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Abstract

Climate change due to global warming has given rise to many challenges, especially

the variation in precipitation trends which are resulting in the extended possibility

of more droughts and floods. Global Climate Risk Index (GCRI) has reported

Pakistan as the 5th most affected and vulnerable country in the world which

is an alarming situation. Baluchistan, the most affected province of Pakistan, is

selected, as the study area for this doctoral research. Baluchistan is under drought

warning by Pakistan Meteorological Department (PMD) and faced many severe

droughts in the past few decades. According to the reports, 62 % of the people of

Baluchistan are deprived of safe drinking water and more than 58 % of its land

is uncultivated due to water scarcity. As a result, the water crisis in Baluchistan

should be tackled on a war footing.

Mann-Kendall (MK) statistical test is used to identify the monthly significant

precipitation trends in thirteen meteorological stations located in four regions of

Baluchistan. Theil and Sens slope method (TS) is used to compute the magni-

tude of the trends. Partial Mann-Kendall (PMK) test is performed to study the

trend variations in precipitation in the presence of climatic indices as covariates.

Variability patterns of precipitation are identified through Principal Component

Analysis (PCA) and their corresponding time series (PCs) are also made. Empir-

ical Orthogonal Analysis (EOF) is performed on Sea Surface Temperature (SST),

Sea Level Pressure (SLP), and Zonal Wind Surface (ZW-S) to determine the dom-

inated teleconnections. Correlation analysis is also performed between time series

of precipitation and climate indices, SST anomalies, atmospheric circulations such

as SLP, Geopotential Heights (500 hpa), and Zonal winds (surface) to observe

their relationship and influence on precipitation. Modeling, and validation are

done using both Multilinear Regression (MLR) and Principal Component Regres-

sion (PCR) and prediction has been done for the next five years.

Baluchistan receives its greater portion of rainfall in the winter and spring months.

Variation in trends, i.e. increase/decrease in precipitation are observed in months

of January/June when the time series data is analyzed through Mann-Kendall test.
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The change in precipitation, trends under the influence of climatic indices are de-

termined through PMK for January and June in Region-1. EQWIN, ENSO-MEI,

and EMI-MODOKI show moderate to strong influence on precipitation. Model

using MLR technique identified the North Atlantic Oscillation (NAO), Arctic Os-

cillation (AO), EQWIN, and EMI-MODKOI as the potential determinants causing

variability in the precipitation of Baluchistan. The second model using the PCR

technique is also developed to address the multicollinearity among variables. Apart

from other variables that are identified as potential determinants, PCR also shows

that EQWIN is a significant potential determinant having a strong positive impact

on precipitation variability in Baluchistan. Hence, endorsing the novelty of this

doctoral research. PCR model produces more authentic, accurate, and statistically

reliable results as compared to the MLR model. Other studies using both PCR

and MLR techniques also confirm that PCR is better than MLR. Therefore, based

on the current findings along with previous studies, it can be concluded that the

PCR technique is better than MLR. And PCR is recommended for further study

as well as for detailed analysis.

Keywords: Precipitation Variability, Trends Analysis, Potential Determinants,

Climatic Indices, Mann-Kendall, Partial Mann-Kendall, Empirical Orthogonal

Function, Multilinear Regression, Principal Component Analysis.
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Chapter 1

Introduction

1.1 Prologue

Planet Earth is warming up, according to a report of the Internal Governmental

Panel on Climate Change (IPCC) there is an average rise in temperature of 0.85◦C

globally from 1880-2012 [1-3]. The IPCC has predicted the temperature increase

of 2.5 to 10 ◦F over the succeeding century [4]. This rise in the global temperature

of the planet is causing deep, devastating and catastrophic effects on the planet,

mankind, environment, ecosystem, and biodiversity [5-6]. Climate change has

raised multiple challenges for mankind, such as droughts, floods, lightnings, wind-

storms, thunderstorms, hailstorms, tornados, cyclones, hurricanes, heat waves and

cold waves [7-8]. Climate change is expected to affect people globally in terms of

altering their physical activities [9-10]. Studies have already reported variation in

intensity and frequency of precipitation pattern, extremes in temperature, increase

in the intensity of hurricanes, melting of glaciers, rise in sea level endangering the

low altitude islands, unprecedented thunderstorms, droughts, more recurrence of

dangerous hot and cold waves, seasonal variation, increase in flooding and land-

slide, increased air pollution in different parts of the world [11-12]. Climate change

risks threat that cannot be irreversible and may lead mankind to extinction [13-14].

Evidence of climate change adversities are obvious all around the globe [15-26].

1
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South Asia, due to its population, demography, economy and importance, is a

hot spot for climate change impact [27-28]. Global climate change is adversely

impacting the Asian region, as this region is experiencing a rise in frequency and

magnitude of extreme precipitation events [29-33]. But, on the other hand, cli-

matologists have also predicted significant rise in drought risk [34-37]. Pakistan,

having a very significant, decisive location in South Asia, is also sternly effected by

floods and droughts due to climate change [38]. Studies have reported heavy floods

from 2000 to 2015 due to extreme precipitation events in Pakistan, India and China

[39-43]. Understanding variation in occurrence and magnitude of extreme precip-

itation events is of utmost significance in comprehending the relevant developing

issues, linked with it such as, flash floods, thunderstorms, cyclones, landslides,

mudslides, downpours, glacial lake outburst floods, dryness and droughts. And

to issue warnings and alerts, preparing plans and layout their mitigation tech-

niques [44-46]. Furthermore, inconsistency in rainfall grossly impact agriculture,

food production and security, hydro-power generation, availability of water, un-

predictability inland navigation, ecosystem, biodiversity and disaster management

sector, ultimately resulting in increasing the risk of high mortality [47-52].

Global Climate Risk Index (GCRI) is a global indexing organization that pub-

lishes annual reports and enlists the most vulnerable countries due to climate

change catastrophes. The analysis in the report is based on the impacts of ex-

treme weather incidents, level of exposure, vulnerability, associated socio-economic

data and death tolls. The annual risk index in the report shows the level of expo-

sure to extreme events, which countries must take as warnings in order to be ready

for more recurring and/or more severe events. Pakistan was ranked as the eighth

most vulnerable nation by the Global Climate Risk Index report from 1998 to 2017

[53]. Additionally, the GCRI report’s latest version in 2018 has updated Pakistan

from 8th position to 5th position as the most affected and the most vulnerable

country. According to the same GCRI report, Pakistan has lost 9,989 lives, suf-

fered economic losses worth $3.8 billion and experienced 152 major weather events

[54]. The report further emphasized that Pakistan is not only in the list of most

effected and most vulnerable countries, but Pakistan’s vulnerability is increasing
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with each passing day. There are several other international reports and reporting

agencies, like the United Nations Development Programme (UNDP) and Asian

Development Bank (ADB) which are endorsing the susceptibility of Pakistan to

climate change adversities [55-56]. GCRI in their report, encourages the world,

and concerned authorities, for taking measures to cope with the danger, risk and

challenges that climate change poses to mankind. The vulnerable region, such

as Baluchistan should be on high priority. Baluchistan, the new vibrating eco-

nomic front of Pakistan, has faced many recurring severe droughts in the past few

decades due to continuous decreasing precipitation patterns [57-62]. This PhD

research has taken up Baluchistan province as a study area because of its rich nat-

ural resources, vibrating economy, and international Gwadar port. Undoubtedly

numerous climate studies have pointed out the decreasing precipitation pattern of

Baluchistan but no focused research, statistical analysis, and prediction modeling

has been done on Baluchistan.

1.2 Research Motivation and Problem Statement

Precipitation is the key factor in controlling the agricultural sector of any coun-

try. All agricultural countries monitor their precipitation pattern closely because

it plays a vital role in agriculture, infrastructure development for water resources

and their better management for optimum utility. Pakistan is also an agricultural

country and one of the major components of it’s economy depends on it. The agri-

cultural sector contributed nearly 22.04% of GDP in 2019 according to government

statistics [63-64]. Accordingly, the agriculture sector is the largest employer, fas-

cinating 44% of the country’s total labor force. Anthropogenic activates have

changed the weather patterns of the entire world including the precipitation trend

of the study area i.e. Baluchistan province [65-70]. Variation in precipitation has

an adverse impact on agriculture consequently effecting the infrastructure, GDP

and economy of any country [71-72]. Concurring to the United Nations Develop-

ment Program (UNDP) [73] reports, Pakistan will become a water scarce country

from a water stressed country by 2025, if serious measures are not taken now.
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The situation is already worse in Baluchistan. Water is already scarce in the said

region and precipitation, which is the main source of fresh water is also decreasing.

All around the world groundwater plays a major supporting role in the agriculture

sector. Similarly, crop production in Baluchistan predominantly relies on ground

water. Groundwater table has depleted sharply due to recurring droughts, exten-

sive pumping and decrease in precipitation. The Ground water table is decreasing

at an alarming rate of 5 meters annually in some valleys like Quetta, Pishin and

Mustang [74-76]. According to a report in daily Dawn, 62% of Baluchistan peo-

ple are deprived of safe drinking water and nearly 58% of Baluchistan’s area is

nonproductive due to water scarcity [77]. Baluchistan also suffers from devastat-

ing sporadically catastrophic flash floods due to torrential rainfall. Almost every

year, it is manifested on electronic and print media that during monsoon due to

torrential rainfall, devastating flooding occurs causing loss of precious human life,

property, and livestock. These facts are duly admitted through the published print

media.

According to a WHO report, heavy rainfall on 20 th February 2019 affected 3 dis-

tricts of Baluchistan . In Turbat alone, 150,000 people were affected, and 15 health

facilities were damaged due to rainfall [78]. Therefore, Baluchistan’s precipitation

trend should be thoroughly investigated and monitored closely. Furthermore, it

is also worth noticing that a substantial portion of CPEC and Gwadar port is

also located in this province, such overlook may put CPEC, Gwadar port along

with a foreign investment of $62 billion at risk [79]. This research work will help to

achieve Sustainable Development Goals (SDGs) 2030 which are universal call made

by the United Nations in the form of seventeen (17) SDGs.They aim to transform

our world. This study addresses three SDGs namely, SDG # 6: Clean wa-

ter because precipitation address 60% need of fresh water in the study area, and

also recharge the depleting ground water. SDG # 11: Sustainable sites and

communities to reduce the negative impact of natural disasters, such as flood-

ing/drought, heat/cold waves and SDG # 13: Climate action as precipitation

patterns, strongly control the frequency of droughts and floods [80, 81]. It will

increase awareness, of people against climate change.
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Thus, the problem statement is as follows: “There is a perpetual decrease in pre-

cipitation trend of Baluchistan. Precipitation is the only source of fresh water in

Baluchistan. The decrease in precipitation trend has caused catastrophic droughts

and famine like situations in past few decades [82-85]. Global warming and conse-

quent climate change appear to be responsible for the variation in the precipitation

trend [86-87]. Variability in precipitation trend due to climate change is one of the

major challenge faced by Pakistan and the province of Baluchistan where the situa-

tion is already worse. This scenario has led to recurring droughts of different span

and intensity since last few decades and has caused famine in some areas [57]. The

situation after 2013 has become even more distressing due to 74% decrease in pre-

cipitation resulting in adverse impacts on agriculture, livestock, water administra-

tion, food security and livelihoods etc. Pakistan Meteorological Department (PMD)

has issued several drought alert warning for the province of Baluchistan,and the

most recent one was in 03 june 2021 due to 60% decrease in Baluchistan Precipi-

tation [88].This study will help people of Baluchistan to plan their crop cultivation,

livelihood and livestock. It will also increase awareness of people about flash flood

due to unprecedented torrential rain. Study will also reduce the danger and impact

of flood and drought by the early warnings.”

1.2.1 Research Questions

The research questions related to this doctoral study are listed below :

• What could be the dominating precipitation trend of the study area?

• Which climatic indices, or large scale oceanic-atmospheric circulations are

causing a significant influence on the precipitation trend of the study area?

• Is there any correlation between the factors effecting precipitation? How

significant is that correlation?

• How different modeling techniques can be used to validate and predict the

potential determinants causing precipitation variability?
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1.2.2 Research Hypotheses

This doctoral research is conducted on basis of the following research hy-

pothesis, which is tied up with the first and second research questions.

Hnull1 = There is no trend in the precipitation pattern of the study area.

Halt1 = There is a trend in the precipitation pattern of the study area.

Hnull2 = The climatic indices, and large scale oceanic-atmospheric circu-

lations are independent variables.

Halt2 = The climatic indices, and large scale oceanic /atmospheric circula-

tions are dependent variables.

Hnull3 = The factors effecting precipitation have a significant correlation.

Halt3 = The factors effecting precipitation have no significant correlation.

Furthermore, Pearson correlation is performed to test research question num-

ber 3 and statistical modeling is performed to test research question number

4.

1.3 Overall Goal of the Research Program and

Specific Objectives of this PhD Study

The overall goal of the research program is to find potential determinants that

cause variability in the precipitation trend.

The specific objectives of this doctoral study are:

••••••• To carry out trend analysis of precipitation, study the variation in trend,

and identify significant determinants influencing precipitation.

• To conduct impact analysis of large scale oceanic, atmospheric circulations

and significant potential determinants influencing precipitation trends.
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• To develop two different models for identifying the potential determinants

defining precipitation variability.

• Comparing the output of the models and recommend the best among them.

1.4 Scope of Work and Study Limitations

The study is performed using monthly precipitation data from 13 PMD stations

located all over Baluchistan. Climate indices North Atlantic Oscillation (NAO),

Arctic Oscillation (AO), Atlantic Multi-decadal Oscillation (AMO), Multivari-

ate ENSO Index (MEI), ENSO Modoki Index (EMI), Dipole mode index (DMI),

and Pacific Decadal Oscillation (PDO) relevant to the study area are selected.

The novel indices Equatorial Indian Ocean Zonal Wind Index (EQWIN), which

was never considered in the study area was selected to establish the innovation

of this study. Large atmospheric and oceanic circulation (SLP, SST, GPH, and

ZW) at 850 hpa, 500 hpa, 300hpa, 200hpa are considered. Statistical techniques

Mann-Kendall (MK), Partial-Mann Kendall (PMK), Empirical Orthogonal Func-

tion (EOF) analyses, Multi Linear Regression (MLR) and Principal Component

Regression (PCR) are use to identify the potential determinants.

The study period is confined to 39 years (1977-2015) due to the non-availability

of continuous data prior to 1977. A span of 39 years is not enough to study

multi-decadal climate indices like PDO and AMO because their cycles may vary

20-30 and 20-40 years respectively [89-90]. High resolution gridded data is not

available for most of the indices except SST, which would otherwise be beneficial

in obtaining the refined EOF patterns and improving the significance of the results.

PMD stations are irregularly and sparsely located in Baluchistan which results in

difficulty to interpolate and extrapolate the data. Climate and weather prediction

involves complex processes and huge reanalysis data sets, having multicollinearity.

In addition, precipitation data is not normally distributed hence not suitable for

parametric analysis. Therefore, nonparametric analyses are performed which are

less powerful than parametric analysis.
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1.4.1 Rationale behind the Selection of Variables

Baluchistan’s weather is mainly governed by Westerly Disturbances in winter and

spring months and by Monsoon in summer months. Climate indices that influ-

enced the Westerly Disturbance are NAO and AO. Whereas Monsoon is influ-

enced by DMI, EQWIN, ENSO-MEI and EMI-MODOKI indices. Furthermore,

the decadal and multi-decadal indices of PDO in the Pacific Ocean and AMO in

the Atlantic Ocean enhances or suppresses the effects of NAO, AO, DMI, EQWIN

and ENSO. Therefore, the precipitation in Baluchistan may be influence by the

above-mentioned climate indices. ENSO-MEI, EMI-MODOKI, PDO are sea sur-

face temperature (SST) based indices in the Pacific Ocean, whereas AMO is SST

based index in the Atlantic Ocean and DMI is SST based indices in the Indian

Ocean. NAO and AO are sea level pressure related index in the Atlantic Ocean

and Arctic region. EQWIN is the atmospheric counterpart of DMI in the Indian

ocean based on zonal winds. Hence, SST, SLP, GPH and ZW are considered

as large ocean and atmospheric circulations for studying the correlation with the

Baluchistan precipitation.

1.5 Novelty of Doctoral Study, Research Signif-

icance and Practical Implementation

The novelty of the current study is to assess the impact of climatic indices namely

Dipole Mode Index (DMI), Equatorial Indian Ocean Zonal Wind Index (EQWIN),

Multivariate ENSO Index (MEI) and ENSO Modoki Index (EMI) that have never

been evaluated on the study area i.e. Baluchistan province in addition to previ-

ously assessed North Atlantic Oscillation (NAO), Arctic Oscillation (AO), Atlantic

Multi-decadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO) on pre-

cipitation trend in said region. In previous studies, the relationship between the

climatic indices and precipitation on Pakistan was carried out using Correlation

Coefficient whereas, in the current work, Partial Mann-Kendall (PMK) is used to
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study the influence of climatic indices on precipitation. Statistical analysis and

modeling in climate are very important but it has drawbacks like huge data set,

complex process, and correlated predictors. To overcome these drawbacks, two

different modeling techniques namely, Multi Linear Regression (MLR) and Prin-

cipal Component Regression (PCR) are adopted. MLR technique is simple and

easy to follow, however, it cannot address the multicollinearity among predictors.

To combat multicollinearity, another technique known as; Principal Component

Regression (PCR) is selected. PCR not only addresses multicollinearity among

predictors but also reduces data sets and variables. PCR helps in finding the most

relevant predictors that are responsible for causing maximum variability in the

precipitation. The study is further enhanced by post estimation residual analy-

sis to check the validity of all estimated equations. Independent and identically

distributed residuals guarantee the validity of the results of estimated models.

For this purpose, concurrent auto-correlation and heteroscedasticity tests are em-

ployed. After validation and estimation, both the techniques were compared to

propose the best between them for climate study.

This study will help the people of Baluchistan, by early an warning to adopt

mitigation measures against droughts and flash floods due to unprecedented pre-

cipitation variation. It will also assist CPEC authority and Gwadar port authority

to deal with precipitations odds in the long term. In addition, this study would be

useful for National Disaster Management Authority (NDMA) and policy makers

to comprehend the situation given in view of the climate change to make policies,

strategies and preventive measures. The analysis done in this current study will be

baseline research to compare the effect of anthropogenic activity on precipitation

trends. Furthermore, this study would be helpful for the meteorologist to better

tune their models for accurate weather prediction.

1.6 Brief Methodology

The brief methodology to obtain the objectives of this study is as follows:
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Literature Review: A comprehensive literature review is conducted to identify

the research problem and to set the objectives of the study.

Data Acquisition, Analyses and determination of trends: Initially, the

data for the dependent variable (precipitation) and potential determinants (cli-

matic indices and variables responsible for the changes in large-scale circulations)

is acquired. Then, the precipitation data is analyzed for normality, skewness and

kurtosis using different statistical tools. The trend in precipitation data is then

determined by using non-parametric techniques.

Influence of variables on precipitation: The influence of potential determi-

nants (climatic indices and large-scale circulations) on precipitation is identified

by using trend analysis, pattern analysis with Empirical Orthogonal Functions and

association of potential determinants with principal components of precipitation.

Multi Linear Regression (MLR) Modeling and Validation: The regression

model is prepared for the estimation of potential determinants defining precipita-

tion variability with the help of MLR by using Climate Indices and Large-scale

Circulations. The outcome of the analysis is validated through different statistical

tools and techniques. The model obtained is then put to test for post estimation

analysis to verify the validity and accuracy. Principal Component Regression

(PCR) Modeling and Validation: Principal Component Regression (PCR)

is a technique for transforming data to make un-correlated regressors known as

Principal Components (PCs) and to use them instead of original data. The use

of PC’s helps reduce the redundant variables and addresses multicollinearity. The

model output is subjected to post estimation analysis for validity and accuracy

check. Future prediction was performed. The models obtained from both MLR

and PCR techniques are then compared for their best suitability.

Conclusion and Recommendation: Based on the analyses and modelings

that are being carried out, conclusions are made, and future recommendations are

proposed accordingly.
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1.7 Thesis Layout

The brief layout of this thesis is as follow, which is also depicted through the flow

chart in Figure 1.1.

Chapter 1 provides a broader overview of the research work being carried out

in this study. It defines the problems at hand that need to be addressed due to

climate change and global warming . The novelty of the study is also discussed

in this chapter. Furthermore, research questions and research hypotheses that

needs to be addressed for achieving the overall goal of this doctoral study are also

identified herewith. Thus, the chapter offers a broader perspective to conduct the

research.

Chapter 2 includes a comprehensive literature review of the subject at hand. This

chapter not only highlights the drought condition and water scarcity prevailing in

Baluchistan, but also explains the significance of precipitation for the survival of

the people of Baluchistan, in terms of it’s infra structure, economy, trade, finance,

demography, environment, culture, and socio- economic conditions. This chapter

also explains the other important reasons, like the presence of Gwadar port, China

Pakistan Economic Corridor CPEC, one of the biggest Exclusive Economic Zone

(EEZ) and foreign investment of $62 billion, to perform this study.

Chapter 3 outlines the research methodology that is adopted to carry out the

precipitation trend analysis. The methods and techniques are discussed in depth

that is utilized to do this analysis. Furthermore, collection of precipitation data

for the study span (1977-2015) i.e. 39 years from 13 stations of the study area,

processing of data as per accepted standards in the literature review, quality tests

on the data to validate its appropriateness for research work and trend analysis

that are being carried out on the data are explicitly described. Chapter 3 also deals

with the impact and influence of large scale oceanic and atmospheric circulation on

the study area. It describes the variation and its significance in the precipitation

trend caused by climatic indices due to naturally occurring large-scale oceanic,



Introduction 12

atmospheric circulation and climate variables, like; sea surface temperature, sea

level pressure, zonal wind and geopotential height at significant atmospheric levels.

Chapter 4 comprises of developing model by using Multilinear Regression Analy-

sis (MLR) technique for estimation of the potential determinants that are respon-

sible for causing the variability in the precipitation trend of the study area. It

includes performance indices of the model and post estimation residual analysis

to check the validity of all estimated equations.

Chapter 5 contains modeling and validation by applying Principal Component

Regression Analysis (PCR) to find the potential determinant causing the variabil-

ity in the precipitation trend of the study area. PCR is the most suitable technique

for climate modeling as climate prediction is a very complex process, that involves

a huge data set and a large number of independent variables. PCR helps to find

significant variables that explain most of the variance in the data set. One of

the serious drawbacks of climate modeling is that the independent variables might

be highly correlated. PCR modeling technique is the best way to address multi-

collinearity. PCR uses uncorrelated Principal Components (PC) as regressors in

place of original variables. This chapter also includes the comparison of both the

modeling techniques (i.e., PCR and MLR) based on their performance indices and

post estimation residual analysis and that ends up with the recommendation of

best the modeling technique for climate study.

Chapter 6 shows the conclusions drawn from the trend analysis, statistical anal-

ysis and modeling that is being carried out in the study. Some future recommen-

dations are also made in this chapter.
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Figure 1.1: Flow Chart Showing Thesis Layout



Chapter 2

Literature Review

2.1 Background

Climate change and global warming had influenced the precipitation pattern of

the entire planet [91-93]. The precipitation trend had gained worldwide attention

as its variation can led to numerous severe dynamic and long-term catastrophic

incidents [94-95]. It had caused significant disasters like cloud bursts, flooding, and

severe droughts [96-99]. Monitoring and assessing the Spatio-temporal dynamics

of precipitation patterns and their variability in the context of climate change has

become mandatory in climatology, particularly in a country like Pakistan, where

the economy is dependent mainly on rain-fed agriculture. Agriculture is one of

the most climate-sensitive sectors of the economy [100].

Numerous research studies carried out in the past were successful in establish-

ing the fact that large scale atmospheric and oceanic circulation (also known as

teleconnections) were linked with many different phenomena around the world

like global warming, variability in the stratosphere ozone, unprecedented ocean

warming, wildfire, droughts floods, bird migration, bird population dynamics, fish

population, marine and terrestrial ecosystem, Siberian snow cover, river hydrol-

ogy, etc. [101-103]. The most dominant effect of teleconnections was on the

14
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weather and climate of our planet and variations in the precipitation trend [104-

107]. Thus, teleconnections patterns were described as recurring and persistent,

large-scale patterns of temperature, pressure and circulation anomalies extending

over large geographical areas [108-111]. Some of these teleconnections were of

planetary-scale in size and span over entire ocean basins and continents [112-117].

Teleconnections referred to the climate variability in sea surface temperature, sea

surface pressure, zonal wind, humidity, etc., in the troposphere and between non-

contiguous geographic regions [118]. Teleconnections are the fundamental compo-

nent of the climate system globally, with the frequency of climate variations on

weekly, monthly, interannual and decadal time scales [119-121]. This variation may

have a very strong to weak or insignificant influence on precipitation trends causing

drought, down pours and torrential rains. A comprehensive understanding of these

teleconnections is helpful in planning water resources, agriculture and livelihood.

For example, there were several different teleconnections patterns around the globe

and the two most prominent and well-known were El Nino Southern Oscillation

(ENSO) and North Atlantic oscillation (NAO) [122]. ENSO impacts were sensed

in remote regions of the globe through its atmospheric teleconnections. Climatol-

ogists claimed that the ENSO was responsible for the seasonal hurricane in the

Northwest Atlantic region. ENSO can also be related to extreme weather events

worldwide, such as severe droughts and powerful windstorms [123-128]. ENSO

was affecting the commodity market worldwide by creating a wet and dry spell,

as shown in Figure 2.1.

The North Atlantic Oscillation (NAO) was considered as one of the main source of

climate variability in Eurasia, Greenland, North America, and North Africa [129].

NAO played a significant role in controlling weather and climate over the Atlantic

region, including the United Kingdom, as shown in Figure 2.2 [130].

Besides ENSO and NAO, the teleconnection patterns, namely, AO in the Arctic

Ocean, IOD and EQWIN in the Indian Ocean and multidecadal teleconnection

patterns of AMO and PDO also have significant influence on the global climate

[131-136]. The current study focuses on determining the precipitation trends and

influence of teleconnections (variables) on precipitation in Baluchistan, Pakistan.
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 Figure 2.1: The remote effects of El Nino Southern Oscillation (ENSO)[137].

These influencing variables may be the potential determinants causing precipita-

tion variability in this region.

2.2 Precipitation Pattern in Baluchistan

About 58% of Baluchistan’s total rainfall occurs in winter due to Western De-

pression, arising from the Mediterranean Sea and 31% of the total rainfall occurs

during the monsoon season, originating from the Bay of Bengal. Its precipita-

tion is less affected by the monsoon; however, the influences of tropical storms in

coastal areas in autumn were prominent [138]. The province of Baluchistan had

faced many severe droughts and was already under drought warning by Pakistan
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Source: National Oceanic Atmospheric Administration commodities analyst 

 

Figure 2.2: Impact of North Atlantic Teleconnection Patterns on Northern Eu-
ropean Sea Level Pressure, Sea Surface Temperature and Geo-Potential Height

at 200 hpa [139].

meteorological department [140-142]. Droughts were mainly due to long-term pre-

cipitation variability and most of the studies connected them to climate dynamics

[143]. Droughts had been observed to occur every four out of ten years in Pak-

istan, with Baluchistan province being the most drought-prone region [144-147].

Droughts had adverse impacts on the agriculture sector and their severity may
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lead to food scarcity and famine [148-150]. Droughts can be more acute in semi-

arid and arid regions. Pakistan’s two-thirds of the land area lying in semi-arid

and arid climate zones, which means that they were prone to droughts [151-154].

Several studies had reported a significant increase in heat waves frequency over

Baluchistan province, which was a clear warning of more frequent and more in-

tense droughts in the future. Pakistan Meteorological Department (PMD) off and

on issue drought warnings for Baluchistan province, and the most recent one was

on 03 June 2021. Recently few drought studies had also been done on Baluchistan

province; however, no dedicated research had been carried out on the precipita-

tion variability, and its link to large scale dynamics, statistical analysis and climate

modeling.

Baluchistan province also suffered from devastating, sporadically and catastrophic

flash floods due to erratic, unprecedented torrential rainfalls on its rugged moun-

tains, hills, valleys and challenging topography. The erratic precipitation pattern

of Baluchistan not only vary from year to year but it also vary within the year.

Almost every year, it is manifested on electronic and print media that during

monsoon, due to torrential rain, devastating flooding is caused along the drainage

rivers causing loss of property,infrastructure, livestock and human life [155-156].

Although there is no accurate inventory of damages or the record of catastrophe,

but the facts are duly admitted through the published print media and worldwide

organization like World Health Organization (WHO) [157].

Last year damages due to torrential rains and flash floods as reported by World

Health Organization (WHO), are presented in Table 2.1.

Table 2.1: Destruction due to Torrential Rains and Flash Flood in Baluchistan
[157].

S.No Stations Affected Displaced Damaged

1 Lasbella 40,000 1,500 -

2 Killa Abdullha 55,000 - -

3 Turbat 150,000 250-300 15 Health Facilities

4 Pashin 120,000 8,000

5 Khuzdar 60,000



Literature Review 19

2.3 Impact of Climate Indices on Precipitation

Variability

Climatic indices were known to be the quantitative diagnostic representation of

large-scale oceanic, atmospheric circulations and teleconnection patterns. These

were the spatial patterns occurring in the stratosphere in the form of atmospheric

and oceanic circulation. They were responsible for various remote anomalies, cli-

mate/weather, droughts/flood, extreme events, over large distances around the

world [158-162]. They are of planetary scale, global scale, synoptic scale and

regional scale as explained earlier. Climate indices are known to influence the

precipitation pattern and trend of the study area through teleconnection. The

global impact and influence of the most common climatic indices such as NAO,

AO, AMO, IOD-DMI, IOD-EQWIN, PDO, ENSO-MEI, ENSO MODOKI (ENSO-

EMI) are discussed below to understand their magnitude, scale, power, influence,

control, supremacy, importance, intensity and strength in weather and climatol-

ogy.

2.3.1 Global Scale Influence of Oceanic-Atmospheric

Climatic Indices

Through numerous research it was well established that oceanic-atmospheric cli-

matic indices had significant impacts on climate globally [163-171]. Few of the

studies are discussed here in this context. A study conducted recently on the

hydro-climatological attributes like temperature, precipitation, and potential evap-

otranspiration (PET), over century-spread data (1901- 2002) to understand the

influence of different El Nino Southern Oscillation (ENSO) phases on the varying

precipitation patterns across North India during the monsoon season. Trends

and shifts were assessed using non-parametric statistical tests showed that the El

Nino years had a strong influence in causing the hydro-climatological events com-

pared to La Nina and neutral years. The study also helped climate researchers and

policymakers to understand the importance, impact and variability resulting from
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the various ENSO phases in the monsoon season as monsoon mainly dominates

the precipitation pattern over South Asia [172].

A study conducted over 56 years (1961-2016) using Continuous Wavelet Trans-

form (CWT) to evaluate the correlation between two major oceanic-atmospheric

indices of the Pacific Ocean, i.e., El Nino Southern Oscillation (ENSO) and the

Pacific Decadal Oscillation (PDO), with the western U.S. Snow Water Equiva-

lent (SWE). The analysis discovered that ENSO, as compared to PDO, had a

much stronger influence on Snow Water Equivalent (SWE). In Addition, regions

closer to the ocean and at lower elevations showed a higher correlation as com-

pared to the inland areas with higher elevation. The study contributed to facili-

tate climate forecasters and regional water managers [173]. Oceanic-atmospheric

oscillations, consisting of Pacific Decadal Oscillation (PDO), North Atlantic Os-

cillation (NAO), Atlantic Multidecadal Oscillation (AMO), and El Nino Southern

Oscillation (ENSO) throughout 1900-2008, were selected to predict annual pre-

cipitation using Support Vector Machine (SVM), Artificial Neural Network and

Multivariate Linear Regression with a 1-year lead time. Precipitation predictions

conducted for the upper Colorado River Basin was found to be best with the com-

bination of PDO, NAO, and AMO indices, whereas the combination of AMO and

ENSO was best for precipitation predictions in the lower Colorado River basin.

When the results were compared, it was noticed that the SVM model provides

better precipitation estimates as compared to that by Artificial Neural Network

and Multivariate Linear Regression models [174]. Similar studies, based on the

SVM model, were also carried out on spring-summer streamflow for 6-9 months

in advance by incorporating the same oceanic-atmospheric oscillation indices in

the model. [175, 176]. The study confirmed that the SVM model came out to

be better as compared to Artificial Neural Network (ANN), and Multiple Linear

Regression (MLR) model.

A data-driven model, based on Least-square Support Vector Machine (LSSVM),

was developed that used interannual and decadal-scale oceanic-atmospheric oscil-

lations, i.e., Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO),

Atlantic Multidecadal Oscillation (AMO), and El Nino Southern Oscillation (ENSO),
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to generate streamflow volumes for the peak seasons (April-October) for a period

from 1955-2006. Both individual oscillation and combined oscillations analysis

were done, which revealed that AMO index at the individual level and PDO,

NAO, and ENSO indices in combination showed a pronounced effect. Overall,

the SVM model was come out with a very good streamflow prediction for Kaidu

river, Xinjiang, China. Also SMV was found to be a better modeling approach

than Artificial Neural Network (ANN) and Multiple Linear Regression (MLR).

The study was found to be useful for water managers in improving the planning

and management of water resources [177]. Another study attempted to investi-

gate the association between the regional streamflow patterns and three large-scale

climate signals, i.e., El Nino Southern Oscillation (ENSO), Pacific Decadal Os-

cillation (PDO), and Atlantic Multi-decadal Oscillation (AMO). Non-parametric

test, coupled discrete wavelet transform analyzing 237 streamflow stations for 62

years (1951-2012) was adopted. The results indicated significant positive (neg-

ative) trends and shifts in the northeastern and northwestern regions. Among

the climate signals, ENSO showed the highest association ,AMO showed strong

associations and PDO showed the least influence among the three. The results

explained the teleconnections between the climate indices and the US streamflow

variations. Results also helped to improve regional flow regulations [178].

Another research was conducted to evaluate the relationship between the Pa-

cific Ocean climate variability and western US streamflow by using the singular-

valued decomposition (SVD) technique. The data included sea-surface temper-

atures (SST), geopotential height index of 500 mbar (Z500), and 90 unimpaired

western US stream flows from 1960-2010. The SVD model developed a Spatio-

temporal relationship for each major hydrologic region with Pacific Oceanic vari-

ability. Apart from conventional El Nino Southern Oscillation (ENSO) and Pacific

Decadal Oscillation PDO regions, new regions in Pacific were identified that was

strongly related to the basin in the western USA. The model SVD resulted in

improved correlation values of smaller spatial regions over larger regions [179].

Singular Value Decomposition (SVD) and wavelet analyses were applied to the

regional streamflow of the conterminous United States and climate variabilities
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like surface temperature (SST), 500-mbar geopotential height (Z500), 500-mbar

specific humidity (SH500), and 500-mbar east-west wind (U500) of the Pacific

and the Atlantic Ocean. The analyses helped to understand the interconnections

between streamflow and climate variabilities. Both the SVD and wavelet analy-

ses established the conclusion that the streamflow variability of the regions were

strongly associated with the ENSO. The Wavelet Coherency (WTC) analyses of

ENSO/PDO/AMO and the regional streamflow patterns revealed that the warm

phase of SST in the ENSO-like region was positively correlated with Southwest

regions and negatively correlated with Northwest streamflow. Pacific and Atlantic

Ocean SST, Z500, and SH500 had a weak influence on the streamflow variability

of the Northeast and the Southeast regions. The Northwest streamflow was highly

correlated with both ENSO and PDO while AMO showed the highest correlation

with the Southeast streamflow. The study was helpful to understand the telecon-

nection of climate variables with regional streamflow and stream flow prediction

[180].

Another study utilized singular-value decomposition (SVD) for the period from

1961 to 2016 for determining the correlation between Snow Water Equivalent

(SWE) and climate indices of Pacific and Atlantic oceans. The changing char-

acteristics of (SWE) in the western United States and their teleconnections with

the Pacific and Atlantic Oceans climatic attributes (i.e.(SST), 500-mbar geopo-

tential height (Z500), 500-mbar east-west wind (U500)) were noticed in this study

as well. The study findings helped to understand oceanic dynamics, seasonal fore-

cast and water resources management [181]. Pacific Decadal Oscillation (PDO),

Southern Oscillation Index (SOI), and Pacific Ocean (SST) were used to influence

the precipitation and streamflow volumes of southwestern United States, espe-

cially California. The Sacramento River Basin (SRB) and the San Joaquin River

Basin (JRB) in California had a record of recurring droughts and frequency of the

historic low flow events. This research was conducted to enhance the traditional

tree-ring chronology (TRC)-based streamflow reconstruction by incorporating the

predictors of SST, PDO, and SOI along with TRC, in a stepwise linear regression

(SLR) model. The method was successfully applied to selected gauges located in
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the Sacramento River Basin (SRB) and the San Joaquin River Basin using five SLR

models (SLR 15), and reconstructions were developed from 1801 to 1980 with an

overlap period of 1933-1980. The research came up with an improved reconstruc-

tion skill by using the SST in combination with TRC. Overall, this study helped

in a better understanding of the past regional hydrological-climatic variabilities.

Additionally, the approach could be easily transferred to other watersheds [182].

Sacramento San Joaquin River Basin, California was selected as a study area

for analysis using Singular Valued Decomposition (SVD) to observe the telecon-

nections of the streamflow corresponding to 500 mbar geopotential height, Sea

Surface Temperature, 500 mbar specific humidity (SHUM500), and 500 mbar U-

wind (U500). Non-parametrical technique was used to screen SVD teleconnections

which were then used as the streamflow predictors in the non-linear regression

models (K-nearest neighbor regression and data-driven support vector machine).

New Spatial results were found by the SVD results that had not been included

in existing predefined indices. The non-parametric model indicated the telecon-

nections of SHUM500 and U500 being better streamflow predictors compared to

other climate variables. The regression models were suitable for drought-affected

regions. The research performed was straightforward, and robust in providing

qualitative streamflow forecasts that helped water managers in making policy and

managing watersheds [183]. The trend analysis of the Coupled Model Intercom-

parison Project 5 (CMIP5)’s temperature and precipitation models for the entire

Colorado River Basin were conducted. The study period selected was of 104 years

(1900-2004). To find trends, four different versions of the MK test were used. Non-

parametirc Theil- Sen Approach (TSA), was performed in the study. The results

showed that the trends in temperature models were relatively consistent as com-

pared to precipitation. The results clarified uncertainties and natural variabilities

of temperature and precipitation. [184, 185].

Monthly precipitation, temperature and streamflow over a study period of 105

years (1906-2010) of Colorado River Basin (CRB) were analyzed using Mann-

Kendall test and Pettitt test. The results indicated that the streamflow was in-

creased during the winter-spring months and decreased during the summer-autumn
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period. The shifts coincided with coupled phases of El Nino Southern Oscillation

and Pacific Decadal Oscillation. The same non-parametric techniques were used

and more or less the same results were reported [22]. The study helped for the

water managers to understand the changing patterns of monthly precipitation and

temperature on regional scales [186, 187].

Another research was carried out to explore the relationship between Western US

streamflow and two of the most critical oceanic-atmospheric with having substan-

tial effects in this area, namely, El Nino Southern Oscillation (ENSO) and Pacific

Decadal Oscillation (PDO). Continuous, cross and wavelet coherence were used

to analyze the relation between streamflow and climate indices. Both the ENSO

and PDO showed a strong correlation with streamflow from 1980-2005. ENSO

and PDO showed a strong correlation with streamflow in 10-12 years and 8-10

years band, respectively. The study helped to understand the connection between

the climate indices and streamflow [188]. Oceanic, atmospheric indices have sig-

nificant influence on precipitation. For strengthening this concept, the study was

conducted by using 04 climatic indices. The adopted data-driven model K-star

was used for long-term precipitation forecast. The model efficiency was evalu-

ated by using loss error, namely MAE, RMSE, PBIAS, NSE, LEPS and SK. The

model based on the K-star technique was found to have good predicting power.

The model was helpful for long-term water resources planning and management

[189]. Another very similar study was conducted to find the trend and shift using

Wavelet Transform, Mann-Kendall and Pettit’s test. The study was focused on an-

alyzing variability in seasonal temperature, precipitation, and streamflow across

the Midwestern United States. Two oceanic indices, namely El Nino Southern

Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), were also selected to

find the correlation with climate variables. The results helped water managers to

improved the efficiency of streamflow in the Midwestern United States [190].

Singular value statistical approach was adopted in the study, which showed a

strong association between streamflow and selected climate indices.The oceanic

atmosphere and indices selected were NAO, PDO, AMO and interdecadal (warm

-cold phases). All indices had significant influence on the seasonal stream flow of
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continental USA. The study helped improved the stream flow prediction. It also

improved the streamflow management and planning [191]. Another study was

conducted to investigate the change in stream flow for all four seasons for a period

of 60 years (1951-2010). The study adopted non-parametric Mann-Kendall tech-

nique to find out the trend. The findings helped water management, policymaker

in improving their planning of water resources under various climatic conditions

[192]. Four climatic indices, namely ENSO, PDO, AMO and NAO were used to

forecast streamflow in Western United States. Streamflow forecasts were done us-

ing a multiclass kernel-based data-driven support vector machine (SVM) model.

Reconstructed data was used from 1658-1952 and the instrumental record was used

from 1953 to 2007. The SVM model prepared was able to provide excellent predic-

tions. The combined oscillation indices aided in better predictability as compared

to the individual oscillations. Also, the SVM modeling results were better when

compared with that of the multiple linear regression model. The SMV results were

robust and were supposed to be very useful for long-term water resources planning

and management [193]. A very similar study was conducted on Gunnison River

Basin and San Juan River Basin in the Upper Colorado River Basin. With the

same climatic indices, namely PDO, NAO, AMO and ENSO, the study reported

the same results that the SVM model was better than artificial neural network and

multiple linear regression. The outcome of the study provided helpful information

for the planning and management of water resources within these basins [194].

A study over the Colorado River Basin was conducted using Mann-Kendall and

Spearman’s rho (to evaluate trend changes), rank-sum test (to identify the step-

change in seasonal precipitation) and k-nearest neighbor (KNN) (to estimate sea-

sonal precipitation). The results indicated a decrease in the upper basin and an

increase in the lower winter precipitation resulted from an abrupt step change.

The analysis of seasonal changes and estimates of precipitation helped Colorado

River Basin water managers to improve management and to enhance the water

resources [195].

Rainfall and other precipitation levels are important factors affecting crop selection

and ecological changes in a region. Accurate prediction of precipitation trends had
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an essential role in a country’s future economic development [196-199]. Climate

variability, particularly precipitation and temperature, had received a great deal

of attention worldwide. The magnitude, intensity and frequency of precipitation

varies according to the locations. Hence, examining the spatiotemporal dynamics

of meteorological variables in the context of changing climate, particularly in coun-

tries where rain-fed agriculture is very important. Such types of studies were vital

to assess climate-induced changes, and helped in suggesting feasible adaptation

strategies also [200-203].

Trend analysis of precipitation can be performed using both parametric and non-

parametric statistical techniques [204-207].The parametric analysis includes linear

regression, which needs independent normally distributed data. Nevertheless, the

required data scarcely exists for hydrometeorological variables [208]. On the other

hand, non-parametric analysis was usually employed due to its simplicity as com-

pared to parametric technique. Generally, Mann-Kendall (MK) and Sens Slope

Estimator (SSE) were used for non-parametric analysis [209, 210]. Most of the

studies that had been carried out for trend analysis in Pakistan had used non-

parametric technique [211-213]. Non-parametric technique was also recommended

by World Metrological Department (WMD) for such analysis [214].

2.3.2 Trend Analysis Using Mann-Kendall (MK)

Mann-Kendall (MK) test is widely used in various research for trend identification.

It is a well established statistical technique to investigate the precipitation trends

on different time scales like daily, monthly, seasonally and annually in climatology.

Ahmed et al. [215] used MK trend test, bias, root mean square error to evalu-

ate the performance of gridded precipitation products over Baluchistan province

Pakistan. Iqbal and Athar [216] also adopted non-parametric Mann-Kendall sta-

tistical technique for trend analysis of precipitation and teleconnections over six

administrative regions of Pakistan.The study included 38 years (1976-2013) of

precipitation data from 42 stations. The result explained the precipitation vari-

ability linkages with large-scale circulations. Recently Naz et al. [57] adopted the
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MK test to study Baluchistan’s drought trends. Baluchistan was selected because

of its worse condition due to recurring, prolonged droughts, erratic precipitation

patterns, and dependence on agriculture, livestock and precipitation.

The Mann-Kendall test had been strongly recommended by World Meteorological

Organization to detect the trends in hydro- meteorological datasets [214]. The

MK test is very important because it does not require any hypothesis for the

statistical distribution of the data and can be implemented to the datasets with

inconsistent and uneven sampling intervals. The frequency of extreme precipita-

tion occurrence was studied by gathering data of fourty one stations and analyzed

through non-parametric Kolmogorov-Smirnov test. The study noted a rise in ex-

treme precipitation events in the country. Investigation of precipitation trends

through Dunnett T3 test and Variance Analysis of 30 years showed a decrease

in precipitation trends. Hussain and Lee [217] examined data of 15 stations for

seasonal variability of extreme precipitation events. MK test and simple linear

regression were used. Increasing and decreasing of seasonal trends in extreme pre-

cipitation was identified in southwestern and northeastern part of Pakistan.

Mann-Kendall test was also adopted to explored changes in extreme precipitation

events in Punjab by using data of five stations. However, no considerable trend

was identified in the study [218]. Similarly, Ijaz Ahmad et al. [219] studied precip-

itation trends in the Swat River basin. MK and Spearman’s Rho test was applied

on data from 13 stations and mixture of increasing and decreasing trends were

found.

2.3.3 Variation in Trend in Presence of Covariate

Using Partial Mann-Kendall (PMK)

The influence of large-scale climate indices on the precipitation time series is ex-

amined using the Partial Mann-Kendall (PMK) test. PMK is one of the best

one-step procedures that do adjustment for covariates (influencing variables) and

trend testing simultaneously [220, 221]. The strength of linear association between
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two variables is measure by using the Pearson correlation method. PMK is a dif-

ferent method to investigate the variation in precipitation’s trend in the existence

of climate indices which are the covariates. Precipitations trends (response vari-

able) can be evaluated in the presence of the related covariates using PMK when

the effect of the explanatory variable is removed [222, 223].

2.3.4 Influence of Large-scale Circulations and Climate

Indices on Precipitation Variability

Climate variation is mainly due to large-scale ocean circulations, atmospheric cir-

culations, moisture transportation and heat fluxes. Large-scale ocean circulations

were examined under the influence of teleconnections which revealed the oceanic

and atmospheric pattern of our climate [224-227]. Analyses of teleconnections

patterns, their development and influence gave a better understanding of climate

change [228-230].

The recurring pattern of global precipitation variability had been linked to cli-

matic indices and ware discussed in numerous research [231]. Some of the climate

indices like NAO, ENSO, PDO were known for their extended and remote impacts

on far flung part of the world [203, 208, 211]. ENSO had dominating recurring

impact on Asia Summer Precipitation [128].

The important large scale oceanic-atmospheric oscillations that were known to

affect Pakistan’s climate are North Atlantic Oscillation (NAO), Arctic Oscilla-

tion (AO), Atlantic Multi-decadal Oscillation (AMO), Indian Ocean Dipole-Dipole

mode index / Indian Ocean Dipole-Equatorial Indian Ocean Zonal Wind index

(IOD-DMI/IOD-EQWIN), Pacific Decadal Oscillation (PDO) and El Nino South-

ern Oscillation (ENSO) including Multivariate ENSO Index/ ENSO Modoki Index

(ENSO-MEI/EMI) [110, 123, 216, 235].

These large scale oceanic and atmospheric oscillations are discussed in

detail in section 3.2.5. Their impacts in terms of (positive and negative)

phases on monthly precipitation pattern are discussed as follow:
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North Atlantic Oscillation (NAO) is the standardized Sea Level Pressure

(SLP) between the subtropical high at the Azores and low in Iceland. The posi-

tive/negative) phase of NAO indicates a stronger/weaker) than usual subtropical

high-pressure center [110, 232-234]. Syed et.al [248] reported after regional mod-

eling with RegCM3 NAO had a significant influence on the climate specifically

precipitation and temperature. The focused areas for modeling mainly consists

of Pakistan, Afghanistan and Tajikistan. A detailed analysis including simulated

storm characteristics showed that the NAO and ENSO precipitation signals over

the region were mainly associated with intensification of western disturbances orig-

inating in the eastern Mediterranean, middle east regions and moving eastward

across the study area. The intensification occured during the (positive/negative)

NAO phases resulted in increased/decreased of precipitation. The intensification

was correlated with the effect of an increased/decreased Sea Level (SLP) and 500

hPa trough which, developed over the region during these NAO (positive/nega-

tive) phases. The study also concluded that precipitation increased during the

positive phase of NAO and decreased during the negative phase NAO.

Arctic Oscillation (AO) The Arctic Oscillation (AO), also known as Northern

Hemisphere annular mode is a climate variability of large-scale. The AO is a

climate pattern described by the counterclockwise circulating winds around the

arctic at 55◦N latitude. AO index is related to the degree in which Arctic air enters

middle latitudes. AO is characterized by surface atmospheric pressure patterns.

When the AO is in its positive phase, a ring of strong winds circulating the north

pole acts to restrain colder air across polar regions. In the positive phase of the

AO index, the surface pressure is low in the polar region. This encourages the

middle latitude jet stream to blow strongly and steadily from west to east, hence

keeping cold Arctic air confined in the polar region. And in the negative phase,

the circulating band of wind around the north pole becomes weaker, allowing an

easier southward diffusion of colder arctic air mass which, increases storminess into

the mid-latitudes. In this phase, there are more chances of high pressure in the

polar region, the strength of zonal winds is mostly weak, and more penetration of

freezing polar is predicted [122, 123, 232].
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Atlantic Multi-decadal Oscillation (AMO) The AMO is defined as the de-

trended low-pass-filtered annual mean Sea Surface Temperature (SST) anoma-

lies averaged over the north Atlantic basin [236]. Understanding the relationship

between the AMO and Asian monsoon would be of great help for climate pre-

diction and agricultural planning in Asian countries. The warm phase of AMO

leads to positive Sea Surface Temperature (SST) anomalies in the eastern Indian

ocean and maritime continent through coupled feedbacks. AMO warm phase also

induces more local precipitations [237].

Indian Ocean Dipole mode index (IOD) is normally characterized by anoma-

lous cooling of Sea Surface Temperature (SST) in the southeastern equatorial

Indian Ocean and the anomalous warming of SST in the western equatorial Indian

Ocean. IOD influence was noted in the precipitation of coastal areas, western

areas, and Baluchistan regions. The same behavior was also found during the

monsoon season and relatively more precipitation was observed during the pos-

itive phase of IOD. The southeasterly wind brought unusual moisture from the

high-pressure areas over the Arabian sea, which caused an anticyclone. It brought

more moisture from the Arabian sea to the coastal and southwestern parts of

Pakistan and Baluchistan region during the positive IOD phases [216]. Therefore,

positive phase of IOD may possibly be used for precipitation prediction during the

monsoon season [232, 238].

Pacific Decadal Oscillation (PDO) is a prolonged El Nino-like pattern

of climate variability in the Pacific Ocean and has been observed during the

twentieth century. During the warm (positive) phase, the western Pacific Ocean

cools and part of the eastern ocean warms on the contrary during cool (negative)

phase, the western Pacific warms and part of eastern Pacific Ocean remains cool

[239]. The impact of the ENSO on the northwestern Pacific is not fixed, and it

depends on the phase of Pacific Decadal Oscillation.

The substantial impact of Pacific Decadal Oscillation phase change should be

considered while analyzing the interannual variability in the low latitude western

north Pacific Ocean.
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El Nino Southern Oscillation (ENSO) is composed of an oceanic component

El Nino (La Nina), which is characterized by warming (cooling) of surface

water in the tropical eastern Pacific Ocean, and an atmospheric compo-

nent by the southern oscillation, which is characterized by changes in Sea Level

Pressure (SLP) in the tropical western Pacific. The El Nino and La Nina are

important quasiperiodic temperature fluctuations in the surface water of tropical

eastern Pacific Ocean [240]. Regional climate modeling, focused on the modeling

of temperature and precipitation with emphasis on El-Nino Southern Oscillation

(ENSO) and North Atlantic Oscillation (NAO), was carried out by Syed et al.

[248]. The study area was Pakistan, Afghanistan and Tajikistan. The study de-

picted that precipitation increased during the warm phase of ENSO and decreased

during the cold phase of ENSO. When the warm (cold) oceanic phase was in ef-

fect, the Sea Level Pressure (SLP) in the western Pacific was also high (low) [232,

239-24].

2.3.5 Empirical Orthogonal Functions (EOFs) and

Principal Components

Empirical Orthogonal Functions (EOFs) and Principal Component Analysis (PCA)

was applied in many studies to analyze the relationship of precipitation’s trend

and climate indices [242-244]. Haroon and Rasul [245] used PCA for identifica-

tion of main types of oscillation in Outgoing Longwave Radiation (OLR) during

the summer season and summer’s precipitation (on an inter-annual basis) over

Pakistan. The strong negative correlation of OLR with leading PC of summer

precipitation (i.e., the indication of clouds presence) was also suggested in the

study. Different research and studies also adopted Empirical Orthogonal Func-

tions (EOFs) and Principal Component Analysis (PCA) technique to investigate

the relation of atmospheric circulations with precipitation pattern index. The

studies selected variables like global sea surface temperature, sea level pressure

to find out potential predictors that are responsible for causing variability. It

was concluded in their studies that the winter-spring precipitation in Pakistan is



Literature Review 32

strengthened/weakened by the positive (negative) of NAO. And the potential pre-

dictors for winter- spring precipitation in Pakistan could be ENSO, NAO and AO.

Another research was carried out over the Arabian sea on vertically integrated

moisture movement adopting EOF. The study showed clear increasing/decreasing

of monsoon precipitation pattern over South Asia and predominantly over Pak-

istan. Study was further enhanced when the dipole pattern was found obvious on

the region by using regression analysis [246].

2.3.6 Correlation of Climatic Indices

It is well established through research studies that ENSO and NAO have influenced

the weather of Pakistan regionally and locally [129,130]. Increased impact of

ENSO over NAO was suggested by [122]. Hadley and Walker’s circulations are

firmly influenced by ENSO. The strengthening and weakening of Hadley cell had

significant influence over the monsoon precipitation pattern of South Asia [247].

ENSO teleconnection also had links with different PDO cycles in past 145 years.

Iqbal and Athar [216] inspected the influence (IOD, NAO, AO, ENSO, PDO,

AMO, and QBO) over Pakistan adopting Pearson’s Correlation at different levels

like 5%, 10% and 15%. It was reported that on a monthly basis, IOD had a

very strong to strong correlation with precipitation, AO had a strong, and PDO

had moderate correlation in Baluchistan. On an annual basis, AMO showed a

moderate correlation, and ENSO showed a very strong correlation but on seasonal

basis.

ICTP-AGCM (SPEEDY) was used recently to carry out the study on ENSO

Modoki. A substantial influence of ENSO Modoki was observed not only over

South Asia but also on Pacific, Atlantic, North and South America and African.

Hadley cell (encourages/discourages) was found to be associated with, the pos-

itive/negative phase of ENSO (EL-Nino/La Nina), which consequently has sub-

stantial influence on South Asia [230]. Multiple regression model was used by

Adnan et al. [210] to make correlated PCs to investigate the variability and pre-

dictability of monsoon precipitation over, on an interannual and intra-annual basis.
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The model output was robust and accurate. The model was used proficiently in

predicting inter-annual monsoon precipitation also. Based on several studies and

research correlation of each oscillation with the precipitation pattern of Pakistan

can be summarized as follows:

North Atlantic Oscillation (NAO) showed a positive correlation in Azad

Jammu and Kashmir (AJK) and Khyber Pakhtun Khawa (KPK) regions with

very strong correlation. The negative phase of the NAO exhibited correlation in

KPK, AJK, and Punjab regions [216]. NAO was negatively correlated with the

Winter precipitation of Baluchistan but are insignicant (their significance is in

between 20% to 35%) and thus can be ignored [235, 248].

Arctic Oscillation (AO) The positive (negative) phase of the AO showed corre-

lation with Baluchistan, Punjab, Sindh, and Azad Jammu and Kashmir region(s)

with strong significance [216, 235]. The positive phase of AO increases the pressure

gradient between extratropical and polar north Atlantic, forcing to develop low

pressure over east of the Caspian sea and its secondaries, which affect Northern

Pakistan. The positive and negative pressure anomaly over west Europe and north

Africa, respectively, intensifies the Asian westerly jet stream over north Africa and

Middle East extending up to NW India. The jet intensifies the western distur-

bances (WDs) and produces more precipitation over Northern Pakistan [122].

Atlantic Multi-decadal Oscillation (AMO) has a positive correlation with

monsoon rainfall. The correlation of AMO was observed on Punjab region with

very strong significance [236]. AMO is positively correlated with winter precipi-

tation up to 8% signicance. AMO is in its warmer phase since 1997 and it was

observed from the time series that the strength of NAO and AO are weakened

during the warm AMO phase. The decreasing trend may be due to the weaken-

ing of NAO strength during the past few decades, which was negatively affecting

the winter precipitation in Baluchistan region. AMO was found to be influencing

the summer precipitation pattern of Baluchiatan. The influence was determined

through correlation analysis, but it’s strengths was weak therefore stands insignif-

icant [235].
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Indian Ocean Dipole mode index (IOD) the significant influence of Indian

Ocean Dipole mode index was observed over entire Pakistan, which was responsi-

ble for extreme precipitation as well as drought [232, 235, 238]. Iqbal and Athar

[216] reported a positive correlation between Indian Ocean Dipole mode index and

precipitation in Sindh region, particularly in the coastal areas with very strong

significance.The study also reported a similar correlation between Indian Ocean

Dipole mode index and precipitation in the Baluchistan region as well. The posi-

tive phase of Indian Ocean Dipole mode index showed correlation with the Sindh,

Punjab, Baluchistan, and Azad Jammu and Kashmir regions with very strong to

strong significance.

Pacific Decadal Oscillation (PDO) showed a positive correlation in Gilgit

Baltistan (GB) region, AJK, and Baluchistan regions with a very strong, strong,

and moderate significance, respectively [216]. The substantial impact of Pacific

Decadal Oscillation phase change should be considered while analyzing the inter-

annual variability in the low latitude western north Pacific. Because the phase

of the Pacific Decadal Oscillation has impact on the north western Pacific region

through El Nino Southern Oscillation. Also, the interannual relationship between

ENSO and the winter monsoon is weak and insignificant in the warm phase of the

Pacific Decadal Oscillation [239].

El Nino Southern Oscillation (ENSO), as already explained in section 2.3.3,

it is composed of an oceanic component El Nino (La Nina), which is characterized

by warming (cooling) of surface water in the tropical eastern Pacific Ocean, and

an atmospheric component by the southern oscillation, which is characterized by

changes in Sea Level Pressure (SLP) in the tropical western Pacific. The El Nino

and La Nina are important quasiperiodic temperature variations in the surface

water of tropical eastern Pacific Ocean [240]. The El Nino Southern Oscillation

exhibited correlation in Northern areas of Pakistan (i.e., Khyber Pakhtunkhwa and

AJK). Studies have shown that there is significant influence of El Nino Southern

Oscillationon the spatiotemporal change patterns of three hydro-climatological

variables like temperature, precipitation, and potential evapotranspiration (PET)

during the monsoon season [235, 249].
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2.4 Regression Analysis

Numerous predicting models have been developed from the mid of last century

till to date using the regression technique. Regression is a widely used statisti-

cal technique in business, social, behavioral sciences, biological sciences, climate

prediction, and many other areas [250-255]. Regression is a statistical, empirical

technique and is widely used in business, social and behavioral sciences, biological

sciences, climate prediction and many other areas [256-258]. Multiple Linear Re-

gression is remarkably useful when it is required to predict a dependent variable

(i.e., predictand) from a (very) large set of independent variables (i.e., predic-

tors). MLR has proven to be a powerful method of analysis due to sample size

and residual distributions. It is not only applied for theory confirmation, but it

can also be used to recommend post estimation checks. Different orders of lin-

ear and non-linear multiple regression models are widely used for predicting time

series based data set [259-261]. Multiple Linear Regression (MLR) models can

contemplate more than one predictor for precipitation prediction. There are some

constraints of the multiple regression technique for example multicollinearly, inter-

relation, extreme observation and non-linear relationship between dependent and

independent variables.

2.4.1 Simple Regression Analysis

An analysis of normalized rainfall of nearly 167 observatory stations all over South

Asia was conducted by Ramchandran. Researchers had used regression analysis

and Artificial Neural Network to developed their model for the prediction of essen-

tial oil content. [262]. An interesting study in 2018 was conducted to investigate

the atmospheric concentration of four important trace gases over Pakistan, namely

Carbon monoxide (CO), tropospheric columns of formaldehyde (HCHO), nitrogen

dioxide (NO2) and ozone (O3). A statistical model was developed in the research

to find the long-term association of trace gases over the region using the MLR

technique. The multiple linear regression technique was selected because of its
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simplicity and ease to understand the linkage between the predictors and the pre-

dictand, as compared to other methods [263]. A study over Assam of similar

nature was conducted to predict Indian summer monsoon rainfall variation using

regression analysis [250].

2.4.2 Multiple Linear Regression Analysis (MLR)

Multiple Linear Regression (MLR) analysis is not only used in climate and weather

prediction but also in many other field-like social sciences, business, etc. Numer-

ous climate prediction models have been developed by using MLR. A study on

climate was done using linear multiple regression technique in which researchers

investigated the relationship between climate parameters and sugarcane harvest

[264]. Multivariable polynomial regression was used to study time series of plant

motion and nutrient recovery for future growth [265]. Research on children growth

was conducted using multiple polynomial regression to find out their growth po-

tential. The study was very successful and effectively used in real life [266].

A robust rainfall forecasting model with only 4% error was made on summer

rainfall. The regression analysis model was based on El-Nino, Arabian SST, Eu-

rope pressure gradient, wind pattern of 50 hpa, Northwest Europe temperature,

and ocean temperature of South Indian [267]. Another study on climate adopted

Multiple-Linear Regression (MLR) and local polynomial non-parametric technique

to forecast Summer Monsoon Rainfall (SMR) on Thailand. The forecasting rainfall

model showed a variance of 0.6 when compared to observe rainfall data. Indian

Dipole Oscillation (IOD), Wind Speed, Sea Level Pressure (SLP), Sea Surface

Temperature (SST) and El- Nino Southern Oscillation (ENSO) were taken into

consideration for this study [268].

A study on the frequency of heavy rainfall was carried out in South Korea in

2005. The decision tree in the study included analysis based on Artificial Neural

Network (ANN) and Multiple-Linear Regression (MLR). The research had 45 po-

tential predictors for the model [269]. A rainfall prediction model of Myanmar was

made using Multiple Polynomial Regression (MPR) analysis and Multiple-Linear
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Regression (MLR) in 2008. A comparison of MPR and MLR was conducted in

the study and analysis showed more accuracy of MPR over MLR [270].

A trafiic study using traditional 4-step MLR was done to forecast traffic volumes,

and direct demand forecasting. Good and consistent results were achieved by us-

ing MLR [271]. Support Vector Machines (SVM) was used to present a weather

prediction model. Maximum daily temperature data was given as an input after

processing through linear regression to SVM for prediction [272].

2.4.3 Post Estimation Analysis

Post-estimation residual analysis is very important and widely used technique

to validate all estimated equations in the model. Rainfall prediction study us-

ing Multilinear Regression (MLR) was carried out in Assam. The model selected

maximum temperature, minimum temperature, wind speed, mean sea level as pre-

dictors. The model successful reported 63% variation in the precipitation using

MLR technique. This study also reported post estimation tests to validate the

model including, F test and t-test [250]. A study exploring temporal trends and

seasonal behavior of tropospheric trace gases over Pakistan by exploiting satel-

lite data in 2018 performed post estimation residual analysis test namely Durbin

Watson (DW) for autocorrelation in residuals, ARCH test for checking the Het-

eroskedasticity in residuals, AR test, Normality test and overall F -test [263].

2.5 Principal Component (PC) Regression

Analysis

Researchers are interested in make future predictions regarding weather due to

climate change, as it impacts us all in one way or the other [158, 212, 256]. In

the current context of climate change and predictions of the future number of

data is needed regarding weather and climate. Data is essential for the generation
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of models. Numerous new techniques have been tested to generate more reliable

predictions models. With the innovation in new modeling techniques, more data

sources have also become available to researchers. But having a lot of data also

made the research confused in their selection. And it is difficult to find the vari-

ables that are really important for the research when there are so many variables

to consider. In this scenario, Principal Components Analysis (PCA) technique is

very helpful. PCA is used as a tool in exploratory data analysis; it also helps to

find the most important variables that explain most of the variance in the data,

known as principal components (PCs) [273]. Principal Components Regression

(PCR) make Principal Components (PC) which are small sets of un-correlated,

most important predictors. The leading PCs account for the largest fraction of

the temporal variance in a field of predictors. The PCs are non-correlated in time,

eliminates the problem of multicolinearity. Aline and Claudio [274] proposed a

method of for improving regional dynamic downscaling of rainfall over the Ama-

zon River and Northern Brazil by MLR model using PCA.

Another study was designed to forecast crop yields under future climate scenarios

county-specific PCR models were estimated in 14 U. S. states. Crop yields were

forecasted in response to three GCMs: CSIRO 3. 5 (the coldest), CGCM 3. 1, and

MIROC 3. 2 (the warmest). Their results indicated: 1) future climate scenarios

generally had modest effects on crop yields in the northern states was compare to

the southern states; 2) warmer climate scenarios generate lower crop yields; 3) the

north-south differences in climate change effects were larger for warmer scenarios,

and 4) soil type explained why some southern states have modest yield responses

across climate scenarios [275].

Chaleeraktrakoon, and Khwanket [276] studied the annual maximum daily rain-

falls. Statistical downscaling of model was carried out in the study to describe

the linkage between large-scale climate variables and annual maximum daily rains

(AMDR) at a local site in Chi and Mul River Basins, Thailand. The study also

proposed down-scaling model based on principal component analysis (PCA) of

global climate variables using Singular Value Decomposition (SVD). The SVD

technique used was good and efficient for calculating the standardized principal
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components (SPC) of the climate variables. The model was tested with two pop-

ular general circulation models, GCMs, (HadCM3 and CGCM3) and available

41-year (1961 - 2001) AMDR data at six sites in the Chi and Mul River Basins

Thailand. Kim and Oh [277] studied the problem of predicting seasonal precipita-

tion over East Asia from actual observations and multimodal ensembles. In their

article a method based on data-adaptive PCA (DPCA) was proposed, that was

adopted for non-Gaussian distributed data. In addition to investigate the utility

of DPCA for climate study, a data adaptive principal component regression for

seasonal precipitation prediction, having DPCA and a regularized regression tech-

nique was also porposed. The proposed method was also applied to nine general

circulation models for prediction of precipitations on the summer seasons (June,

July, and August). The prediction ability of the proposed method was evaluated

in comparison with observations and model outputs (prediction) .

Adnan et al. [210] predicted the inter and intra-annual variability of the monsoonal

rainfall over Pakistan and its possible drivers using a linear statistical forecast

model. The model was based on principal component (PC) regression analysis.

For prediction purpose, highly correlated PCs of sea level pressure, horizontal and

meridional winds were selected. Also the observed rainfall during the study period

2001 to 2013 were ingested in a stepwise multiple regression model. The prediction

model was also validated for 2014 to 2015. The results reprted the correlation

coefficient, mean absolute error, mean bias, and root mean square error of 0.75,

42.23, 14.92 and 60.65, respectively. The model exhibits strong and powerful

skills in predicting the inter and intra-annual monsoonal rainfall variability over

Pakistan.

2.5.1 Principal Components (PCs)

A huge amount of data, particularly if it is secondary data, creates confusion

during analysis. Researchers find it difficult to select relevant variable from a vast

data set. It is imperative during analysis to use pertinent and most important

variables. To solve this problem, principal components analysis (PCA) is used.
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PCA also assists in making relevant, constructive, predictive model [273]. In

addition, due to the presence of multicollinearity among the variables, principal

component regression is performed. The original set of variables are transformed

into new set of un-correlated variables through PCA. Most likely the first few

components representing maximum variation in the data set are selected by using

eigenvalue spectrum analysis. The regression analysis is thus performed on the

selected variables. It is a mathematical technique, which does not require the user

to specify the statistical model or assumption about the distribution of original

variants. PCs are artificial variables and often, it is not possible to assign physical

meaning to them. Furthermore, PCA transforms the original set of variables into

a new set of un-correlated variables. However, it should be noted that if original

variables are not correlated, then there is no use in performing PCA [278].

2.5.2 Rules for Retaining Principal Components

Principal Component Analysis (PCA) creates as many Principal Component (known

as PCs) as the number of grids/stations are there in the study. After initial Prin-

cipal Components (PCs) are made, only the significant PCs are selected. Selection

of PCs are made on their significance and meaningfully representation in the origi-

nal correlation matrix [279]. The most important advantage of PCA is in reducing

data. PCR helps in analysis, where a number of variables is more than the number

of observations as in discriminant analysis and regression analysis. In such cases,

PCA is helpful by reducing the dimensionality of data.

2.5.3 Development of Principal Component Regression

Principal Component Regression (PCR) is a type of regression analysis, which

considers PC as independent variables instead of adopting original variables. The

PCs are the linear combination of the original variables which can be obtained by

PCA. The PCA transforms the original set of intercorrelated independent vari-

ables to a new set of uncorrelated variables (i.e PCs). The use of these PCs as
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independent variables is quite useful in the multiple regression models to avoid the

multicollinearity problem and to identify the variables which are the most signif-

icant in making the prediction. The PCR models have been developed by using

PCs as inputs to predict and to compare the same with multiple linear regression

models. It has been found that the incorporation of PCs as independent variables

in the regression models improved the model prediction as well as reduced the

model complexity by eliminating multicollinearity. Principal components regres-

sion (PCR) is a method for combating multicollinearity and results in estimation

and prediction better than ordinary least squares when it is used successfully.

With this method, the original climatic variables are transformed into a new set

of orthogonal or non-correlated variables called PC of the correlation matrix. This

transformation ranks the new orthogonal variables in order of their importance.

It eliminating some of the PC to affect a reduction invariance [280].

2.5.4 Post Residual Component Analysis

Post estimation analysis is widely used to validate the model being calculated us-

ing regression analysis. Ul-Saufie et al. [281] worked to enhance the prediction

capability of Multiple Linear Regression analysis by using Principal Component

Analysis. The study was focused on calculating the concentration of Particu-

late Matter (PM10), which was an air pollutant in Malaysia. Model validation

was established by reporting indicators such as Prediction Accuracy (PA), Coef-

ficient of Determination (R2), Index of Agreement (IA), Normalized Absolute Er-

ror (NAE) and Root-Mean-Square Error (RMSE). Improved results of prediction

models were achieved using principal component supplementing Multiple Linear

Regression analysis. Forecasting water demand and supply is necessary to create

any water-related infrastructure and water resources management. Better the ac-

curacy, better would be forecasting and subsequent water supply and sanitation.

Multiple regression analysis is widely used in literature to find out water demand

and supply also. Nevertheless, due to highly correlated variables, multiple re-

gression analysis may generate inaccurate results. Principal component regression
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analysis is used to combat multicollinearity issues. Haque et al. [282] developed

a model to forecast water demand and supply for New South Wales, Australia

and used principal component regression analysis. The results of principal com-

ponent regression analysis were more authentic as compared to that of multiple

linear regression analysis. It showed improvement in terms of relative error, bias,

Nash-Sutcliffe Efficiency (NSE), and accuracy factor values by 3.4, 2.92, 0.44, and

1.04 %, respectively.

Another study was performed to forecast wheat crop yield. Weather variables on

weekly basis were used, such as, minimum, and maximum temperature, relative

humidity, solar energy and wind speed. Four models were prepared using principal

component analysis with time as a predictor and wheat crop yield as a predictand

variable. Based on post estimation analysis indicators like R2 Adjusted R, percent

deviation of forecast, Root Mean Square Error (RMSR) models were compared,

and it was found that models 1 and 3 produced better results [283].

2.6 Summary

Mann-Kendall (MK) test is selected to study the precipitation trend of the study

area. Partial Mann-Kendall (PMK) is adopted to study the impact of climate

indices on precipitation trend. Empirical Orthogonal Functions (EOFs) analysis

is used to make the pattern for studying the influence of climate indices, at-

mospheric and oceanic circulations. Multilinear Regression Analysis (MLR) is

selected to develop the model for estimation of potential determinants defining

precipitation variability in Baluchistan province, using parameters such as Cli-

mate Indices, Geopotential Height (GPH), Zonal Wind (ZW), Relative Humidity

(RH), Sea Level Pressure (SLP) and Sea Surface Temperature (SST) at vari-

ous level. Principal Component Regression (PCR) analysis is use to develop the

model for estimating the potential determinants defining precipitation variabil-

ity in Baluchistan province and addressing the multicollinearity among selected

variables.
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2.7 Research gap

A comprehensive critical review along with limitation assessment of previous stud-

ies for precipitation trend analysis was carried out in this chapter which helped in

highlighting certain voids that needed attention and feasible solution. Some of the

identified gaps pertinent to precipitation trend, climate indices influence, identi-

fication of potential determinants, contemporary modeling techniques for climate

study can be summarized as:

The study area lacks focused research on the potential determinant effecting the

precipitation trend. Precipitation trend is perpetually decreasing and has finally

led to serious drought and famine, for example, the drought in 1999-2002. Most

of the previous research works were based on the climate indices, namely North

Atlantic Oscillation (NAO), Arctic Oscillation (AO), Atlantic Multi-decadal Os-

cillation (AMO), Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO)

and El Nino Southern Oscillation (ENSO) including Multivariate ENSO Index/

ENSO Modoki Index (ENSO-MEI/EMI). To the best of the author’s knowledge no

study is carried out on the ENSO Modoki Index (EMI), Equatorial Indian Ocean

Zonal Wind Index (EQWIN), which does have significant impact on the precipi-

tation trend of the study area. There is a dire need to use contemporary modeling

techniques to carry out statistical modeling, compare the results and recommend

the best for the future.
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3.1 Background

Baluchistan precipitation trend appears to be affected from the climate variability

since last few decades. Only half a century ago, this mineral-rich province had

flowing streams, Karez and underground wells, which were deemed adequate. To-

day, due to continuous decrease in precipitation, over exploitation and extensive

pumping, the streams and Karez, are dried up and the ground water table has

alarmingly depleted, ultimately creating famine-like situation in some of its dis-

tricts [284]. This chapter aims to determine possible linkages of precipitation trend

variation with ten climatic indices, namely North Atlantic Oscillation (NAO),

Arctic Oscillation (AO), Atlantic Multi-decadal Oscillation (AMO), Indian Ocean

Dipole-Dipole mode index / Indian Ocean Dipole-Equatorial Indian Ocean Zonal

wind index (IOD-DMI/IOD-EQWIN), Pacific Decadal Oscillation (PDO), El Nino

Southern Oscillation (ENSO) including Multivariate ENSO Index/ ENSO Modoki

Index (ENSO-MEI/EMI) and the statistical significant of the trend is also to be

determined in this chapter.

3.2 Methodology

3.2.1 Study Area

The biggest province of Pakistan in terms of area, covering 347,200 square kilo-

meters (134, 051 square miles) is Baluchistan, which is nearly 45% of Pakistan’s

total land area. It is located in the southwestern part of the country [138, 142].

Baluchistan enjoys an 800 km long coastline along NE of the Arabian Sea, which

is very famous for its upwelling phenomenon. Its Exclusive Economic Zone (EEZ)

comprises an area of 196,600 square kilometers. Here, the climate is a hot desert

type with extreme heat and cold. It is divided into four climatic regions as shown

in Figure 3.1. The weather of Baluchistan is mainly affected by Western Distur-

bances in spring and winter months, and it is less influence by monsoon.
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Figure 3.1: Study Area and Location of Selected Pakistan Meteorological De-
partment (PMD) Stations in Baluchistan with Regional Distribution (Courtesy

of PMD Pakistan).

3.2.2 Reasons for Selecting the Study Area

Baluchistan is selected as the study area for this research because of the multiple

reasons; Firstly, the Maximum routes of the China Pakistan Economic Corridor

(CPEC) pass through Baluchistan. China Pakistan Economic Corridor (CPEC)

has a direct impact on the Gross Domestic Product (GDP),foreign investment,

and international trade, of the country. However, the infrastructure of Baluchis-

tan relies on water resources and management, which is strongly influenced by

precipitation. Secondly, it is the largest province area-wise, yet it is still the most
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undeveloped province due to drought as pointed out by the Economic Survey of

Pakistan which proves that precipitation, being the main source of freshwater

plays a vital role in economic development. Thirdly, this research will provide a

baseline study for future comparative effects of OBOR, CPEC, and other anthro-

pogenic activity on the climate of Baluchistan. Fourth, Baluchistan’s topography,

mountains, rugged terrain, coastline, extreme weather, relative continental posi-

tion, atmospheric current, orographic barriers, surface condition, anthropogenic

activity and atmospheric particulate address most of the factors that can be the

potential determinant to effect precipitation trend. Fifth, Baluchistan is a pros-

perous land in terms of natural resources like Natural Gas, Coal, Precious Gas,

Marble, Zinc, Copper, Lead, etc. Sixth, Baluchistan, despite of many odds, still

has attracted foreign investment of $62 billion in phases and will attract much

more in the future. Seventh, Baluchistan is currently the province with the most

vibrating economy and future opportunities.

3.2.3 Data Sources

Monthly Precipitation data in millimeters is acquired from Pakistan Meteorologi-

cal Department (PMD). Thirteen stations, namely Barakhan, Dalbandin, Jiwani,

Kalat, Khuzdar, Lasbella, Nokkundi, Ormara, Pasni, Punjgur, Quetta, Sibbi and

Zhob throughout Baluchistan are chosen based on authentic source (i.e., PMD),

completeness and availability of data. The distribution of stations in different

climatic regions within Baluchistan are shown in Figure 3.1. The study period

constitutes thirty nine (39) years from 1977 to 2015 and validation period from

(2016-2020) for the selected stations in Baluchistan. Data collected from PMD is

on monthly basis in (mm/month) for each of the weather stations and is converted

into monthly means. The average monthly and annual precipitation within the

study period is tabulated in Table 3.1.

Pakistan Meteorological Department (PMD) has divided Baluchistan province into

four climatic regions. According to PMD, region 1 includes Barakhan, Kalat,

Khuzdar, Quetta, and Zhob. Region 2 includes Panjgur, and Sibbi. Region 3
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Table 3.1: Average Precipitation Data of Baluchistan of 39 years (1977-2015).

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Barakhan 6.5 13.1 21.1 31.3 34.6 24.7 48.2 108.4 84.6 35 9.1 4.9 421.5

Kalat 30.3 34.7 37.8 31 11 3.9 6.7 16.3 13.4 4.6 5 5.8 200.5

Khuzdar 14.7 16.5 30.9 29.3 16.3 14.1 16.5 51.2 56.6 9.1 6.5 4.3 266.0

Lasbella 7.3 4.8 11.4 10.4 7.4 19.7 11.2 53.2 39.3 8.6 5 1.9 180.2

Quetta 30.8 53.8 51.7 55.5 26 7.5 4 12.5 11.1 3.1 5.7 8.8 270.5

Sibbi 5.6 10.1 17.9 22.3 9.8 6 15.7 38.6 39.1 12.4 3.1 1.6 182.2

Zhob 9.2 17.1 26.9 43.5 29.1 14.8 17.7 56.2 44.8 11.1 5.8 5.6 281.8

Dalbandin 9.4 16.8 16 20.5 4.8 1.3 3 3.7 0.7 0.1 2.2 3.1 81.6

Jiwani 20.2 22.9 22.5 14.3 3.7 0.1 7.6 3 2.3 0 1.1 3.6 101.3

Nokkundi 2 7.8 9.6 8.7 2.2 0.2 2 0.7 0.3 0 0.5 0.6 34.6

Ormara 11.8 10.7 10 9.9 1.6 0.2 9.7 11.3 3.8 0.3 2 0.5 71.8

Punjgur 10 12.8 15 15.1 8.3 3.5 5 12.1 7.7 1.7 2.1 1.6 94.9

Pasni 19.8 22 14.9 16.4 2.3 0.5 6.7 5.2 7.7 0.5 2.3 1.7 100.0

13.7 18.7 22.0 23.7 12.1 7.4 11.8 28.6 24.0 6.7 3.9 3.4

Table-1. Average Precipitation (mm) from 1977-2017
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Note: Red color shows the histogram of monthly precipitation among stations; Brown
color shows the histogram of monthly precipitations among region; Green color shows
seasonal; whereas Blue color shows annual precipitation.

is arid with warm summer and cold winter includes Dalbandin, Nokkundi, and

Lasbella. The last region 4 of Baluchistan province is arid with hot summer and

mild winter. This region includes Jiwani, Ormara, and Pasni. All these stations

receive scattered precipitation in the post- monsoon season when continental air

prevails near to coastal line like Gwadar, Pasni, Ormara and Jiwani.

3.2.4 Precipitation Data Analysis

The precipitation time series data being used in this doctoral study is first assessed

for its characteristics (Kurtosis and skewness), distribution type, changes, cycles,

outliers, missing values, and homogeneity. The characteristics of annual time series

data of 13 stations over the study period is calculated and the results are shown

in Table 3.2.

Skewness is a measure of the symmetry in distribution. A normally distributed

dataset (i.e., symmetrical) data set has a skewness equal to 0. Kurtosis measures

the amount of probability in the combined sizes of the two tails bell-shaped curve.

The kurtosis of normally distributed data is equal to 3. If the kurtosis of a data

set is greater than 3, then the dataset has heavier tails than a normal distribution.
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Table 3.2: Linear Regression on Annual Time Series

S.No Stations Mean Standard
deviation

Kurtosis Skewness

1 Barakhan 421.500 140.047 0.769 0.455

2 Dalbandin 81.601 48.085 -0.214 0.585

3 Jiwani 101.300 88.784 2.266 1.519

4 Kalat 200.500 170.917 10.050 2.612

5 Khuzdar 266.000 118.215 1.147 0.994

6 Lasbella 180.200 115.972 1.134 1.137

7 Nokkundi 34.600 37.975 5.998 2.202

8 Ormara 71.800 92.889 11.605 3.031

9 Panjgur 94.900 56.881 3.950 1.641

IO Pasni 100.001 81.228 0.902 1.034

11 Quetta 270.502 152.860 9.365 2.542

12 Sibbi 182.203 89.558 -0.724 0.310

13 Zhob 281.859 92.734 -0.101 0.193

And if the kurtosis is less than 3, then the dataset has lighter tails than a normal

distribution. Skewness and kurtosis can be used to characterize the data set for

its distribution (normal or not). But both skewness and kurtosis are heavily

dependent on the sample size. Even several hundred data points may not give a

very good estimate of the true kurtosis and skewness. As such, normality check

of a dataset cannot be relied upon for a small dataset such as the current study

data set of 39 years. Therefore, check for normality is done by applying tests,

namely Shapiro-Wilk W test, Anderson-Darling, Lilliefors and Jarque-Bera test

[285]. The normality check tests are performed on the time series and the results

are presented in Table 3.3. Normality test runs on annual precipitation time series

data shows that the time series data of only four stations, namely Dalbandin,

Sibbi, Zhob, and Barakhan, are normally distributed and mostly, the data is not

normally distributed.

Since the time-series data of Dalbandin, Sibbi, Zhob, and Barakhan is normally

distributed therefore parametric tests of Simple Linear Regression (SLR) with

least-square fit can be performed to calculate the trend in the time series data.

SLR is utilized to calculate the trend slope, its significance and validity to detect

the trend in the time series precipitation data. Provided that the validity of the
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Table 3.3: Normality Tests on Annual Time Series

S.No Stations Shapiro-
Wilk

Anderson-
Darling

Lilliefors Jarque-
Bera

1 Dalbandin passed passed passed passed

2 Jiwani failed failed failed failed

3 Kalat failed failed failed failed

4 Lasbella failed failed failed failed

5 Nokkundi failed failed failed failed

6 Ormara failed failed failed failed

7 Panjgur failed failed failed failed

8 Pasni failed failed failed failed

9 Quetta failed failed failed failed

IO Sibbi passed passed passed passed

11 Zhob passed passed passed passed

12 Khuzdar failed failed failed failed

13 Barakhan passed passed passed passed

test is determined by checking the normal distribution of residuals obtained from

Simple Linear Regression. Simple Linear Regression (SLR) analysis with least

square fit test is run on the annual time series data of precipitation for detecting

the trends and the results are presented in Table 3.4.

Table 3.4: Linear Regression on Annual Time Series

S.No Stations R2 Regression
Slope

p-value Result Residual
normal-
ity

1 Dalbandin 0.0499 -0.9179 0.166 No trend passed

2 Jiwani 0.07532 -2 0969 0.087 No trend failed

3 Kalat 0.0015 0.5609 0.811 No trend failed

4 Lasbella 0.0541 -2.3279 0.149 No trend failed

5 Nokkundi 0.015 0.403 0.451 No trend failed

6 Ormara 0.003 0.4423 0.736 No trend failed

7 Panjgur 0.062 -1.2097 0.121 No trend failed

8 Pasni 0.0357 -1.3075 0.243 No trend failed

9 Quetta 0.1264 -4.707 0.024 Decreasing failed

IO Sibbi 0.038 1.509 0.228 No trend passed

11 Zhob 0.0534 -1.8367 0.151 No trend passed

12 Khuzdar 0.0302 - 1.7735 0.283 No trend failed

13 Barakhan 0.017 -1.590 0.419 No trend passed
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The results in Table 3.4 show no significant trend in any station except Quetta,

but Quetta failed in validity as its residuals are not normally distributed. The

conclusion which is drawn from it is that the parametric tests are not suited for

conducting the trend analysis on the annual precipitation because mostly the data

is not normally distributed and does not have the same standard distribution. If

the data is normally distributed, then their residuals are failed to pass the validity

test. Hence, non-parametric test like Mann-Kendall (MK) and Spearman’s Rho

(SR) test should be adopted to evaluate the significant trends in the precipitation

time series data. Theil Sen’s Slope Analysis (TSA) should be used for calculating

the magnitude of the slope.

3.2.5 Teleconnections and Climatic Indices

Present in the stratosphere the large-scale teleconnections are spatial patterns, dis-

playing the atmospheric and oceanic circulation. They are responsible for remote

relations between climate anomalies, including extreme events, drought, floods and

precipitation variability over large distances around the globe [286-296]. Telecon-

nections are Sea Surface Temperature, Sea Level Pressure anomalies, persistent

and can last for short as well as long duration like for 1 to 2 weeks or 20 to

40 years. Climatic indices are the diagnostic quantitative representation of these

teleconnections/large-scale oceanic and atmospheric circulation patterns. These

climatic indices are developed against the teleconnections patterns by climatol-

ogists to use for statistical analysis, modeling and predictions purposes. Clima-

tologists have established this fact through numerous research and studies that

climate indices have a strong impact on the climate /weather around the globe

and also that climate indices, namely NAO, AO, AMO, IOD-DMI, IOD-EQWIN,

PDO, ENSO-MEI, ENSO MODOKI (ENSO-EMI) have significant influence on

the precipitation trend over the study area through teleconnections [117, 118, 232,

284]. However, their influence is neither quantified nor mentioned in most of the

studies. The influence is merely an approximation like strong, moderate, weak

and very weak, etc. [216]. Data of climate indices for this study is downloaded
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from NOAA-ESRL Physical Sciences Division except IOD, which is downloaded

from JAMSTEC and listed in Table 3.5. A brief description of the climate indices

is provided below, whereas the domain used to define the teleconnections pattern

is provided in Table 3.5.

Table 3.5: Description of Climate Indices

Climate Indices Source Domain to Define Index

NAO www.esrl.noaa.gov Icelandic Low: 50N-320, 55N-320; 75N-

360, 70N-360; approx.

Azores High: 25N-315,30N-315, 45N-355,

50N-355; approx.

AO www.esrl.noaa.gov Artic Poles; North of 20N

AMO www.esrl.noaa.gov 0-60N; 280-360 approx.

DMI www.jamstec.go.jp/aplinfo

/sintexf/e/index.html EEIO; 0-10S; 90-110

WEIO; 10N-10S; 50-70

EQWIN www.esrl.noaa.gov CEIO: 5N-5S; 60-90

ENSO-MEI www.esrl.noaa.gov 30N-30S; 100-290

ENSO-MODOKI www.esrl.noaa.gov MODOKI-A (Right): 10N-10S; 165-240

MODOKI-B (Center): 5N-15S; 250-290

MODOKI-C (left): 20N-10S; 125-145

PDO www.esrl.noaa.gov Pacific Ocean; North of 20N

3.2.5.1 The North Atlantic Oscillation (NAO) Index is based on the

sea-level surface pressure anomaly between the Subtropical (Azores) High and

Subpolar (Iceland) Low [102-103]. In the positive (stronger) phase, above-normal

pressure over the Azores and below normal pressure over Iceland prevails. In the

negative phase, weak high pressure over the Azores and weak low pressure over

Iceland prevail, as shown in Figure 3.2. The positive phase leads towards increased
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westerlies which follows the northern track which, is used to result in cool summers

and mild, wet winters in central Europe [101, 129-130]. The negative phase of NAO

leads towards suppressed westerlies and as a result, the northern European area

suffers cold, dry winters. The storms track southwards toward the Mediterranean

Sea and much into northern Asia [136].
   

  

Figure 3.2: The positive and negative phases of North Atlantic Oscillation
(NAO) [297].

3.2.5.2 The Arctic Oscillation (AO) is a form of atmospheric circulation

over the Northern Hemisphere, particularly from mid to high. In the positive

phase, low air pressure on the Arctic and high air pressure over the Atlantic

Oceans and Northern Pacific are observed, as shown in Figure 3.3. The regions

in the mid-latitudes experience less Cold Air Outbreaks (CAOs). The positive

phase is associated with a strong polar vortex which constrains the cold Arctic air

to the North. Jet stream remains zonal and storm tracks in Northeast direction.
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During the negative phase, higher air pressure on the Arctic and lower air pressure

over the Atlantic Oceans and Northern Pacific is observed as, shown in Figure 3.3.

The negative phase is associated with a weaker polar vortex allows the cold air

to invade the USA and Europe. The regions in the mid-latitudes can undergo

waves of chilly air. Jet stream takes a more meridional path with the trough over

USA/Europe and crests over North Atlantic. Storms that follow a more direct

and Eastward direction is often called Nor’easters [122].

  

Figure 3.3: The positive and negative phases of Arctic Oscillation (AO) [298].

3.2.5.3 The Atlantic Multi-Decal Oscillation (AMO) is characterized by

an SST anomaly in the North Atlantic and consists of the warm phase and cool

phases with periods of 20-40 years approximately as shown in Figure 3.4. From

the early 1960s to the mid 1990s, the Atlantic Multi-Decal Oscillation (AMO)

index had shown a relatively cool phase and from 1997 till 2021, the Atlantic

Multi-Decal Oscillation (AMO) has been in a warm phase. Atlantic Multi-Decal

Oscillation (AMO) has a positive correlation with monsoon rainfall. The Atlantic

Multi-Decal Oscillation (AMO) may influence the monsoon through the summer

North Atlantic Oscillation (NAO) and further through the equatorial zonal winds

that increase the moisture flow over the sub-continent region by enhancing the

southwesterly flow.
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Figure 3.4: The positive and negative phases of Atlantic Multi-decal Oscilla-
tion (AMO) [299].

3.2.5.4 The Dipole Mode Index (DMI) is the ocean segment of the Indian

Ocean Dipole (IOD) and depends solely on Sea Surface Temperature (SST) incon-

sistencies. DMI estimates the contrast between SST peculiarities in two locations

of the Indian Ocean: West Equatorial Indian Ocean (WEIO), 50E-70E and 10S-

10N and East Equatorial Indian Ocean (EEIO); 90E-110E and 10S-0. During the

positive phase, water in the eastern region is cooler and it is warmer in the western

Indian Ocean as compared to the usual temperature, as shown in Figure 3.5. This

positive phase benefits the sub-continent region by directing monsoon towards it.

During the negative phase, water in the eastern region is warmer and it is cooler in

the western Indian Ocean as compared to the normal the temperature as shown in

Figure 3.5. The negative phase IOD has been found over the study area, creating

several dry years and positive IOD has produced more precipitation [116, 119].

3.2.5.5 Equatorial Indian Ocean Oscillation (EQUINOO) is the atmo-

spheric segment of IOD. It is the fluctuation of atmospheric cloudiness between the

Eastern Equatorial Indian Ocean (EEIO) and Western Equatorial Indian Ocean

(WEIO). The index that describes EQUINOO is EQWIN, which is the negative

of the standardized zonal wind anomaly over the Central Equatorial Indian Ocean
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Figure 3.5: The positive and negative phases of Dipole Mode Index (DMI)
[300].

(CEIO) region [86]. The EQWIN index is highly correlated with the difference be-

tween the OLR of WEIO and EEIO. In the positive phase of EQUINOO, enhanced

cloudiness is observed over the WEIO as compared to the EEIO and vice versa in

the negative phase, as shown in Figure 3.6. The positive phase of EQUINOO is

favorable to the monsoon and is believed to have impact on the influence of the

El-Nino through teleconnection.

3.2.5.6 El Nino Southern Oscillation (ENSO) is the periodic variability

of every two to seven years in sea surface temperature (El Nino) and the air pres-

sure of the superimposing atmospheres Southern Oscillation across the equatorial

Pacific Ocean as shown in Figure 3.7. El Nino and its contrary La Nina both

have a disturbing effect on monsoon climatic conditions in many different parts

of the world. Tropical Pacific’s six important parameters, namely Sea: Surface

Temperature (SST); Sea Level Pressure (SLP); Surface Air Temperature (AT);

Zonal (U) and Meridional (V) components of the Surface Wind and lastly, the



Precipitation Variability due to the Impact of Climate Indices 57

  

 

 

   

Negative 

Phase 

Positive 

Phase 

Figure 3.6: The positive and negative phases of Equatorial Indian Ocean
Oscillation (EQUINOO) [301].

total Cloudiness fraction of the sky (C) combine to form the Multivariate ENSO

Index MEI, which incorporates most information than any other indices [90, 106,

116, 122, 124].

3.2.5.7 ENSO Modoki Index (EMI-MODOKI) This index describes the

distinctive SST anomalies in the tropical Pacific Ocean. It has two phases La Nina

Modoki: colder central Pacific flanked by warm eastern and western Pacific, El

Nino Modoki: warm anomaly of the central Pacific when bordered by cold anoma-

lies on both east and west sides of the ocean as shown in Figure 3.8. The latest

research reveals that ENSO Modoki has distinct teleconnections that have far-

flung reaching influences. It even affects the precipitation over the sub-continent

and South Africa [230].

3.2.5.8 The Pacific Decadal Oscillation (PDO) is the common climate

disparity in the Sea Surface Temperature (SST), Sea Level Pressure (SLP) of

the Pacific basin adjacent to North America. It has two phases, warm or cold,
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Figure 3.7: The positive and negative phases of El Nino Southern Oscillation
(ENSO) [302].

 

 

       

Figure 3.8: The positive and negative phases of ENSO Modoki Index (EMI-
MODOKI) [303].

that may last for 20 to 30 years. During the positive phase, Sea Level Pressure

is below average over the North Pacific, or Sea Surface Temperature (SST) are

inconsistent cool in the interior North Pacific and warm along the Pacific Coast

of North America [89, 131]. During the negative phase, Sea Level Pressure (SLP)

over the North Pacific is above average or warm Sea Surface Temperature (SST)
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anomalies in the interior and cool Sea Surface Temperature (SST) anomalies along

the North American coast prevail, as shown in Figure 3.9.
 

 

        

Figure 3.9: The Pacific Decadal Oscillation (PDO) [304].

3.2.6 Climate Variables

Atmospheric and oceanic climate variables such as Sea Surface Temperature (SST),

Sea Level Pressure (SLP), Zonal Winds at the surface (ZW-Surface) and Geo-

potential Heights at 500 hpa level (GPH500) are considered to determine Empiri-

cal Orthogonal Maps (EOF) and their relationship with the precipitation variabil-

ity [86, 117]. HADISST v1.1 1x1 degrees gridded data is downloaded from Met

Office Hadley Center (https: //climatedataguide.ucar.edu/climate-data/sst-data-

hadisst-v11.) whereas NCEP/NCAR Reanalysis 2.5 x 2.5 degree gridded data of

SLP, GPH, Zonal Wind and OLR are downloaded from the NOAA-ESRL Physical

Sciences Division website (https: //www.esrl.noaa.gov).

3.2.7 Statistical Techniques

Trends are examined using Mann-Kendall Tests in the monthly time series precip-

itation data for each of 13 stations [57, 220]. The slope of the trend is calculated

using Theil Sens Slope, which is recommended for meteorological analysis [305].
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The influence of climate indices on precipitation trends is assessed by the Partial

Mann-Kendall test. The analysis is performed on individual stations for monthly

time series data. Empirical Orthogonal Function (EOF) and principal component

analysis (PCA) is used for calculating the precipitation variability in Baluchistan

Region. The association between precipitation-climate indices and precipitation-

climatic variables is determined by Pearson’s correlation [306].

3.2.7.1 Mann-Kendall for Trend Detection

Mann-Kendall (MK) test is largely used in identifying trends in climate variables

[58, 128, 220, 221]. The MK test is a non-parametric test based on ranks and

is not sensitive to sudden breaks in uneven data. The reasons for adopting the

Mann-Kendall test is that it is strong and insensitive to the data with gaps and

best for the data that is not normally distributed.

The MK test is one of the strong methods of identifying monotonic trends in

precipitation data where the data is skewed and/or where data is either consis-

tently increasing or decreasing in a time series and is not suitable when there are

recurring trends. The Mann-Kendall statistic Sx of the series x is given [40] as:

Sx =
n−1∑
i−l

n∑
j=i+1

sgn (Xj −Xi) (3.1)

where

sgn (Xj −Xi) =


+1 if (Xj −Xi) > 0

0 if (Xj −Xi) = 0

−1 if (Xj −Xi) < 0

(3.2)

Where, i and j are the rank of observation of the Xi and Xj of the time series.

The variance associated with Sx is given as

Var =
n (n− 1) (2n+ 5)−

∑g
i=1 ti (ti − 1) (2ti + 5)

18
(3.3)
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Where g is the groups of tied rank and t is ties in the group. For a sample size of

n > 10 or larger, the MK statistics Zmk is computed by

Zmk =


Sx − 1

σ
for Sx > 0

Sx + 1

σ
for Sx < 0

0 for Sx = 0

(3.4)

Positive Zmk values show increasing trends, while negative Zmk values reflect de-

creasing trends. If |Zmk| is greater than (Z1 − α)/2 for the chosen value of sig-

nificance level (α), then the trends are considered significant, or when the p-value

is smaller than the significance level (α), the null hypothesis (H0) of no trend is

rejected in favor of the alternative hypothesis (Ha) and the trend is considered as

a significant trend in the time series. (Z1 − α)/2 and p-value are obtained from

the standard normal distribution table.

3.2.7.2 Theil Sen’s Slope (TSA)

TS is used to compute the magnitude of the trend. It is more robust than linear

regression since it limits the influence of outliers and performs better even for the

case of normally distributed data [305]. According to the TS method, the overall

slope S* is the median of N values of slope S and is given by:

S∗ =


SN+1

2
if N is odd

SN

2
+
SN+2

2
2

if N is even

(3.5)

Where, S is the slope between any two values of a time series x. For time series x

having n observations, there are possible N = n× (n− 1)/2 values of S that can

be calculated by using:

S =
xk − xj
k − j

where k 6= j (3.6)
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3.2.7.3 Partial Mann-Kendall for Examining the Influence of Climatic

Indices on Precipitation Trends

The influence of large-scale climate indices on the precipitation time series is ex-

amined by the Partial Mann-Kendall (PMK) test [216, 219, 220, 221]. PMK is

among the best one-step procedures that adjust covariates (influencing variables)

and trend testing simultaneously. Pearson correlation measures the strength of

linear association between two variables. PMK is another approach to study the

changes in trends of precipitation in the presence of climate indices which are the

covariates. Trends in precipitation (response variable) can be assessed in the pres-

ence of the relevant covariates through PMK when the effect of the explanatory

variable is removed [307].

In PMK, the effect of explanatory variables is studied on the response variable

and the influence is calculated using the conditional mean and the conditional

variance of the response variable. The test statistic for response variable y, with

its covariate x being the explanatory variable, is given by

PMK =
Sy − ρ̂Sx√

(1− ρ̂)n(n− 1)(2n+ 5)/18
(3.7)

Where Sy is the Mann-Kendall statistics of the response variable, Sx is the Mann-

Kendall statistics of the explanatory variable ρ̂ denotes the conditional correlation

between the MK statistics Sx and Sy. The PMK statistic is normally distributed

with mean 0 and standard deviation 1.

3.2.7.4 Empirical Orthogonal Analysis or Principal Component Anal-

ysis

Empirical Orthogonal Analysis is also called the Principal Component Analysis

that finds the independent orthogonal variables (EOFs) and describes the maxi-

mum variability of a two-dimensional data set. The first dimension is the spatial

location in which the EOF is being found and the second dimension is the time,
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which represents the dimension in which realizations of this structure are sampled.

EOF analysis is performed on precipitation and climate variables to determine the

influencing climate indices of large-scale teleconnections patterns [242]. Mathe-

matical expression is given below.

The relationship between the original time series A(x,y,t) in terms of B(x,y) and

Principal Component P(t) is given by

A(x, y, t) =
n∑

k=1

(P (t) +B(x, y)) (3.8)

Where, A(x,y,t) is the original time series as a function of time (t) and space (x,y).

B(x,y) shows the spatial structures (x,y) of the major factors that can account for

the temporal variation of A. P(t) is the Principal Component that explains how

the amplitude of each EOF varies with time.

3.3 Results and Analysis

3.3.1 Spatial and Temporal Trends of Precipitations

Monotonic trends in monthly precipitation from 1977 to 2017 at thirteen (13)

stations of Baluchistan province are found through Mann-Kendall (MK) tests at

individual stations. Out of fifteen (15) statistically significant trends, ten (10) are

decreasing trends, whereas five (5) are increasing trends Table 3.6. This indicates

that decreasing trend is dominating in most of the stations in Baluchistan province

and also accounts for the declining precipitation anomaly prevailing in Baluchistan

province for the last couple of decades.

The slope of the significant trend is calculated by the Theil Sen slope method

(TS). Spatial and temporal trends of monthly precipitations for all thirteen (13)

stations are also shown with the help of pie diagram in Figure 3.10.
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Table 3.6: Monthly Significant Increasing (Decreasing) Trends in Precipitation Individual Stations

Stations Parameters Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Barakhan S -177 -70 -144 -57 -1 175 -76 44 -79 7 -211 -74

- p 4.62% 43.14% 10.57% 52.20% 99.10% 4.93% 39.33% 62.12% 37.49% 93.32% 1.07% 38.76%

- TS -0.205* -0.206 -0.478 -0.187 0.000 0.832* -0.767 0.354 -0.291 0.000 0.000 0.000

Dalbandin S -132 -43 -79 -53 -98 -21 -42 -67 13 -24 -91 -208

- p 13.74% 62.70% 37.29% 54.73% 22.36% 76.83% 49.35% 27.46% 74.52% 71.94% 23.49% 1.64%

- TS -0.240 -0.027 -0.113 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.051

Jiwani S -13 -158 -72 -93 -30 -59 -34 -58 0 -32 -72 -245

- p 88.23% 6.31% 39.71% 19.20% 20.49% 30.99% 57.93% 41.59% 0.00% 48.30% 24.04% 0.37%

- TS 0.000 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.074

Kalat S -43 47 28 -35 23 68 -167 -68 9 -68 66 -114

- p 62.89% 59.72% 75.22% 69.12% 78.48% 39.87% 5.41% 43.02% 89.95% 28.97% 42.94% 18.86%

- TS -0.079 0.130 0.004 0.000 0.000 0.000 -0.117 0.000 0.000 0.000 0.000 -0.049

Khuzdar S -97 -67 28 -47 28 31 -20 -59 30 -93 -151 -178

- p 27.45% 45.12% 75.27% 59.65% 75.21% 72.56% 82.22% 50.75% 73.06% 21.50% 6.45% 4.01%
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- TS -0.117 -0.242 0.092 -0.011 0.000 0.000 -0.067 -0.380 0.000 0.000 0.000 -0.094

Lasbella S 9 -120 58 41 133 78 -92 -60 105 -84 -90 -57

- p 91.68% 16.84% 50.54% 63.79% 13.09% 37.58% 29.86% 49.69% 16.15% 23.88% 19.32% 39.36%

- TS 0.000 -0.046 0.000 0.000 0.292 0.004 -0.225 -0.150 0.000 0.000 0.000 0.000

Nokkundi S 62 8 -2 12 20 59 -48 -63 0 39 -26 -72

- p 47.94% 92.72% 98.19% 87.98% 77.89% 24.13% 34.06% 11.52% 0.00% 52.48% 68.56% 37.15%

- TS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ormara S -19 -28 -73 -67 -205 108 82 66 5 -407 -20 -19

- p 82.81% 74.38% 37.14% 31.60% 0.63% 7.82% 30.15% 35.46% 92.09% 0.01% 69.13% 82.32%

- TS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.005 0.000 0.000

Panjgur S -28 -93 -56 -32 135 18 -195 -78 -5 -76 -90 -176

- p 75.17% 29.40% 52.60% 70.43% 8.89% 80.07% 2.28% 31.75% 93.79% 13.13% 17.80% 3.51%

- TS 0.000 -0.131 -0.019 0.000 0.000 0.000 -0.083 0.000 0.000 0.000 0.000 0.000

Pasni S -52 -64 -60 0 -35 15 10 -116 6 -50 49 -91

- p 55.68% 46.03% 48.35% 100.00% 38.15% 81.53% 89.61% 12.19% 89.54% 27.30% 42.43% 28.44%

- TS -0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Quetta S -224 -44 -157 130 165 206 -33 -12 153 8 76 -169

- p 1.19% 62.11% 7.78% 14.38% 6.07% 1.26% 70.15% 88.99% 3.14% 91.50% 37.77% 5.74%

- TS -1.223* -0.265 -0.966 0.200 0.019 0.000 0.000 0.000 0.001 0.000 0.000 -0.543

Sibbi S -69 23 -91 -42 154 186 22 21 153 -57 -61 -63

- p 43.55% 79.55% 30.66% 62.80% 6.78% 2.59% 80.46% 81.35% 6.70% 32.66% 43.44% 45.50%

- TS -0.031 0.000 -0.185 0.000 0.000 0.000 0.042 0.069 0.000 0.000 0.000 0.000

Zhob S -201 -19 -132 -39 38 161 56 -122 77 -38 -39 -160

- P 2.39% 83.08% 13.81% 66.12% 66.85% 7.04% 52.93% 17.06% 38.20% 61.98% 64.03% 6.63%

- TS -0.417* -0.029 -0.655 -0.078 0.044 0.250 0.264 -0.559 0.029 0.000 0.000 -0.056

Figures in bold represents significant correlations at 5% confidence level. * shows noteworthy Theil Sen Slope (TS). Where S is Mann Kendall statistic, p is

significance probability (p-value) and TS is Theil Sen Slope.
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The TS of the significant noteworthy trends in Table 3.6. are shown with *.

whereas others have significant trends, but their slopes are almost flat, hence they

are ignored. Therefore, it can be inferred that generally, the decreasing trends

of precipitation in January are dominant with a noticeable average slope of 0.615

mm/year. In contrast, increasing precipitation trends in June are prevailing with a

pronounced average slope of 0.832 mm/year. The average precipitation of January

and June is 18.7 mm and 11.8 mm, respectively. Thus, a significant decreasing

trend having a of slope 0.615 mm/year in January is obvious, which may create

dryness. In contrast, a significant increasing trend in June having slope 0.832

mm/year may create some heavy downpour conditions respectively. It may also

be noted that the significant trend (increasing /decreasing) is found at stations

located in Region 1. On the contrary, no trend is found at stations located in

Regions 2, 3 and 4.

Figure 3.10: Spatial map showing positive and negative (Green and Red)
trend in stations (Figure courtesy of PMD).
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3.3.2 Influence of Climatic Indices on Precipitation Trends

The climatic indices pertinent to Baluchistan which would have influenced these

decreasing (increasing) precipitation trends in January (June) are determined.

The changes in precipitation trends in the presence of influencing variables North

Atlantic Oscillation (NAO), Arctic Oscillation (AO), Atlantic Multi-decadal Os-

cillation (AMO), Equatorial Indian Ocean Zonal Wind Index (EQWIN), ENSO

Modoki Index (EMI), Multivariate ENSO Index (MEI), Dipole mode index (DMI),

and Pacific Decadal Oscillation (PDO) are determined through the PMK on

monthly precipitation at the individual station.

The PMK determining influence is classified as weak, moderate and strong in-

fluence as described in Table-3.7. The variation in precipitation trends for the

significant decreasing (increasing) trends of January and June are tabulated in

Table-3.7. It can be seen from Table-3.7 that all the climatic variables mentioned

above have a weak influence on precipitation trends except EQWIN and ENSO-

MEI and EMI-MODOKI, which have moderate to strong impact on precipitation

trends.

Table 3.7: Region1 Precipitation Modes (EOFs) and Corresponding PCs for
the Month January and June

Months Stations NAO AO AMO DMI EQWIN PDO ENSO-

MEI

EMI-

MODOKI

January Barakhan Weak

(-)

Weak

(-)

Weak

(-)

Weak

(-)

Strong

(-)

Weak

(-)

Weak (-) Strong

(-)

- Quetta Weak

(-)

Weak

(-)

Weak

(-)

Weak

(-)

Moderate

(-)

Weak

(-)

Weak (-) Strong

(-)

- Zhob Weak

(-)

Weak

(-)

Weak

(-)

Weak

(-)

Strong

(-)

Weak

(-)

Moderate

(-)

Strong

(-)

June Barakhan Weak

(+)

Weak

(+)

Weak

(+)

Weak

(+)

Strong

(+)

Weak

(+)

Weak

(+)

Strong

(+)

(+ve) shows increasing trends whereas (-ve) shows decreasing trends.
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3.3.3 Influence of Climate Indices on Precipitation

Variability

It is found through Mann-Kendall (MK) and Theil Sen’s Slope Analysis (TSA) that

precipitation trends are significant in January and June. Most of the stations with

significant precipitation trends are located in the Region 1 of Baluchistan province.

As it can be seen in Table 3.1, Region 1 comparatively receives a larger portion

of Baluchistan precipitation whereas, other regions receive less precipitation and

remain dry. It can also be seen in Table 3.1 that the major share of precipitation

is in monsoon (June, July, August and September) followed by winter (December,

January and February). January (June) are focused month, in which the stations

in Region 1 show decreasing (increasing) trends.The relationship of these months

precipitation variability with the teleconnection patterns is determined through

the following steps:

a. Variability patterns (modes) in the Region 1 precipitation are identified through

principal component analysis and their corresponding time series (PCs) are con-

structed.

b. Correlation analysis is performed between time series of Region 1 precipitation

(PCs.) and climate indices.

c. EOF analysis is performed on Sea Surface Temperature (SST), Sea Level Pres-

sure (SLP), and Zonal Winds at surface (ZW-Surface) to find out the dominated

teleconnection patterns prevailing January and June, which may have influenced

the precipitation of Region 1 in Baluchistan province and explains the precipitation

variability.

d. Correlation analysis is performed between time series of Region 1 precipitation

and Sea Surface Temperature (SST) anomalies, atmospheric circulations such as;

Sea Level Pressure (SLP), Geopotential Heights (500 hpa), Zonal Winds (surface),

Outgoing Longwave Radiation (OLR) to observe their relationship and influence

with Region 1 precipitation.
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3.3.4 Linkages of January Precipitation Variability with

Climate Indices

3.3.4.1 Modes of Region 1 Precipitation for the Month of January

PCA is performed on the Region 1 Precipitation of January (R1JANP) form 1977

to 2017. The first three (3) EOFs explain 88.7% variation, capable enough to

explain the precipitation variability in Region 1 Table 3.8. These three (3) PCs are

then used to perform the correlation analysis with climate indices. The correlation

between the time series of PCs and R1-JAN is shown in Table 3.8. The selected

PC’s and EOF’s are shown with asterisk.

Table 3.8: Region 1 Precipitation Modes (EOFs) and Corresponding PCs for
the Month January

EOFs % Variability

Explained

Cumulative(%) PCs Correlation

Coeff.

p-value

EOF1* 53.80 53.80 PC1 0.972 0.001

EOF2* 18.75 72.55 PC2 0.177 0.267

EOF3* 16.15 88.70 PC3 0.142 0.375

EOF4 6.94 95.64 PC4 -0.024 0.882

EOF5 4.36 100.00 PC5 -0.047 0.768

Bold figure represents significant correlations coefficients and probability at 5%

and the ”*” indicated the selected EOF’s.

3.3.4.2 Correlation of Region 1 Precipitation for the Month of January

with Climate Indices

To find out the association of R1JANP with climate indices, correlation is per-

formed between the time series of region precipitation PC (R1JANP-PCs) and
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the climate indices for the respective month of January. The results are presented

in Table 3.9. Large-scale teleconnection circulation patterns North Atlantic Os-

cillation (NAO) and Atlantic Oscillation (AO) show insignificant correlation with

Region1 precipitation. Atlantic Multi Decadal Oscillation index (AMO) is posi-

tively correlated to PC3 at 7.91% confidence. Indian Ocean Dipole mode index

(DMI) is positively correlated to PC2 at 12.39% confidence.

Equatorial Indian Ocean Zonal Wind Index (EQWIN), defined the Indian Ocean

Circulation pattern as significant at 1.15% and is positively correlated to PC1.

Large scale teleconnection pattern ENSO-MEI is negatively correlated to PC2 at

16.52% confidence. ENSO-MODOKI Index (EMI) is positively correlated to PC2

at 21.81% confidence, and it is also positively correlated to PC3 at 4.82% confi-

dence level. Pacific Ocean Decadal Oscillation (PDO) is negatively correlated to

PC1 at 20.51% confidence.

Table 3.9: Correlation between R1JANP-PCs and Climate Indices

R1JANP-

PC1

R1JANP-

PC2

R1JANP-

PC3

Indices Corrl.

Coeff.

p-

Value

Corrl.

Coeff.

p-Value Corrl.

Coeff.

p-Value

NAO -0.1488 0.3532 -0.1284 0.4236 -0.1039 0.5178

AO 0.0517 0.7483 -0.1479 0.3561 0.1278 0.4258

AMO -0.1020 0.5257 0.0269 0.8674 0.2774 0.0791

DMI 0.0546 0.7345 0.2442 0.1239* -0.0698 0.6644

EQWIN 0.3758 0.0155 -0.1089 0.4981 0.0352 0.8271

ENSO-MEI 0.0102 0.9497 -0.2209 0.1652* -0.1444 0.3678

EMI-

MODOKI

-0.0948 0.5554 0.1966 0.2181 0.3105 0.0482

PDO -0.2021 0.2051* -0.0328 0.8386 -0.0924 0.5654

Bold figures indicate significant correlation at 8% confidence, whereas’*’ figures

indicate correlation up to 20% significance.
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3.3.4.3 Leading Modes of Teleconnection Patterns for the Month of

January

EOF analysis is performed on SST, SLP and ZW-Surface for January. The leading

modes of EOFs are selected based on their distinguishability within their uncer-

tainties. The non-degeneracy of Eigen spectrum is an important property and can

be used for selecting leading modes of EOFs. The uncertainty estimates of Jan-

uary eigenvalues spectrum of the covariance matrix of SST and SLP are calculated

by rule of thumb [242, 308]. Two eigenvalues of SST and three eigenvalues of SLP

are well distinguishable from the rest of the spectrum as shown in Figure 3.11 (a

and b). Therefore, three leading modes for each of the teleconnection patterns are

considered for the analysis.

a. Eigenvalue Spectrum (%) of the covariance matrix of 

January SST.  

b. Eigenvalue Spectrum (%) of the covariance matrix of 

January SLP 
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Figure 3.11: Eigenvalue Spectrums

Leading three modes EOF1(18%), EOF2(13%) and EOF3(6%) of Sea Surface

Temperature (SST), , explain about 37% cumulative variability and show the

patterns of PDO in North Pacific Ocean, EL-NINO, EMI-MODOKI (warm center
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flanked by cold sides or vice-versa) in the Central Pacific Ocean, DMI pattern

(though weak) in the Indian Ocean, whereas Atlantic Multi-decadal Oscillation

(AMO), and North Atlantic Oscillation (NAO), (associated SST pattern) in North

Atlantic Ocean. Leading modes of Sea Surface Temperature (SST) are shown in

Figure 3.12 (a, b and c), respectively.

Figure 3.12 (x, y and z) show three leading modes of Sea Level Pressure (SLP).

EOF1 (17%), EOF2 (13%), EOF3 (11%) of Sea Level Pressure (SLP), explain

about 41% cumulative variability and show the patterns of ENSO, NAO and AO.

EOF1 of Sea Level Pressure (SLP), shows anti-cyclonic circulation over Region 1

that is indicative of a negative association with influencing indices, whereas EOF2

and EOF3 show cyclonic circulation that is indicative of a positive association

with influencing indices.

Leading modes of ZW-Surface are shown in Figure 3.13 (a, b and c) respectively.

EOF1(10%), EOF2(7%) and EOF3(6%) of ZW-Surface explain about 23% cumu-

lative variability. Since Equatorial Indian Ocean Zonal Wind Index (EQWIN), is

highly correlated with the difference of Outgoing Longwave Radiation (OLR) in

Eastern Equatorial Indian Ocean (EEIO) and Western Equatorial Indian Ocean

(WEIO) regions, therefore the occurrence of Equatorial Indian Ocean Zonal Wind

Index (EQWIN), can easily be detected by identifying the enhanced/suppressed

convection (cloudiness) in WEIO/EEIO region. EOFs of OLR are shown in Fig-

ures 3.13 (x, y and z). EOF1 and EOF3 show weak whereas EOF2 shows a

moderate pattern of Equatorial Indian Ocean Zonal Wind Index (EQWIN).

From the EOF analysis as mentioned above, it is clear that patterns of NAO

(weak), AO (moderate to weak), AMO (moderate), DMI (moderate), Equatorial

Indian Ocean Zonal Wind Index (EQWIN), (moderate), ENSO-MEI (moderate),

EMI-MODOKI (strong) and PDO (moderate) are found in the three leading modes

of January. Blue boxes show NAO Region in Atlantic Ocean. Black boxes show

WEIO and EEIO region whereas green box show CEIO region in Indian Ocean.

Red boxes show ENSO-MODOKI regions whereas magenta box show ENSO-MEI

region in Pacific Ocean.
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(a) EOF1 of standardized SST for January shows the patterns of ENSO 
and PDO in Pacific Ocean 

(x) EOF1 of standardized SLP for January shows the patterns of 
ENSO-SOI and NAO pattern though not very distinguished 

  

(b) EOF2 of standardized SST for January showing the pattern of 

AMO in Atlantic Ocean and pattern of DMI in Indian Ocean 
(y) EOF2 of standardized SLP for January shows the pattern of AO 

  

(c) EOF3 of standardized SST for January shows patterns of PDO, 
EMI-MODOKI and NAO (SST associated patterns) 

(z) EOF3 of standardized SLP for January shows patterns of ENSO 
and NAO 

 
Figure 3.12: EOFs of standardized SST and SLP for January(1977-2017)

[235].
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(a) EOF1 of standardized SZW for January shows weak pattern of 

EQWIN 
(x) EOF1 of standardized OLR for January shows weak pattern of 

EQUINOO 

  

(b) EOF2 of standardized SZW for January shows moderate pattern of 
EQWIN 

(y) EOF2 of standardized OLR for January shows moderate pattern 
of EQUINOO 

  

(c) EOF3 of standardized SZW for January shows weak pattern of 

EQWIN 
(z) EOF3 of standardized OLR for January shows weak pattern of 

EQUINOO 

 
 Figure 3.13: EOFs of Standardized SZW and OLR for January (1977-2017)

[235].
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3.3.4.4 Relationship of Region1 Precipitation with SST Anomalies for

January

The distribution of correlation coefficient between PCs (1, 2 and 3) and standard-

ized Sea Surface Temperature (SST) for the month of January is shown in Figure

3.14. In tropical areas, PC-1 is positively correlated with Central-Eastern Pa-

cific, whereas it is negatively correlated with Western Pacific, as shown in Figure

3.13(a). This Sea Surface Temperature (SST) anomaly is indicative of linkages

of precipitation with ENSO-MEI. Still the correlation is mostly insignificant with

some significant areas and may be considered as weak, which is in line with the

findings in Table 3.12. Figure 3.14(b) and 3.14(c) show a negative correlation in

the central area for EMI-MODOKI and a positive correlation in flank areas marked

by red boxes, which is indicative of linkages of PC2 and PC3 with the EMI index.

At mid and high latitudes, PC3 is negatively and positively correlated with Sea

Surface Temperature (SST) analogous to Pacific Decadal Oscillation (PDO), index

(Figure 3.14(c)).

In the tropical Indian ocean, PC1 is negatively correlated with Sea Surface Temper-

ature (SST). PC2 and PC3 are positively correlated with Sea Surface Temperature

(SST) in Western Equatorial Indian Ocean (WEIO) and negatively correlated with

Sea Surface Temperature (SST) in Eastern Equatorial Indian Ocean (EEIO) re-

gions which is indicative of linkages with Indian Ocean Dipole (IOD)-Dipole Mode

Index (DMI). Still the correlation appears moderate to weak with some significant

positive correlated areas.

In the Northern Atlantic Ocean, PC1 and PC2 (Figure 3.14(a) and 3.14(c)) corre-

lations with Sea Surface Temperature (SST) anomalies are analogous to the North

Atlantic Oscillation (NAO), associated Sea Surface Temperature (SST) pattern,

thus indicative of an association with North Atlantic Oscillation (NAO). Figure

3.14(c) shows a positive correlation with Sea Surface Temperature (SST) in the

Northern Atlantic, which is indicative of Atlantic Multi-decadal Oscillation (AMO)

linkage with PC3.
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(a) EOF1 of standardized SZW for January shows weak pattern of EQWIN 

 

(b) EOF2 of standardized SZW for January shows moderate pattern of EQWIN 

 

(c) EOF3 of standardized SZW for January shows weak pattern of EQWIN 

 
 Figure 3.14: Correlation between PCs of Region1 precipitation and standard-

ized SST for January (1977-2017) [235].
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3.3.4.5 Relationship of Region1 Precipitation with Atmospheric Cir-

culation Anomalies for January

The relationship of Region 1 precipitation with atmospheric circulations is studied

by conducting the correlation analysis between PCs and atmospheric circulations

SLP, GPH500. Figure 3.15 shows the distribution of correlation coefficient between

PCs (1, 2, 3) and standardized SLP for January. In tropical regions, the pacific

warm pool remains stabilized and does not show any significant correlation with

Region 1 precipitation. Responding to PC1, the center tropical region shows

negative correlation with SLP and positive correlation in flank areas marked by red

boxes. This surface SLP anomaly is indicative of linkages with ENSO-MODOKI,

but the correlation is mostly insignificant with some significant areas. PC3 shows

a positive correlation over most of the tropical region with significant positive

correlations in central tropics and a negative correlation in flank areas marked by

red boxes, which is la-Nina EMI-MODOKI pattern.

In the Indian Ocean, responding to Sea Level Pressure (SLP), , PC1 shows signif-

icant positive correlation while PC-2 remains negatively correlated both without

showing any distinguishable opposite anomalies similar to DMI. However, PC-3

exhibits minor positive and negative anomaly between the Western Equatorial

Indian Ocean (WEIO) and the Eastern Equatorial Indian Ocean (EEIO) region

similar to DMI pattern.

In the Northern Atlantic Ocean, a high-pressure anomaly is present over Iceland.

In contrast a significant low-pressure anomaly is present over the Azores in re-

sponse to the correlation of PC1 with SLP. This surface SLP anomaly is indicative

of a strong (-) NAO pattern. This NAO anomaly is also accompanied by a low-

pressure anomaly over Artic and high-pressure anomaly in northern Atlantic and

the Pacific Ocean analogous to +AO pattern, but the correlation remains insignif-

icant (weak). Responding to SLP, PC2 is positively correlated with the Azores

region and is negatively correlated with the Iceland region, but the correlations re-

main insignificant (moderate to weak). This SLP anomaly is indicative of +NAO

mode. PC2 correlation with SLP does not show any distinguishable anomaly
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pattern similar to the +AO pattern in the Arctic. PC3 again shows a positive

correlation with the Azores and a negative correlation with Iceland with insignifi-

cant correlations (moderate to weak). But responding to SLP, strong low-pressure

anomaly exist with significant negative correlation and high-pressure anomalies

with significant positive correlation in Northern Atlantic and insignificant positive

correlation in North Pacific Ocean somewhat similar to +AO mode.

In order to understand the linkages of the observed signals of teleconnection includ-

ing EMI-MODOKI, ENSO-MEI in the Pacific Ocean, DMI in the Indian Ocean,

NAO, AO in the Atlantic Ocean with Region 1 precipitation through atmospheric

circulations, the correlation of PCs (1, 2, 3) is performed with GPH500 as shown

in Figure 3.14. The favorable precipitation counterpart of surface low pressure

is high pressure at mid-troposphere (500 hpa), indicating cyclonic circulation. In

contrast, the high pressure at the surface and low pressure at the mid-troposphere

(500 hpa) is indicative of anti-cyclonic circulations. In response to correlations

of PC1 with SLP and GPH500, Figure 3.15(a) shows low surface pressure at Re-

gion 1, whereas Figure3.15(a) depicts positive height anomaly (at GPH500) which

is indicative of cyclonic conditions. Positive/negative SLP anomaly in Iceland /

Azores with its counterpart negative/positive anomaly at 500 hpa extending all

the way to the Mediterranean and the Middle East Region, which is indicative of

linkages with NAO.

Furthermore, in the tropical Pacific region positive/negative/positive SLP anomaly

with its counterpart negative/positive/negative in EMI-MODOKI regions are in-

dicative of teleconnection with EMI-MODOKI Index. However, cyclonic condition

exists in the Indian Ocean, represented by high SLP anomaly and low mid altitude

anomaly at 500 hpa. For PC2 correlations with responding SLP and GPH500, Fig-

ures 3.15(b) and 3.15(y) show that the pressure conditions at the surface are not

supportive of their counterpart pressure conditions at mid- altitude. Lastly, for

PC3 correlations with SLP and GPH500, Figures 3.15(c) and 3.15(z) show anti-

cyclonic conditions over Region 1 in response to anti-cyclonic condition at SLP

and cyclonic condition at mid heights over tropical Indo-pacific region and North

Atlantic region, which is indicative of reduced precipitation.
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(a) Correlation between PC1 of Region1 precipitation and 

standardized SLP for January. 
(x) Correlation between PC1 of Region1 precipitation and 

standardized GPH500 for January 

  

(b) Correlation between PC2 of Region1 precipitation and 
standardized SLP for January 
 

(y) Correlation between PC2 of Region1 precipitation and 
standardized GPH500 for January 

  

(c) Correlation between PC3 of Region1 precipitation and 
standardized SLP for January 

(z) Correlation between PC3 of Region1 precipitation and 
standardized GPH500 for January 

 

 

 
 

Figure 3.15: Correlation between PCs of Region1 precipitation and standard-
ized SLP and GPH500 for January (1977-2017) [235].



Precipitation Variability due to the Impact of Climate Indices 81

To ascertain the linkages of atmospheric circulations with Region1 precipitation,

Empirical Orthogonal Function (EOF) modes of GPH500 are calculated. The

target area is the 30S-90N and 0-360, where the teleconnection pattern under

consideration are formed. The corresponding time series of the three leading modes

(G1, G2, G3), which explain 50.31% combined variability, are extracted. The

correlation matrix between G1, G2, G3 with PCs of Region 1 precipitation (PC1,

PC2, PC3) is shown in Table 3.10. The matrix is formulated to determine the

PCs of GPH500, which have a significant influence on the Region 1 precipitation

through teleconnection via atmospheric circulations. Table 3.10 indicates that

only G1 and G2 have a significant correlation with Region 1 precipitation PCs

(PC1 or PC3) and are therefore considered for further analysis. The leading EOF

modes (EOF1, EOF2) and the correlation of PCs of Region 1 precipitation (PC1,

PC2) are shown in Figure 3.16.

Table 3.10: Correlation Matrix between PCs of GPH (G1, G2, G3) and PCs
of Region1 Precipitation (PC1, PC2 and PC3)

R1JANP-

PC1

R1JANP-

PC2

R1JANP-

PC3

GPH-

Principal

Components

Corrl.

Coeff.

p-Value Corrl.

Coeff.

p-Value Corrl.

Coeff.

p-Value

G1 0.3532 0.023 0.1062 0.508 -0.2619 0.098

G2 -0.2594 0.101 0.1453 0.364 -0.1598 0.318

G3 -0.0693 0.668 -0.1881 0.239 0.2259 0.155

The correlation analysis is performed between the G1, G2 and climate indices to

determine the influencing indices of Region 1 precipitation. The results are shown

in Table 3.11, which indicates that Region 1 precipitation is linked to North At-

lantic Oscillation, Atlantic Multi-decadal Oscillation, Dipole mode index, Equato-

rial Indian Ocean Zonal Wind Index, ENSO Modoki Index through atmospheric

circulations.
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(a) EOF1 of standardized GPH at 500 hpa in January. (x) Correlation between PC1 of region1 precipitation and 

standardized GPH at 500 hpa 

  

(b) EOF2 of standardized GPH at 500 hpa in January. 

 
(y) Correlation between PC2 of region1 precipitation and 
standardized GPH at 500 hpa. 

 
 Figure 3.16: EOF modes of Standardized GPH (1977-2017) [235].

Table 3.11: Correlation between PCs of GPH (G1, G2, G3) and Climate
Indices

G1 G2

Indices Corrl. Co-

eff.

p-Value Corrl. Co-

eff.

p-Value

NAO -0.1475 0.3576 0.2284 0.1508

AO -0.0369 0.8188 0.1591 0.3203

AMO -0.4251 0.0056 -0.0742 0.6449

DMI -0.1188 0.4595 -0.2821 0.0739

EQWIN 0.3237 0.0390 0.0147 0.9272

ENSO-MEI 0.0650 0.6865 0.0366 0.8204

EMI-MODOKI -0.2029 0.2033 0.0631 0.6953

PDO -0.1510 0.3461 -0.1802 0.2595

Bold figures indicate significant correlation at 20% confidence.
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3.3.4.6 Relationship of Region1 Precipitation with Surface Wind Anoma-

lies for January

The distribution of correlation coefficient between PCs (1, 2 and 3) and standard-

ized Zonal Winds at Surface (ZW-Surface) for the month of January is shown

in Figure 3.17. As mentioned above, Equatorial Indian Ocean Zonal Wind In-

dex (EQWIN) being highly correlated to Equatorial Indian Ocean Oscillation

(EQUINOO), correlations of PCs with Outgoing longwave Radiation (OLR) is

calculated to identify the influence of EQWIN index easily. In the tropical Indian

Ocean at Western Equatorial Indian Ocean (WEIO) and Eastern Equatorial In-

dian Ocean (EEIO) regions, OLR anomalies are significantly correlated with the

PC1, PC3 of Region 1 precipitation which is indicative of correlation with sur-

face zonal winds, whereas the association with PC-2 remains insignificant. This

surface zonal wind anomaly indicates the Equatorial Indian Ocean Zonal Wind In-

dex (EQWIN) significant positive correlation with Region 1 January precipitation

(R1JANP).

In other words, it can also be reported as Equatorial Indian Ocean Zonal Wind In-

dex has a substantial positive correlation with the January precipitation of stations

located in region 1 namely

Barakhan

Khuzdar

Kalat

Quetta

Zhob

The Equatorial Indian Ocean Zonal Wind Index (EQWIN) index is the atmopheric

segemnt of Indain Ocean diapole. Equatorial Indian Ocean Zonal Wind Index

(EQWIN) which is the negative anomaly of Outgoing longwave Radiation (OLR),

hence is to be multiplied with -1.
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(a) Correlation between PC1 of Region1 precipitation and 

Standardized ZW-Surface for January shows strong pattern of 

EQWIN. 

(x) Correlation between PC1 of Region1 precipitation and 

Standardized OLR for January shows weak pattern of EQWIN 

  

(b) Correlation between PC2 of Region1 precipitation and 
Standardized ZW-Surface for January shows weak pattern of EQWIN 

 
 

(y) Correlation between PC2 of Region1 precipitation and 
Standardized OLR for January shows weak pattern of EQWIN 

  

(c) Correlation between PC3 of Region1 precipitation and 
Standardized ZW-Surface for January shows moderate pattern of 

EQWIN 

(z) Correlation between PC3 of Region1 precipitation and 
Standardized OLR for January shows moderate pattern of EQWIN 

 

 

 
 

 

Figure 3.17: PCs of Standardized ZW-Surface and OLR for January (1977-
2017) [235].
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3.3.4.7 Time Lag Relationship of PCs with Climate Indices for Jan-

uary

The time-lag relationship for the correlation coefficient of PCs with the climate

indices is also examined in this study. As mentioned earlier, three PCs of Region

1 precipitation are considered. Time-lag relationships of only those PC-Climate

Index relationship is considered, which is most significant. For example, out of

the three relationships between PCs and NAO, only PC1-NAO is most signifi-

cant which is shown in Table 3.9. The time-lag relationship indicates that ex-

cept NOA, all the other climate indices (AO, AMO, DMI, EQWIN, ENSO-MEI,

EMI-MODOKI and PDO) are at their maximum significance level with the re-

spective principal mode (PC) preceding to the month of January. NAO attains its

maximum negative significance in December of the year preceding the month of

January. Time-lag relationship also shows that NAO, AO, ENSO-MEI and PDO

are negatively correlated whereas AMO, DMI, EQWIN and ENSO-MODOKI are

positively correlated with their respective principal modes of precipitation.

3.3.4.8 Result Analysis for January

The results obtained from all the above analyses are summarized in Table 3.12,

along with the comparison with the previously obtained results of correlation and

Partial Mann-Kendall analysis. Thus, from the analysis, it can be concluded that

the influence of NAO and AO on Region1 precipitation is insignificant (weak).

Since none of the previous studies are focused on Baluchistan therefore, there is

not much literature available to support the argument that NAO mode enhances

(reduces) the precipitation in Baluchistan. However, Ahmed et al. [219] found

out that the positive (negative) NAO mode strengthens (weakens) winter-spring

precipitation in Pakistan; similarly, Athar et al. [232] found out that NAO shows

a correlation with Baluchistan without mentioning whether the correlation is pos-

itive or negative. Therefore, it can be inferred that NAO and AO have a weak

influence on the January precipitation in Baluchistan. The influence of AMO,
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DMI, ENSO-MEI and PDO are significant up to 20% confidence (may be con-

sidered as moderate). Lastly the influence of EQWIN and EMI-MODOKI are

significant up to 5% confidence (may be considered as strong).

Table 3.12: Summary of Analysis Results for Region 1 precipitation and Cli-
mate Indices for January

Correlationb/w PCs

and

anomalies

of

Indices Partial

Mann-

Kendall

Correlation

b/w PCs

and Climate

Indices

EOF

Analy-

sis

SST Atmospheric

Circulation

Zonal

Winds

and OLR

NAO Weak Insignificant Weak Weak Moderate –

AO Weak Insignificant Moderate

to Weak

– Weak –

AMO Weak Significant at

7.9 %

Moderate Moderate – –

DMI Weak Significant at

12.4 %

Moderate Moderate – –

EQWIN Strong

to Mod-

erate

Significant at

1.5%

Strong – – Strong

ENSO-

MEI

Moderate

to Weak

Significant at

16.5%

Moderate Weak – –

EMI-

MODOKI

Strong Significant at

4.8%

Strong Strong – –

PDO Weak Significant at

20.5%

Moderate Moderate

to Strong

– –

3.3.4.9 Discussion of Results - January

Weak insignificant effect of -NAO/-AO

The negative phase of the North Atlantic Oscillation (NAO) has a weak influence
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on the precipitation of Baluchistan. During the negative phase of North Atlantic

Oscillation (NAO), the Atlantic Jetstream and storm tracks more southerly path,

gathers moisture from the Mediterranean Sea crosses this region. The embedded

western disturbances in the westerlies are responsible for the precipitation under

favorable conditions. Contrary to this, Ahmed et al. [219] found that the pos-

itive (negative) phase of NAO strengthens (weakens) winter-spring precipitation

in the Northern parts of Pakistan above 31.5-degree latitude as the Atlantic jet

stream and storm track more northernly path and are responsible for the precipi-

tation (whereas Baluchistan is mostly located below 31.5 degree latitude).

Athar et al. [232] found that North Atlantic Oscillation (NAO) is correlated with

precipitation in Baluchistan without mentioning whether the correlation is posi-

tive or negative. Yadav et al. [122] suggest that the winter precipitation in the

western Indian region is influence by positive NAO/AO. The positive/negative

pressure anomaly intensifies the Asian westerly jet stream over North Africa and

the Middle East extending up to Northwest India. The jet stream intensifies the

western disturbances and is responsible for increased precipitation over Northern

Pakistan and Northwest India. The effect of AO, either positive or negative, is

insignificant over this region.

In contrast to this, Midhuna and Dimri [229] suggest that the positive AO

has more influence on the winter monsoon precipitation over the Himalayas and

western Indian region. Stronger westerlies from the Atlantic Ocean increase the

strength of WDs over the region along with the strong pressure gradient resulting

in moisture transport, thus responsible for excess precipitation during winter. In

addition to that, during the positive AO phase, strong wave activity flux is seen at

the Arabian Sea and adjacent areas, which indicates a strong mid-latitude Rossby

wave response.

Moderate effect of -ENSO-MEI/+DMI/+AMO/-PDO

The negative phase of ENSO-MEI (La-Nina) has a moderate effect on the winter

precipitation of this region. This is in line with the findings of the previ-

ous studies on this region. Azmat [309] suggests that during negative ENSO

episodes, cooler than normal ocean temperatures in the equatorial Central Pacific
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act to restrain the formation of rain-producing clouds in the region. Mid-latitude

depressions are inclined to be weaker than normal. La Nina episodes include

large-scale changes in the atmospheric winds across the tropical Pacific, including

increased winds from the east across the eastern Pacific in the lower atmosphere

and greater winds from west over the eastern tropical Pacific in the upper atmo-

sphere. These conditions explain an increased strength of the equatorial Walker

Circulation. Winter season rainfall activity over Pakistan is suppressed under sim-

ilar La Nina conditions during fall. However, if La Nina event is declining and its

intensity becomes weak during winter relative to the previous quarter (fall), i.e.,

increase in sea surface temperature, then rainfall activity over Pakistan tends to

lie between normal to greater than normal. The positive phase of Dipole mode

index (DMI), , an index of Indian Ocean dipole, has a moderate effect on the

winter precipitation of this region.

In contrast, Adnan et al. [310] suggest that Dipole mode index (DMI), values

show only a minimal negative correlations with the winter rainfall for northern

Pakistan. But these negative correlation were weak and negligible. No studies

were conducted to study the impact of DMI specifically on this region. Warm

ENSO condition adversely affects the rainfall over this region, but the occurrence

of strong positive Dipole mode index (DMI), diminishes the adverse effect of warm

ENSO, which in turn otherwise helps in increasing precipitation over this region.

Similarly, Chakrborty et al. [311] suggest that the interannual variation of mois-

ture flux is strongly modified by positive IOD and positive ENSO events, which

confirms the findings of this study. In the course of these events, the moisture

transport from the Red Sea toward the mountainous region of Asir Province of

Saudi Arabia increases. As a result, rain activity during November through April

increases.The negative phase of PDO and positive phase of AMO have moderate

effect on the winter precipitation of this region. AMO and PDO are indices show-

ing the multi-decadal variations in SST in North Atlantic and North Pacific Ocean

and are negative phase-locked.The negative phase of PDO enhances the effect of

cold ENSO (La-Nina), whereas the positive phase of AMO weakens the effect of

NAO/AO but modestly effect the warming of the Indian Ocean.
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Significant effect of +EQWIN AND +EMI-MODOKI

EQWIN, which is the index for the EQUINOO in the Indian Ocean, has a sig-

nificant positive correlation with the precipitation in Baluchistan, whereas the

positive phase of EMI-MODOKI, an index of large-scale tripole anomalous condi-

tion in the equatorial Pacific Ocean, also has a significant positive correlation in

this region. Ashok et al. [312] confirm the findings of the current study by sug-

gesting that relatively higher rainfall was observed over the Indian subcontinent

during El Nino MODOKI season as compared to the El Nino dry periods.

3.3.5 Linkages of June Precipitation Variability with Cli-

matic Indices

3.3.5.1 Modes of Region 1 Precipitation for the Month of June

PCA is performed on the R1JUNP the first three EOFs explain 90.82% variation,

capable enough to explain the precipitation variability in Region 1. These three

PCs are then used to perform the correlation analysis with climate indices. The

correlation between time series of PCs and R1JUNP is shown in Table 3.13.

Table 3.13: Region 1 Precipitation Modes (EOFs) and Corresponding PCs
for the Month of June

EOFs Variability

Explained

Cumulative PCs Correlation

Coeff.

p-value

EOF1 58.61% 58.61% PC1* 0.7793 0.0001

EOF2 16.19% 74.80% PC2* -0.5306 0.0003

EOF3 16.02% 90.82% PC3* 0.1521 0.3425

EOF4 5.68% 96.50% PC4 -0.1578 0.3246

EOF5 3.50% 100.00% PC5 -0.2188 0.1693

Bold figures represent significant correlations, coefficients and probability at 5%,

whereas ’*’ indicates the selected modes.
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3.3.5.2 Correlation of Region 1 Precipitation with Climate Indices for

June

In order to find out the association of R1JUNP with climate indices, correlation

is performed between the time series of Region1 precipitation PC (R1JUNP-PCs)

and the climate indices for the month of June. The results are presented in Table

3.14. Large-scale teleconnection circulation patterns North Atlantic Oscillation in-

dex (NAO) is negatively correlated to PC2 at 11.05% confidence. Artic Oscillation

index (AO) is negatively correlated but is insignificant. Atlantic Multi Decadal Os-

cillation index (AMO) is negatively correlated to PC3 but is insignificant. Indian

Ocean Dipole mode index DMI is positively correlated to PC1 but is insignificant.

EQWIN defined the Indian Ocean circulation pattern positively correlated to PC1

at 0.4% confidence. Large scale teleconnection pattern ENSO-MEI is negatively

correlated to PC3 but is insignificant. ENSO-MODOKI index (EMI-MODOKI) is

positively correlated to PC3 but is insignificant. Pacific Ocean decadal oscillation

(PDO) is negatively correlated to PC2 at 4.57% confidence level.

Table 3.14: Correlation between R1JUNP-PCs and Climate Indices

R1JUNP-
PC1

R1JUNP-
PC2

R1JUNP-
PC3

Indices Corrl.
Coeff.

p-Value Corrl.
Coeff.

p-Value Corrl.
Coeff.

p-Value

NAO -0.2530 0.1105 -0.0091 0.9549 -0.0521 0.7463

AO -0.1120 0.4858 0.0179 0.9114 -0.0406 0.8011

AMO -0.0625 0.6978 -0.0371 0.8178 0.0629 0.6958

DMI 0.1503 0.3483 0.1437 0.3699 -0.0520 0.7470

EQWIN 0.4397 0.0040* -0.0111 0.9449 -0.2191 0.1687

ENSO-
MEI

0.0257 0.8732 0.0970 0.5464 -0.1468 0.3597

EMI-
MODOKI

0.1170 0.4662 -0.0295 0.8549 0.1264 0.4309

PDO 0.1338 0.4044 -0.3139 0.0457* -0.1096 0.4951

Bold with asterisk figures indicate significant correlation at 8% confidence, whereas

bold figures indicate correlation up to 20% significance.
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3.3.5.3 Leading Modes of Teleconnection Patterns for the Month of

June

EOF analysis is performed on SST, SLP and ZW-surface for June also. The

uncertainty estimates of June eigenvalues spectrum of the covariance matrix of SST

and SLP are calculated and are used for selecting leading modes of EOFs. Two

eigenvalues of SST and four eigenvalues of SLP are well distinguishable from the

rest of the spectrum, as shown in Figure 3.18(a) and (b). Therefore, three leading

modes for each of the teleconnection patterns are considered for the analysis.

a. Eigenvalue Spectrum (%) of the covariance matrix of June 

SST. 

b. Eigenvalue Spectrum (%) of the covariance matrix of June 

SLP.  
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Figure 3.18: Eigenvalue Spectrum (%) of the Covariance Matrix of June SST
and SLP.

Three leading modes, EOF1(15%), EOF2(12%) and EOF3(7%) of Sea Surface

Temperature (SST), , explained about 34% cumulative variability and showed the

teleconnection patterns of ENSO, EMI-MODOKI (warm center flanked by cold

sides: cold center flanked by warm sides) in Central Pacific Ocean, Atlantic Multi-

decadal Oscillation (AMO), in North Atlantic Ocean, North Atlantic Oscillation,

(associated SST pattern) in North Atlantic Ocean, DMI pattern (though weak) in

the Indian Ocean. Leading modes of Sea Surface Temperature (SST), are shown

in Figure 3.19(a), (b) and (c). Figure 3.19(x), (y) and (z) shows three leading

modes of Sea Level Pressure (SLP). EOF1(17%), EOF2(11%) and EOF3(9%) of

Sea Level Pressure (SLP), explain about 37% cumulative variability and show the

patterns of ENSO, NAO and AO (though not very distinguishable).
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(a) EOF1 of standardized SST for June shows the patterns of EMI-

MODOKI and AMO. 
(x) EOF1 of standardized SLP for June shows the pattern of NAO 

though not very distinguished 

  

(b) EOF2 of standardized SST for June shows the patterns of NAO, 

ENSO-MEI and PDO. 

(y) EOF2 of standardized SLP for June shows the pattern of NAO 

  

(c) EOF3 of standardized SST for June shows weak patterns of DMI, 

EMI-MODOKI and NAO 

(z) EOF3 of standardized SLP for June shows patterns of ENSO-MEI 

and AO though not very distinguished. 

 

 
Figure 3.19: EOFs of Standardized SST and SLP for June (1977-2017)[235].
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Leading modes of ZW-Surface are shown in Figure 3.20(a), (b) and (c). EOF1(9%),

EOF2(7%) and EOF3(6%) of ZW-Surface explain about 23% cumulative variabil-

ity. As mentioned above, Equatorial Indian Ocean Zonal Wind Index (EQWIN),

is highly correlated with the difference of Outgoing Longwave Radiation (OLR),

in the Eastern Equatorial Indian Ocean (EEIO) and Western Equatorial Indian

Ocean (WEIO) regions therefore the occurrence of Equatorial Indian Ocean Zonal

Wind Index (EQWIN) can easily be detected by identifying the enhanced/sup-

pressed convection (cloudiness) in Western Equatorial Indian Ocean (WEIO)/Eastern

Equatorial Indian Ocean region.Empirical Orthogonal Function (EOF)s, of Outgo-

ing Longwave Radiation (OLR), are shown in Figures 3.20(x), (y) and (z). EOF1

and EOF2 depict weak patterns, whereas EOF3 shows a moderate pattern of

Equatorial Indian Ocean Zonal Wind Index (EQWIN).

From the Empirical Orthogonal Function (EOF), analysis as mentioned above,

it is clear that patterns of North Atlantic Oscillation, (weak), Arctic Oscilla-

tion , (None), Atlantic Multi-decadal Oscillation (moderate), Dipole Mode Index

(weak), Equatorial Indian Ocean Zonal Wind Index (strong), ENSO-MEI (moder-

ate to strong), EMI-MODOKI (weak) and Pacific Decadal Oscillation (moderate

to strong) are found in the three leading modes of June.

3.3.5.4 Relationship of Region 1 Precipitation with SST Anomalies for

June

The distribution of correlation coefficient between PCs (1, 2 and 3) and standard-

ized surface Sea Surface Temperature (SST) June are shown in Figure 3.21. In

tropical areas, PC-1 and PC-3 are negatively correlated with central-Eastern pa-

cific, whereas they are positively correlated with western pacific (Figure 3.21(a)

and (c)). This surface Sea Surface Temperature (SST), anomaly is indicative of

linkages of precipitation with ENSO-MEI, but the correlation is mostly insignifi-

cant with some significant areas and may be considered as weak which is in line

with the findings in Table 3.9. Figure 3.21(b) shows a positive correlation in the

central area for EMI-MODOKI and a negative correlation in flank areas marked
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(a) EOF1 Map of standardized ZW-Surface for June (x) EOF1 Map of standardized OLR for June 

  

(b) EOF2 Map of standardized ZW-Surface for June (y) EOF2 Map of standardized OLR for June 

 
 

(c) EOF3 Map of standardized ZW-Surface for June (z) EOF3 Map of standardized OLR for June 

 

 
Figure 3.20: EOFs of Standardized ZW-Surface and OLR for June (1977-

2017) [235].
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by red boxes but with weak strength, which indicates weak linkages of PC2 with

the EMI-MODOKI index. At mid and high latitudes, PC1 and PC2 are negatively

and positively correlated with surface Sea Surface Temperature (SST)s analogous

to the Pacific Decadal Oscillation (PDO), index (Figure 3.21(a) and 3.21(b)).

The correlation of PC1 with Pacific Decadal Oscillation (PDO) is considered mod-

erate; with PC2, it is deemed to be strong. PC3 shows correlation analogous to

Pacific Decadal Oscillation (PDO) pattern but not very significant.

In the tropical Indian Ocean, PC1 does not show any distinguishable positive/neg-

ative correlations in Western Equatorial Indian Ocean (WEIO)/Eastern Equato-

rial Indian Ocean (EEIO) region. Both PC2 and PC3 are positively/negatively

correlated with Sea Surface Temperature (SST), in Western Equatorial Indian

Ocean (WEIO)/Eastern Equatorial Indian Ocean (EEIO), but the correlation is

weak.

These Sea Surface Temperature (SST), anomalies over Western Equatorial Indian

Ocean (WEIO)/Eastern Equatorial Indian Ocean (EEIO), region is indicative of

linkages with Dipole Mode Index (DMI) , but the correlation appears weak with

some significant positive correlations.

In the Northern Atlantic Ocean, PC1 (Figure 3.21(a)) is correlated with Sea Sur-

face Temperature (SST) anomalies. Analogous to the North Atlantic Oscillation

(NAO) associated Sea Surface Temperature (SST) pattern, thus indicative of an

association with North Atlantic Oscillation (NAO).

PC2 shows no correlation pattern similar to North Atlantic Oscillation (NAO)

but the correlation is weak. Figure 3.21(c) shows a moderate positive correlation

with Sea Surface Temperature (SST), in the Northern Atlantic, indicating Atlantic

Multi-decadal Oscillation (AMO) linkage with PC3.
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(a) Correlation between PC1 precipitation and SST for June 

 

(b) Correlation between PC2 precipitation and SST for June 

 

(c) Correlation between PC3 precipitation and SST for June 

 
 Figure 3.21: Correlation between PCs of Region1 precipitation and standard-

ized SST for June (1977-2017)[235].
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3.3.5.5 Relationship of Region 1 Precipitation with Atmospheric Cir-

culation Anomalies for June

The relationship of Region 1 precipitation with atmospheric circulations is studied

by conducting the correlation analysis between PCs and atmospheric circulations

SLP, GPH500. Figure 3.22 shows the distribution of correlation coefficient between

PCs (1, 2, 3) and standardized SLP for June. In tropical regions, the Pacific warm

pool shows some significant correlation with Region 1 precipitation. Responding

to PC3, the Eastern-Central tropical region shows a negative correlation with

SLP, whereas the western tropical region shows a positive correlation analogous

to the ENSO pattern. Similarly, responding to PC1, the center tropical region

shows a negatively correlates with SLP and a positive correlation in flank areas

marked by red boxes. This surface SLP anomaly is indicative of linkages with

ENSO-MODOKI, but the correlation is mostly insignificant with some significant

areas. Responding to PC2, the central Indian and Pacific Ocean shows a negative

correlation with some significant correlated areas.

In the Indian Ocean, responding to SLP, PC1 and PC3 show significant negative

correlation while PC-2 shows weak negative/positive correlation at WEIO/EEIO

regions to DMI Index. In the Northern Atlantic Ocean, high-pressure anomaly is

present over Iceland, whereas a significant low-pressure anomaly is present over

the Azores in response to correlation of PC1 with SLP. This surface Sea Level

Pressure, anomaly is indicative of strong (-) NAO pattern. Responding to Sea

Level Pressure (SLP), , PC2 is positively correlated with the Azores region and

negatively correlated with the Iceland region, but the correlations remain insignif-

icant (weak). This Sea Level Pressure, anomaly is indicative of +NAO mode.

PC3 again shows a positive correlation with the Azores and a negative correlation

with the Iceland with insignificant correlations (weak). Responding to SLP, PC1,

PC2 and PC3 does not show any significant correlation analogous to AO pattern,

although some positive and negative correlations are present in the Arctic region.

To understand the linkages of the observed signals of teleconnection including EMI-

MODOKI, ENSO-MEI in the Pacific Ocean, DMI in the Indian Ocean, NAO, AO
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in the Atlantic Ocean with Region 1 precipitation through atmospheric circula-

tions, the correlation is performed between PCs (1, 2, 3) with GPH500 as shown

in Figure 3.23. In response to correlations of PC1 with SLP and GPH500, Figure

3.22(a) shows positive surface pressure at Region 1, whereas Figure 3.22(x) depicts

negative pressure anomaly (at GPH500) which is indicative of anti-cyclonic condi-

tions with reduced precipitation. Negative/positive SLP anomaly at Azores/Ice-

land with its counterpart negative/positive anomaly at 500 hpa extending all the

way to the Mediterranean and the Middle East Region, which is indicative of link-

ages with NAO.

Furthermore, in the tropical Pacific region, positive/negative/positive SLP anomaly

with its counterpart negative/positive/negative GPH500 anomaly in EMI-MODOKI

regions are not very supportive for teleconnection pattern of EMI-MODOKI In-

dex. For PC2 correlations with responding SLP and GPH500, Figures 3.22(b) and

(y) show that the pressure conditions at the surface are supportive of its coun-

terpart pressure conditions at mid-altitude. Similarly, cyclonic condition exists in

the Indian Ocean represented by negative SLP anomaly and positive mid-altitude

anomaly at 500 hpa, which is indicative of enhance precipitation. Lastly, for PC3

correlations with SLP and GPH500, Figures 3.22(c) and (z) show anti-cyclonic

conditions over Region 1 in response to anti-cyclonic conditions at SLP and cy-

clonic conditions at mid-heights over the tropical Indo-Pacific region and North

Atlantic region, which is indicative of reduced precipitation.

To ascertain the linkages of atmospheric circulations with Region 1 precipita-

tion, EOF modes of GPH500 are calculated. The target area is the 30S-90N and

0-360, where the teleconnection pattern under consideration is shaped. The cor-

responding time series of the three leading modes (G1, G2, G3), which explain

52% combined variability, are extracted. The correlation matrix between G1, G2,

G3 with PCs of Region 1 precipitation (PC1, PC2, PC3) is shown in Table 3.15.

The matrix is formulated to determine the PCs of GPH500, which have significant

influence on the Region 1 precipitation through teleconnection via atmospheric

circulations.
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(a) Correlation between PC1 of Region1 precipitation and 

standardized SLP for June 
(x) Correlation between PC1 of Region1 precipitation and 

standardized GPH500 for June 

 

  

(b) Correlation between PC2 of Region1 precipitation and 

standardized SLP for June 

(y) Correlation between PC2 of Region1 precipitation and 

standardized GPH500 for June 
 

  

(c) Correlation between PC3 of Region1 precipitation and 
standardized SLP for June 

(z) Correlation between PC3 of Region1 precipitation and 
standardized GPH500 for June 

 

 

 

Figure 3.22: Correlation between PCs of Region 1 Precipitation and Stan-
dardized SLP and GPH500 for June (1977-2017) [235].
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Table 3.15 indicates that G1 and G2 have significant correlations with Region

1 precipitation PC2 only and are therefore considered for further analysis. The

leading EOF modes (EOF1, EOF2) and the correlation of PCs of Region 1 pre-

cipitation (PC1, PC2) are shown in Figure 3.23.

Table 3.15: Correlation Matrix of p-value between PCs of GPH (G1, G2, G3)
and PCs of Region1 precipitation (PC1, PC2 and PC3)

R1JUNP-

PC1

R1JUNP-

PC2

R1JUNP-

PC3

GPH-

Principal

Components

Corrl.

Coeff.

p-Value Corrl.

Coeff.

p-Value Corrl.

Coeff.

p-Value

G1 0.0106 0.9476 -0.3545 0.0230 0.2023 0.2047

G2 0.2456 0.1217 -0.3343 0.0327 0.0941 0.5585

G3 -0.1356 0.3979 0.1822 0.2543 -0.1103 0.4925

Bold figures indicate a significant correlation at 10% confidence.

  
(a) EOF1 of standardized GPH at 500 hpa in June. (x) Correlation between PC1 of region1 precipitation and 

standardized GPH at 500 hpa for June 

  

(b) EOF2 of standardized GPH at 500 hpa in June. 

 
(y) Correlation between PC2 of region1 precipitation and 

standardized GPH at 500 hpa for June 

 
 

 

 

Figure 3.23: EOF Modes of Standardized GPH at 500 hpa in June and Cor-
relation with PCs of Region 1 Precipitation [235].
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The correlation analysis is performed between the G1, G2 and climate indices to

determine the influencing indices of Region 1 precipitation. The results are shown

in Table 3.16. The result indicate that Region 1 precipitation is linked to AMO,

EQWIN and EMI-MODOKI through atmospheric circulations.

Table 3.16: Correlation between PCs of GPH (G1, G2, G3) and Climate
Indices

G1 G2

Indices Corrl. Coeff. p-Value Corrl. Coeff. p-Value

NAO 0.0926 0.5648 0.0165 0.9184

AO 0.0586 0.7160 0.0282 0.8612

AMO -0.2212 0.1646 -0.0865 0.5908

DMI -0.0652 0.6857 -0.0676 0.6745

EQWIN 0.2216 0.1638 0.2609 0.0995

ENSO-MEI -0.0531 0.7416 -0.1762 0.2704

EMI-MODOKI -0.2356 0.1382 0.0055 0.9725

PDO 0.1245 0.4379 -0.0262 0.8706

Bold figures indicate significant correlation at 20% confidence.

3.3.5.6 Relationship of Region 1 Precipitation with Surface Wind Anoma-

lies for June

The distribution of correlation coefficient between PCs (1, 2 and 3) and standard-

ized Zonal Winds at Surface (ZW-Surface) for the month of June is shown in Figure

3.24. As mentioned above, EQWIN being highly correlated to EQUINOO, corre-

lations of PCs with OLR are calculated to identify the influence of the EQWIN

index easily. In tropical Indian Ocean at WEIO and EEIO regions, OLR anoma-

lies are significantly correlated with the PC1, PC3 of Region 1 precipitation which

is indicative of correlation with surface zonal winds, whereas the association with
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PC-2 remains insignificant and weak. This surface zonal wind anomaly is indica-

tive of EQWIN significant positive correlation with R1JUNP (For the EQWIN

index, the negative anomaly is to be multiplied by -1).

  

(a) Correlation between PC1 of Region1 precipitation and 

Standardized ZW-Surface for June shows strong pattern of EQWIN. 

(x) Correlation between PC1 of Region1 precipitation and 

Standardized OLR for June shows moderate pattern of EQUINOO 

  

(b) Correlation between PC2 of Region1 precipitation and 

Standardized ZW-Surface for June shows weak pattern of EQWIN 

(y) Correlation between PC2 of Region1 precipitation and 

Standardized OLR for June shows weak pattern of EQUINOO 

  

(c) Correlation between PC3 of Region1 precipitation and 

Standardized ZW-Surface for June shows strong pattern of EQWIN 

(z) Correlation between PC3 of Region1 precipitation and 

Standardized OLR for June shows moderate pattern of EQUINOO 

 

 

Figure 3.24: EOFs of Standardized ZW-Surface for June (1977-2017) [235].
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3.3.5.7 Time-Lag Relationship of PCs with Climate Indices for June

The time-lag relationship for the correlation coefficient of PCs with the climate

indices is also examined in this study. As mentioned earlier, the three most signif-

icant PCs of Region 1 precipitation are considered. Time-lag relationship of only

those PC-climate indices relationship is considered which are most significant. The

time-lag relationship indicates the climate indices NAO, AO, EQWIN and PDO

are at their maximum significance level with the respective principal mode (PC)

preceding to the month of June. AMO attains its maximum negative significance

in January preceding June in the same year. The climate indices DMI, ENSO-MEI

and ENSO-MODOKI attain their maximum significance in the preceding month of

May. The time-lag relationship also shows that AMO, DMI, EQWIN and ENSO-

MODOKI are positively correlated, whereas NAO, AO, ENSO-MEI and PDO are

negatively correlated with their respective principal modes of precipitation.

3.3.5.8 Result Analysis for June

The results obtained from all the above analyses are summarized in Table 3.17,

along with the comparison with the previously obtained results of correlation and

Partial Mann-Kendall analysis. Thus, from the analyses, it can be concluded

that the influence of AO, DMI and EMI-MODOKI on Region 1 precipitation is

insignificant (weak). The influence of NAO, AMO and ENSO-MEI may be con-

sidered as moderate. Lastly, the influence of Equatorial Indian Ocean Zonal Wind

Index (EQWIN), and Pacific Decadal Oscillation (PDO), is significant up to 5%

confidence (may be considered as strong). It is found that the Indian Summer

Monsoon Rainfall (ISMR) is influenced by IOD [116, 228, 229]. As explained in

sections 3.2.4.4 and 3.2.4.5, DMI and EQWIN are the Oceanic and atmospheric

circulation indices that describe Indian Ocean Dipole (IOD). In this study, Equa-

torial Indian Ocean Zonal Wind Index (EQWIN), is found to be more correlated

than Dipole Mode Index (DMI) having moderate to strong influence on June pre-

cipitation [228].
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Table 3.17: Summary of Analysis Results for Region 1 precipitation and Cli-
mate Indices for June

Correlationb/w PCs

and

anomalies

of

Indices Partial

Mann-

Kendall

Correlation

b/w PCs

and Climate

Indices

EOF

Analy-

sis

SST Atmospheric

Circulation

Zonal

Winds

and OLR

NAO Weak Significant at

11.05%

Weak Weak Moderate –

AO Weak Insignificant Weak – – –

AMO Weak Insignificant moderate Moderate – –

DMI Weak Insignificant Weak Weak Weak –

EQWIN Strong Significant at

0.4 %

Strong Moderate – Moderate

to Strong

ENSO-

MEI

Weak Insignificant Strong Weak – –

EMI-

MODOKI

Strong Insignificant Weak Weak Weak –

PDO Weak Significant at

4.57 %

Strong Strong – –

3.3.5.9 Discussion of Results - June

Insignificant effect of -AO, +DMI and +EMI-MODOKI

The results indicate that AO, DMI, EMI-MODOKI and AMO remain insignificant.

Chen et al. [313] suggest that AO climate pattern is mostly influenced by the East

Asian Winter Monsoon. In contrast, both +DMI and +EMI-MODOKI are

reported to influence the Indian summer monsoon rainfall (ISM). Dandi, Ramu

et al. [314] suggest that El Nino Modoki modifies ISM rainfall by creating changes

in the low-level circulation in north western Pacific. The weak positive rainfall
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over the monsoon trough region is due to weak moisture convergence associated

with the westward extension of cyclonic circulation in the northwestern Pacific

strengthened by low pressure.

Moderate effect of +AMO, -NAO and -ENSO-MEI

NAO and ENSO-MEI both have a moderate effect on the precipitation of this

region. The effect of NAO on the summer precipitation in Pakistan is not very well

reported as per the previous studies, whereas ENSO-MEI, which is the multivariate

index of ENSO representing the anomalous condition in the equatorial Pacific

Ocean, influenced the interannual precipitation variability of this region through

teleconnection by means of Walker circulation and Hadley circulation atmospheric

bridges. The findings of this study are in line with other studies such as [315,

316]. Their work mutually agrees that the positive (negative) ENSO decreases

(increases) the precipitation. Mahmood et al.[316] suggested that the opposite

relationship between ENSO and ISM became weakened in the last decades. The

weakening of the ENSO-ISM relationship might be due to the reinforcing positive

phase of NAO and associated jet stream track patterns over the North Atlantic

during recent decades. Goswami et al.[315] suggested that positive AMO positive

tropospheric temperature anomaly over Eurasia produced stronger monsoon. It is

also linked with increased La Nina type Pacific SST anomalies that cause stronger

monsoon and stronger regional Hadley circulation. Thus, these two teleconnection

mechanisms are complementary in regulating the monsoon.

Significant Effect of +EQWIN and -PDO

The positive phase of EQWIN has a significant effect on the precipitation in

Baluchistan. +EQWIN is the index for the positive phase of EQUINOO, which

is the atmospheric component of IOD in the Indian Ocean. Behera et al. [317],

Ashok et al. [318, 319] and Hussain et al. [320] suggested that Positive IOD events

are associated with the increased rainfall in Pakistan and India extending all the

way to the Bay of Bengal during the monsoon season. The findings of the current

study confirm the work of all previous studies mentioned above [306-

308]. The moisture-loaded monsoon winds bring the moisture from the Indian

Ocean and are responsible for the precipitation in the monsoon season. Charlotte
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et al. [321] suggest that east winds are reinforced along the equator during strong

EQUINOO and positive dipolar structure of SST between WEIO and EEIO is

seen over the Indian Ocean, but the pattern is reversed for the negative phase of

EQUINOO. Strong EQUINOO is correlated with the positive phase of monsoon

and vice-versa. EQUINOO and Monsoon rainfall has a significant positive corre-

lation, which confirms the results of the current study. The negative phase of

PDO has a significant effect on the precipitation of Baluchistan. The negative

phase of PDO is the extension of a cold region of La-Nina, southern oscillation

along the west coast of continent USA on a decadal scale. Although La-Nina, that

is the negative phase of ENSO, has affected this region moderately but -PDO is

reported to have a significant effect on the precipitation variability of this region

in decadal scale. The effect of cold phase of ENSO (La-Nina) is enhanced during

the negative phase of PDO. Due to the extended effect of PDO extends in the

tropical Pacific, the relation between the monsoon rainfall and El Nino-Southern

Oscillation (ENSO) is altered. Krishnamurthy et al. [322], Roy et al. [323] sug-

gests that during the positive PDO period, the impact of El Nino (La Nina) on the

monsoon rainfall is enhanced (reduced). Depending on the phase of the PDO, this

condition affects the trade winds and either strengthens or weakens the Walker

circulation over the Pacific and Indian Oceans. The impact of PDO on monsoon

rainfall is determined by the related Hadley circulation in the monsoon region.

3.4 Significance/Application of the study’s Find-

ing

The importance of the finding is that the two climatic indices +EQWIN and

+EMI-MODOKI, being most significant for the month of January, and

+EQWIN and -PDO, being most significant for the month of June, can

be used as the potential determinants in the regression modeling to

predict the precipitation variability in this region. They can be used as a

baseline for further modeling and analysis by the climatologist and meteorologist.
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The findings will be helpful for anticipating no or less precipitation in the month

of January and downpours or extreme precipitation in June. The decision-maker,

local and provincial governments, and disaster management authority can use

it for issuing early warnings and weather alerts. They can also plan mitigation

measures as extreme precipitation can cause flash floods due to the topography

and rugged in Baluchistan. Flash floods are proven to be more catastrophic and

dangerous by mother nature.

3.5 Summary

Baluchistan province receives about 60% of total provincial rainfall in the winter

and spring months and nearly 30% in the monsoon season [145]. Decreasing trends

in precipitation are observed in the months of January in Region 1, when the

time series data is analyzed from 1977 to 2017 through Mann-Kendall test, which

confirms that Baluchistan is receiving lesser rainfall since the past few decades.

The change in trends under the influence of climatic indices is determined through

PMK for January and June in Region 1. EQWIN, ENSO-MEI and EMI-MODOKI

show moderate to strong influence on precipitation.

It is determined through correlation of time series of Region1 Precipitation (PCCs)

and climate indices that NAO, AMO, EQWIN, EMI-MODOKI and PDO are in-

fluencing the precipitation in January and explain the maximum variability of the

precipitation in January. EQWIN, EMI-MODOKI and AMO are positively corre-

lated with principal modes of January precipitation up to 8% significance, whereas

PDO and NAO are negatively correlated with the January precipitation but are

insignificant (their significance is between 20% to 35%) and thus can be ignored.

North Atlantic Oscillation (NAO), was found out to be favorable for winter and

spring precipitation over Pakistan as per previous studies, but its effect is deter-

mined as insignificant for January precipitation in the Region1 of Baluchistan.

AMO is in its warmer phase since 1997 and it is observed that the strength of

NAO and AO are weak during this phase of AMO. The decreasing precipitation
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trend may be due to the weakening of NAO strength. Because during the past

few decades, NAO is negatively affecting the precipitation in January.

Slightly increasing trends are found in the precipitation of June, when the time se-

ries data is analyzed from 1977 to 2017 through Mann-Kendall test. NAO, AMO,

EQWIN, ENSO-MEI and PDO are found to be influencing the June precipita-

tion as determined through correlation analysis between PCs and climate indices.

AMO may be considered as positively correlated, whereas NAO and ENSO-MEI

may be considered as negatively correlated, but their strengths are insignificant.

PDO is negatively correlated to the principal modes of region1 precipitation at

5% significance which means that the negative phase of PDO is favorable for the

precipitation of June; whereas EQWIN is positively correlated with June precipi-

tation at 1% significance which means that the positive phase is favorable for June

precipitation.

The average precipitation in June 2007 was high (86.4 mm) and during this year,

PDO (0.09) and AMO (-0.08) were neutral, NAO (-3.339), ENSO-MEI (-0.215)

were negative whereas EQWIN (0.66) was positive. This confirms the correlation

findings as above and accounts for the slightly increasing trend in the June precip-

itation. The influencing climatic indices for January and June over the Region1 of

Baluchistan as identified through EOF maps, PCA and correlation analyses can

be used as the possible predictors of precipitation for further studies.



Chapter 4

Estimation of Potential

Determinants Causing

Precipitation Variability using

Multi Linear Regression

4.1 Background

Climate study and frequent weather forecasting is a decisive, crucial, and robust

topic around the globe. Numerous parameters contribute significantly to increase

the forecasting precision. One of them is the advancement of statistical methods

to increase the domain and accuracy of modeling [324]. Over the years, several

models have been developed by using various techniques, but the authenticity of

statistical methodology in predicting the weather parameters is well established

and recognized. This is because of its accuracy, precision and authentic results.

The multilinear models are among the most accepted and extensively used models.

The reason is their simplicity and ease to use, in addition to their forecasting preci-

sion and accuracy. This doctoral study uses the Multiple Linear Regression (MLR)

model to estimate the potential determinants causing precipitation variability in

109
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Baluchistan province. Climate indices and large-scale circulations are responsible

for the precipitation variability in the selected study area of the research. It was

determined in chapter 3 through Mann-Kendall that January and June are the

only months that have significant decreasing/increasing trends in precipitation.

It is also determined in chapter 3 through correlation and through Empirical Or-

thogonal Function (EOF) pattern analysis that North Atlantic Oscillation (NAO),

Atlantic Multi-decadal Oscillation (AMO),Equatorial Indian Ocean Zonal Wind

Index (EQWIN), EMI-MODOKI and Pacific Decadal Oscillation (PDO) are influ-

encing the precipitation and explain the maximum variability of the precipitation

in January, whereas North Atlantic Oscillation (NAO), Atlantic Multi-decadal

Oscillation (AMO),Equatorial Indian Ocean Zonal Wind Index (EQWIN), EMI-

MODOKI and Pacific Decadal Oscillation (PDO) are found to be influencing the

June precipitation. These climate indices are selected as predictor to predict the

variability in precipitation through statistical modeling, which is the simplest way

to address this uncertain natural phenomenon. This chapter focuses on developing

an authentic, contemporary model for determining possible predictors of precip-

itation variability in Baluchistan province using MultiLinear Regression (MLR)

analysis. MLR model is specified using a stepwise regression modeling approach

to select the best model using performance indices and post residual estimation

analyses to check the validity of all estimated equations.

4.2 Methodology

Multiple Linear Regression (MLR) is used to develop the model of the potential

determinants (explanatory variables) causing the variability in precipitation trends

(dependent variable). Multiple Linear Regression (MLR) can adequately adjust

more than two explanatory variables at a time for predicting an equation. The

procedure for performing the Multiple Linear Regression (MLR) is discussed in

the subsequent section.
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4.2.1 Data

The time series of monthly precipitation data (from 1977-2020) is used as the

dependent variable in the MLR regression analysis. The observed monthly precip-

itation data over the study period (1977-2015) is ingested in multilinear regression

analysis for the training of the model, whereas data from (2016-2020) is used for

validation [210]. The climatic indices which are relevant to the study area such

as Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Atlantic Multi-

Decadal Oscillation (AMO), Indian Ocean Dipole-Dipole mode index (IOD-DMI),

Equatorial Indian Ocean Zonal Wind Index (IOD-EQWIN), El Nino Southern

Oscillation-Multivariate ENSO Index (ENSO-MEI), El Nino Southern Oscillation-

Multivariate ENSO-MODOKI and Pacific Decadal Oscillation (PDO) are consid-

ered as the independent variables [216, 325]. Additionally, large-scale circulations

such as SST, SLP, ZW, GPH, RH and OLR are also considered as the indepen-

dent variables [86, 325]. Data of climatic indices and the large-scale circulations

at various pressure levels (200hpa, 300hpa, 500hpa and 800hpa) are acquired from

the NCEP/NCAR reanalysis data set available at 2.5◦ resolution except for SST,

which is at 1◦ resolution [212, 213].

4.2.2 Potential Determinants

The potential determinants are the climate indices and large-scale circulations,

which cause the precipitation variability in the study area (Baluchistan) in the

months with significant trends. Mann-Kendall test shows that January and June

are the only months, which have significant decreasing/increasing trends in precip-

itation [138, 218]. It is also established through correlation analysis and empirical

orthogonal function (EOF) pattern analysis that NAO, AMO, EQWIN, EMI-

MODOKI and PDO are influencing the precipitation trend. It is found that they

explain the maximum variability of the precipitation in January. NAO, AMO,

EQWIN, ENSO-MEI and PDO are found to be influencing the June precipitation
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as well [235]. These climate indices are selected as predictor to predict the variabil-

ity in precipitation through empirical statistical modeling, which is the simplest

way to address this uncertain natural phenomenon [216]. The current study is

focused on creating an authentic, contemporary model for determining possible

predictors of precipitation variability in Baluchistan province using MultiLinear

Regression (MLR) analysis. MLR model is specified using stepwise regression

modeling approach to the selection of best model using performance indices and

post residual estimation analyses to check the validity of all estimated equations.

4.2.3 Multilinear Regression Analysis

Regression is a well-established statistical technique that uses the connection be-

tween two or more quantitative variables so that the resultant variable can be

predicted. Regression analysis main aim is to evaluate the extent, the dependent

variable (resultant) can be predicted from the independent variables [267-269, 281].

Regression analysis is extensively employed in business, social, interactive, behav-

ioral sciences analysis and climate forecast [250]. Designing a regression model

is a reiterative method that requires identifying efficient independent variables

which significantly control and impact the entire process that is being studied to

be modeled. Then running regression tool repeatedly to identify effective vari-

ables, removing the irrelevant variables until the best possible model is prepared

[244-255]. Regression can be of different types, namely linear, logistic , lasso,

polynomial and nonpolynomial.The residuals and post estimation test in ML were

passed successfully. Confirming that the residuals are independent, and identically

distributed. The basic assumption of OLS was satisfied concluding that the form

of function which is linear is correctly selected for the analysis in this research.

Linear regression analysis commonly uses two simple approaches Simple Linear

Regression and Multiple Linear Regression.

Simple regression has only one predictor (X) and is of the form:

Y = α0 + α1X (4.1)
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Where α0, α1 are regression coefficient and X is a predictor or regressor.

As the name indicate Multi-Linear Regression has more than two predictor or

regressor.

Multiple regression model is of the form:

Y = α0 + α1A1 + α2A2 + α3A3 + α4A4...+ e (4.2)

where y = Response variable α0, α1, α2, α3, α4 are regression coefficients.

A1, A2, A3, A4 are the predictors or regressors or explanatory variables/ inde-

pendent variables. And e is an unexplained portion of dependent variable with

zero mean and constant variance. Error term ’e’ include all those variables that

cannot be taken into the model for various reasons and the average influence of

these variables on the predictand is assumed to be trivial. Regression analysis

mainly aims to explain the average response of Y in respond to the regressor, that

is, how Y reacts to the changes in the X variables. Multiple regression fits a model

to predict a dependent (Y) variable from two or more independent (X) variables.

Multiple linear regression models are often used as approximating functions, that

is, a true functional relationship between y and x1, x2, x3, ...xn is unknown, but

over certain ranges of the regressor variables linear regression model is an adequate

approximation to the true unknown function.

4.2.4 Specifying Regression Model

After selecting the dependent and independent variables, the next step is to specify

the regression model. Specifying the regression model is the process of determin-

ing variables (independent) to include and exclude from the model and whether

the modeling curvature and interaction effects are appropriate. While specifying

the model, efforts are being made to include the independent variables that have

an actual relationship with dependent variables and exclude those variables which
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are not related. The appropriateness of the model is assessed using various statis-

tical performance indices of regression and post estimation tests. The automatic

selection procedure for specifying the regression model is step-wise regression (ei-

ther General to Specific or Specific to General) and best subset regression. Using

these automatic procedures, the best candidate model based on best performance

indices and post estimation results are selected [259].

In the step-wise approach, t-test is used. At this stage, a variable is removed,

which has the highest p-value than some predetermined value (say 0.05). Then

performance indices are examined. If the value falls below the predetermined

value, then the model fits the data well, if not, then another variable is removed

from the set, which shows the higher p-value, and again the performance indices

are examined. This process is continued till no more predictor p-value is greater

than the predetermined significant value. Understandably, if there are no more

predictors left whose p-value is greater than significant value, then the performance

indices meet the criteria and hence it can be established that the model fits the

data well [326].

4.2.5 Regression Model Performance Indices

As explained above, the model performance is assessed through performance in-

dices to estimate the best model. Performance indices that will be assessed are

briefly discussed below.

4.2.5.1 Person Correlation Coefficient (R) or Multiple R

The Regression model has a number of different coefficients that are used for differ-

ent scenarios. One of the best-known coefficient is the Pearson product-moment

correlation coefficient, which is also known as Pearson correlation coefficient or

simply the correlation coefficient. It is denoted as R. This coefficient is a single

number, but it shows both the magnitude and direction of the linear relationship

between the two continuous variables. Its value ranges from -1 to +1. The greater
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the absolute value of the coefficient of correlation, the stronger the correlation.

The coefficient of correlation having zero value represents no linear relationship

among the variables. In other words, if one variable increases, there is no tendency

in the other variable to either increase or decrease. The extreme values of -1 and

+1 show a perfectly linear relationship where the change in one variable is ac-

companied by a perfectly consistent change in the other; however, it is practically

not achievable. The sign of the coefficient correlation ship shows the direction of

the relationship. If the coefficient of correlation is positive, it shows that when

the value of one variable will increase, the value of the other variable will also

tend to increase. A scatter plot with ascending slope indicates positive, relation-

ships. Similarly, if the coefficient of correlation is negative, it shows that when

the value of one variable decreases, the value of the other variable will also tend

to decrease.A Scatter plot with descending slope indicate positive relationships

[326-328]. If there are n observations in a time series, then the Pearson product-

moment correlation coefficient can be used to estimate the correlation between

model and observations with the help of the equation as follows:

R =

∑n
i=l(xi − x̄)(yi − ȳ)√∑n

i=l(xi − x̄)2
∑n

i=l(yi − ȳ)2
(4.3)

Where x(i) is the observed values and y(i) is the modeled value; x and y are the

average values of observed and modeled value; respectively, as explained above. If

correlation coefficient R is +1 then there is a perfect increasing linear relationship

between estimated and observed predictand, and if R is -1 then there is decreas-

ing linear relationship between estimated and observed predictand. A correlation

coefficient of zero means that there is no linear relationship between the variables.

4.2.5.2 Coefficient of Determination (R2)

The coefficient of determination symbolized R2 and uttered as R squared is one

of the most valuable and key outputs of the regression analysis. It is also known

as the Goodness of fit and is defined as the proportion of the variance in the
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dependent variable that is predictable from the independent variable. It is most

commonly used parameter in statistical analysis to evaluate the efficiency, accu-

racy and authenticity of a model. The coefficient of determination indicates the

level variability of dependent variable explained in the model by the independent

variable. Its values range from 0 to 1. R2 having 0 values means that the depen-

dent variable cannot be predicted from the independent variables. And R2 having

1 value means the dependent variable can be predicted without error from the

independent variable. The value of R2 between 0 and 1 indicates the amount and

level to which the dependent variable is predictable from the independent vari-

ables. For example, an R2 of 0.30 indicates that 30 percent of the variance in Y is

predictable from X; an R2 of 0.50 indicates that 50 percent is predictable; and so

on. A good model should have coefficient of determination as possible as nearer

to unity. R2 is always a positive value, and it cannot be negative [329].

The equation for computing the coefficient of determination with one independent

variable is as follow:

R2 = (

∑n
i=l(yi − ȳ)(ŷi − ȳ)√∑n

i=l(yi − ȳ)2
∑n

i=l(ŷi − ȳi)2
)2 (4.4)

4.2.5.3 Adjusted R Squared (Adj R2)

The adjusted R2 is a revised version of R2 that has been adopted because of the

number of predictors in the model. The adjusted R2 value increases only if the

new term improves the model more than would be expected by chance. Similarly,

R2 value decreases when a predictor improves the model by less than expected by

chance. The adjusted R2 can be negative, but it is usually not. Adjusted R2 has

a value that is always less than that of R2 [329].

One of the disadvantages of coefficient of determination R2 is that it is an increasing

function of the number of regressors. In other words, if one adds variables to the

model, the values of R2 will also increase. Sometimes the researcher is under

the illusion that the higher the R2, the better the model will be. To overcome
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this misconception, it is recommended that adjusted R2 may also be included and

reported in the outputs. Adjusted R2 measures explicitly a number of regressors

included in the model. The word adjusted represents the adjustment for the

degrees of freedom, which depend on the number of regressors (k) in the model.

The adjusted R2 imposed a penalty for adding more regressors. Besides other

parameters to comparing regression models, adjusted R2 is also used to compare

two or more regression models with the same dependent variable.

The equation to compute adjusted R2 is as follows:

R2
adj = 1− [

(1−R2)(n− 1)

n− k − 1
] (4.5)

4.2.5.4 Standard Error (SE)

The standard error (SE) is the amount of the variability of a statistic. The stan-

dard error of the regression (SE) and the coefficient of determination (R2) ex-

plained above are two key goodness-of-fit measures for regression analysis. How-

ever, the most commonly reported and most well-known among the goodness-of-fit

statistics is the coefficient of determination (R2). The standard error (SE) of the

regression is also a great parameter to report the statistical test in the reporting

table. It is an estimate of the standard deviation of a sampling distribution. The

standard error (SE) depends on three factors: the number of observations (n), the

way the random sample is chosen and the number of observations in the sample.

SE: Standard error of the sample is given by

n: The number of observations in the sample.

σ: Sample standard deviation

SE =
σ√
n

(4.6)
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4.2.5.5 Overall F -test

The F-test of overall significance indicates that whether the linear regression model

provides a better fit than a model that contains no independent variable. In other

words, it tests whether the model contains at least one significant independent

variable. The F-test of overall significance is conducted with the following hy-

pothesis statement:

1. Hnul:The model with no independent variable (with the intercept only model)

fits the data better or the model contains no significant independent variable.

2. Halt:The model with independent variables fits the data better than the

intercept-only model or the model contains at least one significant indepen-

dent variable.

The significance is checked against the confidence level of 0.05 (alpha level)

for the following:

i) If the p-value is smaller than 0.05, then the null hypothesis can be rejected

in favor of the alternate hypothesis, which indicates that the model contains

at least one significant independent variable.

ii) If the p-value is greater than 0.05, then the null hypothesis cannot be

rejected, which indicates that the model contains no significant independent

variable.

4.2.6 Efficiency of Regression Model

The efficiency of the regression model is shown by adjusted R2, which is also iden-

tified as variance explained or strength of determination (refer to Section 4.2.5.3).

The overall R2 value will be high if the model fits the data well, and the corre-

sponding p-value will be low (p-value is the observed significance level which the

null hypothesis is rejected). In addition to the overall p-value, multiple regressions

also report an individual p-value for each independent variable. A small p-value in
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the analysis shows that the particular independent variable significantly improves

the fit of the model. It is determined by comparing the goodness-of-fit of the entire

model to the goodness-of-fit when that independent variable is omitted. If the fit

is much worse (overall R2 value decreases), then that variable is omitted from the

model. The p-value will be low, showing that the variable has a significant impact

on the model.

4.2.7 Post Estimation Tests

Post estimation tests are applied on the residuals or on the error. Analysis of

residuals plays an important role in validating the regression model. If the error

term in the regression model satisfies the post estimation tests, then the model

is considered effective. Since the performance indices tests for regression are also

based on the assumptions, the conclusions resulting from these significance tests

are called into question if the assumptions regarding error are not satisfied [200].

The post estimation tests on the residuals considered in the analysis are described

below.

4.2.7.1 Auto correlation (AR)-Test

In order to ensure that the residuals of the model are free from serial correlation,

unbiased and non-spurious, the Auto Correlation test, commonly known as (AR)

test, is conducted with the following hypothesis statements:

1. Hnul:No serial correlation in the residuals.

2. Halt:Residuals are serially correlated.

4.2.7.2 Auto Regressive Conditional Heteroskedasticity (ARCH) Test

Heteroscedasticity can easily be understood as unequal spread of data samples.

In the context of regression analysis, heteroscedasticity means the unequal spread



Estimation of Potential Determinant Causing Variability in Precipitation using
Multiple Linear Regression 120

of the residuals or error term. Precisely, heteroscedasticity is a systematic change

in the spread of residuals over the range of measured values. The Ordinary Least

Squares (OLS) regression is based on the assumption that all residuals are ho-

moscedastic, meaning these are drawn from a population that has a constant

variance (equal spread). To make the model authentic and the result accurate,

the residuals should have constant variance (homoscedastic).The ARCH test is

applied to check the variance of residuals [250, 282]. The hypothesis of the test is

as follows:

1. Hnul:No heteroskedasticity in the residual.

2. Halt:Residuals are homoscedastic.

4.3 Results and Analysis

The objective of this chapter is to find the potential determinants of precipitation

variability in the study area using Multi-Linear Regression analysis. The depen-

dent variable in the regression analysis is the time series precipitation data of

Region 1 in Baluchistan, whereas the independent variables (regressors) are the

potential determinants, including climatic indices and large-scale circulation. The

domain for the analysis and selected pressure levels are discussed in subsequent

paragraphs.

4.3.1 Domain for Analysis for Large-Scale Circulations

The climatic indices NAO, AO and AMO, are the anomalies associated with the

Arctic and the Atlantic Ocean to the North of the Equator. The indices DMI

and EQWIN are anomalies associated with the Indian Ocean to the North of -30S

latitude, whereas ENSO-MEI, EMI-MODOKI and PDO are anomalies associated

with the Pacific Ocean to the North of -30S latitude. Therefore, the domain for

the analysis for large-scale circulations is selected as the -30S to 80N and 0 to 360.
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4.3.2 Pressure Level for Analysis

The lowest most layer of the Earth’s atmosphere is the troposphere which contains

almost 85% of the mass of the atmosphere. The tropopause is the boundary

between troposphere and the next layer of atmosphere, i.e., the stratosphere. The

pressure at the tropopause is about 100 hpa and that at the surface of the Earth

is about 1000 hpa. The troposphere extends to an average height of 12 km above

the surface of the Earth. Most of the weather and clouds occur in the troposphere.

The wind increases and the temperature decreases when it moves from the surface

of the Earth to the tropopause. In practical meteorology, the most common and

significant levels of the troposphere which are used for analysis of climate are at

surface (1000 hpa), 850 hpa, 500 hpa, 300 hpa and 200 hpa. The 850 hpa and 500

hpa levels are known for clouds and precipitation changes, whereas 300 hpa and

200 hpa are levels where jet streams exist.

4.3.3 Predictands and Regressors

The climate indices pertinent to the study area are chosen through literature re-

view and analysis. This has been discussed in detail in Chapter 3. The climatic

indices, including DMI, EQWIN ENSO-MEI and ENSO-MODOKI (EMI) are con-

sidered for the first time. These have never been studied in the area prior to this

study which is the novelty of this doctoral study. The climatic indices which are

considered in the regression analysis as regressors are listed in Table 4.1. Addition-

ally, the large-scale circulations such as Sea Surface Temperature (SST), Sea Level

Pressure (SLP), Zonal Winds at surface (ZW-Surface) and Geo-potential Heights

(GPH), Outgoing Longwave Radiation (OLR), and Relative Humidity (RH) at

different pressure levels like (1000 hpa, 850 hpa, 500 hpa, 300 hpa and 200 hpa)

are also considered and are tabulated in Table 4.1.
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Table 4.1: Details of the Predictor used in MLR -Analysis

S.no Attributes Type Description Variable type

1 Precipitation Numeric Monthly Precipitation Predictor

2 NAO Numeric North Atlantic Oscillation Regressor

3 AO Numeric Arctic Oscillation Regressor

4 AMO Numeric Atlantic Multi-decadal Oscillation Regressor

5 DMI Numeric Dipole Mode Index Regressor

6 EQWIN Numeric Equatorial Indian Ocean Zonal Wind Index Regressor

7 ENSO- MEI Numeric Multivariate ENSO Index Regressor

8 ENSO-

MODOKI

Numeric ENSO Modoki Index Regressor

9 PDO Numeric Pacific Decadal Oscillation Regressor

10 NINO 3.4 Numeric EL NINO / LA NINA 3.4 Index

11 ENSO SOI Numeric El Nino Southern Oscillation index Regressor

12 SST Numeric Sea Surface Temperature Regressor

13 SLP Numeric Sea Level Pressure Regressor

14 OLR Numeric Outgoing Long Wave Radiation Regressor

15 ZW-Surface Numeric Zonal Wind Surface Regressor
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16 ZW200 Numeric ZonalWind at 200 hpa Regressor

17 ZW300 Numeric ZonalWind at 300 hpa Regressor

18 ZW500 Numeric ZonalWind at 500 hpa Regressor

19 ZW850 Numeric ZonalWind at 850 hpa Regressor

20 GPH200 Numeric Geo-potential Heights at 200 hpa Regressor

21 GPH300 Numeric Geo-potential Heights at 300hap Regressor

22 GPH500 Numeric Geo-potential Heights at 500 hpa Regressor

23 GPH850 Numeric Geo-potential Heights at 850 hpa Regressor

24 RH300 Numeric Relative humidity at 300 hpa Regressor

25 RH500 Numeric Relative humidity at 500 hpa Regressor

26 RH850 Numeric Relative humidity at 850 hpa Regressor

27 VW-Surface Numeric Meridional Wind - Surface hpa Regressor

28 VW200 Numeric Meridional Wind at 200 hpa Regressor

29 VW300 Numeric Meridional Wind at 300 hpa Regressor

30 VW500 Numeric Meridional Wind at 500 hpa Regressor

31 VW850 Numeric Relative humidity at 850 hpa Regressor
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The total number of independent variables thus selected is (thirty) 30 includ-

ing, the constant term in the regression equation. Therefore, a total number of

2.653x1032 permutations (P=30!; factorial) are possible for specifying the regres-

sion model.

The best candidate regression model is then selected by using an automatic step-

wise regression procedure based on the performance indices and post estimation

tests

AR test

ARCH test

on residuals are performed. The null hypothesis and Alternate hypothesis of these

test are also discussed in their respective sections. The analysis is performed by

using Ox-metrics software.

4.3.4 Multi-Linear Collinearity

Multicollinearity in regression analysis refers to the degree to which independent

variables are correlated. Multicollinearity exists when one independent variable

is correlated with another independent variable, or one independent variable is

correlated with a linear combination of two or more independent variables. Due

to the presence of multicollinearity, the marginal contribution of that independent

variable is influenced by other independent variables.

As a result, estimates for regression coefficients can be unreliable and the tests of

significance for regression coefficients can be misleading. Therefore, multicollinear-

ity among the independent variables must be checked [280]. The multicollinearity

among all the (thirty) 30 regressors are calculated and tabulated in Table 4.2 to

Table 4.5:
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Table 4.2: Collinear Matrix of Climatic Indices January

NAO AO AMO ENSO-

MEI

EMIM-

ODOKI

EQWIN IOD PDO ENSO-

SOI

ENSO-

SST

OLR

NAO 1.000

AO 0.777 1.000

AMO 0.046 0.103 1.000

ENSO-

MEI

0.117 -0.068 -0.406 1.000

EMI-

MODOKI

-0.096 0.102 0.595 -0.860 1.000

EQWIN -0.062 -0.025 -0.311 0.467 -0.429 1.000

IOD -0.220 -0.297 0.138 0.141 -0.002 0.189 1.000

PDO -0.173 -0.284 -0.264 0.421 -0.471 0.046 -

0.124

1.000

ENSO-

SOI

0.058 -0.164 -0.372 0.965 -0.853 0.417 0.192 0.442 1.000

ENSO-

SST

0.059 -0.158 -0.384 0.960 -0.860 0.444 0.209 0.419 0.997 1.000

OLR 0.647 0.600 0.110 0.106 -0.060 0.030 -

0.076

-

0.163

0.083 0.093 1.000
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The collinearity matrix in Table 4.2 shows that although the novel index Equatorial

Indian Ocean Zonal Wind Index (EQWIN), is not correlated with NAO and AO

because the value is (-0.006 and 0.158). Hence, they can be used as the independent

variables with no correlation in the regression equation for predicting possible

predictors for precipitation variability in Baluchistan province.

Table 4.3: Collinear Matrix of Large-Scale Circulations January

ZW-

SUR

ZW-

200

ZW-

300

ZW-

500

ZW-

850

GPH-

200

GPH-

300

GPH-

500

GPH-

850

RH-

300

RH-

500

RH-

850

ZW-

SUR

1.000

ZW-

200

0.230 1.000

ZW-

300

0.209 0.968 1.000

ZW-

500

0.136 0.931 0.979 1.000

ZW-

850

0.004 0.748 0.789 0.879 1.000

GPH-

200

-0.188 -0.162 -0.043 0.050 0.206 1.000

GPH-

300

-0.217 -0.154 -0.062 0.036 0.211 0.973 1.000

GPH-

500

-0.254 -0.233 -0.136 -0.034 0.146 0.956 0.987 1.000

GPH-

850

-0.283 -0.411 -0.287 -0.188 -0.027 0.836 0.850 0.913 1.000

RH-

300

0.057 0.123 0.157 0.196 0.284 0.402 0.455 0.430 0.322 1.000

RH-

500

0.245 0.154 0.151 0.122 0.091 -0.356 -0.376 -0.365 -0.358 0.343 1.000

RH-

850

0.229 -0.077 -0.143 -0.186 -0.243 -0.524 -0.557 -0.560 -0.546 0.000 0.663 1.000
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Table 4.4: Collinear Matrix of Climatic Indices - June

NAO AO AMO ENSO-

MEI

EMIM-

ODOKI

EQWIN IOD PDO ENSO-

SOI

ENSO-

SST

OLR

NAO 1.000

AO 0.656 1.000

AMO -0.253 0.037 1.000

ENSO-

MEI

-0.022 -0.212 -0.351 1.000

EMIMO-

DOKI

-0.060 0.165 0.501 -0.821 1.000

EQWIN -0.006 0.158 0.093 -0.203 0.090 1.000

IOD -0.017 -0.096 -0.006 0.340 -0.194 0.278 1.000

PDO -0.109 0.010 -0.328 0.503 -0.488 -0.004 -

0.069

1.000

ENSO-

SOI

0.040 -0.182 -0.433 0.889 -0.828 -0.190 0.297 0.364 1.000

ENSO-

SST

-0.003 -0.189 -0.364 0.873 -0.751 -0.209 0.343 0.339 0.978 1.000

OLR 0.263 0.067 0.135 -0.336 0.362 0.042 0.177 -0.477 -0.240 -0.221 1.000
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Table 4.5: Collinear Matrix of Large-Scale Circulations - June

ZW-

SUR

ZW-

200

ZW-

300

ZW-

500

ZW-

850

GPH-

200

GPH-

300

GPH-

500

GPH-

850

RH-

300

RH-

500

RH-

850

ZW-

SUR

1.000

ZW-

200

0.044 1.000

ZW-

300

0.064 0.985 1.000

ZW-

500

0.098 0.958 0.978 1.000

ZW-

850

0.106 0.793 0.816 0.905 1.000

GPH-

200

-0.030 0.606 0.565 0.537 0.416 1.000

GPH-

300

-0.039 0.534 0.492 0.469 0.370 0.969 1.000

GPH-

500

-0.011 0.485 0.446 0.424 0.333 0.943 0.990 1.000

GPH-

850

0.117 0.434 0.419 0.397 0.300 0.833 0.875 0.920 1.000

RH-

300

-0.086 -0.137 -0.152 -0.144 -0.105 0.162 0.224 0.226 0.128 1.000

RH-

500

-0.089 -0.093 -0.089 -0.076 -0.031 -0.415 -0.507 -0.529 -0.495 0.203 1.000

RH-

850

0.174 -0.054 -0.062 -0.058 -0.038 -0.492 -0.604 -0.633 -0.592 0.042 0.733 1.000

4.3.5 Selection of Regressors

The 30 regressors and the regression model would be specified using these regres-

sors. The selection of the right regressors is crucial and challenging task. The

regressors are selected keeping in view the following conditions:
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a. Correlation of the regressors with the dependent variable (precipitation).

b. Avoid combining the variables having multicollinearity.

4.3.6 MLR Regression Results

Following the step-wise method and the approach for selection of regressors, the

regression analysis is performed. The best regression model out of several per-

mutations is presented in Table 4.6 and Table 4.7 for January and June. The

independent variable along with their coefficients, t- stat and the p-value 5% sig-

nificant level are also listed in Table 4.6 and Table 4.7.

Table 4.6: Regression Output for the Month of January

Regressors Coefficients Standard Er-
ror

t-Stat p-value

Intercept 1.466 10.81 0.136 0.8929

NAO -6.175 1.591 -3.88 0.0005

AO 8.610 2.452 3.51 0.0013

RH-500 0.965 0.335 2.88 0.0070

VWind-Surface 6.299 3.475 1.81 0.0790

EQWIN 2.32 2.494 0.930 0.3590

Table 4.7: Regression Output for the Month of June

Regressors Coefficients Standard Er-
ror

t-Stat p-value

Intercept -882.14 355.9 -2.480 0.0190

EQWIN 6.050 1.990 3.04 0.0049

RH850 1.484 0.482 3.08 0.0045

EMI-MODOKI 2.822 1.878 1.50 0.1434

AO -9.619 3.343 -2.88 0.0073

GPH850 0.577 0.263 2.19 0.0362

ZW300 -1.795 0.762 -2.36 0.0252

VWind300 0.8146 0.725 1.12 0.2704

Airtemp200 -1.494 2.243 0.66 0.5103
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The p-value of all the predictors is less than 0.005 showing that all the predictors

are highly significant at 5% confidence level.

4.3.6.1 Performance Indices of Regression

As discussed above, the validity of the regression model is judged by the per-

formance indices of regression. Most reported statistics in regression are Person

Correlation Coefficient (R), Coefficient of Determination (R2), Adjusted R2 (Adj

R2), Sigma (σ) and Standard Error (SE). The statistics of these tests for January

and June are listed in Tables 4.8.

Table 4.8: Regression Statistics for the Month of January and June

Regression Indices January June

Correlation Coefficient (R) 0.8301 0.8291

Coefficient of Determination (R2) 0.6890 0.6873

Adjusted R2 0.6419 0.6040

Standard Error 20.0165 17.7586

F test 0.0001 0.001

Observations 39 39

The regression indices of January using MLR is found to have 0.6890 R2, which

means 68.90% variability in precipitation (dependent variable) is due to the inde-

pendent variable listed in Table 4.6. Similarly, the regression indices of June using

MLR is found to have 0.6873 R2, which means 68.73% variably in precipitation

(dependent variable) is due to the independent variable listed in Table 4.7.

4.3.6.2 MLR Results- Post Estimation Residual Analysis

Post Estimation Residual Analysis are carried out to prove the efficiency of the

predicted model. Auto correlation (AR) test and Auto Regressive Conditional

Heteroskedasticity (ARCH) tests are performed on the residuals of the regression

analysis for the month of January and June. The statistics found are listed in

Table 4.9.
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Table 4.9: Post Estimation Residual Analysis for the Month January and June

Post Estimation Residual Tests January June

Auto correlation (AR) - test 0.3905 0.0786

Auto Regressive Conditional Heteroskedasticity
(ARCH)- test

0.6794 0.5335

• Residual Analysis - January

Auto correlation (AR)

test is 0.3905, as mentioned in Table 4.9. The AR test value is greater than

the 5% significance level, i.e., 0.3905 > 0.05, which indicates that the null

hypothesis of no correlation cannot be rejected. Statistically, the alternate

hypothesis is rejected, and the null hypothesis is accepted. This means that

the residuals are free from serial correlation, which is desirable and the model

is good to go.

Auto Regressive Conditional Heteroskedasticity (ARCH)

The ARCH test = 0.6794 > 0.05, which means one cannot reject the null

hypothesis of no heteroskedasticity in the residuals; in other words, residual

is homoscedastic which indicate that the model is good.

• Residual Analysis - June

Auto correlation (AR)

test is 0.0786 as mentioned in the Table 4.9. The AR test value is greater

than the 5% significance level, i.e., 0.0786 > 0.05, which indicates that the

null hypothesis cannot be rejected. Statistically, the alternate hypothesis is

rejected, and the null hypothesis is accepted. This means that the residuals

are free from serial correlation, which is desirable and indicates that the

model is good to go.

Auto Regressive Conditional Heteroskedasticity (ARCH)

The ARCH test = 0.5335 > 0.05, which means one cannot reject the null

hypothesis of no heteroskedasticity in the residuals; in other words, residual

are homoscedastic which indicate that the model is good.
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4.3.6.3 MLR Regression Equation

January

The regression outputs for January are shown in Table 4.6. using MLR techniques

with precipitation as response variable NAO, AO, RH500 and VWind surface come

out to be highly significant explanatory variables except EQWIN. EQWIN is the

only explanatory variable that is not highly significant climate indices. The p-

value of NAO, AO, RH500 and VWind surface is equal to or less than 0.05, which

shows that the regressors are significant for a confidence level of 5%. However,

the p-value of EQWIN is 0.3590. EQWIN is used as an explanatory variable in

the model because EQWIN influences the precipitation in January and explain,

the maximum variability of the precipitation in January. EQWIN is positive and

highly correlated with principal modes of January precipitation up to 2% signif-

icance [235].The coefficient of determination R2 is come out to be 0.6890, which

indicates that 68.90% variation in precipitation can be estimated by explanatory

variables in the regression equation precipitation for the of January. The regres-

sion equation for January is given by the following equation:

Precipitation = 1.467 - 6.17*NAO + 8.61*AO + 0.96*RH500 + 6.29*

VWind-Surface+2.32*EQWIN

June

The regression outputs for June are shown in Table 4.7. With precipitation as a

response variable and EQWIN, EMI-MODOKI, AO along with RH850, GPH850,

ZWind300, VWind300 and Airtemp200 as the explanatory variables. The p-value

of all the regressors is less than 0.05, which indicates that all the regressors are

significant with a confidence level of 5%. Except for EMI-MODOKI, Vwind300 and

Airtemp200. R2 is come out to be 0.6873, which indicates that 68.73 % variation

in precipitation can be estimated by explanatory variables using multiplelinear

regression. EQWIN has a strong positive influence, EMI-MODOKI has a moderate

positive influence, whereas AO has a strong negative influence on the precipitation

variability of June [235]. The regression equation for the month of June is given

by the following equation:
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Precipitation = -882.1 +6.05 *EQWIN + 1.48*RH850 + 2.83*EMI-

MODOKI - 9.62*AO + 0.57*GPH850 -1.79*ZW300 + 0.81*VWind300

- 1.49*Airtemp200

4.3.6.4 Model Evaluation Statistics (Loss Error)

The predictability of the model is assessed by Root Mean Squared Error

(RMSE), Mean Absolute Error (MAE), Nash-Sutcliffe Efficiency (NSE),

Percent Bias (PBIAS) and RMSE-observations Standard deviation Ra-

tio (RSR) [210, 212, 329, 330]. Root Mean Squared Error (RMSE) , Mean

Absolute Error (MAE) are the most common and widely used error indices for

model evaluations. These indices are widely used because they show errors in the

units (or squared units) of the constituents of interest, which help in result anal-

ysis. RMSE and MAE values of 0 indicate a perfect fit. The lower the value, the

better the model is. However, values less than half the standard deviation of the

measured data are considered low values and good models.

Nash-Sutcliffe Efficiency (NSE) is a normalized statistic that determines the rela-

tive magnitude of the residual variance compared to the measured data variance.

NSE shows how well the plot of observed versus estimated data fits the 1:1 line.

NSE between 0.0 to 1.0 is generally viewed as acceptable levels of performance

[329]. Percent Bias (PBIAS) measure the average tendency of the stimulated

data to be larger or smaller than their observed counterpart. The optimal value

of PBIAS is 0.0; the lower the magnitude value the accurate the model. Posi-

tive values show model underestimation bias and negative values indicate model

overestimation bias. RSR is calculated as the ratio of the RMSE and standard

deviation of measured data. The lower the RSR and RMSE, the better the model

prediction results will be [329, 331].

The regression model is prepared by using the data in the training period from

1977 to 2015 and the values of predicted precipitation are obtained from the re-

gression equation in the training period. The RMSE and MAE are then calculated

to check the performance of model. The MLR model is further used for validation

of the period from 2016 to 2020. The values of RMSE and MAE are then again
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calculated for the validation period (2016-2020) to check the predictive perfor-

mance of the model. Model evaluation statistics, namely NSE, PBIAS and RSR

for over study period (1977-2020) for both January and June, are calculated and

listed in Table 4.10. All the statistics are between 0.0 to 1.0, as recommended for

a very good model [329, 331].

Therefore, the developed model is very good with strong and accurate pre-

diction power. The comparison of RMSE and MAE for the training period and

validation period are reported as loss errors in Table 4.10. The graph and his-

togram between the observed values and estimated/predicted values both for the

training and validating period are shown in Figures 4.1 and 4.2 (for the months of

January).

Similarly, graphs and histograms between the observed values and estimated/pre-

dicted values both for the training and validating period are shown in Figures 4.3

and 4.4 (for the months of June). The values of RMSE and MAE for the training

period and validating period are more or less the same for the months of January

and June, which shows the predictability of a good model [329]. The calculation

for RMSE, MAE, NSE, PBIAS and RSR for the months of January and

June is attached in Annexure-B (B.1, B.2, B.5 & B.6).

Table 4.10: Model Evaluation Statistics for the Months of January and June

Loss Error for training period (1977-2015) January June

Root Mean Square Error (RMSE) 11.02 9.80

Mean Absolute Error (MAE) 8.37 7.61

Loss Error for validation period (2016-2020) January June

Root Mean Square Error (RMSE) 7.46 16.03

Mean Absolute Error (MAE) 6.13 13.92

Loss Error for the Entire study period
(1977-2020)

January June

Nash-Sutcliffe Efficiency (NSE) 0.7283 0.6087

Percent Bias (PBAIS) 0.86 7.92

RMSE Standard-deviation Ratio (RSR) 0.5618 0.5673
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Figure 4.1: Observed versus Estimated Precipitation using MLR- JANUARY

 

Figure 4.2: Histogram of Observed versus Estimated Precipitation using
MLR- JANUARY
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Figure 4.3: Observed versus Estimated Precipitation using MLR- JUNE
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4.4 Significance/Application of the Finding

The equation developed identify the novel index EQWIN, a new climatic index,

besides other potential determinants. The climatic index EQWIN has a significant

effect on the precipitation variation of January and shows a decreasing trend in

January, so it is crucial to educate and prepare local inhabitants about the as-

pects of decrements in precipitation. Encourage locals to adopt and implement

water consumption practices, store water by constructing small water reservoirs

and dams. Promote rainwater harvesting and construction of recharge wells. Re-

store and revive the famous effective karez system in the province. The trend is

increasing in June, which may cause unprecedented rainfall and due to the to-

pography and rugged terrain of Baluchistan, this torrential rain can cause flash

floods. Flash floods are proven to be more catastrophic and disastrous by mother

nature. The timely intimation of the flash floods will be a great blessing for local

inhabitants to save their precious lives, livestocks and other valuable belongings.

This model has very good predicting power as, shown by the statistical error. It can

give valuable information about the potential factors effecting the future trend of

precipitation, which can be very useful to the local government, provincial govern-

ment, agriculture department, provincial disaster management and metrological

department for predicting dry spells or extreme, unprecedented torrential rainfall.

The information can be helpful in planning crops or opt for re-cropping, ridge

farming, and re-sowing. It should be noted that 90% of the grassland, shrubs and

bushes in the study area are rain fed. The decrease in rainfall in the month of Jan-

uary will have a direct impact on these grasslands and on the livestock. The model

prediction should be used to plan livestock, which is the second most common oc-

cupation of local dwellers. The livestock contributes 20% of the provincial Gross

Domestic Product (GDP). The model output information will not only be useful

for the livestock business but to other pertinent industries like leather, carpet and

pharmaceutical that are the main consumer of livestock products. Baluchistan

also fulfills the need and demand of leather and carpet industries in Pakistan by

the sustainable supply of hide, skin and wool.
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4.4.1 Comparative analysis with previous work

The findings and results of Multilinear Regression analysis are consistent with

the previous studies results. These studies include research conducted by Gong

et al. [90], Hall and Hanna [109], Afzal et al. [110] and Pinagle et al. [207] and

Vishnu et al. [228], Midhuna and Dimir [229]. Francis and Gadgil [332] reported a

strong association between the climate extremes (i.e., droughts and heavy rainfalls)

of climate indices ENSO and EQWIN with Indian Summer Monsoon Rainfall

(ISMR), which confirms the findings of current research. Although, no focused

modeling has been done on the precipitation variability of Baluchistan. However,

the studies performed by Iqbal and Athar in [216], Mahmood et al. [128], Dogar et

al. [127] about the influence of climatic indices on Pakistan endorsed that NAO,

AO and ENSO has a strong influence on the ISMR, consequently influencing the

precipitation of study area as well.

4.5 Summary

The regression equation of precipitation formulated for January using MLR ad-

dresses about 68.90% variation in precipitation. NAO, AO, RH500, VWind

surface and EQWIN are identified as the potential determinants for

the month of January. NAO and AO came out to be highly significant predic-

tors with a p-value of 0.0005 and 0.0013, respectively. The model is reasonably

good as R2=0.6890, which indicates that 68.90% variation in precipitation can

be estimated by explanatory variables. The regressors in the regression model

show that NAO, AO and VWind-Surface influence the precipitation in Jan-

uary, and explain the maximum variability of the precipitation in January whereas

EQWIN has a weak influence on the precipitation. The direction and strength

of the association (influence) are provided by the coefficient of regressors.
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Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) for January

of the training period (1977-2015) are found to be 11.02 and 8.37 for the validation

period (2016-2020) 7.46 and 6.13, respectively. The RMSE and MAE values show

that the prediction performance of the model is outstanding. The NSE (0.72),

PBIAS (0.86%) and RSR (0.56) for the month of January show that model is

good with accurate and strong predicting potential.

Similarly,the Regression equation of precipitation for the month of June addresses

about 68.73% variation in precipitation. EWQIN, AO, EMI-MODOKI, along

with RH850, GPH850, ZW300, VWind300 and Airtemp200 are identi-

fied as the potential determinants of the precipitation variability for the

month of June. EQWIN came out to be a highly significant predictor having a

p-value of less than 0.05 for a confidence level of 5%Ṫhe coefficient of determina-

tion R2 is equal to 0.6873, suggesting that 68.73% variation in precipitation can

be estimated by explanatory variables. The model shows that AO has strong

and EMI-MODOKI has a weak influence on precipitation. The direction and

strength of the association (influence) of the regressors are provided by the coef-

ficient of regressors. Root Mean Square Error (RMSE) and Mean Absolute Error

(MAE) for June of the training period (1977-2015) are found to be 9.80, 7.61 and

for the validation period (2016-2020) 16.03 and 13.92, respectively, which shows

that model has good forecasting power. The NSE (0.60), PBIAS (7.92%) and RSR

(0.56) for the months of June show that the model is robust with good predicting

power.



Chapter 5

Estimation of Potential

Determinant Causing Variability

in Precipitation using Principal

Component Regression (PCR)

Analysis

5.1 Background

Modeling and prediction are very crucial in all aspects of modern life. Model-

ing of weather and climate are significant and has multiple positive influences on

our social, economical and financial life pattern. There are number of complex

phenomena, complicated processes, intricate development at global, regional, and

zonal scale are going on in troposphere. These are not only linked but also cre-

ate uncertainties, doubts, inaccuracies and complexity in the atmosphere during

the prediction of weather and climate. Accurate and precise modeling of climate

involves a large number of variables that may have multicollinearity within them-

selves. Most likely, there will always be inaccuracies and flaws in weather and

140



Estimation of Potential Determinant Causing Variability in Precipitation using
Principal Component Regression (PCR) Analysis 141

climate forecasting and that may exist due to several sources of errors present in

modeling; like uncertain and complex nature of atmospheric conditions, a short-

coming of the numerical model, instrumental errors, huge dataset, data collec-

tion, discrete observations, and irregularly spaced weather stations especially in

Baluchistan province.

In the case of modeling, sometimes, the artificial boundary condition increases the

errors and uncertainties. Inadequacy of the numerical model consists in difficulty

to represent the influence of all physical, chemical and biological factors in the

state of the atmosphere and its evolution in time. It is found that a combination

of variables that are correlated, in other words, variables having multicollinearity,

never help in bringing out good results. Also, huge number of variables and in-

significant variables in modeling or analysis techniques never improve the result

prediction and accuracy. A solution is needed that can address and remove all the

above-stated redundancy from the model and that solution is Principal Compo-

nent Regression (PCR) analysis.

To create Principal Component Regression (PCR) model, Principal Components

(PCs) are linearly combined using the regression technique. The Principal Compo-

nent Regression (PCR) model overcomes the problems arising from the situations

when the explanatory variables are close to being collinear [333]. In other words,

Principal Components Regression (PCR) analysis is the best way to address mul-

ticollinearity issues in analysis.

The analysis that is performed in the previous chapter leads to the conclusion

that January and June are the only two months that show a significant precip-

itation trend. Therefore, these two months (January and June) are considered

to a develop regression models for finding potential determinants using Principal

Component Regression (PCR) analysis technique in this chapter too.
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5.2 Methodology

5.2.1 Data Used

It is found in chapter 3 that January and June are the only two months that show

significant negative/positive trends in precipitation at the stations located in the

Region 1 of Baluchistan. Therefore, the observed monthly precipitation of January

and June for the period from 1977 to 2020 is used to prepare a regression model

using Principal Component Regression (PCR) Analysis. The observed monthly

precipitation data for the period (1977-2015) is ingested in principal component

regression analysis for the training of the model, whereas data for the period

(2016-2020) is used for validation. The precipitation is the dependent variable,

whereas principal components of the large-scale circulation are the independent

variables. Data of the large-scale circulations such as Sea Level Pressure (SLP), Sea

Surface Temperature (SST), Geopotential Height (GPH) data at various pressure

levels, Relative Humidity (RH) at various pressure levels, Zonal Winds (ZW) at

various levels and Outgoing long Radiation (OLR) are acquired from the NCEP/N-

CAR reanalysis dataset available at 2.5◦ resolution except for SST which is at 1◦

resolution [210, 212].

The lowest most layer of Earth’s atmosphere is the troposphere, which contains

almost 85% of the atmosphere’s mass. The tropopause is the boundary between

troposphere and the next layer of atmosphere, the Stratosphere. Pressure at the

tropopause is about 100 hpa and that at the surface of Earth is about 1000 hpa.

The troposphere extends to an average height of 12 km above the surface of the

Earth. Most of the weather and clouds occurs in the troposphere. Wind increases

and the temperature decreases when it moves from the surface of the earth to

tropopause. In practical meteorology, the most common and significant levels of

troposphere which are used for analysis of climate are at surface level: 850 hpa,

500 hpa, 300 hpa and 200 hpa. The 850 hpa and 500 hpa levels are known for

clouds and precipitation changes, whereas 300 hpa and 200 hpa are levels where
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jet streams exist. The matrix between large scale circulation and selected pressure

levels are given in Table 5.1.

Table 5.1: Large-Circulations and Selected Pressure Levels Matrix

S.No Large-
Circulations

Surface 850hpa 500hpa 300hpa 200 hpa

1 SST
√

x x x x

2 SLP
√

x x x x

3 OLR
√

x x x x

4 ZW
√ √ √ √ √

5 GPH x
√ √ √ √

6 RH x
√ √ √

x

The precipitation data is used as predictand (dependent variable) in the PCR

model. The predictors (independent variables) are the PCs of the SLP, SST, GPH

at 200, 300, 500, 850 pressure levels, ZW at 200, 300, 500, 850 pressure levels, RH

at 300, 500, 850 pressure levels and OLR for January and June. Therefore, there

are 14 independent variables to be used in the PCR model. The methodology for

conducting the PCR regression analysis is as described below:

5.2.2 Normalization of Precipitation data

The precipitation data for January and June is normalized and detrended. The

normalization is done by deducting the mean from each of the observations of the

time series data of precipitation [138].

5.2.3 Selecting the Domain for Analysis

The climatic indices NAO, AO and AMO, are the anomalies associated with the

Arctic and the Atlantic Ocean to the North of the Equator [216]. The indices DMI

and EQWIN are anomalies associated with the Indian Ocean to the North of -30S

latitude, whereas ENSO-MEI, EMI-MODOKI and PDO are anomalies associated

with the Pacific Ocean to the North of -30S latitude. Therefore, the domain for
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the analysis for calculation of PCs through PCA is selected as the -30S to 80N

and 0 to 360.

5.2.4 Calculation of Regressors (PCs)

Principal Components (PCs) are the linear grouping variables of the original vari-

ables acquired through Principal Component Analysis (PCA). PCA is a well es-

tablished widely used statistical technique in the modern data analysis era. It is an

easy and non-parametric technique for separating relevant data from humongous,

superfluous, confusing data sets [82]. PCA explores the interrelationship among

a set of variables; hence it has an edge on bivariate statistical techniques, which

are used earlier. PCA detects patterns in data and presents the data in such a

manner that its similarities and differences are highlighted. It has an advantage

to compress the data by reducing the number of dimensions. PCA technique is

best suited in analysing a large data set, selecting few components and explaining

large percentage of the total variance with those selected few components. Prin-

cipal components are selected in such a way that each successive PC explains a

maximum of the remaining variance; the first selected PC explains the maximum

proportion of the total variance, the second PC explains the maximum of the re-

maining variance, and so on. PCA is a non-parametric technique, so every type

of data set can be used in it, and the resultant PCs require no adjustments. From

one perspective, the fact that PCA is non-parametric (or plug-and-play), it can

be considered a positive feature because the output is unique and independent of

the user [333].

5.2.5 Selecting Leading Modes of PCs

The non-degeneracy of Eigen-spectrum is an important property and can be used

for selecting leading modes of PCs. It helps in selecting the PCs that addresses

the maximum variance, removing the redundant information from principal com-

ponent analysis, make complex analysis simple, easy with improved prediction.
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Although the inclusion of all the possible predictors in a regression model can

maximize the coefficient of determination (R2) and there can be a very high cor-

relation among them (multicollinearity). Furthermore, the inclusion of too many

predictors can introduce positive bias and can minimize the true predictive skill

of a model. Hence, the Eigen-spectrum of predictors are made not only to select

the most significant PCs but can also optimize R2 proficiently [205, 242, 246].

5.2.6 Performing Regression

Selected PCs are then linearly combined in a regression model using Principal

Component Regression analysis (PCR), which is defined as the statistical tech-

nique that uses a linear combination of the original variables known as Principal

components (PCs) instead of using original variables. It is encouraged to use PCs

in analysis instead of using original variables if there exists a possibility of correla-

tion among the variables. PCA converts the original inter-correlated independent

set of variables to an uncorrelated fresh group of variables (i.e., PCs). These PCs

are useful not only to address the problem of multicollinearity among the original

independent variables but also to differentiate the most significant variable to be

used in the analysis. In other words, redundant and superfluous PCs are removed

from the analysis.

5.2.7 Specifying Regression Model

Specifying the regression model is the process of determining the independent vari-

ables that will be used in the model. It helps to sort which variables to include

and which to exclude from the model. It also supports finding whether the model-

ing curvature and interaction effects are appropriate. While specifying the model

efforts are being made to include the independent variables which have an actual

relationship with dependent variables and exclude those which are not related.

The appropriateness of the model is assessed through the use of various statistical
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performance indices of regression and post estimation tests. The automatic se-

lection procedure for specifying the regression model is stepwise regression (either

General to Specific or Specific to General) and best subset regression. Using these

automatic procedures, the best candidate model based on the best performance

indices and post estimation results are selected.

5.2.8 Regression Model Performance Indices

Model performance and robustness are assessed through performance indices. The

most commonly reported indices that are used to evaluate the performance of the

PCR model are Person Correlation Coefficient (R), Coefficient of Determination

(R2), Adjusted R2 (Adj R2), and Standard Error (SE), which are already discussed

briefly in chapter 4.

5.2.9 Post Estimation Tests

Post Estimation tests are mostly performed on residuals because residual plays

an important role in validating the regression model. If the error term in the

regression model satisfies the post estimation tests, then the model is considered

effective. The performance indices tests for regression are also based on the as-

sumptions. Therefore the conclusions resulting from these significance tests are

called into question if the assumptions regarding error are not satisfied. The post

estimation tests performed on the residuals are described below.

5.2.9.1 Auto correlation (AR)-Test

In order to ensure that the residuals of the model are free from serial correlation,

unbiased and non-spurious auto correlation test, commonly known as (AR) Test,

is conducted with the following hypothesis statements:

• Hnul :No serial correlation in the residuals.
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• Halt :Residuals are serially correlated.

5.2.9.2 Auto Regressive Conditional Heteroskedasticity (ARCH) Test

Heteroscedasticity can easily be understood as unequal spread of data samples.

In the context of regression analysis heteroscedasticity means the unequal spread

of the residuals or error term. Precisely, heteroscedasticity is a systematic change

in the spread of residuals over the range of measured values. The ordinary least

squares (OLS) regression is based on the assumption that all residuals are ho-

moscedastic, meaning these are drawn from a population that has a constant

variance (equal spread). To make the model authentic and the result accurate,

the residuals should have a constant variance (homoscedastic). The ARCH test

is applied to check the variance of residuals [263]. The hypothesis of test is as

follows:

• Hnul :No Heteroskedasticity in the residual.

• Halt :Residuals are Homoscedastic

5.3 Results and Analysis

The objective of this chapter is to develop the model for finding potential determi-

nants defining precipitation variability using the Principal Component Regression

(PCR) technique. The dependent variable in the regression analysis is the time

series precipitation data of Region 1 in Baluchistan. The precipitation data is nor-

malized and detrended. The domain for analysis is the -30S to 80N and 0 to 360.

The pressure levels of 850 hpa, 500 hpa, 300 hpa and 200 hpa are considered for

GPH, ZW and RH, whereas SST, SLP, ZW and OLR are considered at the surface

of the atmosphere in the troposphere. Principal Component (PCs) of Sea Surface

Temperature (SST), Sea Level Pressure (SLP), Geopotential Height (GPH), Zonal

Wind (ZW), Relative Humidity (RH) and Outgoing Longwave Radiation (OLR)

are calculated using Principal Component Analysis (PCA).
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5.3.1 Leading Modes

For each of the above independent variables (predictors), thirty nine (39) PCs

are calculated. The uncertainty estimates of Eigenvalues spectrum of predictors

Sea Surface Temperature (SST), Sea Level Pressure (SLP),Geo-potential Heights

( GPH) (at 200, 300, 500, 850 levels), Relative Humidity (RH) (at 300, 500, 850

levels), Zonal Winds (ZW) (at 200, 300, 500, 850 levels) and Outgoing Longwave

Radiation (OLR), are calculated by thumb rule proposed by North et al. [308]

and are shown in Figures 5.1, 5.2, 5.3 and 5.4 for January and June. Out these

thirty nine (39) PCs, the number of significant patterns coming out of a Principal

Component Analysis (PCA) or Empirical Orthogonal Function (EOF) Analysis

are then considered for Principal Component Regression (PCR) analysis. The

North’s Rule of Thumb (North et al., 1982) is applied to determine this cutoff.

Basically, the rule of thumb is that the difference between neighboring Lambdas

(uncertainity estimates) must be greater than their associated errors.

From the above Eigenvalue spectrum analysis, the four (4) leading modes of the

transformed (PCs) predictors are selected as the predictors to be used in the

regression analysis both for the months of January and June [242, 273].

5.3.2 Details of Dependent and Independent Variables

The details of the dependent variable (predictands) and the independent variables

(potential determinants) are shown in Table 5.2. The total number of independent

variables thus selected are 61, including the constant term in the regression equa-

tion. Therefore, a total number of C (61!) = (5.07x10E83) factorial combinations

are possible for specifying the regression model.

The best candidate regression model is then selected using an auto-

matic stepwise regression procedure based on the performance indices

and post estimation tests on residuals.
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Table 5.2: Details of the Selected Dependent and Independent variables used in PCR-Analysis

S.no Attributes Type Description Variable type

1 Year Numeric 1977-2015 (Study period) Observation

2 Months String January, June Observation

3 Precipitation Numeric Monthly Precipitation(Normalized) Response

4 SST-PC1 Numeric Principal Component-1 of SST Explanatory

5 SST-PC2 Numeric Principal Component-2 of SST Explanatory

6 SST-PC3 Numeric Principal Component-3 of SST Explanatory

7 SST-PC4 Numeric Principal Component-4 of SST Explanatory

8 SLP-PC1 Numeric Principal Component-1 of SLP Explanatory

9 SLP-PC2 Numeric Principal Component-2 of SLP Explanatory

10 SLP-PC3 Numeric Principal Component-3 of SST Explanatory

11 SLP-PC4 Numeric Principal Component-4 of SST Explanatory

12 ZWS-PC1 Numeric Principal Component-1 of ZWS Explanatory

13 ZWS-PC2 Numeric Principal Component-2 of ZWS Explanatory

14 ZWS-PC3 Numeric Principal Component-3 of ZWS Explanatory

15 ZWS-PC4 Numeric Principal Component-4 of ZWS Explanatory

16 GPH850-PC1 Numeric Principal Component-1 of GPH850 Explanatory
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17 GPH850-PC2 Numeric Principal Component-2 of GPH850 Explanatory

18 GPH850-PC3 Numeric Principal Component-3 of GPH850 Explanatory

19 GPH850-PC4 Numeric Principal Component-4 of GPH850 Explanatory

20 GPH500-PC1 Numeric Principal Component-1 of GPH500 Explanatory

21 GPH500-PC2 Numeric Principal Component-2 of GPH500 Explanatory

22 GPH500-PC3 Numeric Principal Component-3 of GPH500 Explanatory

23 GPH500-PC4 Numeric Principal Component-4 of GPH500 Explanatory

24 GPH300-PC1 Numeric Principal Component-1 of GPH300 Explanatory

25 GPH300-PC2 Numeric Principal Component-2 of GPH300 Explanatory

26 GPH300-PC3 Numeric Principal Component-3 of GPH300 Explanatory

27 GPH300-PC4 Numeric Principal Component-4 of GPH300 Explanatory

28 GPH200-PC1 Numeric Principal Component-1 of GPH200 Explanatory

29 GPH200-PC2 Numeric Principal Component-2 of GPH200 Explanatory

30 GPH200-PC3 Numeric Principal Component-3 of GPH200 Explanatory

31 GPH200-PC4 Numeric Principal Component-4 of GPH200 Explanatory

32 ZW850-PC1 Numeric Principal Component-1 of ZW850 Explanatory

33 ZW850-PC2 Numeric Principal Component-2 of ZW850 Explanatory

34 ZW850-PC3 Numeric Principal Component-3 of ZW850 Explanatory
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35 ZW850-PC4 Numeric Principal Component-4 of ZW850 Explanatory

36 ZW500-PC1 Numeric Principal Component-1 of ZW500 Explanatory

37 ZW500-PC2 Numeric Principal Component-2 of ZW500 Explanatory

38 ZW500-PC3 Numeric Principal Component-3 of ZW500 Explanatory

39 ZW500-PC4 Numeric Principal Component-4 of ZW500 Explanatory

40 ZW300-PC1 Numeric Principal Component-1 of ZW300 Explanatory

41 ZW300-PC2 Numeric Principal Component-2 of ZW300 Explanatory

42 ZW300-PC3 Numeric Principal Component-3 of ZW300 Explanatory

43 ZW300-PC4 Numeric Principal Component-4 of ZW300 Explanatory

44 ZW200-PC1 Numeric Principal Component-1 of ZW200 Explanatory

45 ZW200-PC2 Numeric Principal Component-2 of ZW200 Explanatory

46 ZW200-PC3 Numeric Principal Component-3 of ZW00 Explanatory

47 ZW200-PC4 Numeric Principal Component-4 of ZW200 Explanatory

48 RH850-PC1 Numeric Principal Component-1 of RH850 Explanatory

49 RH850-PC2 Numeric Principal Component-2 of RH850 Explanatory

50 RH850-PC3 Numeric Principal Component-3 of RH850 Explanatory

51 RH850-PC4 Numeric Principal Component-4 of RH850 Explanatory

52 RH500-PC1 Numeric Principal Component-1 of RH500 Explanatory
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53 RH500-PC2 Numeric Principal Component-2 of RH500 Explanatory

54 RH500-PC3 Numeric Principal Component-3 of RH500 Explanatory

55 RH500-PC4 Numeric Principal Component-4 of RH500 Explanatory

56 RH300-PC1 Numeric Principal Component-1 of RH300 Explanatory

57 RH300-PC2 Numeric Principal Component-2 of RH300 Explanatory

58 RH300-PC3 Numeric Principal Component-3 of RH300 Explanatory

59 RH300-PC4 Numeric Principal Component-4 of RH300 Explanatory

60 OLR-PC1 Numeric Principal Component-4 of OLR Explanatory

61 OLR-PC2 Numeric Principal Component-4 of OLR Explanatory

62 OLR-PC3 Numeric Principal Component-4 of OLR Explanatory

63 OLR-PC4 Numeric Principal Component-4 of OLR Explanatory
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5.3.3 PCR Results - Performance Indices of Regression

One of the main objectives of PCR Regression is to describe the relationship

between independent variables and a dependent variable. To comprehend the

relationships between these variables and to understand the way changes in the

independent variables related to the changes in the dependent variable linearly.

Most reported statistics in regression are Correlation Coefficient (R), Coefficient of

Determination (R2), Adjusted (R2), Sigma (σ) and Standard Error (SE) dependent

variable, i.e., Precipitation SE (Prep). The model satisfactorily fulfilled all of the

statistical stated requirements of a prediction model. The statistics of these tests

for January and June are listed in Table 5.3.

Table 5.3: PCR Regression Statistics for the Month of January and June

Regression Statistics January June

Correlation Coefficient (R) 0.8991 0.9750

Coefficient of Determination (R2) 0.8084 0.9531

Adj R2 0.7399 0.9151

Sigma (σ) 10.20 5.174

Standard Error (SE) 11.04 5.08

F test 0.0001 0.0001

Observations 39 39

5.3.3.1 Regression Model Performance Indices of January The Pearson

correlation coefficient for January is 0.8991, which shows a strong and positive

relationship between independent and dependent variables. The value of the coef-

ficient of determination R2= 0.80 highlights a very good fit of the regression line,

which is further supported by Adjusted R2 (Adj R2 = 0.73). Sigma (σ) is another

goodness of fit (σ = 10.20) as reported in the regression analysis to confirm the sta-

tistical authenticity and accuracy of the model. For a good quality model, Sigma

should be less than the standard error of the dependent variable (σ > SE-Prep),

which is true also in the January model. All the statistics that are reported above

confirm that the PCR regression analysis for the month of January has predicted
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a good model. F-statistics = 10.20 > 0.00 (F stat > F critical) suggest a signifi-

cance relationship between the independent and dependent variable for the overall

model performance. In other words,the high explanatory power of the independent

variables is observed for the dependent variable on a collective basis. The t-test

(p<0.05) signified the effect of each of the independent variables on an individual

basis. The results conclude that these individual independent variables possess

significant explanatory power to predict the value of the dependent variable.

5.3.3.2 Regression Model Performance Indices of June The Pearson

correlation coefficient for June is 0.975, which shows a strong and positive rela-

tionship between independent and dependent variables. The value of coefficient of

determination R2 = 0.95 highlights a very good fit of the regression line, which is

further supported by Adjusted R2 (Adj R2) = 0.91. Sigma (σ) is another goodness

of fit (σ = 5.08) as reported in the regression analysis to confirm the statistical

authenticity and accuracy of the model. For better model, Sigma should be less

than the standard error of the dependent variable (σ > SE-Prep), which is true

in the case of the current study. All the statistics that are reported above confirm

that the PCR regression analysis for June is very good. F-statistics = 25.09 >

0.00 (F stat > F critical) suggest a significance relationship between the indepen-

dent and dependent variable for the overall model performance. In other words,the

high explanatory power of the independent variables is observed for the dependent

variable on a collective basis. The t-test (p < 0.05) signifies the effect of each of

the independent variables on an individual basis. The results conclude that these

individual independent variables possess significant explanatory power to predict

the value of the dependent variable.

5.3.4 PCR Results - Post Estimation Residual Analysis

Post Estimation Residual Analysis is carried out to prove the efficiency of the

predicted model. Most reported post estimation tests are Auto correlation (AR)

test, Auto Regressive Conditional Heteroskedasticity (ARCH)- test. These tests
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are performed on the month of January and June. The statistics found are listed

in tabular form below, followed by the illustration and conclusion drawn out of

each test.

Table 5.4: Post Estimation Residual Analysis Table for January and June

Post Estimation Residual Tests January June

Auto correlation (AR)test 0.5502 0.0931

Auto Regressive Conditional Heteroskedasticity (ARCH)test 0.1921 1.7469

Residual Analysis - January

Auto correlation (AR) -test is 0.5502, as mentioned above in Table 5.4. The AR-

test value is greater than the 5% significance level, i.e., 0.5502 greater than 0.05,

which clearly indicates that the null hypothesis cannot be rejected. Statistically,

the alternate hypothesis is rejected, and the null hypothesis is accepted. This

means that the residuals are free from serial correlation, which is desirable and

indicate good for estimation without any problem. Thereby estimated model is

good and robust. ARCH test = 0.1921 greater 0.05, which means one cannot

reject the null hypothesis (null is no heteroskedasticity in the residual) in other

words, residuals are homoscedastic. Thereby estimated model equation is good.

Residual Analysis - June

AR test = 0.0931 greater than 0.05, which means one cannot reject the null hy-

pothesis (null is no serial correlation in the residuals). In other words, residual are

identical and independent. Thereby estimated model is good and accurate.

ARCH test = 1.7469 greater 0.05, which means one cannot reject the null hypoth-

esis (null is no heteroskedasticity in the residual). In other words, residuals are

homoscedastic. Thereby estimated model equation is accurate and powerful.

5.3.5 PCR Regression Equation

January

The regression equation for January by using Principal Component Regression is
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found to have a coefficient of determination (R2) = 0.8084 , which means that

80.84 % variablity in precipitation (dependent variable) is due to the independent

variable mentioned in Table 5.5. The independent variables, along with their coef-

ficients, t- stat and the p-value at 5% significant level are also listed in Table 5.5.

The p-value of all the predictors is less than 0.05, showing that all the pre-

dictors (Atlantic Multi-decadal Oscillation (AMO), Equatorial Indian

Ocean Zonal Wind Index (EQWIN), AIR TEMP850-PC3, GPH200-

PC2, RHUM850-PC2, ZW200-PC3, ZW300-PC1, ZW500-PC2, VW500-

PC1, SST-PC3) are highly significant at 5% significant level. The t-stat

is the ratio of the departure of the estimated value of the coefficient of a variable

from its hypothesized value (which is zero) to its standard error and is used in

hypothesis testing through student t-test.

The t-stat is compared against the critical value (2.026 in this case) based on

significance value (=0.05) for a two-tailed distribution, degree of freedom (df=n-

2=37) and is also used to determine p-value. The greater the departure,the higher

will be the significance of that variable. The p-value is of all the predictors is less

than 0.005 showing that all the predictors are highly significant at 5 % significant

level.

For the month of January, Equatorial Indian Ocean Zonal Wind Index

(EQWIN), having t-stat value of 5.36 and Zonal Wind 500-PC2 with a

value of -6.92, having the greatest departure, are the most significant

variables. The positive sign of the coefficient indicate that increase in the predic-

tor will also increase the forecasting power of precipitation and the negative sign

of the coefficient indicate vice versa.
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Table 5.5: Residual Output for January

Coefficients Standard Error t-stat p-value

Intercept 24.9924 2.51 9.93 0.0000

AMO -34.0050 10.19 -3.34 0.0024

EQWIN 10.0491 1.87 5.36 0.0000

AIR-TEMP850-PC3 -0.4621 0.13 -3.44 0.0018

GPH200-PC2 0.5556 0.24 2.29 0.0008

RHUM850-PC2 0.6958 0.17 4.09 0.0003

ZW200-PC3 0.5358 0.17 3.01 0.0000

ZW300-PC1 -1.6328 0.28 -5.03 0.0000

ZW500-PC2 -1.3774 -0.19 -6.92 0.0000

VW500-PC1 1.3816 0.27 5.04 0.0000

SST-PC3 0.1969 0.09 2.15 0.0400

Estimated-Precipitation =Precp Jan =24.9924 - 34.0050*AMO + 10.0491*EQWIN

- 0.4621*AIR-TEMP850-PC3 + 0.5556*GPH200-PC2 + 0.6958*RHUM850-PC2+

0.5358*ZW200-PC3 - 1.6328*ZW300-PC1 - 1.3774*ZW500-PC2 + 1.3816*VW500-

PC1 + 0.1969*SST-PC3

June

The Regression equation for June using PCR is found to have R2 = 0.9531, which

means 95.31% variablity in precipitation (dependent variable) is due to the inde-

pendent variable mentioned in Table 5.6. The independent variable, along with

their coefficients, t-stat and the p-value at 5% significant level, are also listed in

Table 5.6. The t-stat is the ratio of the departure of the estimated value of the

coefficient of a variable from its hypothesized value (which is zero) to its stan-

dard error. It is used in hypothesis testing through student t-test. The t-stat

is compared against the critical value (2.026 in this case) based on significance

value (=0.05) for a two-tailed distribution, degree of freedom (df=n-2=37). It



Estimation of Potential Determinant Causing Variability in Precipitation using
Principal Component Regression (PCR) Analysis 162

is also used to determine p-value. The greater the departure, the higher will be

the significance of that variable. The p-value is of all the predictors is less than

0.005 showing that all the predictors are highly significant at 5% significant level.

For the month of June, EQWIN (11.10) and RHUM300-PC4 (-11.20),

having the greatest departure, are the most significant variables. The

positive sign of the co-efficient indicates that an increase in the predictor will also

increase the forecasting power of precipitation and vice versa.

Table 5.6: Residual Output for June

Coefficients Standard Error t-stat p-value

Intercept 31.8157 2.3090 13.80 0.000

ENSO-MEI 16.5124 1.6580 9.96 0.000

EQWIN 9.8601 0.8891 11.10 0.000

Air-Temp850-PC3 0.4434 0.106 4.18 0.000

Air-Temp850-PC4 -0.3181 0.106 -3.13 0.005

GPH200-PC2 0.5371 0.0923 5.82 0.000

GPH300-PC3 -0.2722 0.1161 -2.34 0.029

RHUM300-PC1 0.9695 0.1327 7.30 0.000

RHUM300-PC3 0.5570 0.1001 5.57 0.000

RHUM300-PC4 -1.6136 0.1443 -11.20 0.000

ZW300-PC1 -0.9800 0.1565 -6.26 0.027

ZW300-PC2 0.4471 0.0935 4.78 0.00

ZW300-PC4 -0.8064 0.1148 -7.02 0.000

VWIND300-PC4 -0.2263 0.0807 -2.81 0.010

OLR-PC4 -1.1898 0.5801 -2.05 0.052

ZW-SUR-PC4 -0.3171 0.0900 -3.52 0.002

MW-SUR-PC4 0.7734 0.0951 8.13 0.000

GPH500-PC2 0.2317 0.0746 3.11 0.005

Estimated Precipitation = Precp June = + 31.82 + 16.51*ENSO-MEI + 9.86*

EQWIN + 0.4434*Air-Temp850-PC3 - 0.3181*Air-Temp850-PC4 + 0.5371*GPH

200-PC2 - 0.2722*GPH300-PC3 + 0.9695*RHUM300-PC1 + 0.557*RHUM300-

PC3 - 1.614*RHUM300-PC4 - 0.98*ZW300-PC1 + 0.4471*ZW300-PC2 - 0.8064*

ZW300-PC4 - 0.2263*VWIND300-PC4 - 1.19*OLR-PC4 - 0.3171*ZW-SUR-PC4

+ 0.7734*MW-SUR-PC4 + 0.2317*GPH500-PC2
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5.3.6 Model Evaluation Statistics (Loss Error)

The predictability of the model is assessed by Root Mean Squared Error

(RMSE), Mean Absolute Error (MAE), Nash-Sutcliffe Efficiency (NSE),

Percent Bias (PBIAS) and RMSE-observations Standard deviation Ra-

tio (RSR) [210, 212, 329, 330]. The PCR model is prepared by using the data

in the training period from 1977 to 2015 and the values of predicted precipitation

are obtained from the PC regression equation in the training period. RMSE and

MAE are then calculated to check the performance of the PCR model. The PCR

model is further used for validation of the period from 2016 to 2020. The values of

RMSE and MAE are then again calculated for the validation period (2016-2020)

to check the predictive performance of the model.

The model performance for both January and June months from (1977-2020) is

also evaluated by reporting loss error, namely NSE, PBIAS and RSR. As explained

in chapter 4, Nash-Sutcliffe Efficiency (NSE) is a normalized statistic that deter-

mines the relative magnitude of the residual variance with respect compared to the

measured data variance. NSE show how well the plot of observed versus estimated

data fits the 1:1 line. NSE between 0.0 to 1.0 is generally viewed as acceptable

levels of performance. Percent Bias (PBIAS) measure the average tendency of the

stimulated data to be larger or smaller than their observed counterpart. The opti-

mal value of PBIAS is 0.0. The lower the magnitude value, of PBIAS the accurate

the model. A positive value shows model underestimation bias and negative val-

ues indicate model overestimation bias [331]. RSR is calculated as the ratio of the

RMSE and standard deviation of measured data. The lower the RSR and RMSE,

the better the model Prediction [330].

These statistics are calculated and listed in Table 5.7. All the statistics, namely

NSE, PBIAS (except which is converted in percentage for better interpretation)

and RSR, are between 0.0 to 1.0 as recommended for a very good model [329-

331]. Therefore, the developed model is very good with strong and accurate

prediction power Comparison of RMSE and MAE for the training period and
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validating period are reported as loss error in Table 5.7. Also, NSE, PBIAS and

RSR for January and June (1977-2020) are reported as loss errors in Table 5.7.

Table 5.7: Loss Error for the Month January and June

Loss Error for training period (1977-2015) January June

Root Mean Square Error (RMSE) 7.99 3.79

Mean Absolute Error (MAE) 6.48 3.03

Loss Error for validation period (2016-2020) January June

Root Mean Square Error (RMSE) 26.95 14.44

Mean Absolute Error (MAE) 15.08 13.02

Loss Error for Entire study period (1977-
2020)

January June

Nash-Sutcliffe Efficiency (NSE) 0.6681 0.8751

Percent Bias (PBAIS) 5.47 -3.79

RMSE Standard-deviation Ratio (RSR) 0.4077 0.2198

The graph and histogram between the observed values and estimated/predicted

values, both for the training and validating period are shown in Figures 5.5 and

5.6 (for the month of January), respectively. Similarly, graphs and histograms

between the observed values and estimated/predicted values both for the training

and validating period are shown in Figures 5.7 and 5.8 (for the months of June),

respectively. The values of Root Mean Squared Error (RMSE) and Mean Absolute

Error (MAE) for the training period and validating period are more or less the

same for the months of January and June, which shows the predictability of a

good model [326-328].

The calculation for Root Mean Squared Error, Mean Absolute Error,

Nash-Sutcliffe Efficiency, Percent Bias and RMSE Standard-deviation

Ratio for January and June is attached in Annexure-B (B.3, B.4, B.7

& B.8).
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Figure 5.5: Observed versus Estimated Precipitation- JANUARY

 

Figure 5.6: Histogram of Observed versus Estimated Precipitation- JAN-
UARY
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Figure 5.7: Observed versus Estimated Precipitation- JUNE

 

Figure 5.8: Histogram of Observed versus Estimated Precipitation- JUNE
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5.3.7 Comparison of MLR and PCR Modeling Technique

The comparison of performance indices for both PCR and MLR are listed in Table

5.8. The performance indices show that PCR performs better than the MLR [210,

212]. The Pearson correlation coefficient (R) in PCR for January and June are

better (0.8991 and 0.9750) as compared to (0.8301 and 0.8291) in MLR. Similarly,

coefficient of determination and Adjusted R also have better values as compared

to the MLR model. Standard errors in PCR are less as compared to MLR. The

loss error (RMSE and MAE) of January model in PCR is not very good. It may

be due to recurring droughts [57, 143]. Adnan et al. [212] also compared MLR and

PCR models in their climate research over Pakistan. The study was foscused on

predicting summer rainfall in Pakistan from Global Sea Surface Temperature and

Sea Level Pressure.The study concludes that PCR model was better than MLR

model.

Table 5.8: Comparison of PCR and MLR Technique

Modeling Us-

ing PCR tech-

nique

Modeling Us-

ing MLR tech-

nique

S.no Description January JuneJanuary June

1 Pearson Correlation Co-

efficient (R)

0.8991 0.97500.8301 0.8291

2 Coefficient of Determina-

tion (R2)

0.8084 0.95310.6890 0.6873

3 Adjusted R Square 0.7399 0.91510.6419 0.6040

4 Standard Error 11.04 5.0820.01 17.75

5 Overall F test 11.81 25.0914.63 8.24

6 Auto correlation (AR)

Test

0.5502 0.09310.3905 0.0786

7 Auto Regressive Condi-

tional Heteroskedasticity

(ARCH)

0.1921 1.74690.0786 0.5335
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5.4 Significance/Application of the Finding

The model will give basic information to local inhabitants, provincial government,

administration, National Disaster Management Authority (NDMA), Provincial

Disaster Management Authority (PDMA) and Pakistan Metrological Department

(PMD) to issue early flash flood warnings, take proactive measures in June due

to unprecedented precipitation and dryness or drought alert in January due to

less rain. This information can be helpful in planning crops or go for re-cropping

(dual cropping), ridge farming, and re-sowing technique. As 90% of the grasslands,

shrubs and bushes in Baluchistan are rain-fed. The livestock mostly depend on

these grasslands. A decrease in rainfall in the month of January will have a direct

impact on this grassland and on the livestock. The model will help them to look

for an alternative or plan accordingly by storing food for the livestock, which is the

second most common occupation of local dwellers. The livestock contributes 20%

of the provincial Gross Domestic Product (GDP). The model output information

will not only be helpful for the livestock business but to other related industries

like leather, carpet, and pharmaceutical that are the leading consumer of livestock

products. Baluchistan also fulfills the need and demand for leather tannery and

carpet industries in Pakistan by providing a good and constant supply of hiding,

skin, and wool.

5.4.1 Comparative analysis with previous work

The findings and results using Principal Component Regression (PCR) analysis

are in line with the previous studies performed by Adnan et al. [210,

212] that PCR technique is better than MLR technique due to its sta-

tistical results and robust prediction power. Adnan et al. [212] selected

two predictors, namely Sea Level Pressure (SLP) and Sea Surface Temperature

(SST), to perform monsoon rainfall forecast with both Multiple Linear Regression

(MLR) and Principal Component Regression (PCR) technique over Pakistan and
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recommended PCR technique because of its superior results and strong predicting

power.

5.5 Summary

The precipitation equation for January using the PCR Technique is as follows:

Estimated-Precipitation January =24.9924 - 34.0050*AMO + 10.0491*EQWIN -

0.4621*AIR-TEMP850-PC3 + 0.5556*GPH200-PC2 + 0.6958*RHUM850-PC2 +

0.5358*ZW200-PC3 - 1.6328*ZW300-PC1 - 1.3774*ZW500-PC2 + 1.3816*VWIND

500-PC1 + 0.1969*SST-PC3

with R2 = 0.8084 means 80.84% variation in precipitation is due to the potential

determinant mentioned in the equation.

Precipitation Equation for the month of June using PCR Technique is as follows:

Estimated-Precipitation June = + 31.82 + 16.51*ENSO-MEI + 9.86*EQWIN+

0.4434*Air-Temp850-PC3 - 0.3181*Air-Temp850-PC4 + 0.5371*GPH200-PC2 -

0.2722*GPH300-PC3 + 0.9695*RHUM300-PC1 + 0.5570*RHUM300-PC3 - 1.614

RHUM300-PC4 - 0.9801*ZW300-PC1 + 0.4471*ZW300-PC2 - 0.8064*ZW300-

PC4-0.2263*VWIND300-PC4 - 1.19*OLR-PC4 - 0.3171*ZW-SUR-PC4 + 0.7734

MW-SUR-PC4 + 0.2317*GPH500-PC2

with R2 = 0.9531 means 95.31% variation in precipitation is due to the potential

determinant mentioned in the equation.

Precipitation is a complex phenomenon and depends on numerous predicdant vari-

ables. In PCR analysis, there are 61 independent variables (including the constant

term) depending on SST, SLP, ZW-Surface, GPH, RH at different levels are cho-

sen. These variables possibly form total 5.07x10E83 combinations (61! factorial)

for the regression equation. Out of the enormous variable data set, regression

analysis is carried out by using selected principal component (PCs) instead of an

enormous number of original variables and this is the most important feature of

PCR technique. The PCR technique is come out with an excellent model having



Estimation of Potential Determinant Causing Variability in Precipitation using
Principal Component Regression (PCR) Analysis 170

the goodness of fit (R2) 80.84% and 95.31% for January and June, respectively.

Analysis, that is performed in the chapter adopting PCR techniques, concludes

that EQWIN and ZWIND500-PC2 (January) and EQWIN and RHUM300-PC4

(June) are the most significant predictor in defining precipitation variability in

Baluchistan. Post estimation residual analyses AR, ARCH (0.5502, 0.1921) for

January and AR, ARCH (0.0931, 1.7469) for June is performed to check the va-

lidity of all estimated equations. Successfully being independent and identically

distributed (i, i, d), the residuals guarantee the validity and robustness of esti-

mated models for both months.

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)for the training

period (1977-2015) for both January and June are found to be 7.99, 6.48, 3.79 and

3.03, respectively. Also, Root Mean Square Error (RMSE) and Mean Absolute

Error (MAE) for the training period (2016-2020) for both January and June are

found to be 26.9, 15.08, 14.44 and 13.02, respectively, which shows that model has

good forecasting power. The NSE (0.6681), PBIAS (5.47%) and RSR (0.4077) for

January show that the model is very good with accurate and strong predicting

potential.

The NSE (0.87), PBIAS (-3.79%) and RSR (0.21) for June. Negative PBIAS

indicate that the model is overestimating and positive PBIAS indicates that model

is underestimating [334]. Overall, statistics show that it is a very good model

with accurate and strong predicting potential. All the statistics, namely NSE,

PBIAS (except which is expressed in percentage for better interpretation) and

RSR, are between 0.0 to 1.0 as recommended for a very good model [329, 330].

The model that is developed by using the PCR technique has the goodness of fit

(R2) 80.84% and 95.31% for January and June, respectively.



Chapter 6

Conclusion and Future Work

6.1 Conclusions

6.1.1 Influence of Potential Determinants on Precipitation

Baluchistan receives its greater portion of the rainfall in the winter and spring

months. The time series of precipitation data over the period of 1977 to 2017 is

analyzed for 13 different stations in Baluchistan. Decreasing trends in precipita-

tion are observed in the months of January in Region 1, whereas slight increasing

trends are observed in June. Region 1 comprises stations located in Barakhan,

Kalat, Khuzdar, Quetta and Zhob. The other regions of Baluchistan do not de-

pict any trends and remain indifferent. The monthly trends in precipitation are

detected through Mann-Kendall test.

The study confirms that Baluchistan is receiving lesser rainfall for the past few

decades. The precipitation is influenced by large-scale circulations. The atmo-

spheric variables which describe the large-scale circulations and climatic indices are

the potential determinants. These variables are responsible for variation in precip-

itation. Partial Mann-Kendall (PMK), Empirical Orthogonal Functions analysis,

Principal Component Analysis and correlation analysis are used to determine the

potential determinants of precipitation variability. The change in trends under the

171
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influence of climatic indices is determined through PMK for January and June in

Region 1. It is determined through PMK analysis that EQWIN, ENSO-MEI and

EMI-MODOKI show moderate to strong influence on precipitation for January,

June and thus are the potential determinants.

The correlation of Principal Components of Region 1 Precipitation (PCs) and

climate indices show that NAO, AMO, EQWIN, EMI-MODOKI and PDO influ-

encing the precipitation in January and explain the maximum variability of the

precipitation in January. EQWIN, EMI-MODOKI and AMO are positively cor-

related with the principal modes of January precipitation up to 8% significance,

whereas PDO and NAO are negatively correlated with the January precipitation

but are insignificant. NAO, AMO, EQWIN, ENSO-MEI and PDO are found to

be influencing the June precipitation as determined through correlation analysis

between PCs and climate indices. AMO may be considered as positively corre-

lated, whereas NAO and ENSO-MEI may be considered as negatively correlated,

but their strengths are insignificant to weak. PDO is negatively correlated to the

principal modes of Region 1 precipitation at 5% significance which means that the

negative phase of PDO is favourable for June precipitation, whereas EQWIN is

positively correlated with June precipitation at 1% significance, which means that

the positive phase is favourable for June precipitation.

The influencing climatic indices for January and June over the Region 1 of Baluchis-

tan, as identified through PMK, EOF maps, PCA analysis and correlation analysis,

are associated with precipitation variability and thus can be used as the possible

predictors of precipitation. This study addresses three SDGs, namely SDG# 11:

Sustainable Cities and Communities and SDG# 13: Climate Action.

6.1.2 SGD 11: Sustainable Cities and Communities

Baluchistan province mainly comprises of rugged terrains, hills, mountains, upper

and lower highlands, making it more susceptible to devastating flash floods due

to unprecedented torrential rains. Flash floods are proven to be more devasting
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and catastrophic in nature. At the same time, the study area has gone through

recurring droughts in the past few decades. The consecutive five years of drought

(1998-2002) is one of the worst droughts in past the 50 years of history. The out-

come of the research is in the form of two statistical precipitation models. The

models will be helpful in giving early information about variation in precipita-

tion. The extreme of which leads to flood and scarcity leads to drought in the

area. This research will be useful for all stakeholders of the region in one way

or another. For policymakers, it will render the latest insight about variations in

precipitation trends rather than working on outdated information, thus, leading

to better, resilient measures and action plan at the policy level.

Furthermore, provincial metrological department and disaster management au-

thorities can prepare preventive, proactive plans accordingly. Also, local farmers,

cultivators, agriculturalists and related industries can adopt the changing precip-

itation patterns, particularly in January and June. Plan the crops to gain benefit

rather than blindly carrying on primitive agricultural practices. Re-cropping (also

known as double cropping), resowing and mulching can be adopted by locals.

Lastly, but most importantly, is this study can save precious lives and properties

from drowning and washed away in flash floods. As flash floods are taken by sur-

prise and are proven to be more catastrophic and devastating in nature. Hence,

the research contributes to SDG-11 on multiple levels to create sustainable cities

and communities.

6.1.3 SDG 13: Climate Action

The Global Climate Risk Index (GCRI) has placed Pakistan on the fifth position

both in the long-term index and in the current year index, as among the most

vulnerable country to climate change. Most alarmingly, Pakistan’s vulnerability

to climate change is increasing day by day also. This is because of Pakistan’s

geographical location, complex topography, dynamic climatology, and low coping

capacity. It is of great importance for the study area to reduce disaster risk and

achieve sustainable trade through Gwadar Port and CPEC. This can only be



Conclusion and Recommendation 174

possible if proper action is taken on time. This study is coherent with numerous

other studies, and clearly indicates that there is an increase in precipitation trend

in June, leading to extreme downpours and causing flash floods. Simultaneously,

there is a decrease in precipitation trend in January that will effect crops and

associated livelihood. The model will give rudimentary intimation and awareness

about the trend and variation in precipitation pattern which can be used as a steer

in adopting mitigation and adaptation techniques due to changing pattern by early

warnings, weather alerts, cautionary notes, inkling of a flash flood, riverine flood

landslides, mudslides other disasters including hydro-meteorological and geological

hazards.

6.1.4 Modeling using Multi-Linear Regression Analysis

(MLR)

The association of climatic indices and their influence on precipitation variability

is determined using EOF, PCA and correlation analyses. The strength of asso-

ciation is then determined through the contemporary technique of Multi-Linear

Regression Analysis. It is found that January and June are the only two months

that show the significant trends and thus are considered for the development of

the regression model. The regression equation of precipitation for January and

June are formulated using MLR. The coefficient of determination of January and

June are 68.09% and 68.73% respectively. The models are reasonably good as in-

dicated by the R2 = 0.6890 for January and R2 = 0.6873 for June, which indicates

that 68.90% and 68.73% variation in precipitation can be estimated by explana-

tory variables, respectively. NAO, AO, RH500, VWind surface and EQWIN are

identified as the potential determinants for January. NAO and AO are found to

be highly significant predictors with a p-value of 0.0005 and 0.0013, respectively,

whereas EQWIN has a weak influence on the precipitation. EQWIN, AO, EMI-

MODOKI, along with RH850, GPH850, UWind300, VWind300 and Airtemp200,

are identified as the potential determinants of the precipitation variability for June.

EQWIN came out to be a highly significant predictor having a p-value of less than
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0.05 for a confidence level of 5%. The model shows that AO has strong and EMI-

MODOKI has a weak influence on precipitation. The direction and strength of

the association (influence) is provided by the coefficient of regressors. The RMSE,

MAE, NES, PBIAS, RSR values also show that the prediction performance of the

model is VERY GOOD for both January and June.

6.1.5 Modeling using Principal Component Regression

Analysis (PCR)

Precipitation is a complex phenomenon and depends on a number of predicting

variables. It is pretty common that these variables have multilinear collinearity

among themselves. This problem is overcome using principal component anal-

ysis. The principal components are orthogonal to each other and do not have

multicollinearity. Principal Component Regression eliminates the problem of mul-

ticollinearity among the variable themselves while doing the regression analysis.

In this study, 61 independent variables (including the constant term) are consid-

ered for determining the prediction model for the precipitation to find out the

potential determinants. These variables are dependent on SST, SLP, ZW-Surface,

GPH, RH and Air Temperature at different levels. The Principal Component Re-

gression (PCR) analysis is carried out by using selected principal component (four

PCs) instead of an enormous number of original variables. The PCR technique

yields a model with excellent goodness of fit of 80.84%, 95.31% for January and

June, respectively. Post estimation residual analyses AR and ARCH tests for the

month of January and June are performed to check the validity of the estimated

regression equation, which also validate the results and confirm that the residuals

are independent and identically distributed. Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE), Percent Bias

(PBIAS) and RMSE-observations Standard deviation Ratio (RSR) for both the

months of January and June, show that the models has very good forecasting

power.
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It is concluded that AMO, EQWIN, along with AIR-TEMP850, SST, GPH200,

RHUM850, UWIND200, UWIND300, UWIND500 and VWIND500 are identified

as potential determinants for January, whereas ENSO-MEI, EQWIN along with

Air-Temp850, GPH200, GPH500, GPH300, RHUM300, UWIND300, VWIND300,

OLR, ZW-SUR and MW-SUR are identified as potential determinants for June.

PCR analysis also concludes that, for January, EQWIN (t-stat 5.36) and ZW500-

PC2 (t-stat -6.92) (having the greatest departure) are the most significant vari-

ables. Similarly, for June, EQWIN (t-stat 11.10) and RHUM300-PC4 (t-stat -

11.20) (having the greatest departure) are the most significant variables.

6.1.6 Comparison of Modeling with MLR and PCR

The performance indices of regression show that PCR performs better than

MLR. This is in line with previous studies conducted. Therefore, the PCR tech-

nique is recommended for modeling and forecasting to determine the variability

of precipitation in Baluchistan under the influence of climatic indices and climate

variables.

6.2 Trends and Potential Determinants

This study concludes that there is a decreasing trend of precipitation in the month

of January and the slope of the trend is steep. Similarly, there is an increasing

trend in June and the slope of the trend is mild. Since Baluchistan receives most

of its rainfall in winter therefore, the decreasing trend is indicative of the water

scarcity situation in Baluchistan, which may or may not be alleviated by an in-

creasing trend in June having relatively lesser precipitation. This may be an early

warning to the authorities to take remedial measures preemptively to

mitigate the drought situation if any. It is concluded through PMK analysis,

correlation analysis, EOF analysis, PCA analysis, MLR and PCR modeling that

the climatic indices EQWIN, ENSO-MEI and EMI-MODOKI along with
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climate variables GPH, RH, UWIND and VWIND are the potential

determinants causing the variability in the precipitation in Baluchistan

which is the novelty of this study. These potential determinants may be

used by the meteorologist in the weather prediction models for accurate

forecasting.

According to a WHO report in 2019, an unexpected spell of heavy rainfall in

Lasbella district caused extreme flashflood on 20 th February 2019. This flood was

unexpected and hit five districts just to share the catastrophe of Turbat district

as an example. There were 150,000 affected people, 250-300 displaced, and 15

health facilities got damaged. Similarly, according to Dawn News (August 2020),

torrential rain spell drown at least four people, many others were injured and over

a dozen others went missing in different parts of the Baluchistan, due to torrential

rains that lashed 22 districts of the province, caused flooding and damaged bridges

and highways, cutting off Gwadar and some other areas with Quetta and rest of

the country. Heavy flooding also damaged the main gas pipeline passing through

the Bolan. History of the Baluchistan is filled with catastrophes of such flash floods

and no concrete solution and policy have been developed yet. Such negligence may

put CPEC and international trade at risk.

This precipitation model will be a novel baseline model to implement for

more accurate precipitation prediction. The local government, provincial

government, administration, and disaster management authority are planning,

preparing, and working for disaster risk reduction at all levels. Global German

watch, reporting agency (report 2020) clearly point out the lack of action taken to

combat climate change risks. This research work has investigated the various po-

tential determinants and their influences on precipitation patterns in the context

of climate indices as well. Many more similar studies are the dire need of the sit-

uation as IPCC’s reports has raised the alarm that further extreme precipitation

events are projected to continue in future with even more intensity, frequency and

impacts. This study can create awareness among local people regarding climate

changes and will help to take proactive measures to be prepared and safe.



Conclusion and Recommendation 178

This prediction model will help the Pakistan Metrological Department (PMD) in

alliance with National Disaster Management Authority (NDMA) to issue early

flash flood warnings, travel alerts. This early warning will not only save crops,

orchards, livestock, property, human lives but will also help to make the inter-

national and national trade route, highways safe from climate catastrophes like

a landslide, mudslide. Since most of the CPEC (Eastern, Western and central

route) passes through Baluchistan. Not to forget, the OBOR trade route is also

under construction. Therefore, the model will be helpful by providing flash flood

intimation due to unprecedented torrential rainfall and making national and in-

ternational trade routes safe. This study can also be used as a baseline study to

examine the impact of the anthropogenic activity on the precipitation pattern.

6.3 Impact on Policy Guidelines for Agriculture

livestock and livelihood

Baluchistan province has enormous potential to emerge as a new vibrant eco-

nomic center not only for Pakistan but also for Asia. The province is spread on

347,190 Km2 with 77O km long most productive coastal belt along the Arabian

Sea. The province has a bright future in agriculture, farming, crop cultiva-

tion, livestock, fisheries, tourism, sea sport, gas coal, mineral treasure

like copper, fluorite, gypsum gems and precious stones. Baluchistan main

industry is agriculture and farming. It is a well-established fact that precipita-

tion plays a vital role in controlling a country’s agriculture productivity. With

75% rural population in Baluchistan, about 68% are engaged in agriculture (i.e.,

40 percent of Pakistan’s total labour force). Unfortunately, out of which 81%

of framers complain about the water scarcity in Baluchistan province.

The present study and precipitation prediction model will be of great

help to solve the problem of water scarcity by taking preventive mea-

sures to cope and combat the variations of precipitation trends. The

model will also be helpful to design a rainfed irrigation system, water resources
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and reservoirs. The statistical model in this study points out decreasing precip-

itation trend in January (winter), which is also in line with previous studies. It

will also help crops planners to plan less water demanding crops, plan

crop early, or use the month of January for mulching, ridge farming,

relay cropping, and re- sowing. Rely on cropping (also known as dou-

ble cropping) not only help farmers to increase their production, but it

also helps in reducing Nitrogen leaching, increase carbon sequestration

(i.e. removal of carbon dioxide from the atmosphere to slow or reverse

atmospheric pollution and mitigate and reverse global warming). Since

most of the farmers are not well-educated thus,the food and agriculture depart-

ment should educate them to adopt new cropping techniques, get accustomed to

changing precipitation patterns and get the maximum benefit from it.

Unprecedented torrential rainfall in rugged terrain of Baluchistan causes devas-

tating flash flood loss and damage to agriculture, livestock and above all, loss of

precious human life every year. According to the news report, the damages due

to flooding in 2019 were close to 350 Million Rupees. The increasing precip-

itation trend in June might cause flash floods in region stations like

Barakhan, Kalat, Quetta, Khuzdar and Zhob. This prediction model

will help National Disaster Management Authority (NDMA), Provin-

cial Disaster Management Authority (PDMA) and Pakistan Metrologi-

cal Department (PMD) to issue early flash flood warnings. This early warning

will not only save crops, orchards, livestock, property but will also save valuable

human lives. Therefore, the model will help policy makers to create

proactive policy and educate local inhabitants accordingly. Due to the

non-availability of basic data in the past, the policymakers and stake-

holders could not effectively prepare a plan and infrastructure for the

target region/area that are vulnerable to floods, landslide and mudslide,

droughts and dryness.

The tough weather, dry spell, recurring droughts of Baluchistan has adversely af-

fected and reduced the cultivation, leaving most of the area to be used for rainfed
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rangeland, grassland, shrubland for grazing of cattle. These rangelands are re-

sponsible to fulfill about 90% of the food requirement for the livestock

and cattle farm animals. Any variation in precipitation will directly

affect the livestock and livelihood of this region. A good accurate pre-

cipitation model, like the one developed in the current study, will surely

help and educate people to store food for grazing of cattle to maintain

good and sustainable livelihood through good and sustainable livestock.

Baluchistan livestock contributes 20% to the provincial GDP and the provincial

share in the country’s total livestock population is about 40%. Moreover, leather,

carpet and pharmaceutical industry are the main consumers of livestock products

other than the consumption of meat by the general public. The province caters

to the needs and demands of the leather and carpet industries in Pak-

istan by sustaining the supply of hide, skins and wool to these sectors.

Thus, a sustainable supply of livestock products is significant for the

provincial and national economies.

6.4 Comparative Analysis with Previous Studies

Trend analysis Naz et al. [57], Jamro et al. [58], Ahmed et al. [146], Hina et

al. [149], Aamir et al. [138], Haroon et al. [150], Haider et al. [151], Bhatti et

al. [197], Ashraf et al. [140] have reported increasing trend and dominating de-

creasing trend in Baluchistan. These findings are in perfect match with the result

trend detection carried out in the study, in which an increasing trend by using

Mann-Kendall was detected in June and a decreasing trend was found in January

in Region 1 of Baluchistan. Numerous studies have reported in their conclusion

that climatic indices, namely Pacific Decadal Oscillation (PDO), North Atlantic

Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), El Nino Southern

Oscillation (ENSO) and Indian Ocean Dipole (IOD) have significant inflence on

precipitation of Pakistan. Iqbal and Athar [216] reported that AO, IOD, ENSO,

NAO and PDO show a strong correlation with the monthly precipitation with

Baluchistan, which confirms the finding of this study as well.
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Multi Linear Regression (MLR) Analysis is one of the most commonly used

techniques in climate for precipitation modeling. Kalra et al. [174, 195], Carrier

et al. [193] used MLR for precipitation modeling. Kalra et al. [174] reported that

oceanic-atmospheric oscillations significantly influence the precipitation pattern.

The finding endorsed the result of our research in which oceanic-atmospheric os-

cillations indices are found to be the potential determinants causing variability

in the precipitation pattern. The study also shows that indices in groups like

Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic

Multidecadal Oscillation (AMO), El Nino-Southern Oscillation (ENSO) are best

for precipitation predictions in the Lower Colorado River Basin. This conclu-

sion endorsed current research results too, which state that NAO, AO, EQWIN,

EMI-MODOKI are the strong significant predictors for precipitation variation in

Region 1 of Baluchistan. Another research performed by Carrier et al. [193] stated

that oceanic-atmospheric oscillations including the El Nino-Southern Oscillation

(ENSO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal (AMO), and

North Atlantic Oscillation (NAO) influence the precipitation pattern and these

indices also remarkably improved the precipitation predictability when useing as

predictor in MLR modeling. The findings of Carrier et al. [193] are both illus-

trative and statistical in nature and fully support the result of this current study,

which describes that NAO, AO, EQWIN are the potential determinants for the

precipitation in January and EQWIN, EMI-MODOKI AO, are the potential de-

terminants for the precipitation in June.

Principal Component Regression (PCR) Analysis Adnan et al. [212] performed

monsoon rains forecast using both Multiple Linear Regression (MLR) and Princi-

pal Component Regression (PCR) methods, with two predictors Sea Level Pres-

sure (SLP) and Sea Surface Temperature (SST). The study also compared the

model performances based on statistical measures such as Root Mean Square Er-

ror (RMSE), Mean Absolute Error (MAE), bias and the Correlation Coefficient.

This study also reported that PCR model is slightly better than that of the MLR

model. Adnan et al. [212] results confirm and strengthen the finding of this re-

search also which is based on the same modeling techniques (MLR and PCR), but
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with different climate indices and climate parameters. In the end the present study

compares the model on the basis of performance indices and found that the PCR is

the better technique as compared to MLR as stated, in Adnan et al. [212]. In an-

other research, Adnan et al. [210] studied the inter- and intra-annual variability of

the monsoonal precipitation over Pakistan. The study focuses on the monsoon pre-

cipitation predictability using potential factors in linear statistical forecast model,

principal component regression (PCR) analysis. The result reported through sta-

tistical measures such as mean BIAS, Mean Absolute Error (MAE), Root Mean

Square Error (RMSE) and correlation coefficient (R) are around 14.92, 42.23, 60.65

and 0.75, respectively, suggested that the model exhibit robust predicting skills.

The result in the above study validates the findings of the current research study,

too, in which oceanic-atmospheric indices are used as potential determinants and

prediction is carried out for five years using (PCR) analysis. The results of PCR

analysis were reported through statistical measures, namely Mean Absolute Er-

ror (MAE), Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE),

Percent Bias (PBIAS) and RMSE-observations Standard deviation Ratio (RSR).

All statistical measures show the model has very good forecasting power for both

months [329].

6.5 Future Work and Recommendations

• Trend analysis other than precipitation should be carried out like Flood,

Glacial lake outburst Flood (GLOFs).

• Principal component regression (PCR) using other climate parameters like

maximum and minimum precipitation, maximum and minimum temperature

is recommended for future study.

• Data-Adaptive Principal Component Regression (DPCR) Artificial Neural

Networking technique should be applied to further improve the model.
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Annexure A

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S. No Years BarakhanJan BarakhanFeb BarakhanMar BarakhanApr BarakhanMay BarakhanJun BarakhanJul BarakhanAug BarakhanSep BarakhanOct BarakhanNov BarakhanDec

1 1977 64.1 0.0 3.5 71.9 14.0 94.8 85.1 15.4 108.6 1.0 21.9 1.8

2 1978 13.0 64.3 25.2 36.8 0.7 53.2 276.7 57.3 53.6 0.0 21.2 0.0

3 1979 19.5 40.9 91.7 29.4 31.7 15.7 177.6 65.7 42.8 2.1 7.4 21.7

4 1980 20.4 3.6 57.5 6.9 9.3 11.4 215.5 29.1 12.2 15.3 5.7 0.0

5 1981 16.3 15.9 52.5 10.9 61.5 6.2 80.0 58.3 17.6 6.5 2.3 0.0

6 1982 19.2 52.7 47.6 20.2 25.6 19.1 66.6 65.6 0.1 18.5 17.3 38.3

7 1983 0.0 28.8 5.7 131.3 27.7 15.7 81.5 137.0 73.6 0.3 0.0 5.8

8 1984 11.4 0.0 24.5 23.1 0.0 9.7 180.6 294.3 70.4 0.0 0.0 0.0

9 1985 1.8 0.0 36.7 40.6 13.2 61.0 103.8 52.5 17.4 8.2 0.0 0.4

10 1986 3.6 22.4 14.2 13.1 18.4 12.5 23.4 129.1 6.2 0.0 1.4 0.0

11 1987 3.4 20.9 75.8 18.2 40.9 11.5 68.3 136.8 0.0 0.0 0.0 0.0

12 1988 18.0 12.3 55.9 9.8 1.4 51.0 65.5 31.9 12.7 0.0 14.1 5.2

13 1989 8.9 0.7 137.6 5.8 0.6 51.5 136.5 102.8 24.4 0.0 3.6 22.7

14 1990 18.3 51.8 24.9 54.1 27.2 42.1 64.0 155.5 36.0 0.0 14.5 2.5

15 1991 1.8 30.0 24.2 66.6 21.9 12.3 16.2 39.0 86.2 0.0 1.0 12.6

16 1992 50.9 37.0 31.7 56.5 38.7 24.4 144.3 145.1 47.2 23.0 4.3 2.2

17 1993 30.0 3.5 26.0 45.8 20.9 108.0 131.4 70.7 76.2 0.0 0.0 0.0

18 1994 2.3 56.8 9.4 30.9 7.0 17.8 229.1 96.7 135.5 2.3 2.1 11.7

19 1995 17.9 9.8 8.8 134.1 0.0 37.1 136.4 69.6 30.0 7.0 0.0 9.0

20 1996 12.2 9.0 17.0 43.0 10.0 140.9 113.2 36.0 17.7 0.0 0.0 2.0

21 1997 19.8 3.6 64.5 67.0 98.1 170.3 122.7 31.8 10.0 144.4 26.0 2.6

22 1998 2.0 12.5 48.1 28.1 30.6 40.1 50.8 55.6 21.1 10.0 0.0 0.0

23 1999 26.7 25.5 0.0 0.0 19.0 25.3 95.2 129.6 19.6 8.0 0.0 0.0

24 2000 8.2 14.5 4.0 2.0 6.0 6.6 63.7 48.5 25.8 0.0 0.0 4.4

25 2001 0.0 16.0 7.0 31.0 10.0 50.7 90.0 76.7 35.7 0.0 0.0 8.0

26 2002 0.0 10.5 9.0 5.0 0.0 9.6 15.0 26.0 6.0 5.0 9.0 3.0

27 2003 0.5 6.0 55.0 7.0 37.0 89.0 39.5 102.5 14.0 0.0 0.0 0.0

28 2004 46.6 7.0 0.0 2.5 6.0 57.0 53.0 74.0 3.0 15.0 13.0 11.0

29 2005 5.0 82.0 7.0 7.0 38.0 20.0 173.0 167.0 9.0 0.0 0.0 0.0

30 2006 0.0 4.0 28.0 17.0 151.0 79.0 191.0 96.0 110.0 47.0 11.0 50.0

31 2007 0.0 60.6 36.0 11.0 3.5 52.0 120.0 54.0 42.0 0.0 1.0 8.0

32 2008 14.0 9.0 18.0 41.0 63.0 99.0 47.0 57.0 13.0 0.0 0.0 36.0

33 2009 23.0 14.0 3.0 12.0 21.0 31.0 146.0 0.5 0.0 0.0 0.0 2.0

34 2010 2.0 3.0 48.0 6.0 23.0 46.0 110.0 140.0 81.0 11.0 0.0 0.0

35 2011 6.0 27.0 34.0 40.0 6.0 49.0 138.0 81.1 14.1 18.0 0.0 1.0

36 2012 4.0 0.1 1.0 119.1 5.0 13.1 138.1 30.2 51.0 1.0 0.0 4.0

37 2013 0.0 78.1 44.0 68.2 2.1 76.0 58.1 47.3 23.2 13.2 22.0 0.0

38 2014 0.0 18.0 31.2 35.0 73.0 23.0 169.2 107.0 44.2 0.0 0.0 0.0

39 2015 11.0 5.1 46.0 25.0 24.3 63.4 35.0 128.0 7.0 16.0 1.0 0.0

40 2016 1.0 0.0 22.0 41.5 16.0 50.2 110.1 168.6 11.1 0.0 0.0 0.0

41 2017 35.0 7.0 6.0 4.0 8.0 128.0 85.0 60.0 25.0 0.0 0.0 0.0

13.1 21.1 31.3 34.6 24.7 48.2 108.4 84.6 35.0 9.1 4.9 6.5

Precipitatoin Data - Barakhan (1977 to 2017)

Figure A.1: Data Source: Courtesy of PMD
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S. No Years DalabandinJan DalabandinFeb DalabandinMar DalabandinApr DalabandinMay DalabandinJun DalabandinJul DalabandinAug DalabandinSep DalabandinOct DalabandinNov DalabandinDec

1 1977 46.1 0.0 0.8 5.3 0.8 0.5 0.0 2.0 0.0 0.0 2.1 4.0

2 1978 0.0 5.1 4.0 1.0 0.0 0.0 32.0 0.0 0.0 0.0 10.0 1.0

3 1979 37.0 52.0 22.0 3.0 2.0 5.0 0.0 0.0 0.0 0.0 0.0 38.2

4 1980 18.0 1.0 56.5 1.0 0.0 0.0 0.0 0.0 0.0 24.0 4.2 7.0

5 1981 28.0 17.2 2.6 4.3 2.3 0.0 0.0 0.0 0.0 4.0 0.0 0.0

6 1982 13.5 60.7 71.6 10.7 6.6 0.0 0.0 0.0 0.0 10.2 8.9 21.5

7 1983 10.0 21.9 23.9 21.7 11.5 0.5 0.6 14.3 0.0 0.0 0.0 8.6

8 1984 3.2 0.0 33.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.8

9 1985 19.2 0.0 0.0 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8

10 1986 9.6 22.2 0.0 0.0 0.0 8.8 0.0 2.7 0.0 0.0 13.1 4.2

11 1987 1.7 21.1 81.5 0.0 1.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0

12 1988 9.0 2.8 12.8 0.0 0.0 0.0 5.5 0.0 4.0 0.0 0.0 0.5

13 1989 1.6 21.2 14.3 0.9 5.2 0.0 0.0 0.0 0.0 0.0 2.7 11.9

14 1990 55.6 61.3 7.0 6.5 0.0 0.0 0.0 1.8 0.0 0.0 12.4 14.6

15 1991 11.0 21.8 69.7 3.0 4.2 0.0 0.0 0.0 0.0 0.0 2.6 6.8

16 1992 20.4 1.3 11.3 33.5 4.3 0.0 0.0 2.8 0.0 10.0 0.0 20.8

17 1993 47.6 0.0 19.7 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0

18 1994 15.0 30.2 18.6 7.5 3.2 0.0 6.4 0.0 0.0 3.5 0.0 3.1

19 1995 2.0 9.6 25.0 15.8 0.0 0.0 16.4 0.0 0.0 0.0 3.2 81.6

20 1996 32.0 60.9 24.5 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 3.5

21 1997 39.1 3.0 16.0 4.0 6.4 0.0 0.0 0.0 0.0 8.3 42.9 1.6

22 1998 31.1 2.0 35.7 2.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0

23 1999 26.0 40.7 8.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

24 2000 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

25 2001 0.0 0.0 14.3 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

26 2002 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0

27 2003 36.0 1.7 35.3 13.5 0.0 0.0 87.4 0.0 0.0 0.0 0.0 0.0

28 2004 16.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.0

29 2005 0.0 45.1 75.4 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30 2006 0.0 6.0 5.2 1.0 0.0 0.0 0.0 0.0 1.2 0.0 11.1 42.6

31 2007 7.2 20.1 16.8 5.5 0.0 103.2 0.0 0.0 0.0 0.0 0.0 1.0

32 2008 70.0 2.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 9.0

33 2009 6.9 18.0 1.0 8.5 0.0 0.0 4.0 0.0 0.0 0.0 0.0 24.0

34 2010 4.0 9.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0

35 2011 3.4 47.8 5.1 0.0 2.0 0.0 0.0 0.0 0.0 11.0 0.0 0.0

36 2012 19.5 2.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

37 2013 0.0 31.1 49.1 0.2 0.0 0.0 0.0 2.0 0.0 0.0 7.0 1.0

38 2014 14.1 8.1 23.2 9.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

39 2015 0.2 11.1 13.1 1.9 0.1 1.8 0.0 0.0 0.0 12.1 0.0 0.0

40 2016 0.2 0 41.6 4.2 0 0.1 0 0 0 0 0 0

41 2017 32.1 0.03 0.03 0 0 0 0 0 0 0 1.01 0

16.8 16.0 20.5 4.8 1.3 3.0 3.7 0.7 0.1 2.2 3.1 9.4

Precipitatoin Data - Dalbandin (1977 to 2017)

Figure A.2: Data Source: Courtesy of PMD
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S.no Years JiwaniJan JiwaniFeb JiwaniMar JiwaniApr JiwaniMay JiwaniJun JiwaniJul JiwaniAug JiwaniSep JiwaniOct JiwaniNov JiwaniDec

1 1977 50.5 7.1 0.0 0.0 0.0 12.9 0.0 3.8 0.0 0.0 17.2 5.0

2 1978 0.0 18.5 0.0 0.0 0.0 0.0 30.0 0.0 0.0 0.0 0.0 33.0

3 1979 23.7 18.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 1.0 0.0 97.0

4 1980 22.4 0.2 8.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0

5 1981 0.2 0.0 21.7 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.8

6 1982 139.0 172.9 6.0 8.9 5.4 0.0 0.0 0.0 0.0 0.0 7.0 47.2

7 1983 6.2 69.5 2.7 14.7 0.0 0.0 0.0 29.8 0.0 0.0 0.0 19.0

8 1984 96.5 0.0 16.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.8

9 1985 12.6 0.0 7.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.0

10 1986 0.0 265.5 6.0 0.0 0.0 6.0 0.0 13.7 0.0 0.0 35.0 2.1

11 1987 0.0 154.0 26.5 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0

12 1988 0.2 28.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

13 1989 0.0 0.7 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 142.8

14 1990 12.4 30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.2 0.0

15 1991 22.5 0.0 74.8 1.2 0.0 0.0 0.0 0.0 0.0 0.0 6.5 0.4

16 1992 32.5 20.0 12.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.0

17 1993 25.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

18 1994 18.7 0.0 0.0 50.0 0.0 0.0 28.5 11.0 0.0 0.0 0.0 2.4

19 1995 0.0 32.0 52.0 0.0 0.0 0.0 39.7 0.0 0.0 0.0 0.0 113.8

20 1996 19.2 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.7

21 1997 27.1 0.0 64.3 0.0 0.0 7.0 1.3 3.8 0.0 39.4 24.4 116.3

22 1998 26.0 28.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0

23 1999 0.0 7.1 16.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

24 2000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0

25 2001 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0

26 2002 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.5 0.0 0.0 17.6 0.0

27 2003 47.3 0.2 0.0 0.4 0.0 0.0 14.5 3.4 0.0 0.0 0.0 0.0

28 2004 55.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.0

29 2005 50.0 3.2 120.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30 2006 0.0 21.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 72.0

31 2007 0.0 0.0 0.0 0.0 0.0 92.0 0.0 0.0 0.0 0.0 0.0 0.0

32 2008 16.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 0.0 28.0

33 2009 113.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.0

34 2010 9.0 0.0 0.0 0.0 0.0 194.0 0.0 0.0 0.0 0.0 0.0 0.0

35 2011 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

36 2012 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

37 2013 0.0 33.0 0.0 45.0 0.0 0.0 0.0 13.0 0.0 0.0 24.0 0.0

38 2014 39.0 6.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

39 2015 19.0 5.0 85.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0

40 2016 0 0 15 0 0 0 0 0 0 0 0 0

41 2017 33 0 3 0 0 0 0 0 0 0 0 0

22.9 22.5 14.3 3.7 0.1 7.6 3.0 2.3 0.0 1.1 3.6 20.2

Precipitatoin Data - Jiwani (1977 to 2017)

Figure A.3: Data Source: Courtesy of PMD
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S.no Years Kalat Jan Kalat Feb Kalat Mar Kalat Apr Kalat May Kalat Jun Kalat Jul Kalat Aug Kalat Sep Kalat Oct Kalat Nov Kalat Dec

1 1977 11.1 0.9 0.0 3.4 0.0 7.6 0.0 3.0 0.0 0.0 0.0 0.0

2 1978 17.5 33.1 2.8 21.5 0.0 0.0 47.9 0.0 0.0 0.0 0.0 0.0

3 1979 0.0 14.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 1980 9.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 0.0 16.7

5 1981 0.0 0.0 0.0 0.0 0.0 0.0 16.5 0.0 0.0 6.0 0.5 15.2

6 1982 97.7 103.1 117.5 14.9 10.9 0.0 5.5 33.1 0.0 55.0 12.8 96.4

7 1983 36.7 43.8 30.1 65.7 24.3 0.0 20.2 114.3 5.1 0.0 0.2 31.8

8 1984 32.2 10.5 19.8 0.0 0.0 0.0 3.6 5.2 0.0 0.0 0.2 11.7

9 1985 35.2 0.0 4.8 34.3 0.2 0.0 24.3 42.6 0.0 0.0 0.0 25.1

10 1986 8.8 55.6 48.4 4.6 0.0 1.1 18.7 75.8 0.0 0.0 10.6 2.3

11 1987 21.7 19.3 88.6 1.2 15.2 1.7 0.0 10.6 0.0 0.0 0.0 0.0

12 1988 18.0 11.4 61.7 5.9 0.0 0.5 90.1 0.0 0.1 0.0 0.0 5.4

13 1989 31.3 14.4 97.9 1.3 0.0 3.2 67.1 3.3 0.0 0.0 7.4 29.4

14 1990 88.6 105.6 50.5 13.4 3.2 0.2 0.0 13.0 0.0 0.0 6.3 28.3

15 1991 60.2 70.1 73.1 19.1 0.0 0.0 0.2 0.1 0.2 0.0 13.4 14.7

16 1992 76.6 56.2 27.9 31.5 16.2 0.0 52.8 16.4 0.0 4.6 0.0 14.7

17 1993 78.5 9.9 20.4 8.8 1.2 0.0 3.8 0.5 0.0 0.0 0.0 0.0

18 1994 0.5 32.3 1.6 4.7 7.1 0.0 58.3 24.9 13.7 0.0 1.4 1.3

19 1995 1.4 39.0 3.5 30.3 0.0 0.0 26.8 3.7 0.0 0.0 3.0 122.5

20 1996 57.8 93.0 26.0 9.9 10.7 9.2 0.0 0.0 0.6 5.2 0.0 24.2

21 1997 72.2 5.0 12.6 6.0 0.0 72.0 74.6 11.5 0.0 104.9 72.1 546.0

22 1998 125.8 26.0 105.0 0.0 0.0 30.5 30.0 0.0 0.0 0.0 0.0 54.6

23 1999 38.0 50.5 19.0 0.0 49.0 13.0 6.0 0.0 2.3 0.0 7.5 0.0

24 2000 20.7 45.9 0.0 0.0 1.0 0.0 0.0 12.2 1.2 0.0 10.0 0.0

25 2001 0.7 21.7 8.0 16.7 0.0 7.2 14.2 5.0 0.0 0.0 0.0 12.0

26 2002 17.6 13.2 45.5 5.0 0.0 0.0 0.0 7.0 0.0 0.0 22.5 18.0

27 2003 21.0 38.0 21.0 1.0 0.0 0.0 68.0 0.0 0.0 0.0 0.0 0.0

28 2004 75.4 3.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 2.0 13.0

29 2005 21.0 168.2 45.2 0.0 7.9 3.5 0.0 0.0 0.0 0.0 0.0 0.0

30 2006 10.6 3.1 18.6 2.0 0.0 0.0 9.6 32.2 0.0 0.0 14.2 72.9

31 2007 14.5 70.5 36.7 14.0 0.0 95.8 11.1 10.6 0.0 0.0 0.0 1.1

32 2008 133.4 13.0 0.0 3.0 2.0 2.0 4.5 33.5 0.0 0.0 0.0 29.0

33 2009 71.9 13.0 30.7 10.1 2.0 0.0 9.0 3.0 0.0 0.0 0.0 37.0

34 2010 2.0 28.0 7.0 4.0 3.0 0.0 2.0 1.0 0.0 0.0 0.0 0.0

35 2011 9.0 106.0 74.0 43.0 1.0 0.0 0.0 53.0 147.0 3.0 10.0 3.0

36 2012 42.0 25.0 20.0 52.0 1.0 0.0 0.0 0.0 19.0 0.0 0.0 15.0

37 2013 0.0 133.1 41.0 12.0 0.0 12.0 4.0 36.0 0.0 0.0 9.0 0.0

38 2014 7.0 63.0 42.0 11.3 2.0 0.0 0.0 0.0 0.0 0.0 26.0 0.0

39 2015 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.1 0.0

40 2016 8 0 70 0 0 12 0 0 0 0 0 0

41 2017 49 10 0 0 0 0 0 0 0 0 7 0

34.7 37.8 31.0 11.0 3.9 6.7 16.3 13.4 4.6 5.0 5.8 30.3

Precipitatoin Data - Kalat (1977 to 2017)

Figure A.4: Data Source: Courtesy of PMD
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S.no Years KhuzdarJan KhuzdarFeb KhuzdarMar KhuzdarApr KhuzdarMay KhuzdarJun KhuzdarJul KhuzdarAug KhuzdarSep KhuzdarOct KhuzdarNov KhuzdarDec

1 1977 29.6 0.0 0.0 9.4 57.3 108.2 15.2 24.9 6.1 0.0 1.8 17.2

2 1978 16.5 31.9 9.6 22.0 0.0 23.7 108.3 43.9 10.0 0.0 17.5 0.0

3 1979 1.5 102.7 123.4 3.1 0.6 0.3 16.0 34.1 0.0 19.2 1.1 33.9

4 1980 9.4 6.4 78.1 4.8 4.1 10.4 2.0 0.0 10.9 22.9 26.8 16.7

5 1981 3.1 46.6 46.4 15.0 13.1 0.9 45.2 72.9 5.1 2.0 0.0 0.0

6 1982 25.0 76.8 34.0 21.5 27.8 0.0 13.3 87.1 0.0 50.2 1.7 69.4

7 1983 16.9 31.5 3.7 9.8 36.4 10.7 42.1 112.4 38.6 5.1 0.0 30.1

8 1984 10.5 0.5 10.9 7.5 0.0 0.0 13.3 222.9 0.0 0.0 0.0 2.7

9 1985 17.2 0.0 7.5 45.7 0.9 7.9 63.7 44.3 0.0 0.0 0.0 1.3

10 1986 0.0 30.9 15.9 0.0 0.0 14.9 55.5 118.5 0.0 0.0 3.0 0.0

11 1987 3.6 25.7 60.3 0.1 88.2 8.7 0.0 30.5 0.8 0.0 0.0 0.0

12 1988 12.9 17.1 8.7 3.8 0.0 9.8 197.8 80.9 6.3 0.0 7.0 3.6

13 1989 1.2 1.4 76.5 0.0 0.0 21.5 75.8 89.8 0.0 0.0 25.0 28.8

14 1990 20.7 55.7 4.0 8.7 14.8 0.8 10.0 53.5 3.1 0.0 9.3 25.0

15 1991 20.8 53.2 29.5 29.0 10.0 0.0 0.0 58.9 25.0 0.0 1.2 2.2

16 1992 149.9 75.7 9.2 41.3 0.0 0.0 100.2 57.2 0.0 2.2 0.5 8.6

17 1993 29.8 22.6 17.5 6.0 8.3 4.6 23.1 35.0 11.6 0.0 0.0 0.0

18 1994 5.0 69.2 6.6 64.5 12.9 2.4 190.7 150.3 41.0 0.0 0.0 52.1

19 1995 17.5 21.3 6.6 73.9 2.1 3.1 368.0 51.0 0.0 4.7 0.2 29.8

20 1996 31.2 54.0 10.0 0.0 68.2 63.3 20.0 2.6 1.0 0.0 0.0 12.0

21 1997 29.6 0.0 71.5 9.1 0.3 18.5 73.5 18.0 9.0 87.0 34.5 6.0

22 1998 20.0 0.0 59.0 37.0 4.0 46.0 44.0 0.0 6.0 4.5 0.0 0.0

23 1999 11.0 57.0 18.0 0.0 20.0 0.0 0.0 24.0 15.0 25.0 0.0 0.0

24 2000 9.6 22.2 0.0 0.0 29.0 0.0 27.7 35.1 0.0 0.0 4.3 5.3

25 2001 0.0 1.2 0.0 36.1 0.0 1.7 48.4 72.4 2.5 0.0 0.0 3.0

26 2002 0.0 9.2 3.4 1.5 0.0 0.0 2.0 2.0 0.0 0.0 17.7 16.5

27 2003 14.5 15.3 18.2 12.7 3.0 0.0 111.9 20.6 0.0 0.0 2.7 0.0

28 2004 21.2 0.0 0.0 0.0 4.4 3.4 21.7 31.2 8.4 0.0 0.0 2.0

29 2005 8.3 104.8 68.5 17.7 62.0 3.8 38.3 35.9 43.8 0.0 0.0 0.0

30 2006 3.1 4.8 25.0 9.0 10.2 24.6 30.8 39.9 8.1 28.9 3.2 81.0

31 2007 0.0 23.8 36.5 3.9 0.0 137.2 35.3 35.1 1.3 0.0 0.0 1.2

32 2008 14.4 10.0 0.0 22.7 6.6 18.7 43.9 67.8 8.4 0.0 0.0 109.7

33 2009 50.8 7.3 21.2 1.8 0.0 0.0 29.0 59.3 6.7 0.0 0.0 41.0

34 2010 4.8 8.8 0.0 7.7 19.5 3.5 25.7 89.0 0.2 0.0 0.0 0.0

35 2011 7.9 44.1 86.7 64.6 14.2 0.0 31.0 88.4 30.4 0.5 0.0 2.2

36 2012 15.0 3.0 20.0 25.2 25.0 2.0 5.4 51.0 35.0 0.0 0.0 0.1

37 2013 0.0 133.0 46.0 46.7 0.2 16.8 37.5 187.5 0.0 0.0 13.5 0.0

38 2014 0.0 75.3 60.1 0.0 22.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0

39 2015 10.0 10.0 28.2 7.4 2.0 25.8 15.2 32.2 0.0 13.4 6.1 0.0

40 2016 0 0 66.6 1 2.1 37.1 37.6 43.5 37 0 0 0

41 2017 32 12 15 0 8 47 78.8 14.7 0 0 0 0

16.5 30.9 29.3 16.3 14.1 16.5 51.2 56.6 9.1 6.5 4.3 14.7

Precipitatoin Data - Khuzdar (1977 to 2017)

Figure A.5: Data Source: Courtesy of PMD
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S.no Years Lasbella Jan Lasbella Feb Lasbella Mar Lasbella Apr Lasbella May Lasbella Jun Lasbella Jul Lasbella Aug Lasbella Sep Lasbella Oct Lasbella Nov Lasbella Dec

1 1977 10.9 4.0 0.7 3.4 12.5 28.4 262.4 20.8 89.0 2.6 2.2 0.0

2 1978 8.3 7.5 0.7 1.6 12.5 3.9 252.6 189.6 0.0 2.5 2.5 0.0

3 1979 1.4 73.5 0.7 1.6 12.5 3.2 0.0 182.1 0.0 3.9 1.0 5.0

4 1980 0.0 2.6 6.8 1.6 12.5 49.5 4.6 0.0 0.0 17.9 12.8 51.6

5 1981 0.2 25.6 66.4 5.6 12.3 3.6 43.6 24.4 0.0 0.6 0.0 0.6

6 1982 0.0 12.3 8.6 14.1 24.1 0.0 8.6 16.3 0.0 0.0 0.0 5.5

7 1983 6.0 23.9 0.0 4.1 0.2 0.1 48.0 115.8 48.4 0.0 0.0 0.0

8 1984 0.3 0.0 0.7 0.0 0.0 0.0 50.0 88.6 3.0 0.0 0.0 0.0

9 1985 0.0 0.0 0.0 42.0 22.0 23.0 56.5 0.0 0.0 0.0 0.0 0.0

10 1986 0.0 6.0 1.5 0.0 0.0 4.7 1.2 19.0 0.0 0.0 15.0 0.0

11 1987 0.0 0.7 3.0 0.0 94.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0

12 1988 0.0 0.0 0.0 25.0 0.0 0.0 130.8 26.8 0.0 0.0 0.0 0.0

13 1989 2.0 0.0 4.0 0.0 0.0 17.6 90.0 6.3 0.0 0.0 18.0 15.8

14 1990 0.0 24.3 23.5 0.0 0.0 8.0 0.0 61.1 0.0 0.0 3.0 0.0

15 1991 9.0 26.0 5.0 7.0 0.0 0.0 0.0 9.5 0.0 0.0 0.0 0.0

16 1992 23.0 4.6 50.0 0.0 16.0 0.0 78.0 79.2 0.0 22.0 0.0 0.0

17 1993 4.0 17.3 0.0 27.6 25.0 0.0 26.0 0.0 0.0 0.0 0.0 0.0

18 1994 0.0 0.0 0.0 15.0 21.0 0.0 151.1 156.9 62.6 0.0 0.0 19.5

19 1995 3.7 0.0 0.0 0.0 1.0 0.8 192.6 0.0 0.0 7.5 0.0 0.0

20 1996 4.5 45.5 6.5 4.5 80.8 7.5 18.0 2.5 0.0 0.0 0.0 0.0

21 1997 21.5 0.0 47.6 1.0 34.0 77.0 0.0 63.0 10.0 50.0 4.2 0.0

22 1998 5.0 4.5 15.0 9.0 0.0 2.0 13.0 19.0 0.0 13.0 0.0 0.0

23 1999 0.0 50.0 25.0 0.0 29.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

24 2000 26.0 0.0 0.0 0.0 8.0 0.0 0.7 3.0 0.0 0.0 0.0 0.0

25 2001 0.0 0.0 0.0 8.0 6.0 14.1 140.9 54.0 0.0 0.0 0.0 0.0

26 2002 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0 0.0

27 2003 25.0 35.0 7.0 0.0 39.0 13.0 353.7 1.9 0.0 0.0 0.0 0.0

28 2004 3.8 0.0 0.0 0.0 0.0 15.5 4.2 0.0 0.0 0.0 0.0 1.3

29 2005 8.0 68.2 5.5 20.0 48.7 47.8 0.0 0.0 9.4 0.0 0.0 0.0

30 2006 0.0 0.0 0.0 3.2 20.0 0.2 8.2 63.1 15.4 17.5 0.0 53.9

31 2007 0.0 5.2 31.0 23.2 45.0 16.1 39.4 35.8 0.0 0.0 0.0 0.0

32 2008 7.3 0.0 0.0 0.0 9.7 12.3 10.0 87.6 2.5 0.0 0.0 124.5

33 2009 13.6 7.8 30.7 5.7 0.0 9.8 13.1 3.1 0.0 0.0 0.0 19.8

34 2010 1.5 6.9 0.0 0.0 0.0 13.0 59.0 36.7 0.0 0.0 0.0 0.0

35 2011 0.0 14.2 4.0 4.0 11.5 0.0 9.1 100.0 66.2 0.0 0.0 0.0

36 2012 0.0 1.0 0.0 29.0 51.8 13.0 4.0 0.0 21.2 66.0 0.0 0.0

37 2013 0.1 0.4 36.0 25.0 13.0 4.0 39.0 49.3 1.2 0.0 2.0 0.0

38 2014 0.2 0.0 14.0 18.5 62.1 39.1 47.0 0.1 12.0 0.0 16.0 0.0

39 2015 2.0 0.1 2.0 0.2 23.0 10.1 0.1 42.3 0.0 3.0 0.0 0.0

40 2016 0 0 15.4 0.1 30.6 0.1 0 37.2 0 0 0 0

41 2017 9 0.01 14.02 5 30.02 13.02 25.02 15.02 5 0 1 0

4.8 11.4 10.4 7.4 19.7 11.2 53.2 39.3 8.6 5.0 1.9 7.3

Precipitatoin Data - Lasbella (1977 to 2017)

Figure A.6: Data Source: Courtesy of PMD
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S.no Years NokkundiJan NokkundiFeb NokkundiMar NokkundiApr NokkundiMay NokkundiJun NokkundiJul NokkundiAug NokkundiSep NokkundiOct NokkundiNov NokkundiDec

1 1977 13.2 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 1.0 0.0

2 1978 0.0 1.7 0.4 1.5 0.0 0.0 1.2 0.0 0.0 0.0 1.9 0.0

3 1979 0.0 24.8 2.7 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.2

4 1980 0.0 0.0 24.6 0.0 4.0 0.0 0.0 0.0 0.0 8.3 0.0 2.0

5 1981 8.1 3.3 6.9 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 1982 4.7 19.9 70.5 24.8 0.0 0.0 0.0 0.0 0.0 0.4 1.1 1.6

7 1983 9.9 12.8 9.8 3.0 0.9 0.0 0.0 10.5 0.0 0.0 0.0 2.6

8 1984 3.8 0.0 11.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9 1985 17.8 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4

10 1986 4.3 5.3 1.6 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.6 0.1

11 1987 0.0 0.6 1.3 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.6

12 1988 7.2 1.4 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

13 1989 0.0 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

14 1990 1.0 46.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

15 1991 0.0 0.6 19.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

16 1992 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

17 1993 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

18 1994 0.0 24.0 17.7 3.5 0.0 0.0 10.0 0.0 0.0 0.0 0.0 2.3

19 1995 0.0 1.4 8.8 0.0 0.0 0.6 12.4 0.0 0.0 0.0 0.0 5.4

20 1996 30.0 35.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

21 1997 54.0 0.0 6.8 0.0 2.0 0.0 0.0 0.0 0.0 1.0 5.0 5.0

22 1998 0.0 0.0 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

23 1999 0.0 16.5 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

24 2000 0.0 0.0 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1

25 2001 0.0 6.7 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

26 2002 2.8 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0

27 2003 0.0 2.5 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

28 2004 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.8

29 2005 0.0 94.0 93.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30 2006 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 5.2

31 2007 3.0 7.0 4.0 13.0 0.0 80.0 0.0 0.0 0.0 0.0 0.0 0.0

32 2008 75.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3

33 2009 33.4 0.0 0.0 6.9 0.0 0.0 0.0 0.0 0.0 1.0 0.0 6.0

34 2010 2.5 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0

35 2011 0.0 51.0 8.5 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0

36 2012 2.0 1.1 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0

37 2013 0.1 0.7 8.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 13.1 0.0

38 2014 8.0 8.0 4.5 1.5 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0

39 2015 27.0 0.1 8.3 0.8 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0

40 2016 0.1 0 11.7 0.4 0 0 2 0 0 0 0 0

41 2017 13.1 13.7 3.01 0 0.01 0 0 0 0 0 1.01 0

7.8 9.6 8.7 2.2 0.2 2.0 0.7 0.3 0.0 0.5 0.6 2.0

Precipitatoin Data - Nokkundi (1977 to 2017)

Figure A.7: Data Source: Courtesy of PMD
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S.no Years OrmaraJan OrmaraFeb OrmaraMar OrmaraApr OrmaraMay OrmaraJun OrmaraJul OrmaraAug OrmaraSep OrmaraOct OrmaraNov OrmaraDec

1 1977 36.1 0.0 0.0 0.0 0.0 8.6 11.2 4.8 0.0 31.0 0.0 16.5

2 1978 0.0 0.0 0.0 0.0 0.0 0.0 185.2 60.2 0.0 0.0 0.0 0.0

3 1979 48.3 26.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.2 0.0 25.4

4 1980 40.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39.0 0.0 10.1

5 1981 0.0 49.0 77.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 1982 0.3 77.4 11.4 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.6 4.4

7 1983 9.3 14.3 8.4 2.9 1.1 0.0 0.2 11.3 0.0 0.1 0.0 2.8

8 1984 3.0 0.6 11.0 0.5 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0

9 1985 15.3 0.0 0.2 0.3 0.3 0.0 0.0 0.0 0.0 0.1 0.0 0.6

10 1986 3.3 6.0 2.5 0.0 0.3 0.0 0.0 0.0 0.0 0.1 1.2 0.4

11 1987 0.0 2.4 7.6 0.0 0.6 0.0 0.0 0.0 0.0 0.1 0.0 1.3

12 1988 7.2 1.5 0.0 0.7 0.3 0.0 0.3 0.0 0.0 0.1 0.0 0.0

13 1989 0.0 7.1 1.8 0.0 0.3 0.0 0.0 0.0 0.0 0.1 0.0 2.1

14 1990 5.4 44.3 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.2 0.0 0.0

15 1991 1.1 8.2 23.2 0.0 0.3 0.0 0.0 0.0 0.0 0.1 3.7 0.0

16 1992 0.7 1.4 3.7 0.7 1.0 0.0 0.0 0.0 0.2 1.1 0.0 2.2

17 1993 3.2 0.0 0.0 0.4 0.3 0.0 0.0 0.0 0.0 0.1 0.0 0.0

18 1994 1.2 23.6 15.8 4.9 0.2 0.0 9.0 3.0 0.0 0.7 0.0 1.4

19 1995 0.0 0.9 8.4 0.2 0.4 0.9 11.8 0.0 0.0 0.1 0.0 9.8

20 1996 54.5 0.0 12.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 2.4

21 1997 40.7 0.0 48.5 0.0 0.0 0.0 24.0 0.0 0.0 0.0 0.0 0.0

22 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

23 1999 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

24 2000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.6

25 2001 0.0 0.0 0.0 0.0 0.0 0.0 33.9 0.0 0.0 0.0 0.0 0.0

26 2002 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0

27 2003 0.0 0.0 0.0 0.0 0.0 0.0 28.0 0.0 0.0 0.0 0.0 0.0

28 2004 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.0

29 2005 24.0 62.0 13.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0

30 2006 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.0 0.0 0.0 0.0 235.0

31 2007 0.0 7.0 133.0 0.0 0.0 314.0 2.0 47.0 0.0 0.0 0.0 2.0

32 2008 10.0 6.0 0.0 0.0 0.0 4.0 0.0 5.0 0.0 0.0 0.0 55.0

33 2009 9.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.0 0.0 0.0 12.0

34 2010 31.0 18.0 0.0 0.0 0.0 60.0 84.0 0.0 0.0 0.0 0.0 18.0

35 2011 0.0 9.0 16.0 0.0 0.0 0.0 56.0 2.0 11.0 0.0 14.0 3.0

36 2012 23.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.0

37 2013 0.0 2.0 0.0 57.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0

38 2014 10.0 15.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0 0.0 0.0 0.0

39 2015 36.0 24.0 8.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0

40 2016 0 0 6 0 0 0.1 0 0 0 0 0 0

41 2017 18.4 1 0 0 0 0 9 1 0 0 0 0

10.7 10.0 9.9 1.6 0.2 9.7 11.3 3.8 0.3 2.0 0.5 11.8

Precipitatoin Data - Ormara (1977 to 2017)

Figure A.8: Data Source: Courtesy of PMD
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S.no Years PanjgurJan PanjgurFeb PanjgurMar PanjgurApr PanjgurMay PanjgurJun PanjgurJul PanjgurAug PanjgurSep PanjgurOct PanjgurNov PanjgurDec

1 1977 42.6 9.9 2.3 7.1 0.6 4.3 68.6 14.8 0.0 0.0 8.1 11.7

2 1978 0.0 10.4 1.0 5.4 0.0 0.0 45.9 43.7 0.0 0.0 3.8 0.0

3 1979 4.8 28.2 40.3 17.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.1

4 1980 1.4 6.3 16.8 2.0 0.0 0.0 0.0 0.0 0.0 18.0 0.0 41.6

5 1981 0.0 10.2 38.6 0.0 0.0 0.0 11.7 0.0 0.0 0.0 0.0 0.0

6 1982 35.1 53.3 35.7 46.6 19.9 0.0 0.0 1.3 0.0 3.0 0.0 43.8

7 1983 11.7 32.8 0.5 13.2 0.0 0.0 12.7 42.6 0.0 0.0 0.0 10.9

8 1984 6.0 0.0 19.3 0.0 0.0 0.0 31.8 3.3 24.1 0.0 0.0 8.7

9 1985 18.0 0.0 14.8 6.9 0.0 0.0 30.9 0.0 0.0 0.0 0.0 8.1

10 1986 3.0 40.6 8.8 0.0 0.0 6.4 0.1 53.9 0.0 0.0 2.8 0.0

11 1987 1.8 12.7 24.9 8.3 13.2 4.8 14.7 0.0 0.0 0.0 0.0 0.0

12 1988 25.6 4.1 0.0 0.0 0.0 2.3 114.2 0.0 0.5 0.0 0.0 0.0

13 1989 0.0 0.0 0.0 0.0 6.1 0.0 6.1 2.8 0.0 0.0 3.0 4.6

14 1990 17.0 47.3 0.0 2.8 9.3 0.0 0.0 0.0 5.0 0.0 0.7 9.4

15 1991 35.3 29.9 14.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

16 1992 48.5 8.6 13.7 19.2 0.6 0.0 0.0 21.0 0.0 18.6 0.0 7.0

17 1993 11.5 0.0 0.8 14.3 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0

18 1994 2.5 13.3 0.0 16.9 0.0 0.0 42.5 14.0 1.4 3.5 0.0 7.6

19 1995 3.4 16.3 6.7 15.3 0.0 0.0 23.5 0.0 0.0 0.0 0.0 47.2

20 1996 36.5 6.8 26.1 0.0 0.0 10.1 3.8 0.0 0.0 0.0 0.0 0.0

21 1997 39.3 0.0 67.3 66.8 7.6 13.3 12.4 12.4 0.4 41.9 37.5 5.4

22 1998 14.7 1.8 38.2 0.0 0.0 0.0 1.8 0.0 25.0 0.0 0.0 0.0

23 1999 0.0 32.1 26.4 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0

24 2000 3.5 0.0 0.0 0.0 14.0 2.1 0.0 0.0 0.0 0.0 0.0 1.9

25 2001 0.0 7.2 3.0 0.0 0.0 2.0 21.6 0.0 0.0 0.0 0.0 0.0

26 2002 0.0 1.0 6.1 0.0 10.0 6.0 0.0 13.0 0.0 0.0 7.0 0.0

27 2003 0.0 7.8 5.7 0.0 0.0 0.0 24.5 0.0 0.0 0.0 0.0 0.0

28 2004 7.0 0.0 0.0 0.0 3.0 0.0 1.0 0.0 0.0 0.0 0.0 63.0

29 2005 3.0 99.6 63.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30 2006 8.0 0.0 8.0 0.0 0.0 0.0 3.0 16.0 2.0 0.0 3.0 83.0

31 2007 0.0 12.0 9.0 0.0 0.0 118.9 0.0 23.0 0.0 0.0 0.0 0.0

32 2008 17.5 1.0 0.0 3.0 0.0 26.0 0.0 21.0 0.0 0.0 0.0 7.0

33 2009 38.0 0.0 8.5 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0

34 2010 8.0 43.5 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

35 2011 0.0 36.0 43.0 32.0 3.0 0.0 7.0 16.0 0.0 0.0 0.0 2.0

36 2012 17.0 5.0 0.0 11.0 17.0 0.0 5.0 0.0 0.0 0.0 0.0 9.0

37 2013 0.0 18.0 17.0 24.0 0.0 0.0 1.0 16.0 7.0 0.0 0.0 0.0

38 2014 30.0 5.0 21.0 16.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

39 2015 13.0 13.0 8.0 4.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

40 2016 0 0 30 6 1 7 12 0 0 0 0 0

41 2017 21 1 0 0 15 0 0 0 0 0 0 0

12.8 15.0 15.1 8.3 3.5 5.0 12.1 7.7 1.7 2.1 1.6 10.0

Precipitatoin Data - Panjgur (1977 to 2017)

Figure A.9: Data Source: Courtesy of PMD
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S.no Years PasniJan PasniFeb PasniMar PasniApr PasniMay PasniJun PasniJul PasniAug PasniSep PasniOct PasniNov PasniDec

1 1977 0.4 0.0 0.0 0.0 0.0 0.0 1.5 1.4 0.0 0.0 0.3 28.4

2 1978 9.9 3.5 3.0 0.0 0.0 3.1 8.5 63.0 0.0 0.0 0.0 0.0

3 1979 47.8 24.4 0.0 0.0 0.6 0.5 0.0 0.0 0.0 4.0 0.0 143.0

4 1980 33.2 1.4 17.6 0.0 0.0 0.5 0.0 0.0 0.0 56.5 0.0 13.2

5 1981 1.0 0.0 56.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 1982 38.4 174.9 12.0 25.4 0.0 0.0 0.0 1.2 0.0 0.0 3.4 100.9

7 1983 0.1 11.4 0.1 1.8 0.0 0.0 4.0 153.8 0.0 0.0 0.0 1.2

8 1984 3.3 0.0 197.9 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 2.0

9 1985 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.0

10 1986 8.0 60.7 9.5 0.0 0.0 0.0 0.0 19.2 0.0 0.0 0.0 0.0

11 1987 11.6 1.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

12 1988 29.4 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

13 1989 1.2 2.5 10.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0

14 1990 2.8 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.4

15 1991 154.0 0.0 65.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0

16 1992 50.1 51.0 21.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 0.0 16.0

17 1993 27.0 1.0 0.0 0.3 0.0 0.3 2.9 13.9 1.3 0.0 0.0 0.0

18 1994 12.5 4.6 0.0 5.0 0.0 0.0 57.0 0.0 20.0 0.0 0.0 60.0

19 1995 0.0 44.0 25.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0.0 49.0

20 1996 108.0 0.0 8.3 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

21 1997 35.0 0.0 69.8 0.0 14.0 0.0 0.0 0.0 0.0 31.0 22.0 6.0

22 1998 7.0 46.5 12.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0

23 1999 12.1 45.0 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

24 2000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25 2001 0.0 0.0 0.0 0.0 0.0 0.0 21.0 0.0 0.0 0.0 0.0 0.0

26 2002 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 33.0

27 2003 45.1 0.0 0.0 22.2 0.0 0.0 48.0 0.0 0.0 0.0 0.0 4.0

28 2004 22.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39.0

29 2005 18.0 13.6 38.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0

30 2006 1.0 1.0 1.0 0.0 0.0 0.0 0.0 4.2 0.0 0.0 0.0 109.6

31 2007 0.0 3.8 53.5 0.0 0.0 106.3 42.0 1.3 0.0 0.0 0.0 0.0

32 2008 87.2 26.9 0.0 0.0 0.0 0.0 1.2 12.0 0.0 1.8 0.0 43.2

33 2009 35.2 0.0 1.5 0.0 0.0 2.0 2.0 0.0 1.0 0.0 1.2 7.0

34 2010 21.0 62.0 0.0 0.0 0.0 139.0 13.0 0.0 0.0 0.0 0.0 12.8

35 2011 0.0 0.0 11.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 18.0 2.0

36 2012 46.4 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 81.0

37 2013 0.0 3.0 3.0 36.0 0.0 22.0 0.0 16.0 0.0 0.0 22.0 0.0

38 2014 19.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

39 2015 8.0 0.0 21.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

40 2016 0 0 15.4 0 0 0 0 0 0 0 0 0

41 2017 7.8 0.6 0 0 0 0 0 0 0 0 0 0

22.0 14.9 16.4 2.3 0.5 6.7 5.2 7.7 0.5 2.3 1.7 19.8

Precipitatoin Data - Pasni (1977 to 2017)

Figure A.10: Data Source: Courtesy of PMD
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S.no Years QuettaJan QuettaFeb QuettaMar QuettaApr QuettaMay QuettaJun QuettaJul QuettaAug QuettaSep QuettaOct QuettaNov QuettaDec

1 1977 91.5 6.0 0.6 10.4 16.0 19.2 48.1 14.0 0.0 0.0 25.2 8.6

2 1978 68.0 58.3 18.2 16.5 0.0 0.0 121.8 1.1 0.0 0.0 23.1 10.5

3 1979 70.8 90.2 112.3 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 68.1

4 1980 69.9 30.0 95.5 2.7 0.0 5.2 0.0 0.0 0.0 24.8 13.1 3.6

5 1981 111.9 105.1 63.5 0.0 17.0 0.0 2.0 0.0 0.0 13.0 0.0 35.0

6 1982 178.0 189.2 232.4 30.4 23.0 0.0 0.0 50.0 0.0 68.8 16.0 162.0

7 1983 61.0 61.0 68.1 148.0 29.0 0.0 22.0 173.0 0.0 0.0 0.0 71.2

8 1984 58.2 19.4 40.5 5.8 0.0 0.0 0.0 1.3 0.0 0.0 0.0 18.0

9 1985 54.6 0.0 78.0 88.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.7

10 1986 4.2 102.8 45.8 0.0 0.0 0.0 1.0 66.0 0.0 0.0 19.6 4.5

11 1987 18.4 30.2 93.1 2.0 5.0 0.0 0.0 7.1 0.0 0.0 0.0 0.0

12 1988 29.6 14.8 121.1 0.0 0.0 0.0 59.5 0.0 0.0 0.0 0.0 34.0

13 1989 46.7 30.4 86.2 13.0 0.0 0.6 1.2 0.6 0.0 0.0 13.0 51.4

14 1990 137.1 79.5 40.8 2.8 0.0 0.0 0.0 1.6 0.0 0.0 1.0 50.4

15 1991 102.3 90.4 148.2 30.6 3.8 0.0 0.0 0.0 12.4 0.0 10.6 30.4

16 1992 29.4 57.1 66.8 158.7 5.8 0.0 0.2 4.2 0.0 21.0 0.0 66.4

17 1993 167.6 14.3 30.6 16.3 0.2 4.4 0.0 0.0 0.0 0.0 0.0 0.0

18 1994 48.4 35.2 26.6 4.6 29.0 0.0 64.0 22.0 62.0 0.0 0.0 13.0

19 1995 13.0 41.0 30.0 11.0 0.0 0.0 85.0 0.0 0.0 8.0 0.0 145.7

20 1996 34.0 34.0 43.0 1.0 8.0 2.0 0.0 0.0 0.0 3.0 0.0 9.0

21 1997 50.0 5.0 77.0 32.0 3.0 8.0 33.0 11.0 0.0 57.0 11.0 22.0

22 1998 61.0 38.0 58.0 6.0 17.0 4.0 3.0 0.0 0.0 0.0 0.0 0.0

23 1999 43.0 36.0 10.0 0.0 0.0 0.0 0.0 16.0 0.0 0.0 1.0 0.0

24 2000 15.5 14.0 3.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 131.0

25 2001 0.0 46.0 27.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.5

26 2002 5.0 23.8 40.0 44.0 0.0 0.0 0.0 0.0 0.0 0.0 15.5 51.0

27 2003 35.4 95.1 10.0 3.0 30.0 0.0 46.0 0.0 0.0 0.0 30.0 0.0

28 2004 60.8 14.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 4.0 40.0

29 2005 59.0 141.0 72.0 4.0 30.5 0.0 0.0 0.0 0.0 0.0 4.0 0.0

30 2006 17.0 8.0 26.5 6.0 2.0 0.0 2.0 38.0 0.0 0.0 72.0 35.0

31 2007 11.0 131.0 40.0 17.0 0.0 61.0 20.0 0.0 0.0 0.0 1.0 16.0

32 2008 97.0 15.0 0.0 6.0 1.0 2.5 0.0 2.0 0.0 0.0 0.0 11.0

33 2009 67.0 78.0 13.0 38.0 7.0 0.0 1.0 0.0 0.0 0.0 1.0 84.0

34 2010 45.0 51.0 6.0 16.0 7.0 5.0 0.0 1.0 0.0 2.0 0.0 0.0

35 2011 20.0 112.0 119.0 81.0 3.0 2.0 0.0 8.0 46.0 31.0 35.0 2.0

36 2012 43.0 65.0 17.0 137.0 6.0 0.0 0.0 0.0 6.0 0.0 8.0 31.0

37 2013 4.1 94.2 41.1 35.0 0.0 0.1 0.1 24.0 0.0 0.0 20.1 0.1

38 2014 2.4 31.0 73.5 23.4 36.5 0.1 0.0 0.1 0.1 0.2 0.3 1.0

39 2015 18.0 10.0 77.5 33.1 4.2 0.1 1.0 0.2 1.0 4.0 34.1 5.1

40 2016 56.3 0 67.3 4.3 11.3 14.1 3 0.1 0 0 0 0.4

41 2017 102 23.14 54.44 22.9 7.2 37 0.02 13.1 0 0 3.52 0.4

53.8 51.7 55.5 26.0 7.5 4.0 12.5 11.1 3.1 5.7 8.8 30.8

Precipitatoin Data - Quetta (1977 to 2017)

Figure A.11: Data Source: Courtesy of PMD
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S.no Years SibbiJan SibbiFeb SibbiMar SibbiApr SibbiMay SibbiJun SibbiJul SibbiAug SibbiSep SibbiOct SibbiNov SibbiDec

1 1977 8.8 0.0 0.0 22.1 0.0 46.1 42.3 26.0 1.5 0.0 8.3 0.7

2 1978 5.0 8.6 1.6 1.1 0.0 0.0 100.3 20.6 1.8 0.0 2.0 0.0

3 1979 14.3 54.4 91.1 55.6 0.0 0.0 0.0 75.9 0.0 0.0 0.6 1.5

4 1980 10.1 2.3 19.5 0.0 0.0 11.0 8.9 10.0 1.0 11.0 0.0 2.0

5 1981 6.4 6.3 32.6 0.0 4.7 0.0 38.1 6.0 0.0 0.0 0.0 0.0

6 1982 11.4 10.9 23.3 0.0 0.0 0.0 24.0 36.2 0.0 21.5 13.3 35.1

7 1983 6.7 21.1 6.0 3.0 7.0 0.0 28.7 71.0 0.0 0.0 0.0 2.2

8 1984 0.0 0.0 7.7 0.0 0.0 0.0 21.5 29.2 0.0 0.0 0.0 0.0

9 1985 0.0 0.0 0.1 35.3 0.0 0.0 42.5 31.4 0.0 0.0 0.0 9.1

10 1986 0.2 21.0 15.0 29.8 0.0 0.0 15.0 82.7 0.0 0.0 4.3 0.0

11 1987 4.0 21.6 35.2 3.2 30.1 0.0 20.0 2.0 0.0 0.0 0.0 0.0

12 1988 5.9 2.0 59.4 0.0 0.0 0.0 56.5 50.0 7.0 0.0 0.0 1.6

13 1989 4.0 0.0 111.3 0.0 0.0 2.0 69.9 101.0 9.0 0.0 5.1 9.0

14 1990 5.1 49.5 15.0 3.0 25.0 5.0 7.0 29.0 3.0 0.0 2.0 0.0

15 1991 13.0 25.0 26.0 24.3 12.0 0.0 0.0 20.0 34.0 0.0 1.0 19.7

16 1992 65.0 24.0 17.0 49.9 1.0 0.5 39.0 82.0 19.0 18.0 0.0 6.5

17 1993 37.7 2.0 14.0 18.0 0.7 0.7 87.7 5.0 12.0 0.0 0.0 0.0

18 1994 0.0 59.9 13.0 11.0 1.2 14.0 65.5 55.0 87.1 0.0 0.0 9.9

19 1995 1.1 2.9 8.2 28.5 0.0 0.0 112.8 21.8 0.0 8.1 0.0 8.3

20 1996 13.0 27.5 5.8 0.0 9.6 2.5 47.9 0.0 0.0 0.0 0.0 0.0

21 1997 20.2 0.0 30.6 0.0 41.2 60.1 45.4 14.6 0.0 65.2 13.1 17.0

22 1998 8.8 5.7 31.5 3.0 0.7 0.0 29.0 19.7 0.0 1.6 0.0 0.0

23 1999 17.0 27.4 18.7 0.0 14.2 0.0 0.0 40.7 0.0 0.0 0.0 0.0

24 2000 1.1 9.4 0.0 0.0 0.0 0.0 19.0 86.9 0.0 0.0 0.0 2.9

25 2001 0.0 3.0 0.0 1.1 0.0 27.3 93.9 43.6 47.2 0.0 0.0 0.0

26 2002 0.0 0.7 1.0 0.0 0.0 0.0 0.0 3.4 0.0 0.0 0.0 4.6

27 2003 5.6 17.3 4.0 0.0 10.5 2.0 60.5 51.0 14.0 0.0 0.7 0.0

28 2004 23.8 0.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0.0 0.0 21.0

29 2005 8.4 64.9 110.0 0.0 4.2 0.0 10.5 50.4 26.0 0.0 0.0 0.0

30 2006 0.0 11.2 22.9 3.1 0.0 0.0 10.3 80.7 0.0 0.0 2.0 39.5

31 2007 1.0 71.1 56.2 0.0 0.0 188.1 6.6 32.0 4.5 0.0 0.0 12.4

32 2008 6.6 9.8 1.3 2.5 2.0 75.2 65.3 6.7 14.4 0.0 0.0 22.7

33 2009 53.0 3.9 3.3 0.0 0.0 1.0 28.5 32.4 0.0 0.0 0.0 4.0

34 2010 1.2 1.9 0.3 0.6 0.0 0.0 107.6 93.2 43.0 0.0 0.0 0.0

35 2011 0.0 54.5 30.2 54.8 37.0 0.0 74.0 21.6 29.0 0.0 1.5 0.0

36 2012 8.7 1.6 2.0 32.7 0.0 26.6 42.6 106.0 112.0 0.0 0.0 0.0

37 2013 0.0 98.0 53.1 0.2 5.1 0.2 37.0 66.1 0.0 0.0 0.1 0.0

38 2014 0.0 9.0 0.2 0.1 8.0 0.0 6.1 17.0 12.0 0.0 0.0 0.1

39 2015 7.0 2.0 23.2 9.0 18.0 0.7 25.0 22.1 0.0 0.0 0.2 0.0

40 2016 0.2 0 25.1 10.5 8.5 70.7 57 60.1 2.5 0 0 0

41 2017 41 3 0.01 0 5 97 38.01 0.01 28 0 11 0

10.1 17.9 22.3 9.8 6.0 15.7 38.6 39.1 12.4 3.1 1.6 5.6

Precipitatoin Data - Sibbi (1977 to 2017)

Figure A.12: Data Source: Courtesy of PMD
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S.no Years ZhobJan ZhobFeb ZhobMar ZhobApr ZhobMay ZhobJun ZhobJul ZhobAug ZhobSep ZhobOct ZhobNov ZhobDec

1 1977 40.0 0.0 15.0 31.0 1.0 3.0 53.0 120.0 42.0 0.0 10.0 1.2

2 1978 39.3 12.0 10.0 10.0 0.0 5.0 13.1 13.7 2.1 0.0 1.0 11.0

3 1979 78.0 20.0 103.9 15.3 2.0 0.0 23.3 85.0 13.0 14.3 11.0 7.0

4 1980 24.9 66.0 101.1 6.8 1.0 21.4 29.5 24.6 14.8 19.5 7.4 1.0

5 1981 19.3 33.9 53.3 8.2 79.8 0.0 84.6 29.0 0.0 5.3 0.0 0.0

6 1982 30.1 45.6 97.7 23.0 31.5 0.0 5.6 57.5 0.0 25.6 18.9 40.7

7 1983 2.9 58.2 30.6 115.8 11.5 0.4 46.2 87.2 0.0 0.0 0.0 11.8

8 1984 4.1 6.4 5.0 25.2 0.0 23.6 120.5 107.0 0.7 0.0 0.2 10.3

9 1985 14.8 15.8 9.9 21.3 2.9 0.0 75.9 14.6 0.0 0.0 0.0 9.6

10 1986 2.0 21.9 64.3 22.6 18.1 9.2 11.0 18.4 0.0 0.0 11.3 0.0

11 1987 4.9 42.1 97.2 4.8 25.9 19.5 28.0 42.0 0.0 0.0 0.0 0.0

12 1988 15.8 7.5 66.2 9.2 0.0 8.3 53.4 94.4 14.5 0.0 0.0 17.5

13 1989 12.3 7.5 137.6 7.6 0.0 10.6 77.0 48.8 0.0 0.0 0.0 25.8

14 1990 50.3 57.5 24.7 47.2 28.3 10.2 11.4 165.1 26.5 0.0 0.0 39.1

15 1991 32.9 47.1 88.2 127.3 58.1 44.5 14.8 20.7 31.9 2.0 0.0 5.7

16 1992 39.9 10.7 19.0 108.0 21.4 4.2 69.1 48.5 1.0 20.0 1.0 14.9

17 1993 17.0 8.0 12.2 42.9 22.0 17.0 77.0 12.0 9.2 0.0 0.0 0.0

18 1994 16.0 35.0 59.0 52.0 0.8 54.0 95.0 3.3 58.0 0.0 3.0 16.0

19 1995 1.0 24.6 51.3 68.5 17.5 0.0 57.5 31.0 7.6 8.0 0.0 12.0

20 1996 15.2 19.0 27.0 26.8 27.6 15.0 80.5 113.9 0.0 0.0 0.0 5.1

21 1997 13.2 5.8 40.2 51.9 12.3 65.9 138.2 52.5 0.0 71.6 30.5 12.9

22 1998 18.3 33.8 41.1 1.2 27.9 20.5 65.7 37.0 6.0 1.0 0.0 0.0

23 1999 17.5 44.9 36.1 0.0 14.1 0.6 57.9 17.0 11.7 0.0 0.0 0.0

24 2000 3.3 8.0 22.0 0.0 3.0 5.4 82.0 26.9 4.0 0.0 0.0 8.8

25 2001 0.0 8.0 30.5 11.0 9.0 19.0 21.2 7.0 4.0 0.0 0.0 8.0

26 2002 0.0 31.0 47.0 48.0 0.0 29.0 28.0 11.2 30.4 19.0 29.0 4.0

27 2003 11.3 45.0 24.0 12.0 0.0 1.0 59.0 87.0 3.0 0.0 1.0 0.0

28 2004 38.3 8.0 0.0 16.0 3.0 13.2 38.0 11.0 13.0 4.0 7.7 32.7

29 2005 7.4 62.6 74.5 22.0 40.3 8.6 118.2 23.2 3.0 0.0 0.0 0.0

30 2006 8.2 4.0 41.4 6.3 18.4 46.0 58.5 8.0 19.0 0.0 62.2 31.6

31 2007 1.3 81.5 41.0 2.0 24.6 77.0 80.0 23.0 8.0 0.0 1.0 18.0

32 2008 21.0 8.0 6.0 21.6 5.3 74.8 122.0 19.0 15.0 0.0 0.0 12.0

33 2009 23.0 33.4 34.0 47.6 0.0 9.9 99.4 9.1 5.5 0.0 0.0 7.6

34 2010 11.2 3.0 22.5 7.0 15.0 7.0 117.7 118.4 0.0 0.0 0.0 0.0

35 2011 2.0 35.5 33.7 12.0 3.0 3.0 12.1 0.0 0.0 2.0 6.3 0.0

36 2012 6.4 27.0 0.0 53.5 4.6 31.0 41.6 53.0 31.0 0.0 0.0 14.5

37 2013 0.0 51.0 56.0 22.0 5.0 36.0 4.0 38.0 0.0 0.0 9.0 0.0

38 2014 0.0 25.0 66.0 29.0 24.0 4.0 15.0 24.0 22.0 0.0 10.0 0.0

39 2015 19.0 27.0 22.0 12.0 24.0 18.0 45.5 63.3 54.0 5.0 9.0 0.0

40 2016 16 0 51 46 17 9 25 40 2 0 0 0

41 2017 23 21.01 20 0.01 6 2 47.02 33 2 42 0 0

17.1 26.9 43.5 29.1 14.8 17.7 56.2 44.8 11.1 5.8 5.6 9.2

Precipitatoin Data - Zhob (1977 to 2017)

Figure A.13: Data Source: Courtesy of PMD



Annexure B

Year Observation Observed Precp
Estimated 

Precp Residuals RMSE MAE

1977 1 47.258 52.598 -5.340 28.515 5.340
1978 2 30.860 20.224 10.636 113.125 10.636
1979 3 33.960 34.220 -0.260 0.068 0.260
1980 4 26.800 26.097 0.703 0.495 0.703
1981 5 30.120 18.736 11.384 129.602 11.384
1982 6 70.002 38.798 31.204 973.669 31.204
1983 7 23.504 17.136 6.368 40.558 6.368
1984 8 23.282 25.983 -2.701 7.295 2.701
1985 9 24.720 43.814 -19.094 364.587 19.094
1986 10 3.720 -0.700 4.420 19.539 4.420
1987 11 10.400 -5.460 15.860 251.548 15.860
1988 12 18.860 39.156 -20.296 411.913 20.296
1989 13 20.080 19.571 0.509 0.260 0.509
1990 14 63.000 51.630 11.370 129.286 11.370
1991 15 43.600 47.075 -3.475 12.076 3.475
1992 16 69.340 63.910 5.430 29.484 5.430
1993 17 64.580 46.688 17.892 320.137 17.892
1994 18 14.440 13.887 0.553 0.306 0.553
1995 19 10.160 17.982 -7.822 61.190 7.822
1996 20 30.080 34.254 -4.174 17.419 4.174
1997 21 36.960 41.437 -4.477 20.047 4.477
1998 22 45.420 45.673 -0.253 0.064 0.253
1999 23 27.240 32.951 -5.711 32.613 5.711
2000 24 11.460 22.373 -10.913 119.101 10.913
2001 25 0.144 -5.556 5.700 32.489 5.700
2002 26 4.520 23.781 -19.261 370.975 19.261
2003 27 16.540 19.867 -3.327 11.070 3.327
2004 28 48.460 46.138 2.322 5.390 2.322
2005 29 20.140 24.720 -4.580 20.976 4.580
2006 30 7.780 13.425 -5.645 31.867 5.645
2007 31 5.360 18.516 -13.156 173.071 13.156
2008 32 55.960 32.716 23.244 540.267 23.244
2009 33 47.140 38.662 8.478 71.872 8.478
2010 34 13.000 12.170 0.830 0.688 0.830
2011 35 8.980 20.151 -11.171 124.785 11.171
2012 36 22.080 22.801 -0.721 0.520 0.721
2013 37 0.820 -6.485 7.305 53.369 7.305
2014 38 1.880 14.708 -12.828 164.562 12.828
2015 39 11.600 18.805 -7.205 51.914 7.205
2016 1 16.260 10.754 5.506 30.321 5.506
2017 2 48.200 34.337 13.863 192.187 13.863
2018 3 0.100 1.003 -0.903 0.815 0.903
2019 4 19.600 23.988 -4.388 19.256 4.388
2020 5 24.740 30.743 -6.003 36.032 6.003

11.021 8.375
7.465 6.133

Loss Error in MLR for the month of JANUARY for both training period (1977-2015) and validation period (2016-2020)

 Training period (1977-2015)
Validation period (2016-2020)

Figure B.1: Author’s work

235



Annexure B 236

Year Observation Observed Precp
Estimated 

Precp Residuals RMSE MAE

1977 1 46.560 43.581 2.979 8.875 2.979
1978 2 16.380 35.331 -18.951 359.135 18.951
1979 3 3.200 18.384 -15.184 230.545 15.184
1980 4 9.680 17.906 -8.226 67.673 8.226
1981 5 1.420 1.891 -0.471 0.222 0.471
1982 6 3.820 20.891 -17.071 291.419 17.071
1983 7 5.360 8.208 -2.848 8.109 2.848
1984 8 6.660 15.376 -8.716 75.975 8.716
1985 9 13.780 -0.191 13.971 195.186 13.971
1986 10 7.540 8.378 -0.838 0.702 0.838
1987 11 8.280 19.381 -11.101 123.231 11.101
1988 12 13.920 20.726 -6.806 46.319 6.806
1989 13 17.480 22.586 -5.106 26.071 5.106
1990 14 10.660 19.924 -9.264 85.830 9.264
1991 15 11.360 8.302 3.058 9.353 3.058
1992 16 5.720 6.622 -0.902 0.813 0.902
1993 17 26.800 28.119 -1.319 1.741 1.319
1994 18 14.842 14.237 0.605 0.366 0.605
1995 19 8.042 7.495 0.547 0.299 0.547
1996 20 46.080 43.050 3.030 9.183 3.030
1997 21 66.940 47.038 19.902 396.102 19.902
1998 22 28.220 25.136 3.084 9.509 3.084
1999 23 7.780 7.128 0.652 0.425 0.652
2000 24 2.400 1.844 0.556 0.309 0.556
2001 25 15.722 24.021 -8.299 68.878 8.299
2002 26 7.722 -2.328 10.050 100.994 10.050
2003 27 18.000 23.117 -5.117 26.187 5.117
2004 28 15.002 23.404 -8.402 70.585 8.402
2005 29 7.182 11.552 -4.370 19.097 4.370
2006 30 29.922 17.708 12.214 149.190 12.214
2007 31 84.600 62.872 21.728 472.100 21.728
2008 32 39.400 36.300 3.100 9.610 3.100
2009 33 8.180 23.659 -15.479 239.607 15.479
2010 34 12.300 10.107 2.193 4.808 2.193
2011 35 10.800 1.924 8.876 78.783 8.876
2012 36 9.220 -1.327 10.547 111.237 10.547
2013 37 28.180 8.923 19.257 370.838 19.257
2014 38 5.420 -1.976 7.396 54.700 7.396
2015 39 21.460 16.735 4.725 22.326 4.725
2016 1 24.480 3.274 21.206 449.692 21.206
2017 2 42.800 18.314 24.486 599.545 24.486
2018 3 9.200 1.459 7.741 59.922 7.741
2019 4 11.400 -1.421 12.821 164.376 12.821
2020 5 9.600 12.977 -3.377 11.407 3.377

9.801 7.614
16.031 13.926

Loss Error in MLR for the month of JUNE for both training period (1977-2015) and validation period (2016-2020)

 Training period (1977-2015)
Validation period (2016-2020)

Figure B.2: Author’s work
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Year Observation Observed Precp
Estimated 

Precp Residuals RMSE MAE

1977 1 47.258 52.080 -4.822 23.256 4.822
1978 2 30.860 30.393 0.467 0.218 0.467
1979 3 33.960 33.094 0.866 0.751 0.866
1980 4 26.800 21.700 5.100 26.013 5.100
1981 5 30.120 35.813 -5.693 32.413 5.693
1982 6 70.002 68.038 1.964 3.858 1.964
1983 7 23.504 28.811 -5.307 28.163 5.307
1984 8 23.282 13.913 9.369 87.785 9.369
1985 9 24.720 19.791 4.929 24.295 4.929
1986 10 3.720 5.253 -1.533 2.351 1.533
1987 11 10.400 5.380 5.020 25.197 5.020
1988 12 18.860 25.294 -6.434 41.391 6.434
1989 13 20.080 28.403 -8.323 69.273 8.323
1990 14 63.000 50.465 12.535 157.118 12.535
1991 15 43.600 47.975 -4.375 19.143 4.375
1992 16 69.340 62.104 7.236 52.360 7.236
1993 17 64.580 56.648 7.932 62.923 7.932
1994 18 14.440 9.162 5.278 27.856 5.278
1995 19 10.160 1.879 8.281 68.579 8.281
1996 20 30.080 45.868 -15.788 249.257 15.788
1997 21 36.960 33.931 3.029 9.178 3.029
1998 22 45.420 45.594 -0.174 0.030 0.174
1999 23 27.240 30.789 -3.549 12.592 3.549
2000 24 11.460 17.986 -6.526 42.591 6.526
2001 25 0.144 15.165 -15.021 225.615 15.021
2002 26 4.520 3.618 0.902 0.813 0.902
2003 27 16.540 20.053 -3.513 12.343 3.513
2004 28 48.460 43.618 4.842 23.449 4.842
2005 29 20.140 4.470 15.670 245.545 15.670
2006 30 7.780 4.945 2.835 8.036 2.835
2007 31 5.360 19.719 -14.359 206.184 14.359
2008 32 55.960 42.801 13.159 173.164 13.159
2009 33 47.140 45.515 1.625 2.641 1.625
2010 34 13.000 1.329 11.671 136.212 11.671
2011 35 8.980 6.706 2.274 5.172 2.274
2012 36 22.080 20.700 1.380 1.904 1.380
2013 37 0.820 16.702 -15.882 252.226 15.882
2014 38 1.880 12.716 -10.836 117.416 10.836
2015 39 11.600 15.831 -4.231 17.904 4.231
2016 1 16.260 20.282 -4.022 16.180 4.022
2017 2 48.200 -11.057 59.257 3511.335 59.257
2018 3 0.100 0.219 -0.119 0.014 0.119
2019 4 19.600 9.611 9.989 99.773 9.989
2020 5 24.740 26.800 -2.060 4.244 2.060

7.999 6.480
26.950 15.089

Loss Error in PCR for the month of JANUARY for both training period (1977-2015) and validation period (2016-2020)

Validation period (2016-2020)
 Training period (1977-2015)

Figure B.3: Author’s work
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Year Observation Observed Precp
Estimated 

Precp Residuals RMSE MAE

1977 1 46.560 43.825 2.735 7.480 2.735
1978 2 16.380 16.125 0.255 0.065 0.255
1979 3 3.200 10.036 -6.836 46.731 6.836
1980 4 9.680 8.754 0.926 0.857 0.926
1981 5 1.420 4.749 -3.329 11.083 3.329
1982 6 3.820 6.463 -2.643 6.986 2.643
1983 7 5.360 4.831 0.529 0.280 0.529
1984 8 6.660 12.713 -6.053 36.638 6.053
1985 9 13.780 15.411 -1.631 2.659 1.631
1986 10 7.540 6.581 0.959 0.919 0.959
1987 11 8.280 5.026 3.254 10.592 3.254
1988 12 13.920 6.163 7.757 60.168 7.757
1989 13 17.480 17.874 -0.394 0.156 0.394
1990 14 10.660 10.249 0.411 0.169 0.411
1991 15 11.360 9.780 1.580 2.495 1.580
1992 16 5.720 6.501 -0.781 0.610 0.781
1993 17 26.800 29.584 -2.784 7.751 2.784
1994 18 14.842 10.519 4.323 18.684 4.323
1995 19 8.042 9.058 -1.016 1.031 1.016
1996 20 46.080 41.454 4.626 21.399 4.626
1997 21 66.940 65.484 1.456 2.120 1.456
1998 22 28.220 26.259 1.961 3.846 1.961
1999 23 7.780 4.292 3.488 12.168 3.488
2000 24 2.400 8.218 -5.818 33.853 5.818
2001 25 15.722 10.106 5.616 31.539 5.616
2002 26 7.722 8.063 -0.341 0.116 0.341
2003 27 18.000 21.848 -3.848 14.807 3.848
2004 28 15.002 23.204 -8.202 67.266 8.202
2005 29 7.182 9.749 -2.567 6.592 2.567
2006 30 29.922 31.748 -1.826 3.335 1.826
2007 31 84.600 82.428 2.172 4.717 2.172
2008 32 39.400 39.770 -0.370 0.137 0.370
2009 33 8.180 14.416 -6.236 38.889 6.236
2010 34 12.300 14.308 -2.008 4.031 2.008
2011 35 10.800 5.483 5.317 28.273 5.317
2012 36 9.220 3.374 5.846 34.174 5.846
2013 37 28.180 28.286 -0.106 0.011 0.106
2014 38 5.420 -0.446 5.866 34.406 5.866
2015 39 21.460 23.747 -2.287 5.231 2.287
2016 1 24.480 6.967 17.513 306.690 17.513
2017 2 42.800 55.696 -12.896 166.300 12.896
2018 3 9.200 27.599 -18.399 338.517 18.399
2019 4 11.400 26.594 -15.194 230.844 15.194
2020 5 9.600 10.719 -1.119 1.253 1.119

3.797 3.030
14.447 13.024

Loss Error in PCR for the month of JUNE for both training period (1977-2015) and validation period (2016-2020)

Validation period (2016-2020)
 Training period (1977-2015)

Figure B.4: Author’s work
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Year Observation
Observed 

Precp

Predicted 

Precp
Residuals RMSE

NSE-

(Numerator) 

NSE-

(Denomenator)
PBIAS

1977 1 47 53 -5 29 29 764 -5

1978 2 31 20 11 113 113 126 11

1979 3 34 34 0 0 0 206 0

1980 4 27 26 1 0 0 52 1

1981 5 30 19 11 130 130 110 11

1982 6 70 39 31 974 974 2539 31

1983 7 24 17 6 41 41 15 6

1984 8 23 26 -3 7 7 13 -3

1985 9 25 44 -19 365 365 26 -19

1986 10 4 -1 4 20 20 253 4

1987 11 10 -5 16 252 252 85 16

1988 12 19 39 -20 412 412 1 -20

1989 13 20 20 1 0 0 0 1

1990 14 63 52 11 129 129 1882 11

1991 15 44 47 -3 12 12 575 -3

1992 16 69 64 5 29 29 2472 5

1993 17 65 47 18 320 320 2022 18

1994 18 14 14 1 0 0 27 1

1995 19 10 18 -8 61 61 89 -8

1996 20 30 34 -4 17 17 109 -4

1997 21 37 41 -4 20 20 301 -4

1998 22 45 46 0 0 0 666 0

1999 23 27 33 -6 33 33 58 -6

2000 24 11 22 -11 119 119 67 -11

2001 25 0 -6 6 32 32 379 6

2002 26 5 24 -19 371 371 228 -19

2003 27 17 20 -3 11 11 9 -3

2004 28 48 46 2 5 5 832 2

2005 29 20 25 -5 21 21 0 -5

2006 30 8 13 -6 32 32 140 -6

2007 31 5 19 -13 173 173 203 -13

2008 32 56 33 23 540 540 1321 23

2009 33 47 39 8 72 72 758 8

2010 34 13 12 1 1 1 44 1

2011 35 9 20 -11 125 125 113 -11

2012 36 22 23 -1 1 1 6 -1

2013 37 1 -6 7 53 53 353 7

2014 38 2 15 -13 165 165 315 -13

2015 39 12 19 -7 52 52 64 -7

2016 40 16 11 6 30 30 11 6

2017 41 48 34 14 192 192 817 14

2018 42 0 1 -1 1 1 381 -1

2019 43 20 24 -4 19 19 0 -4

2020 44 25 31 -6 36 36 26 -6

STDEV 20 26 11 5015 18459 10

Aveg 25.98 7.465

Sum 1153.15 NSE 0.7283

PBIAS 0.86%

RSR 0.5618

Loss Error in MLR (NSE,PBIAS & RSR) for the month of JANUARY (1977-2020)

Figure B.5: Author’s work
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Year Observation
Observed 

Precp

Predicted 

Precp Residuals RMSE
NSE-

(Numerator) 

NSE-

(Denomenator)
PBIAS

1977 1.0 46.6 43.6 3.0 8.9 8.9 857.6 3.0

1978 2.0 16.4 35.3 -19.0 359.1 359.1 0.8 -19.0

1979 3.0 3.2 18.4 -15.2 230.5 230.5 198.1 -15.2

1980 4.0 9.7 17.9 -8.2 67.7 67.7 57.7 -8.2

1981 5.0 1.4 1.9 -0.5 0.2 0.2 251.4 -0.5

1982 6.0 3.8 20.9 -17.1 291.4 291.4 181.1 -17.1

1983 7.0 5.4 8.2 -2.8 8.1 8.1 142.0 -2.8

1984 8.0 6.7 15.4 -8.7 76.0 76.0 112.7 -8.7

1985 9.0 13.8 -0.2 14.0 195.2 195.2 12.2 14.0

1986 10.0 7.5 8.4 -0.8 0.7 0.7 94.8 -0.8

1987 11.0 8.3 19.4 -11.1 123.2 123.2 80.9 -11.1

1988 12.0 13.9 20.7 -6.8 46.3 46.3 11.3 -6.8

1989 13.0 17.5 22.6 -5.1 26.1 26.1 0.0 -5.1

1990 14.0 10.7 19.9 -9.3 85.8 85.8 43.8 -9.3

1991 15.0 11.4 8.3 3.1 9.4 9.4 35.0 3.1

1992 16.0 5.7 6.6 -0.9 0.8 0.8 133.5 -0.9

1993 17.0 26.8 28.1 -1.3 1.7 1.7 90.7 -1.3

1994 18.0 14.8 14.2 0.6 0.4 0.4 5.9 0.6

1995 19.0 8.0 7.5 0.5 0.3 0.3 85.3 0.5

1996 20.0 46.1 43.0 3.0 9.2 9.2 829.7 3.0

1997 21.0 66.9 47.0 19.9 396.1 396.1 2466.5 19.9

1998 22.0 28.2 25.1 3.1 9.5 9.5 119.8 3.1

1999 23.0 7.8 7.1 0.7 0.4 0.4 90.2 0.7

2000 24.0 2.4 1.8 0.6 0.3 0.3 221.3 0.6

2001 25.0 15.7 24.0 -8.3 68.9 68.9 2.4 -8.3

2002 26.0 7.7 -2.3 10.0 101.0 101.0 91.3 10.0

2003 27.0 18.0 23.1 -5.1 26.2 26.2 0.5 -5.1

2004 28.0 15.0 23.4 -8.4 70.6 70.6 5.2 -8.4

2005 29.0 7.2 11.6 -4.4 19.1 19.1 101.9 -4.4

2006 30.0 29.9 17.7 12.2 149.2 149.2 159.9 12.2

2007 31.0 84.6 62.9 21.7 472.1 472.1 4532.6 21.7

2008 32.0 39.4 36.3 3.1 9.6 9.6 489.5 3.1

2009 33.0 8.2 23.7 -15.5 239.6 239.6 82.7 -15.5

2010 34.0 12.3 10.1 2.2 4.8 4.8 24.8 2.2

2011 35.0 10.8 1.9 8.9 78.8 78.8 41.9 8.9

2012 36.0 9.2 -1.3 10.5 111.2 111.2 64.9 10.5

2013 37.0 28.2 8.9 19.3 370.8 370.8 118.9 19.3

2014 38.0 5.4 -2.0 7.4 54.7 54.7 140.6 7.4

2015 39.0 21.5 16.7 4.7 22.3 22.3 17.5 4.7

2016 40.0 24.5 3.3 21.2 449.7 449.7 51.9 21.2

2017 41.0 42.8 18.3 24.5 599.5 599.5 651.5 24.5

2018 42.0 9.2 1.5 7.7 59.9 59.9 65.2 7.7

2019 43.0 11.4 -1.4 12.8 164.4 164.4 34.5 12.8

2020 44.0 9.6 13.0 -3.4 11.4 11.4 58.9 -3.4

STDEV 17.28 16.61 9.80 5031.27 12858.8 62.9

Aveg 16.61

Sum 793.51 NSE 0.6087

PBIAS 7.92%

RSR 0.5673

Loss Error  in MLR (NSE,PBIAS &RSR) for the month of JUNE (1977-2020)

Figure B.6: Author’s work
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Year Observation
Observed 

Precp

Predicted 

Precp Residuals RMSE
NSE-

(Numerator) 

NSE-

(Denomenator)
PBIAS

1977 1.0 47.3 52.1 -4.8 23.3 23.3 764.0 -4.8

1978 2.0 30.9 30.4 0.5 0.2 0.2 126.4 0.5

1979 3.0 34.0 33.1 0.9 0.8 0.8 205.7 0.9

1980 4.0 26.8 21.7 5.1 26.0 26.0 51.6 5.1

1981 5.0 30.1 35.8 -5.7 32.4 32.4 110.3 -5.7

1982 6.0 70.0 68.0 2.0 3.9 3.9 2538.6 2.0

1983 7.0 23.5 28.8 -5.3 28.2 28.2 15.1 -5.3

1984 8.0 23.3 13.9 9.4 87.8 87.8 13.4 9.4

1985 9.0 24.7 19.8 4.9 24.3 24.3 26.0 4.9

1986 10.0 3.7 5.3 -1.5 2.4 2.4 252.7 -1.5

1987 11.0 10.4 5.4 5.0 25.2 25.2 85.0 5.0

1988 12.0 18.9 25.3 -6.4 41.4 41.4 0.6 -6.4

1989 13.0 20.1 28.4 -8.3 69.3 69.3 0.2 -8.3

1990 14.0 63.0 50.5 12.5 157.1 157.1 1882.1 12.5

1991 15.0 43.6 48.0 -4.4 19.1 19.1 575.2 -4.4

1992 16.0 69.3 62.1 7.2 52.4 52.4 2472.4 7.2

1993 17.0 64.6 56.6 7.9 62.9 62.9 2021.7 7.9

1994 18.0 14.4 9.2 5.3 27.9 27.9 26.8 5.3

1995 19.0 10.2 1.9 8.3 68.6 68.6 89.4 8.3

1996 20.0 30.1 45.9 -15.8 249.3 249.3 109.5 -15.8

1997 21.0 37.0 33.9 3.0 9.2 9.2 300.8 3.0

1998 22.0 45.4 45.6 -0.2 0.0 0.0 665.8 -0.2

1999 23.0 27.2 30.8 -3.5 12.6 12.6 58.1 -3.5

2000 24.0 11.5 18.0 -6.5 42.6 42.6 66.5 -6.5

2001 25.0 0.1 15.2 -15.0 225.6 225.6 379.2 -15.0

2002 26.0 4.5 3.6 0.9 0.8 0.8 227.9 0.9

2003 27.0 16.5 20.1 -3.5 12.3 12.3 9.5 -3.5

2004 28.0 48.5 43.6 4.8 23.4 23.4 831.9 4.8

2005 29.0 20.1 4.5 15.7 245.5 245.5 0.3 15.7

2006 30.0 7.8 4.9 2.8 8.0 8.0 140.1 2.8

2007 31.0 5.4 19.7 -14.4 206.2 206.2 203.3 -14.4

2008 32.0 56.0 42.8 13.2 173.2 173.2 1320.8 13.2

2009 33.0 47.1 45.5 1.6 2.6 2.6 757.5 1.6

2010 34.0 13.0 1.3 11.7 136.2 136.2 43.8 11.7

2011 35.0 9.0 6.7 2.3 5.2 5.2 113.1 2.3

2012 36.0 22.1 20.7 1.4 1.9 1.9 6.1 1.4

2013 37.0 0.8 16.7 -15.9 252.2 252.2 353.3 -15.9

2014 38.0 1.9 12.7 -10.8 117.4 117.4 314.6 -10.8

2015 39.0 11.6 15.8 -4.2 17.9 17.9 64.3 -4.2

2016 40.0 16.3 20.3 -4.0 16.2 16.2 11.3 -4.0

2017 41.0 48.2 -11.1 59.3 3511.3 3511.3 817.0 59.3

2018 42.0 0.1 0.2 -0.1 0.0 0.0 380.9 -0.1

2019 43.0 19.6 9.6 10.0 99.8 99.8 0.0 10.0

2020 44.0 24.7 26.8 -2.1 4.2 4.2 26.2 -2.1

STDEV 19.6 24.8 8.0 6126.8 18459.0 63.0

Aveg 24.78

Sum 1153.15 NSE 0.6681

PBIAS 5.47%

RSR 0.4077

Loss Error  in PCR (NSE,PBIAS &RSR) for the month of JANAURY (1977-2020)

Figure B.7: Author’s work
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Year Observation
Observed 

Precp

Predicted 

Precp
Residuals RMSE

NSE-

(Numerator) 

NSE-

(Denomenator)
PBIAS

1977 1 46.6 43.8 2.7 7.5 7.5 857.6 2.7

1978 2 16.4 16.1 0.3 0.1 0.1 0.8 0.3

1979 3 3.2 10.0 -6.8 46.7 46.7 198.1 -6.8

1980 4 9.7 8.8 0.9 0.9 0.9 57.7 0.9

1981 5 1.4 4.7 -3.3 11.1 11.1 251.4 -3.3

1982 6 3.8 6.5 -2.6 7.0 7.0 181.1 -2.6

1983 7 5.4 4.8 0.5 0.3 0.3 142.0 0.5

1984 8 6.7 12.7 -6.1 36.6 36.6 112.7 -6.1

1985 9 13.8 15.4 -1.6 2.7 2.7 12.2 -1.6

1986 10 7.5 6.6 1.0 0.9 0.9 94.8 1.0

1987 11 8.3 5.0 3.3 10.6 10.6 80.9 3.3

1988 12 13.9 6.2 7.8 60.2 60.2 11.3 7.8

1989 13 17.5 17.9 -0.4 0.2 0.2 0.0 -0.4

1990 14 10.7 10.2 0.4 0.2 0.2 43.8 0.4

1991 15 11.4 9.8 1.6 2.5 2.5 35.0 1.6

1992 16 5.7 6.5 -0.8 0.6 0.6 133.5 -0.8

1993 17 26.8 29.6 -2.8 7.8 7.8 90.7 -2.8

1994 18 14.8 10.5 4.3 18.7 18.7 5.9 4.3

1995 19 8.0 9.1 -1.0 1.0 1.0 85.3 -1.0

1996 20 46.1 41.5 4.6 21.4 21.4 829.7 4.6

1997 21 66.9 65.5 1.5 2.1 2.1 2466.5 1.5

1998 22 28.2 26.3 2.0 3.8 3.8 119.8 2.0

1999 23 7.8 4.3 3.5 12.2 12.2 90.2 3.5

2000 24 2.4 8.2 -5.8 33.9 33.9 221.3 -5.8

2001 25 15.7 10.1 5.6 31.5 31.5 2.4 5.6

2002 26 7.7 8.1 -0.3 0.1 0.1 91.3 -0.3

2003 27 18.0 21.8 -3.8 14.8 14.8 0.5 -3.8

2004 28 15.0 23.2 -8.2 67.3 67.3 5.2 -8.2

2005 29 7.2 9.7 -2.6 6.6 6.6 101.9 -2.6

2006 30 29.9 31.7 -1.8 3.3 3.3 159.9 -1.8

2007 31 84.6 82.4 2.2 4.7 4.7 4532.6 2.2

2008 32 39.4 39.8 -0.4 0.1 0.1 489.5 -0.4

2009 33 8.2 14.4 -6.2 38.9 38.9 82.7 -6.2

2010 34 12.3 14.3 -2.0 4.0 4.0 24.8 -2.0

2011 35 10.8 5.5 5.3 28.3 28.3 41.9 5.3

2012 36 9.2 3.4 5.8 34.2 34.2 64.9 5.8

2013 37 28.2 28.3 -0.1 0.0 0.0 118.9 -0.1

2014 38 5.4 -0.4 5.9 34.4 34.4 140.6 5.9

2015 39 21.5 23.7 -2.3 5.2 5.2 17.5 -2.3

2016 40 24.5 7.0 17.5 306.7 306.7 51.9 17.5

2017 41 42.8 55.7 -12.9 166.3 166.3 651.5 -12.9

2018 42 9.2 27.6 -18.4 338.5 338.5 65.2 -18.4

2019 43 11.4 26.6 -15.2 230.8 230.8 34.5 -15.2

2020 44 9.6 10.7 -1.1 1.3 1.3 58.9 -1.1

STDEV 17.3 18.7 3.8 1605.9 12858.8 -30.1

Aveg 18.72

Sum 793.51 NSE 0.8751

PBIAS -3.79%

RSR 0.2198

Loss Error  in PCR (NSE,PBIAS &RSR) for the month of JUNE (1977-2020)

Figure B.8: Author’s work
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