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Abstract

The present thesis discusses a class of physical problems that contains the prop-

agation and attenuation of fluid-structure coupled waves through discontinuous

flexible waveguides which support structure-borne as well as fluid-borne vibra-

tions. The modelled configurations of flexible waveguides comprise thin elastic

elements such as elastic membranes and/or plates joined to the structural discon-

tinuities with or without flanges. The associated boundary value problems are

governed by Helmholtz’s equation and have Dirichlet, Neumann, Robin and/or

higher order boundary conditions. The Mode-Matching (MM) scheme is used

to solve the governing boundary value problems. This technique relies on the

eigenfunction ansatz, which are based on the eigenvalue problem corresponding to

the given boundary value problems. The eigenvalue problems having rigid, soft or

impedance types of boundary conditions reveal orthogonal eigenfunctions, and the

resulted eigen-sub-systems undergo Sturm-Liouville (SL) category. However, if the

eigenvalue problems involve higher order boundary conditions the eigenfunctions

are non-orthogonal in nature and, the resulted eigen-sub-systems underlie non-

Sturm-Liouville category. In such systems, the development and use of generalized

orthogonal characteristics is indispensable to ensure the point-wise convergence of

the solution. The orthogonal characteristics are incorporated in the process of

conversion of differential systems to the linear algebraic systems. The application

of generalized orthogonality relation (OR) governs additional constants that are

found through application of appropriate edge conditions. The systems are trun-

cated and inverted to explain physical characteristics of the modeled structures.

The numerical computations are performed by using the truncated solutions to see

how the choice of appropriate edge conditions, structural variations and bound-

ing wall conditions affect acoustic attenuation for structure-borne as well as fluid-

borne vibrations. Furthermore, the Low-Frequency Approximation (LFA) solution

which is valid only in low frequency regime is developed. The performance of LFA

is compared with the benchmark MM method and is found in a good agreement

with relative merits.
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Chapter 1

Introduction

Today acoustic, “the science of sound” has become an interdisciplinary field. It

embodies many disciplines such as physics, mathematics, mechanical engineering,

speech and hearing sciences. Acoustic has provided many challenging and inter-

esting problems to engineers and researchers [1–7]. The continued interest in the

field is often motivated by the necessity to design objects or channels useful in the

reduction of structural vibrations and the associated noises. Such noises are usu-

ally generated by the variety of mechanisms occurring in systems of automobiles,

turbofan engines, aero-engines, heating ventilation and air-conditioning (HVAC)

systems and other engineering designs [8–12]. The duct-like structure is a common

component in all these systems. Their key objective is to distribute air flow from

the buildings or exhausts to environment. But, many times the waveguide acts as

a conduit for a plethora of annoying sounds to living and working environment.

To mitigate the noise level, the study of noise reduction problems has received

considerable attention of scientific community. In many engineering applications,

noise is mitigated by controlling the vibrations of boundaries and unsteady flow

phenomena. The techniques are classified into active noise control and passive

noise control. In the active noise control, mitigation is achieved by noise cancella-

tion (see, for instance, [13–16]). In passive noise control, sound-reducing measures

are incorporated into the original system designs or retrofitting is used. Passive

1



Introduction 2

treatments are commonly used, for example, for mitigation of rocket launch noise

(refer, for instance, to [17, 18]).

Usually the length of the duct is long enough in the HVAC systems to attenuate

the sound sufficiently and the produced radiation field is negligible at the duct

termination. In contrast, the modern jet engines, for example, have relatively short

lengths and therefore, the radiated field at the duct termination is not negligible.

Accordingly, sound-absorbing materials are extensively used in noise attenuation

and a variety of them is available for applications as duct liners. They can be

grouped into three broad categories: porous materials with or without facings,

sintered fiber metals with air cavity backing, and Helmholtz resonators which

include perforated panels with air cavity backing. Generally, fiber metals and

perforated panels are used more often [19–21].

The sound-absorbing material lined in a duct that allows little or no sound propa-

gation parallel to the wall is called locally reacting and can be described by a wall

impedance (see, for instance, [22–24]). These physical problems are usually gov-

erned by Helmholtz or Laplace’s type equation and have rigid, soft or impedance

type of boundaries. The mathematical form of impedance boundary condition as

given in [25] is

ρφt + Zn · ∇φ = 0, (1.1)

where n is unit normal vector directed into the surface, φ represents the field

potential, φt denotes the derivative of field potential with respect to time and, ρ

is the density of fluid. Here Z denotes the specific impedance of the bounding

surface, When Z →∞ the surface is acoustically rigid but if Z → 0 the surface is

soft. The acoustics scattering through different physical configuration containing

boundaries of the type (1.1) have been addressed by many authors, for instance,

see [26–31]. Note that the boundaries defined in (1.1) do not support vibration

along the surfaces.

However, if the bounding surfaces are dynamical in nature that support vibration

such as elastic membranes or plates, the boundary conditions involve second or

higher order derivatives and are referred as “higher order boundary conditions”.
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The general form of higher order boundary condition as given in [32] is

Lp
(
∂

∂x

)
∂φ

∂y
+Mp

(
∂

∂x

)
φ = 0, p ∈ {0, a}, y ∈ R. (1.2)

Here Lp
(
∂

∂x

)
and Mp

(
∂

∂x

)
are differential operators of the form

Lp
(
∂

∂x

)
=

Hp∑
h=0

cph
∂2h

∂x2h
and Mp

(
∂

∂x

)
=

Jp∑
j=0

dpj
∂2j

∂x2j
, (1.3)

where cph and dpj are constants and Hp and Jp are non-negative integers. The

aforementioned form of higher order boundary conditions (1.2) is more general

and comprises particular forms as elastic membranes and plates type boundaries,

that have been used in literature by several authors in different physical situations

for instance see, [33–35].

For the structure involving sudden variations in duct geometry or change of ma-

terial properties the use of Wiener-Hopf (WH) is inappropriate [36]. Nevertheless,

this approach has noteworthy extensions such as, modified WH technique [37],

matrix formulation [38] and WH in conjunction with mode matching [39], but

for many cases the technique is not easily generalized. Albeit sometime a little

variation in physical problem may result various complications in determining the

solution of governing boundary value problem.

On the other hand, the Mode-Matching method [40–42] advanced recently to pre-

dict the scattering behavior of fluid-structure coupled waves in ducts or channels

has proved a viable tool. This technique provides a convenient way to incorporate

the variations of material properties and structural discontinuities. The approach

is especially useful for the cases wherein there exist a coupling between the prop-

agation of vibrational waves along the boundaries and the acoustic waves of the

fluid medium.

For the envisage problems the role of edge conditions is important physically as

well as mathematically. Physically “edge conditions” define how an elastic mem-

brane or plate’s ends are connected to the other surface. The possible choice of
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such connections inelastic membrane case can be fixed free or spring-like, whereas,

in elastic plate case these conditions are clamped, pin-jointed and pivoted type.

Mathematically, the imposition of edge conditions ensures the uniqueness of ob-

tained solution. It is worthwhile mentioning that the unique solutions of boundary

value problems corresponding to waveguides bounded by elastic plates or mem-

branes have not been obtained without imposing conditions at the edges of the

plates. Lawrie [43] proved that the number of required edge conditions is half of the

order of membrane or plate boundary conditions. In the context of modal series

expansions, edge conditions are linked to the convergence rate. A δ-function (to

be interpreted as a generalized function) type of spurious edge source generates a

divergent series. Although its role remains in the usual engineering practice some-

what in the background, the edge condition is certainly important in the problems

involving flexible boundaries. In various designs of ducts different edge conditions

are incorporated and have impact on the acoustic scattering [44]. Therefore, the

scattering analysis through different edge conditions is essential as well as impor-

tant.

1.1 State of the Art

The acoustic problems involving waveguide with sudden area changes, such as

expansions or contractions are important in noise reduction applications. These

waveguide problems are well established in literature and have been extensively

investigated for the last few decades. Peat [45] investigated the acoustic waves in

a waveguide at a discontinuity and developed the equivalent impedance formulae

for the junctions of extended inlet and outlet duct systems. Such formulae have

practical importance at low-frequency for reactive silencer systems. Selamet and

Ji [46–48] studied circular waveguide and introduced expansion chambers with ex-

tended inlet and outlet by an analytical approach. Lee [49, 50] tried to increase

the performance of reactive silencers by way of internal partitioning through topo-

logical optimization. Wang and Mak [51] investigated the sound wave propagation

in a lined duct through periodic resonators array. Seo and Kim [52] adjusted the



Introduction 5

resonator arrays for wider noise reduction band at low-frequency.

The concept of utilizing elastic membranes as a means of controlling low-frequency

noise is by no means new. Dowell and Voss [53] studied the vibrations of a cavity-

backed panel in the presence of mean ow. Ford and McCormick [54] presented an

analysis of arrangements of thin membranes, such as 0.2 mm aluminum sheets,

stacked at a certain distance from each other, that have applications in con-

cert halls, broadcasting studios, etc. They showed that substantial sound ab-

sorption occurs only at narrow bands around a few resonance frequencies of the

membrane-cavity system. Kang and Fuchs [55] investigated the effectiveness of

cavity-backed micro perforated membranes as acoustic absorbers in the context of

architectural acoustics. Huang [56] proposed another type of membrane absorber

for low-frequency duct noise. He observed that the membrane experienced fluid-

structure coupled waves with a phase speed less than the in vacuo wave speed,

which in turn propagates with a speed much less than that of the speed of sound

in air.

Theoretically, the fluid-structure coupled waves could be slowed down indefinitely

by increasing the compliance of the membrane, but in practice there is a limit on

the membrane thickness that may be used. Huang et al. [57] investigated the prop-

agation of sound in a flexible duct, both theoretically and experimentally. They

performed experiments on a duct with a finite section of tensioned membrane and

compared the propagating modes with the relevant modes of the infinite mem-

brane model. An agreement in results occurred for phase speeds ranging from 8.3

m/s to 1348 m/s. A suitably stretched thin membrane backed by a cylinder cavity

channel, which achieved a satisfactory performance from low to medium frequen-

cies over an octave band, was again discussed by Huang [58, 59]. Here, he focused

on the modal behavior of the fully coupled membrane-cavity system and found

three resonant peaks in the low-to-medium frequency range, while the transmis-

sion loss between adjacent peaks remained above 10 dB. For the first peak, almost

complete sound reflection occurred, as a result of an out-of-phase combination of

the first and second in vacuo modes of simply supported membranes.
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In the past decades, significant analyses of the performance of acoustical waveg-

uides with rigid, soft and absorbent linings have been performed. A non-exhaustive

list includes, for example, works by, Galich et al. [60], Ayub at al. [61, 62], Scott

[63], Demir and Buyukaksoy [64], and Nilsson and Brander [65–68]. Likewise,

Buyukaksoy [69] studied the propagation of sound in an infinite rigid circular cylin-

drical duct with an inserted expansion chamber whose walls are treated with an

acoustically absorbent and locally-reacting material using the WH technique. The

influence of the radius of the expansion chamber, lining impedance, mean flow, and

the acoustical impedance of the central perforated tube on the transmission-loss

is elucidated.

The problems referred by [27, 61, 62, 64, 69–73] can also be portrayed as the appli-

cations of classical WH technique [74]. However, for the structural discontinuity

due to sudden variations in waveguide or higher order boundary conditions, the

WH technique is not appropriate [75]. Yet, this approach has noteworthy exten-

sions, for instance, Abrahams and Wickham [76] formulated the boundary value

problem as an explicit matrix Wiener-Hopf factorization and exhibited the diffi-

culty of a scalar kernel comprising exponentially growing elements. Later, they re-

solved this difficulty by general Wiener-Hopf factorization with exponential phase

factors and illustrated the method with three specific examples [77]. Abrahams

[78, 79] introduced a new procedure for Wiener-Hopf problems whereby Pade ap-

proximants were employed to acquire an approximate but explicit noncommutative

factorization of a matrix kernel. For complex boundary value problems, this pro-

cedure leads to coupled equations that form the matrix kernel. This method is

applicable to a wide range of initial/boundary value problems.

More recently, Peake and Abrahams [80] considered the waveguide whose inner

surfaces were assumed with Robin condition, whilst other surfaces were applied

by Neumann conditions. This led a matrix Wiener-Hopf problem with factoriza-

tion of a 3 × 3 matrix. Chung and Fox [81] obtained the solution of system of

partial differential equations by Wiener-Hopf approach that was the extension of

earlier research work of Evans and Davies [82]. For step discontinuity in waveguide

structure due to presence of inserted expansion chamber, the work of Demir and



Introduction 7

Buyukaksoy [64, 69] with WH approach is significant in literature. However, for

several circumstances this technique is not easily generalized or adequate.

As an alternative, the MM method has proved a viable approach to investigate

the acoustic waveguide boundary value problems. Hassan [83] considered three

spaced waveguide problem by matching eigenfunction expansion method which

has already been analyzed by Rawlins [84] with WH technique. He reported in

his presented work that matching method is an alternative to WH method. It was

because that the split functions/complicated factor was not involved in finding the

solution. Moreover, Hassan et al. [85] investigated the scattering analysis in triple

and pentafurcated spaced duct by using mode matching method. In problems

[83, 85], the geometries were considered continuous in structure with symmetric

in y-axis.

The scattering phenomena in acoustic waveguides with flexible boundaries (elas-

tic membrane or plate) have been investigated extensively by many researchers.

Warren et al. [36] applied a mode-matching approach to analyze the acoustic

scattering phenomena in waveguides involving discontinuities in height with the

material property. Nawaz et al. [35] investigated the acoustic wave propagation in

a waveguide bounded by flexible membranes whereas Afzal et al. [86] analyzed the

acoustic scattering in a duct with higher-order boundaries involving a step discon-

tinuity. The solution of a scattering problem in rectangular waveguide bounded

by a membrane with abrupt geometric changes was obtained by Afzal et al. [87]

with the help of the MM technique. Recently, Lawrie and Afzal [88] studied the

scattering of acoustic waves at the connection between two flexible ducts involv-

ing a height discontinuity by a vertical membrane. Also, the problems involving

wave-bearing boundaries at a flanged junction have been undertaken in [88–90]

and significant effects have been analyzed on the propagating noise.

Cummings and Chang [91] imposed continuity of pressure and velocity over the

inlet and outlet planes of the silencer while using the eigenmodes in an analytic

mode matching scheme. Peat [92], and later by Kirby [93], proposed more effi-

cient alternative to Cummings and Changs method. They established closed form
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analytic solutions based on the attenuation of the fundamental mode only. The

methods proposed by Peat and Kirby are, however, precise only over a limited

frequency range for a given waveguide structure. Such restrictions apply also to

other methods based on the fundamental mode, for example methods proposed by

Panigrahi and Munjal [94]. Recently Afzal et al. [86, 87] and, Nawaz and Lawrie

[34], included the second mode forcing term which aim to carry energy through

fluid-borne instead of structure-borne mode. It is thus established that the nu-

merical results contrast well for both, the fundamental mode and secondary mode

incidents.

The fluid-structure interaction in a duct bounded by elastic membrane or plate

with different types of edge conditions has challenging and mathematical riddles

to scientific community. Without specification of the edge conditions, the lack of

uniqueness in the boundary value problems is manifest in the occurrence of extra

(non-integral) terms in the orthogonality relation. The non-uniqueness is, in gen-

eral, resolved by applying the edge conditions. Lawrie and Guled [95] investigated

the performance of a reactive silencer using a mode-matching method and low-

frequency approximation for zero displacement membrane edge conditions. They

revealed that the stop band produced by the silencer can be broadened or shifted

by altering the position of an internal membrane.

In the case of elastic plates, the edges are usually considered to be clamped, pin-

jointed or pivoted. Norris and Wickham [70] developed the general solution for the

acoustic scattering and obtained the explicit formulae for the pressure transform

by imposing the clamped or welded connection of the plates. Brazier-Smith [71]

presented the solution for scattering field of co-planar plates by considering the

three types of joints or edge conditions, namely, free-free, hinged and clamped.

It was demonstrated that the scattered field was sensitive in nature in case of

both, the thickness and the physical connections of the plates. Sahoo et al. [96]

applied different edge conditions to examine the scattering of water waves by a

semi-infinite floating elastic plate.

Among most of the current research works concerning scattering analysis for the
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waveguides bounded by elastic membrane or plate with or without flanges/lined

flanges and different types of edge conditions, only a few have focused on acoustic

ducts with inserted expansion chambers. Towards this end, the acoustic problems

concerning scattering and propagation of acoustic waves in waveguides bounded by

elastic plates or membranes with inserted expansion chamber containing acoustical

materials along flanged junction are investigated in this thesis.

1.2 Avant-Garde

The current study presents the MM analysis of acoustic scattering and attenuation

through flexible waveguides including different types of edge conditions, material

properties and structural discontinuities. The work is continuation of the already

available studies, for instance see [34, 35, 87, 89], in extended form and highlighted

the following aspects.

1. The scattering analysis of discontinuous interface containing flanges of rigid

front and soft backing in infinite rigid/flexible waveguide.

2. The attenuation of fluid-structure coupled acoustic waves in non-planar

waveguide involving cavities and elastic membranes bounded walls.

3. The scattering and attenuation analysis through the elastic plate bounded

waveguide comprising absorbent lined flanges and different edge conditions.

4. The analysis of travelling wave forms of flexible expansion chamber connected

with extended elastic plate bounded inlet/outlet through the lined flanges.

5. The development of LFA solutions of the envisaged problems in low-frequency

regime and its comparison with MM results.

6. The consideration of structure-borne as well as fluid-borne mode incident

radiations and the attenuation analysis in all of the aforementioned studies.

In the next section, the outlines of the dissertation is explained.
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1.3 Dissertation Outline

The dissertation outlines are as follows. Chapter-2 presents the fundamental con-

cepts useful in understanding the mathematical modeling of physical problems

and their solution schemes. Chapter-3 includes two problems involving flanges

of different material properties at discontinuous interface in infinite waveguides.

The bounding wall conditions in both of the problems are assumed different and

MM solution is explained. Moreover, the second problem in this chapter with title

“On mode-matching analysis of fluid-structure coupled wave scattering between

two flexible waveguides” has been published in “Canadian Journal of Physics” in

2017.

In Chapter-4, the attenuation of fluid-structure coupled modes of non-planar

waveguide involving cavities is discussed. The physical problem is modeled to

illustrate the scattering behavior of acoustic waves in a flexible waveguide com-

posed of thin elastic elements having edges or joints and structural discontinuities.

The fluid-structure coupled waveforms scatter after interacting with the discon-

tinuities and edges of the underlying structure. The mode-matching technique,

together with low-frequency approximation, is used to determine velocity poten-

tials. The guiding structure is then analyzed and validated through scattering

energy functionals by varying the dimensions of the cavities and the wave fre-

quency. The results are formulated and analyzed by tuning the device using an

appropriate choice of edge conditions, dimension of cavities, and wave frequen-

cies, thereby validating the obtained solutions. This chapter with title “On the

attenuation of fluid-structure coupled modes in non-planar waveguide” has been

published in journal “Mathematics and Mechanics of Solids” in 2020.

The analysis of fluid-structure coupled waveforms and their attenuation in a flexi-

ble waveguide is carried out in Chapter-5. The physical configuration is considered

expansion chamber that is connected with extended inlet/outlet by means of ver-

tical lined flanges. The numerical experiments are performed to analyze the effects

of absorbent linings and edge conditions on the attenuation of flexural modes. The

guiding structure is exited with the structure-born mode incident as well as the
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fluid-born mode incident. Moreover, the research work of this chapter with title

“Attenuation analysis of flexural modes with absorbent lined flanges and different

edge conditions” has been also published in “Journal of the Acoustical Society of

America” in 2020.

Chapter-6 describes the traveling waveform in a flexible waveguide bounded by

elastic plates with an inserted expansion chamber having flanges at two junctions

and a finite elastic membrane is investigated. An acoustically absorbent lining is

placed along the inner sides of the flanges at the junctions while their outer sides

are kept rigid. Moreover, the edge conditions are imposed to define the physical

behavior of elastic membrane and plates at finite edges. The configuration is exited

with the structure as well as fluid-born mode. The influence of the imposed edge

conditions at the connections of the plates and the prescribed incident forcing on

the transmission-loss along the duct is elaborated. Specifically, the effects of edge

conditions on the transmission-loss of structure-borne vibrations and fluid-borne

noise are specified. This research work has been published with title “Analysis

of traveling waveform of flexible waveguides containing absorbent material along

flanged junctions” in journal “Communications in Nonlinear Science and Numer-

ical Simulation” in 2021. Finally, a brief summary, concluding remarks and future

work are presented in Chapter-7.



Chapter 2

Preliminaries

This chapter depicts the fundamental concepts that are relevant to understand the

propagation and scattering of acoustic wave in waveguides containing different ma-

terial properties. The acoustic problems are governed with linear acoustic wave

equation and different types of boundary conditions. The boundary conditions

are considered to be: rigid, soft, absorbent lining, elastic membrane and elastic

plate. The physical problems are governed by Helmholtz’s or Laplace equation

and having boundary conditions rigid, soft or impedance type underlie SL cat-

egory, thereby the appearing eigenfunctions are linearly independent and satisfy

the standard orthogonality conditions (for more details, see for instance [97, 98].

The orthogonality conditions help to recast the differential system to linear alge-

braic system during the matching analysis which is discussed in ongoing chapters

of the thesis. On the other hand if the problem is governed by Helmholtz’s or

Laplace equation and involve higher order boundary conditions such as membrane

or plate, the governing eigenfunctions do not satisfy standard orthogonality con-

ditions, and thus the generalized orthogonality conditions are discussed. In more

general form the development of such orthogonality conditions is explained in [99].

The relevant eigenfunctions are linearly dependent and satisfy the generalized or-

thogonality conditions. These conditions are explained in this chapter.

This chapter is organized as: Section 2.1 is dedicated to the mathematical deriva-

tion of the acoustic wave equations. Non-dimensional settings are illustrated in

12
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Section 2.2. The different types of boundary conditions are presented in Section

2.3. The travelling wave formulation is presented in Section 2.4. Three types

of models such as; Impedance-Impedance model in Section 2.5. Rigid-Membrane

model in Section 2.6 and Rigid-Plate model in Section 2.7. The Mode-Matching

technique, Low-Frequency Approximation, energy fluxes and transmission loss are

explained in Section 2.8, Section 2.9, Section 2.10 and Section 2.11, respectively.

2.1 Linear Acoustic Equation

The linear acoustic wave equation defines the propagation of pressure perturba-

tions in the fluid medium. The mathematical description of the acoustic wave

equation in a fluid can be obtained with following assumptions [101].

• The undisturbed fluid is stationary (there is no fluid flow).

• Fluid is compressible.

• The fluid is under adiabatic conditions (i.e., there is no flow of heat in or

out of the system).

Conservation of mass: The mass is conserved that can be described through

continuity equation
∂ρ

∂t
+∇ · (ρv) = 0, (2.1)

where ρ is the mass density and v be the velocity of moving mass.

Conservation of momentum: The conservation of linear momentum can be

given by

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p, (2.2)

where p denotes the fluid pressure. To derive the acoustic equation, the small

fluctuations in the medium can be expressed through the dynamical variables as

ρ
′
(t) = ρ− ρ0, (2.3)

v
′
(t) = v
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and

p
′
(t) = p− p0. (2.4)

Here prime variables denote fluctuations and 0 in subscript represents the mean

value. On applying these assumption to (2.1) and (2.2) and neglecting the products

of small dynamical quantities, we obtain

∂ρ
′

∂t
+ ρ0∇ · v

′
= 0, (2.5)

ρ0
∂v
′

∂t
+∇p′ = 0. (2.6)

On differentiating (2.5) with respect to t, we get

∂2ρ
′

∂t2
+ ρ0∇ ·

∂v
′

∂t
= 0 (2.7)

and gradient of (2.6) leads to

ρ0∇ ·
∂v
′

∂t
+∇2p

′
= 0. (2.8)

Thus, the subtraction of (2.7) and (2.8) yields

∂2ρ
′

∂t2
−∇2p

′
= 0. (2.9)

Since, from the Taylor’s series of p about ρ0, we get

p = p0 +

(
∂p

∂ρ

)
ρ=ρ0

(ρ− ρ0) +
1

2

(
∂2p

∂ρ2

)
ρ=ρ0

(ρ− ρ0)2 + ... . (2.10)

On neglecting the second and higher order perturbation terms,

p− p0 ≈
(
∂p

∂ρ

)
ρ=ρ0

(ρ− ρ0) (2.11)

and on substituting (2.3) and (2.4) in (2.11), we have

p
′
= c2ρ

′
, (2.12)
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where c =
√

(∂p/∂ρ)ρ=ρ0
is the speed of sound and its value depends upon the

thermodynamic properties of the fluid. Under adiabatic condition at standard

temperature pressure (STP), the speed of sound in air is 343 m/s. On substituting

the value of ρ
′

from (2.12) into equation (2.9), we obtain

1

c2

∂2p

∂t2
−∇2p = 0. (2.13)

Equation (2.13) is the standard acoustic wave equation in terms of acoustic pres-

sure. In dimensional setting, it can be written as

1

c2

∂2p̄

∂t̄2
− ∇̄2p̄ = 0. (2.14)

It is mentioned that the superposed bars above and hereinafter show the dimen-

sional quantities whilst the over bars are skipped from the non-dimensional coun-

terparts. It is useful to express (2.14) in terms of dimensional field potential

Φ̄(x̄, ȳ, t̄) having relations with pressure and velocity, respectively as

p̄ = −ρ0
∂Φ̄

∂t̄
(2.15)

and

v̄ = ∇̄Φ̄. (2.16)

On assuming harmonic time dependence, we have

Φ̄(x̄, ȳ, t̄) = φ̄(x̄, ȳ)e−iωt̄, (2.17)

where ω is the angular frequency. On substituting (2.15) and (2.17) into (2.14),

we obtain the Helmholtz’s equation

(
∂2

∂x̄2
+

∂2

∂ȳ2
+ k2

)
φ̄(x̄, ȳ) = 0, (2.18)

where k = ω/c denotes the wave number. In order to non-dimensionalize the

physical quantities, the non-dimensional settings are defined in next section.
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2.2 Non-Dimensional Setting

With the non-dimensional setting, the equations and boundary conditions of the

boundary value problems are appeared in dimensionless form, where all mathemat-

ical laws and rules are easily applicable. Thus, for making the physical quantities

dimensionless in the mathematical modeling of the physical problems, the dimen-

sionless settings, with respect to the typical scale k−1 (length scale) and ω−1 (time

scale), are framed in the following way

x = kx̄, y = kȳ and t = ωt̄. (2.19)

On using the above transformation, we have

∂2

∂x̄2
= k2 ∂

2

∂x2
,

∂2

∂ȳ2
= k2 ∂

2

∂y2
and Φ̄(x̄, ȳ) =

1

k2
φ(x, y). (2.20)

By using non-dimensional settings, Helmholtz’s equation (2.18) can be expressed

in dimensionless form as (
∇2 + 1

)
φ(x, y) = 0. (2.21)

Any solution of this equation has to comply with the acoustical properties of the

boundary.

2.3 Boundary Conditions

The boundary conditions play an important role in determining the mathematical

solutions of physical problems. The nature and types of boundary conditions de-

pend on the conditions assumed while modeling the physical problems. In acoustic,

“reaction of the surface to sound” can be expressed in terms of boundary conditions

and that describes the behavior of sound in the neighborhood of a bounding sur-

face. The present study describes acoustic analysis of waveguides having different

geometrical and bounding characteristics. Following types of boundary conditions

are considered.
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2.3.1 Acoustic Impedance

It is the ratio of the acoustic pressure to the normal velocity acting on some surface

[25]. It is usually denoted by Z, that is

Z =
Pressure

Velocity
. (2.22)

By using (2.15) and (2.16), we may write (2.22) in terms of dimensional field

potential as

ρ
∂Φ̄

∂t̄
+ Zn · ∇Φ̄ = 0, (2.23)

where n is unit normal vector directed into the surface. By considering the har-

monic time dependence and non-dimensional setting, (2.23) becomes

φ+ iζn · ∇φ = 0, (2.24)

where ζ = (ρc)−1Z represents the dimensionless specific impedance bounding sur-

face. For mathematical convenience, we may write (2.24) into more simpler form

by

φ+Qn · ∇φ = 0, (2.25)

where Q = iζ is an arbitrary parameter whose value basically depends on the

characteristic impedance of the surface. This is also known as impedance boundary

conditions. Moreover, three boundary conditions such as, absorbent, rigid and soft

are explained on the basis of acoustic impedance condition in following manners.

• Absorbent Condition: For absorbent linings, the specific impedance as-

sumes value ζ = ξ + iχ, and that basically specifies two types of sheets

[69, 100].

i. Fibrous sheet when: ξ = 0.5,−1 < χ < 3,

ii. Perforated sheet when: 0 < ξ < 3,−1 < χ < 3.

• Rigid Condition: The given surface is acoustically rigid if Z → ∞, and

that reveals from (2.24), that can be written as
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n · ∇φ = 0. (2.26)

• Soft Condition: The given surface is acoustically soft if Z → 0 which

implies Q → 0, therefore (2.25) gives

φ = 0. (2.27)

2.3.2 Elastic Membrane Condition

To formulate the elastic membrane condition it is assumed that the tensile stress is

same at every point on the membrane and at every orientation of the line element

perpendicular to the membrane surface. Such membranes are deformable like a

sheet of rubber and that contain wave behavior similar to the waves on assemblage

of flexible strings. Therefore, the tensile stress of the membrane can be referred

as tension (T ), and the wave equation for membrane can be found in many text,

for instance [101]. For membrane condition coupled with compressible fluid, the

dimensional displacement W̄ (x̄, ȳ, t̄) satisfies the equation of motion.

∂2W̄

∂x̄2
− 1

c2
m

∂2W̄

∂t̄2
=

1

T
[p̄]+−, (2.28)

where cm =
√
T/ρm specifies the sound’s speed on membrane having mass density

ρm. The quantity [p̄]+− = [p̄]+− [p̄]− on the right hand side of the (2.28) denotes the

fluid pressure difference across the membrane surface. On assuming the harmonic

time dependence, it is convenient to express the membrane displacement by

W̄ (x̄, t̄) = w̄(x̄)e−iωt̄. (2.29)

Thus, on using (2.15), (2.17) and (2.29) into (2.28), after little arrangement we

get
∂2w̄

∂x̄2
+
ω2

c2
m

w̄ =
iωρ0

T

[
φ̄
]+
− . (2.30)

As the membrane displacement W̄ is related to field potential through the relation,
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that is,
∂w̄

∂t̄
=
∂Φ̄

∂ȳ
, (2.31)

which for harmonic time dependence reveals

w̄ =
i

ω

∂φ̄

∂ȳ
. (2.32)

After substituting (2.32) into (2.30), we get

[
∂2

∂x̄2
+
ω2

c2
m

]
∂φ̄

∂ȳ
=
ω2ρ0

T

[
φ̄
]+
− . (2.33)

On non-dimensionalizing (2.33) and the transformation defined in Section. 2.2, we

get [
∂2

∂x2
+ µ2

]
∂φ

∂y
− α [φ]+− = 0, (2.34)

where µ = c/cm and α = c2ρ0/ (kT ) denote the membrane wave number and fluid

loading parameters, respectively.

To describe the behavior of vibrating elastic membrane “edge conditions” are used.

These conditions define the physical connections as well as ensure the uniqueness

of the solution.

• Edge Conditions for Membrane: Following two types of edge conditions

of elastic membrane are used in this thesis.

Fixed Edges: For the fixed edge, the displacement of the membrane is

assumed to be zero, that is

∂φ(0, a)

∂y
= 0. (2.35)

Free Edges: In this case, the gradient is assumed to be zero, that is

∂2φ(0, a)

∂x∂y
= 0. (2.36)

It is also known as simply supported edge condition.
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2.3.3 Elastic Plate Condition

A plate is a solid body bounded by two surfaces. The distance between the two

surfaces defines the thickness of the plate, which is assumed to be small compared

to the lateral dimensions, such as the length and width in the case of a rectangular

plate and the diameter in the case of a circular plate. The vibration of plates play

an important role in the study of structural acoustic. The theory of elastic plates

is an approximation of the three-dimensional elasticity theory to two dimensions,

and that permits a description of the deformation in the plate along the midplane

of the plate. Moreover, it is assumed that Young’s modulus, Poisson ratio and

area density vary across the plate in one direction. The governing equation of

the plate in the form of dimensional plate displacement W̄1 (x̄, ȳ, t̄) coupled with

compressible fluid is expressed below while the details pertaining to the derivation

of the plate equation is given in [75].

∂4W̄1

∂x̄4
+

2B
′
(x̄)

B(x̄)

∂3W̄1

∂x̄3
+
B
′′
(x̄)

B(x̄)

∂2W̄1

∂x̄2
+

ρp
B(x̄)

∂2W̄1

∂t̄2
= −[p̄]+−, (2.37)

where ρp is the mass density of the plate, [p̄]+− is the fluid pressure difference across

the plate and B is the bending stiffness. For constant bending stiffness and area

density, (2.37) leads to

∂4W̄1

∂x̄4
+

ρp
B(x̄)

∂2W̄1

∂t̄2
= −[p̄]+−. (2.38)

On assuming harmonic time dependence, the plate displacement can be expressed

as

W̄1(x̄, t̄) = w̄1(x̄)e−iωt̄, (2.39)

so, (2.37) yields
∂4w̄1

∂x̄4
− ρpω

2

B(x̄)
w̄1 = −[p̄]+−. (2.40)

As the plate displacement w̄1 in term of velocity potential is related by the relation

as
∂w̄1

∂t̄
=
∂Φ̄

∂ȳ
. (2.41)
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On using (2.15), (2.17) and (2.41) into (2.40), we obtain the following equation in

term of field potential φ̄(x̄, ȳ) form as

[
∂4

∂x̄4
− ρpω

2

B(x̄)

]
∂φ̄

∂ȳ
=
ω2ρ0

B(x̄)
φ̄. (2.42)

On using non-dimensional setting from (2.19) and (2.20), the equation (2.42) leads

to [
∂4

∂x4
− µ4

1

]
∂φ

∂y
= α1φ, (2.43)

where µ1 = 4
√
c2hρp/Bk2 represents the plate wavenumber in vacuo and α1 =

c2ρ/Bk3 denotes the fluid loading parameter. Moreover, the bending stiffness of

the plate can also be expressed as B = Eh3/12(1 − υ2) in which E is Young’s

modulus, and υ is Poisson’s ratio. The elastic plate along with its connections

at corners also plays an important role in effective designing of silencers. These

connections are now explained in terms of plate edges.

• Edge Conditions for Plate: In the case of elastic plates, the edges are usu-

ally considered to be clamped, pin-jointed or pivoted. These are illustrated

in following manners.

Clamped Edges: The displacement and gradient of the plate at edges are

assumed zero, that is

∂φ(0, a)

∂y
= 0 and

∂2φ(0, a)

∂x∂y
= 0. (2.44)

Pin-Jointed Edges: In case of pin-jointed edge conditions, the displace-

ment and the bending moment are considered zero, that is

∂φ(0, a)

∂y
= 0 and

∂3φ(0, a)

∂x2∂y
= 0. (2.45)

Pivoted Edges: In this set of edge conditions, the gradient and bending

moment are assumed to be continuous, that is

∂φ2
i (0, a)

∂x∂y
=
∂φ2

j(0, a)

∂y∂x
and

∂φ3
i (0, a)

∂x2∂y
=
∂φ3

j(0, a)

∂y∂x2
, i 6= j. (2.46)
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Note that, these conditions physically realistic to apply only for the waveg-

uide continuous in structure.

In next section, the assumed solution of wave propagation problem is elaborated.

2.4 Travelling Wave Formulation

The travelling wave solution can be expressed ansatz

φ(x, y) =
∞∑
n=0

AnYn(y)e±iηnx, (2.47)

where Yn(y);n = 0, 1, 2... denote the shape of propagating mode, ηn is the wavenum-

ber of nth propagating mode and An are the amplitudes of that nth mode.

The physical problems considered in this thesis are governed by Helmholtz’s equa-

tion together with different types of boundary conditions. Therefore, the mathe-

matical properties of eigenfunctions are linked mainly with the bounding proper-

ties of the bounding walls. These properties may underlie in SL category or may

belong to non-SL category. Following three types of models are considered in this

thesis.

• Impedance-Impedance Model

• Rigid-Membrane Model

• Rigid-Plate Model

Firstly, we explain the eigen properties associated with these models in detail.

2.5 Impedance-Impedance Model

In this model, the lower and upper horizontal boundaries of the duct are con-

sidered to be the impedance type of boundary condition. As the model problem
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is governed by Helmholtz’s equation (2.21) together with impedance condition

(2.25), so the eigenfunctions Yn(y) for the considered model satisfy the following

eigen-sub-system

Y
′′

n (y) + γ2
nYn(y) = 0, (2.48)

Yn(a)−QaY
′

n(a) = 0, (2.49)

Yn(b) +QbY
′

n(b) = 0, (2.50)

where (′) denotes the differentiation with respect to y variable and the quantities

Qa and Qb are arbitrary constants. Also, γn =
√

(1− η2
n) denote the eigenvalues.

On solving (2.48)-(2.50), we obtain

Yn(y) = sin[γn(y − a)] +Qa cos[γn(y − a)]. (2.51)

The eigenvalues γn are the roots of the following characteristics equation that is

deduced by using (2.50) and (2.51), that is

K(γ) = (1− γ2
nQaQb) sin[γn(b− a)] + (Qa +Qb) cos[γn(b− a)] = 0. (2.52)
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Figure 2.1: First 10 roots of the characteristic equations (2.52) at f = 350Hz
with parameters Qa = Qb = 1, ā = 0.02m and b̄ = 0.085m.
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The first ten real roots for K(γ) = 0 are obtained by setting the parameters

Qa = Qb = 1, ā = 0.02m and b̄ = 0.085m at f = 350Hz, which are shown in

Fig. 2.1. These roots are arranged in ascending order. Now the orthogonality

relation is demonstrated for the considered model problem in next section.

2.5.1 Orthogonality Relation

To derive the OR for this model, we multiply (2.48) by Ym(y) and integrate from

a to b, then, we proceed as

∫ b

a

Ym(y)Y
′′

n (y) + γ2
n

∫ b

a

Ym(y)Yn(y) = 0. (2.53)

On integrating by parts, the first term in (2.53) together with (2.49) yields

∫ b

a

Ym(y)Y
′′

n (y) =
[
Ym(y)Y

′

n(y)
]b
a
−
∫ b

a

Y
′

m(y)Y
′

n(y)dy,

= − 1

Qa
Ym(a)Yn(a)− 1

Qb
Ym(b)Yn(b)−

∫ b

a

Y
′

m(y)Y
′

n(y)dy, (2.54)

after substituting (2.54) into (2.53), we get

− 1

Qa
Ym(a)Yn(a)− 1

Qb
Ym(b)Yn(b)−

∫ b

a

Y
′

m(y)Y
′

n(y)dy + γ2
n

∫ b

a

Ym(y)Yn(y) = 0.

(2.55)

Interchanging the indices m and n of (2.55), we find

− 1

Qa
Yn(a)Ym(a)− 1

Qb
Yn(b)Ym(b)−

∫ b

a

Y
′

n(y)Y
′

m(y)dy + γ2
m

∫ b

a

Yn(y)Ym(y) = 0.

(2.56)

On subtracting (2.56) from (2.55), we finally obtain

(γ2
n − γ2

m)

∫ b

a

Yn(y)Ym(y) = 0. (2.57)

For m 6= n, we get γ2
n − γ2

n 6= 0, so we have

∫ b

a

Yn(y)Ym(y) = 0. (2.58)
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For m = n, we get γ2
n − γ2

n = 0, and we set

∫ b

a

Yn(y)Ym(y) 6= 0.

The eigenfunctions Yn(y) are normalized as

∫ b

a

Yn(y)Ym(y) = 1. (2.59)

Hence, the property (2.58) and (2.59) is referred to as the orthogonality of the

eigenfunctions Yn(y). ∫ b

a

Yn(y)Ym(y)dy = Dnδmn, (2.60)

where δmn is the usual Kronecker delta. The eigenfunctions Yn(y) constitute a

complete set. This completeness implies that an arbitrary function f(y) can be

represented to any desired accuracy as a linear combination of Yn(y)

f(y) =
∑
n

fnYn(y). (2.61)

Multiplying f(y) by Ym(y) and integrating from a to b yields the expansion coef-

ficient

fn =

∫ b

a

f(y)Ym(y)dx. (2.62)

Hence, in order to match the modes of eigenfunctions expansion for the acoustic

problems involving waveguide across the junctions between two regions, the or-

thogonality relation permits the problem to be reduced to solve an infinite system

of linear algebraic equations. Now, the rigid-membrane model is discussed in next

section.

2.6 Rigid-Membrane Model

In this model, we consider a flexible waveguide bounded below by a rigid wall

and bounded above by an elastic membrane. The under consideration model is

governed by Helmholtz’s equation (2.21) together with boundary conditions (2.26)
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and (2.34) that leads to the following eigen-sub-system of equations

Y
′′

n (y)− γ2
nYn(y) = 0, (2.63)

Y
′

n(a) = 0, (2.64)

(γ2
n + 1− µ2)Y

′

n(b)− αYn(b) = 0. (2.65)

The corresponding eigenvalues γn =
√

(η2
n − 1) indicate the roots of the following

characteristic equations

κ1(γ) = (γ2 + 1− µ2)γ sinh[γ(b− a)]− α cosh[γ(b− a)] = 0. (2.66)

These roots are found numerically and have properties that are mentioned in the

article [43]. These roots are ordered sequentially, real roots first and then by

increasing imaginary part. Thus, γ0 is always the largest real root.
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Figure 2.2: First 10 roots of the characteristic equations (2.66) at f = 350Hz
with parameters µ = 2.74965, α = 6.82942, ā = 0.02m and b̄ = 0.085m.

The first ten roots are shown in Fig. 2.2 that are found numerically for the pa-

rameters: µ = 2.74965, α = 6.82942, ā = 0.02m and b̄ = 0.085m at f = 350Hz.

Since, the resulting eigen system does not lead to SL system in which the standard

orthogonality relation is not appropriate, the generalized orthogonality relations

are developed [32].
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2.6.1 Generalized Orthogonality Relation

We explore the generalized orthogonality relation for underlying eigen system. On

multiplying (2.65) with Y
′
m(b), we get

(γ2
n + 1− µ2)Y

′

n(b)Y
′

m(b)− αYn(b)Y
′

m(b) = 0, (2.67)

after interchanging the indices m and n of (2.67), we obtain

(γ2
m + 1− µ2)Y

′

m(b)Y
′

n(b)− αYm(b)Y
′

n(b) = 0. (2.68)

On subtracting (2.68) from (2.67), we get

(γ2
n − γ2

m)Y
′

n(b)Y
′

m(b)− α[Yn(b)Y
′

m(b)− Ym(b)Y
′

n(b)] = 0. (2.69)

Equation (2.69) together with (2.64) gives

(γ2
n − γ2

m)Y
′

n(b)Y
′

m(b)− α
∫ b

a

[Yn(y)Y
′′

m(y)− Ym(y)Y
′

n(y)] = 0. (2.70)

Consequently, from (2.63) that finally yields

(γ2
n − γ2

m){Y ′n(b)Y
′

m(b) + α

∫ b

a

Yn(y)Ym(y)dy} = 0, (2.71)

for m 6= n, we have

α

∫ b

a

Yn(y)Ym(y)dy + Y
′

n(b)Y
′

m(b) = 0, (2.72)

for m = n, we get γ2
n − γ2

m = 0, thus we set

En := [Y
′

n(b)]2 + α

∫ b

a

Y 2
n (y)dy. (2.73)

Hence, the property (2.72) and (2.73) is concluded to generalized orthogonality

relation as

α

∫ b

a

Yn(y)Ym(y)dy + Y
′

n(b)Y
′

m(b) = Enδmn, (2.74)
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for the flexible waveguide bounded by membrane.

2.6.2 Properties of Eigenfunctions for Elastic Membrane

The class of eigen system in case of flexible membrane has well recognized prop-

erties [43] that are explained as

• The eigenfunctions Yn(y), n = 0, 1, 2, 3..., for flexible duct bounded by mem-

brane are linearly dependent that satisfy

∞∑
n=0

Y
′
n(b)Yn(y)

En
= 0, a ≤ y ≤ b. (2.75)

It is important to note that the number of linearly dependent sum is taken

half of the order of the membrane partial differential equation.

• The eigenfunctions also satisfy the identities for membrane bounded duct,

that is
∞∑
n=0

[Y
′
n(b)]2

En
= 1. (2.76)

2.7 Rigid-Plate Model

In this model, we consider a flexible waveguide bounded above by an elastic

plate and bounded below by a rigid strip. The model problem is governed with

Helmholtz’s equation (2.21) together with boundary conditions (2.26) and (2.43)

which yields

Y
′′

n (y)− γ2
nYn(y) = 0, (2.77)

Y
′

n(a) = 0, (2.78)

{(γ2
n + 1)2 − µ4

1}Y
′

n(b)− α1Yn(b) = 0. (2.79)

The corresponding eigenvalues γn specify the roots of the dispersion relation, that
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can be written as

κ2(γ) = {(γ2
n + 1)2 − µ4

1}γn sinh[γn(b− a)]− α1 cosh[γn(b− a)] = 0. (2.80)

The first 10 roots of the characteristic equation (κ2(γ) = 0) are plotted at f =

350Hz with parameters µ1 = 7.52184, α1 = 370.914, ā = 0.02m and b̄ = 0.085m,

that are shown in Fig. 2.3.
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Figure 2.3: First 10 roots of the characteristic equations (2.80) at f = 350Hz
with parameters µ1 = 7.52184, α1 = 370.914, ā = 0.02m and b̄ = 0.085m.

It is important to note that there exist finite real root, infinite imaginary roots and

complex roots in pair form at certain frequency ranges. Such pairs are appeared,

when the imaginary plate mode tends to cut-off duct modes. These complex pairs

of γ can be obtained by solving the equation [34].

iµ1 =

√
1− n2π2

k2(b̄− ā)2
, for n = 1, 2, 3..., (2.81)

respectively. These roots are arranged according to the magnitude of imaginary

part in ascending order such that γ∗ is followed by −γ∗. Since the underlying

eigen-system is non-Sturm-Liouville in nature, so it is indispensable to develop

the generalized orthogonality relations.
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2.7.1 Generalized Orthogonality Relation

The generalized orthogonality relation for plate bounded duct is derived as. On

multiplying (2.79) with Y
′
m(b), we get

{(γ2
n + 1)2 − µ4

1}Y
′

n(b)Y
′

m(b)− α1Yn(b)Y
′

m(b) = 0, (2.82)

after interchanging the indices m and n of (2.82), we find

{(γ2
m + 1)2 − µ4

1}Y
′

m(b)Y
′

n(b)− α1Ym(b)Y
′

n(b) = 0. (2.83)

On subtracting (2.83) from (2.82) that leads to

(γ2
n − γ2

m)(γ2
n + γ2

m + 2)Y
′

n(b)Y
′

m(b)− α1[Yn(b)Y
′

m(b)− Ym(b)Y
′

n(b)] = 0. (2.84)

Equation (2.84) together with (2.78) provides

(γ2
n− γ2

m)(γ2
n + γ2

m + 2)Y
′

n(b)Y
′

m(b)−α1

∫ b

a

[Yn(y)Y
′′

m(y)−Ym(y)Y
′

n(y)] = 0. (2.85)

Consequently, from (2.77) that finally yields

(γ2
n − γ2

m){(γ2
n + γ2

m + 2)Y
′

n(b)Y
′

m(b) + α1

∫ b

a

Yn(y)Ym(y)dy} = 0, (2.86)

for m 6= n, we have

α1

∫ b

a

Yn(y)Ym(y)dy + (γ2
n + γ2

m + 2)Y
′

n(b)Y
′

m(b) = 0, (2.87)

for m = n we get γ2
n − γ2

m = 0, thus we set

Gn := 2(γ2
n + 1)[Y

′

n(b)]2 + α1

∫ b

a

Y 2
n (y)dy. (2.88)

Hence, the property of (2.87) and (2.88) is concluded to generalized orthogonality

relation for the flexible waveguide bounded by plate, that can be expressed as
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α1

∫ b

a

Yn(y)Ym(y)dy + (γ2
n + γ2

m + 2)Y
′

n(b)Y
′

m(b) = Gnδmn, (2.89)

2.7.2 Properties of Eigenfunctions for Elastic Plate

The eigenfunctions Yj(%q, y), j = 1, 2 are linearly dependent and their properties

are mentioned below [43, 99]

∞∑
q=0

∆jqYj(%q, y) =
∞∑
q=0

%2
q∆jYj(%q, y) = 0, 0 ≤ y ≤ u (2.90)

and
∞∑
q=0

∆2
jqκq = 0,

∞∑
q=0

%2
q∆

2
jqκq = 1, 0 ≤ y ≤ u, (2.91)

where

∆jq =
Y
′
j (%q, u)

κq
. (2.92)

The Green’s function for the eigenfunctions can be constructed as [43]

α1

∞∑
q=0

Yjq(%q, υ)Yjq(%q, y)

κq
= δ(y−υ)+δ(y+υ)+δ(y+υ−2u), −u ≤ υ, y ≤ u,

(2.93)

where δ(y) is the usual Dirac delta function and this result shows that the eigen-

function expansion representation of a suitably smooth function, say f(y), con-

verges point-wise to that functions. In order to obtain the solution of acoustic

scattering problems in ducts or channels, Mode-Matching technique is presented

in next section.

2.8 Mode-Matching Technique

Modal representation is generally opt to obtain the solution of acoustic waveg-

uide problems. A single modal representation is only possible in segments of a

duct with constant properties (diameter, wall impedance). When two segments
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of different properties are connected to each other, a modal representation can be

used in each segment, but since the modes are different we have to reformulate the

expansion of the incident field into an expansion of the transmitted field in the

neighboring segment, using conditions of continuity of pressure and velocity. This

is called: “MM”. Furthermore, these continuity conditions cannot be satisfied

with a transmission field only, and a part of the incident field is reflected. Each

mode is scattered into a modal spectrum of transmitted and reflected modes.

The first step in the MM method entails the eigenfunction expansion of unknown

fields in the individual duct-regions in terms of their respective modes. Since the

functional form of the modes is known, the problem reduces to that of obtaining

modal amplitudes related with the field expansions in different duct-regions of

waveguide. The modal representation is followed by the implementation of the

continuity conditions for the fields at the interfaces in the junction regions. This

method, in conjunction with the standard or generalized orthogonality relations of

the modes, eventually leads to an infinite system of linear simultaneous equations

for the unknown modal amplitudes. For further details on MM, we refer to [23].

In next section, we discuss the Low-Frequency Approximation technique.

2.9 Low-Frequency Approximation

LFA is found useful but valid only in low frequency regime. In this technique,

we consider only a finite number of modes and the resulting finite systems can

be solved simultaneously through inversion. The complete methodology of this

method is presented in Chapters 4, 5 and 6.

2.10 Energy Flux

The energy flux or power (P ) provides the understanding about the physical aspect

of scattering as well as a check on the accuracy of obtained solution. The formula
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to obtain energy flux through fluid medium is given in [36] as

P cfluid = Re

{
i

∫ b

a

φ

(
∂φ

∂x

)∗
dy

}
, (2.94)

where superposed asterisk (∗) specifies for complex conjugate. Accordingly, the

mathematical form of energy flux propagating via elastic membrane and plate are

given by

P cmemb = Re

{
i

α

(
∂φ

∂y

)(
∂2φ

∂x∂y

)∗}
(2.95)

and

P cplate = Re

{
i

α1

[(
∂2φ

∂x∂y

)(
∂3φ

∂x2∂y

)∗
−
(
∂φ

∂y

)(
∂4φ

∂3x∂y

)∗ ]}
, (2.96)

respectively. Note that by using (2.94)-(2.96), we may construct a conserve power

identity based upon the law of conservation of energy and that may serve as a

physical check on the accuracy of truncated solution. As well, the accuracy of the

silencer or waveguide are measured by transmission-loss (TL) that is expressed

mathematically in next section.

2.11 Transmission-Loss

The performance of any acoustic waveguide is generally testified with the opt of

transmission-loss [95], that is

TL = −10 log10

(
Pt
Pi

)
, (2.97)

where, Pt stands for power transmitted, whilst Pi is for incident power through

fluid.



Chapter 3

Acoustic Analysis in

Discontinuous Waveguide with

Different Boundaries

Two canonical problems are presented in this chapter. The first boundary value

problem comprises waveguide whose boundary walls are assumed to be either rigid,

soft or impedance in the presence of upper and lower flanges at matching interface

between two duct regions with discontinuous structure. In second boundary value

problem, the upper boundary walls are assumed to be elastic plates in waveguide

with the presence of only lower flange at matching junction. The purpose of this

chapter is to demonstrate the complete methodology to obtain the solution of both

canonical problems by Mode-Matching technique.

3.1 Canonical Problem 1

The two-dimensional, rectangular infinite waveguide bounded below and above by

two strips at ȳ = 0̄, ā and ȳ = b̄, d̄, −∞ < x < ∞ respectively, where d̄ > b̄ > ā.

Two vertical flanged strips at x̄ = 0, 0 ≤ ȳ ≤ h̄1 and h̄2 ≤ ȳ ≤ d̄ are connected,

forming the inlet and outlet duct region, respectively. The inside of the waveguide

34
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is filled with the compressible fluid of density ρ and sound speed c whilst the outer

side is in vacuo. The physical configuration of the waveguide is shown in Fig. 3.1.

Figure 3.1: The physical configuration of the waveguide.

Since, the time independent non-dimensional fluid potential φ(x, y) satisfies the

Helmholtz’s equation (2.21) with unit wave number, that has been already derived

in Section. 2.1, that is (
∇2 + 1

)
φ(x, y) = 0. (3.1)

The rigid boundary conditions in non-dimensional form are given by

∂φ(x, a)

∂y
= 0,

∂φ(x, b)

∂y
= 0, x < 0, (3.2)

the impedance boundary conditions for lower and upper strips can be written as

φ(x, 0)−Q0
∂φ(x, 0)

∂y
= 0, x > 0 (3.3)

and

φ(x, d) +Q1
∂φ(x, d)

∂y
= 0, x > 0, (3.4)
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respectively. Moreover, the sides of upper and lower flanges lying at x̄ = 0−

are acoustically rigid whilst the sides of both flanges aliened along x̄ = 0+ are

impedance that are expressed as

∂φ(0, y)

∂x
= 0, {a ≤ y ≤ h1} ∩ {h2 ≤ y ≤ b} (3.5)

and

φ(0, y) +Q2
∂φ(0, y)

∂x
= 0, {0 ≤ y ≤ h1} ∩ {h2 ≤ y ≤ d}, (3.6)

respectively.

3.1.1 Mode-Matching Solution

In this section, the MM solution is developed for the underlying boundary value

problem. Consider an incident wave of harmonic time dependence is propagating

from inlet to outlet duct region. At interface x = 0, it is scattered into an infinite

numbers of reflected and transmitted modes. So, the field potential φ(x, y) in

respective inlet and outlet duct regions can be expressed as

φ(x, y) =

φ1(x, y), x < 0, a ≤ y ≤ b,

φ2(x, y), x > 0, 0 ≤ y ≤ d.

(3.7)

On using Helmholtz’s equation (3.1) together with (3.2) and (3.3)-(3.4) with the

usual process of separation of variables, we obtain the eigenfunction expansion

form in respective duct region, that is

φ1(x, y) = F`Y1`(y)eiη`x +
∞∑
n=0

AnY1n(y)e−iηnx (3.8)

and

φ2(x, y) =
∞∑
n=0

BnY2n(y)eiνnx, (3.9)

where Y1n(y) = cos{γn(y − a)}, Y2n(y) = sin(βny) + Q0βn cos(βny). The wave

numbers ηn =
√

1− γ2
n denote in inlet duct region, whilst νn =

√
1− β2

n represent
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the wave numbers of propagating modes in outlet duct regions. The first term in

(3.8) denotes the multimodal incident for structural-borne (` = 0) and fluid-borne

(` = 1) mode incident. Moreover, the eigenvalues γ2
n = nπ/(b − a), n = 0, 1, 2, ...

and the eigenvalues βn are found by the following characteristic equation.

(1− β2
nQ0Q1) sin(βnd) + (Q0 +Q1)βn cos(βnd) = 0. (3.10)

These roots are found numerically and having properties that have been discussed

in Section. 2.5. Since the model problem is governed by Helmholtz’s equation

together with rigid, soft or impedance types boundary conditions leads to a SL

system. The eigenfunctions Yjn(y), j = 1, 2 in SL system are linearly independent

and satisfy usual orthogonality relations, that is

∫ b

a

Y1n(y)Y1m(y)dy =
(b− a)

2
δmnεm (3.11)

and ∫ d

0

Y2n(y)Y2m(y)dy = Dnδmn, (3.12)

where δmn is the kronecker delta and

εm =

2, m = 0,

1, otherwise.

(3.13)

However, the coefficients An and Bn are called reflected and transmitted ampli-

tudes in inlet and outlet duct regions respectively. These coefficients are found

by using the continuity conditions of pressures and normal velocities at matching

interfaces. Thus, the continuity condition of normal velocities at x = 0 are given

by

φ1x(0, y) =


0, a ≤ y ≤ h1,

φ2x(0, y), h1 ≤ y ≤ h2,

0, h2 ≤ y ≤ b,

(3.14)
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hereinafter φjx =
∂φj
∂x

(j = 1, 2). Now the expression of reflected amplitudes are

found by substituting (3.8)-(3.9) into (3.14) along with the usual orthogonality

relation (3.13), that is

Am = F`δm` −
2

(b− a)ηmεm

∞∑
n=0

BnνnRmn, (3.15)

where

Rmn =

∫ h2

h1

Y1m(y)Y2n(y)dy. (3.16)

Likewise, the continuity conditions of pressures at x = 0 are expressed as

φ2(0, y) =


−Q2φ2x(0, y), 0 ≤ y ≤ h1,

φ1(0, y), h1 ≤ y ≤ h2,

−Q2φ2x(0, y), h2 ≤ y ≤ d.

(3.17)

Here, we obtain expression of transmitted amplitudes by substituting (3.8)-(3.9)

into (3.17) along with the help of orthogonality relation (3.12), that is

Bm =
F`Rm`

Dm

+
∞∑
n=0

AnRnm

Dm

− iQ2

∞∑
n=0

BnνnTmn
Dm

, (3.18)

where

Tmn =

∫ h1

0

Y2m(y)Y2n(y)dy +

∫ d

h2

Y2m(y)Y2n(y)dy. (3.19)

Hence the equations (3.15) and (3.18) form an infinite system of linear algebraic

equations from which the unknown reflected amplitudes and transmitted ampli-

tudes are determined.

3.1.2 Expression for Energy Flux and Power Balance

In this section, we determine the expressions of energy flux in the inlet and outlet

duct regions of waveguide. As the boundaries of the waveguide are assumed rigid

and impedance type so it is considered that no power will be lost and so the law of

conservation law holds. Hence, it will be shown that incident power will be equal
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to sum of the reflected and transmitted power. In order to determine the incident

power (Pi), the incident field, that is

φinc(x, y) = F`Y1`(y)eiη`x, (3.20)

is substituted in (2.94), to find the power propagating through fluid in the inlet

duct region. So we get

Pi =
1

2
Re

[
F`F

∗
` η
∗
` e
i(η`−η∗` )x

∫ b

a

Y1`(y)Y1`(y)dy

]
, (3.21)

after simplification Pi reduces to

Pi =
(b− a)

2
F 2
` η`. (3.22)

Since F` =
√

1/η`, thus, we have

Pi =
(b− a)

2
. (3.23)

To find the reflected power Pr, the reflected field in the inlet duct region is repre-

sented as

φref (x, y) =
∞∑
n=0

AnY1n(y)e−iηnx, (3.24)

so, on substituting (3.24) into (2.94), we get

Pr = −1

2
Re

[
∞∑
n=0

∞∑
m=0

AnA
∗
mη
∗
me
−i(ηn−η∗m)x

∫ b

a

Y1nY1mdy

]
. (3.25)

On using OR (3.11) into (3.25), we get

Pr = −(b− a)

4
Re

[
∞∑
n=0

| An |2 εnηn

]
. (3.26)

Similarly, in order to obtain the transmitted power (Pt), the transmitted field in

outlet duct region, that is expressed as
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φtran(x, y) =
∞∑
n=0

BnY2n(y)eiνnx, (3.27)

on substituting (3.27) in (2.94), we get

Pt =
1

2
Re

[
∞∑
n=0

∞∑
m=0

BnB
∗
mν
∗
me

i(νn−ν∗m)x

∫ d

0

Y2n(y)Y2m(y)dy

]
. (3.28)

On using OR (3.12) into (3.28), we obtain

Pt =
1

2
Re

[
∞∑
n=0

| Bn |2 Dnνn

]
. (3.29)

For any enclosure, the power in inlet duct channel is equal to the power of outlet

duct channel, that is

Pi + Pr = Pt. (3.30)

To show the conserve power identity, we substitute (3.23), (3.26) and (3.29) into

(3.30), we have

(b− a)

2
− (b− a)

4
Re

[
∞∑
n=0

| An |2 εnηn

]
=

1

2
Re

[
∞∑
n=0

| Bn |2 Dnνn

]
. (3.31)

Now by dividing 2/(b− a) on both sides of (3.31), we obtain

1 =
1

2
Re

[
∞∑
n=0

| An |2 εnηn

]
+

1

(b− a)
Re

[
∞∑
n=0

| Bn |2 Dnνn

]
. (3.32)

We may scale (3.32) the incident power to unity, that is

1 = Pr + Pt, (3.33)

which is the conserved power identity, where

Pr =
1

2
Re

[
∞∑
n=0

| An |2 εnηn

]
(3.34)
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and

Pt =
1

(b− a)
Re

[
∞∑
n=0

| Bn |2 Dnνn

]
. (3.35)

Note that (3.34) and (3.35) denote reflected and transmitted power’s components

respectively, for which the incident power is being scaled at unity.

3.1.3 Numerical Results and Discussions

In this section, numerical results are provided with discussion. The relevant heights

of the inlet and outlet ducts are fixed as ā = 0.2m, b̄ = 0.8m, d̄ = 1.0m, h̄1 = 0.4m

and h̄2 = 0.6m , whilst, the sound speed and density of the air are taken to be

c = 343.5m/s and ρa = 1.2 kg/m3, respectively, for all numerical assessments.

All the presented numerical results are obtained by truncating the mode-matching

solutions with a truncation parameter referred to as N . The truncated solution

can be used to check the accuracy of presented algebra and distribution of power

or energy flux. The expressions for the reflected power (3.34) in the inlet duct

and the transmitted power (3.35) in the outlet duct have been derived in Section.

3.1.2, whereas the incident power (3.33) is scaled at unity. The structural-borne

vibration (` = 0) is only considered herein as an incident fields.

The purpose of the graphical results herein, is to analyze the scattering of powers or

energies versus frequency (in hertz). The presented graphical figures are obtained

for a fixed choice of rigid boundary conditions of all walls of the inlet duct section,

whilst all boundaries of the outlet duct section are varying with following types of

boundary conditions.

(a) Impedance Type:

For this type, the parameters are fixed as Q0 = Q1 = Q2 = 1.

(b) Soft Type:

For this case, the parameters are fixed as Q0 = Q1 = Q2 = 0.
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Figure 3.2: Power reflected (•), power transmitted (N) and the law (3.33) of
power balance (−−) against frequency for impedance type boundary conditions

with flanges for N = 90.

(c) Rigid Type:

For this type, the parameters are taken as 1/Q0 = 1/Q1 = 1/Q2 = 0.

Figs. 3.2-3.3 depict the distribution of power against frequencies in the domain

1Hz≤ f ≤ 1000Hz, for a fixed choice of rigid boundaries of the inlet duct wall

and impedance boundary conditions (see, Type. (a)) assumed for the outlet duct

walls. The Fig. 3.2 reveals that reflected and transmitted powers fluctuate at low

frequency ranges (f ≤ 400Hz), but after f = 400Hz, fluctuation in power reflection

goes maximum in the presence of flanges. On the other hand, Fig. 3.3 depicts the

powers scattering results in the absence of flanges by assuming the parameters

ā = h̄1 = 0.2m and b̄ = h̄2 = 0.8m. It is observed that the reflection power goes

minimum after f = 400Hz than Fig. 3.2 because of the absence of the flanges. It

is also noted that the conserved power identity (3.33) holds in both Figs. 3.2-3.3,

which is displayed with dashed.

Figs. 3.4-3.5 depict the power propagation against frequency with soft type (see

Type. (b)) boundary conditions imposed at the walls of the outlet duct section

by keeping the boundaries of the wall of inlet duct as rigid. Fig. 3.4 reveals
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Figure 3.3: Power reflected (•), power transmitted (N) and the law (3.33) of
power balance (−−) against frequency for impedance type boundary conditions

without flanges for N = 90.

the results of powers scattering with flanges, whilst Fig. 3.5 depicts the powers

scattering results without flanges.
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Figure 3.4: Power reflected (•), power transmitted (N) and the law (3.33) of
power balance (−−) against frequency for soft type boundary conditions with

flanges for N = 90.

In Fig. 3.4, the reflected power decreases from maximum to 80%, whereas the

sum of reflected and transmitted power remains identity. In contrast, the power

propagation behavior in Fig. 3.5 is quite different than Fig. 3.4. It is because
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Figure 3.5: Power reflected (•), power transmitted (N) and the law (3.33)
of power balance (−−) against frequency for soft type boundary conditions

without flanges for N = 90.
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Figure 3.6: Power reflected (•), power transmitted (N) and the law (3.33) of
power balance (−−) against frequency for rigid type boundary conditions with

flanges for N = 90.

of the absence of flanges, the reflected power goes to minimum after f = 200Hz

and transmitted power behaves conversely. However, the sum of the reflected and

transmitted powers is unity that successfully testifies the conserve power iden-

tity (3.33), as shown in both Figs. 3.4-3.5. Figs. 3.6-3.7 depict for the rigid (see

Type.(c)) boundary conditions that are imposed on the walls of both inlet and
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Figure 3.7: Power reflected (•), power transmitted (N) and the law (3.33)
of power balance (−−) against frequency for rigid type boundary conditions

without flanges for N = 90.

outlet duct sections including flanges. Clearly, it is depicted that the maximum

power is reflected in both of the case with and without flanges, as shown in

Figs. 3.6-3.7. Also the sum of reflected and transmitted power remains unity.

3.1.4 Validation of the Method

The graphical results presented in last section 3.1.3 focused on the scattering anal-

ysis of powers against frequency for two different types of boundary conditions in

the presence of the flanges and without flanges. In view of the nature of singularity

in the velocity field, it is essential to validate the MM solution. Toward this end,

it is verified that

(a) a sufficient number of terms have been retained while truncating (3.15) and

(3.18) so that an adequate convergence of the modal coefficients can be

ensured, and

(b) the coefficients contain correct information so that the matching conditions

(3.14) and (3.17) can be reconstructed.
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Accordingly, the real and imaginary parts of velocities and pressures are plotted at

interface x = 0 for rigid boundaries of inlet duct wall and impedance boundaries

for outlet duct walls in Fig. 3.15 and in Fig. 3.18 respectively. It can be observed

that the real and imaginary parts of non-dimensional pressures and velocities are

in excellent agreement along with the aperture at x = 0. Both pairs of curves

almost overlap for h1 ≤ y ≤ h2 and velocities are zero in the domain a < y < h1

and h2 < y < b. This is true at all relevant frequencies. Thus, conditions from
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(a) Real part of velocities
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(b) Imaginary part of velocities.

Figure 3.8: Normal velocities vs. duct height at x = 0 in the presence of
flanges, frequency 600Hz, and N = 150.
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(a) Real part of pressures.

0 2 4 6 8 10
y

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4
ImHΦ jL

Φ2

Φ1

(b) Imaginary part of pressures.

Figure 3.9: Pressures vs. duct height at x = 0 in the presence of flanges,
frequency 600Hz, and N = 150.

(3.14) and (3.17) are satisfied. The matching conditions are also met to the same

accuracy at interfaces x = 0. Nevertheless, the two curves oscillate around their

mean value and the amplitude of oscillation reduces significantly as y increases,

except when y → h1 and y → h2. This is, in fact, due to the singular behavior of

the velocity field at the corner of the two flangs, one is at y = h1 and other is at

y = h2. It has been debated in great detail in, for instance [34]. In a nutshell, the

reconstruction of the matching conditions completely justify the truncated MM
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approach and assert on the correctness of the performed algebra.

3.2 Canonical Problem 2

Consider a two-dimensional infinite waveguide containing two semi-infinite duct

regions −∞ < x̄ ≤ 0, 0 ≤ ȳ ≤ ā and 0 ≤ x̄ < ∞, h̄1 ≤ ȳ ≤ b̄. These duct

regions are bounded below by an acoustically rigid surfaces at ȳ = 0 and ȳ = h̄1,

whilst bounded above by an elastic plate at ȳ = ā, −∞ < x̄ ≤ 0 and ȳ = b̄,

0 ≤ x̄ <∞. Two duct regions are mutually joined by means of two vertical strips

lying at x̄ = 0, 0 ≤ ȳ < h̄2 and x̄ = 0, ā ≤ ȳ < b̄. The material properties on the

sides of the vertical strips are assumed to be different. The sides of vertical strips

Figure 3.10: The physical configuration of the waveguide.

lying at x̄ = 0− are acoustically rigid while the sides aliened along x̄ = 0+ are soft.

The interior region of the waveguide is filled with a compressible fluid of density

ρ and sound speed c, whereas, the exterior region is assumed to be in vacuo. The

waveguide structure of the problem is shown in Fig. 3.10. As the time independent

dimensionless fluid potential φ(x, y) satisfies the Helmholtz’s equation with unit
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wave number, that is (
∇2 + 1

)
φ(x, y) = 0. (3.36)

For the convenience the time independent fluid potential φ(x, y) for two duct region

is expressed in terms of two different scattered fields as

φ(x, y) =

φ1(x, y), x ≤ 0, 0 ≤ y ≤ a,

φ2(x, y), x ≥ 0, h1 ≤ y ≤ b.

(3.37)

The rigid horizontal lower boundaries are defined as

∂φ1(x, 0)

∂y
= 0,

∂φ2(x, h1)

∂y
= 0, x ∈ R, (3.38)

whilst the upper surfaces with flexible boundaries are defined by the following

equation (
∂4

∂x4
− µ4

1

)
∂φj
∂y
− α1φj = 0, (3.39)

where for j = 1 and j = 2 the condition is applied at y = a, x < 0 and y =

b, x > 0, respectively. Here the non-dimensional parameters µ1 is in vacuo plate

wavenumber and α1 a fluid loading parameter defined by

µ1 =
4

√
12(1− υ2)c2ρp

h2k2E
and α1 =

12(1− υ2)c2ρ

h3k3E
, (3.40)

where E is Young’s modulus, ρp is the density of the plate and ν is Poisson’s ratio.

At x = 0−, the rigid vertical flanged-strip is given by

∂φ1

∂x
= 0, 0 < y < h2, (3.41)

whereas, at x = 0+ the soft back of strip is defined as

φ2 = 0, y ∈ (h1, h2) ∪ (a, b). (3.42)

At the aperture x = 0, h2 < y < a, the fluid pressure and normal component of
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velocities are continuous, that is

φ1x(0, y) =

0, 0 ≤ y ≤ h1,

φ2x(0, y), h2 ≤ y ≤ a

(3.43)

and

φ2(0, y) =


0, h1 ≤ y ≤ h2,

φ1(0, y), h2 ≤ y ≤ a,

0, a ≤ y ≤ b.

(3.44)

It is well-studied concept that the mathematical model for structures involving

flexible boundaries is no more well-posed unless some extra conditions are im-

posed to make it well-posed. The choice of these conditions depend on the order

of flexible boundary, that is, the number of extra conditions is the half of the order

of boundary condition [43]. Moreover these conditions are termed as “edge con-

ditions” which ensure that how the flexible boundaries are connected vertically.

Here, we will discuss the solution for three set of edge conditions; i) clamped edge

conditions, ii) pin-jointed edge conditions and iii) pivoted edge conditions.

• Acquisition of Solution

It is well established that there exist many physical situations that can be mod-

elled in terms of waveguides with higher order surfaces [56–59]. The mathematical

models for waveguide structures having plannar boundaries are solvable using the

standard WH technique. In such cases the eigensystem appeared to be SL and

therefore separation of variables yields the simplest form of eigenfunction expan-

sions that are orthogonal and linearly independent. However, for waveguide struc-

tures having geometric discontinuity (abrupt change in height) and comprising of

higher order boundaries can be solved using MM approach. In such situations the

eigensystem is non SL, obtained eigenfunctions are linearly dependent that do not

satisfy the usual OR. In this way the appropriate orthogonality relations are devel-

oped by which the Fourier coefficients of eigenfunction expansions can explicitly

be expressed in terms of known boundary data. Few extra conditions such as edge
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conditions are also used to ensure the uniqueness of the MM solution. The choice

of these extra conditions certainly affects the scattered field thereby incorporating

the physical behavior of scattering process. The detail study of edge condition is

referred for instance to [70, 71, 99]. With this, the solution to the above stated

problem can be achieved while taking the following footsteps; I) to obtain the

eigenfunction expansion of duct modes; II) to obtain the related dispersion re-

lations and appropriate orthogonality relations, III) to apply mode-matching at

vertical interface and, IV) the implication of appropriate edge conditions.

3.2.1 Eigenfunction Expansion

Consider an incident wave of harmonic time dependence propagating from negative

x − axis towards x = 0. The incident wave is considered with an arbitrary duct

mode. At x = 0 it will scatter into an infinite number of reflected and transmitted

modes. In order to find the eigenfunction expansion in respective duct region

(3.37), we use (3.36) along with (3.37), (3.38), (3.39), by using the usual process

of separation of variables, the eigenfunction expansion of these scattered duct

modes are given by

φ1(x, y) = F`Y1`(γ`, y)eiη`x +
∞∑
n=0

AnY1n(γn, y)e−iηnx (3.45)

and

φ2(x, y) =
∞∑
n=0

BnY2n(βn, y)eiνnx, (3.46)

where Y1n(γn, y) = cosh(γny) and Y2n(βn, y) = cosh[βn(y−h1)]. Moreover, the first

term in above (3.45) denotes the incident field. The forcing F` =
√
α/E`η` (where

the quantity E` will be defined later) is chosen for algebraic convenience and to

scale the incident power at unity as well. The counter ` is considered to incorporate

two different incident duct modes, that is, ` = 0 for fundamental mode incident

whereas ` = 1 for the secondary mode incident. The quantities ηn =
√

1 + γ2
n

and νn =
√

1 + β2
n are the wave numbers of nth reflected and transmitted modes,

respectively.
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3.2.2 Dispersion and Orthogonality Relations

It can be seen that condition (3.39) contains even order derivative which ensures

the even order of corresponding characteristic polynomial [103]. Therefore, the

eigen values γn and βn; (n = 0, 1, 2...) of the duct eigenfunction satisfy the following

dispersion relations (for detail, referred by Section. 2.7), that is

{(γ2
n + 1)2 − µ4

1}γn sinh(γna)− α1 cosh(γna) = 0 (3.47)

and

{(β2
n + 1)2 − µ4

1}βn sinh[βn(b− h1)]− α1 cosh[βn(b− h1)] = 0. (3.48)

The equations (3.47)-(3.48) can be solved numerically for γn and βn. For the prob-

lems in which waveguide comprises of walls with soft, rigid or impedance type, the

separation of variable renders the solution in a simple way. Also the corresponding

eigenfunctions satisfy the standard OR. Albeit, the governing system is SL in na-

ture. But system will be no more SL if waveguide comprises of flexible boundaries.

In such circumstances the eigenfunctions do not satisfy standard OR. Thus, for

such systems we have to explore the related orthogonal properties. The problem

considered herein contain elastic plate bounded duct for x ∈ (−∞, 0) ∪ (0,∞) in

which the eigenfunctions satisfy the generalized form of ORs for inlet and outlet

duct regions (for detail, referred by Section. 2.7), that is

α1

∫ a

0

Y1(γn, y)Y1(γm, y)dy

= Enδmn − (γ2
m + γ2

n + 2)Y
′

1 (γm, a)Y
′

1 (γn, a) (3.49)

and

α1

∫ b

h1

Y2(βn, y)Y2(βm, y)dy

= Gnδmn − (β2
m + β2

n + 2)Y
′

2 (βm, (b− h1))Y
′

2 (βn, (b− h1)), (3.50)
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respectively, where

Em =
α1a

2
+
α1Y1(γm, a)Y

′
1m(γm, a)

2γ2
m

+ 2[(γ2
m + 1)Y

′

1 (γm, a)]2 (3.51)

and

Gm =
α1(b− h1)

2
+
α1Y2(βm, (b− h1))Y

′
2 (βm, (b− h1))

2β2
m

+2[(β2
m + 1)Y

′

2 (βm, (b− h1))]2. (3.52)

It is important to note that the eigenfunctions corresponding to the eigenvalues

γn or βn, n = 0, 1, 2, ... are linearly dependent but contain well defined orthogonal

properties for elastic plate bounded ducts. Having obtained well defined orthogo-

nal properties, the scattered modes coefficients, (An, Bn) can be found by using the

continuity conditions of pressure and normal velocity at matching interface along

with appropriate edge conditions. This process is illustrated in the subsequent

section.

3.2.3 Mode-Matching Solution

We opt MM across the interface to find the solution of above boundary value

problem. In order to find the expression of reflected amplitudes, we use (3.45)-

(3.46) into (3.43), it is straight forward to obtain

F`η`Y1`(γ`, y)−
∞∑
n=0

AnηnY1n(γn, y)

=

0, 0 ≤ y ≤ h2,∑∞
n=0 BnνnY2n(βn, y), h2 ≤ y ≤ b.

(3.53)

On multiplying with α1Y1m(γn, y), integrating from 0 to a and then using OR

(3.49), we get the expression of reflected amplitudes, that is

Am = F`δm` −
Y
′

1m(γm, a)

ηmEm
{e1 + (γ2

m + 2)e2} −
α1

ηmEm

∞∑
n=0

BnνnRmn, (3.54)
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where

e1 = −i φ1xyyy(0, a), (3.55)

e2 = −i φ1xy(0, a) (3.56)

and

Rmn =

∫ a

h2

Y1m(γm, y)Y2n(βn, y)dy. (3.57)

Similarly, we obtain the expression of transmitted amplitudes by substituting

(3.45)-(3.46) into (3.44) along with appropriate orthogonality relation (3.50), that

is

Bm =
Y
′

2m(βm, (b− h1))

Gm

{e3 + (γ2
m + 2)e4}+

α1

Gm

{F`R`m +
∞∑
n=0

BnRnm}, (3.58)

where

e3 = φ2yyy(0, b) (3.59)

and

e4 = φ2y(0, b). (3.60)

Here e1 − e4 are arbitrary constants that can be determined by using the edge

conditions. Three sets of edge condition are considered here which we discuss in

following cases.

3.2.4 Use of Edge Conditions

As in case of higher order field equation and boundary conditions, the ORs are

likely to be non simple then there is inevitably a question of how to impose the

corner conditions at the junction of discontinuity. Thus, the development of
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appropriate OR is not sufficient without a practical and convenient approach of

imposing the edge conditions. In order to incorporate the clamped, pin-jointed

and pivoted types of edge conditions, a simple procedure is demonstrated.

• Clamped Edges: For edges to be clamped, the elastic plate displacement

and gradient are assumed as zero, that is,

φ1y(0, a) = 0, (3.61)

φ1xy(0, a) = 0, (3.62)

φ2y(0, b) = 0, (3.63)

φ2xy(0, b) = 0. (3.64)

From (3.62)-(3.63), it is directly to get e2 = e4 = 0. Moreover, to determine

e1 we multiply (3.54) by Y
′

1m(γm, a), taking sum over m upto ∞ and then

use the edge condition (3.61), we obtain

e1 =
2F`Y

′

1`(γ`, a)

S1

− α1

S1

∞∑
m=0

∞∑
n=0

BnνnRmnY
′

1m(γm, a)

ηmEm
, (3.65)

where

S1 =
∞∑
m=0

[Y
′

1m(γm, a)]2

ηmEm
.

Likewise, to calculate e3 we multiply (3.58) by Y
′

2m(βm, (b−h1)), taking sum

over m upto ∞ and after using the edge condition (3.64), we found

e3 = −α1

S2

∞∑
m=0

νmY
′

2m(βm, (b− h1))

Gm

{F`R`m +
∞∑
n=0

BnRnm}, (3.66)

where

S2 =
∞∑
m=0

νm[Y
′

2m(βm, (b− h1))]2

Gm

.

Hence, we obtained the arbitrary constants e1 − e4 for clamped edge condi-

tions. In next, these arbitrary constant are also found for pin-jointed and

pivoted edge conditions.
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• Pin-Jointed Edges: In this condition we assume the zero displacement

and the zero bending moment at the elastic plate edges, that is

φ1y(0, a) = 0, (3.67)

φ1xxy(0, a) = 0, (3.68)

φ2y(0, b) = 0, (3.69)

φ2xxy(0, b) = 0. (3.70)

Now on using the reflected mode coefficient (3.54) into (3.45), differentiating

with respect to y and after utilizing the edge condition (3.67), we obtain

e1S1 + e2S3 = 2F`Y
′

1`(γ`, a)− α1

∞∑
m=0

∞∑
n=0

BnνnRmnY
′

1m(γm, a)

ηmEm
, (3.71)

where

S3 =
∞∑
m=0

(γ2
m + 2)[Y

′
1m(γm, a)]2

ηmEm
.

In the similar fashion, the application of edge condition (3.68), yields

e1S4 + e2S5 = 2F`η
2
`Y
′

1`(γ`, a)− α1

∞∑
m=0

∞∑
n=0

BnνnηnRmnY
′

1m(γm, a)

Em
, (3.72)

where

S4 =
∞∑
m=0

ηm[Y
′

1m(γm, a)]2

Em

and

S5 =
∞∑
m=0

ηm(γ2
m + 2)[Y

′
1m(γm, a)]2

Em
.

The equation (3.69) directly yields to e4 = 0, while the value of e3 is found

by multiplying (3.58) with Y
′

2m(βm, (b − h1)), taking sum over m upto ∞

then imposing the edge condition (3.70), that is

e3 = −α1

∞∑
m=0

ν2
mY

′
2m(βm, (b− h1))

Gm

{F`R`m +
∞∑
n=0

BnRnm}. (3.73)

Thus, to make sure the smooth convergence of summations in (3.73), we
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apply the Green’s identities (2.90). For sake of this, the integral of Rnm is

splitted as

Rnm =

∫ b

h1

Y1n(γn, y)Y2m(βm, y)dy

−
∫ h2

h1

Y1n(γn, y)Y2m(βm, y)dy

−
∫ b

a

Y1n(γn, y)Y2m(βm, y)dy. (3.74)

On using the above value in (3.73), we arrive

e3 = −α1F`

∞∑
m=0

ν2
mY

′
2m(βm, (b− h1))

Gm

{
∫ b

h1

Y1`(γ`, y)Y2m(βm, y)dy − T`m}

−α1

∞∑
m=0

∞∑
n=0

Bnν
2
mY

′
2m(βm, (b− h1))

Gm

∫ b

h1

Y1n(γn, y)Y2m(βm, y)dy

+α1

∞∑
m=0

∞∑
n=0

Bnν
2
mY

′
2m(βm, (b− h1))Tnm

Gm

, (3.75)

where

Tnm =

∫ h2

h1

Y1n(γn, y)Y2m(βm, y)dy +

∫ b

a

Y1n(γn, y)Y2m(βm, y)dy.

Since, the application of Green’s identities (2.90) in the domain h1 ≤ y ≤ b,

reveals

− α1F`

∞∑
m=0

ν2
mY

′
2m(βm, (b− h1))

Gm

∫ b

h1

Y1`(γ`, y)Y2m(βm, y)dy = 0, (3.76)

−α1

∞∑
m=0

∞∑
n=0

Bnν
2
mY

′
2m(βm, (b− h1))

Gm

∫ b

h1

Y1n(γn, y)Y2m(βm, y)dy = 0. (3.77)

On manipulating the values of (3.76)-(3.77) in the equation (3.75), we finally

concludes to

e3 = α1

∞∑
m=0

ν2
mY

′
2m(βm, (b− h1))

Gm

{F`T`m +
∞∑
n=0

BnTnm}. (3.78)

Now, we elaborate the pivoted type of edge condition for elastic plate.
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• Pivoted Edges: The pivoted edge conditions are usually feasible only when

a = b. These can be defined as

φjy(0, b) = 0, j = 1, 2. (3.79)

φ1xy(0, b) = φ2yx(0, b), (3.80)

φ1xxy(0, b) = φ2yxx(0, b). (3.81)

The above conditions can be used to calculate the values of constants e1−e4.

For that we reconstruct the scattered field potentials (3.45)-(3.46) on us-

ing(3.54) and (3.58). Now by using the edge conditions (3.79), it is straight-

forward to write e4 = 0 and

e1S1 + e2S3 = 2F`Y
′

1`(γ`, a)− α1

∞∑
m=0

∞∑
n=0

BnνnRmnY
′

1m(γm, a)

ηmEm
. (3.82)

However, the simplification of (3.80) by using the Green’s identities (2.90)

yields to

e2 − e3S2 = α1

∞∑
m=0

∞∑
n=0

BnνmY
′

1m(γm, b)Qmn

Gm

+ α1

∞∑
m=0

νmY
′

2m(βm, (b− h1))

Gm

{F`R`m +
∞∑
n=0

BnRnm}, (3.83)

where

Qnm =

∫ h2

0

Y1n(γn, y)Y2m(βm, y)dy. (3.84)

Moreover, the equation (3.81) can be also simplified with constructing the

Green’s function which can be written as

e1S4 + e2S5 + e3 = 2F`η
2
`Y
′

1`(γ`, a)− α1

∞∑
m=0

∞∑
n=0

BnνnηnRmnY
′

1m(γm, a)

Em

+ α1

∞∑
m=0

ν2
mY

′
2m(βm, (b− h1))

Gm

{F`P`m +
∞∑
n=0

BnPnm}, (3.85)
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where

Pnm =

∫ h2

h1

Y1n(γn, y)Y2m(βm, y)dy. (3.86)

Hence, we found arbitrary constants e1−e4 for different sets of edge conditions. So,

we have two infinite systems of algebraic equations defined by (3.54) and (3.58).

These are truncated and solved numerically for each sets of edge conditions to

determine the unknown amplitudes.

The truncated solution can be used to check the accuracy of presented algebra

and distribution of energy flux. This not only validate the proposed solution but

also provide a useful physical information about the boundary value problem. So,

expression for energy flux is derived in next subsection.

3.2.5 Expression for Energy Flux and Power Balance

The expressions of energy flux for flexible waveguide bounded by elastic plates are

determined in this section. In order to obtain the incident power through fluid

(Picfluid ), we manipulate the incident field

φinc(x, y) = F`Y1`(γ`, y)eiη`x, (3.87)

in (2.94), thus we have

Picfluid = Re

[
1

α1

F`F
∗
` η
∗
` e
i(η`−η∗` )x

∫ a

0

Y1`(γ`, y)Y1`(γ`, y)dy

]
. (3.88)

Since F` =
√
α1/η`G` and using OR (2.89) for m = n = `, after simplification,

the incident power through fluid becomes

Picfluid = Re

[
1− 1

α1

F 2
` η`[Y

′

1`(γ, a)]2
]
. (3.89)

In a similar way, we determine the incident power through plate (Picplate) by

substituting (3.87) into (2.96) and after simplification, the incident power traveling
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along the plate yields

Picplate = Re

[
1

α1

F 2
` η`[Y

′

1`(γ, a)]2
]
. (3.90)

Consequently,

Picfluid + Picplate = 1. (3.91)

Also, to find the reflected power through fluid (Prcfluid), the reflected field in the

inlet duct region is represented as

φref (x, y) =
∞∑
n=0

AnY1n(γn, y)e−iηnx. (3.92)

On substituting (3.92) into (2.94), the reflected power through fluid can be written

as

Prcfluid = Re

[
1

α1

∞∑
n=0

∞∑
m=0

AnA
∗
mη
∗
me
−i(ηn−η∗m)x

∫ a

0

Y1n(γn, y)Y1m(γm, y)dy

]
.

(3.93)

On using OR (2.89) into (3.93), we get

Prcfluid = Re

[
1

α1

∞∑
n=0

| An |2 Gnηn −
1

α1

∞∑
n=0

| An |2 ηn[Y
′

1n(γn, a)]2

]
. (3.94)

As well as, the reflected field potential (3.92) along with (2.96) yields the reflected

power through plate, that is

Prcplate = Re

[
1

α1

∞∑
n=0

| An |2 ηn[Y
′

1n(γn, a)]2

]
. (3.95)

As, the total reflected power is

Pr = Prcfluid + Prcplate. (3.96)

Since, we acquire

Pr = Re

[
1

α1

∞∑
n=0

| An |2 ηnGn

]
. (3.97)
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Similarly, we express the transmitted power for outlet duct section as

Pt = Re

[
1

α1

∞∑
n=0

| Bn |2 νnGn

]
. (3.98)

3.2.6 Numerical Results and Discussion

In this section, the obtained solution is truncated first, and then solved numeri-

cally for each set of edge conditions. In each case the non-SL system is suitably

convergent [34, 36]. Thus we truncate (3.54) and (3.58) together with e1 − e4

upto m = 0, 1, ...N − 1 and then solve the retained system simultaneously. The

reflected power and transmitted power in duct regions [36] are expressed in (3.97)

and (3.98), respectively, which certifies the conserved power identity, that is

Pr + Pt = 1. (3.99)

While carrying the numerical computation the elastic plate is chosen of aluminum,

of thickness h̄ = 0, 0006m and density ρp = 2700kgm−3; whereas, values of Young’s

modulus and Poisson’s ratio are taken to be E = 7.28 × 1010Nm−2 and υ =

0.34. For each case considered here the speed of sound in air c = 343ms−1 and

density of air ρ = 1.2043kgm−3 are taken from Kaye and Laby [104], whereas,

the duct heights are fixed at ā = 0.06m and b̄ = 0.085m. Now we can discuss

the distribution of scattering power against frequency with different set of edge

conditions. On taking ` = 0 and ` = 1 the fundamental (structure-borne) and

secondary (fluid-borne) mode, respectively, can be used as an incident field. For

the clamped set of edge conditions, reflected power (Pr), transmitted power (Pt)

and their sum (Pr+Pt) against frequency (Hz) are shown in Figs. 3.11-3.14. These

clearly follow that for structure-borne mode incident maximum of the power goes

on reflection with and without flanged junction (solid curves in Figs. 3.11 & 3.13).

On the other hand, for the fluid-borne mode incident which cuts-on at f = 191Hz,

the transmitted power increases in the absence of flanged junction (dashed curves

in Figs. 3.12 & 3.14). However, the sum of the reflected and transmitted powers

(dotted lines) is unity that successfully testifies the conserve power identity (3.99).
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Figure 3.11: For structure-borne mode (` = 0), the Pr (solid), Pt (dashed)
and the law (3.99) of power balance (dotted) are shown against frequency with

flange.

200 300 400 500 600 700 800 900

0.0

0.2

0.4

0.6

0.8

1.0

f

Po
w

er

Figure 3.12: For fluid-borne mode (` = 1), the Pr (solid), Pt (dashed) and the
law (3.99) of power balance (dotted) are shown against frequency with flange.

For Figs. 3.15-3.18 the power components are plotted for the pin-jointed set of

edge conditions. The power propagation behavior for this set of edge conditions

is most similar as the clamped set of edge conditions.

Figs. 3.19-3.22 depict the power propagation against frequency with pivoted set

of edge conditions. For the structure-borne mode incident and in the presence
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Figure 3.13: For structure-borne mode (` = 0), the Pr (solid), Pt (dashed) and
the law (3.99) of power balance (dotted) are shown against frequency without

flange.
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Figure 3.14: For fluid-borne mode (` = 1), the Pr (solid), Pt (dashed) and
the law (3.99) of power balance (dotted) are shown against frequency without

flange.
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Figure 3.15: For structure-borne mode (` = 0), the Pr (solid), Pt (dashed)
and the law (3.99) of power balance (dotted) are shown against frequency with

flange.
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Figure 3.16: For fluid-borne mode (` = 1), the Pr (solid), Pt (dashed) and the
law (3.99) of power balance (dotted) are shown against frequency with flange.
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Figure 3.17: For structure-borne mode (` = 0), the Pr (solid), Pt (dashed) and
the law (3.99) of power balance (dotted) are shown against frequency without

flange.
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Figure 3.18: For fluid-borne mode (` = 1), the Pr (solid), Pt (dashed) and
the law (3.99) of power balance (dotted) are shown against frequency without

flange.
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Figure 3.19: For structure-borne mode (` = 0), the Pr (solid), Pt (dashed)
and the law (3.99) of power balance (dotted) are shown against frequency with

flange.

of flanged junction, the reflected and transmitted powers tend to have identical

power scattering in two duct regions over the variation of frequency (see Fig. 3.19).

However, for the fluid-borne mode incident the reflected power decreases from

the maximum to 80% as frequency varies from 191Hz to 953Hz (see Fig. 3.20).

But, in the absence of flange, the power propagation behavior is quite different

(see Figs. 3.21 & 3.22). As for the case of structure-borne mode incident with

1Hz ≤ f ≤ 191Hz, the reflected power decreases steadily upto 70% of incident

power and then goes on to maximum at cut-on frequency f = 191Hz, but once it

crosses the cut-on frequency the reflection decreases upto half of the total power.

With this variation of frequency, the transmitted power behaves symmetrically in

opposite direction but, of course, the sum of the reflected and transmitted power

remains unity (see Fig. 3.21). On contrary for the fluid-borne mode incident the

transmitted power increases from 20% to 80% with increasing values of frequency

from 191Hz to 953Hz (see Fig. 3.22).

Now we reconstruct the continuity conditions at matching interface (3.43) and

(3.44) by using the truncated solution. Figs. 3.23-3.26 show the real (Re) and imag-

inary (Im) parts of non-dimensional pressures and normal velocities at matching
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Figure 3.20: For fluid-borne mode (` = 1), the Pr (solid), Pt (dashed) and the
law (3.99) of power balance (dotted) are shown against frequency with flange.
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Figure 3.21: For structure-borne mode (` = 0), the Pr (solid), Pt (dashed) and
the law (3.99) of power balance (dotted) are shown against frequency without

flange.
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Figure 3.22: For fluid-borne mode (` = 1), the Pr (solid), Pt (dashed) and
the law (3.99) of power balance (dotted) are shown against frequency without

flange.

interface. From these figures it is evident that the pressures and normal veloc-

ities match exactly at x = 0, h2 ≤ y ≤ a, whereas, real part of pressure, i.e,

Re{φ2(0, y)} → 0 and imaginary part of pressure at x = 0, i.e, Im{φ2(0, y)} → 0,

for y ε (h1, h2) ∪ (a, b), (see Figs. 3.23 & 3.24) and similarly, Re{φ1x(0, y)} → 0

and Im{φ1x(0, y)} → 0, for y ε (0, h1), (see Figs. 3.25 & 3.26). These are exactly

the conditions given by equations (3.43) and (3.44).

In this chapter, we have studied the scattering analysis in two canonical prob-

lems by MM technique. The physical configuration of the first problem has been

considered with rigid, soft and/or impedance type boundaries in the presence of

upper and lower flanges at discontinuous junction. The resulted eigen-sub-system

of modeled problem leads to SL category in which the standard OR is appropriate.

The numerical experiments have been performed for different types of boundaries

with or without flanges and significant effect in reflected and transmitted energies

have been analyzed with and without flanges. In second problem, the scattering

analysis has been studied through waveguide bounded by elastic plate in the pres-

ence of lower flange at discontinuity. The numerical analysis has been performed

for clamped, pin-jointed and pivoted type of edge conditions for both fluid and
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structure borne mode incidents. The effect of scattering analysis has been ob-

served same for both clamped and pin-jointed edge conditions for both structure

and fluid borne mode incident, while reflected and transmitted energies have been

observed inversely for the case of pivoted edge conditions.
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Figure 3.23: The real part of pressure vs. duct height at x = 0 in the presence
of flanges, frequency 700Hz, and N = 280.
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Figure 3.24: The imaginary part of pressure vs. duct height at x = 0 in the
presence of flange, frequency 700Hz, and N = 280.
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Figure 3.25: The real part of normal velocities vs. duct height at x = 0 in
the presence of flange, frequency 700Hz, and N = 280.
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Figure 3.26: The imaginary part of normal velocities vs. duct height at x = 0
in the presence of flange, frequency 700Hz, and N = 280.



Chapter 4

Acoustic Analysis in

Discontinuous Waveguide

Bounded by Membranes

In this chapter, the attenuation of fluid-structure coupled modes of non-planar

waveguide involving expansion chamber is analyzed. The physical problem is mod-

eled to illustrate the scattering behavior of acoustic waves in a flexible waveguide

composed of thin elastic membranes having edges or joints and structural dis-

continuities. The fluid-structure coupled waveforms scatter after interacting with

the discontinuities and edges of the underlying structure. An appropriate choice

of edges offers scattering or resonance processes, which also guide fluid-structure

coupled waves. The MM technique together with LFA is used to determine ve-

locity potentials. The guiding structure is then analyzed and validated through

scattering energy or power functional by varying the dimensions of the expansion

chamber and the wave frequency. The results are formulated and analyzed by

tuning the device using an appropriate choice of edge conditions, dimension of ex-

pansion chamber, and wave frequencies, thereby validating the obtained solutions.

These descriptions are very useful for the active control measure of structural

vibrations.

71
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This chapter is organized as follows: In Section. 4.1, the traveling waves forms for

the duct modes together with appropriate orthogonality relations are illustrated.

These are used in Section. 4.2, where the boundary value problem is solved using

the MM technique. Section. 4.3 concerns the derivation of a LFA to the solution.

In Section. 4.4, numerical results and discussions are provided.

4.1 Boundary Value Problem

This section provides the statement of the underlying waveguide problem config-

ured in Fig. 4.1. The waveguide includes duct regions of different heights and

comprises rigid boundaries along ȳ = 0̄, ā, −∞ < x̄ < ∞ and elastic membranes

along ȳ = b̄, h̄, −∞ < x̄ < ∞. The duct regions are mutually joined at inter-

faces x̄ = ±L̄ by means of four rigid vertical surfaces lying along 0̄ ≤ ȳ ≤ ā and

b̄ ≤ ȳ ≤ h̄. The inside of the waveguide is filled with the compressible fluid of

density ρ and sound speed c whilst the outside of it is set into vacuo. The bound-

ary value problem (BVP) is formulated considering the structural and fluid-bornes

modes which will propagate from negative x-direction towards |x̄| ≤ L̄. Thus, the

time independent dimensionless fluid potential φ satisfies the Helmholtz equation

with unit wave number, that is

(
∇2 + 1

)
φ(x, y) = 0. (4.1)

The rigid and membranes boundaries in non-dimensional form are given by

∂φ(x, 0)

∂y
= 0,

∂φ(x, a)

∂y
= 0, −∞ < x <∞, (4.2)

(
∂2

∂x2
+ µ2

)
∂φ(x, b)

∂y
+ αφ(x, b) = 0 −∞ < x <∞ (4.3)

and
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(
∂2

∂x2
+ µ2

)
∂φ(x, h)

∂y
+ αφ(x, h) = 0, −∞ < x <∞, (4.4)

respectively. Here, µ = c/cm and α = ω2ρ/Tk3 represent the non-dimensional

membrane wave number and the fluid loading parameter, respectively. Equations

(4.1)-(4.4) yield the following eigenfunctions in respective waveguide regions

Figure 4.1: The physical configuration of the waveguide.

Y1n(y) = cosh[γn(y − a)], |x| > L, a ≤ y ≤ b,

Y2n(y) = cosh(βny), |x| < L, 0 ≤ y ≤ h,

(4.5)

where Y1n(y) and Y2n(y) represent the nth eigenfunctions in the inlet/outlet and

expansion chamber of the waveguide, respectively. The corresponding eigenvalues

(γn, βn), n = 0, 1, 2, ..., are the roots of the following characteristic equations

κ1(γ) = (γ2 + 1− µ2)γ sinh[γ(b− a)]− α cosh[γ(b− a)] = 0,

κ2(β) = (β2 + 1− µ2)β sinh(βh)− α cosh(βh) = 0.

(4.6)
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These roots exibhiting properties detailed in [99] are found numerically. We discuss

here only the positive roots (i.e., those lying in the upper half of the complex

beta/gamma plane axis which is deemed to include the positive real axis). It is

found that there is always one real root, (γ0 > 0, β0 > 0) and an infinite number

of imaginary roots.

The eigenfunctions Yjn(y), j = 1, 2, satisfy the following generalized orthogonality

relations

α

∫ b

a

Y1n(y)Y1m(y)dy = Gnδmn − Y
′

1n(b)Y
′

1m(b) (4.7)

and

α

∫ h

0

Y2n(y)Y2m(y)dy = Enδmn − Y
′

2n(h)Y
′

2m(h), (4.8)

where the prime indicates differentiation with respect to y and δmn is the usual

Kronecker delta. For the fluid-structure coupled modes the quantities Gn and En

are found as

Gn =
Y
′

1n(b)

2γn

d

dγ
κ1(γ)|γ=γn (4.9)

and

En =
Y
′

2n(h)

2βn

d

dβ
κ2(β)|β=βn , (4.10)

respectively.

4.2 Mode-Matching Solution

This section deals with the MM solution of equations (4.1) to (4.4) with the aid

of generalized orthogonality relations (4.7) and (4.8). Consider an incident wave

of harmonic time dependence with forcing F` =
√
α/G`η`, (where the subscript

` specifies the incident mode to be define later) is propagating from negative x-

direction towards |x| ≤ L. At interfaces x = ±L, it will scatter into an infinite

numbers of reflected and transmitted modes. The field potential φ(x, y) in different

regions of waveguide is splitted and can be expressed as
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φ(x, y) =


φ1(x, y), x ≤ −L, a ≤ y ≤ b

φ2(x, y), |x| ≤ L, 0 ≤ y ≤ h

φ3(x, y), x ≥ L, a ≤ y ≤ b

. (4.11)

The eigenfunction expansion form of these field potentials is found as

φ1(x, y) = F`Y1`(y)eiη`(x+L) +
∞∑
n=0

AnY1n(y)e−iηn(x+L), (4.12)

φ2(x, y) =
∞∑
n=0

(
Bne

−iνnx + Cne
iνnx
)
Y2n(y) (4.13)

and

φ3(x, y) =
∞∑
n=0

DnY1n(y)eiηn(x−L), (4.14)

where ηn = (γ2
n + 1)

1/2
and νn = (β2

n + 1)
1/2

denote the wave numbers of propa-

gating modes in regions |x| > L and |x| < L, respectively. Note that the first term

in (4.12) represents the multimodal incident for structural borne (` = 0) and fluid

borne (` = 1) incident. The coefficients (An, Dn) and (Bn , Cn) are the amplitudes

of scattering modes in regions |x| > L and |x| < L, respectively. These coefficients

are unknowns to be found while using the continuity conditions of pressures and

normal velocities across the interfaces. The continuity conditions of pressures at

x = ±L are given by

φ1(−L, y) = φ2(−L, y), a ≤ y ≤ b, (4.15)

φ2(L, y) = φ3(L, y), a ≤ y ≤ b. (4.16)

Now on substituting (4.12)-(4.14) into (4.15) and (4.16) together with the use of

OR (4.7) we get

Am = −F`δm` +
γm sinh[γm(b− a)]e1

Gm

+
α

Gm

∞∑
n=0

Rmn{Bne
iνnL + Cne

−iνnL}, (4.17)

Dm =
γm sinh[γm(b− a)]

Gm

e2 +
α

Gm

∞∑
n=0

Rmn{Bne
−iνnL + Cne

iνnL}, (4.18)



Acoustic Analysis in Discontinuous Waveguide Bounded by Membranes 76

where

e1 = F`γ` sinh[γ`(b−a)]+
∞∑
n=0

Anγn sinh[γn(b−a)] and e2 =
∞∑
n=0

Dnγn sinh[γn(b−a)]

which are dependent sums to be determined using appropriate edge conditions

and Rmn is defined by

Rmn =
1

β2
n − γ2

m

{βn(− sinh(aβn) + cosh[γm(a− b)] sinh(βnb))

+ cosh(βnb)γm sinh[γm(a− b)]}. (4.19)

The addition and subtraction of equations (4.17) and (4.18) yield

Ψ+
m = −F`δm` +

γm sinh[γm(b− a)]

Gm

U− +
2α

Gm

∞∑
n=0

Rmn cos(υnL)χ+
n (4.20)

and

Ψ−m = −F`δm` +
γm sinh[γm(b− a)]

Gm

U+ +
2iα

Gm

∞∑
n=0

Rmn sin(υnL)χ−n , (4.21)

respectively, where Ψ±m = (Am ±Dm), χ±n = (Bn ± Cn) and U± = e1 ± e2.

Similarly the continuity conditions of normal velocities at x = ±L, are given by

φ2x(−L, y) =


0, 0 ≤ y ≤ a,

φ1x(−L, y), a ≤ y ≤ b,

0, b ≤ y ≤ h

(4.22)

and

φ2x(L, y) =


0, 0 ≤ y ≤ a,

φ3x(L, y), a ≤ y ≤ b,

0, b ≤ y ≤ h,

(4.23)

where φix =
∂φi
∂x

(i = 1, 2, 3). On substituting (4.12)-(4.14) into (4.22) and (4.23)

and using the OR (4.8) results into the following equations,
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that are,

χ+
m =

βm sinh(βmh)

2iEmνm sin(νnL)
V − − α

2iEmνm sin(νnL)

{
F`η`R0m −

∞∑
n=0

Ψ+
n ηnRnm

}
(4.24)

and

χ−m =
βm sinh(βmh)

2Emνm cos(νnL)
V + − α

2Emνm cos(νnL)

{
F`η`R0m −

∞∑
n=0

Ψ−n ηnRnm

}
,

(4.25)

where V ± = e3 ± e4 together with

e3 =
∞∑
n=0

(
Bne

iνnL − Cne−iνnL
)
βnνn sinh(βnh)

and

e4 =
∞∑
n=0

(
Bne

−iνnL − CneiνnL
)
βnνn sinh(βnh)

are unknown sums to be determined with the help of appropriate edge conditions.

The values of V ± and U± describe the behavior of membranes at edges. In case

of elastic membranes, we discuss only the choices of fixed (zero displacement) and

simply supported (zero gradient) edges of membranes in the following subsections.

• All Fixed Edges: For this set of edge conditions, the displacements of

membranes at edge points (±L, b) and (±L, h) are assumed to be zero, that

is

φ1y(−L, b) = 0, (4.26)

φ2y(±L, h) = 0, (4.27)

φ3y(L, b) = 0. (4.28)

Now from (4.26) and (4.28), it is straightforward to write U± = 0, as e1 =

e2 = 0 whereas for V ±, we multiply (4.24) with βm sinh(βmh) cos(νmL) and

(4.25) with βm sinh(βmh) sin(νmL), take summation over m from zero to

infinty, and then using the edge conditions (4.27),
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we get

V − =
α

S1

∞∑
m=0

βm sinh(βmh) cot(νmL)

Emνm

{
F`η`R0m −

∞∑
n=0

Ψ+
n ηnRnm

}
, (4.29)

V + =
α

S2

∞∑
m=0

βm sinh(βmh) tan(νmL)

Emνm

{
F`η`R0m −

∞∑
n=0

Ψ−n ηnRnm

}
, (4.30)

where

S1 =
∞∑
m=0

β2
m sinh2(βmh) cot(νmL)

Emνm
, (4.31)

S2 =
∞∑
m=0

β2
m sinh2(βmh) tan(νmL)

Emνm
. (4.32)

• All Simply Supported Edges: In case of all edges to be simply supported,

the gradient is assumed to be zero, that is

φ1xy(−L, b) = 0, (4.33)

φ2xy(±L, h) = 0, (4.34)

φ3xy(L, b) = 0. (4.35)

The use of equation (4.34), clearly follows that V ± = 0, as e3 = e4 = 0.

However, for U±, we multiply (4.20)-(4.21) with ηmγm sinh[γm(b− a)], take

summation over m from zero to infinity, and then apply the edge conditions

(4.33) and (4.35) to get

U− =
2F`γ`η` sinh[γ`(b− a)]

S3

−2α

S3

∞∑
n=0

χ+
n cos(νnL)

∞∑
m=0

ηmγm sinh[γm(b− a)]Rmn

Gm

(4.36)

and

U+ =
2F`γ`η` sinh[γ`(b− a)]

S3

−2iα

S3

∞∑
n=0

χ−n sin(νnL)
∞∑
m=0

ηmγm sinh[γm(b− a)]Rmn

Gm

, (4.37)
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where

S3 =
∞∑
m=0

ηmγ
2
m sinh2[γm(b− a)]

Gm

. (4.38)

• Fixed at (±L, b) and Simply Supported at (±L, h): In this case, we as-

sume the zero displacement edge conditions on the membranes of inlet/outlet

duct regions whereas the expansion chamber comprises zero gradient condi-

tions, that is

φ1y(−L, b) = 0, (4.39)

φ2xy(±L, h) = 0, (4.40)

φ3y(L, b) = 0. (4.41)

The implication of above equations give U± = 0 and V ± = 0.

• Simply Supported at (±L, b) and Fixed at (±L, h): For this set of edge

conditions, the elastic membranes of inlet/outlet duct regions comprise zero

gradient at edges (±L, b) whereas the membrane of the expansion chamber

contains zero displacement at (±L, b), that is

φ1xy(−L, b) = 0, (4.42)

φ2y(±L, h) = 0, (4.43)

φ3xy(L, b) = 0. (4.44)

In view of above edge conditions, all the constants U± and V ± are non-zero

which are given by the expression defined in (4.29)-(4.30) and (4.36)-(4.37).

4.3 Low-Frequency Approximation

The MM solution of underlying problem is obtained subject to different edge

conditions. We are interested to validate MM result in low frequency regime,

thereby comparing with the LFA. The LFA solution relies on the number of modes
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that are allowed to propagate in duct regions. These modes are subjected to the

physical conditions imposed on the walls and edges of the waveguide regions.

Therefore, in case of LFA, the field potentials in waveguide regions may take the

following forms as

φ1(x, y) ≈ F` cosh[γ`(y − a)]eiη`(x+L) +

J1∑
n=0

An cosh[γn(y − a)]e−iηn(x+L), (4.45)

φ2(x, y) ≈
J2∑
n=0

(
Bne

−iνnx + Cne
iνnx
)
Yn(y) (4.46)

and

φ3(x, y) ≈
J1∑
n=0

Dn cosh{γn(y − a)}eiηn(x−L), (4.47)

where J1 and J2 stand for the number of modes propagating in inlet/outlet and ex-

pansion chamber, respectively. The unknown coefficients are found by considering

the continuity of mean pressures and velocities flux at interfaces, that is

∫ b

a

{φ1(−L, y)− φ2(−L, y)} dy = 0, (4.48)

∫ b

a

{φ1x(−L, y)− φ2x(−L, y)} dy = 0, (4.49)

∫ b

a

{φ3(L, y)− φ2(L, y)} dy = 0, (4.50)

∫ b

a

{φ3x(L, y)− φ2x(L, y)} dy = 0 (4.51)

and ∫ a

0

φ2x(±L, y)dy = 0 and

∫ h

b

φ2x(±L, y)dy = 0. (4.52)

On substituting (4.45)-(4.47) into (4.48)-(4.52), we get

J1∑
n=0

RnAn −
J2∑
n=0

(
QnBne

iνnL +QnCne
−iνnL

)
=
F` sinh [γ`(a− b)]

γ`
, (4.53)

J1∑
n=0

ηnRnAn−
J2∑
n=0

(
νnQnBne

iνnL − νnQnCne
−iνnL

)
=
η`F` sinh [γ`(a− b)]

γ`
, (4.54)
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J1∑
n=0

DnRn −
J2∑
n=0

(
QnBne

−iνnL +QnCne
iνnL
)

= 0, (4.55)

J1∑
n=0

ηnDnRn−
J2∑
n=0

(
νnQnBne

−iνnL − νnQnCne
iνnL
)

= 0, (4.56)

J2∑
n=0

iνn sinh(βna)

βn

{
Bne

iνnL − Cne−iνnL
}

= 0, (4.57)

J2∑
n=0

iνn sinh(βna)

βn

{
Bne

−iνnL − CneiνnL
}

= 0, (4.58)

J2∑
n=0

iνn {sinh(βnb)− sinh(βnh)}
βn

{
Bne

iνnL − Cne−iνnL
}

= 0 (4.59)

and

J2∑
n=0

iνn {sinh(βnb)− sinh(βnh)}
βn

{
Bne

−iνnL − CneiνnL
}

= 0, (4.60)

where Rn =
1

γn
{− sinh [γn(a− b)]} and Qn = − 1

βn
{sinh(βna)− sinh(βnb)} . The

system of equations for multiple types of connections is obtained as follows.

• All Fixed Edges

For this choice of edge conditions, we substitute (4.45)-(4.47) into (4.26)-(4.28),

to obtain
J1∑
n=0

Anγn sinh [γn(b− a)] = −F`γ` sinh [γ`(b− a)] , (4.61)

J2∑
n=0

(
Bne

−iνnL + Cne
iνnL
)
βn sinh(βnh) = 0, (4.62)

J2∑
n=0

(
Bne

iνnL + Cne
−iνnL

)
βn sinh(βnh) = 0 (4.63)

and
J1∑
n=0

Dnγn sinh [γn(b− a)] = 0. (4.64)

In this way, equations (4.53)-(4.60) and (4.61)-(4.64) yield a system of linear al-

gebraic equations after using LFA and considering all edges to be fixed.
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• All Simply Supported Edges

On using (4.45)-(4.47) into equations (4.33)-(4.35)we found that

J1∑
n=0

Anηnγn sinh [γn(b− a)] = F`η`γ` sinh[γ`(b− a)], (4.65)

J2∑
n=0

(
Bne

iνnL − Cne−iνnL
)
νnβn sinh(βnh) = 0, (4.66)

J2∑
n=0

(
Bne

−iνnL − CneiνnL
)
νnβn sinh(βnh) = 0 (4.67)

and
J1∑
n=0

Dnηnγn sinh[γn(b− a)] = 0. (4.68)

Equations (4.53)-(4.60) together with (4.65)-(4.68) form a system of linear alge-

braic equations for LFA. Similarly system of equations for LFA is obtained when

inlet/outlet membranes are fixed while expansion chamber is simply supported

and vice versa.

4.4 Numerical Results and Discussions

The linear algebraic systems are obtained throughout via MM technique and LFA

are truncated and solved numerically. First we truncate infinite systems obtained

through MM procedure along with each set of edge conditions upto m = n =

0, 1, 2, ...N terms, and then solve the remaining systems to determine the values

of unknown modal amplitudes (An, Bn, Cn, Dn), n = 0, 1, 2, ...N . It is useful to

discuss the propagation of scattering energies in the inlet/outlet duct sections

and the TL against frequency and the half-chamber length (for detail see article

[95]). The aim here is to examine the scattering powers / energies and the TL

to provide physical insight into the limitations of the model with different sets of

edge conditions and to validate the MMT and LFA solutions with their relative
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merits. The Pr in the inlet duct and Pt in the outlet duct are given by [36]

Pr = Re

{
1

α

∞∑
n=0

|An|2ηnGn

}
(4.69)

and

Pt = Re

{
1

α

∞∑
n=0

|Dn|2ηnGn

}
, (4.70)

respectively. Note that the choice of F` enables us to scale Pi at unity, thus

Pr + Pt = 1, (4.71)

which is the conserved power identity. The graphical results presented here are

found from the truncated solutions with truncation parameter N = 20. The

computational process is carried out by fixing the dimensional variables as the

duct heights a = 0.085m, b = 0.17m and h = 0.25m, length of expansion chamber

2L = 2∗0.425m, the speed of sound c = 343ms−1, density of air ρ = 1.2043Kgm−2,

membrane mass density ρm = 0.2Kgm−2 and tension T = 3250Nm−2. The scat-

tering analysis of wave energies against frequency and half-chamber length is il-

lustrated below.

4.4.1 Scattering Energies against Frequency

The scattering of energies against frequency (Hz) for the structure-borne mode

incident (` = 0) and the fluid-borne mode incident (` = 1) are depicted in Figs.

4.2 and 4.3, respectively. The results obtained via MMT and LFA are plotted

together for different sets of edge conditions which resulted a good agreement when

structure-borne mode incident (see Fig. 4.2). However, when the fluid-borne mode

is incident, a little variation in LFA results appears due to the occurrence of new

cut-on modes at higher frequencies. The list of cut-on modes verses frequency for

various duct regions is shown via Table. 4.1. From Figs. 4.2 and 4.3, it can be seen

that the Pr and the Pt fluctuate inversely against frequency in somehow periodic

manner. These variations are because of the trigonometric factor present in the
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Table 4.1: Propagating Modes

Cut-on f(Hz) Inlet-Outlet Expansion Chamber

Region Region

211 1 2

418 2 2

759 2 3

1395 2 4

2054 2 5

2116 3 5

2719 3 6

3388 3 7

4058 3 8

4091 4 8

4730 4 9

amplitudes of scattering energies defined by equations (4.24) and (4.25). However,

the behavior becomes different due to the existence of compressional waves along

the membrane boundaries and the leakage of sound while using different conditions

at edges. Moreover, it is noted that the reflected energy drops to its maximum level

with sharper dips at frequencies 16Hz, 91Hz, 158Hz, 322Hz and 389Hz, when all

the edges are assumed fixed. But it is not evident for other sets of edge conditions

(see Fig. 4.2).

Nevertheless, the propagation of cut-on modes is same for all the set of edge con-

ditions but the variation of scattering energies is different for the different set of

edge conditions. Nonetheless, the scattering behavior resembles when all edges

are either fixed or fixed at (±L, b) and simple supported at (±L, h). But clearly

it happens only if number of modes propagating in the inlet/outlet are equal to

the number of modes propagating in the expansion chamber. For instance, the

scattering behavior of Figs. 4.2(a) and 4.2(b) differ significantly in regime 211Hz

to 418Hz when the structure-borne is propagating in the inlet/outlet whereas the
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Figure 4.2: For fundamental mode incident (` = 0): the reflected power (�
) and the transmitted power (N) against frequency with different set of edge

conditions.

structure-borne and fluid-borne modes are propagating in the expansion cham-

ber. Likewise, manifestation is observed for the rest of the cases of Figs. 4.2(c)

and 4.2(d), whilst in case of simply supported edges at (±L, b) the leakage of

compressional wave is much higher, therefore more reflection is observed.

The results for the fluid-borne mode incident which cuts-on at frequency 418Hz

are depicted in Fig. 4.3. Clearly, a sharp inversion in dips of scattering energies

against frequency from 418Hz to 1250Hz for the various sets of edge conditions is

portrayed. The fact is due to the shifting of energy from structure to fluid and vice

versa, which is commonly caused by the advent of new cut-on modes in waveguide

and is useful for the design of HVAC systems [95]. Nevertheless, by changing the
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(b) Fixed at (±L, b) and simply supported at (±L, h).

à

à
à

à

à

à

à

àà
à

à

à

à

à

à
à

à

à

à

à

à

à

à
à

à
à

à

à

à

à

à
à

à

à

à

ò

ò
ò

ò

ò

ò

ò
òò

ò

ò

ò

ò

ò

ò
ò

ò

ò

ò

ò

ò

ò

ò
ò

ò
ò

ò

ò

ò

ò

ò
òò

ò

ò

600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f

P
o
w

e
r

LFA
à ò MMT

(c) All simply supported edges.

à

à à

à

à

à

à

àà
à

à

à

à

à

à

à

à

à

à

à

à

à

à

à
àà

à

à

à

à

à
àà

à

à

ò

ò ò

ò

ò

ò

ò

òò
ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò
òò

ò

ò

ò

ò

òòò
ò

ò

600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f

P
o

w
e
r

LFA
à ò MMT

(d) Simply supported at (±L, b) and fixed at (±L, h).

Figure 4.3: For fluid mode incident (` = 1): the reflected power (�) and the
transmitted power (N) against frequency with different set of edge conditions.

physical connections of the elastic membranes at joints (±L, b) and (±L, h), a

significant deviation in the propagating energies verses frequency is perceived (see

Fig. 4.3). Moreover, the MMT and LFA curves coincide in low frequency regime

only. However, if the frequency is increased the discrepancy in both curves is found

(see Fig. 4.3). This occurs since the limited number of modes are being allowed

in LFA case, but there appears new propagating modes on increasing frequency.

Beside, the use of optimal length of an expansion chamber in HVAC duct system

is very important. The length of the device for the practical use must not be

long or too short, because it may significantly alter the scattering energies (see for

example [95]). Thus, the analysis of scattering energies against half-length of the

expansion chamber is now discussed.
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Figure 4.4: For structure-borne mode incident (` = 0): the reflected power
(�) and the transmitted power (N) against silencer-half length with different

set of edge conditions.

4.4.2 Scattering Energies against Half-Chamber Length

In Figs. 4.4 and 4.5, the Pr and the Pt against the half-length of the expansion

chamber are depicted. The graphs are plotted at frequency f = 426 Hz, which is

chosen to make sure that the fluid-borne mode incident becomes cut-on. The cut-

ons of duct regions verses frequency are shown in Table 4.1, whilst, the remaining

parameters are taken as same as for Fig. 4.2. Fig. 4.4 shows the graphs for

different sets of edge conditions along with the structure-borne mode incident

whereas the results for fluid-borne mode incident are shown in Fig. 4.5. Note that

by changing the half-length of the expansion chamber, a significant variation in

scattering energies is seen in Figs. 4.4(a) and 4.4(b), when the edges of membranes
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bounding the inlet and outlet duct regions are assumed to be fixed. Moreover, the

energies (Pr and Pt) are inverted at the half-length of the chamber at 1.7, 2.2 and

3.8, respectively. However, the envisaged situation is not noticeable if the edges at

(±L, b) are kept simply supported. It occurs due to the leakage of compressional

waves on edges when we assume the simply supported conditions at the edges

(±L, b) for structure-borne mode incident (see Fig. 4.4(c) and Fig. 4.4(d)).

On contrary, for the fluid-borne mode incident (` = 1), this behavior is not evident

for the same sets of edge conditions (see Figs. 4.5(c) and 4.5(d)). It clearly follows

that the transient of maximum energy is through fluid for the case of secondary

mode incident, as discussed in [34, 87]. It is also demonstrated in Figs. 4.5(a)

and 4.5(b) that the energy is totally reflected when the simply supported edge

condition instead of fixed edges in the expansion chamber. Thus, by adjusting

the half-length of the expansion chamber and/or by changing the edge conditions

the device can be tuned. Hence, the analysis of scattering energies against the

half-chamber length are presented in Figs.(4.4-4.5).

The length of the expansion chamber also plays an important role to measure

the TL of the silencer/waveguide. As Lawrie and Guled [95] discussed the TL

against frequency and the length of chamber for the reactive silencer. However,

the performance of a HVAC silencer is usually measured by the TL as

TL = −10 log10

(
Pt
Pi

)
. (4.72)

For modelled device, we define the aspect ratio by definig R = 2L/(h − b) where

h = b + a. The low and very high value of this aspect ratio contains significant

affect in the analysis of stopband, as disscussed by Huang [59]. To explain the

stopband criteria we follow the procedure as adopted by Huang [59] by using the

dimensionless form of spatial coordinates.

When we put two cavities together (a = b), the total volume occupied V = 4L ∗ a

form a reference expansion chamber with expansion ratio: 1 + 2a = 1 +
√
V at

R = 2. Now it is convenient to implement the criteria on TL to observe the better
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Figure 4.5: For fluid-borne mode incident (` = 1): the reflected power (�)
and the transmitted power (N) against half-chamber length with different set

of edge conditions.

performance of the device. For this, we set the volume of the device equal to three

times of the actual volume, which yield the expansion ratio 1 +
√

3V . Now by

using the formula as given by [59]

TLcr = 10 log10[1 +
1

4
(a3 − a−1

3 )2]. (4.73)

Thus, TLcr is found to be approximately 10 dB, when V = 8, a = 1, L = 2 and

a3 = 1 +
√

3V . Based on above information the analysis of TL against frequency

and half-chamber length are now presented in next subsection.
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4.4.3 Transmission-Loss against Frequency

The TL against frequency for different sets of edge conditions is shown in Figs. 4.6

and 4.7. Fig. 4.6 shows the variation of TL spectrum over the frequency regime

1Hz ≤ f ≤ 1500 Hz in case of structure-borne mode incident. A good agreement

is observed between MM solution and LFA. Also, it is noted that comparatively

lesser TL is achieved in the frequency range (229-526) Hz for fixed edges at (±L, b).

It reveals that more pass-band occur in this range, as depicted in Fig. 4.6(a) and

Fig. 4.6(b).

On the other hand, if we replace the fixed edge conditions at (±L, b) with simply

supported ends the pass-bands become stopband. Thus the TL is increased for

simply supported ends conditions (see Figs. 4.6(c) and 4.6(d)). Moreover, the

wider stopbands with simply supported ends at (±L, b) are seen. However, when

the simply supported ends at (±L, h) are replaced with fixed ends, the noise

attenuation closely resembles with that of all simply supported ends condition

(see Fig. 4.6(c)) except the frequencies 770 Hz, 789 Hz, 790 Hz and 995 Hz.

For fluid-borne mode incident, the TL against frequency in the regime 418Hz ≤

f ≤ 1500 Hz is shown in Fig. 4.7. Clearly, this mode is cut-on at f = 418

Hz. It is noted that two stopbands with bandwidth 1.02 and 1.03 for all fixed

edges case are found (see Fig. 4.7(a)). These stopbands appear in the frequency

range (1295Hz - 1330Hz) and (1353Hz - 1401Hz). Moreover, when we alter simply

supported edges by fixed edges at (±L, b), the TL spectrum of Fig. 4.7(d) also

resembles with Fig. 4.7(a). On contrary to it, the stopband with bandwidth ratio

1.06 is seen in Fig. 4.7(c), for the fixed and simply supported edges case at (±L, b)

and (±L, h), respectively. This stopband occur at the frequency range (1317Hz -

1399Hz). However, it is found that Fig. 4.7(c) resembles with Fig. 4.7(b) for all

simply supported edges case.

At the end of the discussion, the analysis of transmission loss against half-chamber

length is presented.
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Figure 4.6: For structure-borne mode incident (` = 0): the transmission loss
components against frequency with different set of edge conditions.

4.4.4 Transmission-Loss against Half-Chamber Length

In Figs. 4.8 and 4.9, the TL against the half length of the chamber is discussed

for the structure-borne mode incident (` = 0) and the fluid-borne mode incident

(` = 1), respectively at f = 426. Note that for all fixed edges case (see Fig.

4.8(a)), the highest TL (37.83dB) occurs at non-dimensional length L = 2.02,

which is exactly the point where the Pt is minimum as depicted in Fig. 4.4(a).

Likewise the second and third highest peaks at the dimensionless length L = 0.5

and L = 3.5 appear at minimum Pt (see Fig. 4.8(a) and 4.4(a)). However, the TL

is almost zero at length L = 2.02, when we change the fixed edges at (±L, b) with

the simply supported edge (Fig. 4.8(b)). This situation is exactly revealed in Fig.
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Figure 4.7: For fluid-borne mode incident (` = 1): the transmission loss
components against frequency for different set of edge conditions.

4.4(b), because at this point the Pr is maximum. It is observed that the TL curves

of both Figs. 4.8(c) and 4.8(d) cover the TL criteria in whole regime at f = 426.

This frequency shows that two propagating modes occurred in inlet, outlet and

expansion chamber regions (see Table.1). But the peak values of TL as shown in

Fig. 4.8(c) are greater than that of TL as shown in Fig. 4.8(d). The reason behind

is the variation of edge conditions from all simply supported to fixed and simply

supported. The analysis of TL curves shows that all simply supported edges case

reveals more noise attenuation than fixed and simply supported edges.

The choice of appropriate edge conditions yields noise attenuation. For all fixed

edges case and the fluid-borne mode incident (Fig. 4.9) the highest TL (25dB)

occurs at L = 3.5, which is the point where the transmitted power Pt is minimum
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(d) Simply supported at (±L, b) and fixed at (±L, h).

Figure 4.8: For structure-borne mode incident (` = 0): the transmission
loss components against against silencer-half length with different set of edge

conditions.

as referred in Fig. 4.5(a). Likewise, the rest fluctuation in peak values of TL for

this case is according to the scattering powers curves are found in Fig. 4.5(a). On

contrary to it, the TL goes to its minimum value at L = 1.8 and L = 3.6 when the

case of fixed and simply supported edges is selected (see Figs. 4.9(b) and 4.9(c)).

However, with a little variation in magnitude of transmission loss for all simply

supported edges case it resembles with simply supported and fixed edges case.

More TL is observed for simply supported edges than fixed edges, as depicted in

Fig. 4.9(d). Clearly, a good agreement in TL curves obtained via MMT and LFA

is seen in Figs. 4.8 and 4.9.

To validate MM solution the conditions at interfaces are matched graphically.
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(d) Simply supported at (±L, b) and fixed at (±L, h).

Figure 4.9: For fluid-borne mode incident (` = 1): the transmission loss
components against silencer-half length with different set of edge conditions.

It clearly validate the accuracy of truncated solution as well as the correction of

performed algebra. Thus in Figs. 4.10-4.12, the real and imaginary parts of normal

velocities and pressures are plotted at interfaces, x = L, and x = −L respectively.

From Figs. 4.10 and 4.11, it can be seen that the real and imaginary parts of non

dimensional pressures and normal velocities show excellent agreement.

Both pairs of curves overlie for a ≤ y ≤ b and normal velocities are zero, for

0 < y < a and b < y < h. Thus, conditions from equations (4.15) and (4.22) are

fully satisfied. This is true as all relevant frequencies and the matching conditions

are met to the same accuracy at interfaces x = −L. In Figs. 4.12(a) and 4.12(b),

real and imaginary parts of nondimensional pressures overlie at (L, y), indicating
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Figure 4.10: The real parts of normal velocity and pressure against duct height
at interface x = −L for edge conditions; fixed at (−L, b) and simply supported
at (−L, h) with f = 250 Hz, a = 0.085m, b = 0.17m, h = 0.255m and N = 150
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Figure 4.11: The imaginary parts of normal velocity and pressure against
duct height at interface x = −L for edge conditions; fixed at (−L, b) and simply
supported at (−L, h) with f = 250 Hz, a = 0.085m, b = 0.17m, h = 0.255m

and N = 150

excellent agreement. Furthermore, real and imaginary parts of the normal veloci-

ties are zero for 0 < y < a and b < y < h. For a < y < b the normal velocities at

(L, y) are in close agreement. Hence, equations (4.16) and (4.23) are fully satisfied.

Although the two curves oscillate around their mean value and the amplitude of

oscillation reduces significantly as y increases, except close to the corners.
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Figure 4.12: The real (a) and imaginary (b) parts of normal velocity and
pressure against duct heights at interface x = L for edge conditions; fixed at
(L, b) and simply supported (L, h) with f = 250 Hz, a = 0.085m, b = 0.17m,

h = 0.255m and N = 150



Chapter 5

Acoustic Analysis in Waveguide

with Plates Boundaries and Lined

Flanges

The analysis of fluid-structure coupled waveforms and their attenuation in a flex-

ible waveguide is carried out in this chapter. The physical configuration contains

expansion chamber connected with extended inlet/outlet by means of vertical lined

flanges. The governing boundary value problem is solved by using MM tech-

nique. The associated eigen expansions of field potentials include non-orthogonal

eigenfunctions and the related eigen-sub-systems are classified in non-SL category,

whereby the use of generalized orthogonal characteristics has ensured the point-

wise convergence of solution. The LFA which relies on the limited propagating

modes is developed, and is compared with MM solution. Furthermore, the numer-

ical experiments are provided to analyze the effects of absorbent linings and edge

conditions on the attenuation of flexural modes. The guiding structure is exited

with the structure-born mode incident as well as the fluid-born mode incident.

The chapter is organized as follows. In Section. 5.1, the BVP is formulated and

the properties of flexural modes are explained. The MM solution is constructed

97
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in Section. 5.2, and LFA is established in Section. 5.3. The numerical results and

discussion are provided in Section. 5.4.

5.1 Boundary Value Problem

The two-dimensional, infinite flexible waveguide comprising rigid base at ȳ = 0,

−∞ < x̄ <∞ and elastic plates at ȳ = ā, |x̄| > L̄ and ȳ = b̄ |x̄| < L̄, where b̄ > ā,

is assumed. Two vertical flanged strips at x̄ = ±L̄, d̄ ≤ ȳ ≤ b̄ connect mutually

the outside regions |x̄| > L̄, 0̄ < ȳ < ā with the central region |x̄| < L̄, 0̄ < ȳ < b̄

forming the inlet/outlet and the expansion chamber, respectively. An absorbent

lining is introduced along the vertical strips inside of the expansion chamber. The

inside of the waveguide is filled with the compressible fluid of density ρ and sound

speed c whilst the outer side is in vacuo. Note that the overbars with variables

denote the dimensional setting of coordinates. The physical configuration of the

waveguide is shown in Fig. 5.1. The BVP is formulated by exiting the structure

Figure 5.1: The physical configuration of the waveguide, wherein the wavy
boundaries represent elastic plates.
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through the duct mode of region x̄ < −L̄, 0̄ < ȳ < ā which will propagate from

negative x̄-direction towards |x̄| < L̄. The absorbent surface, referred by Section.

2.3.1, in terms of dimensionless velocity potential is given by

φ+ iζn · ∇φ = 0, (5.1)

where ζ = (ρc)−1Z represents the dimensionless specific impedance of the lin-

ing. Thus, the time independent dimensionless fluid potential φ satisfies the

Helmholtz’s equation with unit wave number, that is

(
∇2 + 1

)
φ = 0. (5.2)

The acoustically rigid and elastic plate boundary conditions [75] in non-dimensional

form are

∂φ

∂y
= 0, y = 0, −∞ < x <∞ (5.3)

and

(
∂4

∂x4
− µ4

1

)
∂φ

∂y
− α1φ = 0, y = a, b, −∞ < x <∞, (5.4)

respectively. The quantities

µ1 =

(
12(1− ν2)c2ρp

k2h2E

)1/4

and α1 =
12(1− ν2)c2ρ

k3h3E
, (5.5)

represent the plate wavenumber and fluid loading parameters, respectively. Here

E Young’s modulus, ρp plate density, ν Poisson’s ratio and h is the thickness

of the plate. From (5.2)-(5.4), the eigenfunctions in regions |x| > L, 0 ≤ y ≤ a

(inlet/outlet) and |x| < L, 0 ≤ y ≤ b (expansion chamber) are obtained Y1(γn, y) =

cosh(γny) and Y2(βn, y) = cosh(βny), respectively. The corresponding eigenvalues

γ(β) be the roots of characteristic equations

(
(%2 + 1)2 − µ4

)
% sinh(%p)− α1 cosh(%p) = 0, (5.6)
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where % = γ when elastic plates lie along p = a and % = β when elastic plate is

situated at p = b. These roots are found numerically. The computation of all roots

is essential for the successful implementation of MM approach. The root finding

algorithms such as Newton’s method or Secant’s method largely depend upon the

propriety of initial guesses, which at low Helmholtz numbers, can be identified

by taking the low frequency approximations of the characteristic equations (5.6).

Then the Argument Principle may be employed to check all roots in specified

complex plane have been found successfully. The properties of such roots in details

may be found in [99]. We consider only the positive roots (those roots lying in the

upper half of the complex γ(β) plane axis, which is deemed to include the positive

real axis). It is found that there is always one real root, (γ0 > 0, β0 > 0) and

an infinite number of imaginary roots, (γn, βn), n = 1, 2, 3, ..., which are labeled

in ascending order on imaginary axis. Also there exist pairs of complex roots for

certain ranges of frequency. Such pairs appear when the imaginary plate mode

tends to cut-off duct modes. The plots of the first 10 roots of the characteristic

equation for the inlet/outlet duct of height 0.06m at a frequency of 4 Hz and for

the expansion chamber of height 0.085m at 3Hz are shown in Fig. 5.2. These

complex pairs of γ and β can be obtained by solving the equation [34]

iµ =

√
1− n2π2

k2ā2
and iµ =

√
1− n2π2

k2b̄2
, for n = 1, 2, 3..., (5.7)

respectively. These roots are arranged according to the magnitude of imaginary

part in ascending order such that γ∗(or β∗) is followed by −γ∗(or− β∗).

To achieve the convergent system, the use of generalized orthogonality conditions

is indispensable. Accordingly, we may get the generalized orthogonality relations

α1

∫ a

0

Y1(γn, y)Y1(γm, y)dy = Enδmn − (γ2
m + γ2

n + 2)Y
′

1 (γm, a)Y
′

1 (γn, a) (5.8)

and

α1

∫ b

0

Y2(βn, y)Y2(βm, y)dy = Gnδmn − (β2
m + β2

n + 2)Y
′

2 (βm, b)Y
′

2 (βn, b), (5.9)
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Figure 5.2: The first 10 roots of the characteristic equations: (a) is plotted at
f = 4Hz with ā = 0.06m, (b) is plotted at f = 3Hz with b̄ = 0.085m.

where

Em =
α1a

2
+
αY1(γm, a)Y

′
1m(γm, a)

2γ2
m

+ 2[(γ2
m + 1)Y

′

1 (γm, a)]2 (5.10)

and

Gm =
α1b

2
+
αY2(βm, b)Y

′
2 (βm, b)

2β2
m

+ 2[(β2
m + 1)Y

′

2 (βm, b)]
2. (5.11)
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Moreover it is worthwhile to comment before the solution presented, that mode-

matching models the stronger singularities appearing at the corner of flange in

velocity flux. The behavior of fluid potential at the singular point is already

comprehensively addressed in the article [34].

5.2 Mode-Matching Solution

The MM solution of BVP developed in Section 5.1 is presented in this section.

The time-independent fluid potentials for each duct region can be expressed as

φ(x, y) =


φ1(x, y), x ≤ −L, 0 ≤ y ≤ a

φ2(x, y), |x| ≤ L, 0 ≤ y ≤ b

φ3(x, y), x ≥ L, 0 ≤ y ≤ a

. (5.12)

For the inlet, expansion chamber and outlet ducts, eigenfunction expansion for the

fluid potentials takes the form

φ1(x, y) = F`Y1(γ`, y)eiη`(x+L) +
∞∑
n=0

AnY1(γn, y)e−iηn(x+L), (5.13)

φ2(x, y) =
∞∑
n=0

(
Bne

−iνnx + Cne
iνnx
)
Y2(βn, y), (5.14)

φ3(x, y) =
∞∑
n=0

DnY1(γn, y)eiηn(x−L), (5.15)

where {An, Bn, Cn, Dn}, n = 1, 2, 3... are the complex amplitudes of the nth re-

flected and transmitted modes. Note that the first term on right hand side of

the equation (5.13) indicates the incident field having forcing F`, wherein, index

` representing the incident force to be fundamental mode or higher mode. The

quantities ηn and νn are the wave numbers and are defined in terms of eigenvalues

as ηn = (γ2
n + 1)

1/2
and νn = (β2

n + 1)
1/2

, for n = 0, 1, 2, ... . In order to find

the amplitudes of the reflected and transmitted fields, we use the velocity flux

conditions at interfaces, that yield
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∫ a

0

φ1x(−L, y)Y1(γm, y)dy =

∫ d

0

φ2x(−L, y)Y1(γm, y)dy (5.16)

and ∫ a

0

φ3x(L, y)Y1(γm, y)dy =

∫ d

0

φ2x(L, y)Y1(γm, y)dy. (5.17)

Note that (5.16) and (5.17) relate the acoustic velocities of inlet and outlet regions

to the acoustic velocity of central region at x = ±L, that govern the formulations

of symmetric and anti-symmetric mode amplitudes. These amplitude are obtained

by substituting (5.13)-(5.15) into (5.16) and (5.17), then normalizing with the aid

of the orthogonality relation (5.8), after simplification we may get

Am = F`δm` − Ωm{e1 + (γ2
m + 2)e2}

+
α1

ηmEm

∞∑
n=0

νnRnm

(
Bne

iνnL − Cne−iνnL
)
, (5.18)

Dm = Ωm{e3 + (γ2
m + 2)e4} −

α1

ηmEm

∞∑
n=0

νnRnm

(
Bne

−iνnL − CneiνnL
)
, (5.19)

where,

Ωm =
∆1m

ηm
with ∆1m =

γm sinh(γma)

Em
, (5.20)

e1 = −iφ1xyyy(−L, a), e2 = −iφ1xy(−L, a), e3 = −iφ3xyyy(L, a), e4 = −iφ3xy(L, a)

and

Rnm =

∫ d

0

cosh(βny) cosh(γmy)dy. (5.21)

Now by adding (5.18) and (5.19), we find

Am +Dm = F`δm` − Ωm{(e1 − e3) + (γ2
m + 2)(e2 − e4)}

+
2iα1

ηmEm

∞∑
n=0

νnRnm sin(νnL) (Bn + Cn) . (5.22)

Likewise, the subtraction of (5.18) from (5.19), leads to the following equation,



Acoustic Analysis in Waveguide with Plates Boundaries and Lined Flanges 104

that is,

Am −Dm = F`δm` − Ωm{(e1 + e3) + (γ2
m + 2)(e2 + e4)}

+
2α1

ηmEm

∞∑
n=0

νnRnm cos(νnL) (Bn − Cn) . (5.23)

Considering Ψ±m = (Am ±Dm), χ±n = (Bn ± Cn), U±1 = e1 ∓ e3 and U±2 = e2 ∓ e4

in (5.22) and (5.23), we finally achieve

Ψ+
m = F`δm` − {U+

1 + (γ2
m + 2)U+

2 }Ωm +
2iα1

ηmEm

∞∑
n=0

νnRnm sin(νnL)χ+
n (5.24)

and

Ψ−m = F`δm` − {U−1 + (γ2
m + 2)U−2 }Ωm +

2α1

ηmEm

∞∑
n=0

νnRnm cos(νnL)χ−n , (5.25)

respectively. The quantities Ψ±m = (Am ± Dm) and χ±n = (Bn ± Cn) denote

the amplitudes of symmetric/anti-symmetric modes propagating in respective side

regions and central regions that yield the amplitudes of modes propagating towards

the positive and negative directions of the waveguide through expressions

• Am =
1

2
(Ψ+

m + Ψ−m) and Dm =
1

2
(Ψ+

m −Ψ−m),

• Bm =
1

2
(χ+

m + χ−m) and Cm =
1

2
(χ+

m − χ−m).

Likewise, the pressure flux conditions at interfaces may take the form

∫ b

0

φ2(−L, y)Y2(βm, y)dy =

∫ d

0

φ1(−L, y)Y2(βm, y)dy

−ζ
i

∫ b

d

φ2x(−L, y)Y2(βm, y)dy (5.26)

and

∫ b

0

φ2(L, y)Y2(βm, y)dy =

∫ d

0

φ3(L, y)Y2(βm, y)dy

+
ζ

i

∫ b

d

φ2x(L, y)Y2(βm, y)dy. (5.27)
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Accordingly, (5.26) and (5.27) link the acoustic pressure of central region to the

acoustic pressures of inlet and outlet regions at x = ±L, and that may lead to the

values of amplitudes of symmetric and anti-symmetric modes propagating in the

central region. These are found by invoking (5.13)-(5.15) into (5.26) and (5.27),

and normalizing with the help of OR (5.9), after some rearrangement, we have

Bme
iνmL + Cme

−iνnL = ∆2m{e5 + (β2
m + 2)e6}+

α1

Gm

{F`Rm` +
∞∑
n=0

RmnAn}

− α1ζ

iGm

∞∑
n=0

νn Tmn(Bne
iνnL − Cne−iνnL) (5.28)

and

Bme
−iνmL + Cme

iνnL = ∆2m{e7 + (β2
m + 2)e8}+

α1

Gm

∞∑
n=0

RmnDn

+
α1ζ

iGm

∞∑
n=0

νn Tmn(Bne
−iνnL − CneiνnL), (5.29)

where

∆2m =
βm sinh(βmb)

Gm

, (5.30)

e5 = φ2yyy(−L, b), e6 = φ2y(−L, b),

e7 = φ2yyy(L, b), e8 = φ2y(L, b)

and

Tmn =

∫ b

d

cosh(βmy) cosh(βny)dy. (5.31)

However, the addition and subtraction of (5.28) and (5.29) reveal

Bm + Cm =
∆2m

2 cos(νmL)

{
(e5 + e7) + (β2

m + 2)(e6 + e8)
}

+
α1

2Gm cos(νmL)
{F`Rm` +

∞∑
n=0

Rmn(An +Dn)}

− α1ζ

iGm cos(νmL)
{
∞∑
n=0

νn sin(νnL) Tmn(Bn + Cn)} (5.32)
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and

Bm − Cm =
∆2m

2i sin(νmL)

{
(e5 − e7) + (β2

m + 2)(e6 − e8)
}

+
α1

2iGm sin(νmL)
{F`Rm0 +

∞∑
n=0

Rmn(An −Dn)}

− α1ζ

iGm sin(νmL)
{
∞∑
n=0

νn cos(νnL) Tmn(Bn − Cn)}, (5.33)

respectively. Let us choose, the parameters χ±n = (Bn ± Cn), V ±1 = e5 ± e7 and

V ±2 = e6 ± e8 in (5.32) and (5.33), thus we obtain

χ+
m =

1

2 cos(νmL)
(V +

1 + (β2
m + 2)V +

2 ) ∆2m

+
1

2 cos(νmL)
{ α1

Gm

(Θ+
m(R) + 2iζ

∞∑
n=0

νn sin(νnL) Tmn χ
+
n )} (5.34)

and

χ−m =
1

2i sin(νmL)
(V −1 + (β2

m + 2)V −2 )∆2m

+
1

2i sin(νmL)
{ α1

Gm

(Θ−m(R) + 2ζ
∞∑
n=0

νn cos(νnL) Tmn χ
−
n )}, (5.35)

respectively, where

Θ±m(R) = F`Rm` +
∞∑
n=0

RmnΨ±n . (5.36)

It is worthwhile noted that the additional unknowns {U±i , V ±i } for i = 1, 2 describe

the behavior of plates at edges that are determined from the physical conditions

on edges or joints. For elastic plates to be clamped, pin jointed or pivoted on

edges the evaluation of these constants is discussed in accompanying subsections.

5.2.1 Clamped Edges

In case of clamped edges, the displacement and gradient are assumed to be zero,
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that is

φ1y(−L, a) = 0 = φ3y(L, a), (5.37)

φ1xy(−L, a) = 0 = φ3xy(L, a), (5.38)

φ2y(±L, b) = 0, (5.39)

φ2xy(−L, b) = 0 = φ2xy(L, b). (5.40)

These equations help to determine the values of additional constants {Ui, Vi}.

Thus, the application of these equations yield U±2 = V ±2 = 0, whereas, to achieve

U±1 , the multiplication of (5.24)-(5.25) with γm sinh(γma) results

∆1mEmΨ+
m = ∆1mEmF`δm` − Ω2

mEmηm{U+
1 + (γ2

m + 2)U+
2 }

+2iα1Ωm

∞∑
n=0

νnRnm sin(νnL)χ+
n , (5.41)

∆1mEmΨ−m = ∆1mEmF`δm` − Ω2
mEmηm{U−1 + (γ2

m + 2)U−2 }

+2α1Ωm

∞∑
n=0

νnRnm cos(νnL)χ−n . (5.42)

However, by using (5.13)-(5.15) into edge conditions (5.37) one finds

F`∆1`E` +
∞∑
n=0

∆1nEnAn = 0, (5.43)

∞∑
n=0

∆1nEnDn = 0. (5.44)

The addition and subtraction of (5.43) and (5.44) result

∞∑
n=0

∆1nEnΨ±n = −F`∆1`E`. (5.45)

Now by taking summation over m from zero to infinity of (5.41) and (5.42), and

then substituting (5.45), we accomplish

U−1 =
2

S1

{F`∆1`E` + α1

∞∑
m=0

∞∑
n=0

ΩmνnRnm cos(νnL)χ−n } (5.46)
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and

U+
1 = − 2

S1

{F`∆1`E` + α1i
∞∑
m=0

∞∑
n=0

ΩmνnRnm sin(νnL)χ+
n }. (5.47)

Likewise, to determine V ±1 the multiplication of ∆2mGmνm sin(νmL) with (5.34)-

(5.35), taking summation over m from zero to infinity, and then imposing edge

conditions (5.40), finally conclude to

V +
1 = − α1

2S2

∞∑
m=0

∆2mνm tan(νmL){Θ+
m(R) + 2iζ

∞∑
n=0

νn sin(νnL)Tmnχ
+
n } (5.48)

and

V −1 = − α1

2iS3

∞∑
m=0

∆2mνm cot(νmL){Θ−m(R) + 2ζ
∞∑
n=0

νn cos(νnL)Tmnχ
−
n }, (5.49)

where

S1 =
∞∑
m=0

Ω2
1mEmηm, S2 =

1

2

∞∑
m=0

∆2
2mGmνm tan(νmL)

and

S3 =
1

2i

∞∑
m=0

∆2
2mGmνm cot(νmL).

5.2.2 Pin-Jointed Edges

For pin-jointed edge conditions, we assume zero displacement as well as zero bend-

ing moment over the edges, that reveal

φ1y(−L, a) = 0 = φ3y(L, a), (5.50)

φ1xxy(−L, a) = 0 = φ3yxx(L, a), (5.51)

φ2y(±L, b) = 0, (5.52)

φ2xxy(−L, b) = 0 = φ2yxx(L, b). (5.53)

From (5.52) it is found that V ±2 = 0, whereas, to obtain U±1 , U±2 , we multiply∑∞
m=0 ∆1mEm with (5.24) and

∑∞
m=0 ∆1mEmη

2
m with (5.25), then by utilizing edge
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conditions (5.50) and (5.51), we achieve.

S1U
+
1 + S4U

+
2 = −2F`∆1`E` − 2α1i

∞∑
m=0

∞∑
n=0

ΩmRnmχ
+
n νn sin(νnL), (5.54)

S5U
+
1 + S6U

+
2 = −2F`η

2
`∆1`E` − 2α1i

∞∑
m=0

∞∑
n=0

η2
mΩmRnmχ

+
n νn sin(νnL), (5.55)

S1U
−
1 + S4U

−
2 = 2F`∆1`E` + 2α1

∞∑
m=0

∞∑
n=0

ΩmRnmχ
−
n νn cos(νnL), (5.56)

S5U
−
1 + S6U

−
2 = 2F`η

2
`∆1`E` + 2α1

∞∑
m=0

∞∑
n=0

η2
mΩmRnmχ

−
n νn cos(νnL), (5.57)

where

S4 =
∞∑
m=0

Ω2
mEmηm(γ2

m+2), S5 =
∞∑
m=0

∆2
1mEmηm and S6 =

∞∑
m=0

∆2
1mEmηm(γ2

m+2).

Now by solving (5.54) and (5.55) simultaneously give {U+
1 , U

+
2 } and likewise by

solving (5.56) and (5.57) yield {U−1 , U−2 }. However, to get V ±1 , we multiply (5.34)

with
∑∞

m=0 ∆2mGmν
2
m cos(νmL) then using (5.53), it is found

V +
1 = α1

∞∑
m=0

∆2mν
2
mΘ+

m(R) + 2iα1ζ
∞∑
m=0

∞∑
n=0

∆2mν
2
mνn sin(νnL) χ+

n Tmn. (5.58)

On using the value of Θ+
m(R) from (5.36), it is straightforward to obtain

V +
1 = α1F`

∞∑
m=0

∆2mν
2
mRm` + α1

∞∑
m=0

∞∑
n=0

∆2mν
2
mΨ+

nRmn

+2iα1ζ

∞∑
m=0

∞∑
n=0

∆2mν
2
mνn sin(νnL) χ+

n Tmn. (5.59)

Now to ensure the smooth convergence of summations appearing in (5.58), the

use of the Green’s identity (2.90) is crucial. Accordingly our problem, we fix the

setting in equations (2.90)-(2.91) as j = 1, % = γ, p = a, κ = E for inlet/outlet

duct region and j = 2, % = β, p = b, κ = G for expansion chamber. For this, the

integrals of Rmn and Tmn may be splitted as

Rmn =

∫ b

0

cosh(βmy) cosh(γny)dy −
∫ b

d

cosh(βmy) cosh(γny)dy (5.60)
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and

Tmn =

∫ b

0

cosh(βmy) cosh(βny)dy −
∫ d

0

cosh(βmy) cosh(βny)dy. (5.61)

By using these values, (5.58) can be expressed as

V +
1 = α1F`

∞∑
m=0

∆2mν
2
m{
∫ b

0

cosh(βmy) cosh(γ`y)dy − Pm`}

+α1

∞∑
n=0

∞∑
m=0

∆2mν
2
mΨ+

n {
∫ b

0

cosh(βmy) cosh(γny)dy − Pmn}

+2iα1ζ

∞∑
m=0

∞∑
n=0

∆2mν
2
mνn sin(νnL)χ+

n {
∫ b

0

cosh(βmy) cosh(βny)dy −Qmn}, (5.62)

where

Pmn =

∫ b

d

cosh(βmy) cosh(γny)dy (5.63)

and

Qmn =

∫ d

0

cosh(βmy) cosh(βny)dy. (5.64)

However, form the Green’s identity (2.90) in the domain 0 ≤ y ≤ b, it is noted

that

∞∑
m=0

∆2mν
2
m

∫ b

0

cosh(βmy) cosh(γ`y)dy = 0, (5.65)

∞∑
n=0

Ψ+
n

∞∑
m=0

∆2mν
2
m

∫ b

0

cosh(βmy) cosh(γny)dy = 0, (5.66)

∞∑
n=0

νn sin(νnL)χ+
n

∞∑
m=0

∆2mν
2
m

∫ b

0

cosh(βmy) cosh(βny)dy = 0. (5.67)

Hence, on making use of (5.65)-(5.67), (5.62) yields

V +
1 = −α1

∞∑
m=0

ν2
m∆2m{Θ+

m(P ) + 2iζ
∞∑
n=0

νn sin(νnL)Qmnχ
+
n }. (5.68)

In a similar fashion, we find the value of V −1 , that is

V −1 = −α1

∞∑
m=0

ν2
m∆2m{Θ−m(P )− 2ζ

∞∑
n=0

νn cos(νnL)Qmnχ
−
n }, (5.69)
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where

Pmn =

∫ b

d

cosh(βmy) cosh(γny)dy and Qmn =

∫ d

0

cosh(βmy) cosh(βny)dy.

5.2.3 Pivoted Edges

For pivoted edges we assume zero displacement and continuous gradient and bend-

ing moment at finite edges of the plates. Physically, the conditions are realistic

only if y = a = b and comprise formulation as follows [34]

φ1y(−L, y) = 0 = φ3y(L, y), (5.70)

φ1xy(−L, y) = φ2yx(−L, y), (5.71)

φ3xy(L, y) = φ2yx(L, y), (5.72)

φ2y(±L, y) = 0, (5.73)

φ1xxy(−L, y) = φ2yxx(−L, y), (5.74)

φ3xxy(L, y) = φ2yxx(L, y). (5.75)

From (5.73), we find V ±2 = 0, however, to get the values of U±1 , U
±
2 , V

±
1 , we multiply

the factors
∑∞

m=0 ηm∆1mEm with (5.24) and (5.25), 2i
∑∞

m=0 ∆2mGmνm sin(νmL)

with (5.34) and 2
∑∞

m=0 ∆2mGmνm cos(νmL) with (5.35), then the imposition of

the edge conditions (5.71)- (5.72) and (5.74) -(5.75) along with Green’s functions

identities (2.90)-(2.93). Eventually, the following systems of equations are found

S2V
+

1 + S7U
+
2 = −α1

2

∞∑
m=0

νm tan(νmL)∆2mΘ+
m(R)

−α1

∞∑
m=0

∞∑
n=0

χ+
n νn sin(νnL){∆1mPnm + iζ∆2mνm tan(νmL)Tmn}, (5.76)

S5U
+
1 + S6U

+
2 − V +

1 = −2F`η
2
`∆1`E` + α1

∞∑
m=0

ν2
m∆2mΘ+

m(P )

−2α1

∞∑
m=0

∞∑
n=0

χ+
n νn sin(νnL){iηm∆1mRnm − iζν2

m∆2mQmn}, (5.77)
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S3V
−

1 + S8U
−
2 = −α1

2i

∞∑
m=0

νm cot(νmL)∆2mΘ−m(R)

−α1

∞∑
m=0

∞∑
n=0

χ−n νn cos(νnL){∆1mPnm − iζ∆2mνm cot(νmL)Tmn} (5.78)

and

S5U
−
1 + S6U

−
2 + V −1 = 2F`η

2
`∆1`E` − α1

∞∑
m=0

ν2
m∆2mΘ−m(P )

+2α1

∞∑
m=0

∞∑
n=0

χ−n νn cos(νnL){ηm∆1mRnm − ζ∆2mν
2
mQmn}, (5.79)

where

S7 = − 1

2i

∞∑
m=0

∆2
1mγ

2
mEm and S8 = −1

2

∞∑
m=0

∆2
1mγ

2
mEm.

The simultaneous solution of (5.54) and (5.76)-(5.77) reveals {U+
1 , U

+
2 , V

+
1 }, and

(5.56) and (5.78)-(5.79) yield {U−1 , U−2 , V
−

1 }. Hence, two systems of infinite equa-

tions defined by (5.24) and (5.25) are obtained. These can be truncated and

solved numerically for different set of edge conditions to determine the unknown

amplitudes.

5.3 Low-Frequency Approximation

It is useful to be able to compare the results obtained via MM approach and thus

for this purpose, an approximate solution LFA is developed. Therefore, the field

potentials in duct regions are approximated as

φ1(x, y) ≈ F`Y1(γ`, y)eiη`(x+L) +

J1∑
n=0

AnY1(γn, y)e−iηn(x+L), (5.80)

φ2(x, y) ≈
J2∑
n=0

(
Bne

−iνnx + Cne
iνnx
)
Y2(βn, y), (5.81)

φ3(x, y) ≈
J3∑
n=0

DnY1(γn, y)eiηn(x−L), (5.82)
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where J1, J2 and J3 stand for the number of modes propagating the inlet region,

expansion chamber and outlet region, respectively. The values of J1, J2 and J3

must be in accordance with geometrical and imposed conditions. The coefficients

An, n = 0, 1....J1, {Bn, Cn}, n = 0, 1, ...J2 and Dn, n = 0, 1....J3 are unknowns.

These are found by considering the continuity conditions of mean pressure and

velocity flux at interfaces. The continuity conditions of mean pressures expressed

by

∫ d

0

{φ1(−L, y)− φ2(−L, y)} dy = 0 (5.83)

and

∫ d

0

{φ3(L, y)− φ2(L, y)} dy = 0 (5.84)

lead to

J1∑
n=0

Υ(γn, d)Ψ+
n − 2

J2∑
n=0

Υ(βn, d) cos(νnL)χ+
n = F`Υ(γ`, d) (5.85)

and

J1∑
n=0

Υ(γn, d)Ψ−n − 2i

J2∑
n=0

Υ(βn, d) sin(νnL)χ−n = F`Υ(γ`, d) (5.86)

respectively, where

Υ(x, y) = x−1 sinh (xy) , (5.87)

if x = γn represents the inlet/outlet duct region and x = βn denotes the expansion

chamber region. Similarly, the velocities flux conditions at interfaces defined by

∫ d

0

{φ1x(−L, y)− φ2x(−L, y)} dy = 0, (5.88)

∫ d

0

{φ3x(L, y)− φ2x(L, y)} dy = 0, (5.89)
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yield the following systems of equations

J3∑
n=0

Υ(γn, d)ηnΨ+
n − 2

J2∑
n=0

Υ(βn, d)νn cos(νnL)χ−n = η`F`Υ(γ`, d) (5.90)

and

J3∑
n=0

Υ(γn, d)ηnΨ−n − 2i

J2∑
n=0

Υ(βn, d)νn sin(νnL)χ+
n = η`F`Υ(γ`, d). (5.91)

However, the surfaces bounding vertically the regions at |x| > L are rigid, there-

fore, the normal velocities along these surfaces satisfy

∫ a

d

φ1x(−L, y) dy = 0 and

∫ a

d

φ3x(L, y) dy = 0, (5.92)

which lead to

J1∑
n=0

(Υ(γn, a)−Υ(γn, d))ηnΨ±n = F`η`(Υ(γ`, a)−Υ(γ`, d)), (5.93)

where J1 = J3. However, the inner surfaces of the flange facing into the region at

|x| < L contain impedance type flux conditions, that is

∫ b

d

{φ2(−L, y)− iζφ2x(−L, y)} dy = 0 (5.94)

and

∫ b

d

{φ2(L, y) + iζφ2x(L, y)} dy = 0, (5.95)

which reveal

J2∑
n=0

(Υ(βn, b)−Υ(βn, d)) (cos(νnL)− iζνn sin(νnL))χ+
n = 0 (5.96)

and

J2∑
n=0

(Υ(βn, b)−Υ(βn, d)) (i sin(νnL)− ζνn cos(νnL))χ−n = 0. (5.97)
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respectively. Furthermore, the effects of edge conditions are assimilated in subse-

quent subsections.

5.3.1 Clamped Edges

For clamped edges, the equations (5.37)-(5.40) in association with the approxi-

mated field potentials (5.80)-(5.82) give

J1∑
n=0

∆1nEnΨ±n = −F`∆1`E`, (5.98)

J2∑
n=0

∆2nGn cos(νnL)χ+
n = 0, (5.99)

J2∑
n=0

∆2nGn sin(νnL)χ−n = 0, (5.100)

J1∑
n=0

∆1nEnηnΨ±n = −F`η`∆1`E`, (5.101)

J2∑
n=0

∆2nGnνn sin(νnL)χ+
n = 0, (5.102)

and

J2∑
n=0

∆2nGnνn cos(νnL)χ−n = 0. (5.103)

For this set of edge conditions we set J1 = J2 = J3 = 3 and compute the unknown

modal coefficients {An, Bn, Cn, Dn} through solving (5.85)-(5.86), (5.90)-(5.91),

(5.93) and (5.96)-(5.103) simultaneously.

5.3.2 Pin-Jointed Edges

For this set of edge conditions, (5.51) and (5.53) together with (5.80)-(5.82) lead
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to the following equations

J1∑
n=0

∆1nEnη
2
nΨ±n = −F`η2

`∆1`E`, (5.104)

J2∑
n=0

∆2nGnν
2
n cos(νnL)χ+

n = 0 (5.105)

and

J2∑
n=0

∆2nGnν
2
n sin(νnL)χ−n = 0. (5.106)

Again we set J1 = J2 = J3 = 3 and solve (5.85)-(5.86), (5.90)-(5.91), (5.93),

(5.96)-(5.100) and (5.104)-(5.106) simultaneously for unknown modal coefficients

{An, Bn, Cn, Dn}.

5.3.3 Pivoted Edges

In case of pivoted edges, the conditions (5.71)-(5.72) and (5.74)-(5.75) in associa-

tion with the approximated field potentials (5.80)-(5.82) yield

J1∑
n=0

ηn∆1nEnΨ+
n − 2

J2∑
n=0

∆2nGnνn cos(νnL)χ−n = −F`η`∆1`E`, (5.107)

J1∑
n=0

ηn∆1nEnΨ−n − 2i

J2∑
n=0

∆2nGnνn sin(νnL)χ+
n = −F`η`∆1`E`, (5.108)

J1∑
n=0

η2
n∆1nEnΨ+

n − 2

J2∑
n=0

∆2nGnν
2
n cos(νnL)χ+

n = −F`η2
`∆1`E` (5.109)

and

J1∑
n=0

η2
n∆1nEnΨ−n − 2i

J2∑
n=0

∆2nGnν
2
n sin(νnL)χ−n = −F`η2

`∆1`E`. (5.110)

Consequently by solving (5.85)-(5.86), (5.90)-(5.91), (5.93), (5.96)-(5.100) and

(5.107)-(5.110) the unknown modal coefficients {An, Bn, Cn, Dn} are found, where

J1 = J2 = J3 = 3.
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5.4 Numerical Results and Discussion

The graphical results presented in this section are obtained through the truncated

form of MM solution having truncation parameter N . The numerical experiments

are performed by fixing the specific impedance ζ = ξ + iχ to fibrous sheet with

parameters ξ = 2.1, χ = 2.5 and to perforated sheet with values ξ = 2.1, χ = 2.5.

The regimes of parameters as given in [100] that specify the fibrous and perforated

coatings are ξ = 0.5,−1 < χ < 3, and 0 < ξ < 3,−1 < χ < 3, respectively. The

power absorbed (Pabs) due to the layer of lining [102] can be given as

Pabs = Pi − Pr − Pt. (5.111)

The expressions for Pr in the inlet region and the Pt in the outlet region can be

determined by using the definition given by [34] and that are found

Pr = Re

{
1

α1

∞∑
n=0

|An|2Enηn

}
(5.112)

and

Pt = Re

{
1

α1

∞∑
n=0

|Dn|2Enηn

}
, (5.113)

where the incident power is being scaled at unity. However, the performance of a

HVAC silencer [95] is usually measured by the TL as

TL = −10 log10

(
Pt
Pi

)
. (5.114)

For numerical computation the elastic plates of aluminum having thickness h̄ =

0.0006 m and density ρp = 2700 kgm−3 are assumed. The values of Young’s

modulus and Poisson’s ratio are E = 7.2× 1010 Nm−2 and υ = 0.34, respectively,

while, sound speed c = 344 ms−1 and density of air ρa = 1.2 kgm−3 remain fixed

[34]. Two different incident fields are considered; the structural-borne fundamental

mode (` = 0) and the fluid-borne second mode (` = 1). The later case include

only the results obtained via MM technique. The TL against frequency with and

without cavity inclusion is discussed in following two cases.
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5.4.1 Case 1: b > a > d

The graphical results of TL verses frequency in the presence of chamber cavity

(which refers b > a > d) with two different sets of edge conditions and two types

porous lining are shown in Fig. 5.3. The graphs in Fig. 5.3(a) reveal the case when

a perforated type sheet (ξ = 2.1, χ = 2.5) is assumed along the surface of vertical

flanges in the the expansion chamber, whereas, the dimensions of waveguide are

fixed with ā = 0.06m, b̄ = 0.085m, d̄ = 0.045m and L̄ = 0.02m. The TL against

frequency with geometrical setting containing all clamped or all pin-jointed edge

conditions is shown in Fig. 5.3 while the system being radiated through the

structure borne mode incident. Accordingly, maximum energy propagates along

the structure and a stop-band produced in regime 2Hz ≤ f ≤ 190Hz suppresses

as the next mode of inlet duct becomes cut-on at f = 191 Hz which is basically

the fluid-borne mode. Nevertheless, when both modes start propagating the TL

starts increasing with increasing frequencies. It clearly reveals more reflection and

absorption with the participation of additional modes.

Now by changing the edge conditions from all clamped to all pin-jointed more

leakage in compressional waves due zero bending moment at edges occurs, thereby

yields enhancement of TL as compared with the magnitude of TL with clamped

edges (Fig. 5.3(a)). Moreover a good agreement in MM technique and LFA results

is found in frequency regime f ≤ 600Hz. In Fig. 5.3(b) fibrous sheet is assumed

instead of perforated lining by taking ξ = 0.5, χ = 0.5. More absorption with

this type of lining is obtained for both (clamped & pin-jointed edges) with similar

pattern of TL. Also extra leakage of compressional waves with pin-jointed condi-

tions is clearly evident. However, the MM and LFA solutions dissimulate on some

frequency ranges, (see Fig. 5.3(b)). The fact is due to the inability of LFA to cater

the information around the complex eigen values. The occurrence of such eigen

values is depicted in (5.7) and comprehensively debated in [34].

Fig. 5.4 depicts the TL results when the structure is radiated through the fluid-

borne mode incident whereas, the dimensional duct heights are fixed as: ā = 0.1m,

b̄ = 0.15m, d̄ = 0.06m and half-length of expansion chamber L̄ = 0.25m. Moreover,
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Figure 5.3: The transmission loss against frequency for fundamental mode
incident (` = 0) Via LFA (−−−) and MM (�N) with (N = 40): (a) perforated

lining and (b) fibrous lining.

the absorbent parameters for fibrous lining are assumed to have: ξ = 0.5, χ =

0.5, while for perforated lining contains values: ξ = 2.1, χ = 2.5. The curves

of Fig. 5.4 are displayed with the frequency range 148Hz ≤ f ≤ 1500Hz. The

starting frequency f = 148Hz is chosen such as to make sure that the fluid-born

mode incident becomes cut-on. The results show that the all clamped and all

pin-joint edge conditions have no apparent effect on the acoustical performance
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Figure 5.4: The transmission loss against frequency for fluid-borne mode in-
cident (` = 1) with N=90: (a) perforated lining and (b) fibrous lining.

of the waveguide. Since with the fluid-borne mode case most of the energy is

transferred through the fluid and thus, the all clamped and all pin-jointed curves

overlie. Moreover, more absorption with fibrous type lining than perforated lining

is obtained. Nevertheless a sharp stop-band occurred in regime 1009Hz ≤ f ≤

1171Hz with perforated lining over the point whereby the secondary mode of the

expansion chamber starts propagating.
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Table 5.1: Case: 1 (b > a > d), the power components verses N for ` = 0
with ā = 0.06m, b̄ = 0.085m, d̄ = 0.045m, L̄ = 0.02m, f = 250Hz.

Absorbent Lining Edge Conditions N Pr Pt Pabs

Perforated Clamped 20 0.918068 0.057352 0.0245803

(χ = 2.1, ξ = 2.5) 25 0.918064 0.0573664 0.0245699

30 0.91818 0.0575092 0.0243113

Pin-Jointed 20 0.956881 0.0296523 0.0134671

25 0.956768 0.0297077 0.0135245

30 0.956921 0.0297639 0.0133154

Fibrous Clamped 40 0.946937 0.0141735 0.0388892

(χ = 0.5, ξ = 0.5) 45 0.946847 0.0140359 0.0391169

50 0.94727 0.01441382 0.0385923

Pin-Jointed 15 0.972715 0.0067222 0.0205629

20 0.970781 0.00704184 0.0221771

25 0.972783 0.00688863 0.0203283

Table 5.2: Case: 1 (b > a > d), the power components verses N for ` = 1
with ā = 0.1m, b̄ = 0.15m, d̄ = 0.06m, L̄ = 0.25m, f = 250Hz.

Absorbent Lining Edge Conditions N Pr Pt Pabs

Perforated Clamped 90 0.64793 0.26464 0.087430

(χ = 2.1, ξ = 2.5) 95 0.648503 0.264904 0.086593

100 0.648908 0.265095 0.085997

Pin-Jointed 90 0.164322 0.595649 0.240029

95 0.164107 0.536246 0.239647

100 0.163895 0.596716 0.239390

Fibrous Clamped 65 0.620859 0.127816 0.251325

(χ = 0.5, ξ = 0.5) 70 0.620091 0.127863 0.252046

75 0.619321 0.12787 0.252809

Pin-Jointed 65 0.227142 0.105486 0.667372

70 0.226639 0.105577 0.667784

75 0.226163 0.10563 0.668206
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Furthermore, the Pr, Pt and Pabs for different types of edge conditions and the

properties of absorbent material against the variation of number of terms N are

displayed in Tables. 5.1 and 5.2. To collect data of Table. 5.1, the dimensional

variable are taken as: ā = 0.06m, b̄ = 0.085m, d̄ = 0.045m and L̄ = 0.02m

and frequency is fixed at f = 250Hz. Note that Table. 5.1 shows the results

when structure-borne mode is incident whilst Table. 5.2 displays the results with

fluid-borne mode incident. The number of terms are varied to confirm adequate

convergence of presented results. From Table. 5.1, it can be seen that maximum of

energy is reflected. The amount of reflection not only depends upon the edge con-

ditions of this physical problem but also the material properties of the absorbent

material. For instance greater amount of energy is reflected with fibrous material

and all pin-jointed conditions as compared to other settings (see Table. 5.1).

Likewise to produce the data of Table. 5.2, the dimensional variable are assumed

as: ā = 0.1m, b̄ = 0.15m, d̄ = 0.06m and L̄ = 0.25m at f = 250Hz. Note that

when fluid-borne mode is incident, the reflection is decreased but absorption is

increased. More absorption with all pin-jointed and fibrous case is revealed than all

other setting. For this case the convergence is achieved with increasing truncation

parameter N = 90 (see Table. 5.2). The fact is due to the case of singularity at the

tips of flange in fluid-borne mode case. Fig. 5.5 shows the reflected and transmitted

powers against the truncation parameter N with f = 250Hz. Only the results with

all clamped edge conditions and fibrous absorbent lining are displayed. Fig. 5.5(a)

and Fig. 5.5(b) show respectively the curves of the fundamental or structure-

borne mode incident (` = 0) along with dimensional parameters ā = 0.06m,

b̄ = 0.085m, d̄ = 0.045m and L̄ = 0.02m and of the fluid-borne mode incident

(` = 1) together with parameters ā = 0.1m, b̄ = 0.15m, d̄ = 0.06m and L̄ = 0.25m.

Clearly, the systems converge more rapidly for the structure born mode incident

(see Fig. 5.5(a)) than the fluid-borne mode incident (see Fig. 5.5(b)). In these

tables the reflection, transmission and absorption of energy flux are shown. The

unit energy flux provided to the system is transformed to reflected, transmitted

and absorbed energies. From the conservation law of energy, the sum of reflected,
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Figure 5.5: Powers (Pr and Pt) against parameters (N) at f = 250 Hz in the
presence of fibrous absorbent lining with clamped edges: (a) ` = 0, (b) ` = 1.

transmitted and absorbed energies should be equal to provides unit incident energy.

This can be regarded as standard base line.

5.4.2 Case 2: a = b and a > d

In this case the computations are performed for planar waveguide by fixing the
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dimensional heights ā = b̄ = 0.06m, d̄ = 0.045m and half-length of expansion

chamber L̄ = 0.02m. The TL results against frequency with clamped, pin-jointed

and pivoted edge conditions for perforated (ξ = 2.1, χ = 2.5) and fibrous (ξ =

0.5, χ = 0.5) absorbent linings are shown in Fig. 5.6. For the perforated type of

absorbent coating along the flanges (Fig. 5.6(a)) a sharp decrements is observed

at f = 191 Hz which is the first cut-on mode of inlet/outlet duct region. However,

once this duct mode starts propagating, the TL increases by increasing frequency

for clamped and pin-jointed conditions.

Nevertheless, this situation is not depicted with pivoted edge conditions which are

physical only when (ā = b̄). The reason behind is the transformation of extra

energy along the boundaries and a leakage of comperssional waves at the edges.

Highest leakage occurs in pin-jointed case rather than clamped and pivoted cases

which is as expected due to zero bending moment with pin-jointed edge conditions.

Moreover, an excellent agreement between MM and LFA results for perforated case

is achieved. However, a slight variation among the LFA and MM curves comprising

fibrous absorbent lining for all clamped and all pin-jointed edge conditions is found

(see Fig. 5.6(b)). This variation is because of the inability of LFA to cater the

information about the complex eigenvalues on higher frequencies. Since a limited

number of modes have been allowed to propagate in LFA.

Fig. 5.7 shows the results with fluid-borne mode incident found by fixing the

dimensional lengths at: ā = b̄ = 0.15m, d̄ = 0.06m and L̄ = 0.02m. The absorbent

parameters for fibrous lining are assumed to have: ξ = 0.5, χ = 0.5, while for

perforated lining contain values: ξ = 2.1, χ = 2.5. The graphs are plotted at

frequency f = 120 Hz which is chosen such as to make sure that the fluid-borne

mode incident becomes cut-on. The results show that the clamped, pin-jointed

and pivoted edge conditions have no apparent effect on the acoustical performance

of the device due to transformation of maximum energy via fluid. A sharp peak is

appeared at f = 1160 Hz over the point whereby the second mode of the expansion

chamber begins propagating for all types of edge conditions (see Fig. 5.7). After

this cut-on, the attenuation decreases with increasing frequency.
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Figure 5.6: The transmission loss against frequency for fundamental mode
incident (` = 0) Via LFA (−−−) and MM (� • N) with N=20: (a) perforated

lining and (b) fibrous lining.

Now the Pr, Pt and Pabs for different types of edge conditions and the properties

of absorbent material against the variation of number of terms N are displayed in

Tables. 5.3 and 5.4. The numerical data in Table. 5.3 is achieved by considering

the dimensional parameters: ā = b̄ = 0.06m, d̄ = 0.045m and L̄ = 0.02m at

f = 250Hz with fundamental-borne mode incident. From Table. 5.3, it can be seen

that maximum of energy is reflected. Also the amount of energy reflection not only
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Figure 5.7: The transmission loss against frequency for fluid-borne mode in-
cident (` = 1) with N=90: (a) perforated lining and (b) fibrous lining.

depends upon the edge conditions of the physical problem but also depends upon

the material properties of the absorbent material. For instance greater amount of

energy is reflected with both absorbent material and all pin-jointed conditions as

compared to other settings (see Table. 5.3).

Similarly for fluid-borne mode incident, Table. 5.4 is presented with clamped, pin-

jointed and pivoted edge conditions by assuming fibrous and perforated coatings.
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Table 5.3: Case: 2 (a = b, a > d), the power components verses N for ` = 0
with ā = b̄ = 0.06m, d̄ = 0.045m, L̄ = 0.02m, f = 250Hz.

Absorbent Lining Edge Conditions N Pr Pt Pabs

Perforated Clamped 20 0.910338 0.0783934 0.0112683

(χ = 2.1, ξ = 2.5) 25 0.910324 0.0780739 0.0116022

30 0.910307 0.0782425 0.0114507

Pin-Jointed 20 0.952691 0.0410675 0.0062419

25 0.952596 0.0409087 0.0064957

30 0.952634 0.0409857 0.0063801

Pivoted 15 0.900367 0.0890946 0.0105381

20 0.901634 0.0902692 0.0080964

25 0.901428 0.0900829 0.0084891

Fibrous Clamped 15 0.922148 0.0434187 0.0344329

(χ = 0.5, ξ = 0.5) 20 0.922005 0.0428381 0.0351570

25 0.922584 0.0434597 0.0339568

Pin-Jointed 15 0.959085 0.0222686 0.0186464

20 0.958981 0.0219269 0.0190926

25 0.959416 0.0222872 0.0182966

Pivoted 15 0.908655 0.0669801 0.0243652

20 0.908319 0.0666611 0.0250196

25 0.909237 0.0669478 0.0238150

The dimensional lengths ā = b̄ = 0.15m, d̄ = 0.06 m and L̄ = 0.02m remain

fixed, where f = 250 Hz. It is noted that almost zero reflection and maximum

absorption regardless of edge conditions and absorbent characteristics is found.

However, with fibrous lining relatively more absorption than perforated lining is

revealed (see Table. 5.4).

Fig. 5.8 shows the reflected and transmitted powers against the truncation param-

eter N , where f = 250Hz. Only the results with all clamped edge conditions and

fibrous absorbent lining are displayed. Fig. 5.8(a) and Fig. 5.8(b) show respectively

the curves of the fundamental or structure-borne mode incident (` = 0) along with
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Table 5.4: Case: 2 (a = b, a > d), the power components verses N for ` = 1
with ā = b̄ = 0.15m, d̄ = 0.06m, L̄ = 0.02m, f = 250Hz.

Absorbent Lining Edge Conditions N Pr Pt Pabs

Perforated Clamped 90 0.0733949 0.604349 0.322256

(χ = 2.1, ξ = 2.5) 95 0.0732667 0.605375 0.321359

100 0.0731403 0.606207 0.320653

Pin-Jointed 90 0.0625319 0.609751 0.327717

95 0.0624963 0.610716 0.326787

100 0.0624561 0.611496 0.326048

Pivoted 35 0.062084 0.596332 0.341584

40 0.0607462 0.594692 0.344562

45 0.0600641 0.591413 0.348523

Fibrous Clamped 75 0.384793 0.206054 0.409153

(χ = 0.5, ξ = 0.5) 80 0.383845 0.20604 0.410115

85 0.383068 0.206044 0.410888

Pin-Jointed 75 0.381379 0.210389 0.408232

80 0.380551 0.210372 0.409755

85 0.379871 0.210374 0.409077

Pivoted 55 0.388673 0.206399 0.404928

60 0.387344 0.20626 0.406396

65 0.386083 0.206165 0.407752

dimensional parameters ā = 0.06m, b̄ = 0.085m, d̄ = 0.045m and L̄ = 0.02m, and

of the fluid-borne mode incident (` = 1) together with parameters ā = b̄ = 0.15m,

d̄ = 0.06m and L̄ = 0.25m. Clearly, the systems converge more rapidly for the

structure born mode incident (see Fig. 5.8(a)) than the fluid-borne mode incident

(see Fig. 5.8(b)).

It is useful to reconstruct the matching conditions by using the truncated form

of MM solution. It validates the truncated solution as well as confirm the accu-

racy of performed algebra. In Figs. 5.9 and 5.10, the real and imaginary parts

of dimensionless normal velocities and pressures are plotted at interface x = −L

respectively (likewise can be shown at x = L). From figures it can be seen that
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Figure 5.8: Powers (Pr and Pt) against parameters (N) at f = 250 Hz in
the presence of perforated absorbent lining with clamped edges: (a) ` = 0, (b)

` = 1.

the curves for real as well as imaginary parts of normal velocities and pressures

overlie when 0 ≤ y ≤ d. However the normal velocity curves are zero while

0 < y < a. Thus, the matching conditions (5.16) and (5.26) are fully satisfied.

Nevertheless, two curves oscillate around their mean value and the amplitude of

oscillation reduces significantly as y increases, except close to the corners y = d

and b.
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Figure 5.9: The real and imaginary parts of normal velocities against duct
height at (−L, y) for clamped edge condition in the presence of absorbent lining

(fibrous) with f = 700 Hz, a = 0.06m, b = 0.085m, d = 0.45m and N = 150.

In this chapter, we have studied the scattering analysis through a waveguide

bounded by elastic plates in the presence of lined flanges. The physical con-

figuration comprises expansion chamber that is connected with the elastic plates

bounded inlet and outlet through lined flanges. The governing boundary value
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problems are solved by using MM approach and LFA. From the numerical exper-

iment it is found that the absorbent lining along the flanges and edge conditions

significantly affect the attenuation of structure as well as fluid-borne excitation.
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Figure 5.10: The real and imaginary parts of pressures against duct height at
(−L, y) for clamped edge condition in the presence of absorbent lining (fibrous)

with f = 700 Hz, a = 0.06m, b = 0.085m, d = 0.45m and N = 150.



Chapter 6

Acoustic Analysis in Waveguide

with Plates-Membrane

Boundaries

In this chapter, the traveling waveform of a flexible waveguide bounded by elastic

plates with an inserted expansion chamber having flanges at two junctions and

a finite elastic membrane atop is investigated through a MM technique. The

modeled problem is governed by Helmholtz’s equation together with Dirichlet and

higher order boundary conditions. An acoustically absorbent lining is placed along

the inner sides of the flanges at the junctions while their outer sides are kept

rigid. Moreover, the edge conditions are imposed to define the physical behavior of

elastics membrane and plates at finite edges. The configuration is exited with the

structure as well as fluid-born mode. The influence of the imposed edge conditions

at the connections of the plates and the prescribed incident forcing on the TL along

the duct is elaborated. Specifically, the effects of edge conditions on the TL of

structure-borne vibrations and fluid-borne noise are specified. The performance of

LFA is compared with the benchmark MM method with relative merits. Apposite

numerical simulations are also performed to substantiate the validity of the MM

technique.

132
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The contents hereinafter are organized as follows. The mathematical formulation

of the problem is furnished in Section. 6.1. The MM solution is rendered in Sec-

tion. 6.2. In Section. 6.3, the LFA is derived. Numerical results are presented in

Section. 6.4.

6.1 Boundary Value Problem

Consider a two-dimensional, rectangular flexible waveguide filled with a compress-

ible fluid having density ρ and sound speed c. The lower boundary of the waveguide

lying along ȳ = 0 for x̄ ∈ R is assumed acoustically rigid. The upper walls consist

of elastic plates at height ȳ = ā for |x̄| > L̄ and elastic membrane at height ȳ = b̄

for |x̄| < L̄ with b̄ > ā and L̄ > 0. The finite ends of the elastic plates are con-

nected at ȳ = ā with two vertical strips elongated along x̄ = ±L̄ for d̄ ≤ ȳ ≤ b̄.

The upper ends of the strips are joined with each other by means of the finite

elastic membrane at ȳ = b̄ with |x̄| < L̄, forming an expansion chamber region

(|x̄| ≤ L̄, 0̄ < ȳ < b̄), and the inlet and outlet duct regions (|x̄| ≥ L̄, 0̄ < ȳ < ā).

𝑦" 
 

𝑏" 
 

�̅� 
 

𝑎" 
 

�̅� = −𝐿" 
 

�̅� = 𝐿" 
 

�̅� 
 

 

Figure 6.1: Flexible waveguide.
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The absorbent linings of a porous material are taken along the inner sides of the

vertical strips whereas the outer sides of the strips facing towards inlet and outlet

are kept acoustically rigid. The geometrical configuration is shown in Fig. 6.1.

The impedance condition for the absorbent material is same as of the boundary

value problem of Section. 5.1, that is defined as

φ+ iζn · ∇φ = 0, (6.1)

where ζ = (ρc)−1Z represents the dimensionless specific impedance of the lin-

ing. The structure is excited from inlet region by a structure or fluid-borne mode

which will be scattered and/or absorbed upon interaction with geometric discon-

tinuities and material properties of the chamber. In order to study the scattering

characteristics, a boundary value problem is formulated. Towards this end, the

time-harmonic dimensionless fluid potential φ(x, y) satisfies the Helmholtz’s equa-

tion (
∇2 + 1

)
φ = 0, (6.2)

with a unit wave-number. The dimensionless normal component of fluid velocity

vanishes at the rigid base, that is,

∂φ

∂y
= 0, for all (x, y) ∈ R× {0}. (6.3)

The dimensionless form of the membrane connecting the flanges from the top is

given by

(
∂2

∂x2
+ µ2

)
∂φ

∂y
+ αφ = 0 for all (x, y) ∈ (−L,L)× {b}, (6.4)

where µ is membrane wave-number and α is fluid-loading parameter. Moreover, all

parameters about membrane boundary conditions have already been explained in

Subsection. 2.3.2. However, the upper elastic plate boundaries of inlet and outlet

duct sections are same as of the previous problem of Section. 5.1, that is written

in dimensionless form as
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(
∂4

∂x4
− µ4

1

)
∂φ

∂y
− α1φ = 0 for all (x, y) ∈ (R \ [−L,L])× {a}. (6.5)

In order to describe the traveling wave formulation in inlet, outlet, and expansion

chamber, the eigen-functions of the associated duct regions can be found by using

(6.2)-(6.4), as

Y1n(y) = cosh(γny), |x| > L, 0 ≤ y ≤ a,

Y2n(y) = cosh(βny), |x| < L, 0 ≤ y ≤ b.

(6.6)

The eigenvalues (γn, βn), for n ∈ N ∪ {0}, are the roots of the characteristic

equations 
(

(γ2
n + 1)2 − µ4

1

)
γn sinh(γna)− α1 cosh(γna) = 0,(

β2
n + 1− µ2

)
βn sinh(βnb)− α cosh(βnb) = 0.

(6.7)

These roots are determined numerically. Towards this end, any standard numer-

ical scheme, such as, Newton-Raphson or scant method, may be invoked. For

the propagation of vibrational waves in the positive x−direction and/or for an

exponential decay as x → +∞, first the real roots and then the complex roots

are incorporated by increasing the imaginary part. In fact, the real roots corre-

spond to the vibrational modes which propagate in the positive x−direction (i.e.,

the propagating modes) whereas the imaginary roots correspond to the vibration

modes which decay with distance from the interface (i.e., the evanescent modes).

There is always one real root (γ0 > 0, β0 > 0) accompanied by an infinity of

imaginary roots, (γn, βn)n∈N, labeled in ascending order on imaginary axis as de-

picted in Fig. 6.2. First 10 roots of the dispersion relations in (6.7) are displayed.

Figs. 6.2(a) and 6.2(b) reflect the roots, respectively, in the inlet/outlet duct mode

regions with duct height 0.06m and in the expansion chamber region bounded by

elastic membrane at the height 0.085m at frequency 430Hz. There exist pairs of

complex roots for certain ranges of frequency in the inlet and outlet duct regions.

Such pairs appear when the imaginary plate mode tends to cut-off duct modes

(see Fig. 6.2(a)).



Acoustic Analysis in Waveguide with Plates-Membrane Boundaries 136

ò
ò

òò

ò

ò

ò

ò

ò

ò

0 2 4 6

0

10

20

30

40

50

Re @ΓD

Im
@ΓD

(a) Inlet and outlet duct regions

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

-1 0 1 2 3

0

10

20

30

40

Re @ ΒD

Im
@Β

D

(b) Expansion chamber

Figure 6.2: First 10 roots of the characteristic equation (6.7) at f = 430Hz
with ā = 0.06m and b̄ = 0.085m.

These complex pairs of γ can be obtained by solving the equation [34]

iµ1 =

√
1− n2π2

k2ā2
, n ∈ N, (6.8)
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where ā is the dimensional height of the duct. Such roots are arranged according

to the magnitude of the imaginary part in ascending order such that γ∗ is followed

by −γ∗. It is important to note that the corresponding eigen-system is non-Sturm-

Liouville in nature, whereby the development and use of generalized orthogonal

characteristics is indispensable (see, for instance, [32]). The generalized OR for

inlet/outlet and expansion chamber are found to be

α1

∫ a

0

Y1n(y)Y1m(y)dy = Gnδmn − (γ2
m + γ2

n + 2)Y
′

1n(a)Y
′

1m(a), n,m ∈ N ∪ {0},

(6.9)

α

∫ b

0

Y2n(y)Y2m(y)dy = Enδmn − Y
′

2n(b)Y
′

2m(b), n,m ∈ N ∪ {0}, (6.10)

respectively. Here, the prime denotes differentiation with respect to y and δmn is

the Kronecker’s delta. Moreover, the quantities Gm and Em are given by

Gm =
α1a

2
+
α1Y1m(a)Y

′
1m(a)

2γ2
m

+ 2[(γ2
m + 1)Y

′

1m(a)]2, (6.11)

Em =
αb

2
+

(
3β2

m + 1− µ2
2

2β2
m

)
[Y
′

2m(b)]2. (6.12)

Now the MM solution is rendered in next section.

6.2 Mode-Matching Solution

Let us express the fluid potential φ(x, y) for inlet, outlet, and expansion chamber,

respectively, as

{
φ−(x, y), x ≤ −L, 0 ≤ y ≤ a

}
,{

φ+(x, y), x ≥ L, 0 ≤ y ≤ a
}
,

{φc(x, y), |x| ≤ L, 0 ≤ y ≤ b} .

Then, by virtue of the eigen-function expansion,
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we have

φ−(x, y) =F`Y1`(y)eiη`(x+L) +
∞∑
n=0

AnY1n(y)e−iηn(x+L), (6.13)

φc(x, y) =
∞∑
n=0

(
Bne

−iνnx + Cne
iνnx
)
Y2n(y), (6.14)

φ+(x, y) =
∞∑
n=0

DnY1n(y)eiηn(x−L). (6.15)

Here, {An, Bn, Cn, Dn}n∈N∪{0} are the complex amplitudes of the propagating

modes. The first term on the right hand side of (6.13) indicates the incident

field with forcing F`. The index ` takes on the value 0 or 1 for a structure-borne

or a fluid-borne incident mode, respectively. The quantities ηn and νn are defined

as

ηn =
√
γ2
n + 1 and νn =

√
β2
n + 1 for n ∈ N ∪ {0}.

In order to find the amplitudes of the reflected and transmitted fields, the velocity

flux conditions at interfaces are invoked, which yield

∫ a

0

φ±x (±L, y)Y1m(y)dy =

∫ d

0

φcx(±L, y)Y1m(y)dy. (6.16)

On substituting (6.13)-(6.15) into (6.16) and simplifing the result using OR (6.9),

one gets

Ψ±m = F`δm` −
γm sinh(γma)

ηmGm

(
U±1 + (γ2

m + 2)U±2

)
+

2α1

ηmGm

∞∑
n=0

νnRnmΛ±(νnL)χ±n ,

(6.17)

where

Ψ±m = (Am ±Dm), χ±n = (Bn ± Cn),

Λ+(x) = i sin(x), Λ−(x) = cos(x),

U±1 = e1 ∓ e3, U±2 = e2 ∓ e4,

with e1 = −i φ−xyyy(−L, a), e2 = −i φ−xy(−L, a), e3 = −i φ+
xyyy(L, a),
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and

e4 = −i φ+
xy(L, a).

The constants Rnm in (6.17) are given by

Rnm =
1

β2
n − γ2

m

(
βn cosh(γmd) sinh(βnd))− γm cosh(βnd) sinh(γmd)

)
,

n,m ∈ N ∪ {0}. (6.18)

Similarly, the pressure flux conditions at interfaces render

∫ b

0

φc(±L, y)Y2m(y)dy =

∫ d

0

φ±(±L, y)Y2m(y)dy ± ζ

i

∫ b

d

φcx(±L, y)Y2m(y)dy.

(6.19)

On substituting (6.13)-(6.15) into (6.19), simplifying the resultants with the help

of OR (6.10), and after fairly easy manipulations, one arrives at

χ±m =
βm sinh(βmb)

2EmΛ∓(νmL)
V ±1 +

α

2EmΛ∓(νmL)

{
F`Rm0 +

∞∑
n=0

RmnΨ±n

}

+
αζ

EmΛ∓(νmL)

{
∞∑
n=0

νnΛ±(νmL) Tmn χ
±
n

}
, (6.20)

with

Tmn :=

∫ b

d

cosh(βmy) cosh(βny)dy, n,m ∈ N ∪ {0},

V ±1 := e5 ± e6, e5 := φcy(−L, b), e6 := φcy(L, b).

Remark that U±k and V ±k , for k = 1, 2, are still unknown. They describe the be-

havior of the vibrating plates and membrane at finite edges. Towards this end,

appropriate edge conditions are imposed depending upon the types of connec-

tions of the elastic plates or membrane on the edges. These connections and the

corresponding edge conditions are discussed in subsequent subsections.
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6.2.1 Clamped Plates and Fixed Membrane

When the edges of the elastic plates are clamped, the displacement and the gra-

dient are zero, therefore,

φ±y (±L, a) = 0, (6.21)

φ±xy(±L, a) = 0. (6.22)

On the other hand, the displacement of the membrane is zero when its edges are

fixed, that is,

φcy(±L, b) = 0. (6.23)

It is straightforward that U±2 = V ±1 = 0 thanks to (6.22) and (6.23). In order to

find U±1 , multiply (6.17) with γm sinh(γma), take summation over m ∈ N ∪ {0},

and invoke edge conditions (6.21) to get

U±1 = ∓2F`γ` sinh(γ`a)

S1

∓ 2α1

S1

∞∑
m=0

∞∑
n=0

γmνnRnmΛ±(νmL) sinh(γma)χ±n
Gmηm

, (6.24)

where

S1 =
∞∑
m=o

γ2
m sinh2(γma)

Gmηm
. (6.25)

6.2.2 Clamped Plates and Free Membrane

When the edges of the elastic plates are clamped but the joints of the membrane

are free, the only change from the previous case is observed in zero-displacement

condition (6.23) which is now replaced with a zero-gradient condition, i.e.,

φcxy(±L, b) = 0. (6.26)

In this case, V ±1 can be found by multiplying (6.20) with βmνm sinh(βmb) sin(νmL),

taking summation over m ∈ N∪{0}, and finally invoking (6.26). It turns out that



Acoustic Analysis in Waveguide with Plates-Membrane Boundaries 141

V ±1 =− α1

S±

∞∑
m=0

νmβm sinh(βmb)Υ
±(νmL)

2Em

{
F`Rm0 +

∞∑
n=0

RmnΨ±n

}

− ζα1

S±

∞∑
m=0

∞∑
n=0

νmβmνn sinh(βmb)Υ
±(νmL)Tmnχ

±
n

Em
, (6.27)

where

S+ =
∞∑
m=0

νmβ
2
m sinh2(βmb) tan(νmL)

2Em
and S− = −i

∞∑
m=0

νmβ
2
m sinh2(βmb) cot(νmL)

2Em
.

6.2.3 Pin-Jointed Plates and Fixed Membrane

In case of pin-jointed edges of the plates, the displacement and the bending mo-

ment are assumed to be zero, i.e.,

φ±y (±L, a) = 0, (6.28)

φ±xxy(±L, a) = 0 (6.29)

and for fixed membrane edges,

φcy(±L, b) = 0. (6.30)

It can be immediately seen that V ±1 = 0 thanks to (6.30). In order to find U±1 and

U±2 , multiply (6.17) with γm sinh(γma), take summation over m ∈ N ∪ {0}, and

invoke edge conditions (6.28) and (6.29), respectively, to get

S1U
±
1 + S2U

±
2 = ∓2F`γ` sinh(γ`a)∓ 2α1

∞∑
m=,n=0

γmνnRnmχ
±
nΛ±(νnL) sinh(γma)

Gmηm
,

(6.31)

S3U
±
1 + S4U

±
2 = ∓2F`η

2
`γ` sinh(γ`a)∓ 2α1

∞∑
m,n=0

ηmγmνnRnmχ
±
nΛ±(νnL) sinh(γma)

Gm

.

(6.32)



Acoustic Analysis in Waveguide with Plates-Membrane Boundaries 142

Here, S1 is given in (6.25) and

S2 =
∞∑
m=0

γ2
m(γ2

m + 2) sinh2(γma)

Gmηm
,

S3 =
∞∑
m=0

ηmγ
2
m sinh2(γma)

Gm

and

S4 =
∞∑
m=0

ηmγ
2
m(γ2

m + 2) sinh2(γma)

Gm

.

6.2.4 Pin-Jointed Plates and Free Membrane

In this case, the set of edge conditions (6.26), (6.28), and (6.29) are considered,

which in tern furnish the equations (6.27), (6.31), and (6.32) for the unknown

constants. Thus, two infinite systems of equations defined by (6.17) are obtained.

They are truncated and, subsequently, solved simultaneously together with the

associated set of edge conditions for determining the unknown amplitudes.

6.3 Low-Frequency Approximation

In this section, the LFA is developed for the considered BVP to compare the

obtained results via MM technique. So, the field potentials in respective duct

region can be written as

φ−(x, y) ≈F`Y1`(y)eiη`(x+L) +

J1∑
n=0

AnY1n(y)e−iηn(x+L), (6.33)

φc(x, y) ≈
J2∑
n=0

(
Bne

−iνnx + Cne
iνnx
)
Y2n(y), (6.34)

φ+(x, y) ≈
J3∑
n=0

DnY1n(y)eiηn(x−L), (6.35)
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where, J1, J2, J3 ∈ N∪{0} stand for the number of modes propagating in the inlet

duct region, expansion chamber, and outlet duct region, respectively. The coef-

ficients {An}J1n=0, {Bn, Cn}J2n=0, and {Dn}J3n=0, by abuse of notation, are unknown

amplitudes in low-frequency approximation. They are found by taking into ac-

count the continuity of mean pressures and velocity fluxes at interfaces, i.e., by

taking into account the conditions

∫ d

0

{
φ±(±L, y)− φc(±L, y)

}
dy = 0, (6.36)∫ d

0

{
φ±x (±L, y)− φcx(±L, y)

}
dy = 0. (6.37)

On substituting (6.33)-(6.35) into (6.36)-(6.37) and after fairly easy manipulation,

one gets

J1∑
n=0

sinh (γnd)

γn
Ψ±n − 2

J2∑
n=0

sinh(βnd)Λ∓(νnL)

βn
χ±n =

F` sinh (γ`d)

γ`
, (6.38)

J3∑
n=0

ηn sinh (γnd)

γn
Ψ±n − 2

J2∑
n=0

νn sinh(βnd)Λ∓(νnL)

βn
χ∓n =

ηnF` sinh (γ`d)

γ`
. (6.39)

Let us now consider the geometrical configuration that comprises flanges and struc-

tural discontinuity at interfaces x = ±L. The outside of the flanges lying in duct

regions |x| > L (for J1 = J3) are acoustically rigid and thus, the normal velocity

fluxes are zero, i.e., ∫ a

d

φ±x (±L, y) dy = 0. (6.40)

This yields

J1∑
n=0

ηn(sinh(γna)− sinh(γnd))

γn
Ψ±n = F`

η`(sinh(γ`a)− sinh(γ`d))

γ`
. (6.41)

On the other hand, the insides of the flanges in the section |x| < L contain an

acoustically absorbent lining and therefore, the impedance type flux conditions

hold, i.e., ∫ b

d

{φc(∓L, y)± ζ

i
φcx(∓L, y)} dy = 0. (6.42)
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On substituting (6.34) into (6.42), and after some rearrangements, one arrives at

J2∑
n=0

(sinh(βnb)− sinh(βnd)) (Λ∓(νnL)− Λ±νn sin(νnL))

βn
χ±n = 0. (6.43)

To include the behavior on the edges of the plates in the inlet and outlet regions,

and of the membrane in the expansion chamber, the role of different sets of edge

conditions is discussed in the subsequent subsections.

6.3.1 Clamped Plates and Fixed Membrane

For the plates to have clamped edges along with fixed edges of the membrane, the

set of edge conditions defined by (6.21)-(6.23) are considered. They lead to the

relations

J1∑
n=0

γn sinh(γna)Ψ±n = −F`γ` sinh(γ`a), (6.44)

J1∑
n=0

γnηn sinh(γna)Ψ±n = −F`ηnγ` sinh(γ`a), (6.45)

J2∑
n=0

βn sinh(βnb)Λ
∓(νnL)χ±n = 0. (6.46)

Therefore, in order to obtain the modal coefficients {An}J1n=0, {Bn, Cn}J2n=0, and

{Dn}J3n=0, equations (6.38), (6.39), (6.41), (6.43)-(6.46) are solved simultaneously

by setting appropriate values of J1, J2 and J3. In this investigation, their values

are taken as J1 = 3, J2 = 5, and J3 = 3.

6.3.2 Clamped Plates and Free Membrane

For this choice of edges, the edge condition defined by (6.26) yields

J2∑
n=0

νnβn sinh(βnb)Λ
±(νnL)χ±n = 0. (6.47)
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Thus, a new system of equations is obtained by replacing (6.46) with (6.47) in the

system of equations discussed in Subsection 6.3.1 for finding the unknown modal

coefficients.

6.3.3 Pin-Jointed Plates and Fixed Membrane

For this edge condition, Eq. (6.29) leads to

J1∑
n=0

γnη
2
n sinh(γna)Ψ±n = −F`η2

nγ` sinh(γ`a). (6.48)

By replacing (6.45) with (6.48) in the system of equations discussed in Subsection

6.3.1, the finite system of equations for this set of edge conditions is obtained.

6.3.4 Pin-Jointed Plates and Free Membrane

For pin-jointed plates and a free membrane, the finite system of equations consists

of (6.38)-(6.39), (6.41), (6.43), (6.44), (6.47), (6.48), which provides the unknown

modal coefficients. Once again, J1 = 3, J2 = 5, and J3 = 3 are chosen for solving

the aforementioned system of simultaneous equations.

6.4 Numerical Results and Discussions

In this section, numerical results are provided and discussed. Towards this end,

the appropriate values of the relevant parameters are specified as in [34, 102]. The

relevant duct heights are fixed as ā = 0.06m, b̄ = 0.085m, and d̄ = 0.045m and

the length of the expansion chamber is set to 2L̄ = 2 ∗ 0.25m for all numerical

computations. The plates are taken to be of aluminum with thickness h̄ = 6 ×

10−4m, density ρp = 2700kg/m3, Young’s modulus E = 7.2 × 1010N/m2, and

Poisson’s ratio υ = 0.34. The sound speed, density of the air, density of the
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membrane, and membrane tension are taken to be c = 344m/s, ρa = 1.2 kg/m3,

ρm = 0.2Kg/m2, and T = 3250N/m2, respectively.

The values of the acoustical impedance in dimensionless form ζ = ξ + iχ is enter-

tained for two types of absorbent sheets [100]

(a) fibrous sheet with parameters ξ = 0.5 and 1 < χ < 3,

(b) perforated sheet with parameters 0 < ξ < 3 and 1 < χ < 3.

As the absorbed power due to lining is given

Pabs = Pi − Pr − Pt (6.49)

and the expressions for the reflected power in the inlet duct and the transmitted

power in the outlet duct are found to be

Pr = Re

{
1

α1

∞∑
n=0

|An|2ηnGn

}
, (6.50)

Pt = Re

{
1

α1

∞∑
n=0

|Dn|2ηnGn

}
, (6.51)

where, the incident power is scaled at unity. All the numerical results presented

herein are obtained by truncating the MM solutions with a truncation parameter

referred to as N . Two different incident fields; the structural-borne vibrations

(` = 0) and the fluid-borne vibration (` = 1), are considered.

To discuss the convergence of the truncated systems, Tables. 6.1 and 6.2 are

prepared for different choices of the edge conditions, modes ` = 0, 1, and frequency

f = 250Hz. The numerical results of the absorbed power Pabs versus the truncation

parameter N are presented for different values of the fibrous and perforated sheets.

It is seen in Table. 6.1 that when the inlet duct is radiated through the structure-

borne mode (` = 0), energy transfers along the walls and relatively less amount

of energy is absorbed. On the other hand, if the duct is radiated with fluid-

borne mode (` = 1) the majority of the energy is transferred via fluid and the
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Table 6.1: Truncation number versus absorbed power for structure-borne
mode incident (` = 0).

Edge Conditions N

Pabs = 1− Pr − Pt

Fibrous Perforated

0.5+0.1i 0.5+2.9i 0.1+0.1i 0.1+2.5i

Clamped Plates

&

Fixed Membrane

80

85

90

0.0521773

0.0522568

0.0522549

0.00952322

0.00937831

0.00936252

0.0343930

0.0337881

0.0340617

0.0029397

0.0029313

0.0029183

Clamped Plates

&

Free Membrane

25

30

35

0.0365528

0.0360314

0.0364426

0.00206605

0.00215696

0.00230593

0.0381136

0.0400469

0.0381713

0.0006067

0.0005983

0.0007283

Pin-Jointed Plates

&

Fixed Membrane

30

35

40

0.0267293

0.0269054

0.0268891

0.00508255

0.00513628

0.00502636

0.0183089

0.0170755

0.0177238

0.0015871

0.0016385

0.0015781

Pin-Jointed Plates

&

Free Membrane

20

25

30

0.0180893

0.0187166

0.0183633

0.00139099

0.00107404

0.00112350

0.0205259

0.0195307

0.0207883

0.0003505

0.0003165

0.0003072

use of absorbent material along the walls has impact on absorption. By changing

the edge conditions there is no significant variation in absorption. However, by

changing the material properties of absorbent surface from fibrous to perforated

the deviation in absorption is notable (see Table. 6.2). To show the convergence of

truncated solution the reflection, transmission and absorption are showed against

the number of terms N. Also, by changing the type of edge conditions as well as the

properties of absorbent material, a variation in absorbed energy is revealed. Thus,

the fluid-borne mode is found to be more operative than structure-borne mode

by using the attenuating materials. Nevertheless, the systems converge rapidly

enough for both of these exciting modes to truncate for two decimal places.
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Table 6.2: Truncation number versus absorbed power for fluid-borne mode
incident (` = 1).

Edge Conditions N

Pabs = 1− Pr − Pt
Fibrous Perforated

0.5+0.1i 0.5+2.9i 0.1+0.1i 0.1+2.5i

Clamped Plates

&

Fixed Membrane

80

85

90

0.507006

0.507670

0.507608

0.0924401

0.0913518

0.0912399

0.330628

0.325817

0.328155

0.0286081

0.0285506

0.0284502

Clamped Plates

&

Free Membrane

80

85

90

0.353525

0.354431

0.354326

0.0215676

0.0193289

0.0191013

0.378864

0.374057

0.376703

0.0058656

0.0056811

0.0055204

Pin-Jointed Plates

&

Fixed Membrane

80

85

90

0.516257

0.516944

0.516876

0.0982221

0.0971697

0.0970555

0.331943

0.327079

0.329467

0.0306523

0.0306029

0.0305001

Pin-Jointed Plates

&

Free Membrane

80

85

90

0.354068

0.354984

0.354874

0.0213310

0.0191420

0.0189212

0.380888

0.376014

0.378727

0.0058048

0.0056240

0.0054677

6.4.1 Transmission-Loss Analysis

As the TL in terms of the reflected and transmitted powers is

TL := −10 log10

(
Pt
Pi

)
. (6.52)

In this subsection, the TL results are presented to analyze the noise and vibration

effect with fibrous and perforated type sheets:

(a) by varying the values of the surface impedance for both types of absorbent

materials for a fixed choice of edge conditions of the plates and membrane,

and

(b) by varying the edge conditions of the plates and the membrane for a fixed

choice of sheet type (fibrous or perforated).
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It is specified that the TL results obtained via MM technique are compared with

LFA only for the structure-borne mode incident (` = 0).

6.4.1.1 Effect of Absorbent Linning

The graphs of the TL versus frequency are depicted in Figs. 6.3-6.6 for two different

choices of the fibrous and perforated absorbent linings along the vertical flanges

of the expansion chamber. The edges of the plates in inlet and outlet duct regions

of the waveguide are assumed to be clamped.

Figs. 6.3–6.4 reveal the cases when the system is radiated with a structure-borne

mode incident (` = 0) with fixed or free edges of the membrane in the expansion

chamber. For Fig. 6.3, two different fibrous linings with impedance 0.5 + 0.1i and

0.5 + 2.9i are considered. Similarly, for Fig. 6.4, the perforated linings are chosen

with impedance 0.1 + 0.1i and 0.1 + 2.5i. Moreover, the results are plotted for

both the MM solutions with appropriate truncation and the LFA solutions.

It is observed in Fig. 6.3 that there is significantly higher acoustic attenuation

for the value 0.5 + 0.1i than 0.5 + 2.9i of the impedance. By changing the nature

of the edge connection of the membrane from fixed to free, more leakage in the

compression part of the wave is observed (refer to Figs. 6.3(a)–6.3(b)). The

TL significantly increases at a higher frequency regime for fibrous lining with

impedance 0.5 + 0.1i than 0.5 + 2.9i. Exactly the same observations can be made

for the cases presented in Fig. 6.4 when the perforated linings are chosen with

impedance 0.1 + 0.1i and 0.1 + 2.5i.

Remark that the power for structure-borne mode incident did not significantly

absorb in both cases with different sets of edge conditions and linings, as indicated

in Table: 6.1. The first cut-on occurred at f = 191Hz which has not affected the

TL. Although, the MM and LFA solutions are found to be in good agreement in

Fig. 6.3, there are some differences for the choices of parameters 0.1 + 0.1i and

0.1 + 2.5i in Fig. 6.4 at relatively high-frequency ranges. This is, in fact, due to

the inability of LFA to cater to the information around the complex eigenvalues.
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Figure 6.3: Transmission-loss vs. frequency for fibrous linings, structure-
borne mode incident (` = 0), and N = 90. Comparison of LFA (dashed) and

MM (squares and bullets).

Figs. 6.5 – 6.6 depict the TL for the frequency range 191Hz ≤ f ≤ 900Hz when the

structure is radiated by a fluid-borne mode incident. For Fig. 6.5, the impedance

values are chosen to be 0.5 + 0.1i and 0.5 + 2.9i whereas for Fig. 6.6 the pair

consists of 0.1 + 0.1i and 0.1 + 2.5i. The starting frequency, f = 191Hz, is chosen

to make sure that the fluid-borne mode incident becomes cut-on.

The results show that the fibrous material with different values has an apparent



Acoustic Analysis in Waveguide with Plates-Membrane Boundaries 151

æ

æ

æ

æ æ

æ

æ

æ

æ
æ

à

à

à

à à
à

à
à

0 100 200 300 400 500 600 700
0

10

20

30

40

50

f

T
L

à 0.1+2.5 ä

æ 0.1+0.1 ä

(a) Fixed membrane edges

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

à

à à

à

à
à à à

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

f

T
L

à 0.1+2.5 ä

æ 0.1+0.1 ä

(b) Free membrane edges

Figure 6.4: Transmission-loss vs. frequency for perforated lining, structure-
borne incident (` = 0), and N = 90. Comparison of LFA (dashed) and MM

(squares and bullets).

effect on the acoustical performance of the waveguide. This is due to the fluid-

borne mode case wherein most of the energy is absorbed with different fibrous

sheets through the fluid. The TL increases when the value of the impedance

decreases with both fixed and free membrane edges, as shown in Figs. 6.5–6.6.

Table. 6.2 suggests a maximum absorbed power Pabs with the fibrous sheet 0.5 +

0.1i, clamped plates, and fixed edges of the membrane in the expansion chamber.
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Figure 6.5: The transmission-loss vs. frequency for fibrous lining, fluid-borne
mode incident (` = 1), and N = 90.

6.4.1.2 Effect of Edge Conditions

The graphs of the TL versus frequency with different edge conditions are plotted in

Fig. 6.7 and Fig. 6.8 when structure-borne (` = 0) and fluid-borne mode (` = 1)

are incident, respectively. The numerical results are presented for a fibrous type

sheet with ξ = 0.5, χ = 0.1 along the vertical flanges of the expansion chamber.

The graphs in Fig. 6.7(a) reveal the apparent effect on the acoustical performance
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Figure 6.6: Transmission-loss vs. frequency for different edge conditions with
perforated lining, fluid-borne incident (` = 1), and N = 90.

of the waveguide when edges of the plates in the inlet and outlet duct region are

clamped or pin-jointed while the membrane edges are assumed fixed in the expan-

sion chamber. It is observed that there is more leakage in the compression part of

the waves with pin-jointed edges (wherein the bending moment is also zero) than

clamped edges. The magnitude of the TL is increased with pin-jointed edges as

compared to that with clamped edges. In contrast to the case of fixed membrane

edges, the pattern of the TL differs with the free membrane edges and the peak
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value of the TL is obtained at 210Hz, as delineated in Fig. 6.7(b). In the case of

pin-jointed edges in inlet and outlet, the magnitude of the TL increases relative to

that in the clamped edges case. This is due to the structure-borne mode incidence

wherein most of the energy is transferred through the structure. Moreover, rela-

tively less absorption with fibrous type lining is achieved (see, e.g., Table. 6.1).

However, the MM and LFA solutions are found to be in good agreement.
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Figure 6.7: Transmission-loss vs. frequency with structure-borne mode inci-
dent (` = 0) and fibrous lining (ξ = 0.5, χ = 0.1).
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Figure 6.8: Transmission-loss vs. frequency with fluid-borne mode incident
(` = 1), regime 191Hz ≤ f ≤ 900Hz, and fibrous lining (ξ = 0.5, χ = 0.1).

Fig. 6.8 depicts the TL when the structure is radiated by a fluid-borne mode

incident and the absorbent parameters for fibrous lining are taken as ξ = 0.5 and

χ = 0.1. The frequency range is taken as 191Hz ≤ f ≤ 900Hz.

The results show that the clamped and pin-joint edge conditions in inlet and

outlet duct regions have no apparent effect on the acoustical performance of the

waveguide. This is due to the fluid-borne mode case wherein most of the energy

is transferred through the fluid. Moreover, relatively high absorption is observed



Acoustic Analysis in Waveguide with Plates-Membrane Boundaries 156

with fibrous type lining for the pin-jointed plates and fixed membrane edges (see

Table. 6.2). However, a stop-band occurred in regime 300Hz≤ f ≤ 450Hz because

of the fixed membrane edges (see Fig. 6.8(a)). The stop-band disappears in the

case of free edges (see Fig. 6.8(b)). Moreover, the peak value of the TL is observed

in the low-frequency regime.

The case of a perforated type sheet with ξ = 0.1, χ = 2.5 is treated in Figs.

6.9–6.10 when structure-borne and fluid-borne modes are incident, respectively.

Analogous conclusions can be drawn from Fig 6.9 in the case of ` = 0. In the

case ` = 1, a pass-band occurred in frequency regime 300 Hz≤ f ≤ 450Hz because

of fixed membrane edges, which is transformed into a stop-band in regime 200

Hz≤ f ≤ 300Hz for free membrane edges (see Fig. 6.10).

6.4.2 Validation of the Method

The graphical results presented in Subsection 6.4.1 focused on the analysis of

transmission-loss for two different incident fields and two different sets of edge

conditions in the presence of the absorbent linings. In view of the nature of

singularity in the velocity field, it is essential to validate the MM solution. Toward

this end, it is verified that

(a) a sufficient number of terms have been retained while truncating (6.17) and

(6.20) so that an adequate convergence of the modal coefficients can be

ensured, and

(b) the coefficients contain correct information so that the matching conditions

(6.16) and (6.19) can be reconstructed.

Accordingly, the real and imaginary parts of velocities and pressures are plotted

at interface x = −L with clamped edges in Fig. 6.11 and in Fig. 6.12 respectively.

It can be observed that the real and imaginary parts of non-dimensional pressures

and velocities are in excellent agreement along with the aperture at x = −L. Both

pairs of curves almost overlap for 0 ≤ y ≤ d and velocities are zero when d < y < a.
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Figure 6.9: Transmission-loss vs. frequency with structure-borne mode inci-
dent (` = 0) and perforated lining (ξ = 0.1, χ = 2.5).

This is true at all relevant frequencies. Thus, conditions from (6.16) and (6.19) are

satisfied. The matching conditions are also met to the same accuracy at interfaces

x = −L. Nevertheless, the two curves oscillate around their mean value and the

amplitude of oscillation reduces significantly as y increases, except when y → d.

This is, in fact, due to the singular behavior of the velocity field at the corner y = d.

It is worthwhile mentioning that analogous graphs can be delineated and similar

conclusions hold for the interface x = L and/or different sets of edge conditions.
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Figure 6.10: Transmission-loss vs. frequency with fluid-borne mode incident
(` = 1), regime 191Hz ≤ f ≤ 900Hz, and perforated lining (ξ = 0.1, χ = 2.5).

In a nutshell, the convergence results of the truncated amplitudes versus the trun-

cation parameter N furnished in Tables 6.1–6.2 along with the reconstruction of

the matching conditions completely justify the truncated MM approach and assert

on the correctness of the performed algebra.
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Figure 6.11: Normal velocities vs. duct height at x = −L for clamped edges
and absorbent lining (fibrous), frequency 700Hz, and N = 150.
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Chapter 7

Summary and Conclusion

In this thesis the analysis of scattering problems involving different boundary

conditions and structural discontinuities is presented. The model problems contain

boundary conditions of Dirichlet, Neumann, Robin and/or higher order boundary

category and are governed by Helmholtz equation. The MM technique is applied

to solve the governing boundary value problems. In low frequency regime the LFA

is developed and compared with MM technique through numerical results.

The chapter wise summary of the present study are enclosed in this chapter.

Chapter 1 depicts the state of the art relevant to the current study along with the

avant-garde. The fundamental concepts that are necessary to understand the scat-

tering analysis of acoustic wave in different waveguide structure, the derivation of

linear acoustic wave equation along with different types of boundary conditions for

different waveguide models have been discussed in Chapter 2. Also, the standard

and generalized orthogonality relations have been explored on the basis of physical

models in the category of either SL or non SL systems in this chapter.

In Chapter 3, the coupled wave scattering analysis in non-planar waveguide struc-

ture with different bounding properties like rigid, soft, impedance and wave bearing

boundaries such as elastic plate has been studied by using MM approach. The

primary focus is the scattering of the incident mode by the flanged junction and,

in particular, the effect that different edge conditions have on this process. It is

161
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worthwhile mentioned that the case of a fully rigid flange is significantly more chal-

lenging requiring, for example, a matrix WH approach. Despite the use of the zero

pressure condition, it is concluded that current problem offers much information

both about scattering at a flange and about MM approaches. It is observed that

the choice of appropriate edge conditions and the incident forcing term expressively

affect the scattered field as well as the transmission through structure-borne as

compared to fluid-borne vibration. It is also revealed that the power distribution

is greatly affected by the attenuated regions and abrupt changes in height of duct.

In the end the MM solution is well supported through number of validation points.

In Chapter 4, the attenuation of acoustic modes in a waveguide bounded by an

elastic membrane and involving cavities radiating structure or fluid-borne inci-

dence modes has been discussed using a MM solution and LFA. The uniqueness

of the underlying problem has been ensured by the choice of physical edge condi-

tions. The essential difficulties encountered while finding the roots of dispersion

relations in the expansion chamber region have been tackled carefully. The en-

ergy functional has been obtained to observe wave scattering behavior in all duct

regions. Through graphical illustration, we made the following conclusions.

For the structure-borne incident mode, a good agreement in scattering energies is

observed for both MM and LFA solutions. However, the results do not hold at

higher frequencies because of limitations on the selection of propagating modes.

It is also noted that the attenuation of modes is linked with the dimensions and

material properties of the duct regions; however, the cut-on limits are independent

of edge conditions. Moreover, the variation of edge conditions significantly affects

the scattering energies and TL as a function of frequency, as well as the dimensions

of the bounding cavities. For instance, for all simply supported edges, and for edges

simply supported at (L, b) and fixed at (L, h), the TL curves TLcr are achieved as a

function of the half-length of the expansion chamber for almost the whole frequency

range. Similarly, the widest stop band is observed in the range 330− 1400Hz for

the simply supported edge conditions of the inlet or outlet and the expansion

chamber. It is revealed that the choice of edge conditions, the selection of the

cavity dimensions, and the bounding material properties helped to produce the
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attenuated regions and to minimize structural vibrations. Furthermore, the MM

solution is validated physically and mathematically through the satisfaction of

the conserved power identity and reconstruction of matching conditions at the

interfaces, respectively.

In Chapter 5, a detailed analysis of fluid-structure coupled waveforms of duct

modes and their attenuation in a flexible waveguide has been carried out. The

physical configuration includes expansion chamber connected with extended in-

let/outlet by means of vertical lined flanges. The BVP is formulated by radiating

the inlet region with structure or fluid-borne mode incident which passes through

outlet after interaction with the chamber. The MM solution has been developed

whereby eigen expansion forms of field potentials of duct modes are associated with

the dispersion relations. These dispersion relations are computed for the eigenval-

ues of flexural modes which appeared as real, imaginary and/or complex number

forms. The corresponding eigenfunctions are non-orthogonal and the systems are

of non-SL category, whereby, the use of generalized characteristics developed re-

cently [99], yield the accurate solution of the problem. However, the absorbent

linings lying along the vertical surfaces of the flanges are incorporated in the

matching conditions of pressure modes, when the differential system is recasted

into the linear algebraic systems of equations. These equations involve additional

constants which are found through edge conditions. Nevertheless, the convergence

of sums appeared during the assimilation of edge conditions is ensured through

the usage of Green’s function (2.93). Furthermore, the numerical experiments are

performed to analyze the effects of absorbent linings and edge conditions on the

attenuation of flexural modes. The guiding structure is exited by the structure-

born mode or fluid-born mode, and the results are presented graphically. It is

observed that when the structure-born mode is made incident the device can be

tuned through the variation of edge conditions. The pin-jointed connections are

found more effective than clamped or free edge conditions. Nevertheless, the use

of absorbent linings is not much effective for structure-borne mode incident. How-

ever, a significant absorption of fluid-borne mode incident is revealed by this lining.

On the other the role of edge conditions for fluid-born mode incident is not much
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notable. Likewise the variation of silencer geometries also effect the attenuation

for structure-borne mode incident as well as fluid-borne mode incident. Further-

more, a good agreement between the results obtained via MM technique and LFA

is achieved.

In Chapter 6, the scattering of fluid-structure coupled waves by geometric dis-

continuities, comprising flanges and/or a change in height, in a two-dimensional

duct, has been studied. The physical problem containing incident radiations of

structure-borne mode or fluid-borne mode is solved by using an established MM

approach. A variety of numerical results have been presented for various sets of

edge conditions and different properties of sound-absorbent material. It is found

that the MM technique accompanied by the generalized orthogonal characteris-

tics does not only provide an appropriate solution of the problem involving flexi-

ble boundaries but also helps to impose extra conditions for accommodating the

physical behavior at edges. These edges may be clamped or pin-jointed for elas-

tic plates and fixed or free for elastic membranes. Four different combinations

of the envisaged edge conditions have been considered to analyze the TL versus

frequency together with different choices of absorbent material. It is noted that

the use of edge conditions affects significantly the attenuation of structure-borne

mode incident vibrations whilst the usage of attenuating material along the flanges

accomplishes the attenuation of the fluid-borne mode vibrations. Moreover, the

rate of noise attenuation depends upon the choices of the specific impedance as

well as the types of edge conditions. Furthermore, the results obtained by both

techniques (LFA and MM) are found in good agreement.

Future work

Future work would be to extend by considering the insertion of double expan-

sion chambers in flexible panels bounded by elastic membranes and plates in the

presence of mean flow by using MM approach.
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