
Capital University of Science and Technology

Department of Computer Science

 _

CS4623 - Compiler Construction

Course Title: Compiler Construction (CS4623)

Pre-requisite(s):

Theory of Automata and Formal Languages (CS3613)

Computer Organization and Assembly Language (CS2523)

Credit Hours: 3

Instructor(s):

Text Book(s):

Kenneth C. Louden: Compiler Construction – Principles and

Practice, Course Technology, 1997, ISBN 978-0534939724

Reference Book(s):

• Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.

Ullman: Compilers: Principles, Techniques and Tools, Addison-

Wesley Publishing Company, 2006, ISBN 978-0321486813.

• D. Grune, H. Bal, C. Jacobs, K. Langendoen: Modern Compiler

Design, Wiley, 2000, ISBN 978-0471976974.

Web Reference:

• https://www.tutorialspoint.com/compiler_design/

Course Introduction:

This course presents a conceptual and practical introduction to imperative and object oriented

programming, exemplified by C++. As well as providing grounding in the use of C++, the course

will cover general principles of programming in imperative and object oriented frameworks. The

course should enable you to develop programs that support experimentation, simulation and

exploration in other parts of the Informatics curriculum (e.g. the capacity to implement, test and

observe a particular algorithm).

Course Objectives:

This course teaches the basic techniques used in compiler construction such as lexical analysis,

top-down, bottom-up parsing, context-sensitive analysis, and intermediate code generation. It

focuses on the basic data structures used in compiler construction such as abstract syntax trees,

symbol tables, three-address code, and stack machines. We teach the students so that they can

design and implement a compiler using a software engineering approach.

http://www.tutorialspoint.com/compiler_design/

Capital University of Science and Technology

Department of Computer Science

 _

Course Learning Outcomes (CLOs):

CLO:1. Describe the architecture of compiler, and formal notations to define a

programming language. [C2-Understanding]

CLO:2. Implement syntax analyzer by using various top down and bottom up algorithms.

[C3-Application]

CLO:3. Implement semantic analyzer through attribute grammars and symbol table.. [C3-

Application]

CLO:4. Use appropriate code generation and optimization techniques. [C3-Application]

CLOs – PLOs Mapping:

CLO:1

CLO:2

CLO:3

CLO:4

PLO:1 (Academic Education)

PLO:2 (Knowledge for Solving

Computing Problems)

PLO:3 (Problem Analysis) √

√

PLO:4 (Design/Development of

Solutions)

√ √

PLO:5 (Modern Tool Usage)

Course Contents:

Week Contents

1

Overview of high-level languages and translation, Levels of programming languages,

Compilation and Interpretation, Architecture of a compiler, Phases of the compilation

process

2

Language definition, Syntax and semantic Specification

Using BNF notation to define syntax of a language

3

Chomsky's classification of grammars, Lexical analysis, Tokens and types of tokens

Regular Expressions and DFA’s

Capital University of Science and Technology

Department of Computer Science

 _

4 Implementing a Lexical Analyzer using DFA, Error handling in a Lexical Analyzer

5
LL(k) and LR(k) grammars, Syntax Analysis (Parsing), Parse Trees and Abstract

Syntax Trees

6
Ambiguity and dangling else problem, Left-recursive grammars, Operator precedence,

Left-factoring

7 Recursive Descent Parsing, LL(1) Parsing

8 Bottom Up Parsing- Shift Reduce Parsers, Simple Precedence Parsing

Mid-Term Exam

9 Operator precedence parsing

10 DFA of LR(0) Items, SLR Parsing and conflicts

11 DFA of LR(1) Items, LALR Parsing

12 Static and dynamic semantic analysis, Symbol table, Type checking

13 Runtime environments and storage allocation, Runtime stack

14 Code generation, 3-address code, Code generation for expressions and assignments

15 Code generation for loops and control statements

16 Code Optimization techniques for front-end and back-end

Capital University of Science and Technology

Department of Computer Science

 _

Grading Policy:

S.No Grading % of Total Marks

1 Assignments 20

2 Quizzes 20

3 Mid-term Exam 20

4 Final Exam 40

 Total 100

