinear mov-

ing domain problem and transformed to a fixed domain problem using appropriate

coordinates. Method of Lines approach has been employed to solve the nonlin-

ear equations. Graphical illustrations show that solid deformation decreases and

capillary rise of fluid reduces due to magnetic effects.

Naseem et al. [128] investigated the problem of infiltration of the MHD fluid into

a deformable porous material. Mathematical model has been developed using

mixture theory approach. A nonlinear free boundary problem has been obtained

after mathematical manipulation. Due to the capillary rise action of the fluid,

the driving force of pressure gradient across the porous material produces stress

gradient which in turn generates solid deformation in the material. Method of

Lines approach is used to solve governing equations. Graphical comparison with

Newtonian fluid shows that uniform magnetic field slows down the capillary rise

process.

Sreenadh et al. [129] studied the problem of Couette flow of a Jeffrey fluid in

the channel. Under an applied magnetic field, the channel under consideration is

bounded below by a moving rigid plate and by a finite layer of a deformable porous

material. The governing equations for velocity field and solid displacement are

obtained after mathematical manipulation. These equations are not only solved

in the porous flow regions but also in the free flow. Graphical results are used to

analyze the effects of viscosity parameter, magnetic parameter, Jeffrey parameter,

shear stress, mass flux, displacement and upper plate velocity.
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Aftab et al. [130] investigated the interaction of electrically conducting fluid and

biological tissue. In the presence of uniform magnetic field, a mathematical model

has been developed to observe deformation in the tissue due to fluid flow. The

biological tissue has been modeled on the assumptions that it is deformable porous

material and consists of two phases, i.e., solid phase and a fluid phase. The

driving force is the high cavity pressure that generates fluid flow through the

biological tissue. Mixture theory is employed to develop the mathematical model

on the assumption that permeability of the tissue is nonlinear strain-dependent

and deformation of the solid is very small. Governing equations for fluid pressure

and solid deformation are obtained after mathematical manipulation. Method of

Lines approach has been employed to solve governing equation for fluid pressure,

whereas trapezoidal rule has been employed to solve governing equation for solid

deformation in the tissue. Graphical results show the effects of magnetic parameter

on the solid deformation and fluid pressure.

Usman and Javed [131] studied the biomechanical response of soft biological tissue,

hydrated with an electrically conducting liquid. Uniform magnetic field is applied

to biphasic mixture of fluid phase and a solid phase. Pressure applied on the

tissue, and permeability of the tissue govern the solid deformation and rate of

flow. Tissue is modeled on the assumption that constituents of the tissue are

incompressible. Governing equations of solid displacement and fluid pressure are

obtained after mathematical manipulation. Numerical solution is obtained for

strain-dependent permeability, whereas analytical solution is given for constant

permeability. Graphical illustration shows the effects of magnetic parameter on

fluid pressure and solid displacement. We now turn our attention to the application

of MHD.

In the last few decades, many authors discussed the applications of magnetic field

to biological tissues. Magnetic and electric fields can induce currents in synovial

joints and also in synovial fluid [132]. Magnetic fields can induce currents in the

body and also can pass through the biological tissues. External applied field causes

biological effects in various physiological systems [133]. The important application
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of magnetic field in an artificial human joints has been presented by Bagwell et

al. [134] through the model which incorporating bone in-growth into the porous

implants. It has been a well-establishing fact that the external applied magnetic

field has notable effects on physiological systems and can regenerate biological

tissue.

Elco and Hughes [135] presented the idea of magnetohydrodynamic bearing and

also analyzed two different types of bearing. They have considered axial induced

current pinch with bearing of hydrostatic thrust. It has been shown that pinch

effect can increase the load capacity. They have considered the second bearing

and called it infinite inclined slider with an external applied magnetic field per-

pendicular to the slider’s motion and parallel to the bearing’s surface. For this

type the electrical characteristics, load capacity and pressure distribution have

been calculated. Yamamoto and Gondo [136] investigated the effect of externally

applied magnetic fields on carbon steel. They showed that magnetization can in-

crease the reactivity of carbon steel. It has been also proved that the coefficient

of friction can also increase by applying the magnetic field. Due to an increase

in the coefficient of friction, the resistance of the boundary films or the adsorbed

films increases. Oils containing polar elements show enhancement in friction as

compared to oils without polar substances. As it has been expected that molecules

with polar substances are oriented with the magnetic field. In 1991, Tandon et

al. [137] presented a possible application of the magnetohydrodynamics (MHD)

for the physiological system. Mathematical model has been developed for the syn-

ovial joints subjected to the transverse magnetic field. Approximate solutions of

the governing equation depend on three regions, i.e., two parallel regions of porous

layers separated by third region of the thin film of synovial fluid. Results show

that suitable adjustment of applied magnetic field can decrease the coefficient of

friction between the joints and can help in normal articulation in arthritis. Yiwen

et al. [138] discussed the various MHD applications in aeronautical engineering,

i.e., MHD turbine engine, MHD acceleration wind tunnel and MHD power gener-

ation, etc. An excellent review on applications of MHD in biomechanics given by
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Rashidi et al. [139]. In the following section, we furnish a brief description of each

problem presented in this thesis.

1.3 Thesis Outline

A deformable porous material deforms when fluid flows through it. Due to defor-

mation its permeability changes which affects the fluid flow. So we need continuum

mixture theory to study the mixture of solid and fluid to examine the deforma-

tion in deformable porous material. We now present a brief introduction of each

chapter in this thesis.

In Chapter 2, basic concepts and definitions are presented related to deformation of

deformable porous material due to fluid flow. Basic equations of mixture theory are

also presented which will be used to model problems in later chapters. Numerical

methods are also discussed which are used to solve nonlinear PDEs which are

obtained after mathematical modeling.

In Chapter 3, a mathematical model of compression molding of deformable porous

material preimpregnated with non-Newtonian fluid is developed using mixture

theory approach. In this process, piston is applied on top of pile to compress

deformable material preimpregnated with non-Newtonian fluid. Moving domain

problem is formulated using Eulerian frame of reference and then transformed to

fixed domain problem using Lagrangian coordinates. The dynamics is controlled

by pressure applied on the piston or velocity of piston. The unsteady solutions for

the solid volume fraction as a function of time and space are presented. In partic-

ular, effect of power-law index on solid volume fraction is illustrated graphically.

The synovial fluid found in the cartilage tissue exhibits the behavior of non-

Newtonian fluid as it contains the hyaluronic acid (hyaluronan), lateral patellar

groove (LPG) and many other traces of different macromolecular components. So,
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it is important to discuss its effects on biological tissues. In Chapter 4, we dis-

cuss ion-induced swelling behavior of soft tissue due to non-Newtonian fluid flow

and its effects on solid displacement and fluid pressure. Mathematical model is

developed using mixture theory approach. Modified Darcy’s law, conservation of

mass for both phases and Navier-Stokes equations are combined to form governing

equations in terms of solid displacement and fluid pressure. Governing equations

are solved numerically to highlight the effects of power-law index and time.

In Chapter 5, we investigated the behavior of soft tissue which is bathed in power-

law fluid under stress relaxation in compression. Ramp displacement is imposed

on the surface of hydrated articular cartilage. Fluid pressure and deformation of

soft tissue are examined for the slow and fast rate of compression. A linear mixture

theory is employed to develop a mathematical model to get governing equations

in term of solid displacement and fluid pressure. Equations are solved numerically

to highlight the effects of power-law index and permeability parameter.

In chapter 6, a mathematical model for compressive stress-relaxation of articular

cartilage has been developed for the deformation of the solid phase of the cartilage

due to the flow of the electrically conducting fluid from it. The model is based

on the biphasic mixture theory which incorporates the nonlinear strain-dependent

permeability. The system of coupled partial differential equations was developed

for the fluid pressure and solid deformation for the slow and fast rate of com-

pression in the presence of the Lorentz forces. The resulting system is solved

numerically using Method of Lines (MOL) and graphs are produced to highlight

the effects of the magnetic parameter on fluid pressure and solid displacement.

In chapter 7, conclusion and future direction are presented.



Chapter 2

Preliminaries

2.1 Introduction

This chapter begins with a brief overview of basic definitions and important con-

cepts which will be helpful in understanding the fluid flow through porous material.

The details of basic equations of mixture theory including balance laws and kine-

matic relations are also given in this chapter. In the end, we present details of

numerical methods used to solve the governing equations obtained after modeling

of different problems.

2.2 Porous Material

A porous material is a material containing pores, empty or void spaces. Skele-

tal portion of this material is called the "frame" or "matrix". Moreover, porous

material is usually characterized by void fraction (porosity). Other properties

associated with such materials are low density, thermal conductivity, chemical

stability and electrical conductivity [140]. Due to excellent chemical and physical

properties, porous materials have been extensively used in various applications

such as adsorbent, thermal insulation, molecular sieves, gas separation and water

purification, etc [141–145]. Due to these important properties, it is essential to

20
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model the problems involving porous materials.

Figure 2.1: Schematic diagram of a porous material [146].

Porous materials are generally classified into two main categories: rigid and de-

formable porous materials. Rigid porous materials are those materials which do

not deform when fluid flows through them such as a brick, wood and pipe, etc.

On the other hand, deformable porous materials are those materials which de-

form when fluid flows through them. Examples of such materials include articular

cartilage, foam and sponge, etc.

2.3 Porosity

Measure of void or empty spaces in a material is called porosity which is a fraction

of the volume of empty spaces over the total volume, between 0% and 100%, or
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as a number between 0 and 1. Mathematically

φp =
Vv
VT
, (2.1)

where Vv is the volume of void space and VT is the total volume of porous material,

including the skeletal as well as empty components. Moreover, due to less poros-

ity, biological tissue like articular cartilage is said to be less porous than a sponge.

The porosity of the porous material can be tested in many ways e.g., imbibition,

gas expansion method, water evaporation method, optical and computerized to-

mography (CT) scanning method.

2.4 Darcy’s Law

Darcy’s law is actually an equation that describes the flow of fluid through per-

meable medium (porous medium). Based on the experimental results, Henry

Darcy [147] formulated the famous Darcy’s law which describes the flow of water

through aquifers. Ignoring the gravitational forces, Darcy’s law is stated that the

total discharge Q′ of fluid from a porous media is directly proportional to perme-

ability κ of porous material, cross sectional area A of a porous media, and total

pressure drop ∆P and inversely proportional to length L over which the pressure

drop is taking place and dynamic viscosity of fluid µ. Mathematically, Darcy’s

law can be written as

Q′ = −κA∆P

Lµ
. (2.2)

The negative sign indicates that fluid flows from high potential energy level (or

high pressure) to low potential energy level (or low pressure). Now for a more

generalized form of Darcy’s law for unit length, we divide both sides of the equation

(2.2) by the area A to get

φE = −κ∆P

µ
, (2.3)

where φE is the discharge per unit area. Darcy’s law is analogous to Ohm’s law

in electromagnetism, Fourier’s law in heat conduction and Fick’s law in diffusion
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theory. Darcy’s law deals with the homogeneous and isotropic porous media and

is valid for low Reynolds numbers. Indeed, Darcy’s law can be easily extended for

multi-phase flows [146].

2.4.1 Permeability

Permeability is defined as the ability of a porous material to allow a fluid to pass

through it. It is denoted by the symbol κ. The permeability of a porous material

depends on the porosity and the structure of porous material.

If the porous material has connective pores then it is more permeable as compared

to porous material having unconnected pores. Permeability is measured in Darcy

(d), named after the French Engineer Henry Darcy. However, the SI unit of

permeability is m2, but unit Darcy (d) is widely used in geology, physics and

petroleum engineering. 1 Darcy is almost equals to 10−12 m2. Permeability can

be written mathematically as

κ = −µ φE
∆P

, (2.4)

where φE is the discharge of fluid per unit area, µ is the dynamic viscosity of

the fluid flowing through the porous material and ∆P is the applied pressure

difference. Moreover, negative sign indicates that fluid flow from high pressure to

low pressure.

It is worth mentioning that the term permeability has different meanings in differ-

ent fields such as transportation, chemistry, electromagnetism and soil mechanics.

2.5 Cell

The word cell derives from the Latin word cella which means small room. Cell is

the basic biological, functional and structural unit of all living organism. Cell is
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the building blocks and smallest unit of life.

The study of cells and their functions is called cellular or cell biology. Cell is

made of cytoplasm present within a membrane, consisting of bio-molecules such

as nuclear acids and proteins. Organism can be classified on the basis of cell,

multicellular (including animals and plants) or unicellular consisting of a single

cell including bacteria.

2.6 Tissue

The word tissue comes from the French word "tissu" which means something

that is "woven". Tissue is used to describe a group of cells found together in an

organism having an identical structure that achieve the same tissue’s function and

makes up the organs in the animal body such as the articular cartilage, lungs,

brain, and heart, etc.

On the basis of structure, animal’s tissues are classified into four types: nervous,

muscle, connective and epithelial. Histology is a branch of biology in which we

study animal and human tissues and called histopathology if it in connection with

any disease.

Moreover, soft tissues are those which surround, support and connect other organs

of the animal body, such as the synovial membranes, fibrous tissues, tendons,

fascia, nerves and ligaments. Soft tissue like articular cartilage composed of ground

substance, elastin, collagen and exhibit properties of porous material which make

them amenable to the physical and mathematical analysis.

Humphrey [1] mentioned and discussed different theoretical frameworks available

in literature for modeling different biological tissues. Among these, mixture theory

is one of widely used and well-accepted theory, in which biological tissue is modeled

by considering it porous material and consist of two phases i.e., solid and fluid.

Figure 2.2 shows types of animals tissues, i.e., Connective, Epithelial and Muscle

and Nervous tissues.
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Figure 2.2: Types of animal tissue [148].

2.7 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is a branch of Fluid Dynamics that deals with

the dynamics of the magnetic field in an electrically conducting fluid, i.e, elec-

trolytes, plasmas, salt water, electrolytes and liquid metals. Swedish physicist

Hannes Alfven was the first one who laid down the foundation of this field. The

coupling of Navier-Stokes equations with Maxwell equations is used to describe the

dynamics of MHD system. Initially, MHD was applied to model the problems of

geophysics and astrophysics, however, its applications are now encompassing many

other branches of science such as magnetobiology, magnetochemistry and bioelec-

tromagnetism, etc. Moreover, applied magnetic fields have significant effects on

industrial as well as physiological systems. It has been verified experimentally that
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external applied magnetic field regenerates the biological tissue and also stimulates

the function of tissues [149, 150]. Recently, many hazardous diseases such as tu-

mors and cancer are treated by using an applied magnetic field [151, 152]. It is

worth mentioning that the human body contains a magnetic field, which can as-

sist in drug targeting and cell isolation for clinical purposes under suitable applied

magnetic field [153].

2.8 Preimpregnated Materials

Preimpregnated materials are composite materials in which a number of fibers

is pre-impregnated with a thermoset resin matrix or thermoplastic in a certain

ratio. Due to unique properties, preimpregnated materials can be cured under high

pressures and temperatures. Common resins include epoxy, urea-formaldehyde,

alkyds, phenolic and silicone, etc.

2.9 Heaviside Step Function

The Heaviside step function is also called Unit step function, usually represented

by θ(x) or H(x). Olive Heaviside was an English physicist and mathematician,

who developed the idea of this function on the bases of signal that turns on at

a specific time and stays on indefinitely. Mathematically, Heaviside step function

can be written as

H(x) =

0, x ≤ 0

1, x > 0

(2.5)

2.10 Fluid and Its Classification

A fluid is a substance that has no fixed shape and deforms easily under an applied

stress. Petrol, syrup, ketchup, air and water are some examples of fluids. Viscosity
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and density are two intrinsic properties of fluid which govern the behavior of

fluid flow. Viscosity of fluid is a measure of its resistance to gradual deformation

by tensile stress or shear stress. It corresponds to the measurement of internal

thickness of fluid. For example, honey has a higher viscosity than petrol whereas

density determines that how much mass of a substance is present and how much

space is covered by it. Generally, density is defined as mass per unit volume.

Fluids are classified on the basis of viscosity. Sir Isaac Newton was an English

physicist and mathematician, who in the late seventeenth century stated the New-

ton’s law of viscosity which states that shear stress in a fluid is directly proportional

to the velocity gradient, i.e. time rate of strain. Such types of fluids are called

Newtonian fluids. Mathematically, Newton’s law of viscosity can be written as

τ = µ
du

dy
(2.6)

where τ is the shear stress, µ is viscosity and du/dy is the rate of shear deformation.

All those fluids which do not obey the Newton’s law of viscosity are called non-

Newtonian fluids. An ostwald-de waele or the power-law model, is a generalized

fluid model for which the shear stress, τ , is given as

τ = K

(
du

dy

)n
(2.7)

where K is the flow consistency index and n is the power law index. On the basis

of value of power law index n, Ostalwald-de waele fluids can be subdivided into

three types. Shear-thinning or Pseudoplastic (n < 1) are those time independent

fluids whose behavior is Newtonian at low shear rates then there viscosity decreases

with increasing shear rate. Shear-thinning fluids are ubiquitous in biological or

industrial processes.

Examples of shear-thinning fluids are styling gel (composed of vinylpyrrolidone

copolymer and water), blood, paints and ketchup. Shear-thickening or dilatant

(n > 1) are those non-Newtonian time independent fluid whose viscosity increases
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with increases in shear rate. A Common household example of dilatant fluid is

oobleck (solution of water and cornstarch).

Figure 2.3 shows the behavior of shear-thinning, Newtonian and shear-thickening

fluids as a function of rate of strain and stress. The profile of Newtonian fluid

shows linear behavior as compared to shear-thinning and shear-thickening fluids.

Profile of shear-thickening fluid shows concave up behavior, whereas, shear-thinning

fluid shows concave down behavior. Table 2.1 shows power-law fluid model. Shear-

thinning fluid corresponds to power-law index n < 1, Newtonian fluid corresponds

to the power-law index n = 1, whereas, shear-thickening fluid corresponds to the

power-law index n > 1.

Figure 2.3: Schematic diagram of a power law fluid presented in a generic
graph of shear stress τ against gradient du/dy [8].

Non-Newtonian fluid is used for manufacturing of specific bulletproof military suit.

There is some type of non-Newtonian fluid present inside the suit, which keeps its

fluid state while the soldier moves or stands still, but will convert into solid state

when the bullet hits.
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Table 2.1: Power-law fluid model

Power-law index n Type of fluid
= 1 Newtonian Fluid
< 1 Pseudoplastic or shear-thinning fluid
> 1 Dilatant or shear-thickening fluid

It is also used for the manufacturing of special sport shoes. In these shoes, in-

terior portion is filled with a specific type of non-Newtonian fluid which retains

its fluid state in normal pressure, but converts into solid state in high pressure to

prevent the feet from injury. So the non-Newtonian fluids find many applications

in military, industry, bio-fluids, automobile, food processing, polymer solutions,

and solid suspensions, etc.

In the following, we give a brief description of the continuum mixture theory which

is a main building block of this thesis.

2.11 Mixture Theory

Mixture is a material that is made by mixing two or more substances together

without any chemical process. Mixture whether man-made or natural exists in

the form of colloids, suspension and solutions. Moreover, the desideratum for the

continuum mixture theory arises whenever processes involve constituents mass

exchanges or relative motions between the constituents of mixture. These phe-

nomenon can be found in both biological as well as in industrial settings and can

be analyzed using mixture theory. Epstein and Marcelo [154] stated the basic

assumptions of mixture theory are (i) at any instant of time, all constituents of

mixture are present at each point of spatial domain and (ii) the mixture obeys

basic principals of mass and momentum balances. The basics of balance laws and

kinematics for the mixture of n constituents is presented below.

Consider a mixture that consists of n ≥ 2 immiscible constituents which are sup-

posed to occupy each point in space at each instant of time. Moreover, motion of
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the n constituents of mixture is described by n equations

x = χϕ (Xϕ, t) , (2.8)

where ϕ = 1, 2, 3, 4, ...., n and Xϕ represents the typical material point belonging

to the reference configuration of the ϕth constituent. At any time t, x represents

the typical point in the configuration occupied by the mixture.

The inverse function of χϕ can be represented as

Xϕ = ζϕ(x, t). (2.9)

The mass density, ρ, of the mixture can be expressed as

ρ =
n∑

ϕ=1

ρϕ, (2.10)

where ρϕ represents the mass density of the ϕth constituent of the mixture. The

volume fraction φϕ of the ϕth constituent of mixture is expressed as

φϕ =
ρϕ

ρϕp
, (2.11)

where in homogenous state, density for ϕth constituent is represented by ρϕp . The

volume fractions must satisfy the following equation for a saturated mixture

n∑
ϕ=1

φϕ = 1. (2.12)

Moreover, a velocity field vϕ associated with each constituent of a mixture ex-

pressed in material description as

vϕ =
∂Xϕ

∂t
. (2.13)

The Eulerian description of the velocity field is given by the relation

vϕ = vϕ(x, t). (2.14)
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Now we introduce a mean velocity of the mixture which is the sum of individual

mass flows equals to the flow of total mass so that

ρv =
n∑

ϕ=1

ρϕvϕ. (2.15)

It is worth mentioning here that mean velocity of the mixture is considered as

the velocity of center of mass of constituents. However, it is noted that v has no

physical significance and can be replaced by a diffusion velocity expressed as

uϕ = vϕ − v. (2.16)

Now for ϕth constituents of the mixture, material time derivative Dϕ

Dt
for the arbi-

trary scalar function ψ is expressed as [20, 155]

Dϕψ

Dt
=
∂ψ

∂t
+ (vϕ · ∇)ψ. (2.17)

For a mixture as a whole, material time derivative can be written as

Dψ

Dt
=
∂ψ

∂t
+ (v · ∇)ψ. (2.18)

Moreover, we turn our attention to the conservation of mass and the linear mo-

mentum for the mixture. Conservation of mass is given by Atkin and Craine [20]

for the ϕth component of mixture is

∂ρϕ

∂t
+∇ · (ρϕvϕ) = ρϕΦϕ, (2.19)

where ρϕΦϕ is the mass supply rate of the ϕth constituent of the mixture.

Similarly, conservation of linear momentum for ϕ constituent of mixture is

∂

∂t
(ρϕvϕ) +∇ · (ρϕvϕ ⊗ vϕ) = ∇ · T ϕ + ρϕΦϕvϕ + πϕ + ρϕbϕ, (2.20)

where Tϕ is the stress tensor, ρϕbϕ the body force, πϕ is the internal interaction

force. Articular cartilage is binary mixture of fluid and solid (i.e. ϕ = f, s),
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under certain assumptions, conservation of mass (2.19) and conservation of linear

momentum (2.20) will be used to develop mathematical model of binary mixture

of fluid and solid. The simplified form of balance (2.19) under certain assumptions

is given by Fusi and Farina [155]

∂ρ

∂t
+ div(ρv) = 0. (2.21)

Similarly, simplified form of linear momentum (2.20) is written as

ρ
Dv

Dt
= ρb+ divT . (2.22)

The assumptions that have been used in above two equations are
∑n

ϕ=1(πϕ +

ρϕΦϕvϕ) = 0 and
∑n

ϕ=1 ρ
ϕΦϕ = 0. It is worth mentioning that only conservation

of linear momentum and mass for the mixture are presented here. Moreover,

rotational and thermal effects are not considered in this study.

2.12 Power-law Fluid Modeling for a Biphasic Mix-

ture of Solid Phase and a Fluid Phase

Consider the binary mixture of a deformable porous material and non-Newtonian

fluid. Problem is modeled using continuum mixture approach. Basic assumption

of mixture theory is that each constituent of mixture is continuous and present

at each point in the mixture. Further assumption is that solid elastic matrix is

isotropic and homogeneous and also assume that fluid in a biphasic mixture is

viscous and non-Newtonian which follows power-law model. The apparent density

for the constituents of the mixture is written as

ρβ = lim
dV→0

dmβ

dV
, (2.23)

where β = s represents solid phase, whereas β = f represents fluid phase, dmβ

be the mass of β phase in small volume dV . The relative porosity φβ and true
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density ρβT of the β phase of the biphasic mixture are written as

φβ = lim
dV→0

dV β

dV
, (2.24)

ρβT = lim
dV β→0

dmβ

dV β
, (2.25)

where dV β represents small volume of the β phase. Using relations (2.24) and

(2.25) into equation (2.23), we get a equation which defined relation between

porosity and density as

ρβ = φβρβT . (2.26)

The relation between volume fractin of the solid phase φs and volume fraction of

fluid phase φf can be defined as [99]

φs + φf = 1. (2.27)

Similarly, relation for density of the solid phase ρs and density of the fluid phase

ρf with density of mixture ρ is written as [99]

ρs + ρf = ρ. (2.28)

Conservation of balance of linear momentum for solid and fluid phases can be

written as

ρβ
(
∂vβ

∂t
+ (vβ · ∇)vβ

)
= ∇ · T β + ρβbβ + πβ, (2.29)

where β = s represents the solid phase and β = f represents the fluid phase,

T β = −φβpI + σβ represents stress tensor for the β phase, I is the identity
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tensor, φβ represents volume fraction of β phase. Conservation of balance of mass

for the solid and a fluid phase can be written as [99]

∂ρs

∂t
+∇ · (ρsvs) = 0, (2.30)

∂ρf

∂t
+∇ ·

(
ρfvf

)
= −γp, (2.31)

where vs, vf are the velocities, and ρs, ρf are the densities of solid and fluid

phases, respectively, p be the fluid pressure and γ is a constant of proportionality

which depends upon the permeability of the walls and lymphatics in the tissue.

Moreover, the term −γp appearing in equation (2.31) depends upon the loss of

liquid mass which is proportional to the fluid pressure p while it passed through

lymphatics and capillaries. Using the equation (2.26) into the equations (2.30)

and (2.31), we get

∂φs

∂t
+∇ · (φsvs) = 0, (2.32)

∂φf

∂t
+∇ · (φfvf ) = −γp

ρfT
. (2.33)

Adding equations (2.32) and (2.33) along use of relation (2.27), yields

∇ · vc = −γp
ρfT

(2.34)

where

vc = vsφs + vfφf , (2.35)

is defined to be composite or macroscopic velocity of the biphasic mixture. The

equation of diffusive resistance for non-Newtonian power law fluid can be written
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as [9]

πs = −πf = K(vf − vs)
∣∣vf − vs∣∣n−1 − p∇φs, (2.36)

where n corresponds to the power law index with n < 1 for Pseudoplastic or shear-

thinning fluids, n > 1 for dilatant or shear-thickening fluids, and K represents

coefficient of diffusive resistance. Substituting n = 1, in equation (2.36), gives

the relation for the Newtonian fluid [99] and substituting velocity of solid phase

vs = 0, and solid volume fraction φs = constant, yields relation for the rigid

non-Newtonian fluid case. On substituting equation (2.36) in equation (2.29), the

momentum balance equation for the solid phase takes the following form

ρs
(
∂vs

∂t
+ (vs · ∇)vs

)
= ∇ · T s + ρsbs +K(vf − vs)

∣∣∣vf − vs∣∣∣n−1
− p∇φs. (2.37)

Similarly, the momentum balance equation (2.29) for the fluid phase takes the

following form

ρf
(
∂vf

∂t
+ (vf · ∇)vf

)
= ∇ · T f + ρfbf −K(vf − vs)

∣∣∣vf − vs∣∣∣n−1
+ p∇φs (2.38)

2.13 Numerical Method

In this section, we present the numerical technique Method of Lines and the MAT-

LAB solver pdepe which will be utilized to to solve the resulting nonlinear partial

differential equations.

2.13.1 Method of Lines

The Method of Lines (MOL) is a numerical technique in which space deriva-

tives are discretized using finite elements or finite differences and leaving the time

variable continuous. This technique gives the system of coupled ODEs with same

number of initial boundary values which can be solved using suitable ODE solvers.

The salient features of MOL include: numerical stability, computational efficiency,
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reduced computational time and reduced programming effort, which evidently jus-

tify the uses of MOL. In order to illustrate MOL, we present a solution of simple

partial differential equation

∂u

∂t
= 3

∂2u

∂x2
, (2.39)

0 < x < 2, t > 0,

subject to following initial and boundary conditions

u(x, 0) = 50, (2.40)

u(0, t) = 0, (2.41)

u(2, t) = 0, (2.42)

admitting the analytical solution

u(x, t) =
∞∑
k=0

200

π

1

2k + 1
e−3(2k+1)2π2t/4sin

(
(2k + 1)πx

2

)
. (2.43)

We discretize the space derivative appearing in equation (2.39) by using central

finite differences

duj
dt

= 3
uj+1 − 2uj + uj−1

dx2
, j = 1, 2, 3, ...., N, (2.44)

where the value of u0 and uN+1 can be found from boundary conditions (2.41)-

(2.42) [156] and

xj = jdx, (2.45)
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dx =
2

N
, (2.46)

uj = u(xj, t). (2.47)

The value of initial condition at each node can be calculated from the equation

(2.42) as

u(xj, 0) = 0. (2.48)

Thus, we have obtained a system of N ordinary differential equations (2.44) with

initial conditions given in equation (2.48), which is solved using well established

MATLAB’s ODE solver ode45. In Figure 2.4, we present a graphical comparison

between numerical (MOL) and exact solution of parabolic PDE (2.39) at time

t = 1.5. Graphical results show the excellent agreement between the two solutions

which validate our proposed numerical scheme.

Figure 2.4: A comparison between MOL and analytical solution of the
parabolic PDE (2.39). Exact (solid line) and numerical (dashed line) are plotted
to compare two solutions.
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In addition to this, we also present a table in which absolute error between numer-

ical and exact solutions for different number of nodes is given. The absolute error

between MOL and exact solution in Table (2.2) for different number of spatial

nodes N at time t = 1.5 justifies MOL numerical scheme.

Table 2.2: Maximum absolute error between MOL solution and exact solution
of parabolic PDE (2.39) for different spatial nodes at time t = 1.5.

Number of Nodes Error=max(| MOL-Exact |)

150 1.4943× 10−4

400 5.3229× 10−5

600 3.4852× 10−5

2.13.2 pdepe

The pdepe (MATLAB built-in solver) is used to solve initial-boundary value prob-

lems usually in single spatial variable. pdepe stands for parabolic-elliptic partial

differential equation. The function pdepe is based on the Method of Lines which

uses finite differences for discretizing the spatial derivatives to convert the PDEs

into coupled ODEs and leaving the time derivative continuous. The resulting

ODEs are then integrated by MATLAB ODE solver ode15s. Aftab et al. [119]

used pdepe for the numerical study of non-Newtonian flow-induced deformation

in a biological tissue. However, for nonclassical boundary conditions and complex

geometries pdepe proves to be inadequate and a more sophisticated code MOL is

needed.



Chapter 3

Non-Newtonian Flow in Deformable

Porous Media: Modeling and

Simulations of Compression

Molding Processes

3.1 Introduction

In this chapter, a mathematical model of non-Newtonian flow in a deformable

porous media has been developed using continuum mixture theory to understand

the process of compression molding. In the compression molding, a piston operates

on the top of a pile to compress deformable porous material which is preimpreg-

nated with non-Newtonian fluid. The Eulerian coordinate system has been used

to model the moving domain problem in terms of solid volume fraction, which was

transformed to fixed domain problem using Lagrangian coordinates.

The dynamics of this problem can be controlled either by velocity of piston or

pressure applied on the piston. The governing nonlinear equation for solid vol-

ume fraction is treated numerically to highlight the effects of various parameters.

Numerical results indicate that shear-thinning fluids induce sudden increase in

39
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solid volume fraction φ but bring the material to a final state where φ is greatly

inhomogeneous. Shear-thickening fluid induces increase in solid volume fraction

but the final state of φ is homogeneous. It is worth mentioning here that the

first mathematical model of power-law fluid in combination with mixture theory

for capillary rise into a deformable porous material is presented by Siddique and

Anderson [9] and current chapter is also based on it. Later on, Aftab et al. [119]

developed a similar model for soft biological tissues.

In Section 3.2, mathematical model of compression molding process for moving

domain using mixture theory approach with the help of Eulerian coordinates has

been presented. Section 3.3 deals with the transformation of moving domain

to fixed domain by using Lagrangian coordinates. This is followed by the non-

dimensionalization of governing equation in Section 3.4. Boundary conditions

between deformable porous material and non-Newtonian fluid are presented in

Section 3.5. Results and discussion is given in Section 3.6 which is followed by the

conclusion in Section 3.7.

3.2 Mathematical Modeling in Eulerian formalism

In the compression molding process, we consider a non-Newtonian flow through

deformable porous material. Deformable porous material used in compression

molding process is isotropic and homogeneous. Moreover, continuity equation and

conservation of momentum is written for both fluid and solid phases. The density

of each phase is assumed constant which allows us to write the continuity equation

of each phase as

∂φf

∂t
+∇ · (φfvf ) = 0, (3.1)

and
∂φs

∂t
+∇ · (φsvs) = 0, (3.2)
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where φf and φs are fluid and solid volume fractions, respectively, vf is the velocity

of fluid phase and vs is the velocity of solid phase in the mixture. The conservation

of linear momentum for small deformation and velocity can be written as [11]

∇ · (P I + T′) = 0, (3.3)

where P is pore pressure of non-Newtonian fluid, I is an identity tensor, and T′

is the excess stress, which is positive in compression. Darcy’s law for power-law

fluid can be written as [9]

vf − vs =

(
−κ(F)

φfµ
∇P

) 1
n

, (3.4)

where n is power law index, µ is viscosity of non-Newtonian fluid filled in de-

formable porous media and κ is the permeability tensor which depends on the

deformation gradient F of solid phase defined as

Fij =
∂xi
∂ξj

, (3.5)

where ~xi are the actual coordinates and ~ξj are the coordinates in reference config-

uration when pile is not compressed. We now consider the composite velocity vc

in terms of solid velocity vs and liquid velocity vf as

vc = φsvs + φfvf , (3.6)

where φs + φf = 1. Note that for the rest of the derivation, we use the following

notations φs = φ and φf = 1− φ.

Combining (3.1) and (3.2) and using the relations φs + φf = 1 and equation

(3.6), we obtain

∇ · vc = 0. (3.7)
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Figure 3.1: Evolution of a system. Eulerian model is formulated in the refer-
ence frame, the x-axis. The origin x = 0 corresponds to the piston position at
time t = 0. L∗ represents the initial height of preimpregnated (prepreg) layers,
and s(t) be the piston position at time t > 0.

Now we transform our problem in one dimension setting by considering the motion

of the piston along x-axis as shown in Figure 3.1. Suppose L(t) and s(t) be the

height and position of piston at any time t with respect to principal direction x.

Mathematically, s(t) can be written as

s(t) = L∗ − L(t), (3.8)

where L∗ is initial height of preimpregnated layers. The equations (3.2) and (3.7)

can be written in the component form as

∂φ

∂t
− ∂

∂x
[(1− φ)vf ] = 0, (3.9)

∂vc

∂x
= 0. (3.10)

Note that equation (3.10) shows that composite velocity vc is space independent.

The momentum balance (3.3) can be written in component form as

∂σ

∂x
+
∂P

∂x
= 0, (3.11)
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where σ = (T)xx. Moreover, Darcy’s law (3.4) can be written in component form

as

vf − vs =

(
− κ(φ)

(1− φ)µ

∂P

∂x

) 1
n

, (3.12)

where κ = (κ)xx. Now, the deformation gradient F can be written in one dimen-

sional form as

F =
∂x

∂ξ
=
φ∗

φ
, (3.13)

where φ∗ is the initial solid volume fraction and φ is the solid volume fraction at

any time t. Note that the relation for stress tensor σ is taken from [157], which

depends on solid volume fraction φ

σ(φ) = 0.3[exp(25φ)− exp(10)]. (3.14)

The permeability relation considered in [158] is written as

κ(φ) = 1.5× 10−8exp(−15φ). (3.15)

After some mathematical manipulation, equation (3.6), with the help of equations

(3.11) and (3.12) is written as

vf = vc + φ

(
κ(φ)

(1− φ)µ

∂σ

∂x

) 1
n

, (3.16)

which on substituting into (3.9) with the help of (3.10) allows us to write the

following partial differential equation

∂φ

∂t
=

∂

∂x

[
φ

(
κ(φ)

(1− φ)µ
σ′(φ)

∂φ

∂x

) 1
n

(1− φ)

]
− vc∂φ

∂x
, (3.17)

where

σ′(φ) =
dσ

dφ
.
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It is worth mentioning that equation (3.17) is subject to a moving domain. Moving

domain problem is difficult to handle numerically. Therefore, our aim in the next

section is to transform equation (3.17) to a fixed domain using the Lagrangian

transformation.

3.3 Lagrangian One-Dimensional Model

The problem developed in the previous section is nonlinear and is characterized

by a moving domain that gives rise to several mathematical difficulties. Therefore,

we consider the set of Lagrangian coordinates fixed on the solid skeleton. Let ξ

be the independent variable that labels the solid particles and x = x(ξ, t) be the

position of particle at any time t. Initially, at time t = 0, height of prepreg is L∗

and 0 ≤ ξ ≤ L∗. In Lagrangian model, it is convenient to consider void ratio r,

defined as ratio of volume fraction of infiltrated liquid to volume fraction of solid,

which can be written mathematically as

r =
1− φ
φ

. (3.18)

The stress and permeability relations (3.14) and (3.15) can be written in terms of

void ratio r as

σ(r) = 0.3

[
exp

(
25

1 + r

)
− exp(10)

]
, (3.19)

and

κ(r) = 1.5× 10−8exp

(
− 15

1 + r

)
. (3.20)

Obviously, using material coordinates on the solid skeleton, we transform the

moving domain s(t) ≤ x ≤ L∗ occupied by the prepreg to fixed domain, 0 ≤

ξ ≤ L∗. Deformation gradient F can be written in terms of void ratio r as

F =
∂x

∂ξ
=
φ∗

φ
=

r + 1

r∗ + 1
, (3.21)
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where

r∗ =
1− φ∗

φ∗
.

Using relation (3.21) with the chain rule of derivative, we can write

∂(.)

∂x
=
∂ξ

∂x

∂(.)

∂ξ
=

r∗ + 1

r + 1

∂(.)

∂ξ
. (3.22)

Darcy’s law (3.12) can be modified as

vf − vs =

(
− r∗ + 1

r

κ

µ
Σ(r)

∂r

∂ξ

) 1
n

, (3.23)

where

Σ(r) =

∣∣∣∣dσ(r)

dr

∣∣∣∣ . (3.24)

Note that we have considered the derivative of stress σ with respect to void ratio

r in the above equation. We write equation (3.17) in a specific way to transform

in Lagrangian coordinates as

∂φ

∂t
+ vs

∂φ

∂x
+ (vc − vs)∂φ

∂x
=

∂

∂x

[
φ

(
κ(φ)

(1− φ)µ
σ′(φ)

∂φ

∂x

) 1
n

(1− φ)

]
. (3.25)

Combining equations (3.6), (3.11), (3.12) and (3.25) , we get

(
dφ

dt

)
s

+

(
κ(φ)

(1− φ)µ
σ′(φ)

∂φ

∂x

) 1
n

(1− φ)
∂φ

∂x

=
∂

∂x

[
φ

(
κ(φ)

(1− φ)µ
σ′(φ)

∂φ

∂x

) 1
n

(1− φ)

]
, (3.26)

where the notation of total derivative ( d
dt

)s is used. Now taking into account

equations (3.18), (3.22), (3.24) and (3.26), we can write

∂r

∂t
+

r(r∗ + 1)

(1 + r)2

∂r

∂ξ

(
κ(r)

rµ
(r∗ + 1)Σ(r)

∂r

∂ξ

) 1
n

= −(r∗ + 1)(1 + r)
∂

∂ξ

[
r

(1 + r)2

(
κ(r)

rµ
Σ(r)(r∗ + 1)

∂r

∂ξ

) 1
n

]
. (3.27)
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The appropriate boundary conditions for present problem are written as [11]

∂r

∂ξ
(0, t) = 0, (3.28)

and

r(L∗, T ) = σ−1(P0(t)), (3.29)

above equation corresponds to the pressure driven dynamics.

For velocity driven dynamics, right boundary condition can be taken as

∂r(L∗, t)

∂ξ

= − µ

Σ(r(L∗, t))κ(r(L∗, t))

r(L∗, t) + 1

r∗ + 1
vp(t). (velocity driven dynamics) (3.30)

We propose an initial condition of the following form

r(ξ, 0) = exp

(
−ξ
2

+ 0.9

)
. (3.31)

Note that governing equation (3.27) in terms of Lagrangian coordinates describes

the changes in void ratio r and ultimately in solid volume fraction φ via equation

(3.18). It is important to note that equation (3.27) can be reduced to Newtonian

fluid case [11], when we set power law index n to be 1. However, our focus in this

study is non-Newtonian case where we will consider n 6= 1.

3.4 Non-Dimensionalization

The following set of normalized quantities are utilized to non-dimensionalize the

governing equation (3.27),

Y =
ξ

L∗
, (3.32)
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T =
t

tc
, (3.33)

ψ(r) =
r + 1

r∗ + 1

Σ(r)κ(r)

Σ(r∗)κ(r∗)
, (3.34)

V (t) = vp(t)/Vref , (3.35)

Tf =
tf
tc
, (3.36)

where Vref = L∗

tc
, tc = µL∗

r∗+1
1

Σ(r∗)κ(r∗)
and ψ(r) is a positive smooth function

for r ≥ 0. In order to carry out numerical simulation, we assume that initial

height L∗ = 6 × 10−3 m, viscosity µ = 10 Pas and initial solid volume fraction

φ∗ = 0.4 (i.e., r∗ = 1.5) [11]. Following Farina et al. [11], we consider tc = 146.5

sec, Vref = 4.095 × 10−5ms−1 and Tf = 0.1. Where Tf is the dimensionless time

whereas tc is the dimensional time. Using the dimensionless variables (3.32)-(3.36)

in equation (3.27)-(3.30), we get the following non-dimensional problem

∂r

∂T
= −(61041.67)(−4.6875× 10−6)

1
n r1− 1

n (1 + r)−2− 2
n

(
∂r

∂Y

)1+ 1
n

exp

(
10

n(1 + r)

)
−(61041.67)(−4.6875× 10−6)

1
n (1 + r)exp

(
10

n(1 + r)

)
×[(

1− 1

n

)
r−

1
n (1 + r)−2− 2

n

(
∂r

∂Y

)1+ 1
n

+

(
−2− 2

n

)
r1− 1

n (1 + r)−3− 2
n

(
∂r

∂Y

)1+ 1
n

+

(
−10

n

)
r1− 1

n (1 + r)−4− 2
n

(
∂r

∂Y

)1+ 1
n

+

(
1

n

)
r1− 1

n (1 + r)−2− 2
n

(
∂r

∂Y

) 1
n
−1 ∂2r

∂Y 2

]
, (3.37)

r(Y, 0) = exp

(
−Y
2

+ 0.9

)
, 0 6 Y 6 1, (3.38)

∂r(0, T )

∂Y
= 0, (3.39)
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r(1, T ) = σ−1(P (T )), (3.40)

or

∂r(1, T )

∂Y
= − L∗Vrefµ

κ(r(1, T ))Σ(r(1, T ))

1 + r(1, T )

1 + r∗
V (T ). (3.41)

P (T ) and V (T ) are involved in the above equations and will be explained in the

next section.

3.5 Pressure and Velocity Driven Dynamics

We use Matlab’s function pdepe to solve one-dimensional parabolic and elliptic

partial differential equation (3.37) together with the requisite periodic boundary

conditions and initial conditions. It relies on the Method of Lines, where we

discretize the space derivatives by using finite differences and leaving the time

variable continuous. The resulting ODEs are then solved using ode15 solver.

Following Farina et al. [11], we consider either the pressure or velocity driven

dynamics at x = L∗. Various relations that we use in equations (3.40) and (3.41)

for applied pressure P(T) and velocity V(T) are given below

P1 = 1250000 sin

[
25

3
πT
]
, (3.42)

P2 = 612500 [1− cos(15πT)] , (3.43)

P3 = 61250000T2, (3.44)

V1 = 3 [1− cos (20πT)] , (3.45)
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V2 = 4.14 sin
[π

4
(30T + 1)

]
, (3.46)

V3 =
471

100
sin
[π

2
(10T + 1)

]
. (3.47)

Figure 3.2 shows various pressures (3.42)-(3.44) applied to the piston as a func-

tion of dimensionless time. Solid line corresponds to the pressure P1, dashed line

corresponds to the pressure P2 and dotted one corresponds to the P3. Profile of

P1 and P2 increase with increase in time and then begin to decrease, increase in

P1 is more than P2. Graph shows that P3 increases with increase in time.

Figure 3.2: Pressure applied to a piston as a function of dimensionless T .

Figure 3.3 shows various piston velocities (3.45)-(3.47) as a function of dimension-

less time. Solid line corresponds to the V1, dashed line corresponds to the V2 and

dotted one corresponds to the V3. Profile shows that V1 increases from T = 0 to

T = 0.05 and then begins to decrease and falls to zero at T = 0.1. Graphical

results show that piston velocities V2 and V3 decrease with time and fall to zero

at T = 0.1.
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Figure 3.3: Velocity of a piston V as a function of the dimensionless time T .

Equations (3.42)-(3.47) have completed all the aspects of the problems. In Figure

3.4, solid volume fraction profile is plotted as a function of lagrangian coordinate

Y . Using pdepe, equation (3.37) gives same results for solid volume fraction at dif-

ferent nodes for Y e.g., NY = 20, 40, 80 which shows the convergence of numerical

technique.

Figure 3.4: Solid volume fraction φ against space variable Y using P1(T ) when
n = 1
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It is worth mentioning here that by substituting the power-law index n = 1 in

equation (3.37), the graph of solid volume fraction φ for the velocity V3(T ) reported

by Farina [11], is recovered successfully as shown in Figure 3.5.

Figure 3.5: Solid volume fraction φ against space variable Y and time T using
V3(T ) when power-law index n = 1.

3.6 Results and Discussion

This section contains the output of our numerical simulations for different values

of power-law index n. In particular, the effect of power-law index on solid volume

fraction under pressure and velocity controlled dynamics is illustrated graphically.

Graphical illustration show results for shear-thinning and shear-thickening fluids

using various relations of piston pressures and piston velocities.

Figure 3.6 shows the evolution of the solid volume fraction φ(Y, T ) for shear-

thinning fluid (n = 0.90), when P1(T ) (3.42) is used as a driving pressure. Ini-

tially, there is no change in φ, however, solid volume fraction φ rises with time

at a constant rate and attains the maximum value of 0.58. At the start of the

experiment, compression pushes the pile downward, which in turn pushes the fluid

out of the pile. This is consistent with the fact that the viscosity of shear-thinning

fluid decreases with increasing shear rate.
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Figure 3.6: Solid volume fraction φ against space variable Y and time T using
P1(T ) when power-law index n = 0.90.

Figure 3.7 shows the evolution of the solid volume fraction φ(Y, T ) for shear-

thickening fluid (n = 1.1), when P1(T ) is used as a driving pressure. Solid volume

fraction φ grows with time, gives rise to homogeneous φ in a neighborhood of

draining surface, i.e. Y = 1. Due to decrease in the pressure P1(T ) from the middle

of a procedure, increase in the solid volume fraction φ can be noted. This result is

consistent with the fact that the viscosity of shear-thickening fluid increases with

decrease in shear-rate.

Figure 3.7: Solid volume fraction φ against space variable Y and time T using
P1(T ) for power-law index n = 1.1.
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Figure 3.8 shows evolution of solid volume fraction φ for power-law fluid when

the driving pressure P2(T ) given by the relation (3.43) is used. When n = 0.90

(shear-thinning fluid), a linear behavior is observed initially, however, solid volume

fraction φ attains maximum value 0.58 at final time T = Tf . It is noted that

increase in solid volume fraction slows down before the end of procedure. This is

due to the fact that decrease in the pressure P2(T ), strain-rate gets smaller and

ultimately viscosity of sher-thinning fluid increases.

Figure 3.8: Solid volume fraction φ against space variable Y and time T using
P2(T ) for power-law index n = 0.90.

Figure 3.9: Solid volume fraction φ against space variable Y and time T using
P2(T ) for power-law index n = 1.1.
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On the other hand, Figure 3.9 shows results when non-Newtonian fluid with index

n = 1.1 (shear-thickening fluid) is considered. The solid volume fraction φ shows

linear behavior near boundaries in both figures, whereas the maximum growth

of φ can be observed from time T = 0.05 to T = 0.08. This is due to the fact

that decrease in pressure P2(T ), strain-rate gets smaller and viscosity of shear-

thickening fluid decreases. Imbibition of fluid has been noted before the end of

experiment.

Figure 3.10 and Figure 3.11 correspond to flow of power-law fluid through preim-

pregnated pile, for power-law indices n = 0.90 and n = 1.1, respectively, when

pressure function P3(T ) is utilized. For power-law index n = 0.90, initially smooth

growth in solid volume fraction can be observed, which gradually increases to max-

imum value of 0.58 in a final state. As pressure P3(T ) continuously increases from

start to end of the procedure, and strain-rate becomes higher and higher. So,

viscosity of shear-thinning fluid decreases and solid volume fraction increases. For

power-law index n = 1.1, it reaches to maximum value of 0.59 and gives rise to

an inhomogeneous solid volume fraction φ at T = Tf . It is consistent with the

fact that increase in strain-rate increases the viscosity of shear-thickening fluid.

Resistance in the flow has been occurred due to increase in viscosity of fluid.

Figure 3.10: Solid volume fraction φ against space variable Y and time T
using P3(T ) for power-law index n = 0.90.
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Figure 3.11: Solid volume fraction φ against space variable Y and time T
using P3(T ) for power-law index n = 1.1.

We now move on to discuss the velocity driven dynamics. Figure 3.12 shows

an increase in solid fraction φ for the case when driving velocity V1 is given by

equation (3.47) for index n = 0.80 (shear-thinning fluid). There is no change in φ

at the beginning, however, there is rapid increase of φ in a neighborhood of Y = 1.

Figure 3.12: Solid volume fraction φ against space variable Y and time T
using V1(T ) for power-law index n = 0.80.

Figure 3.13 shows an increase in solid fraction φ(Y, T ) for the case when driving

velocity V1 given by equation (3.45) is used for n = 1.3 (shear-thickening fluid).
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From the upper extremities of the graph, an homogeneous solid volume fraction

can be observed. During the compression molding process, imbibition of shear

thickening fluid in porous deformable media can also be observed at T = 0.05 and

T = 0.08.

Figure 3.13: Solid volume fraction φ against space variable Y and time T
using V1(T ) for power-law index n = 1.3.

Figure 3.14 and Figure 3.15 correspond to the flow of power-law fluid through

porous media, for power law index n = 0.90 and n = 1.1, respectively. In these

figures velocity can be taken to be V2. The velocity of fluid not only alters the

rate of growth of solid volume fraction φ but also vary the compression rate. For

power-law index n = 0.90 (shear thinning fluid), there is increase in solid volume

fraction φ at a constant rate, imbibition of fluid can be also observed at T = Tf .

This is due to the fact that decrease in velocity V2(T ), decreases the shear-rate

and ultimately decreases the viscosity of shear-thinning fluid.

For the case of shear-thickening fluid, (n = 1.1), preimpregnated pile reaches an

homogeneous solid volume fraction φ at T = Tf which is shown in Figure 3.15.

This is due to the fact that V2(T ) increases with time and then begins to decrease,

ultimately viscosity of shear-thickening fluid increases with decreasing shear-rate.
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Figure 3.14: Solid volume fraction φ against space variable Y and time T
using V2(T ) for power-law index n = 0.90.

Figure 3.15: Solid volume fraction φ against space variable Y and time T
using V2(T ) for power-law index n = 1.1.

Figure 3.16 and Figure 3.17 correspond to flow of power-law fluid through pre-

impregnated pile, for power-law indices n = 0.90 and n = 1.1, respectively, when

pressure function V3(T ) is utilized. For power-law index n = 0.90, initially smooth

growth in solid volume fraction can be observed, which gradually increases to
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maximum value of 0.52 in a final state, whereas for power-law index n = 1.1,

pre-impregnated pile reaches an homogeneous φ at T = Tf .

Figure 3.16: Solid volume fraction φ against space variable Y and time T
using V3(T ) for power-law index n = 0.90.

Figure 3.17: Solid volume fraction φ against space variable Y and time T
using V3(T ) for power-law index n = 1.1.

Figure 3.6 and Figure 3.12 show the comparison of solid volume fraction φ(Y, T )

for shear-thinning fluid using P1(T ) and V1(T ), respectively. Exudation of fluid

is much greater for the case of P1(T ) as compared the to case of V1(T ). This

observation is due to the fact that viscosity of shear-thinning fluid decreases with

increasing shear rates.
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Figure 3.7 and Figure 3.13 show the comparison of solid volume fraction φ(Y, T )

for shear-thickening fluid using P1(T ) and V1(T ), respectively. For the case of

P1(T ), solid volume increases but the overall increase is less as compared to the

case of V1. Imbibition of fluid can be observed at the middle and at the end for

the case of V1(T ), whereas it can be observed at the end for the case of P1(T ).

Figure 3.8 and Figure 3.14 show the comparison of solid volume fraction φ(Y, T )

for shear-thinning fluid using P2(T ) and V2(T ), respectively. Negligible increase in

the start, but homogenous volume fraction in the end can be observed for the case

of P2(T ) as compared to the case of V2(T ). This is consistent with the fact that

continuous decrease in the value of V2(T ) decreases the shear-rate and ultimately

increases the viscosity of shear-thinning fluid.

Figure 3.9 and Figure 3.15 show the comparison of solid volume fraction φ(Y, T )

for shear-thickening fluid using P2(T ) and V2(T ), respectively. More increase in

solid volume fraction φ(Y, T ) can be noted for the case of V2(T ) as compared to

the case of P2(T ). This is consistent with the fact that decrease in the value of

V2(T ) decreases the shear-rate and ultimately decreases the viscosity of fluid.

Figure 3.10 and Figure 3.16 show the comparison of solid volume fraction φ(Y, T )

for shear-thinning fluid using P3(T ) and V3(T ), respectively. More increase in

solid volume fraction can be observed for the case of P3(T ) as compared to the

case of V3(T ). As value of P3(T ) increases from T = 0 to T = Tf , ultimately

shear-rate increases which decreases the viscosity of shear-thinning fluid and in-

creases the exudation of fluid. Figure 3.11 and Figure 3.17 show the comparison

of solid volume fraction φ(Y, T ) for shear-thickening fluid using P3(T ) and V3(T ),

respectively. Increase in solid volume fraction is significant for the case of V3(T ) as

compared to the case of P3(T ). This is due to the fact that value of V3 decreases

from T = 0 to T = Tf , ultimately shear-rate decreases and ultimately decreases

the viscosity of shear-thickening fluid.

We can notice for velocity V1, the simulations for shear thickening fluid correspond

to an initial smooth contact between deformable porous material and piston are
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more stressing for the material than velocity V2 which corresponds to an impact

between pre-impregnated pile and piston.

3.7 Conclusion

In this chapter, we have extended the work of Farina et al. [11] to non-Newtonian

fluid using the continuum mixture theory approach keeping in mind an industrial

process which is used for manufacturing of composite materials. The model pre-

sented here is identical to ones in previous works of Barry et al. [159], Presziosi

et al., [160], Anderson [161] and Siddique et al. [9], etc. We have shown the

simulations, generated by dynamics controlled either by velocity of the piston or

pressure applied to the piston.

Pressure Driven Dynamics

• In the case of shear-thinning fluid, compression gives rise to a sudden in-

crease of solid volume fraction φ near the draining surface, which causes the

preimpregnated pile to a final state in which φ is greatly inhomogeneous.

• In shear thickening fluids, there is an increase in solid volume fraction but

compression brings the material into a final state in which φ is almost ho-

mogeneous. Results show imbibition of a shear-thickening fluid into a ‘pre-

impregnated’ pile.

Velocity Driven Dynamics

• In the case of shear-thinning fluid, the compression of prepreg starts from

the draining surface.

• For the case of shear-thickening fluid, we observe that the processes corre-

spond to an initial smooth contact between prepreg and piston are more
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stressing for the material than those corresponding to an impact between

pile and piston.

Here, we have outlined the mathematical modeling of a compression molding pro-

cess using power-law fluid that needs to be explored in many possible directions

both experimentally and mathematically. There are many open questions that still

need to be addressed, such as the inclusion of other non-Newtonian fluid models,

along with comparison with experiments.



Chapter 4

Ion-induced Swelling Behavior of

Articular Cartilage due to

Non-Newtonian flow and its Effects

on Fluid Pressure and Solid

Displacement

4.1 Introduction

The aim of this chapter is to investigate the effects of the non-Newtonian fluid flow

on the deformation of articular cartilage equilibrated in sodium chloride (NaCl)

solution. A sample of articular cartilage is considered which is assumed to be

thin, rectangular, isotropic, linearly elastic solid and from the midzone of the

cartilage. In the presence of a charge due to the ion- concentration of the bathing

solution, a mathematical model of this problem is developed and discussed using

the biphasic mixture theory approach. Suitable normalized quantities are used to

non-dimensionalize the governing set of equations in terms of ion-concentration,

fluid pressure and solid displacement.

62
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The analytical solution is provided for the ion-concentration, whereas for the case

of fluid pressure and solid displacement, equations are solved numerically using the

Method of Lines. The effects of various emerging parameters such as power-law

index and time on the fluid pressure and solid displacement profiles are illustrated

graphically.

In Section 4.2, a mathematical model is developed using biphasic mixture theory.

One-dimensional mathematical model is presented in Section 4.3. Suitable di-

mensional parameters are used to non-dimensionalize the governing set of coupled

equations in section 4.4. Section 4.5 is devoted to the solution methodology. The

results along with discussions have been presented in Section 4.6 followed by the

conclusion in Section 4.7.

4.2 Model Development

We consider a rectangular strip of bovine articular cartilage which is removed from

the midzone of the tissue. Specimen dimensions are measured in a continuous sup-

ply of salt solution of non-Newtonian fluid as shown in Figure 4.1. The dimensions

of the sample tissue are approximately ` = 1.5 × 10−2 m, w = 1.7 × 10−3 m and

h = 2× 10−4 m [27]. The planar coordinates x, y, z are taken along height, width

and length directions, respectively.

Figure 4.1: Schematic diagram of a rectangular strip of cartilage specimen
under continuous supply of salt solution. This geometry shows the cartilage
dimensions (h, w and `) along the planar coordinates x, y and z respectively.



Ion-induced swelling... 64

Articular cartilage can be modeled like other biological tissues [162–164], as a

mixture composed of interstitial fluid and permeable solid matrix [27, 96]. The

mathematical model is developed using continuum theory of mixture on the as-

sumptions that components of tissue are intrinsically incompressible, and that the

solid organic matrix of cartilage is linearly elastic, homogeneous and isotropic.

The basic idea behind the mixture theory is that each phase of mixture is con-

tinuous and occupies each point in the space at each instant of time. We also

assume that fluid considered in this problem is a non-Newtonian that follows the

power-law model. Viscosity of fluid is neglected except for its role in diffusional

drag as interstitial fluid flows through the cartilage. The density of each phase is

assumed to be constant which allows us to write the continuity equation of each

phase as [165]

∂φβ

∂t
+ ∇ · (φβvβ) = 0, (4.1)

where β = f, s corresponds to fluid and solid phase respectively, vβ and φβ is

velocity and volume fraction of β phase respectively. The continuity equation for

the biphasic mixture of fluid and solid phase is written as [165, 166]

∇ · vf = −α∇ · vs, (4.2)

where α is the ratio of solid volume fraction φs to fluid volume fraction φf . The

Navier stokes equation for biphasic mixture of β phase can be written as

ρ
Dβvβ

Dt
= divTβ + ρβ bβ + πβ, (4.3)

where Dβ

Dt
is the material time derivative, T β is partial stress, bβ is the body force

per unit mass and πβ is the local diffusive force of β phase. Using Newton’s third

law of motion for the local diffusive forces of solid and liquid phases implies that

πs = −πf . Due to small mass, velocities and deformation, the influence of body

force and inertial terms are negligible and momentum balance (4.3) reduces to

∇ · T β + πβ = 0. (4.4)
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Following Myers et al. [27], solid stress along with contribution from ionic effects

can be written as

T s = −αpI + 2µse + λseI + αc(2µs + 3λs)CI, (4.5)

where λs, µs are Lamé’s constants for elastic solid matrix, p is the interstitial fluid

pressure, I is an identity tensor, e is the infinitesimal strain tensor of solid phase,

e = trace(e) and αc(2µs + 3λs)CI is the linear contribution of ion concentration.

The fluid stress relation for linear biphasic model is given by [27]

T f = −pI. (4.6)

The equation of diffusive resistance for non-Newtonian power-law fluid can be

written as [9]

πs = −πf = K
∣∣vf − vs∣∣n−1 (

vf − vs
)
, (4.7)

where n corresponds to the power-law index and K represents coefficient of diffu-

sive resistance. Now substituting equation (4.7) into equation (4.4), allow us to

write the following relations

∇ · T s +K
∣∣vf − vs∣∣n−1 (

vf − vs
)

= 0, (4.8)

∇ · T f −K
∣∣vf − vs∣∣n−1 (

vf − vs
)

= 0. (4.9)

Using equation (4.6) into (4.9) gives

∇p+K|vf − vs|n−1
(
vf − vs

)
= 0. (4.10)

Combining equations (4.5) and (4.8), yields

− α∇p+ 2µs∇.e+ λs∇e+ αc(3λs + 2µs)∇C +K|vf − vs|n−1
(
vf − vs

)
= 0.(4.11)
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Elimination of pressure term from equations (4.10) and (4.11), allows to write

K|vf − vs|n−1
(
vf − vs

)
(1 + α) + 2µs∇.e+ λs∇e+ αc(3λs + 2µs)∇C = 0. (4.12)

Until now, we have discussed the vector formulation. The section below is specif-

ically designated for one-dimensional ion-induced deformation of cartilage.

4.3 One-Dimensional Mathematical Model

Following Myers et al. [27], we assume that solid displacement and flow field are

one-dimensional. The liquid velocity is represented by vf (x, t) and solid displace-

ment by u(x, t) of cartilage in the direction of thickness. Integrating conservation

of mass (4.2) and using vs = ∂u/∂t for solid velocity allows us to write the following

equation

vf = −α∂u
∂t
. (4.13)

Using equation (4.13) in equation (4.12), for one dimensional case gives

− (1 + α)n+1K

(
∂u

∂t

)n
+ (λs + 2µs)

∂2u

∂x2 + αc(3λs + 2µs)
∂C

∂x
= 0. (4.14)

The permeability κ for power law fluid can be written as [96]

κ =
1

K(1 + α)n+1
. (4.15)

It is important to note that permeability for the Newtonian fluid case [165] can

be recovered when we substitute n = 1 in the above equation. The another form

of the permeability that was used in [165] is given as κ = k0exp (m∂u/∂x), where

m and k0 are material constants. The term ∂u/∂x is related to dilation or strain

of cartilage. It is important to mention that value of permeability parameter

m for articular cartilage ranges from 0 to 10. It is worth mentioning that m 6= 0

represents nonlinear permeability andm = 0 corresponds to constant permeability.
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Combination of equations (4.14) and (4.15) gives

(
∂u

∂t

)
= κ1/n

(
HA

∂2u

∂x2 + αc(E)
∂C

∂x

) 1
n

, (4.16)

where E = 2µs + 3λs and aggregate modulus, HA = λs + 2µs.

The boundary conditions are given by [27]

u(0, t) = 0, (4.17)

and

∂u

∂x

(
±h

2
, t

)
= −αcE

HA

C

(
±h

2
, t

)
. (4.18)

Following [27], the initial condition is given as

u(x, 0) = 0. (4.19)

Note that equation (4.16) describes the changes in the solid displacement u as a

function of time t and thickness x. Note that for the solution of equation (4.16),

we need solution of C(x, t). It is important to remark that setting the power-

law index n as one and assuming the constant permeability in (4.16), we recover

the dimensional governing equation (12) of Myers et al [27]. The equation for

interstitial pressure p(x, t) in component form is found by combining equation

(4.10) and equation (4.11)

∂p

∂x
=

HA

(α + 1)

∂2u

∂x2 +
αcE

(α + 1)

∂C

∂x
, (4.20)

subject to boundary conditions

p

(
±h

2
, t

)
= 0. (4.21)
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Equation (4.20) is the required dimensional governing equation for interstitial fluid

pressure as a function of thickness x and time t. The fluid pressure can be deter-

mined once the ion concentration C(x, t) and solid displacement u(x, t) are known.

In order to complete all aspects of this problem it is important to mention the dif-

fusion problem for internal salt concentration for the tissue. Following [27], the

diffusion problem is assumed to be uncoupled from the solid displacement and

fluid pressure for salt concentration. Moreover, the diffusion of salt is independent

of convection effects due to body forces and fluid flow. Note that thickness is very

small as compared to length and width of specimen of the cartilage, and NaCl

diffusion in one dimension can be written as

D
∂2C

∂x2 =
∂C

∂t
, (4.22)

where D is the diffusion coefficient of salt in articular cartilage and C is the molar

concentration of salt. subject to the following initial and boundary conditions

C(x, 0) = 0,
∂C

∂x
(0, t) = 0, C

(
±h

2
, t

)
= C0H(t). (4.23)

where C0 is the step rise in concentration of salt imposed on sample of cartilage

and H(t) is the Heaviside step function. It is worth mentioning that solution for

the ion concentration C(x, t) is determined from equations (4.22) and (4.23) and

then used in equations (4.16) and (4.20) to get the solution for solid displacement

u(x, t) and interstitial fluid pressure p(x, t) respectively for the articular cartilage.

4.4 Non-dimensionalization

The following set of normalized quantities are used to non-dimensionalize the

solid displacement, fluid pressure and ion concentration equations

u =
u

h/2
, (4.24)
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x =
x

h/2
, (4.25)

p =
p

p0

, (4.26)

C =
C

C0

, (4.27)

k =
k

k0

, (4.28)

t =
tD

(h/2)2
. (4.29)

The equation of solid displacement (4.16) takes the following dimensionless form

∂u

∂t
= Rη

[
exp

(
m
du

dx

)] 1
n
[
∂2u

∂x2
+Q

∂C

∂x

]1/n

, (4.30)

along with the following initial and boundary conditions

u(x, 0) = 0, (4.31)

u(0, t) = 0, (4.32)

∂u

∂x
(±1, t) = −Q, (4.33)

where η =
(

2κ0HA
h

) 1
n
−1, Q = αcC0E

HA
and R = κ0HA

D
. Choosing η = 1, a natural

length h for the present problem can be written as

h = 2κ0HA, (4.34)
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which is the product of power-law velocity and time.

Similarly the dimensionless equation of interstitial fluid pressure (4.20) can be

written as

∂p

∂x
=

H

p0(α + 1)

(
∂2u

∂x2
+Q

∂C

∂x

)
, (4.35)

subject to conditions

p(±1, t) = 0. (4.36)

The equation (4.35) for pressure gradient on integrating and using (4.36), yields

p(x, t) =
HA

p0(α + 1)

(
∂u

∂x
+QC

)
. (4.37)

The contribution of power law index n, in the fluid pressure comes from the nu-

merical solution of gradient of solid displacement. Similarly, ion concentration

equation can be written as

∂2C

∂x2
=
∂C

∂t
, (4.38)

and the conditions

C(x, 0) = 0, (4.39)

∂C

∂x
(0, t) = 0, (4.40)

C(±1, t) = H(t). (4.41)

The above system of governing equations (4.30), (4.35) and (4.38), subject to

boundary conditions (4.31-4.33), (4.36) and (4.39-4.41) closes our system and so-

lution procedure will be discussed in the following section.
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4.5 Solution Procedure

First, we discuss the solution for the ion concentration due to dependence of solid

displacement and fluid pressure on it. The analytical solution of equation (4.38)

is found by using eigenfunction expansion approach. It is worth mentioning here

that eigenfunction expansion method may not be used on the relation (4.38) since

boundary conditions for the ion-concentration are non-homogeneous. However,

this problem can be solved by introducing a new function

m(x, t) = H(t)− C(x, t). (4.42)

The system for m(x, t) can be written as



mxx(x, t) = mt(x, t),

m(x, 0) = 0,

∂m
∂x

(0, t) = 0.

m(1, t) = 0.

(4.43)

Using separation of variables method by assuming m(x, t) = X(x)T (t), and con-

necting to a common constant −δ, we get the system of ordinary differential equa-

tions (ODEs)

X
′′ + δX = 0, with Xx(0) = 0, X(1)=0,

T ′ + δT = 0.

(4.44)

Auxiliary equation for X is D2 + δ = 0, whereas auxiliary equation for T is

D + δ = 0.

Hence, sum of solutions of m(x, t) satisfying the above boundary conditions have

the following form

m(x, t) =
∞∑
q=0

Bqcos

(
(2q + 1)πx

2

)
exp

(
−(1 + 2q)2π2

4
t

)
, (4.45)
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where Bq are the constants. Now, we can write a continuous function f(x) on

[0, 1] as

f(x) =
B0

2
+

∞∑
q=1

Bqcos

(
(2q + 1)πx

2

)
, Bq = 2

∫ 1

0
f(x)cos

(
(2q + 1)πx

2

)
dx, (4.46)

where B0 =
∫ 1

0
f(x)dx. It is worth mentioning here that

1. For m = n

∫ 1

0

cos(mπx)cos(nπx)dx =
1

2
. (4.47)

2. For integers m 6= n

∫ 1

0

cos(mπx)cos(nπx)dx = 0. (4.48)

3.

f(x) =

−1 0 < x < 1
2

1 1
2
< x < 1

(4.49)

Hence, fourier series for function f(x) can be written as

f(x) =
∞∑
q=0

Bqcos

(
(2q + 1)πx

2

)
, Bq =

4(−1)q

(1 + 2q)π
. (4.50)

Combining equations (4.49), (4.50) with (4.42), we obtain

C(x, t) = 1− 4

π

∞∑
q=0

(−1)q

1 + 2q
cos

(
(2q + 1)πx

2

)
exp

(
−(1 + 2q)2π2

4
t

)
. (4.51)

Equation (4.38) is solved numerically using Method of Lines (MOL) approach.

First, we discretize the space derivative appearing in the equation by employing

the central finite difference formula. As a result equation (4.38) takes the following
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form

dCj
dt

=
Cj+1 − 2Cj + Cj−1

dx2
, j = 1, 2, 3, .....N, (4.52)

where value of C0 and CN+1 are obtained from the left (4.40) and the right (4.41)

boundary conditions, respectively, and can be written as

C0 =
4u2 − u3

3
, CN+1 = 1, (4.53)

and

Cj = C(xj, t), dx = 1
N
, xj = jdx.

The value of initial condition at each node can be calculated from the equa-

tion (4.39) as

C(xj, 0) = 0. (4.54)

Thus, we have a system of N ordinary differential equations (4.52) with N initial
conditions given in equation (4.54), which is solved for any time t using MATLAB’s
solver ode23. Similarly, equation for solid displacement (4.30) is solved using
Method of Lines. We discretize the space derivative and combine the solution
given in relation (4.51), we get

duj
dt

= R

[
exp

(
m
uj+1 − uj−1

2dx

)] 1
n

×[
uj+1 − 2uj + uj−1

dx2
+ 2Q

∞∑
q=0

(−1)qsin
(
(2q + 1)πx

2

)
exp

(
−(1 + 2q)2π2

4
t

)] 1
n

,

(4.55)

j = 1, 2, 3, ....., N,

where value of u0 and uN+1 are obtained from the left (4.32) and the right (4.33)

boundary conditions, respectively, and can be expressed as

u0 = 0, uN+1 =
4uN − uN−1 − 2dxQ

3
, (4.56)



Ion-induced swelling... 74

and

uj = u(xj, t), dx =
1

N
, xj = jdx.

The value of initial condition at each node can be calculated from the equation

(4.31) as

u(xj, 0) = 0. (4.57)

Thus, we have a system of N ODEs (4.55) with N initial conditions given in re-

lation (4.57), which is solved using efficient MATLAB’s solver ode23. Similarly,

we discretize the space derivative involved in governing equation of fluid pres-

sure (4.37) as

P (xj , t) =
HA

p0(α+ 1)

uj+1 − uj−1

2dx
+Q

1−
4

π

∞∑
q=0

(−1)q

1 + 2q
cos

(
(2q + 1)πxj

2

)
exp

(
−

(1 + 2q)2π2

4
t

) .(4.58)

Figure 4.2: Interstitial Fluid Pressure p(x, t) against distance x when power
law index n = 1.0 at time t = 0.25.
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The fluid pressure can be determined once the solid displacement is known. We

recalled the solution of solid displacement u(x, t) in the above equation and using

the MATLAB command plot(x,p(end,:),’-’) to get the solution for fluid pressure

p(x, t).

The values of different parameters for the biological tissues considered here are

α = 0.3, Q = 0.03630, HA = 4, R = 0.4 and po = 1 [167]. It is worth mentioning

here that by substituting the power-law index n = 1 in equation (4.37), the graph

of fluid pressure p(x, t) for the time t = 0.25 reported by Myers et al. [27], is

recovered successfully as shown in Figure 4.2.

Below we will focus our attention to summarize the outcome of the above system.

4.6 Results and Discussion

This section represents the output of our numerical simulations for the solid dis-

placement u(x, t), ion-concentration C(x, t), and interstitial fluid pressure p(x, t)

for cartilage. The effect of power-law index n on solid displacement and fluid

pressure for the constant and non-linear permeability is illustrated graphically.

4.6.1 Ion Concentration Profile

Figure 4.3 represents ion-concentration in the articular cartilage as a function of

distance x at various values of time t = 0.1, 0.3, 1.0, 4. At t = 0.1, 0.3, the

curves show almost concave up behavior. Whereas at t = 1.0, curve shows linear

behavior. Due to continuous supply of salt solution, ionic concentration in the

cartilage increases with time and attains a maximum value at time t = 4. After

which the salt bath does not affect the ionic concentration.

Figure 4.3 also compares the exact and MOL solution for the salt concentration

C(x, t) in the tissue. An excellent agreement can be noticed for different values of

time.
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Figure 4.3: Theoretical prediction of the ion concentration as a function of
distance x at time t = 0.1, 0.3, 1.0, 4. Exact (solid line line) and numerical
(dashed line) solution are plotted for ion-concentration to compare two solutions.

Figure 4.4 shows the effect of power-law index n on solid displacement for time

t = 0.1 as a function of distance x. Moreover, three different values of the power-

law index n are used along with strain dependent nonlinear permeability (m 6=

0). Solid displacement decreases for shear-thinning and Newtonian fluids from

the center line of the cartilage. This observation is consistent with the earlier

related study [119] for non-Newtonian fluid flow in porous tissue. Shear-thickening

fluid (n > 1) induces more deformation as compared to Newtonian (n = 1) and

shear-thinning (0 < n < 1) fluids. Therefore, our model predicts that salt influx

causes cartilage contraction due to which fluid extrudes from tissue. Interestingly,

exudation of shear-thinning fluid is more than shear-thickening fluid. This general

observation is consistent with the fact that increases of salt concentration increases

the strain rates, ultimately decreases the effective viscosity of shear-thinning fluid

and increases the effective viscosity of shear-thickening fluid. The slope of the

Newtonian fluid (n = 1) in a final state is found to be −Q, as predicted in earlier

study [14] and slope of curve from x = 0 to x = 0.4 for shear-thinning fluid shows

that there may be an expansion of the cartilage before final contraction.
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Figure 4.4: Solid displacement u(x,t) against distance x for various power-law
indices at time t = 0.1

Surprisingly, we have found from Figure 4.5 and Figure 4.6 that graphical illus-

tration of solid displacement u(x, t) shows almost the same results for constant

(m = 0) and strain dependent nonlinear permeability (m 6= 0) for shear-thinning

or shear-thickening fluid. Therefore, a comparison of different permeability pa-

rameters is not shown in the present work. It seems that salt concentration and

power-law index n play a major role in the solid deformation. This is due to the

fact that there is no external force other than the showering of salt-solution.

Figure 4.5: Solid displacement u(x, t) against distance x for permeability pa-
rameters m = 0, 1 when power-law index n = 0.7 at time t = 0.1
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Figure 4.6: Solid displacement u(x, t) against distance x for permeability pa-
rameters m = 0, 1 when power-law index n = 1.5 at time t = 0.1

Figure 4.7: Solid displacement u(x, t) against distance x when power law index
n = 0.7 at times t = 0.1, 1.0.

Figure 4.7 and Figure 4.8 show the comparison of solid displacement profiles be-

tween shear-thinning (0 < n < 1) and shear-thickening (n > 1) fluids for non-

linear permeability (m = 1) at various values of time t = 0.1, 1.0 as a function of

distance x. Graphical illustration for shear-thinning fluid shows that solid defor-

mation decreases as the time increases. But, reverse process can be observed for

shear-thickening fluid. This observation is consistent with the recognition that salt
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concentration of cartilage increases as the time increases and causes the cartilage

to shrink and similar dynamics was observed in [27]. For the case of shear-thinning

fluid, due to showering of salt solution, cells of cartilage lose fluid due to osmo-

sis and cause shrinking of tissue. For the case of shear-thickening fluid, strain

rate increases due to salt concentration and viscosity of fluid also increases. This

prevents the flow of fluid through cartilage and causes expansion in the tissue.

Figure 4.8: Solid displacement u(x, t) against distance x when power law index
n = 1.5. at times t = 0.1, 1.0.

Figure 4.9 and Figure 4.10 describe the effect of power-law index n on fluid pres-

sure (as a function of distance x) at various times t = 0.1, 1.2 for shear-thinning

and shear-thickening fluids. For shear-thinning and shear-thickening fluids, in-

terstitial fluid pressure p(x, t) vanishes slowly as ionic concentration attains its

maximum value. Due to contraction of cartilage, discharge of shear-thinning fluid

causes the decrease of interstitial fluid pressure with distance x. Myers et al. [27]

presented the similar observation in the case of Newtonian fluid (n = 1). As shear-

thickening fluid induces expansion in the cartilage, which causes a less increase in

fluid pressure as compared to shear-thinning fluid. The subsequent depressuriza-

tion in fluid pressure for shear-thinning and shear-thickening fluids is due to fluid

exudation across the articular cartilage surface. Pressurization effects are more

in shear-thinning fluid as compared to shear-thickening fluid as shear-thickening

fluid extrudes faster than shear-thinning fluid which allows the cartilage to relax.
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Figure 4.9: Interstitial Fluid Pressure p(x, t) against distance x when power-
law index n = 0.7 at times t = 0.1, 1.0.

Figure 4.10: Interstitial Fluid Pressure p(x, t) against distance x when power
law index n = 1.5 at times t = 0.1, 1.0.

4.7 Conclusion

In this chapter, we have analyzed the ion-induced deformation of soft biological

tissue (articular cartilage). Our new contribution is a collection of numerical and

analytical results that details the effects of power-law index (n) on deformation
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of cartilage and fluid pressure. In particular, dimensions of a rectangular strip of

cartilage was measured in a continuous supply of sodium chloride (NaCl) solution.

Our results of ion-induced deformation are analogous to the classical results [14, 27]

for ion-induced deformation of cartilage.

To model the problem, we used continuum theory of mixtures by considering the

cartilage as a deformable porous material. Ion concentration term was incorpo-

rated in the solid stress equation to examine the results under a continuous sodium

chloride (NaCl) shower. A parabolic PDE was considered which is uncoupled from

the fluid pressure and solid displacement for the salt concentration in a cartilage.

The summary of the results are as follows

• Graphical illustration shows that ionic concentration in the cartilage in-

creases with time and attains a maximum value at time t = 4. After which

the salt bath does not affect the ionic concentration.

• Graphical illustrations on Cartesian geometry show that solid displacement

in articular cartilage decreased for the case of shear-thinning and Newtonian

fluids.

• Solid displacement increased in articular cartilage for the case of shear-

thickening fluid.

• Solid deformation of cartilage was significantly decreased for Newtonian fluid

as compared to shear-thinning fluid.

• Shear-thickening fluid induces less fluid pressure as compared to shear thin-

ning fluid.

Present work is an effort to incorporate mixture theory along with power model-

ing to understand the behavior of soft tissues like articular cartilage. The basic

features of power-law fluid flow in a porous media like consistency index and

power-law index may be of interest in a variety of different fields. The further

questions that can be addressed are incorporation of additional features such as
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evaporation, multidimensional fluid pressure, multidimensional solid deformation

and more sophisticated interaction between solid, liquid and ionic concentration of

NaCl. In this study, Non-Newtonian fluid models other than the power-law model

can also be considered.



Chapter 5

Compressive Stress Relaxation

Behavior of Articular Cartilage and

its Effects on Fluid Pressure and

Solid Displacement due to

non-Newtonian Flow

5.1 Introduction

The aim of this chapter is to investigate the effects of the permeability parameter

and power-law index on the deformation of the articular cartilage due to non-

Newtonian fluid flow under stress-relaxation in compression. Ramp displacement

is imposed on the surface of hydrated tissue. Fluid pressure and deformation of

the cartilage is examined for the fast and slow rate of compression. A linear bipha-

sic mixture theory has been employed to model the compressive stress-relaxation

behavior of articular cartilage. The governing set of coupled equation in terms

of fluid pressure and solid displacement are non-dimensionalized using suitable

83
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normalized quantities. The solid displacement equation has been solved using nu-

merical technique Method of Lines with ode23t . The effects of various parameters

such as power-law index and permeability parameter on the pressure and displace-

ment profile are illustrated graphically. Moreover, a graphical comparison of fast

and slow rate of compression is also provided. In Section 5.2, a mathematical

model is developed using biphasic mixture theory approach. Moreover, initial and

boundary conditions are presented in Section 5.3. Non-dimensionalization is ex-

plained in Section 5.4 followed by solution methodology in Section 5.5. Section

5.6 is devoted to results and discussion. Concluding remarks are presented in the

Section 5.7.

5.2 Mathematical Formulation

For the problem under discussion, a rectangular strip of articular cartilage mounted

in a special device which is used in the displacement-controlled compression mode

called Rheometric Mechanical spectrometer is considered. Cartilage dimensions

are measured in non-Newtonian fluid and physiological Ringer’s solution, inter-

faced with a 6×10−5m draining free rigid porous filter and maintained at constant

temperature of 20o C [92].

Figure 5.1: Illustration of a test related to confined compression stress-
relaxation. During time 0 ≤ t ≤ t0, a ramp compression is applied at the
cartilage surface which is confined on the lateral surface, so that deformation
occurs only in the x direction.
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Figure 5.2: Graphical representation of a ramp displacement.

Lai et al. [96] have shown the measurements by experiments i.e., the average pore

size of the articular cartilage decreases with compression make it difficult for the

fluid to flow through tissue thereby permeability of the cartilage decreases. This

is given by a mathematical equation of the form:

κ = κ0exp

(
m
∂u

∂x

)
, (5.1)

wherem and κ0 are constants, value ofm ranges from 1 to 20, κ0 = O(10−15)m4N−1s−1,

u(x, t) represents the solid displacement, and ∂u
∂x

is the dilation. Equation (5.1)

shows that compression of solid matrix of tissue limits the rate of fluid flow in

cartilage. Mow et al. [168] modeled the articular cartilage by considering it as

a mixture composed of two phases: an interstitial fluid and porous solid matrix.

This successful theory is based on the following assumptions: 1) each constituent

of the cartilage is continuous and at each instant of time occupies each point in the

space, 2) the two components of cartilage solid matrix and fluid are intrinsically

incompressible, 3) the solid organic matrix is isotropic, homogeneous and linearly
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elastic, 4) the viscosity of fluid component of cartilage is negligible for its con-

tribution to the gravitational and osmotic forces except for its role to diffusional

drag force, 5) the solid organic matrix of cartilage and coefficient of diffusive re-

sistance are independent of deformation. Under the assumptions of infinitesimal

strains, Mow et al. [92] presented the relationship between deformation of perme-

able, porous, intrinsically incompressible solid phase and the apparent stress on

the solid matrix is

T s = −αpI + 2µse + λseI + 2µsDs + λs∇ · (vs)I− 2Kcτ, (5.2)

and the linearized relationship between apparent stress on the interstitial fluid and

flow field of incompressible fluid phase is

T f = −pI + 2µfDf + λf∇ · (vf )I + 2Kcτ. (5.3)

Here, Ds and e are rate of deformation tensor and infinitesimal strain, respectively;

α is the ratio from solid volume fraction to fluid volume fraction; p is the fluid

pressure; Df and vf is the rate of deformation tensor and fluid velocity respectively;

dynamic and bulk viscosities of the interstitial fluid can be represented by µf and

λf respectively; τ is the spin tensor of the organic solid material relative to the

interstitial fluid phase; viscoelastic and isotropic moduli of the solid phase can be

represented by µs, λs and µs, λs, respectively; e = trace(e), a diffusive couple

interaction between interstitial fluid phase and solid organic matrix is represented

by constant Kc.

The conservation of mass for the mixture of fluid and solid phases is written as [165]

∇ · vf + α∇ · vs = 0. (5.4)

where α is the ratio from solid volume fraction to fluid volume fraction. The

momentum balance for the fluid phase and solid phase yields the following equation
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of motion

ρβ
(
∂vβ

∂t
+ (vβ · ∇)vβ

)
= ∇ · T β + ρβbβ + πβ, (5.5)

where (β = s, f) denotes solid phase and fluid phase, respectively. Here, ρβ is

the density, vβ the velocity, T β the stress tensor, bβ the net body force and πβ

is the drag force for each phase. The body forces are neglected due to negligible

mass of cartilage. For a particular choice of time scale, Barry and Aldis [165] have

neglected the inertial terms appearing in equation (5.5) but we have neglected

these terms due to small deformations and velocities of both phases that reduces

the momentum balance to the following form

∇ · T β + πβ = 0, (5.6)

due to internal frictional forces, Newton’s third law of motion implies that πs+πf=0.

The drag force due to local interaction between fluid phase and solid phase is writ-

ten as [9]

πs = −πf = K
∣∣vf − vs∣∣n−1 (

vf − vs
)

+ ḃ∇e. (5.7)

Here, capillary force within the cartilage is represented by ḃ, diffusive drag coeffi-

cient is represented by K. The permeability κ is related to drag coefficient K by

the expression [96]

κ =
1

(1 + α)n+1K
. (5.8)

It is worth mentioning that permeability κ for Newtonian case can be recovered

when we set power law index n equals to unity in the above equation. It is

important to note that permeability κ can also defined by the relationship given by

equation (5.1). To use equations (5.1)-(5.8), the infinitesmial theory and power-law

index effects described by a solid-fluid mixture, we need eleven parameters (n, K,

ḃ, α, λs, λs, µf , µs, µs, Kc, λf ). It is very difficult to assess all these parameters to

analyze the solid-fluid mixture. Therefore, Mow et al. [168] presented a biphasic
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model for soft tissue by assuming: 1) Solid phase of cartilage is linearly elastic

so, µs = λ
s

= 0; 2) the capillary force within the cartilage is negligible so ḃ =

0; 3) diffusive interaction within the constituents of mixture is considered to be

negligible so Kc = 0; 4) α = φs/φ` = constant; µf = λf = 0.

The stress-relaxation and creep phenomena are described by non-linear equations

in power law index n governing the fluid pressure and solid displacement, and

these processes are due to stress relaxation (fluid distribution) and creep (fluid

exudation) with in the cartilage. In this chapter, we will extend the work by

Holmes et al. "analysis of non-linear, flow dependent compressive stress relaxation

of soft tissue" to "flow of power-law fluid through cartilage." by considering the

constant (m = 0) and non-linear strain dependent (m 6= 0) permeability. The

deformation within the cartilage is given in one-dimensional form by vs = (vs, 0, 0)

and vf = (vf , 0, 0). The surface of the cartilage specimen from x = 0 to x = h

defines the depth of cartilage. Now integrating equation (5.4) w.r.t x, we get

vf = −αvs, (5.9)

where constant of integration is zero, as the boundary at x = h is assumed to

be impermeable and rigid (these conditions are true for adult joints only). After

combining equations (5.2), (5.3), (5.6) and (5.7) with above assumptions may be

written as

− α∂p
∂x

+HA
∂2u

∂x2 = −K
∣∣vf − vs∣∣n−1 (

vf − vs
)
, (5.10)

and

∂p

∂x
= −K

∣∣vf − vs∣∣n−1 (
vf − vs

)
, (5.11)

where

HA = 2µs + λs,
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and u is the x component of the cartilage displacement vector. Equations (5.9)

and (5.10) may be simplified to eliminate vf

− α∂p
∂x

+HA
∂2u

∂x2 = K(αvs + vs)n. (5.12)

Similarly, combination of (5.9) and (5.11) gives

∂p

∂x
= K(αvs + vs)n, (5.13)

Equations (5.12) and (5.13) may now be combined to eliminate ∂p/∂x

HA
∂2u

∂x2 = (α + 1)n+1K(vs)n. (5.14)

Substituting relations (5.1), (5.8) and vs = ∂u
∂t

in above equation yields the follow-

ing governing equation for solid displacement u

(
∂u

∂t

)
=

(
κoexp

(
m
∂u

∂x

)
HA

∂2u

∂x2

) 1
n

. (5.15)

Again (5.12) and (5.13) may be simplified to yield

∂p

∂x
=

HA

(α + 1)

∂2u

∂x2 . (5.16)

On integrating the equation (5.16) and using boundary condition p(h, t) = 0, we

get the governing equation in fluid pressure as

p(x, t) =
HA

(α + 1)

[
∂u(x, t)

∂x
− ∂u(h, t)

∂x

]
. (5.17)
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5.3 Initial and Boundary Conditions

In this section, for the stress-relaxation behavior of articular cartilage, we outline

the initial and boundary conditions needed to solve governing equations given in

previous section.

We consider the same initial and boundary conditions as in [92]:

u(x, 0) = 0, (5.18)

u(h, t) = 0, (5.19)

and

u(0, t) =

V0t for 0 ≤ t ≤ t0 (compression stage)

V0t0 for t0 ≤ t. (relaxation stage)
(5.20)

Note that the solid displacement condition given by (5.20) for stress-relaxation

studies is defined by ramp function. As it turns out, the fractional drag due to

exudation of non-Newtonian fluid is greater than measured stress at the cartilage

surface in accordance with equations (5.9) and (5.20). Hence, the magnitude of
∂u
∂x

is controlled by the rate of compression V0 such that the theory of infinites-

imal strain remains valid. Precise and controlled experimental value of rate of

compression is 4× 10−8ms−1 [92].

5.4 Non-Dimensionalization

To analyze the nonlinear governing equations for solid displacement (5.15) and

fluid pressure (5.17), it is first necessary to non-dimesnionalize the problem, which

we do by considering
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x = hx, (5.21)

t = t0t, (5.22)

u = u0u(x, t), (5.23)

u = V0t0u(x, t), (5.24)

p(x, t) = p(x, t)p0, (5.25)

where p0=1 pascal.

On substituting above parameters in equation (5.15), we get

(
∂u(x, t)

∂t

)
= (ε)1/n δ

(
R2exp

(
εm

∂u

∂x

)
∂2u(x, t)

∂x2

) 1
n

, (5.26)

where

ε =
V0t0
h
, (5.27)

δ =

(
hu−n0

t1−n0

)1/n

, (5.28)

R2 =
HAκ0t0
h2

. (5.29)

Different parameters involving in above equation (5.26) may differ in value among
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biological tissues [99]. Equation (5.26) is required parabolic and non-linear gov-

erning equation in terms of solid displacement u as a function of non-dimensional

space variable x and time t. Choosing the parameter δ = 20 in equation (5.26), a

natural length scale h for the present problem can be written as

h = 20nvn0 t0. (5.30)

It is worth mentioning that using simple dimensional analysis, right side of equa-

tion (5.30) can be shown to have the dimensions of product of power-law velocity

and time. Moreover, stress relaxation behavior of cartilage for Newtonian fluid

case [92] can be recovered by setting power-law index n equals to one in equation

(5.26).

Solid displacement is subject to following initial and boundary conditions in one

dimensional form

u(x, 0) = 0, u(1, t) = 0, (5.31)

u(0, t) =

t for 0 ≤ t ≤ 1

1 for 1 ≤ t.

(5.32)

The dimensionless interstitial fluid pressure can be written as

p(x, t) =
HAε

(1 + α)po

(
∂u(x, t)

∂x
− ∂u(1, t)

∂x

)
. (5.33)

Compression is considered as fast rate of compression, if the time of compression is

less than 1000s and value of R is less than 1. Similarly, compression is considered

as slow rate of compression, if time of compression is more than 1000s and value

of R is greater than 1.
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5.5 Solution Procedure

The resulting governing equations for the solid displacement (5.26) and the fluid

pressure (5.33) along with initial and boundary conditions are nonlinear and an-

alytical solutions are difficult to obtain. Non-linearity is sought out by applying

the numerical technique Method of Lines (MOL). The main idea of this technique

is to discretize the space variable and leaving the time variable continuous. Thus,

we discretize the space derivative given in relation (5.26), we get

duj
dt

= (ε)1/nδ

[
R2exp

(
εm

uj+1 − uj−1

2dx

)
uj+1 − 2uj + uj−1

dx2

]1/n

, (5.34)

j = 1, 2, 3, ......, N,

where value of u0 and uN+1 are obtained from the left and right boundaries re-

spectively, and

uj = u(xj, t), dx =
1

N
, xj = jdx.

The value of initial condition at each node can be calculated from the equa-

tion (5.31) as

u(xj, 0) = 0. (5.35)

Thus, we have a system of N ordinary differential equations (5.34) with N initial

conditions given in relation (5.35), which is solved for any time t using MATLAB’s

solver ode23t. Similarly, governing equation for fluid pressure (5.33) can be written
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as

p(x, t) =
HAε

(1 + α)po

(
uj+1 − uj−1

2dx
− uj−1 − 4uj + 3uj+1

2dx

)
. (5.36)

Using the command plot(x,p(end,:),’-’), after recalling the solution of solid dis-

placement u(x, t) in above equation, gives solution for fluid pressure.

The average value of k0, HA and h for normal bovine cartilage are ko = 4 ×

10−15m4/N.s, HA = 5.5×105Nm−2, α = 0.3, ε = 0.05 and h = 1.5×10−3 m [169].

It is worth mentioning here that by substituting the power-law index n = 1 in

equation (5.26), the graph of solid displacement u(x, t) for the time t = 0.5 re-

ported by Holmes et al. [92], is recovered successfully as shown in Figure 5.3.

Figure 5.3: Solid displacement u(x, t) against distance x when power-law index
n = 1.0 at time t = 0.5.

5.6 Results and Discussion

This section presents the output of our numerical simulations for the solid dis-

placement u(x, t) and interstitial fluid pressure p(x, t) for cartilage. The effects

of power law index n, constant permeability m = 0 and non-linear permeability

m 6= 0 on solid displacement and fluid pressure are illustrated graphically.
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Figure 5.4 and Figure 5.5 represent the dimensionless solid displacement for shear-

thinning (0 < n < 1), Newtonian (n = 1) and shear-thickening (n > 1) fluids

during the fast (R2 = 0.25) and slow rate (R2 = 4) of compression for linear

permeability (m = 0) at t = 1. Both cases show that solid displacement increases

with the rise in power-law index n. A similar profile was observed by Holmes

et al. [92] for a Newtonian case with a difference of shear-thickening and shear-

thinning fluid which is an important point of this study. During the fast rate

of compression, solid displacement for shear-thinning fluid will fall faster than a

shear-thickening fluid. This general observation is consistent with the recognition

that during the fast rate of compression, strain rates are the largest and, hence,

the effective viscosity of the shear-thinning viscosity decreases while that for the

shear-thickening fluid will increases. Eventually, shear-thinning fluid exudes faster

than Newtonian and shear-thickening fluid. During the slow rate of compression,

the strain rate increases, but at a slow rate. So shear-thinning fluid exudes from

cartilage at a slow rate. Moreover, these results are consistent with the previous

experimental [170] and numerical [131, 171] studies on the compression of the

articular cartilage.

Figure 5.6 and Figure 5.7 show solid displacement u(x, t) as a function of distance

x for different values of permeability parameter m = 0, 5, 10 for shear-thinning

and shear-thickening fluids for the fast rate of compression (R2 = 0.25) at t = 1,

respectively. Generally, the value of permeability parameterm for biological tissues

ranges from 1 to 10 [99, 119].

It is important to note that the effect of linear permeability m = 0 as well as

non-linear permeability m 6= 0 on solid displacement is more profound in the case

of shear-thickening fluid as compared to the shear-thinning fluid. It is clear from

Figure 5.6 that solid displacement falls uniformly with the increase in permeability

parameter for shear-thinning fluid. Moreover, solid displacement shows negligible

inflection even for large permeability parameter m for shear- thickening fluid.

Constant permeability m = 0 induces greater solid deformation as compared to

non-linear permeability m 6= 0.
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This suggests that the cartilage will experience a contraction with an increase

in the permeability parameter and this result is consistent with the previous

study [92]. This is due to fact that high permeability parameter, allows more

fluid to flow out of the cartilage. Due to this reason, contraction of cartilage

occurred and ultimately solid displacement decreases.

Figure 5.4: Dimensionless Solid displacement u(x, t) profile vs distance x for
power law index n = 0.5, n = 1 and n = 1.5 during the fast rate of compression
for linear permeability (m = 0) at time t = 1.

Figure 5.5: Dimensionless Solid displacement u(x, t) profile vs distance x for
power law index n = 0.5, n = 1 and n = 1.5 during the slow rate of compression
for linear permeability (m = 0) at time t = 1.
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Figure 5.6: Solid displacement vs distance for various permeability parameters
when n = 0.5 during fast rate of compression (R2 = 0.25)

Figure 5.7: Solid displacement vs distance for various permeability parameters
when n = 1.5 during fast rate of compression (R2 = 0.25).

Figure 5.8 and Figure 5.9 show profile of fluid pressure p(x, t) as a function of

distance x for linear permeability m = 0 at t = 0.01 for shear-thinning, Newtonian

and shear-thickening during fast (R2 = 0.5) and slow rate of compression (R2 =

1.1), respectively. Fluid pressure decreases with an increase in power-law index

n. But pressure effects are more profound in the fast rate of compression as

compared to the slow rate of compression. Fluid pressure increases linearly for

both cases of shear-thinning fluid (0 < n < 1), but for the fast rate of compression
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fluid pressure increases significantly. This is due to the fact that the viscosity of

shear-thinning fluid decreases under shear stress. It is important to note that for

all cases of power-law indexes n = 0.5, 1, 1.2, behavior show at x = 0 is totally

opposite of profile of fluid pressure at x = 1. Moreover, high fluid pressure causes

more exudation of fluid, due to which fluid pressure for shear-thinning fluid drops

significantly as compared to Newtonian and shear-thickening fluid. This result is

consistent with previous studies of the interstitial flow field in the tissue [172].

Figure 5.8: Dimensionless Fluid Pressure p(x, t) profile vs distance x for power
law index n = 0.5, n = 1 and n = 1.2 during the fast rate of compression
(R2 = 0.5) for linear permeability (m = 0) at time t = 0.01.

Figure 5.9: Dimensionless Fluid pressure p(x, t) profile vs distance x for power
law index n = 0.5, n = 1 and n = 1.2 during the slow rate of compression
(R2 = 1.1) for linear permeability (m = 0) at time t = 0.01.
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Figure 5.10, Figure 5.11, Figure 5.12 and Figure 5.13 show the solid deformation

and fluid pressure of shear-thinning (0 < n < 1) and shear-thickening fluids (n > 1)

for linear permeability m = 0 at t = 0.1, 0.4 during fast rate of compression,

respectively.

Figure 5.10: Solid displacement versus distance for power law index n = 0.5
for linear permeability (m = 0) at t = 0.1, 0.4 during fast rate of compression.

Solid deformation increases with an increase in time from t = 0.1 to t = 0.4 for

shear-thinning and shear-thickening fluids, but profound effects are found in defor-

mation for shear-thickening fluid at t = 0.4, as in shear-thickening fluid viscosity

increases with increase in strain rate.

Figure 5.11: Solid displacement versus distance for power law index n = 1.3
for linear permeability (m = 0) at t = 0.1, 0.4 during fast rate of compression.
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Results show that shear-thinning fluid induces more fluid pressure as compared to

the shear-thickening but drops before x = 1. It can be seen that shear-thickening

fluid resists the change and possesses more inertia than shear-thinning fluid. Fluid

pressure increases with increase in time from t = 0.1 to t = 0.4 and this result is

consistent with the previous study [131].

Figure 5.12: Fluid Pressure versus distance for power law index n = 0.5 for
linear permeability (m = 0) at t = 0.1, 0.4 during fast rate of compression.

Figure 5.13: Fluid Pressure versus distance for power-law index n = 1.3 for
linear permeability (m = 0) at t = 0.1, 0.4 during fast rate of compression.
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5.7 Concluding Remarks

In this chapter, we have investigated the non-Newtonian flow-dependent compres-

sive stress relaxation behavior of soft biological tissue (articular cartilage). In

particular, a flow of non-Newtonian fluid through rectangular specimen of artic-

ular cartilage is considered. A ramp-displacement is imposed on the surface of

hydrated, soft tissue. Fluid pressure and solid deformation are examined during

the slow and fast rate of compression.

We have used biphasic mixture theory to develop a mathematical model for a mix-

ture of cartilage and non-Newtonian fluid. This modeling approach was previously

used by Siddique and Anderson (2011). The summary of the results are as follows

• The solid deformation increases with an increase in power-law index n.

• Shear-thickening fluid (n > 1) induces more deformation as compared to the

shear-thinning fluid (0 < n < 1) and the Newtonian fluid (n = 1) during the

fast and slow rate of compression.

• Numerical results also show that linear permeability (m = 0) induces more

deformation as compared to the strain-dependent nonlinear permeability

(m 6= 0) for shear-thinning and shear-thickening fluids.

• Solid displacement as a function of distance increases with an increase in time

for shear-thinning and shear-thickening fluids. But more profound effects of

change in time for solid displacement can be found in shear-thickening fluid

as compared to the shear-thinning fluid.

• Numerical results show that shear-thinning fluid induces more fluid pressure

as compared to Newtonian and shear-thickening fluids during the fast and

slow rate of compression. .

We have explored the compressive stress-relaxation behavior of cartilage due to

non-Newtonian flow. Numerical results suggest that the findings of the numer-

ical study can be further improved both experimentally and theoretically. An
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accurate and realistic mathematical model can be developed by adding additional

features such as chemical interaction between non-Newtonian fluid and cartilage,

evaporation, different permeability relations, and different geometries. A direct

comparison of experimental work with our divine theoretical model will assist in

answering many critical questions.



Chapter 6

Flow-Dependent Compressive

Stress-Relaxation Behavior of

Articular Cartilage with MHD

Effects

6.1 Introduction

Based on the geometry of the previous problem, a mathematical model has been

developed for the deformation of the solid phase of the cartilage due to the flow of

the electrically conducting fluid from it. The model is based on the biphasic mix-

ture theory which incorporates the nonlinear strain-dependent permeability found

earlier from various experiments. In this investigation, solid and fluid phases were

assumed to be non-dissipative and also intrinsically incompressible. The system

of coupled partial differential equations was developed for the fluid pressure and

solid deformation for the slow and fast rate of compression in the presence of the

Lorentz forces. The resulting system is solved numerically using Method of Lines

(MOL) and graphs are produced to highlight the effects of the magnetic parameter

103
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on fluid pressure and solid displacement. In Section 6.2, the mathematical model-

ing of the problem using continuum mixture theory approach is introduced. The

solution procedure is presented in Section 6.3. Section 6.4 is devoted to the solu-

tion methodology. Results and discussions are presented in Section 6.5 followed

by the concluding remarks in Section 6.6.

6.2 Mathematical Formulation

We study the problem of flow dependent compressive stress-relaxation behavior

of articular cartilage with MHD effects as shown in the Figure 6.1. The specimen

of the soft tissue is mounted in Rheometric Mechanical spectrometer used for the

displacement controlled compression mode. Physiological Ringer’s solution is used

to bath specimen, maintained at 200 C and interfaced with a 60µ m free draining

rigid porous filter. The cartilage is compressed on the lateral surface such that

deformation occurs in the x direction only. During time 0 ≤ t ≤ t0, a ramp

displacement is applied at the specimen tissue surface.

Figure 6.1: Schematic representation of one-dimensional confined compression
used for the stress-relaxation test.
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Figure 6.2: Graphical representation of a ramp displacement.

For the development of the model, we used biphasic mixture theory approach.

The main idea behind the mixture theory is that each constituent of the mix-

ture is continuous and occupies each point in the mixture. Furthermore, Mow et

al. [168] has shown that, even for small rate of compression, mechanical response

of the articular cartilage is extremely sensitive. Moreover, the permeability of the

cartilage decreases significantly with the magnitude of the compression. This is

given by the following mathematical relation:

κ = κ0exp

(
m
∂u

∂x

)
, (6.1)

where κ0 and m are material constants, u(x, t) represents the solid displacement,

κ0 = O(10−15)m4N−1/s, ∂u
∂x

is the dilation, and the value of m ranges from 1 to

10 [92]. The conservation of mass for the incompressible binary mixture of solid

and fluid can be written as

∇ · vf = −α∇ · vs, (6.2)
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where vf and vs represent the velocity of fluid and solid, respectively, and α is

the ratio from solid volume fraction to fluid volume fraction. The solid volume

fraction is represented by φs = V s/V , and the fluid volume fraction (porosity) is

φf = V f/V , where V s + V f = V or φs + φf = 1. Equation (6.2) is deduced for

a constant α (0.2 for an adult joint) and has been used by many authors in their

studies [27, 92, 173]. The equation of momentum balance for the mixture can be

written as

ρβ
(
∂vβ

∂t
+ (vβ · ∇)vβ

)
= ∇ · T β + ρβbβ + πβ + J ×B, (6.3)

where β = f , denotes the fluid, and β = s, the solid phase of the mixture. Here,

ρβ is the density, vβ the velocity, T β the stress tensor, bβ the net body force and

πβ is the drag force for each phase. Furthermore, J and B represent the current

density and magnetic flux density, respectively. The body forces are assumed zero

except the magnetic field. Inertial terms appearing in equation (6.3) can usually

be neglected for a particular choice of time scale [165] but our assumptions to

neglect these terms due to small velocities and solid deformation rates, we get

∇ · T β = −πβ − J ×B, (6.4)

whereas Newton’s third law implies that πs = −πf . Now, the generalized Ohms’s

law along with the Maxwell’s equations can be written as (see Appendix A for

details).

Moreover, when fluid flow becomes significant, viscoelastic effects, i.e. creep and

stress relaxation caused by the diffusive resistance or frictional drag of relative fluid

flow. In compression, many researchers [165, 168] have shown that this biphasic

mechanism is a source for the viscoelastic behavior of the cartilage. The drag or

diffusive resistant force between the constituents is given by the relation [92]

πs = K(vf − vs) + ḃ∇e = −πf , (6.5)

where K is the drag coefficient and ḃ the capillary force within the cartilage. It is
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important to note that transfer of linear momentum between the constituents of

mixture, i.e., fluid phase and solid phase is governed by the relative motion vf−vs

of fluid and solid phases. For slow flows, many authors [27, 92, 96, 168] have used

the following relation in their studies that relates K with tissue permeability κ as

K =
1

κ(1 + α)2
. (6.6)

The linear biphasic modeling for cartilage is based on the assumptions that it

consists of linearly elastics solid phase and linearly viscous fluid phase [168]. Lin-

ear elasticity is a branch of continuum mechanics and another mathematical ap-

proach to analyze how cartilage deforms. In compression, solid becomes internally

stressed due to loading conditions. This theory is actually simplified form of non-

linear theory of elasticity [174]. The fundamental assumptions of this theory are:

1) linearized relationship between the components of strain and stress; 2) small

deformations or infinitesimal strain; 3) stress do not produce yielding in the ma-

terial. Due to these assumptions, this theory is applied extensively in structural

analysis such as biological tissues, buildings, bridges, furniture and vehicles, by

using finite element analysis.

In 1968, Robert Hook [175] introduced the classical relationship between strain

and stress. Modern theory of elasticity generalized the Hooke’s by saying " strain

is directly proportional to the stress applied to it." Moreover, constant of pro-

portionality is a tensor in a form of matrix with entries of real numbers. This

matrix depends on the solid material that falls into the category of seven crystal

classes [176]. Elastic solids can be categorized into two types, i.e., anisotropic and

isotropic. The solid material considered in this study is a isotropic. This type

of material exhibits properties that are independent of orientation (or direction).

On the other hand, anisotropic is material having properties, change with direc-

tion along the material object. Several studies have been carried out using soft

tissues by considering their solid phase as an isotropic material and the reference

therein [92, 100]. Under the assumptions of linear elasticity, the solid stress Ts of

an isotropic, porous, intrinsically incompressible, permeable material filled with



Flow-dependent compressive stress-relaxation..... 108

fluid is given as [168]

Ts = −αpI + λseI + 2µse + λsdiv (vs) I + 2µsD
s − 2Kcτ , (6.7)

where p is a fluid pressure, I is an identity tensor, e the infinitesimal strain tensor,

e = trace (e), Ds the rate of deformation tensor, τ the spin tensor of the solid phase

relative to the fluid phase whereas λs and µs are isotropic moduli, λs and µs are

viscoelastic moduli. Moreover, diffusive interaction between the fluid phase and

the solid phase is represented by Kc. The stress Tensor T f of an incompressible

fluid is given as [92]

Tf = −pI + λfdiv
(
vf
)
I + 2µfDf + 2Kcτ , (6.8)

where λf and µf are the bulk velocity and the dynamic velocity of the fluid, respec-

tively. To model the compressive stress-relaxation behavior of cartilage, under the

MHD effects would be very difficult using all material parameters (λs, µs, λs, µs,

Kc, λf , µf , ḃ, K). Mow et al. [168] suggested a linear biphasic model for cartilage

by assuming: 1) the solid matrix and fluid phase are strictly linearly elastic, i.e.,

λs = µs = 0, λf = µf = 0; 2) Kc = 0; 3) the material parameter for the capil-

lary force coefficient ḃ = 0; 4) α = constant. Under these conditions, the resulting

equations have been successfully applied to model the one-dimensional stress relax-

ation behavior of cartilage, nasal septum and meniscus. With these assumptions,

the value of permeability constant has been calculated to be O(10−15m4N−1s−1),

almost similar to those calculated from permeability experiments [177, 178]. The

linear equation governing the displacement component has been used to describe

stress-relaxation and creep processes, and the processes are due to fluid distribu-

tion (stress-relaxation) and from the fluid exudation (creep) within the cartilage.

However, Lai et al. [165] showed from a detailed comparison of the linear biphasic

theory and the stress-relaxation experimental results that certain inconsistencies

can be occurred if this theory is modified to include nonlinear (strain-dependent)

permeability given in equation (6.1). Thus in our work, we will extend linear

biphasic theory by including the relation of nonlinear permeability, under MHD
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effects. For this, using generalized Ohm’s law (A.4) and Maxwell’s equations (A.7)

along with equation (6.5) in equation (6.4), we obtain the following equations for

solid and fluid phase as

∇ ·Ts = −K
(
vf − vs

)
+ σ0B

2
0v

s, (6.9)

∇ ·Tf = K
(
vf − vs

)
+ σ0B

2
0v

f , (6.10)

where B0 represents the constant magnetic flux. Moreover, the contribution of the

MHD effects to the modeling of the fluid flow through a deformable porous material

is represented by the last term appearing in equations (6.9) and (6.10) [126].

Inserting the stress relations (6.7) and (6.8) into (6.9) and (6.10), yields

− α∇p+ λs∇e+ 2µs∇ · e +K(vf − vs)− σ0B
2
0v

s = 0, (6.11)

∇p = −K(vf − vs)− σ0B
2
0v

f . (6.12)

Substituting equation (6.12) into equation (6.11), we get

K(1 + α)(vf − vs) + σ0B
2
0(αvf − vs) + 2µs∇.e + λs∇e = 0. (6.13)

Following Holmes et al. [92], the confined compression of the cartilage is one-

dimensional, i.e., vs = (vs, 0, 0) and vf = (vf , 0, 0). The surface of the specimen

tissue from x = 0 plane to x = h defines the depth of the cartilage. With these

assumptions, integrating the continuity equation (6.2) with respect to x yields

vf = −αvs + c, (6.14)

where vf (x, t) and vs(x, t) represent respectively the solid velocity component and

fluid velocity component in x direction and c is the constant of integration. In

(6.14), c equals to zero as the boundary at x = h is assumed to be impermeable and

rigid (these conditions are true for adult joints only). Keeping in view equation
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(6.14) and taking vs = ∂u
∂t
, we obtain

vf = −α∂u
∂t
, (6.15)

where u represents the dimensional axial solid displacement and t the dimensional

time. Using above equation, we can write equation (6.13) in scalar form as

K (α + 1)2 ∂u

∂t
+ σ0B

2
0

(
α2 + 1

) ∂u
∂t
− (λs + 2µs)

∂2u

∂x2 = 0, (6.16)

where x is the dimensional coordinate in the axial direction. Using the relation

for drag coefficient K from (6.6), equation (6.16) may be simplified to yield

(
1 + κσ0B

2
0(1 + α2)

κ

)
∂u

∂t
− (λs + 2µs)

∂2u

∂x2 = 0. (6.17)

Using the relation (6.1) into equation (6.17), we obtain

∂u

∂t
=

κ0exp
(
mdu

dx

)
1 +Mexp

(
mdu

dx

) (HA
∂2u

∂x2

)
, (6.18)

where M = κ0σ0B
2
0 (α2 + 1) represents the dimensionless magnetic parameter,

HA = λs + 2µs is the aggregate modulus. Equation (6.18) is required governing

partial differential equation in terms of dimensional solid displacement u as a func-

tion of distance x and time t. It is worth mentioning here that by substituting the

magnetic parameter M equals to zero in equation (6.18), we recover the dimen-

sional displacement equation in Holmes et al. [92]. Equation (6.18) is subject to

the following initial condition

u(x, 0) = 0. (6.19)

Moreover, a ramp displacement function defined the left boundary condition im-

posed on the x = 0 surface as

u(0, t) =

V0t for 0 ≤ t ≤ t0 (for the compression stage)

V0t0 for t0 ≤ t. (for the relaxation stage)
(6.20)
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where V0 is the rate of compression and t0 represents the length of time for the

compression stage. At the tissue/ calcified tissue junction, we have

u(h, t) = 0. (6.21)

above equation represents dimensional boundary condition.

Furthermore, equations (6.11) and (6.12) may be simplified to yield

−∇p(1 + α) + 2µs∇ · e + λ∇e− σ0B
2
0(vf + vs) = 0. (6.22)

Using again the equation (6.15) and the relation vs = ∂u
∂t
, we can write equation

(6.22) in scalar form as

∂p

∂x
=

HA

1 + α

∂2u

∂x2 −
σ0B

2
0(1− α)

1 + α

∂u

∂t
. (6.23)

After elimination of the ∂u
∂t

from equations (6.18) and (6.23), we obtain

∂p

∂x
=

HA

1 + α

{
1−

M(1− α)exp
(
mdu

dx

)
(1 + α2)

(
1 +Mexp

(
mdu

dx

))} ∂2u

∂x2 , (6.24)

subject to the following condition

p(h, t) = 0. (6.25)

Equation (6.24) on integration and using the boundary condition (6.25) with m =

0, yields

p(x, t) =
HA

1 + α

{
1− M(1− α)

(1 + α2) (1 +M)

}(
∂u(x, t)

∂x
− ∂u(h, t)

∂x

)
. (6.26)

Note that on setting the magnetic parameter M equals to zero in the above equa-

tion, we recover the fluid pressure equation in Holmes et al. [92] in dimensional

form. The mechanical response of the cartilage is extremely sensitive to the rate of

compression V0. This behavior is due to the internal frictional dissipation, which
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is the direct result of the fluid flow within the cartilage. This movement of the

fluid within the cartilage can cause compaction of the solid matrix [96], and this

deformation of the cartilage can influence the fluid flow.

Thus, analysis of the stress-relaxation behavior of cartilage with strain dependent

permeability in compression, which is governed by the exudation of the interstitial

fluid and redistribution of fluid within the cartilage, could helpful to understand

additional insights into nonlinear solid fluid interaction process [168].

6.3 Non-Dimensionalization

The following set of normalized quantities are used to non-dimensionalize the solid

displacement equation (6.18) and fluid pressure equation (6.26)

x =
x

h
, (6.27)

t =
t

t0
, (6.28)

p =
p

p0

, (6.29)

u =
u

u0

(6.30)

where u0 = V0t0 and p0 = 1 pascal.

The resulting PDEs take the following form, i.e., solid displacement

∂u

∂t
=

R2exp
(
εm∂u

∂x

)
1 +Mexp

(
εm∂u

∂x

) ∂2u

∂x2
, (6.31)
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where R2 = κ0t0HA
h2

and ε = u0
h

are dimensionless parameters. From the equation

(6.20), we have

u(0, t) =

t for 0 ≤ t ≤ 1

1 for 1 ≤ t.

(6.32)

and, from equations (6.19) and (6.21),

u(x, 0) = 0, (6.33)

u(1, t) = 0. (6.34)

Moreover, utilizing the dimensionless parameters (6.27-6.30) in equation (6.26),

we have the following dimensionless form of fluid pressure

p(x, t) =
εHA

p0(1 + α)

{
1− M(1− α)

(1 + α2) (1 +M)

}(
∂u(x, t)

∂x
− ∂u(1, t)

∂x

)
. (6.35)

6.4 Solution Procedure

The governing equation for the solid displacement (6.31) is nonlinear due to

presence of the nonlinear permeability exp
(
mε∂u

∂x

)
, which makes it very difficult to

solve analytically. In this problem, we employ Method of Lines (MOL). Generally,

MOL is a semi-analytic technique used to solve time-dependent parabolic or elliptic

PDEs [172, 179].

In order to complete all aspects of the problem for MOL, we discretize the spatial

derivatives involved in governing equation using finite difference technique and

leaving the time variable continuous to covert the PDE (6.31) into a system of
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ODEs, we get

duj
dt

=
R2exp

(
mε

uj+1−uj−1

2dx

)
1 +Mexp

(
mε

uj+1−uj−1

2dx

) (uj+1 − 2uj + uj−1

dx2

)
, j = 1, 2, 3, ..., N,(6.36)

where value of u0 and uN+1 are obtained from left and right boundaries respec-

tively, and

uj = u(xj, t), dx =
1

N
, xj = jdx. (6.37)

The value of initial condition at each node can be calculated from the equa-

tion (6.33) as

u(xj, 0) = 0. (6.38)

Thus, we have a system of N differential equations (6.36) with N initial condi-
tions given in relation (6.38). These resulting ODE’s are solved numerically using
MATLAB’s ode23s solver. Note that equation (6.35) gives the solution for fluid
pressure p(x, t) in the cartilage once the solid displacement u(x, t) is known. For
this, we discretize the space derivative in equation (6.35), we get

p(xj , t) =
εHA

p0(1 + α)

(
1− M(1− α)

(1 + α2) (1 +M)

)(
uj+1 − uj−1

2dx
− uN−1 + 3uN+1 − 4uN

2dx

)
. (6.39)

On recalling the solution of solid displacement u(x, t) in the above equation and

using the MATLAB command plot(x,p(end,:),’-’) to get the solution for fluid pres-

sure p(x, t). For an adult healthy cartilage the average values of HA, κ0, ε, and

h are 5.5 × 105 Nm−2, 4 × 10−15m4/Ns, 0.05 and 1.5 × 10−3 m, respectively [94].

On substituting these values, we get R = 0.0313
√
t0. Consequently, value of R

is extremely small (< 1), if the time of compression is less than 1000 s. In this

case, at the end of compression (t = 1), the deformation of the cartilage has not

reached the tidemark and considered as fast rate of compression.

Furthermore, the value of R is greater than 1, if t0 approaches the value much

more greater than 1000 s and considered as slow rate of compression. It is worth

mentioning here that by substituting the power-law index n = 1 and M = 0
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in equation (6.31), the graph of solid displacement u(x, t) for the time t = 0.25

reported by Holmes et al. [92], is recovered successfully as shown in Figure 6.3.

Figure 6.3: Solid displacement as a function of x at time t = 0.25 during fast
rate of compression (R2 = 0.25) when M = 0.

6.5 Results and Discussions

In this section, we outline the results of numerical simulations for solid displace-

ment and fluid pressure for different values of magnetic parameter. In particular,

graphical profiles are presented to highlight the effects of various values of magnetic

parameter for linear permeability as well as for nonlinear permeability. Results

are incorporated along with fast and slow rate of compression.

Figure 6.4 describes the influence of magnetic parameter M on solid displacement

u(x, t) for various times as a function of space for linear permeability m = 0. In

particular, result shows for the fast rate of compression (R2 = 0.25). This plot

shows that the solid displacement decreases during fast rate of compression and

drops off more rapidly with an increase of magnetic parameter.
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Exudation of fluid from the cartilage increases due to Lorentz force associated

with the magnetic field. This happens due to the fact that increase in strength

of magnetic field reduces the viscosity of fluid and hence the exudation of fluid

increases. Thus, strength of magnetic field can be used to control the fluid flow

in cartilage. Moreover, for the fixed value of M , solid displacement increases with

time and falls due to exudation of fluid. This behavior is consistent with the

previous study [92], when magnetic effects are not present (i.e. M = 0).

Figure 6.4: Solid displacement as a function of x for different values of M
during fast rate of compression (R2 = 0.25) at t = 0.25, 0.5, 1.0 when m = 0.

Figure 6.5 describes the influence of magnetic parameter M on solid displacement

u(x, t) for various times as a function of space for linear permeability m = 0. In

particular, result shows for the slow rate of compression (R2 = 4). As compared

to the fast rate of compression, slow rate of compression slows down the exudation

of the fluid, consequently solid deformation drops slowly. Interestingly, profile of

solid displacement shows a similar behavior, but an increase in strength of the

magnetic field has little effect on solid deformation as compared to fast rate of

compression.

These effects are more profound in the middle of process and become linear at the

end. This is due to the fact that fast rate of compression induces more charge as

compared to the slow rate of compression.
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Figure 6.5: Solid displacement as a function of x for different values of M
during slow rate of compression (R2 = 4) at t = 0.25, 0.5, 1.0 when m = 0.

Figure 6.6 shows the effect of permeability parameter (m) on the solid displace-

ment u(x, t) in the presence of the magnetic field (M 6= 0) for the fast rate of

compression. Graph suggests that strain-dependent permeability (m 6= 0) induces

less solid deformation as compared to the linear permeability (m = 0). This pre-

dicts that strain-dependent permeability increases the permeability of the tissue,

allows more fluid to flow, results in the reduction of the solid displacement. Note

that for the fixed value of (m), solid deformation decreases with time. These obser-

vations are consistent with the previous study [92], when magnetic field (M = 0)

is not present.

Figure 6.6: Solid displacement as a function of x for various values of perme-
ability parameter m during fast rate of compression (R2 = 0.25) at t = 0.25, 0.5
when M = 0.2.
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Figure 6.7 shows the effect of permeability parameter (m) in the presence of the

magnetic field (M 6= 0) for the slow rate of compression. Strain-dependent non-

linear permeability induces less solid deformation as compared to the linear per-

meability. Interestingly, this effect is negligible as compared to the fast rate of

compression. This predicts that rate of compression is also contributing with the

permeability parameter in the permeability of the tissue.

Figure 6.7: Solid displacement as a function of x for various values of perme-
ability parameter m during slow rate of compression (R2 = 4) at t = 0.25, 0.5
when M = 0.2.

Figure 6.8 describes the effect of magnetic parameterM for fast rate of compression

(R2 = 0.25) on the fluid pressure as a function of space x for linear permeability

(m = 0) at t = 0.1.

The fluid pressure in the tissue increases with increase in magnetic parameter.

This predicts that high strength in the magnetic field allows more fluid to flow

through cartilage and induces more fluid pressure and this result is consistent with

the previous discussion on solid deformation.

For the fixed value of magnetic parameter, the fluid pressure increases in the tissue

for given time due to compression of the tissue and vanishes due to exudation of

the fluid.
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Figure 6.8: Fluid pressure as a function of x for various values of magnetic
parameter M during fast rate of compression (R2 = 0.25) at t = 0.1 when
m = 0.

Figure 6.9 describes the effect of magnetic parameter M for the slow rate of com-

pression (R2 = 1.2) on the fluid pressure as a function of space x for linear per-

meability (m = 0) at t = 0.01. Graph shows that the increase in the magnetic

field induces more fluid pressure vanishes quickly to zero as compared to the case

when magnetic field is not present (M = 0). This is due to the fact that increase

in the magnetic field increases the permeability and causes decrease in the solid

deformation.

Figure 6.9: Fluid pressure as a function of x for various values of magnetic
parameter M during slow rate of compression (R2 = 1.2) at t = 0.01 when
m = 0.
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Figure 6.10: Fluid pressure as a function of x for various values of time t
during fast rate of compression (R2 = 0.25) when M = 0.1.

Figure 6.11: Fluid pressure as a function of x for various values of time t
during slow rate of compression (R2 = 1.1) when M = 0.1.

Figure 6.10 shows the profile of fluid pressure p(x, t) as a function of distance

x during the fast rate of compression (R2 = 0.25) at time t = 0.1, 0.12 in the

presence of magnetic parameter (M = 0.1). As time evolved, process moved

towards equilibrium state. Curves show that pressure increases and becomes linear

by attaining the equilibrium state. These curves show that pressure fluctuation is

directly proportional to value of time t. Increase in time delays the equilibrium

state.
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Figure 6.11 shows the profile of fluid pressure p(x, t) as a function of distance

x during the slow rate of compression (R2 = 1.1) at time t = 0.01, 0.012 in

the presence of magnetic parameter (M = 0.1). As time evolved, process moved

towards equilibrium state. Curves show that pressure increases and becomes linear

by attaining the equilibrium state. These curves show that pressure fluctuation is

directly proportional to value of time t. Increase in time delays the equilibrium

state.

6.6 Conclusion

In this chapter, we have analyzed the stress relaxation behavior of the articular

cartilage during compression under an applied magnetic field. The tissue consid-

ered in this study is assumed to be homogeneous, isotropic and linearly elastic.

Mathematical model was developed using continuum mixture theory on the as-

sumption that solid deformation is infinitesimal small. A numerical technique

Method of Lines (MOL) was employed to solve the parabolic partial differential

equation in terms of solid displacement which was then used to solve fluid pres-

sure. Results are analyzed for the various values of magnetic and permeability

parameters during fast and slow rate of compression. The summary of the results

are as follows

• The strength of magnetic field behaves as a resistive force during fluid flow

through the articular cartilage.

• The solid displacement decreases by increasing the magnetic parameter and

this result is more profound during the fast rate of compression.

• For the fixed value of magnetic parameter, solid displacement increases by

increasing the time range for the fast and slow rate of compression.

• Strain-dependent nonlinear permeability allows more fluid to pass through

cartilage as compared to the linear permeability during compression.
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• Fluid pressure increases and becomes linear by attaining the equilibrium

state.

• For the fixed value of magnetic parameter, fluid pressure increases by in-

creasing the time range.

We have explored the stress relaxation behavior of the cartilage with nonlinear

permeability and MHD effects. Numerical results can be further improved theo-

retically and experimentally using sophisticated forms of permeability. Mathemat-

ical model can be further enhanced by adding additional features such as different

geometries, evaporation and chemical interaction between fluid and articular car-

tilage.



Chapter 7

Conclusion and Future Work

In this thesis, we studied the non-Newtonian fluid flow and electrically conducting

fluid flow through deformable porous materials and biological tissues. The model-

ing of these problems is based on continuum mixture theory. Below we summarize

the conclusion of each problems along with the future directions.

7.1 Conclusion

Over the past four decades, interest to examine flow in deformable porous ma-

terial has been developed due to its practical applications in industrial as well

as a biological science. In this dissertation, compression molding process, ion-

induced deformation and compressive stress relaxation behavior of articular car-

tilage are modeled using continuum mixture theory approach. Partial differential

equations for the solid volume fraction, solid displacement and fluid pressure are

obtained using Navier-Stokes equation and conservation of mass. Dimensional

PDEs are non-dimensionalized using suitable choice of dimensionless parameters.

Dimensionless PDEs are solved analytically as well as numerically using pdepe and

Method of Lines. The solution of these problems are presented graphically. Below

we summarize the main findings of this dissertation.

123
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7.1.1 Non-Newtonian Flow in Deformable Porous Media:

Modeling and Simulations of Compression Molding

Processes

• Power-law fluids can be used for manufacturing of composite materials using

compression molding process.

• Mathematical modeling of the compression molding process can be achieved

using dynamics controlled either by pressure applied on piston or velocity of

piston.

• In pressure driven dynamics, for shear-thinning fluid, there is sudden increase

in solid volume fraction near the draining surface which increases with com-

pression and brings the pre-impregnated pile to stage in which solid volume

fraction is greatly inhomogeneous. There is increase in solid volume fraction

for shear-thickening fluid but final state of pre-impregnated pile is homoge-

neous.

• Imbibition of fluid for pressure driven dynamics in a pre-impregnated pile

can be observed in both cases of power law fluid.

7.1.2 Ion-induced Swelling Behavior of Articular Cartilage

due to Non-Newtonian flow and its Effects on Fluid

Pressure and Solid Displacement

• The salt concentration in articular cartilage increases with time and attains

its maximum value at t = 4. After which the salt bath does not affect the

ionic concentration.

• Under salt bath, the solid displacement in the cartilage decreased for shear-

thinning and Newtonian fluid, but increased for the case of shear-thickening

fluid.
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• Shear-thinning fluid induces more fluid pressure as compared to the shear-

thickening fluid.

7.1.3 Compressive Stress Relaxation Behavior of Articular

Cartilage and its Effects on Fluid Pressure and Solid

Displacement due to non-Newtonian Flow

• The solid displacement increases with an increase in power-law index during

fast and slow rate of compression under stress-relaxation in compression.

• It is also observed that linear permeability induces more solid displacement

as compared to the strain dependent nonlinear permeability.

• It is observed that shear-thinning fluid induces more fluid pressure as com-

pared to the shear-thickening and Newtonian fluid.

• The solid deformation increases with an increase in power-law index n during

compressive stress relaxation behavior of articular cartilage.

• Shear-thickening fluid induces more deformation as compared to the shear-

thinning fluid and the Newtonian fluid during the fast and slow rate of

compression.

• Numerical results also show that linear permeability induces more deforma-

tion as compared to the strain-dependent nonlinear permeability for shear-

thinning and shear-thickening fluids.

7.1.4 Flow-Dependent Compressive Stress-Relaxation Be-

havior of Articular Cartilage with MHD Effects

• The strength of magnetic field behaves as a resistive force during fluid flow

through the articular cartilage.

• The solid displacement decreases by increasing the magnetic parameter and

this result is more profound during the fast rate of compression.
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• For the fixed value of magnetic parameter, solid displacement increases by

increasing the time range for the fast and slow rate of compression.

• For the fixed value of magnetic parameter or permeability parameter, fluid

pressure increases by increasing the time range.

7.2 Future Direction

In the present work, continuum mixture theory is used to address some unsolved

problems in industry and biomechanics. However, still there are many possible

questions that need to be addressed and could be investigated theoretically and

experimentally

• The effect of magnetohydrodynamics fluid on compression molding process

can be considered.

• The non-Newtonian magnetohydrodynamics modeling of compression mold-

ing process may be undertaken.

• In this dissertation, we assumed that articular cartilage is isotropic and ho-

mogeneous, however, anisotropy and in-homogeneity of cartilage can also be

considered for more accurate results.

• Consideration of evaporation, multidimensional solid displacement, multidi-

mensional fluid pressure, and different permeability functions can improve

the understanding of the solid-fluid interaction in articular cartilage.

• Consideration of non-Newtonian models other than the power-law model can

also be investigated.

• In last, it is worth mentioning here that theoretical models are presented

in this dissertation, however, a direct comparison of our divine models with

experimental work will helpful in answering many interesting questions.
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Appendix A

Magnetohydrodynamics (MHD)

Equations for a Biphasic Mixture of

Solid Phase and a Fluid Phase

A deformable porous material is considered which is assumed to be a continuous

mixture of an incompressible solid phase and a magnetic fluid phase. Each point

in the binary mixture is occupied by constituents of the mixture. Conservation of

balance of mass for the solid and a fluid phase can be written as [99]

∂ρs

∂t
+∇ · (ρsvs) = 0, (A.1)

∂ρf

∂t
+∇ ·

(
ρfvs

)
= −γp, (A.2)

where vs, vf are the velocities, and ρs, ρf are the densities of solid and fluid

phases, respectively, p be the fluid pressure and γ is a constant of proportionality.

Conservation of balance of linear momentum for solid and fluid phases can be

written as

ρβ
(
∂vβ

∂t
+ (vβ · ∇)vβ

)
= ∇ · T β + ρβbβ + πβ + J ×B, (A.3)
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where β = s represents the solid phase and β = f represents the fluid phase,

T β = −φβpI+σβ represents stress tensor for the β phase, I is the identity tensor,

φβ represents volume fraction of β phase, here πs = −πf = K
(
vf − vs

)
+p∇φs is

the friction force term which satisfies πf + πs = 0. Here K is the drag coefficient

of relative motion between solid and fluid phases and σβ is the stress of β phase.

Moreover, bβ is the net force, whereas gravitational forces are neglected, current

density is represented by J and magnetic flux density is represented by B. Now,

the generalized Ohms’s law along with the Maxwell’s equations are [180]

J = σo
(
E + vβ ×B

)
, (A.4)

divB = 0, (A.5)

curlB = µcJ , (A.6)

curlE = −∂B
∂t

, (A.7)

where σo is the electric conductivity of fluid, µc corresponds to the permeability

of free space and E is the electric field. The term J ×B of Lorentz force in the

momentum balance equation (A.3) can be written in terms of Ohm’s law as

J ×B = σo
(
E + vβ ×B

)
×B, (A.8)

the decomposition of total magnetic field B is given as [181, 182], B = b +Bo,

where b represents the induced magnetic field and Bo is the imposed magnetic

field. It is worth mentioning that b may be ignored due to low magnetic field

Reynolds number. After neglecting electric and magnetic fields, equation (A.8)

takes the following form

J ×B = σo
(
E + vβ ×Bo

)
×Bo, (A.9)
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Equation (A.9) on using relation

(F ×G)×H = G(F ·H)− F (G ·H),

gives

J ×B = σo
(
Bo(v

β ·Bo)− vβ(Bo ·Bo)
)
. (A.9)

Assuming velocity vector vβ is perpendicular to the magnetic field lines Bo (i.e.

vβ · Bo = 0) and dimensional form of Bo = (0, Bo, 0), where Bo represents the

strength of imposed magnetic field Bo, equation (A.9) takes the following form

J ×B = −σoB2
ov

β. (A.10)

Thus, conservation of the momentum (A.3) can be written as

ρβ
(
∂vβ

∂t
+ (vβ · ∇)vβ

)
= ∇ · T β + ρβbβ + πβ − σoB2

ov
β.

The conservation of the momentum equation (A.3) for the solid phase, on substi-

tuting the value of πs, gives

ρs
(
∂vs

∂t
+ (vs · ∇)vs

)
= ∇ · T s + ρsbs +K

(
vf − vs

)
+ p∇φs − σoB2

ov
s. (A.10)

Similarly, the conservation of the momentum equation (A.3) for the fluid phase,

on substituting the value of πs, gives

ρf
(
∂vf

∂t
+ (vf · ∇)vf

)
= ∇ · T f + ρfbf −K

(
vf − vs

)
− p∇φs − σoB2

ov
f . (A.11)
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