Capital University of Science and Technology
Department of Computer Science

MTCS1033 - Linear Algebra

Course Title:
Pre-requisite(s):
Credit Hours:

Instructor(s):

Text Book(s):

Reference Book(s):

Linear Algebra (MTCS1033)
Calculus and Analytical Geometry (MTCS1013)

3

Linear Algebra and its applications, $4^{\text {th }}$ Edition by David C. Lay

- H. Antone, C. Rorres, Elementary Linear Algebra and its applications

Web Reference:

Course Introduction:

The principle aim of this course is to understand several important concepts in linear algebra, including systems of linear equations and their solutions; matrices and their properties; determinants and their properties; vector spaces; linear independence of vectors; subspaces, bases, and dimension of vector spaces; inner product spaces; linear transformations; and Eigen values and eigenvectors. These concepts are needed for advanced mathematics courses

Course Objectives:

This course teaches how to solve a system of linear equations that appears in circuit analysis, electromagnetic fields and waves, antenna theory, microwaves, etc. Interpret the vector equations and linear transformations which are used in image processing, Control theory, etc.

Apply the basic knowledge of vector spaces, Eigen value and Eigen vectors which are help full in image processing, control theory. Develop a solid understanding of the course by implementing the key concepts in MATLAB environment.

Capital University of Science and Technology
 Department of Computer Science

Course Learning Outcomes (CLOs):

At the end of this course, the students should be able to:

CLO:1 Describe the basic concepts of linear algebra. (C1)
CLO:2 Explain and describe the concept of vector algebra, vector spaces and linear transformations. (C2)

CLO:3 Apply their acquired knowledge to problems arising in real life (C3)

CLOs - PLOs Mapping

	CLO:1	CLO:2	CLO:3
PLO:1 (Academic Education)			
PLO:2 (Knowledge for Solving Computing Problems)	$\sqrt{ }$	$\sqrt{ }$	
PLO:3 (Problem Analysis)			$\sqrt{ }$
PLO:4 (Design/ Development of Solutions)			
PLO:5 (Modern Tool Usage)			

Course Contents:

Week	Contents
	System of Linear Equations and Matrices-Four Lectures
	• Introduction to system of linear equations
1	• Matrix form of system of Linear Equations
	• Gaussian Elimination method
	• Gauss-Jorden Method
	- Homsistent and inconsistent systems

Capital University of Science and Technology
 Department of Computer Science

2	System of Linear Equations and Matrices-Four Lectures - Introduction to system of linear equations - Matrix form of system of Linear Equations - Gaussian Elimination method - Gauss-Jorden Method - Consistent and inconsistent systems - Homogeneous system of equations
3	Vector Equations-Four Lectures - Introduction to vector in plane - Vector in R^{n} - Vector form of straight line - Linear Combinations - Geometrical interpretation of solution of Homogeneous and Nonhomogeneous equations
4	Vector Equations-Four Lectures - Introduction to vector in plane - Vector in R^{n} - Vector form of straight line - Linear Combinations - Geometrical interpretation of solution of Homogeneous and Nonhomogeneous equations
5	Applications of Linear Systems-Two Lectures - Traffic Flow Problem - Electric circuit Problem - Economic Model
6	Linear transformations-Four Lectures - Introduction to linear transformations - Matrix transformations - Domain and range of linear transformations - Geometric interpretation of linear transformations - Matrix of linear transformations
7	Linear transformations-Four Lectures - Introduction to linear transformations - Matrix transformations - Domain and range of linear transformations - Geometric interpretation of linear transformations - Matrix of linear transformations

Capital University of Science and Technology
Department of Computer Science

8	Inverse of a matrix-Four Lectures - Definition of inverse of a matrix - Algorithm to find the inverse of matrices - LU factorization
	Mid-Term Exam
9	Inverse of a matrix-Four Lectures - Definition of inverse of a matrix - Algorithm to find the inverse of matrices - LU factorization
10	Determinants-Two Lectures - Introduction to determinants - Geometric meaning of determinants - Properties of determinants - Crammer Rule - Cofactor method for finding the inverse of a matrix
11	Vector Spaces-Three Lectures - Definition of vector spaces - Subspaces - Spanning set - Null Spaces and column spaces of linear transformation - Linearly Independent sets and basis - Bases for Null space and Kernel space - Dimension of a vector space
12	Vector Spaces-Three Lectures - Definition of vector spaces - Subspaces - Spanning set - Null Spaces and column spaces of linear transformation - Linearly Independent sets and basis - Bases for Null space and Kernel space - Dimension of a vector space

Capital University of Science and Technology
Department of Computer Science

13	Eigen Values and Eigen Vectors-Three Lectures - Introduction to eigen value and eigen vectors - Computing the eigen values - Properties of eigen values - Diagonalization - Applications of eigen values
14	Eigen Values and Eigen vectors-Three Lectures - Introduction to eigen value and eigen vectors - Computing the eigen values - Properties of eigen values - Diagonalization - Applications of eigen values
15	Eigen Values and Eigen vectors-Three Lectures - Introduction to eigen value and eigen vectors - Computing the eigen values - Properties of eigen values - Diagonalization - Applications of eigen values
16	Revision

Grading Policy

S.No	Grading	\% of Total Marks
1	Assignments	15
2	Quizzes	15
3	Project	10
4	Mid-term Exam	20
5	Final Exam	40
	Total	$\mathbf{1 0 0}$

