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Abstract

Over the past few decades, there has been a substantial surge in data in diverse

domains, including medical and healthcare, transportation, finance, agriculture,

and the energy sector. This exponential growth in data has become a major focus

for the scientific community, as efficiently extracting relevant information from this

vast volume of data has become a significant concern. During the last two decades,

hardware resources have continuously improved in terms of computational power,

leading to an increased demand for real-time processing capabilities. As a result,

the need to process data immediately as it is generated has become increasingly

crucial in various applications.

Within distributed computing, the utilization of scheduling algorithms is vital to

effectively manage computational tasks across a cluster of computing nodes. The

primary goal is to maximize throughput while optimizing the utilization of com-

putational resources. To facilitate the execution and coordination of streaming

applications (computational tasks) on a computational cluster, a Stream Process-

ing Engine (SPE) is deployed. However, this field, like other emerging domains,

presents several challenges that researchers must address. These challenges include

resource awareness, dynamic configurations, heterogeneous clusters, load balanc-

ing, and topology awareness, all of which significantly impact the job scheduling

process.

Inefficiencies in any of these aspects can hamper the achievement of maximum

throughput. A notable observation is the existence of a gap in achieving the

optimal mapping of computational and communication loads in streaming appli-

cations, considering the underlying computational and communication power of

the cluster. It is common for frequently communicating tasks to be scheduled on

different processing nodes that are connected through relatively slower communi-

cation links. This arrangement leads to increased network latency and decreased

resource utilization, resulting in a significant reduction in the achieved throughput

of the cluster.
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To address this gap, this dissertation proposes an efficient job scheduling system

that takes into account the communication demands of the jobs and the available

computational resources within a heterogeneous cluster. The aim is to achieve

a near-optimal schedule that minimizes communication latency while maximizing

throughput. The proposed system introduces four distinct scheduling schemes,

namely TOP-Storm, A3-Storm, BAN-Storm, and Gr-Storm. These sched-

ulers are designed to enhance overall throughput by placing tasks in a resource-

aware manner based on their specific requirements.

To implement the proposed schedulers, Apache Storm (a popular SPE) is used.

The effectiveness of the proposed schedulers is evaluated through experiments con-

ducted on a physical heterogeneous cluster consisting of eleven computing nodes.

Two benchmark topologies, namely the word count topology and the exclama-

tion topology, are employed to generate results. For comparison purposes, the

performance of the proposed schedulers is compared against three state-of-the-art

scheduling algorithms: the Default Scheduler, the Isolation Scheduler, and

the Resource-aware Scheduler.

Results showed that the proposed schedulers exhibited better performance than

the default scheduler, achieving an average throughput improvement of 28% while

utilizing up to 40% fewer resources for the word count topology. Similarly, when

compared to the isolation scheduler, the proposed schedulers showed a throughput

improvement of up to 200% while using only 60% of the resources. Moreover, R-

Storm achieved the same throughput with over-provisioning.

Furthermore, the improvements in throughput were observed for the exclama-

tion topology as well. For instance, the proposed schedulers achieved enhanced

throughput of up to 23% and 112% compared to the default and isolation sched-

ulers, respectively. When equal resources were allocated, the proposed work out-

performed R-Storm by 4% in terms of average throughput for the exclamation

topology. Additionally, the proposed approach demonstrated significant resource

savings through consolidation.
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Chapter 1

Introduction

1.1 Introduction

A data stream is a continuous production of data from different sources. This

data could be generated by many sensors in many ubiquitous services, for exam-

ple, smart cities (energy supply, transportation management, garbage collection),

disaster management (emergency management services), production and logistics

(quality control sensors and resource-saving), entertainment (analyzing streaming

data for recommendations, advertisement analysis), the financial sector (credit

card transactions, fraud detection, loan application), health care (time-sensitive

critical patient data) and social network (Facebook, Twitter, and LinkedIn) [1].

This type of data can be characterized as a huge volume of data generated at a

very fast rate. We need to process these data streams in real-time to provide the

intelligence required for decision-making, otherwise, the next data stream will be

generated, and we will lose valuable intelligence. Today’s business world depends

upon the processing of these huge and very fast data streams in real-time by using

powerful computing and communication resources.

A streaming application to process data can be modelled as a Directed Acyclic

Graph (DAG) [2] in which each vertex corresponds to a streaming data source or

a Processing Unit (PU), and edges indicate data flows between PUs. The data

1
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Table 1.1: Few Widely Used SPEs

Name Specified Use

Apache Storm [4] Realtime computation system

Apache Spark Streaming [5] Unified engine for large-scale data analytics

Apache Flink [6] Stateful Computations over Data Streams

Apache Heron [7] Realtime, distributed, fault-tolerant stream processing engine

Apache Samza [8] Near-realtime, asynchronous computational framework

Apex [9] Unifies stream and batch processing in a stateful and secure way

flow through the edges and processing happens at the vertex. Streaming data may

traverse multiple PUs [3].

Processing data in real-time demands ever-increasing processing power. Multiple

machines interconnected in a distributed fashion to process the data is an eco-

nomical way to process this huge and very fast data in real-time. A virtual service

to facilitate the processing of real-time streams by using the distributed infras-

tructure of computing and communication resources is termed a stream processing

engine (SPE)[10]. Many SPEs have rapidly evolved and are being adopted by the

industry. Table 1.1 illustrate a few of the widely used platforms wherein streaming

data could be processed in real-time.

The organization of SPEs can be divided into different layers as shown in Figure 1.1

[11]. The top layer defines the user API where a streaming application is defined

as a DAG. The DAG is then converted to an execution graph and components

of this are distributed to a set of workers across a cluster of nodes. Network

communications are established between the workers to complete the graph. The

bottom three layers (Execution Graph, Workers, and Network Communication)

can work with the resource scheduling layer to acquire the necessary computing

and communication resources to run the execution graph (as shown in Figure 1.2).

This is very important to measure the performance of an SPE system to process

the streaming data. One of the key components of an SPE system is the resource
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scheduling layer. Different parameters can be measured, including throughput, la-

tency, and resource utilization to assess the performance of the resource scheduling

layer.

In the context of SPEs, the streaming data is called a tuple and throughput refers

to the number of tuples processed in a unit time [12]. Latency is the time dif-

ference between consuming a tuple and the end of its processing [13]. Similarly,

resource utilization represents the number of computing nodes used in job execu-

tion. Typically, the performance of an SPE is assessed based on system through-

put, communication latency or resources used [12]. To achieve better performance,

scheduling can play an important role. A scheduler assigns DAG’s components to

computing nodes. An efficient scheduler assigns these components in a manner

that minimizes tuple processing time and increases the utilization of resources [13].

Different proposed schedulers use different techniques to enhance their overall per-

formance like topology-aware, traffic-aware, resource-aware etc. In topology-aware

scheduling, the streaming application’s DAG is used for task placement. With the

help of DAG, connected tasks can be identified then graph traversing algorithms

like breadth-first search, depth-first search etc. are employed to perform schedul-

ing. In this type of scheduling, the focus is to place connected tasks closer to

each other. So that, inter-node communication can be reduced which ultimately

minimizes latency. Once a streaming application is running, its DAG, as well as

Figure 1.1: SPEs Layered Architecture [11].
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Figure 1.2: Scheduling of Jobs in SPEs.

communication traffic, can be used for making scheduling decisions. These sched-

ulers are called traffic-aware scheduler that speed up data processing by employ-

ing efficient traffic-aware algorithm for job assignment, which minimizes inter-task

communication. To handle the heterogeneity of the computing nodes; resource-

aware schedulers are also designed to increase overall throughput by maximizing

resource utilization while minimizing network latency. Resource-aware schedulers

perform scheduling decisions based on available computing and communicational

resources of the underlying hardware. So, the goal for the schedulers is how to

schedule the tasks on nodes to process the data streams with near-optimum utiliza-

tion of the available resources with maximized throughput. One of the popular

SPE [14] is using the round-robin technique for scheduling; which introduces a

potential performance bottleneck due to an unbalanced workload distribution for

heterogeneous computational resources. As a result, Resource-aware scheduling al-

gorithms were proposed [15–26] to address this issue. Resource-aware scheduling
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considers resource availability on machines when scheduling jobs [27]. However,

these are either static or nonadaptive. As a result, runtime changes are not handled

by these scheduling algorithms. Some researchers [17, 19, 25, 28–33] introduced

self-adaptability in their schedulers for a cost-efficient solution.

Graph partitioning algorithms are also used in research [16, 29, 31, 34–38] to

place frequently communicating components of the DAG closer to each other to

reduce latency which may improve overall throughput, too. But most of them

are either resource-unaware or non-adaptive. As a result, it is difficult to decide

on the power of cluster resources. Moreover, graph-based approaches may suffer

from isomorphism problems that are not solvable in polynomial time nor to be

NP-Complete.

Most of the SPEs like Apache Samza, Apex, Apache Storm, Apache Spark Stream-

ing, Apache Flink, Apache Heron, etc., use DAG for the abstract representation of

streaming applications [2]. The scheduling techniques proposed in this dissertation

are also using the application’s DAG for making scheduling decisions. Therefore,

these proposed techniques can be implemented in any DAG-based SPE. However,

we used Apache Storm to implement our proposed schedulers. Apache Storm is

widely utilized because it is a reliable, fault-tolerant, and real-time SPE [39, 40].

It has been of interest in the industry as well as an area of research in academia

also.

1.2 Apache Storm

The architecture of Storm follows a master and slave pattern [41] and coordinated

by a third component called Zookeeper [42]. Figure 1.3 [43] shows the interaction

between the Storm cluster and the Zookeeper cluster. The architecture of Storm

allows a master node (consists of the Nimbus) and each slave node includes exactly

one Supervisor. At the start-up of topology, the Nimbus distributes jobs directly

to its worker nodes [40].



Introduction 6

Figure 1.3: The Apache Storm Architecture [43].

It consists of the following major components:

• Nimbus represents the master component in the architecture of Storm and

distributes the work among multiple workers [40]. It assigns a task to a slave

node, monitors the task progress, and reschedules the task if a slave node

fails. The Nimbus component is stateless because it stores all its data in

the Zookeeper cluster, which is the third major component of Storm. This

pattern does not cause the problem of a single point of failure. If a Nimbus

daemon fails, it can be restarted without interrupting the running task. The

architecture of Storm allows only a single Nimbus component.

• Zookeeper [44] coordinates and shares the information between Nimbus

and Supervisor components. All states of the running tasks and the Nimbus

and Supervisor daemon are stored in the Zookeeper cluster. Therefore, the

state-less components, Nimbus and Supervisor, are fail-fast. These can be

killed and restarted without interrupting the running topology.
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Figure 1.4: An Example Topology [45].

• Supervisor is the slave or worker node, which executes the actual tasks.

The architecture of Storm may contain one or more Supervisor nodes. It

initiates a new Java Virtual Machine (JVM) instance for each worker process.

Like the Nimbus component, the Supervisor stores its data in the Zookeeper

cluster, which makes it a fail-fast process. A Supervisor daemon in the

Storm architecture normally runs an instance of multiple workers wherein

each worker can spawn new threads.

• Topology represents logic / structure of a real-time Apache Storm appli-

cation which is defined as DAG. It consists of two components for example,

Bolts and Spouts (as shown in Figure 1.4 [45]). Spouts and Bolts are con-

nected using stream which represents an infinite sequence of tuples [40].

• Spout specifies the source of tuples in Apache Storm. It reads data from

source and supplies to the Storm topology [40].

• Bolt, the real handling of a tuple is done by Bolts. It reads, processes and

releases them to other Bolt [40].

1.2.1 Levels of Parallelism

Storm provides four different levels of parallelism in its architecture. The following

levels are used to run a topology in Storm:
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Figure 1.5: Level of Parallelism in Storm.

• Supervisor (Slave)

• Worker (JVM)

• Executor (Thread)

• Task

Apache Storm distributes tasks among supervisors where multiple processes can

be running. Similarly, each process can use multiple Executor threads which can

execute one or more tasks. These different levels of parallelism in Storm are

shown in Figure 1.5, which shows two supervisor daemons, including two Worker

processes. Normally, Apache Storm executes one Task per each Executor thread,

but an Executor may execute multiple Tasks. Apache Storm’s behaviour varies

with workload velocity. It efficiently handles low workloads with low latency. It

scales dynamically across multiple nodes with medium workloads. High workloads

may introduce increased latency, but Storm’s scaling mechanisms maintain sta-

bility but extremely high workloads requires careful tuning of the execution plan

to optimize performance.
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Figure 1.6: Example Linear Topology.

The default Storm scheduler employs a round-robin strategy for task scheduling.

In the first step, it iterates through the DAG’s components and allocates them to

the worker processes. In the next step, the worker processes are evenly assigned

to the computing nodes. As a simple case study, the working of default Storm is

shown here using a linear topology (in Figure 1.6). A cluster based on two nodes

is assumed (as shown in Figure 1.7). When Storm schedules the linear topology

on the cluster, it assigns Spout A to supervisor 1, Bolt A to supervisor 2, Bolt

B to supervisor 1, and Bolt C to supervisor 2. As a result, Spout A and Bolt

B are assigned to supervisor 1, and Bolt A and Bolt C get placed on supervisor

2 node. Now Spout A and Bolt A are in different nodes, therefore inter-node

communication is required. Similarly, inter-node communication will be required

for other mapped nodes ((between Bolt A and Blot B) and (Blot B to Blot C))

of the example topology. This mapping increases internode communication causes

execution delays and decreases throughput.

1.3 Problem Formulation with Significance

During the last decade, data has grown in almost every field of life. Studies have

shown that this data will double every two years [46, 47] . Efficient processing of

this huge data is important to take maximum benefits from it. Real-time process-

ing is also possible with the rapid improvement in hardware resources, but this

domain is still under development as new tools are still emerging. Different frame-

works have been developed for this paradigm. In these frameworks, high latency is

one of the major factors affecting performance. The scheduler of these frameworks
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Figure 1.7: Cluster with Two Nodes.

considers different aspects while scheduling for example, available resources in the

cluster, communication pattern between computing devices, dynamic changes in

the network configurations, runtime changes in submitted jobs, heterogeneity in

physical resources, etc.

Therefore, A problem statement is formulated as:

“Existing scheduling schemes are unable to optimally schedule jobs
on a computational cluster. An optimum schedule achieves

maximum throughput with minimum resources.”

1.4 Research Questions

To solve the above research problem, the following research questions are required

to be answered:

1. How to design a resource-aware scheduler to distribute jobs among hetero-

geneous cluster to improve resource utilization? (TOP-Storm Scheduler,

BAN-Storm Scheduler)
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2. How to assign a workload based on data communication (traffic) to achieve

maximal throughput and reduce data communication between computing

nodes (machines)? (A3-Storm Scheduler, Gr-Storm Scheduler)

1.5 Research Objectives and Scope

After an extensive literature survey, it is revealed that the achieved throughput by

existing SPEs can be enhanced using efficient scheduling. Therefore, this research

proposes resource provisioning and scheduling techniques for SPEs that will ensure

efficient resource utilization with enhanced throughput. The primary objective of

this dissertation is to propose a scheduling scheme for SPEs that achieves near-

maximum throughput in a way that a minimum number of resources are employed.

The focus of this dissertation is to design an efficient scheduling scheme for SPEs.

Apache Storm (a popular SPE) will be used to implement the proposed scheme.

Average throughput per node along with resource utilization will be used to quan-

titatively access the performance of the proposed work.

1.6 Research Methodology

A methodology is “a system of principles, practices, and procedures applied to a

specific branch of knowledge”[48] to solve problems or add new knowledge. Such

a methodology helps researchers to produce quality research. Similarly, “Design

Science (DS) seeks to consolidate knowledge about the design and development of

solutions, to solve problems and create new artifacts”[49]. Thus, Design Science

Research (DSR) is a research method that is focused on problem-solving [50].

In this work, we have adopted the DS [48] methodology as it creates and evaluates

information technology artifacts intended to solve problem, and communicate the

results to the audiences [51]. Our research will be incremental, that is to quanti-

tatively study the schedulers to maximize throughput with the minimum number
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of resources and then propose a scheme to achieve these objectives. DS process

includes six steps [52]. 1) problem identification and motivation, 2) the definition

of the objectives for a solution, 3) design and development, 4) demonstration, 5)

evaluation, and 6) communication.

1. To identify the research problem, a literature review will be carried out.

The review will converge on the problem formulation and research questions.

This may involve some experimentation with different scenarios for empirical

validation of the problem identified. This will help in inferring the solution

to the problem.

2. Then the objectives for a solution inferred from the problem specification

will be finalized in the light of the available options and resources to carry

out the research.

3. The next step is mainly related to the design and development of the artifact.

Such artifacts can be models, methods, or frameworks [51]. Conceptually,

a design research artifact can be any designed object in which a research

contribution is embedded in the design. In our case, the proposed system is

the outcome of this step.

4. Then the implementation of the artifact to solve the problem. This could

be experimentation, simulation, or any other appropriate activity.

5. Then results and observations will be measured to evaluate how good the

artifact helps a resolution to the problem. This step includes assessing the

goals of a solution to actual examined results from the usage of the artifact

in the experiment.

6. Finally, the problem, solutions, results, evaluation, utility, and novelty will

be communicated to the researcher community in the form of research pub-

lications and reports. Design science research steps along their outputs for

this dissertation is shown in Figure 1.8 [48].
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Figure 1.8: Design Science Research Steps and Their Outputs.

1.7 Evaluation Metrics

Usually, an SPE performance is assessed based upon throughput, latency or re-

sources used. The same throughput can be achieved with different employed re-

sources. It means throughput does not truly represent the efficiency of a sched-

uler. To depict the impact of both measures (achieved throughput and utilized

resources), an evaluation matrix named average throughput per node (Equation



Introduction 14

1.2) is used in this dissertation.

AverageThroughput = TotalTuplesProcessed÷ TotalT imeTaken (1.1)

AverageThroughputPerNode = AverageThroughput÷ TotalNodesUsed (1.2)

1.8 Research Findings

In this dissertation, topology, traffic, and resource-aware schedulers are proposed

that can find frequently communicating tasks and assign them closer to each other

in a heterogeneous cluster such that minimum nodes are utilized for topology

execution. It has four different schemes:

• Topology-based resource-aware scheduling (named as TOP-Storm) finds

executors that will be mapped in a single worker process. After that, it

reads the executor’s connectivity from the topology’s DAG. Based on this

connectivity, the longest path is calculated and assigned to the most powerful

computing machine.

• Traffic-based resource-aware scheduling (named as A3-Storm): In this scheme,

traffic is also used with topology structure. A3-Storm reads inter-task com-

munication and sorts them in descending order. It starts assigning tasks to

the computing nodes according to their traffic. For the next executor as-

signment, traffic communication of unassigned executors is compared with

assigned executors and the executor with the highest communication with

the already assigned executor is selected. After all executor’s assignments

to slots, the physical assignment is made starting from the most powerful

machine and so on.

• Bandwidth-aware Storm scheduler (BAN-Storm) that finds regularly com-

municating computing tasks and maps them closer to each other. The em-

ployed mechanism results in a closely mapped and a smaller number of the
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provisioned nodes of a heterogeneous cluster. Next, the physical mapping is

performed based on the node’s computation power which includes FLOPs,

memory, and bandwidth as well.

• Graph-based resource-aware scheduling (named as Gr-Storm): This scheme

maps computational requirements of the topology on the available computa-

tion power of workers (JVM) in an optimal way to maximize throughput and

resource utilization. The first phase formulates the topology’s graph (DAG)

with intra-executor computation requirements and inter-executor communi-

cation requirements to generate a modelled DAG, which is then given to the

max-flow min-cut algorithm [53] to produce a partitioned graph of executors.

The second phase intelligently maps to a pool of workers by assigning all

the group of executors to a worker based on the worker’s computation power

(starting from most powerful to the least) with less communication need as

per the modelled DAG.

1.9 Thesis Organization

In this chapter, the research area has been introduced, the problem statement has

been presented, and the objectives of the study have been outlined. The remaining

chapters of the thesis are organized as follows:

Chapter 2

Chapter 2 describes the literature review by presenting the state-of-the-art work

done by the researchers. Different aspects have been used by the researcher in

this context for example, topology-aware, traffic-aware, resource-aware, dynamic,

task migration, SLA-Based scheduling algorithms etc. Therefore, category-wise

schemes have been discussed and issues are highlighted followed by a critical anal-

ysis of the existing work.
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Chapter 3

In chapter 3, a topology-aware, traffic-aware, and resource-aware system for stream

processing engines has been proposed. Based on the proposed system, four differ-

ent scheduling schemes (TOP-Storm, A3-Storm, BAN-Storm and Gr-Storm) are

presented to address the research questions. The working of each scheme is dis-

cussed in detail.

Chapter 4

In chapter 4, first of all, the experimental setup is discussed then the benchmarked

schedulers are listed with which the performance analysis of the proposed system

is performed in terms of throughput, and resource utilization. The topologies used

in experiments are also mentioned and the result is discussed.

Chapter 5

Finally, the last chapter concludes the thesis document. The key findings of this

research, open challenges and importantly the future directions are discussed in

detail.
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Literature Review

2.1 Introduction

Like other domains, SPE is also not a new field of study for researchers. In the last

decade, a broad range of research has been performed to improve the throughput,

enhance resource utilization and reduce latency of the scheduling algorithm of

SPEs. Different researchers targeted different aspects in their scheduling scheme.

In this dissertation, we have used the following most frequently used aspects to

investigate the existing literature:

• Topology-aware: As we know that topology can be represented as a DAG.

A scheduler which is making scheduling decisions based on topology’s DAG

is called a topology-aware scheduler

• Traffic-aware: Once a topology is in execution then we can have commu-

nication traffic between executors for example some bolt A send processed

data to bolt B etc. So, if scheduling is being done based on communication

traffic is known as traffic-aware scheduling

• Resource-aware: hardware specifications like CPU, RAM, Bandwidth,

Number of cores, etc. are also considered while assigning tasks among the

computing node in a cluster

17
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Figure 2.1: Year-wise Distribution of the Reviewed Papers.

• Heterogeneous: computing environment that can contain processors and

devices with different bandwidth and computational capabilities

• Dynamic: Typically, a scheduler makes scheduling decisions at compile

time but if a scheduler makes changes in the execution plan during runtime

is called a dynamic scheduling scheme

• Self-adaptive: includes a task monitor to collect runtime statistics and

continuously adapts the scheduling plan accordingly to enhance the perfor-

mance

• Network-aware: scheduling based on the physical distance between com-

ponents that communicate with each other

Year-wise distribution of the reviewed papers (see Fig. 2.1) with respect to the

scheduling aspects (as shown in Fig. 2.2) covered in each paper is presented in
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Figure 2.2: Aspect-wise Distribution of the Reviewed Papers.

Table 2.1. Similarly, Year-wise & Aspect-wise distribution of the reviewed papers

are also shown in Fig. 2.3. If a paper targeted multiple aspects then that paper

is counted against each category.

2.2 Related Work

The simplest scheduling scheme used by the Storm scheduler is round-robin, which

involves iterating through the topology executors and allocating them to the con-

figured number of worker processes. In the next step, according to the slot avail-

ability, the worker processes are evenly assigned to the computing nodes. This

scheduling produces worker processes with an equal number of executors and as-

signs worker processes among the computing nodes such that each node runs an

equal number of worker processes.
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Figure 2.3: Year-wise & Aspect-wise Distribution of the Reviewed Papers.
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Table 2.1: Year-wise Distribution of Reviewed Papers.

Scheduling Aspects

Year Dynamic Traffic-aware Topology-aware Heterogeneous Adaptive Resource-aware Network-aware Task migration SLA-Based Other Total (Year-wise)

2013 1 1 1 1 1 0 0 0 0 0 5

2014 1 1 0 1 1 0 0 0 0 0 4

2015 2 1 1 2 0 1 1 2 0 0 10

2016 2 2 1 0 2 2 0 0 0 0 9

2017 5 4 4 3 3 2 0 0 2 0 23

2018 2 2 0 1 2 1 0 1 0 2 11

2019 0 0 0 0 0 1 0 1 4 1 7

2020 0 0 1 3 0 1 1 0 1 1 8

2021 0 0 0 0 0 0 0 0 1 2 3

2022 8 7 1 4 5 5 1 1 1 4 37

2023 3 4 2 4 3 3 0 0 0 2 21

Total (Aspect-wise) 24 22 11 19 17 16 3 5 9 12
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The default Storm scheduler is a fair scheduler that considers each node for

scheduling tasks; however, it has several drawbacks. It evenly assigns workload to

worker processes across the cluster without considering inter-task communication,

which may adversely effect the performance [28]. This even mapping increases

inter-node communication, causes execution delays and decreases throughput.

Several researchers have proposed scheduling algorithms to improve throughput

and resource utilization of the Apache Storm cluster.

2.2.1 Traffic-aware Scheduling Algorithms

Aniello et al. [28] introduced the traffic-aware scheduling algorithm based on two

sub-schedulers, offline and online schedulers. The offline scheduler simply analy-

ses the topology graph and identifies inter-connected bolts to be scheduled on the

same node. This approach is simple and only considers topology for mapping. Of-

fline scheduling is executed before the topology is started, so neither the workload

nor the traffic is considered for mapping decisions. The application computing

requirements and traffic aspects are ignored, which results in higher inter-node

and inter-slot traffic at runtime. To overcome the limitations of the offline sched-

uler, the authors proposed a dynamic scheduler named an online scheduler. It is

a traffic-aware scheduler and considers the application load at runtime. The dy-

namic scheduler monitors runtime traffic and re-adapts the application schedule

to improve its performance and reduce communication delays. The major strength

of the online scheduler is that it reduces inter-node communication. Experiments

are performed using 9 computing nodes and a 30% reduction in latency is achieved

w.r.t. default scheduler. Reference topology and Grand Challenge topology are

used for evaluation purposes. The online scheduler reduces inter-node communi-

cation; however, it ignores inter-slot communication, which may become a perfor-

mance bottleneck. The online scheduler performs better for variable input traffic

velocity.

Another problem with the default scheduler is that it occupy all machines available

in a cluster despite of workload. In case of a light workload, the operational cost
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Table 2.2: Summary of Traffic-aware Scheduling Algorithm

Authors / Algo.
Scheduling Aspects

Dynamic Traffic-aware Topology-aware Heterogeneous Adaptive Resource-aware Network-aware

Aniello et al. [28] /
Offline & Online sched-
uler

√ √ √ √ √
× ×

Xu et al. [33] /
T-Storm

√ √
×

√ √
× ×

Eskandari et al. [29] /
P-Scheduler

√ √ √
×

√
× ×

Li and Zhang [31] /
TS-Storm

√ √ √ √ √
× ×

Selim et al. [54] /
BSS

√ √
×

√
×

√
×

can be reduced by turning off idle ones. In 2014, Xu et al. [33] proposed a

traffic-aware scheduler (called T-Storm) which uses runtime states to accelerate

data processing for dynamic task allocation. This minimizes inter-process traffic

in a load-balancing fashion. T-Storm was implemented using Storm 0.8.2 with

the overall time complexity of O(NelogNe + NeNs) where Ne representing the

corresponding set of executors, and Ns is the set of available slots. Experiments

show up to 84% enhancement in average throughput using 30% fewer computing

nodes as compared to the default scheduler. However, the proposed work faces

the cold start problem which means that initially some data is required for this

type of scheduler to work.

The Storm scheduler equally assigns the tasks across the cluster. It has two main

disadvantages. First, it ignores the communication pattern between executors,

which results in low execution performance and high communication latencies.

Secondly, it harnessed all the computing nodes regardless of the load, which may

cause high inter-node traffic. To address these issues, Eskandari et al. [29] pre-

sented an adaptive scheduling algorithm called P-Scheduler. To reduce the com-

munication traffic, P-Scheduler calculates the required resources for topology ex-

ecution. Afterwards, it consolidates the cluster after computing the estimated
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load. P-Scheduler maximizes communication efficiency by placing frequently com-

municating pairs at a minimum distance. Experiments were performed using 10

computing nodes resulting in 50% less latency to default Storm 0.9.5. In-house,

test throughput and top trending topics topologies were employed in these exper-

iments. Despite these features, P-Scheduler has a major drawback in that it is

designed for homogeneous clusters only. It also assumes an equal number of slots

for all the nodes. That’s why P-Scheduler will not perform better in a heteroge-

neous environment with a variable number of slots on each computing node.

Default Storm Scheduler is also not optimum in terms of traffic performance and

resource utilization. Moreover, while scheduling the topologies, it ignores the

computing node’s load and the topology structure. Zhang et al. [31, 55] proposed

a traffic-aware real-time scheduling algorithm based on worker nodes load to solve

the problems. This algorithm is divided into two steps. The first step assigns

slots to the executors, according to inter-component communication and topology

structure. The second step chooses the lowest loaded worker node and assigns slots

that require maximum resources. During the allocation process, CPU and memory

utilization is also considered. This scheduler is compared with default scheduler

0.8.2, R-Storm, and topology-based schedulers using linear, star, and diamond

topologies. The evaluation carried out with 8 nodes showed a 91% improvement

in throughput and a 50% reduction in latency.

Recently, Balance Scheduling on Storm (BSS) is presented [54] to improve the

scheduling on the Storm cluster. BSS collects runtime details to create an execu-

tion plan using the graph partitioning technique. BSS collects the communication

data at runtime, partitions the graph, and balances the workload among the com-

puting nodes. Then nodes are assigned the partitions, and the tasks are mapped

to the slots w.r.t. their communication, which reduces the network traffic and

resulted in enhanced throughput. BSS is compared with the Fischer and Bern-

stein and A3-Storm schedulers using four different topologies for example, SOL

topology, Rolling count topology, word count, spike detection topology etc. The
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Table 2.3: Strength / Weakness of Traffic-aware Scheduling Algorithm

Authors Strength Weakness

Aniello et al. [28] Reduced inter-node communication Inter-slot communication is ignored

Xu et al. [33] Minimizes inter-process traffic using load-balancing Cold start problem

Eskandari et al. [29] Graph-based adaptive scheduling Homogeneous solution

Li and Zhang [31] CPU utilization-based load balancing algorithm Resource unawareness problem

Selim et al. [54] A hybrid approach is employed Available nodes equal to the no. of partitions

experimental study is done on a heterogenous cluster of 4 physical machines in

which results show a 70 percent improvement in throughput.

2.2.2 Dynamic Scheduling Algorithms

In Storm, the job configuration remains static during job execution. This static

configuration may not be aware of data stream properties (i.e., data transfer rate).

As a result, significant resources can be wasted on fluctuating data flow. Simi-

larly, the static configuration might also limit the throughput if the arrival rate of

data flow surpasses the system capability. To dynamically change the instances,

Apache Storm must pause the whole topology, recompile, and redeploy the com-

plete topology. This will incur latency during runtime. Madsen et al. [56] pro-

vided the solution to this problem by over-provisioning resources (one redundant

operator per node) with polynomial time complexity of O(|N| × #checkpoints).

Experiments were carried out on Amazon EC2 (25 instances) using Airline On-

Time dataset which reduced latency by 20% w.r.t. default scheduler. The major

weakness of this work is the redundant operators on each node which results in

high resource costs and most of the operators are not utilized during execution.

The question of how to assign tasks among the available resources has important

consequences for the performance of SPEs. Fischer et al. [35] presented a workload
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Table 2.4: Summary of Dynamic Scheduling Algorithm

Authors / Algo.
Scheduling Aspects

Dynamic Traffic-aware Topology-aware Heterogeneous Adaptive Resource-aware Network-aware

Fischer and Bernstein
[35]

√ √ √
× × × ×

Liu et al. [57] /
E-Storm

√ √ √
× × × ×

Qiann et al. [58] /
S-Storm

√
×

√
× × × ×

Weng et al. [25] /
AdaStorm

√ √
× ×

√ √
×

Li et al. [30] /
DRL-Based framework

√ √
× ×

√
× ×

Sun al. [59] /
Lc-Stream

√ √
× ×

√ √ √

scheduling strategy that is based on a graph partitioning algorithm. The proposed

scheduler collects the communication behaviour of running applications and cre-

ates the schedules by partitioning the communication graph using the METIS.

The proposed scheduler showed better results with decreases in network band-

width of up to 88% and increased throughput values of up to 56%, respectively.

Experimental evaluation was performed on a cluster of 80 machines and a compar-

ison was made with default Storm 0.9.0.1 and Aniello et al. [28] schedulers using

OpenGov, Parallel, Payload, and Reference topologies. The major limitation of

the proposed approach is that it ignores the computational resources such as RAM

or disk space while scheduling.

As an essential part of the fault-tolerance mechanism, Apache Storm’s state man-

agement is accomplished by a checkpointing system, which commits states fre-

quently and recovers lost states from the latest checkpoint. However, this method

requires a remote location for state storage and retrieval, resulting in substan-

tial overheads to the performance of error-free execution. To fix this overhead, a
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replication-based state management system (E-Storm) is proposed [57] that ac-

tively maintains multiple state backups on different worker nodes. E-Storm guar-

antees application integrity when failover occurs. The replication of the state is

autonomous and high-performance, which allows multiple transfers to take place si-

multaneously. E-Storm outperforms the existing checkpointing method in terms of

the resulting application performance, obtaining 9 times better throughput while

reducing the application latency down to 9.8% when a comparison was made with

Apache Storm version 1.0.2. These results are achieved using 12 nodes cluster

at the expense of storage space for multiple backups and processing required to

restore the lost state from a checkpoint. Moreover, the computational complexity

of the provided solution is NP-Hard which is also a drawback of E-Storm.

The even scheduler ignores the allocation and dependency relationship among

slots. This would bring the load-unbalancing problem when the topology run

failed and is killed by its user, or new machines are extended in the Storm cluster.

To address this issue, a slot-aware scheduler (S-Storm) is proposed [58] which uses

a sorting queue and merger factor. First, it evenly allocates slots for multiple

topologies in the load balancing cluster. Second, when load-unbalancing happens,

it distributes workers to slots among light-load worker nodes. Experimental re-

sults show that when compared to Storm 0.10.0, S-Storm can achieve over 18.7%

speedup on the average processing time and 1.25 times improvement on through-

put within a ten-minute interval for Word count and Throughput test topologies.

The major limitation of the S-Storm is its equal slots allocation for each topology.

In practice, different topologies require a different number of slots for execution.

In Storm, the number of slots for topology execution can’t be increased or de-

creased at runtime. This static configuration might limit the processing through-

put if the arrival rate of data flow exceeds the system capability and more slots

are required for processing. Weng et al. [25] presented AdaStorm with time com-

plexity of O(n2) to solve the above-mentioned issue of the default Storm scheduler.

AdaStorm dynamically adjusts the topology configuration according to the data

communication rate using machine learning algorithms. Firstly, different resource
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Table 2.5: Strength / Weakness of Dynamic Scheduling Algorithm

Authors Strength Weakness

Fischer and Bernstein [35] Workload based graph partitioning Ignores the computational resources

Liu et al. [57] Replication-based state management Computational complexity is NP-Hard

Qiann et al. [58] Slot-aware scheduler Equal slots allocation for each topology

Weng et al. [25] Resource-efficient scheduling using ML Topology unawareness problem

Li et al. [30] DRL employed to minimize processing time Suffers from a cold start problem

Sun al. [59] Network location-aware scheduling Experiments lacked required environment

usage models are trained with historical data. Secondly, these models are used

to derive the resource-efficient topology configuration for deployment. AdaStorm

was compared with R-Storm using a cluster of 10 nodes. GeoLife GPS Trajec-

tories dataset was used in these experiments. Results showed that AdaStorm

reduces CPU and memory usage by about 15% and 60% respectively. AdaStorm

has solved the static configuration to some extent, however, it does not consider

network topology while scheduling. It handles local and remote computing nodes

in the same manner, which may affect the overall throughput.

To minimize average end-to-end tuple processing time, T. Li et al. [30] developed

a model-free approach that can learn to control an SPE from its experience, just as

a human learns a skill (such as cooking, driving, swimming, etc). Deep Reinforce-

ment Learning (DRL) is introduced to minimize processing time by learning the

system environment via collecting runtime statistics and making decisions using

Deep Neural Networks. Extensive experiments show that the proposed frame-

work reduces average tuple processing by 33.5%. This work was compared with

the Actor-critic-based method, default scheduler, model-based method, and the

DQN-based DRL method. Three topologies are used (continuous queries, log
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stream processing, and word count) on a cluster of 11 computing nodes. The pro-

posed system is based on runtime statistics; therefore, it suffers from a cold start

problem.

Processing real-time streaming data efficiently is always a challenging task, espe-

cially for a Geo-Distributed cluster. The default Storm uses a pooling method

while allocating tasks, which often causes load imbalance. Uneven resource al-

location results in low system efficiency. Similarly, the waiting time caused by

the communication between nodes is also ignored. To address these problems, an

elastic scheduling strategy with latency constrained (Lc-Stream) is proposed [59]

Lc-Stream mainly focuses on 3 aspects. First, an optimized redirection method

based on queuing network algorithm, a computing resource model, a latency-

constrained scheduling model and an energy consumption model. Second, a node

selection method based on the inter-task relation, to reduce the communication

latency between groups at the operator level. Finally, a cluster distribution for a

Geo-Distributed computing environment to ensure energy saving under low trans-

mission latency. Lc-Stream is implemented using Storm (version 2.1.0) and ex-

periments are conducted in the Alibaba Cloud Computing cluster consisting of

28 machines using Word Count topology. Results demonstrated that Lc-Stream

reduces latency by 19% and increases the throughput by up to 37%.

2.2.3 Resource-aware Scheduling Algorithms

While scheduling, the Default Storm Scheduler does not consider resource avail-

ability in the underlying cluster, and resource requirement of Storm topologies.

This can lead to resource over-utilization or under-utilization causing failure or

execution inefficiency. To overcome this issue, Peng et al. [22] presented resource-

aware scheduling (R-Storm) in Storm at compilation time. When scheduling
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the tasks, R-Storm fulfils resource restrictions (CPU, bandwidth, and memory)

and can also minimize network distance between communicating components.

PageLoad and Processing topologies are used for experimentation on a cluster

of 13 machines. Results showed a 50% higher throughput and 350% better CPU

utilization when compared to the Storm scheduler. However, due to compile-time

scheduling, R-Storm is unaware of the actual runtime workload and remains un-

changed during the whole lifecycle of the application. Secondly, the scheduling

is performed during compile-time only. Therefore, it is impossible to adjust the

execution plan according to runtime changes.

In general, inter-node and inter-slot communication are important factors that

affect the performance of a topology. However, they are inversely proportional

to each other. While scheduling on Storm, handling the trade-off between intern-

ode, and inter-slot is a crucial process. Fan et al. [17] presented an adaptive

task scheduler, which uses runtime statistics of the topologies and cluster load

while scheduling. The overall throughput is improved by 67% with 3% extra re-

sources consumed as compared to the default scheduler (version 0.9.3) using the

SOL benchmark on a cluster of 5 blade servers. Throughput has been increased;

however, the authors have not presented the details of runtime statistics used in

this scheduler.

To reduce the network latency, there is a need to avoid the data movement over

WAN as much as possible. Placing applications closer to the data source can

decrease network cost and latency. Even though, this approach is not well ex-

plored in data stream processing applications. To address this issue, SpanEdge,

a novel approach is proposed [23] that reduces latency incurred by WAN links

by distributing stream processing applications to near-the-edge data centres. It

provides a programming environment from which programmers specify parts of

their applications that need to be close to the data source. Results show that

SpanEdge reduces the bandwidth consumption and the response latency by op-

timally deploying applications in a geo-distributed infrastructure. SpanEdge is

evaluated in an emulated environment using the CORE network emulator.
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Table 2.6: Summary of Resource-aware Scheduling Algorithm

Authors / Algo.
Scheduling Aspects

Dynamic Traffic-aware Topology-aware Heterogeneous Adaptive Resource-aware Network-aware

Peng et al. [22] /
R-Storm

× × ×
√

×
√ √

Fan et al. [17] /
Adaptive-Scheduler

√ √
× ×

√ √
×

Liu and Buyya [19] /
D-Storm

√ √
× ×

√ √
×

Al-Sinayyid and Zhu [15] /
MT-Scheduler

× ×
√ √

×
√ √

Farrokh et al. [60] /
SP-Ant

√ √
×

√ √ √
×

The stream processing model works on continuous data flow. Due to this, a large

amount of data arrives dynamically that cannot be evaluated in advance. Smirnov

et al. [24] presented a performance-aware scheduling algorithm for real-time data

streaming systems. The common scheduling problem is to assign tasks to the

best-fit slots, minimize inter-node communication, and maximize CPU utilization

for all nodes. With the help of a genetic algorithm, these problems are addressed

by the authors [24]. The proposed methodology is compared with the default and

R-Storm schedulers showed a 40% improvement in throughput. However, this

study only considers a linear topology consisting of 1 spout and 3 bolts. More-

over, the authors have not presented the implementation details of the proposed

methodology.

SPEs lack an intelligent system, which can adjust the scheduling plan based on

resource usage. In 2017, Liu [19] presented D-Storm to address this problem with

the time complexity of O(n2). D-Storm monitors topologies at runtime to ob-

tain resource usage and communication patterns to avoid resource contention and

reduce inter-node communication. D-Storm makes runtime decisions to schedule

tasks closely to reduce inter-node communication. It automatically re-schedules

the topology whenever resource contention is detected. Performance evaluation
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of D-Storm was performed on Nectar Cloud (using 19 nodes) with the default

scheduler (1.0.2) and R-Storm where D-Storm achieved a 16.25% improvement on

throughput for Tweet sentiment topology. Despite all these results, D-Storm has

the following limitations. It is based on runtime statistics; therefore, it suffers from

a cold start issue means in the beginning some statistics are required to generate

schedule and It is implemented for homogeneous clusters only. Similarly, D-Storm

is slower (approximately 20 times) to generate a scheduling plan as compared to

the default scheduler. D-Storm is suitable in a situation where input data flow is

fluctuating.

Another scheduling mechanism to map and process the streaming data collected

from different geo-distributed heterogeneous IoT sensors is presented in [18]. The

authors emphasized that IoT-based applications generating stream data should be

scheduled and processed considering both the network topology and heterogene-

ity of the processing resources. To address these research challenges, the authors

proposed a scheduling mechanism that considers latencies, bandwidth, and compu-

tational resources in a heterogeneous topology environment. The results presented

by the authors highlight the fact that the scheduling mechanism when employed

considering the service quality metric produces better placements of the dataflow

jobs as compared to considering only topology-related aspects. The proposed work

relies only on the simulation to evaluate the potential performance benefits of the

scheme in contrast to our proposed work that is implemented using a real steam

processing framework (i.e., Apache Storm) to highlight the factual performance

results including all machines and runtime system overheads. Also, their proposed

scheduling scheme only employs an abstract level resource-aware mechanism (such

as resource requirement classes of low, medium, and high) in contrast to the fine-

grained resource-aware mapping employed by our proposed schemes.

While scheduling topology, Apache Storm ignores cluster heterogeneity. As a re-

sult, scheduling in a heterogeneous environment is a problem. To address this

issue, AL-SINAYYID & ZHU proposed MT-Scheduler [15] to maximize through-

put for a heterogeneous cluster based on computational as well as communicational
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Table 2.7: Strength / Weakness of Resource-aware Scheduling Algorithm

Authors Strength Weakness

Peng et al. [22] Compact executor assignment In-adaptive scheduling

Fan et al. [17] Adaptive task scheduler Runtime statistics are missing

Liu and Buyya [19] Dynamic scheduling to reduce inter-node traffic Slowest to calculate a scheduling plan

Al-Sinayyid and Zhu [15] Allows the users to configure the data locality Polynomial-time heuristic solution

Farrokh et al. [60] Hybrid heuristic-metaheuristic optimization Cold start problem

requirements, while considering the capability of the cluster. First, the topology’s

DAG is linearised by applying a topological sort. Then the critical path (CP) is

found by employing the longest path algorithm. The mapper function determines

the mapping schema for the topological components in the CP. The remaining

components (not on the CP) are assigned with the help of a layer-oriented greedy

method that may fail to achieve an optimal solution. The MT-Scheduler lowers

latencies by 28–46% and enhances the throughput by 17–54% when compared to

the default scheduler. It also permits the clients to organize the data locality

to execute tasks as close to the data, which decreases the communication cost.

MT-Scheduler was compared with the default scheduler and an adaptive online

scheduler [28].

A key feature of SPEs is the task scheduling on the cluster’s nodes. While schedul-

ing, the tasks to node mapping, the task’s requirements, and the computing power

of the cluster’s resources must be considered with the goal of finding a trade-off

to achieve maximum efficiency. This is a challenging goal, especially in a hetero-

geneous environment, because at the runtime the computing node’s load is not

known. To address this problem, an ant colony algorithm (SP-Ant) [60] is pro-

posed as a joint venture of the bin-packing algorithm and the ACO algorithm.
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Its discoveries the best operator mapping considering the inter-operator commu-

nication by assigning highly communicating operators on the same nodes using

the bin-packing algorithm and schedules the remaining operators using the ant

colony optimization (ACO) algorithm. It continues to improve based on real-time

feedback from the already assigned operators. The time complexity of SP-Ant

is O(Tc × 2 ×Maxit × NAnt × |E|), and It is compared with Storm (2.1.0) and

R-Storm using Word Count topology on a cluster of 5 virtual machines. Results

show a 50% reduction in response time.

2.2.4 Scheduling Algorithms for Heterogeneous Cluster

Due to the heterogeneity of computing clusters, blindly increasing the number of

workers for a job could degrade the overall performance. So the question of how

to distribute the computational task over the heterogeneous cluster to maximize

performance is addressed by Xue et al. [26]. Based on the practical constraints

of current systems, the problem is addressed in two scenarios. For systems using

a hash-based partition method (for avoiding the overhead of indexing and search-

ing vertex), a coarse-grained mechanism is proposed to greedily select suitable

workers set to execute the job. For systems allowing arbitrary graph partition, a

heterogeneity-aware streaming graph partitioning model that can assign workload

at a fine-grained level is presented.

The proposed framework [26] reduces the execution time by 55.9% for the lab

cluster and 44.7% for the EC2 cluster, respectively. However, the computing com-

plexity of the coarse-grained scheduler is O(n3) and NP-hard for graph partitioning

problems. The graph datasets employed in the experiments include social network

graphs with different scales of vertices (i.e., 25 million and 114 million). Compar-

ison is performed with PageRank, random walk, and single-source shortest path.

The experiments were conducted on a cluster of 46 workers and an Amazon EC2

cluster with 100 instances.
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The default Storm scheduler distributes tasks equally among computing nodes in a

round-robin fashion regardless of their heterogeneity. This may introduce a poten-

tial performance bottleneck due to unbalanced workload distribution with respect

to computation resources. Yangyang Liu [61] proposed TOSS – the topology-

based scheduling algorithm to address this issue. TOSS improves performance

by reducing the communication overhead with the time complexity of O(V+E).

TOSS works in two phases to achieve efficiency. In the first phase, TOSS analyses

the topology structure and partition executors in such a way that it minimizes the

communication overhead between executors. Then, it utilizes run-time workload

information to estimate the current workload. TOSS was compared with default

Storm scheduler version 0.8.2 which resulted in a 24% boost for throughput and

a 20% reduction in latency for SOL and Rolling WordCount topology. A small

cluster of 5 machines was used for experiments. TOSS has addressed performance

bottleneck issues; however, it also suffers from a cold start problem. Similarly,

while generating a schedule for a topology the network structure is not considered

by TOSS.

In 2018, Eskandari et al. [16] proposed T3-Scheduler in Apache Storm 1.1.1, a

Topology, and Traffic-aware two-level scheduler which finds highly communicating

executors and assigns them to the same node in a heterogeneous cluster such

that each node remains fully utilized. In the first level, it divides topology into

multiple parts based on the executor’s communication frequency to reduce traffic

by placing highly communicating executors closer. In the second level, it finds the

suitable allocation by arranging highly communicating parts in the same worker

process to minimize the communication between the worker processes within a

node. T3-Scheduler was compared with Online Scheduler and R-Storm and results

show that T3-Scheduler increases throughput by up to 32% for the two real-world

applications on a 10-nodes cluster. T3-Scheduler has addressed the heterogeneity

issue but for linear and star topologies there is a minor improvement in average

throughput.
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Table 2.8: Summary of Scheduling Algorithm for Heterogeneous Cluster

Authors / Algo.
Scheduling Aspects

Dynamic Traffic-aware Topology-aware Heterogeneous Adaptive Resource-aware Network-aware

Xue et al. [26] ×
√ √ √ √

× ×

Yangyang Liu [61] /
TOSS

×
√ √ √

× × ×

Eskandari et al. [16] /
T3-Scheduler

√ √ √ √
×

√
×

Nasiri et al. [32]
√

×
√ √ √

× ×

Hadian et al. [62] /
ER-Storm

√ √
×

√ √ √
×

The aspect that controls the overall performance in Apache Storm is the schedul-

ing strategy of the topology’s components. Gulzar Ahmad et al. [37] proposed

their strategy which comprises of two phases. First, the topology’s DAG is segre-

gated in a way that least amount of data transfer is required between partitions.

In the second phase, the allotment of each partition on a single node decreases the

data movement within the task of a partition which improves the performance of

job execution. Moreover, task replication is also integrated to further decreases

the execution time. Results have shown 21% improvement in execution time for

different data sets. Performance comparison of this work was made with default

scheduler, R-Storm, and GA using EURExpressII workflow on a 5 nodes clus-

ter. The proposed solution focuses on the reduction of inter-node traffic while

ignoring inter-slot traffic which may result in performance degradation. Moreover,

each partition is mapped to a single machine. If available machines are less than

the required number, then this scheduler will not work. Similarly, partial task

duplication is overprovisioning which is also an overhead.

Elasticity has become an essential attribute of SPEs to handle variations in the

input data rate as well as encountering heavy workloads. Elasticity can limit
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the performance degradation in this situation negatively impacting the overall

throughput. Hamid et al. [62] proposed ER-Storm to address the issue of elas-

ticity in a heterogeneous environment. The working principles of ER-Storm are

to find out suitable operators for replication. Followed by the selection of worker

nodes for hosting while avoiding frequent scaling operations. Operators with the

least communications that consume computational resources equal to the bottle-

neck operator are selected and replicated to other nodes using Markov Decision

Process. Reinforcement learning (a subfield of machine learning (ML)) is used

to determine the suitable node. A heuristic algorithm based on the bin-packing

(FFD) algorithm is employed for the generation of an initial execution plan. In

the learning phase, the number of scaling decisions is controlled by using the Naïve

Bayes classifier (a probabilistic ML algorithm used for classification tasks) to guess

whether scaling would enhance throughput or not. ER-Storm is implemented using

Storm 2.1.0 with the overall time complexity of O(|W|log|W|) and a comparison

was made with R-Storm and Online-Scheduler. Word Count topology and SentiS-

torm topology are used for experimentation. The underlying cluster comprises 10

virtual machines which were divided into three computational capacity categories,

namely 3 high, 4 medium, and 3 low VMs. In addition, a physical server with 12

cores and 16 GB of memory was dedicated to the Nimbus and Zookeeper. Results

showed up to 60% reduction in the response time. Despite the results obtained,

ER-Storm exhibits some limitations when compared to our proposed schedulers.

The major weakness of ER-Storm is that it operates on the principle of elastic-

ity to achieve scalability, which leads to increased end-to-end delays. Similarly,

operators’ parallelism (duplication) or relocation to other nodes incurs additional

computational and memory costs. These factors have an added negative impact

due to the operators’ statelessness in ER-Storm. Moreover, frequent scaling deci-

sions can potentially result in performance degradation. To identify overutilized

worker nodes, a threshold of 70 percent CPU utilization is utilized. Once the CPU

utilization exceeds this threshold, the corresponding node is identified as overuti-

lized. Consequently, approximately 30 percent of the node’s resources remain
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Table 2.9: Strength / Weakness of Scheduling Algorithm for Heterogeneous
Cluster

Authors Strength Weakness

Xue et al. [26] Heterogeneity-aware graph partitioning model Solution’s Computing complexity is NP-hard

Yangyang Liu [61] Graph algorithm is used for traversing DAG Network structure is ignored

Eskandari et al. [16] Optimizes assignment by clustering communicating tasks Minor improvement in average throughput

Nasiri et al. [32] Optimal solution Utilizes a time-consuming brute-force algorithm

Hadian et al. [62] Utilizes ML and heuristics for scheduling Performs replication to alleviate bottlenecks

unutilized.

First suitable executors’ selection and then finding an appropriate mapping be-

tween these executors and supervisor nodes have a decisive effect on through-

put and resource utilization on large-scale clusters. To overcome this effect, a

heterogeneity-aware scheduler is proposed [32] that finds the proper number of ex-

ecutors of a DAG and maps them to the most suitable node. The algorithm starts

to scale up the topology’s DAG over a given cluster by increasing the topology

input rate and generating new tasks from bottlenecked executors until an opti-

mal solution is reached. When compared to the default scheduler of Storm (ver-

sion 0.9.5), the proposed scheduler provides up to 44% throughput enhancement.

PageLoad topology, Processing topology, and Network Monitoring topology, are

used to evaluate this work on a small network of 4 computing nodes. A brute-force

algorithm is used for scheduling which takes 18 hours for producing results which

is a major drawback of this work.

As the volume of data increases over time, it poses a challenge for SPEs to predict

the resource and application requirements for processing and may cause problem

in achieving maximum throughput. Rizwan et al. proposed WG-Storm [63] to

address this issue. WG-Storm is based on DAG that enhances the resource usage

and overall throughput using efficient tasks assignment. WG-Storm scheduler is

divided into four phases. First, monitors the connectivity between tasks which
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makes WG-Storm topology-aware. In the second step, a weighted graph based on

the communication between tasks is constructed. In the third step, the task is logi-

cally grouped using topology’s DAG which reduces the inter-group communication

according to inter-tasks traffic. Finally, these groups are mapped to the physical

machines. WG-Storm scheduler is compared with 5 state-of-art schedulers with

30% improved throughput has been reported.

2.2.5 Task Migration Scheduling Algorithms

Real-time scaling of distributed data processing system causes the migration.

Storm does not handle task states during task migration. Storm shuts down all

worker processes of the topology and starts new ones with the new configuration.

During this period, storm waits for in-progress worker processes to complete their

tasks. Yang et al. [64] proposed methods for worker/executor level migration in

Storm. Instead of killing all the worker processes, the storm only kills the migrat-

ing executors and starts them on a newly assigned node. This system improves

migration performance by reducing migration time.

Van der Veen et al. [65] have also proposed a scheduler for Apache Storm with

a different approach. First, resource over-utilization or under-utilization is iden-

tified. Addition or removal of nodes is performed for under-provisioned or over-

provisioning of the resources. The proposed methodology is compared with Storm

version 0.9.2 and experiments are carried out on a cluster of 1 master node, 1

zookeeper node, and several processing nodes. The major drawback of this work

is that it ignores network structure while assigning tasks to a cluster. Due to this,

equal tasks assignment is performed despite their physical distance which may

introduce latency. With the help of this scheduler, the operational cost can be

reduced by provisioning only the required resources for topology execution.

Distributed stream processing (DSP) applications are typically deployed on large-

scale Cloud data centres that are often distant from data sources. As data increase

in size, pushing them toward the Internet can introduce unnecessary latency. A
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solution to reduce this latency lies in moving the computation to the edges of the

network close to data sources. Within a set of available distributed nodes, the

nodes that should host and execute each operator of a DSP application, to opti-

mize the Quality-of-Service attributes of the application are known as the operator

placement problem. Cardellini et al. studied the operator placement problem for

distributed DSP applications in their work [66]. They provided a general formu-

lation of the optimal DSP placement as an Integer Linear Programming prob-

lem for a heterogeneous environment. An Optimal DSP Placement (ODP-based)

scheduler with NP-Hard complexity is presented using Apache Storm (named S-

ODP). Experiments have been performed using Apache Storm 0.9.3 on a cluster

of 8 worker nodes, each with 2 worker slots, and 2 further nodes for Nimbus and

Zookeeper. In the ODP formulation, different assumptions have been made for

example, the data stream traffic between operators does not saturate the logi-

cal link bandwidth. Therefore, S-ODP is suitable for a situation where available

bandwidth is always greater than the required bandwidth.

The existing task migration schemes in Apache Storm are inefficient because

they use a process-level migration scheme, which requires the entire process to

be stopped and restarted during a task migration. This can lead to significant

performance degradation, especially for long-running tasks. To address this issue,

a new scheduler for Storm, called N-Storm [67] is presented. N-Storm schedules

tasks on a per-thread basis, which allows it to better utilize the resources available

on each worker. It uses several techniques including thread-level migration, incre-

mental migration and Load balancing etc. Results showed increased throughput

and saved significant migration time.

Task scheduling in SPEs is an NP-complete problem. Due to the instability and

variability of input data streams, current schemes have a slow start process, which

affects the performance e.g. throughput, latency etc. Moreover, idle nodes at

runtime may result in large energy consumption. To address these issues, an

energy efficient and runtime-aware framework (Er-Stream) has been presented

[68] in this work. It handles changes in data streams at runtime to adjust task

migration adaptively. Karush-Kuhn-Tucker mathematical constraints are used to
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model node resources and energy consumption to increase the energy utilization

of the cluster. Task pairs with high communication are mapped onto the same

node to minimize the network communication. At runtime, task migration is

performed based on node communication and nodes’ CPU frequencies are adjusted

dynamically based on resource usage information to lower the energy consumption.

2.2.6 SLA-Based Scheduling Algorithms

In 2017, X. Cai et al. presented [69], an SLA-aware energy-efficient scheduler that

allocates resources to MapReduce applications using YARN (Yet Another Resource

Negotiator) architecture. During task scheduling, the data locality information is

carefully used to reduce network traffic. A dynamic voltage and frequency scaling

scheme is designed to dynamically change the CPU frequency for upcoming tasks.

The proposed scheme outperforms the existing scheduler for resource utilization

and energy efficiency. The weakness of this work is that the proposed scheduler

orders jobs by the Earliest Deadline First algorithm, as a result, the least priority

jobs will have to wait long for their turn.

Similarly in another work [70], an expandable resource provisioning method is pro-

posed which ensures SLA-compliant scheduling of jobs while maximizing resource

usage and minimizing the operational cost. As a result, a cost reduction of around

12% was achieved as compared to the existing methods. The major limitation of

this work is its time complexity which is NP-hard for worst case scenarios.

In 2019, An adaptive watermarking mechanism for streaming frameworks was

proposed [71] to enhance system throughput while maintaining the SLA-based

end-to-end system latency. It focuses on tuning the system parameters on the

expectation of incoming jobs and evaluates whether a given job will violate an

SLA based on throughput, and latency. Different modes are used to maintain the

trade-off between latency and throughput.
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As more and more consumers assign their tasks to the cloud, SLAs between con-

sumers and providers are emerging as an important aspect. To meet this require-

ment, [72] proposed an SLA-aware load balancing algorithm for cloud computing

which migrates tasks from overloaded nodes to the underloaded nodes having

the highest capability. The experimental results prove that the SLA-aware load-

balancing algorithm is cost-effective and has a minimum makespan as compared

to RR, max-min, and ABC algorithms. It also reduces SLA violations using pre-

diction models with well-timed scaling.

Altaf et al. [73] focus on the low-resource utilization problem in Cloud schedul-

ing to ease the load imbalance issue. It schedules the SLA-based jobs in a load-

balanced manner to improve resource utilization along with execution cost. Perfor-

mance evaluation reveals that the proposed scheduler attains increased resource

utilization as compared to existing state-of-the-art schedulers using the Google

Cloud Jobs dataset. Similarly, an SLA-aware optimal resource allocation algo-

rithm [74] was presented for multi-tier computing architecture. Two different

models were designed. (i) a realistic mixed-integer nonlinear programming model

which adopts the requirements of the services, and (ii) a mixed-integer linear pro-

gramming (MILP) model that employs linear approximation to convert it into a

MILP model for solving the time and space complexity problems. Furthermore, a

nearest-fit algorithm is also presented where the optimization models are unable

to obtain a viable solution within an appropriate time limit.

In this paper [75], a CSL-driven scheduler to enhance energy efficiency in the cloud

data center is proposed. Both CSL requirements and energy saving are studied in

this approach. Three scheduling approaches (aiming to minimize energy-saving,

maximize CSL and maximize CSL per energy, respectively) are employed to con-

solidate resources according to different CSL states.

A novel SLA-based cloud coalition approach is presented in this work [76] in which,

each request includes the required resources with SLA requirements. Then it finds

the best coalition of cloud providers to fulfil the request while satisfying SLA
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requirements. The main objectives of this approach are 1) to maximize coalition

profit while ensuring a fair profit-sharing between members; 2) to minimize the

number of coalition members, and 3) to reduce the penalty who fail to offer the

promised resources. The proposed solution leverages Irving’s roommate matching

algorithm to propose an SLA-based cloud federation formation methodology. The

drawback of this technique is its time complexity which is O(n3) in the worst

case. When the coalition size becomes large, the execution time of this approach

becomes huge which results in a big execution delay.

Cloud computing is a flexible, low-cost, on-demand service platform that exists

over the internet. Like other fields, this domain also demands proper management

of resources for efficient jobs execution. As this is a shared infrastructure and

different customers using it in a platform-as-a-Service (PaaS) fashion. Due to a

shared environment, service-level agreement (SLA) between customers and service

providers is becoming an important ingredient to measure customer satisfaction

level (CSL). SLA helps in imposing different constraints like security, quality of

service, pricing, and period of service. At this time, SPEs missing an SLA-based

scheduling mechanism that can improve CSL as well as resource utilization on

Cloud. To address this need, SLA-A3-Storm scheduler to map submitted jobs on

a heterogeneous cluster to enhance resource usage according to end-users budget

in an SLA-aware fashion is presented. End-user selects SLA plan at the time of job

submission which consists of performance-sensitive, standard, and cost-sensitive.

All tasks are positioned according to their communication traffic requiring high

computation power then mapped to nodes with high computing power listed under

the selected SLA plan. This resource-aware assignment ensures better throughput

and optimized resource utilization according to end-user needs. As compared to

the benchmark schedulers, SLA-A3-Storm saves up to 50% in terms of operational

cost with better throughput.

The proliferation of data generated by the Internet in recent years has presented

significant challenges in terms of energy consumption for data processing in com-

putational clusters. These clusters consume energy while executing tasks for data

processing, making energy-efficient scheduling a crucial concern. Efficient task
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scheduling can help minimize energy wastage, and it is important for the sched-

uler to minimize the energy consumption of the cluster while satisfying SLAs,

including deadline constraints. In this paper [77], two energy-efficient schedulers

are proposed to reduce energy consumption in SPEs. The first scheduler focuses

on minimizing the energy consumption of tasks by assigning them to low-energy

consumption nodes. The second scheduler optimizes both load balance and energy

consumption by sorting the slot utilization of low-energy consumption nodes in

the cluster and assigning task priorities to nodes with low slot utilization. While

the proposed schedulers may increase the execution time for different workloads,

it still satisfies SLA conditions and reduces the energy consumption of the cluster.

The results demonstrated that the proposed schedulers reduced energy consump-

tion by up to 32% compared to the benchmark scheduler, while still satisfying the

deadline constraints.

2.2.7 Other Scheduling Algorithms

A scheduling scheme for SDN-based cluster systems is proposed in [78]. SDN

provides a centralized view of the entire network and allows controlled operations

related to packet switching with ease to manipulate large-scale cloud systems.

According to the authors, most of the existing solutions do not consider fine-

grained bandwidth-related information and are unable to utilize the full network

information for scheduling decisions. To address these issues, the authors proposed

an SDN-enabled scheduling scheme called BAHS. The principal idea for the BAHS

is to utilize the information on network interference by incorporating only those

paths resulting in the lowest network interference. To analyze the path interference

or conflicts, the proposed scheme uses the Dynamic Online Routing Algorithm

mechanism. The experiments are performed in a simulated environment called

Mininet with an improved completion time of up to 14.49%. In contrast to this

work, we propose a resource-aware mechanism that considers both computing

and network-related aspects for scheduling decisions. Moreover, we use a real
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stream processing system (i.e., Apache Storm) to implement and demonstrate the

performance as compared to the other state-of-the-art schemes.

In [79], the authors presented a heuristic approach to Cloud resource allocation

and scheduling. The authors combined several approaches such as the Modified

Analytic Hierarchy Process (MAHP), BAR optimization applied to a Bandwidth-

Aware divisible scheduling (BATS), and to address the load imbalance issue longest

expected process time (LEPT) preemption is used along with the divide-and-

conquer methods. For resource allocation and mapping, first, the tasks are ranked

using the MAHP approach. After that, the resources are assigned to the ranked

tasks using Bandwidth-Aware divisible scheduling with BAR optimization. Using

LEPT methods, Virtual machines’ load is checked and an overloaded VM is man-

aged using a divide-and-conquer scheme. The proposed scheduling framework is

evaluated using the CloudSim simulator. In contrast to this work, our proposed

solution is capable of schedule and process real-time stream jobs in a Big-Data

Cloud. Moreover, we use a real stream processing system (i.e., Apache Storm)

to implement and demonstrate the performance in contrast to using a simulated

Cloud environment.

Mortazavi-Dehkordi & Zamanifar [80] proposed a framework, which examines the

topology to determine the output size of its operators for analysis, and partitions.

Different scheduling approaches are applied for each. The operators assigned to

thread computing units and threads that are identified are assigned to processes.

The authors also proposed a scheduler for dynamic environments (offline sched-

ulers). The offline scheduler assigns processes to the available nodes. The purpose

of a scheduler is to reduce the latency and balance the operator workload. How-

ever, the authors did not consider memory in resources.

Stavros Souravlas et al. [81] proposed a method based on pipeline modular arith-

metic (PMOD scheduler), which is based on each node using tuples at the same

time to process only from another node. The scheduler organizes all necessary

operations in a pipelined manner, such as tuple packing, tuple transmission, and

tuple processing. As a result, the overall execution time is decreased compared
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to other approaches. The scheduler maximizes load balancing, but also increases

throughput and minimizes buffer requirements.

The increasing amount of data generated by the Internet of Things (IoT) de-

vices is driving the need for efficient stream processing solutions. SPEs are not

well-suited for edge computing due to the heterogeneity of the computational and

network resources available at the edge. Amnis [82] proposed a new stream pro-

cessing framework designed for edge computing. It first employs a unique data

locality-aware approach to optimize resource allocation and considers the resource

requirements for each operation. It dynamically changing load while scheduling

tasks to further improve performance. Results showed 200 times improvement on

latency and 10 times on the throughput compared to the RA-Storm.

Tianyu Qi et al. [83] introduced a dynamic scheduling strategy based on graph

partitioning and real-time traffic data monitoring. The scheduler monitors the ex-

change rate of a tuple within different communication tasks. Assign tasks accord-

ing to the resource requirements and the traffic pattern to achieve high throughput

and low latency. The proposed approach is a two-level technique. First, the topol-

ogy graph is assigned a weight based on the type of communication. At the second

level, the schedulers find multiple partitions and also find unfeasible partitions, by

these partitions the authors achieve load balancing of the tasks and minimize tu-

ple communication. After identifying the best partition, the scheduler assigns the

tasks in the cluster.

Sun et al. [84] proposed a model to determine the cumulative processing de-

lay (latency) and computing power of each operator and also the similarity of

bolts. The authors also considered bandwidth and the communication latency

between inter-worker communications. The author’s approach also reduces the

overall communication latency by putting the highly communicating tasks into

the same worker and also increases the overall throughput. However, the authors

ignore the I/0 bounds and memory bounds jobs.

This work [85] discusses a learned cost estimation model for Stream Processing

Framework to provide accurate cost predictions for executing queries, enabling
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optimal operator placement. Once trained, the proposed model can predict per-

formance measures such as latency and throughput, even in the presence of run-

time changes. This model can be applied to achieve optimal operator placement,

thereby minimizing latency in unstable environments. Additionally, a zero-shot

cost model is presented, which can handle unseen scenarios and predict different

hardware configurations using a transferable feature representation. The model

is capable of predicting Quality of Service metrics for queries across a vast col-

lection of configurations. The results demonstrate that the proposed model accu-

rately predicts the performance of queries for unknown tasks, even without explicit

training for them.

SPEs are widely used for real-time processing of large data volumes due to their

low latency. Stream joins serve as the basis for SPEs as they analyze data from

multiple sources. However, stream joins face load imbalance issues, where a few

nodes become bottlenecks, resulting in increased latency. To address this issue, an

adaptive non-migrating load-balancing method is proposed [86] based on stream

window join problems. This method monitors load distribution at runtime, con-

trols tuple replication and forwarding through routing tables, and adjusts tu-

ple partitioning to achieve load balancing with minimal overhead. A distributed

stream window join system called NM-Join was built on Flink, based on the pro-

posed method. Experimental results demonstrated reduced latency with increased

throughput compared to static load-balancing methods with modest input skew.

It also adapted to input fluctuations, similar to migration-based methods, while

significantly reducing the overhead of load balancing and processing latency.

SPEs are used to run mission-critical applications for real-time monitoring that

require high throughput to process incoming data in real time. Changes in the

distribution of incoming data can result in partition skew, causing an uneven

distribution of data partitions and sub-optimal processing. To address this issue,

Josip et al. [87] propose a solution that balances the load and reduces network

traffic by ensuring the ideal locality of the data. The proposed solution offers

three modes: first, determining where the join is performed; second, detecting

imbalances; and lastly, adapting to the detected imbalances. It employs modern
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principles to monitor the load, detect imbalances, and dynamically redistribute

partitions to achieve optimal load balance. The proposed solution leverages the

collocation of streaming data while considering the processing load of the join.

The evaluation demonstrated that the dynamic mode effectively manages load

imbalances through dynamic partitioning and load balancing among the workers.

Quick processing with low latency is a critical requirement for big data applica-

tions. However, interferences between tasks can decrease resource utilization and

increase latency. This work [88] focuses on studying an optimal scheduling method

for processing big data applications with reduced interferences. The scheduling

problem was modeled considering multiple factors, such as data items, processing

tasks, computing resources, and internal cores. To address task interferences, a

two-stage scheduling problem is formulated, which examines the causes of inter-

ferences and emphasizes the relationship between the task’s type and execution

using linear regression. The completion time of each node can be estimated. The

proposed scheduler was compared with static, reactive, proactive, and a coarse-

grained scheduler in terms of load balance, resource utilization, and throughput.

The results demonstrated that the proposed scheduler achieved low interference

with high resource utilization.

2.3 Critical Analysis of Related Work

Tables 2.2, 2.4, 2.6, and 2.8 present a summary of the scrutinized scheduling al-

gorithms. The tables contain the scheduling aspects that have been addressed by

those papers. Although different aspects have been investigated in the literature

but here the most widely used aspects are selected. The
√

symbol means the

presence of an aspect in the scheduler. Conversely, × shows that a particular

scheduler does not contain this aspect. Similarly, Tables 2.3, 2.5, 2.7, and 2.9

contain strength and weakness of these algorithms. Moreover, Table 2.10 shows

performance metrics used in the literature by different researchers. Here + sign is
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showing improvement and - sign indicates the other way. For example, +30% for

throughput means that 30% improvement in throughput has been achieved. How-

ever, -20% under the latency heading shows that 20% less latency has occurred.

The Default scheduler allocates tasks without considering inter-task traffic, which

makes a substantial effect on the performance [28]. Additionally, the application’s

computing requirements and communication pattern are ignored by the default

Storm scheduler which causes delays and lower throughput. This issue is ad-

dressed in [28] by proposing a traffic-aware scheduler. The major drawback of this

scheduler is that it reduces inter-node communication; moreover, it also ignores

inter-process communication, which may become a performance bottleneck. To

address the same problem, P-Scheduler [29] is proposed. P-Scheduler has a major

drawback in that it is designed for homogeneous clusters only.

Another problem of the Default Storm Scheduler is that it occupies all the avail-

able resources, regardless of the load which resulted in low resource utilization

and higher computing costs. In [33] above mentioned issue has been addressed;

however, the proposed methodology suffers from a cold start problem. The same

issue is also targeted by [65] but the proposed model does not consider the physical

distance between nodes which may cause a delay due to bandwidth differences.

Another limitation of Default Storm Scheduler is that its topology is static. [56]

provided a solution to this problem by over-provisioning resources. The same prob-

lem is addressed in [25] by presenting AdaStorm but AdaStorm neither considers

network topology nor handles any change in the cluster. While scheduling, the

default scheduler neither considers resource availability in the underlying cluster

nor the resource requirement of Storm topologies. Peng et al. [22] overcome this

issue but their scheduler does not handle run-time topological changes. In [19]

D-Storm is presented to address a similar problem, but it suffers a cold start is-

sue. It is implemented for homogeneous clusters and does not consider the network

topology while scheduling. The Storm scheduler is intended for a homogeneous en-

vironment which may establish performance bottleneck problems. [89] addressed

performance bottleneck issue, but it suffers from a cold start problem. Similarly,
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the network structure is not considered while generating a schedule for a topology

[24, 55].

The detailed critical analysis of the existing research work done in this domain

reveals that the existing scheduling schemes are unable to optimally schedule jobs

on a computational cluster. Therefore, it is desirable to have a dynamic resource-

aware scheduler that can distribute jobs among heterogeneous clusters to achieve

maximum throughput with minimum resources.
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Table 2.10: Performance Metric Used in the Literature.

Reference / Algorithm Name
Performance Metric

Resource Utilization Throughput Latency Time Complexity

Aniello et al. [28] / Offline & Online Scheduler - +30% - Greedy heuristic

Xu et al. [33] / T-Storm - +84% - O(NelogNe +NeNs)

Fischer and Bernstein [35] - +56% - -

Madsen and Zhou [56] / MPSPE - - -20% O(|N| × #checkpoints)

Xue et al. [26] - - -55.90%
O(n3)

NP-Hard

Peng et al. [22] / R-Storm +350% CPU utilization +50% - -

Eskandari et al. [29] / P-Scheduler - - -50% NP-Complete

Fan et al. [17] / Adaptive-Scheduler -3% extra resources used +67% - -

Yangyang Liu [61] / TOSS - +24% -20% O (V + E)

Smirnov et al. [24] - +40% - -

Li and Zhang [31] / TS-Storm - +91% -50% -

Qiann et al. [58] / S-Storm - +1.25 times -18.70% -

Liu et al. [57] / E-Storm - +9 times -9.80% NP-Hard
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Table 2.10 continued from previous page

Reference / Algorithm Name
Performance Metric

Resource Utilization Throughput Latency Time Complexity

Weng et al. [25] / AdaStorm
+15% CPU

+60% Memory
- - O(n2)

Liu and Buyya [19] / D-Storm - +16.25% - O(n2)

Eskandari et al. [16] / T3-Scheduler - +32% - -

Li et al. [30] / DRL-Based framework - +33.50% - -

Gulzar Ahmad et al. [37] / PDWA - +21% - -

Nasiri et al. [32] - +44% - -

Al-Sinayyid and Zhu [15] / MT-Scheduler - +54% -46% Polynomial-time



Chapter 3

The Proposed System and

Schedulers

With extensive literature review, it is revealed that the existing schedulers are

unable to optimally schedule jobs for SPEs. An optimum schedule achieves max-

imum throughput with minimum resources. Therefore, a dynamic resource-aware

scheduler is desirable to distribute jobs among heterogeneous clusters to achieve

maximum throughput with minimum resources. To address this need, a topology-

aware, traffic-aware, and resource-aware system for heterogeneous cluster has been

proposed in this chapter. Moreover, based on this system, four different schedul-

ing schemes (TOP-Storm, A3-Storm, BAN-Storm and Gr-Storm)1 are also

presented to answer the research questions raised in section 1.4.

The proposed system assigns topologies to a heterogeneous cluster to improve re-

source utilization and increase throughput. It maps topologies by contemplating

computational requirements of topologies and computation power of the node in

the cluster. All unassigned executors are arranged either according to their connec-

tivity (represented by DAG) or communication traffic (historical communication of

topology) requiring high computation power. These (frequently communicating)

executors are mapped to a node with high computing power. This resource-aware

assignment ensures higher throughput with better resource utilization.
1https://github.com/asif-muhammad-malik

53
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3.1 System Architecture

The system architecture is depicted in Fig. 3.1. The proposed system consists of

5 major modules:

1. Resource-aware Adaptive Storm Scheduler

2. Network Agent

3. Resource Manager

4. Tune Scheduling

5. Provenance Data

As discussed earlier, the Apache Storm cluster consists of a nimbus and supervi-

sor nodes. The main job of the nimbus is to run the Storm topology. Nimbus

analyzes the topology and collects the tasks to be executed. Next, it distributes

the tasks among the available supervisors. In the proposed system, the Resource-

aware Adaptive Storm Scheduler module is running on the nimbus node. It is a

generic module and in the subsequent sections this module is replaced with four

different schedulers (TOP-Storm, A3-Storm, BAN-Storm, and Gr-Storm). All

four schedulers are using the same architecture as shown in Fig. 3.1.

The Resource-aware Adaptive Storm Scheduler running on the nimbus node

receives input from other modules and makes critical decisions related to a topol-

ogy mapping. After reading required inputs (such as unassigned executors, inter-

executor traffic and executor’s connectivity, etc.), a logical mapping of executors

to slots is prepared which is then forwarded to supervisor nodes for physical map-

ping. Once this mapping is applied, the supervisor nodes start executing the

scheduled topologies.

Network Agent is an important module which is running on each supervisor

node. It provides two different types of information related to each supervisor

node to the Resource Manager module. Mainly, it retrieves and shares hardware
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Figure 3.1: The Proposed System.
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configuration (number of sockets, number of cores, frequency, number of FLOPs,

installed RAM and bandwidth) with the Resource Manager which is used to calcu-

late the computation power of a supervisor node later on. Secondly, the network

agent provides inter-executor traffic information to the Resource Manager. This

information is employed for traffic-based scheduling decisions and is used by the

Tune Scheduling module for making critical decisions related to the execution plan.

This information is stored in a data repository called Provenance Data.

Resource Manager consists of two sub-modules.

a) Configuration Manager, which keeps track of the available supervisor

nodes of the cluster. If a supervisor node joins or leaves the cluster then this

module will update the list of available supervisors. Secondly, this module

also calculates the computation power of each supervisor node in sorted

order for future use.

b) Traffic Manager, logs communication traffic occurring among executors at

the time of topology execution. A list of frequently communicating executors

is generated with the help of this communication log which is used to group

executors to reduce inter-node communication.

Tune Scheduling is a real-time monitoring module which measures how the

streaming application performs under a real workload. With the help of this mod-

ule, adaptiveness in the proposed system is achieved. First using the Provenance

Data, it acquires the computation power of each node. Next, the overall traffic is

calculated based on inter-node, inter-slot, and inter-executor traffic patterns. Con-

sidering the traffic pattern and the resources utilized, it is determined whether any

amendment in the execution plan is required or not. Based on the amendments,

the execution plan (task mapping) is re-adjusted and fine-tuned accordingly.

Another important responsibility performed by the Resource Manager is the

calculation of the computation power of each supervisor node. The computation

power of each node is measured in terms of Floating Point Operations Per Second
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Figure 3.2: Exploring the Speed of Processors: Cycles per Second (Hz) [90].

(FLOPS) which is calculated using Equation 3.1 [91, 92]. To deal with the het-

erogeneity of the computing node, the FLOPS of that node is employed. FLOPS

are used to measure the performance of a processor while clock speed indicates

the speed of a processor that can not define the total number of calculations a

processor can perform in a second. Therefore, FLOPS is a better way of knowing

the throughput of a processor [93].

Processing_Speed = number_of_cores×cycles_per_second×flops_per_cycle

(3.1)

[91, 92]

where number of cores represents the total cores of a processor, cycles per second,

also known as Hertz (Hz), is a unit of frequency that represents the number of

clock cycles a processor can execute in one second (as shown in fig. 3.2). Similarly,

flops per cycle is a measure of how many floating-point operations a processor can

perform in a single clock cycle. To accommodate the computer’s memory resource

as it also plays an important role in processing, Equation 3.2 is devised to highlight

the processing and memory resources in a weighted form.
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Table 3.1: Node Indexing for α Value 0.8

Name CPU (GHz) RAM (GB) FLOPs /Cycle # Cores CPU Index (α=0.8)

Node-D 3.4 12 16 4 1

Node-E 3.2 16 8 8 2

Node-C 3.2 10 16 2 3

Node-B 2.8 8 4 4 4

Node-A 2.4 4 4 4 5

Node-F 2.8 12 4 2 6

ComputationPower = α× Processing_Speed+ (1− α)×RAM (3.2)

3.1.1 Analysis of Adjustment Factor α

In a computing node, installed memory plays an important role. To accommodate

the effect of memory resources, an adjustment factor α with a value of 0.8 for the

proposed scheduling heuristic is employed in Equation 3.2. Different α values from

0 to 1.0 are tried and finally, 0.8 is selected. With α equal to 0.8, the machines

with high computing power are indexed on the top. Similarly, if α is assigned to

0.2 then the machines are indexed with respect to the RAM size.

According to the employed experimental cluster, Node-D represents the most pow-

erful machine in the cluster followed by Node-E. Similarly, Node-E has a maximum

of 16 GB of memory whereas Node-D and Node-F contain 12 GB of memory. If α

is assigned to 0.8 then the Node-D is indexed on top followed by Node-E (resulting

in the desired ordering) as shown in table 3.1.

Similarly, if α is assigned 0.2 then the Node-E is indexed on top of the cluster

followed by Node-D. Considering the memory installed in the cluster nodes, the

node’s indexing seems fair (see Table 3.2). This adjustment factor can plan an
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Table 3.2: Node Indexing for α Value 0.2

Name CPU (GHz) RAM (GB) FLOPs /Cycle # Cores Memory Index (α=0.2)

Node-E 3.2 16 8 8 1

Node-D 3.4 12 16 4 2

Node-C 3.2 10 16 2 3

Node-B 2.8 8 4 4 4

Node-F 2.8 12 4 2 5

Node-A 2.4 4 4 4 6

important role when we have different nature of topologies for example CPU-

bound, Memory-bound etc. For CPU-bound topology, we will assign α to 0.8 and

indexed nodes according to their computing power. The first node from this list

will be consumed and so on. Similarly, α will be assigned to 0.2 for memory-bound

topology.

In the remaining part of this chapter, we will discuss 4 different scheduling algo-

rithms which will be deployed one by one in the Resource-aware Adaptive Storm

Scheduler module.

3.2 TOP-Storm: A Topology-based Resource

aware Scheduler for SPE

To address the first research question given in section 1.4, a topology-based resource-

aware scheduler named TOP-Storm is proposed. The TOP-Storm assigns topolo-

gies to a heterogeneous cluster to improve resource utilization and increase through-

put. The TOP-Storm maps topologies by contemplating the communicational re-

quirements of topologies and the computation power of the node. All unassigned

executors are arranged according to their connectivity (represented by DAG).

Computationally fast machines are used first ensures higher throughput.



Proposed System 60

TOP-Storm consists of two phases:

1. Logical grouping involves the grouping of executors which is done using

DAG. With DAG-based grouping, connected executors are placed together

closer to each other which reduces latency and improves throughput. This

is topology-based scheduling.

2. Physical mapping assigns frequently communicating executors group to a

node based on the node’s computation power (starting from most powerful

to least). In this way, Resource-aware scheduling is achieved. This is an

iterative process until all groups are mapped to nodes.

3.2.1 TOP-Storm Algorithm

For efficient job execution in a topology-based system, a scheduler needs to find

directly communicating executors (longest path), which can be assigned to the

same supervisor node, reducing the inter-node communication. To achieve this,

TOP-Storm uses a heuristic to find such groups to minimize inter-node commu-

nication. These groups are assigned to a supervisor node with relative capacity.

TOP-Storm consists of two main steps:

1. Executor Grouping: Topology’s DAG is used for executor grouping. Con-

nected executors are placed as close as possible. This is done in Algorithm

2, which is explained below.

2. Slot Assignment: Above created groups are assigned to slots. Slots are

assigned starting from the most computationally powerful node. This is

achieved using Algorithm 3, which is discussed below. Table 3.3 listed the

notations used in the TOP-Storm algorithms.

Algorithm 1 is responsible for generating an execution plan based on available re-

sources and connectivity between topology’s executors. It takes unassigned topolo-

gies as input and node-wise executor assignment is the output of this algorithm.
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Table 3.3: List of Notations Used in the TOP-Storm Algorithms

Notations Description

ω Total number of slots required for topology execution

eu All unassigned executors for a topology

ea All assigned executors for a topology

et Total number of executors for a topology

eps Maximum executor per slot

ei Next unassigned executor

es Next unassigned source executor

ed Next unassigned destination executor

eu.Sort Sort all unassigned executors w.r.t. connections in descending order

α Adjustment factor

s All unassigned slots of a node

sa Assigned slot of the current node

si A specific slot of the current node

sn Next free slot of the current node

s.Sort Sort all slots by number of executors in descending order

n All unassigned nodes in the cluster

na Available node in the cluster

ni A specific node in the cluster

ni.GFLOPs Calculate computation power of ith node in GFLOPs

n.Sort Sort unassigned nodes by computation power in descending order
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Algorithm 1: TOP-Storm : Main

1 function TOP-Storm (T )

Input : Unassigned Topologies T
// This function will receive all unassigned topologies as input, which need

to be scheduled

Output: Node-wise executor mapping to cluster’s node
// The output of the function will be the mapping of all executors of

unassigned topologies to the cluster's nodes

2 foreach topology ti ϵ T do
// Iterate through all unassigned topologies one by one

3 HashMap<source, destination> eu = ti.getUnassignedExecutors();
// Get the inter-executor connectivity of all unassigned executors in

the form of source-destination pairs

4 ω = ti.NumWorker;
// Retrieve the required number of worker processes for topology

execution

5 HashMap<slot,executor> slotMap = MapExecutorToSlot(eu, ω);
// Invoke the 'MapExecutorToSlot' function, provide it with the

inter-executor connectivity and the required number of worker
processes as input

6 HashMap<node,slot> nodeMap = MapSlotToNode(slotMap);
// Invoke the 'MapSlotToNode' function, provide it with the executor to

slot mapping as input

7 AllocateSlotsToNodes(nodeMap);
// Finally, physical mapping is handed over to Apache Storm for topology

execution

8 end

As a first step, inter-executor connectivity for all unassigned executors for each

topology is retrieved (line 3). Next, it reads the number of slots (worker process)

to be used for topology execution (Algorithm 1, line 4). For the logical grouping

of executors to a slot, Executor Grouping (Algorithm 2) is used (line 5). Similarly,

for physical mapping of a slot to a node, Slot Assignment (Algorithm 3) is invokes

(line 6). Finally, physical mapping is handed over to Apache Storm for execution

(line 7).
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Algorithm 2: TOP-Storm : Executor Grouping
1 function MapExecutorToSlot (HashMap<source, destination> eu, ω)

Input : HashMap<source, destination> eu, ω
// Inter-executor connectivity details

Output: HashMap<slot,executor> slotMap
// Executor(s) to slot(s) mapping

2 sa = 0;
3 ea = 0;
4 et = eu.Count();
5 eps = Ceiling (et / ω);
6 while eu ̸= null do
7 es = eu.getSourceExecutor();
8 ed = eu.getDestinationExecutor();
9 if es ̸= assigned && ed ̸= assigned then

10 slotMap.add(sa,es);
11 ea++;
12 slotMap.add(sa,ed);
13 ea++;
14 counter = 2;
15 while counter < eps do
16 ek = eu.getFrequentlyInteractingExecutor(es, ed);

// Frequently interacting executor w.r.t. source or destination

17 slotMap.add(sa,ek);
18 ea++;
19 counter++;
20 end
21 sa++;
22 end
23 end
24 if ea < et then
25 counter = 1;
26 while ea < et do
27 ek = eu.getNextExecutor();

// Get next unassigned executor
28 slotMap.add(counter % ω,ek);

// Round-robin assignment
29 ea++;
30 counter++;
31 end
32 end
33 return slotMap
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Figure 3.3: An Example Topology with Inter-executors Connectivity.

Algorithm 2 receives inter-executor connectivity of unassigned executors and the

required number of slots (ω) as input. After processing, algorithm 2 returns the

executor to slot mapping as an output. First, It calculates the maximum executors

to be mapped in a slot by dividing the total number of executors by the required

number of slots (line 5).

Initially, a pair of unassigned executors which are directly connected are selected

from the top of the list and assigned to the current slot (lines 7–14). Then, a

heuristic is used to select the next executor for the assignment. From the unas-

signed list, the executor with the highest interacting frequency with the already

assigned executors is selected and assigned (lines 15–20). This process continues

until the maximum limit per slot is reached. Once this limit reaches then the next

slot will be selected for another iteration (line 21). At the end of this process, if

there are still unassigned executors, then they will be assigned in a round-robin

fashion (lines 24–32).

For a simple case study, consider a topology given in Fig. 3.3 as an example. Here,

Spout A, Spout B, Bolt A, Bolt B, Bolt C, and Bolt D represent the executors of the

topology and arrows represent the connectivity between the executors. Initially,

all these executors are unassigned. With the help of topology’s DAG, we can make

the following pairs (as shown in Table 3.4):
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Table 3.4: Inter-executor Connectivity for Example Topology Given in Figure
3.3

S. # Source Destination

1 Spout A Bolt A

2 Spout A Bolt B

3 Spout A Bolt C

4 Spout B Bolt C

5 Bolt A Bolt B

6 Bolt A Bolt D

7 Bolt B Bolt C

8 Bolt B Bolt D

9 Bolt C Bolt D

As a starting point, Algorithm 2 will select Spout A to Bolt A pair for assignment.

Then with the help of getFrequentlyInteractingExecutor(es, ed), Bolt B will be

selected because of having maximum interaction with already selected executors

(Spout A and Bolt A). Other executors are either connected to Spout A or Bolt A

but Bolt B is the only one which is communicating with both executors. Therefore,

Bolt B will be selected. Now, we have Spout B, Bolt C and Bolt D in the unassigned

list and Spout A, Bolt A and Bolt B are in the assigned list. For the next selection,

Spout B does not have any interaction with already selected executors. That’s why,

Spout B can not be selected. However, Bolt C is connected with Spout A and Bolt

B. Similarly, Bolt D is connected with Bolt A and Bolt B. Therefore, Bolt C and

Bolt D are equal candidates for the next selection. In this way, executors with

different interaction frequencies will be grouped. This process continues until the
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maximum limit per slot is reached.

Once executors are assigned to slots by algorithm 2, the next step is to map these

slots to computing nodes which is done by algorithm 3. Algorithm 3 receives ex-

ecutors to slots mapping as input and produces slots to nodes mapping. First,

algorithm 3 retrieves all supervisor nodes of the cluster and calculates the com-

putation power (in terms of GFLOPs) of each node with the help of equation 3.2

(Algorithm 3, lines 2–14). Heterogenous resource awareness is also handled by this

equation. All nodes in the cluster are ranked in terms of GFLOPs irrespective of

their hardware specifications.

Next, these nodes are sorted in descending order according to their computation

power (lines 15–17). Similarly, slots are sorted in descending order according to the

available number of executors (lines 18–20). Lastly, the slot having the highest

executors is allocated to the most powerful node and so on. Slots are assigned

to a node until all slots are consumed then the next node is used (lines 21–27).

In this way, minimum nodes are utilized for topology execution, and inter-node

communication is also reduced.

Algorithm 3 is responsible for the calculation of the computation power of each

supervisor node. The computation power of each node is measured in Floating

Point Operations Per Second (FLOPS) [94] which is calculated using equation

3.2. To index each node, the FLOPS of that node is used. FLOPS are used to

measure the performance of a processor while clock speed indicates the speed of

a processor. The clock speed can not define the total number of calculations a

processor can perform in a second. Therefore, FLOPS is a better way of knowing

the throughput of a processor [93].

GFLOPs are calculated using equation 3.2 where noOfSockets represents the total

number of sockets on the motherboard, noOfCores represents the total cores of

a processor, and frequency represents the clock frequency of a core (in Hz), and

noOfFlop represents the total number of floating-point operations. To represent

the installed memory, α is used to give weightage to the processing speed as well

as the installed RAM (see details in section 3.1.1).
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Algorithm 3: TOP-Storm : Slot Assignment

1 function MapSlotToNode (HashMap<slot,executor> slotMap)
Input : HashMap<slot,executor> slotMap
// Executor(s) to slot(s) mapping

Output: HashMap<node,slot> nodeMap
// Slot(s) to Node(s) mapping

2 ClusterNode Nodes = ClusterInfo.getNodes();
// Retrieve all nodes of the cluster

3 Set α = 0.8;
// Set α to 0.8 to select compute-intensive nodes

4 foreach Node ni ← Nodes do
// Iterate through all available nodes

5 if ni.FreeSlots > 0 then
// if a node has free slot(s) then calculate its computation power

6 noOfSockets = ni.getSockets();
7 noOfCores = ni.getCores();
8 frequency = ni.getFrequency();
9 noOfFlop = ni.getFlop();

10 RAM = ni.getRAM();
11 ni.GFLOPs = α (noOfSockets x noOfCores x frequency x noOfFlop)

+ (1 - α)RAM;
// α is used to normalize the score
// Equation 3.2

12 na++;
13 end
14 end
15 if na ≥ 2 then
16 n = n.Sort(‘Desc’); // Sort available nodes by computation power,

available slots in descending order
17 end
18 if slotMap.length() ≥ 2 then
19 slotMap = slotMap.Sort(‘Desc’); // Sort mapping by number of executors

in descending order
20 end
21 foreach Slot si ϵ slotMap do
22 if ni.FreeSlots == 0 then
23 ni = n.getNextNode();
24 end
25 nodeMap.add(si, ni);
26 ni.FreeSlots–;
27 end
28 return nodeMap
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3.3 A3-Storm: Topology, Traffic, and Resource-

aware Storm Scheduler for Heterogeneous

Cluster

To answer the second research question given in section 1.4 which is mainly related

to communication traffic of topology, a traffic-aware scheduler named A3-Storm

is presented. This scheduler is an extension of the previously presented TOP-Storm

Scheduler. In this scheme, traffic, as well as the topology structure, is employed

while preparing the execution plan. A3-Storm reads inter-operator traffic and

sorts them in descending order. It starts assigning operators to slot according to

their traffic. For the next executor assignment, traffic communication of unas-

signed executors is compared with assigned executors and the executor with the

highest communication with the already assigned executor is selected. After all

executors assignment to slots, the physical assignment is made starting from the

most powerful machine and so on.

3.3.1 A3-Storm Algorithm

For efficient topology (in the form of a DAG) mapping, the scheduler needs to find

groups of highly communicating executors, which can be assigned to the same or

nearby nodes to reduce inter-node communication costs. Therefore, A3-Storm uses

a heuristic to find groups of different sizes such as inter-group communication is

reduced. Each group can be assigned to a node with relative capacity. A3-Storm

consists of two main steps:

1. Executor Assignment: For executor assignment, topology communication

is used. Frequently communicating executors are placed as close as possible.

This is done in Algorithm 5, which is explained below.
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2. Slot Assignment: Above created groups are assigned to slots. Slots are

assigned starting from the most computationally powerful node. This is

achieved using Algorithm 6, which is discussed below.

Algorithm 4: A3-Storm : Main
1 function A3-Storm (T )

Input : Unassigned Topologies T
// This function will receive all unassigned topologies as input, which need

to be scheduled

Output: Node-wise executor assignment to cluster’s node
// The output of the function will be the mapping of all executors of

unassigned topologies to the cluster's nodes

2 foreach topology ti ϵ T do
// Iterate through all unassigned topologies one by one

3 ω = ti.NumWorker;
// Retrieve the required number of worker processes for topology

execution

4 HashMap<source, destination> eu = ti.getUnassignedExecutors();
// Get the inter-executor traffic of all unassigned executors in the

form of source-destination pairs

5 HashMap<slot,executor> slotMap = MapExecutorToSlot(eu, ω);
// Invoke the 'MapExecutorToSlot' function, provide it with the

inter-executor connectivity and the required number of worker
processes as input

6 HashMap<node,slot> nodeMap = MapSlotToNode(slotMap);
// Invoke the 'MapSlotToNode' function, provide it with the executor to

slot mapping as input

7 AllocateSlotsToNodes(nodeMap);
// Finally, physical mapping is handed over to Apache Storm for topology

execution
8 end

Algorithm 4 presents the detailed steps for the proposed A3-Storm scheduler.

The scheduler is responsible for generating the execution plan based on avail-

able resources and communication traffic (among the executors). The proposed

scheduling algorithm takes as input unassigned topologies and produces the node

to executor mapping.
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Algorithm 5: A3-Storm : Executor Assignment
1 function MapExecutorToSlot (HashMap<source, destination> eu, ω)

Input : HashMap<source, destination> eu, ω
// Inter-executor communication details

Output: HashMap<slot,executor> slotMap
// Executor(s) to slot(s) mapping

1: sa = 0;
2: ea = 0;
3: et = eu.Count();
4: eps = Ceiling (et / ω);
5: if ω == 1 then
6: slotMap.add(sa,eu);
7: sa++;
8: ea = et;
9: else if ω ≥ et then

10: for all e ∈ et do
11: slotMap.add(sa,e);
12: sa++;
13: ea++;
14: end for
15: else
16: eu = eu.Sort(‘desc’);

// Sort executors w.r.t. traffic in descending order
17: while eu ̸= null do
18: es = eu.getSourceExecutor();
19: ed = eu.getDestinationExecutor();
20: if es ̸= assigned && ed ̸= assigned then
21: slotMap.add(sa,es);
22: ea++;
23: slotMap.add(sa,ed);
24: ea++;
25: counter = 2;
26: while counter < eps do
27: ek = eu.getFrequentlyCommunicatingExecutor(es, ed); // Frequently

communicating executor w.r.t. source or destination

28: slotMap.add(sa,ek);
29: ea++;
30: counter++;
31: end while
32: sa++;
33: end if
34: end while
35: end if
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Algorithm 5: A3-Storm : Executor Assignment (Part 2)
1: if ea < et then
2: counter = 1;
3: while ea < et do
4: ek = eu.getNextExecutor();

// Get next unassigned executor

5: slotMap.add(counter % ω,ek);
// Round-robin assignment

6: ea++;
7: counter++;
8: end while
9: end if

10: return slotMap

Initially, it reads the number of worker processes to be used for topology execution

(Algorithm 4, line 3). Inter-executor traffic for all the unassigned executors is

retrieved from the traffic log (line 4). For logical mapping of the executors to a

slot, Executor Assignment (listed as Algorithm 5) is invoked (Algorithm 4, line

5). Similarly, for physical mapping of a slot to a node, Slot Assignment (listed

as Algorithm 6) is invoked (Algorithm 4, line 6). Finally, physical mapping (i.e.,

slot—node) is handed over to Apache Storm for execution (line 8).

Algorithm 5 inputs inter-executor traffic (communication) (eu) and the number of

worker processes (ω) to determine executor(s) to slot(s) mapping. (eu) represents

the inter-executor traffic for all the unassigned executors which is retrieved from

the traffic log (Provenance Data module). (eu) plays an important role in traffic-

aware executor(s) to slot(s) mapping.

As a first step, Algorithm 5 calculates the maximum executors to be mapped in a

worker process (line 4). It checks the desired number of worker processes for job

scheduling (by default = 1). In this case, all executors will be assigned to a single

slot (Algorithm 5, lines 5-8). Alternatively, if the user specifies that the number

of worker processes is equal to the number of executors, then each worker process

will contain a single executor (lines 9–14).
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In the end, if the number of worker processes is less than the total executors,

then executors will be assigned in the following manner. Executors are sorted in

descending order with respect to their communication-related traffic (line 16).

A pair of unassigned executors are selected from the top of the list and as-

signed to the current slot (lines 18–25). For the selection of the next executor,

getFrequentlyCommunicatingExecutor(es,ed) will be invoked. In this method, a

heuristic is used to select the next executor for the assignment. From the unas-

signed list of executors, an executor with the highest communication granularity

(with already mapped executors) is selected and scheduled (lines 26–32). During

this selection, all in-bound and out-bound traffic is considered.

For a case study, consider topology t in Fig. 3.4 as an example. Here, A, B, C,

D, E, and F represent the executors of the topology and the numbers on the edge

of the topology DAG represent the communication traffic between the executors.

Inter-executor traffic for all the unassigned executors is retrieved from the traffic

log (Algorithm 4, line 4) as shown in Table 3.5.

As described in Algorithm 5 at line 16, the unassigned executors are sorted in

descending order with respect to their communication traffic (as shown in Table

3.6). Then a pair with the highest communication traffic is selected from the list.

In this case, B and E will be selected first because of having maximum traffic.

Next, with the help of getFrequentlyCommunicatingExecutor(es,ed), D will be

Figure 3.4: An Example Topology with Inter-executor Communication Traffic.



Proposed System 73

Table 3.5: Inter-executor Communication Traffic for Topology Given in the
Figure 3.4

S. # Source Destination Traffic

1 A B 6

2 A D 1

3 B C 7

4 B E 9

5 C F 2

6 D E 8

7 E F 7

selected because of having maximum communication traffic with already selected

executors (B or E). Now, B, D, and E are selected.

For the next selection from unassigned executors, C and F both have traffic com-

munication of value 7 with already selected executors. Therefore, both are equal

candidates for selection. This process continues until the maximum limit per slot

is reached (lines 27–31). In this way, executors with high communication traffic

are grouped and placed in the same slot which increases intra-slot traffic and re-

duces inter-slot traffic. Finally, if there are still unassigned executors, then they

will be assigned in a round-robin fashion among the unassigned slots (Part 2, lines

1-9).

Once executors are assigned to slots, the next step is to map slots to the comput-

ing nodes. First, Algorithm 6 fetches all nodes of the cluster and calculates the

computation power (in terms of GFLOPs) for each node (if it has free slots) using

Equation 3.2 (Algorithm 6, lines 4–12). Equation 3.2 handles the heterogeneity of

resources too. All nodes in the cluster are ranked in terms of GFLOPs irrespective

of their hardware specifications. The nodes are sorted in descending order accord-

ing to their computation power (line 16). Similarly, slots are sorted in descending
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Table 3.6: Sorted Inter-executor Traffic for Example Topology Given in Figure
3.4

Source Destination Traffic Index

B E 9 1
D E 8 2
B C 7 3
E F 7 3
A B 6 4
C F 2 5
A D 1 6

order according to their inter-executor traffic (line 19).

Finally, the slot with the highest communication is mapped to the most powerful

node, and so on. Instead of a round-robin fashion, a node-wise assignment is

performed. Slots are assigned to node until all slots are consumed then the next

node is used (lines 21–27). In this way, minimum nodes are utilized for topology

execution, and inter-node communication is reduced. The complete flowchart for

the A3-Storm scheduler is illustrated in Fig. 3.5.

3.4 BAN-Storm: A Bandwidth-aware Schedul-

ing Mechanism for Stream Jobs

The essential component of a stream processing system is the processing framework

responsible for crunching the data. To cope with the growing computing demands

of real-time streaming applications, researchers have proposed several computing

frameworks. The core of the computing frameworks i.e., the scheduling mech-

anisms for real-time stream processing need to accommodate several important
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Algorithm 6: A3-Storm : Slot Assignment
1 function MapSlotToNode (HashMap<slot,executor> slotMap)

Input : HashMap<slot,executor> slotMap
// Executor(s) to slot(s) mapping

Output: HashMap<node,slot> nodeMap
// Slot(s) to Node(s) mapping

2 ClusterNode Nodes = ClusterInfo.getNodes();
3 Set α = 0.8;
4 foreach Node ni ← Nodes do
5 if ni.FreeSlots > 0 then

// if a node has a free slot then calculate its computation power

6 noOfSockets = ni.getSockets();
7 noOfCores = ni.getCores();
8 frequency = ni.getFrequency();
9 noOfFlop = ni.getFlop();

10 RAM = ni.getRAM();
11 ni.GFLOPs = α (noOfSockets x noOfCores x frequency x noOfFlop)

+ (1 - α)RAM; // α is used to normalize the score
// Equation 3.2

12 na++;
13 end
14 end
15 if na ≥ 2 then
16 n = n.Sort(‘Desc’);

// Sort available nodes by computation power, available slots in
descending order

17 end
18 if slotMap.length() ≥ 2 then
19 slotMap = slotMap.Sort(‘Desc’);

// Sort mapping by total inter-executor traffic in descending order
20 end
21 foreach Slot si ϵ slotMap do
22 if ni.FreeSlots == 0 then
23 ni = n.getNextNode();
24 end
25 nodeMap.add(si, ni);
26 ni.FreeSlots–;
27 end
28 return nodeMap
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Figure 3.5: The A3-Storm Scheduler’s Flowchart.
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aspects such as incorporating resource awareness, heterogeneity of the computing

resources, load balancing, etc. These aspects contribute significantly to the at-

tained performance of the stream processing frameworks. Therefore, ignoring any

one of these aspects may lead to degraded performance.

The mechanism employed by stream processing frameworks is normally based on

round-robin scheduling. The round-robin approach considers all the computing

nodes for mapping tasks. As it is a fair scheduler (equally assigning the workload

across the supervisor nodes in a cluster) therefore inter/-node/-process communi-

cation is not considered which adversely impacts the performance (especially in

heterogeneous computing architectures). Using fair-scheduling to map stream jobs

equally to all cluster nodes produces degraded performance and induces commu-

nication latencies [17, 31, 89].

As most of the large parallel machines (such as compute clusters and Cloud) are

heterogeneous; therefore, the round-robin scheduling mechanism may cause load

imbalance as well. As a result, researchers proposed resource-aware scheduling

mechanisms [16, 19, 25, 34, 95] to address the issue. But most of these algorithms

consider only CPU and memory as resources ignoring the important aspect of

bandwidth. To address this need, a scheduling technique called BAN-Storm

is proposed that builds upon A3-Storm [20] considering bandwidth as an addi-

tional aspect of scheduling. In BAN-Storm, the physical mapping is performed

based on the node’s computation power which includes FLOPs, memory as well

as bandwidth.

3.4.1 BAN-Storm Scheduler

The BAN-Storm scheduler generates an execution plan for a stream processing

job to increase throughput and improve resource utilization. This is achieved with

the help of historical communication of topology and the available computation
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power of the cluster. Frequently communicating tasks are mapped closely. The

BAN-Storm scheduling mechanism consists of two phases:

a) Logical grouping: For the task grouping, the topology’s traffic is moni-

tored and used for mapping-related decision-making. Frequently communi-

cating tasks are scheduled closely as shown in Algorithm 7;

b) Physical grouping: The groups identified in Step 1 are then assigned to the

cluster, starting from computationally powerful nodes as listed in Algorithm

8.

Algorithm 7 generates the execution plan considering the cluster’s computing re-

sources and historical communication data between the tasks. The algorithm

receives unscheduled topology its type along the required worker processes for

topology execution and produces the execution plan as an output. Firstly, all

unassigned executors with their communication are retrieved from the Provenance

data module (i.e., Algorithm 7, line 1). The maximum tasks which can be sched-

uled for a worker process are calculated (Algorithm 7, line 6) then tasks are sorted

in decreasing order considering the amount of communication traffic (Algorithm

7, line 7). An unassigned task pair is retrieved from the sorted list and added to

the current group (lines 10–14). To select the next unassigned task for assignment,

getMaxTrafficExecutor() is invoked which implements a mechanism for this. From

the remaining list, the tasks which are involved in a high number of communica-

tion events are selected and grouped (lines 16–22). All inbound and outbound

communication is measured during this process. This is an iterative process and is

continued until the maximum limit as shown in Algorithm 7 (lines 16–22). Finally,

the unassigned tasks are assigned using a round-robin fashion (lines 26–37).

For the physical assignment of selected groups to a cluster’s node, Physical Group-

ing (see Algorithm 8) is invoked (see Algorithm 7, line 38). Lastly, the physical

mapping is passed to the Apache Storm framework for execution (Algorithm 7,

line 40).
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Algorithm 7: BAN-Storm : Logical Grouping
Input: topology, topologyType, workerProcess
Output: physicalMap

1 unassignedExecutors ← getExecutors(topology);
2

3 assignedSlots = 0;
4 assignedExecutors = 0;
5 totalExecutors = unassignedExecutors.Count();
6 executorPerSlot = Ceiling (totalExecutors / workerProcess);
7 unassignedExecutors = unassignedExecutors.Sort(‘desc’);
8

9 while unassignedExecutors ̸= null do
10 sourceExecutor = unassignedExecutors.getSourceExecutor();

destinationExecutor = unassignedExecutors.getDestinationExecutor();
11

12 if sourceExecutor ̸= assigned && destinationExecutor ̸= assigned then
13 executorMap.add(assignedSlots, sourceExecutor);

executorMap.add(assignedSlots, destinationExecutor);
assignedExecutors = assignedExecutors + 2;

14 counter = 2;
15

16 while counter < executorPerSlot do
17 e = getMaxTrafficExecutor(sourceExecutor, destinationExecutor);
18 executorMap.add(assignedSlots, e);
19

20 assignedExecutors++;
21 counter++;
22 end
23 assignedSlots++;
24 end
25 end
26 if assignedExecutors < totalExecutors then
27 counter = 1;
28

29 while assignedExecutors < totalExecutors do
30 e = unassignedExecutors.getNextExecutor();
31

32 executorMap.add(counter % workerProcess, e);
33

34 assignedExecutors++;
35 counter++;
36 end
37 end
38 physicalMap = Physical_Mapping(executorMap, topologyType);
39

40 return physicalMap;
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Algorithm 8: BAN-Storm : Physical Mapping
Input: executorMap, topologyType
// This function will receive executors to slots mapping and topology type

as input

Output: physicalMap
// Physical mapping will be the output of this function

1 ClusterNode Nodes = ClusterInfo.getNodes();
2 // Fetch details of all available nodes of the cluster

3 α = Get_Value(‘Alpha’, topologyType);
// Read α value based on topology type

4 β = Get_Value(‘Beta’, topologyType);
// Read β value based on topology type

5 γ = Get_Value(‘Gamma’, topologyType);
// Read γ value based on topology type

6

7 foreach node ∈ Nodes do
8 node.FLOPS = node.getCores() × node.getFrequency() ×

node.getFLOPs();
9 // Equation 3.1

10 node.power = α × node.FLOPS + β × node.getRAM() + γ ×
node.getBandwidth();

11 // Equation 3.3
12 end
13

14 Nodes = Nodes.Sort(‘Desc’);
15

16 executorMap = executorMap.Sort(‘Desc’);
17

18 foreach e ∈ executorMap do
19 physicalMap.add(e, n);
20 n.FreeSlots = n.FreeSlots - 1;
21

22 if n.FreeSlots = 0 then
23 n = Nodes.getNextNode();
24 end
25

26 end
27

28 return physicalMap
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Once the tasks are logically grouped then the next step is to map these groups to

the computing nodes. As a first step, all computing nodes of the cluster are re-

trieved (line 1). Based on the topology type, values for α, β, and γ are determined

with the help of Algorithm 9 (lines 3-5) to be used in Equation 3.3. To index each

node, the Floating Point Operations Per Second (FLOPS) [94] of that node is em-

ployed [91] which is a better way of expressing the throughput of a processor [93]

(Algorithm 8, line 8). To accommodate other resources, Equation 3.3 is devised

to highlight the system memory and bandwidth resources in a weighted form (line

10).

NodePower = (α×Processing_Speed)+(β×DRAM)+(γ× bandwidth) (3.3)

In the next step, the cluster resources are ranked and sorted in descending order

according to their computation power irrespective of hardware specifications (see

Algorithm 8, line 14). Similarly, the selected groups are sorted in descending order

with respect to their communication pattern (Algorithm 8, line 16). Now, the last

step is to map the selected groups to the computing nodes. The group having

maximum traffic is assigned to the most powerful machine (line 19). The process

continues until all slots of a given node are mapped then the next node is used

(Algorithm 8, lines 22–24). This ensures the minimum number of nodes utilization

for topology execution.

3.4.2 Value Selection for α, β, γ

In a heterogeneous cluster, different computational resources (for example CPU,

RAM, Bandwidth, etc.) have a different effect on the overall performance of the

system. To accommodate this effect, α, β, and γ are employed for the proposed

scheduling heuristic (Algorithm 8, line 10). We have different topology types in

Apache Storm for example CPU-bound, Memory-bound, IO-bound, and Network-

bound. Nodes participating in the execution of any topology should be selected
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Algorithm 9: BAN-Storm : Get Alpha, Beta and Gamma Values
Input: valueType, topologyType
/* Value type and topology type as input */

Output: value

1 if valueType = ‘Alpha’ AND topologyType = ‘CPU-Bound’ then
2 return 0.5;
3 else
4 if valueType = ‘Beta’ AND topologyType = ‘Memory-Bound’ then
5 return 0.5;
6 else
7 if valueType = ‘Gamma’ AND topologyType = ‘Network-Bound’ then
8 return 0.5;
9 else

10 return 0.25;
11 end
12 end
13 end

concerning the running topology type. To achieve this, α, β, and γ are used in

equation 3.3 to index the computing nodes according to the need of the executing

topology (Algorithm 9). Like, in a heterogeneous cluster different nodes may

be suitable for different topologies i.e., compute-intensive, memory-intensive and

bandwidth-intensive etc. So, by employing α, β, and γ values, we want to list

down the cluster’s computing nodes in sorted order with respect to the type of

topology. After that, a one-by-one node from the top of the list will be consumed

for topology execution.

Some suitable values for α, β, and γ are required for equation 3.3 to work. In this

regard, different values from 0.1 to 1.0 are tried. For example, consider a cluster of

five computing nodes presented in table 3.7. The number of cores, cycles per sec-

ond, floating-point operations per cycle, GFLOPS, RAM and bandwidth are given

in this table. Different values are used to depict a heterogeneous environment.

Any value between 0 to 1 can be assigned to α, β, γ. After some trial and error,
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Table 3.7: Available Computing Nodes for Indexing

Name Cores Cycles
/second

FLOPs
/Cycle GFLOPS

RAM
(GBs)

Bandwidth
(Mbps)

Node A 4 2.8 2 22 12 100

Node B 4 2.4 2 19 12 100

Node C 2 2.2 2 9 16 100

Node D 2 2 1 4 20 100

Node E 2 1.8 1 4 24 100

we analyzed that with α equal to 0.5, the nodes with high computing power are

indexed on the top. So, if we have a compute-intensive topology for scheduling,

we require computing nodes with high computational power. In such a scenario,

we will assign α to 0.5, and as a result, nodes will be ranked according to their

processing capability as shown in table 3.8.

Similarly, if we consider a memory-intensive topology and intend to index com-

puting nodes based on their installed memory, we can assign a value of 0.5 to β.

Consequently, the machines will be indexed according to their installed memory,

Table 3.8: Computing Node Indexing for α = 0.5.

Name Cores Cycles
/second

FLOPs
/Cycle GFLOPS

RAM
(GBs)

Bandwidth
(Mbps)

using
equation

3.3
(α = 0.5)

Node A 4 2.8 2 22 12 100 39

Node B 4 2.4 2 19 12 100 38

Node C 2 2.2 2 9 16 100 33

Node E 2 1.8 1 4 24 100 33

Node D 2 2 1 4 20 100 32



Proposed System 84

Table 3.9: Computing Node Indexing for β = 0.5.

Name Cores Cycles
/second

FLOPs
/Cycle GFLOPS

RAM
(GBs)

Bandwidth
(Mbps)

using
equation

3.3
(β = 0.5)

Node E 2 1.8 1 4 24 100 38

Node A 4 2.8 2 22 12 100 37

Node B 4 2.4 2 19 12 100 36

Node D 2 2 1 4 20 100 36

Node C 2 2.2 2 9 16 100 35

as shown in table 3.9.

Moreover, for a bandwidth-intensive job, if γ is set to 0.5, machines will be in-

dexed based on available bandwidth connectivity. For more details, refer to table

3.10, which provides an example of computing node indexing based on bandwidth-

intensive topology type. When we assign 0.5 to either α, β or γ, the remaining two

are assigned a weightage of 0.25 each. Therefore, we assign different weightages

to GFLOPS, RAM, and bandwidth to index nodes accordingly.

Table 3.10: Computing Node Indexing for γ = 0.5.

Name Cores Cycles
/second

FLOPs
/Cycle GFLOPS

RAM
(GBs)

Bandwidth
(Mbps)

using
equation

3.3
(γ = 0.5)

Node A 4 2.8 2 22 12 100 59

Node B 4 2.4 2 19 12 100 58

Node E 2 1.8 1 4 24 100 57

Node C 2 2.2 2 9 16 100 56

Node D 2 2 1 4 20 100 56
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3.5 Gr-Storm: A Graph Algorithm-based Job

Scheduler for Stream Processing Engines

A data stream is a continuous flow of data generated by a variety of applications,

for example, e-commerce applications, utility services, location updates, log files,

stock exchange data, blockchains, etc. Processing of real-time streaming data

applications demands ever-increasing processing (computational and communica-

tion) power. Multiple machines combined in a distributed fashion with appropriate

tools to process the continuous data generated by many sources, is an econom-

ical way. The execution of continuous data streams on a cluster of distributed

computing elements can be handled by SPEs [10]. SPEs have rapidly evolved in

the last two decades with several SPE prototypes being adopted by the industry,

for example, Apache Storm [4], Apache Spark Streaming [96], Apache Flink [97],

Apache Heron [7], etc. One of the important responsibilities of SPEs is how to

schedule the processing tasks on computing nodes to process the streams with

near-optimum utilization of the available resources with maximized throughput

and minimized latency.

Different SPEs modelled a data stream application as DAG which represents the

processing tasks and communication between these tasks required to complete the

DSP application [11]. This abstraction layer helps a scheduler to understand how

to place these tasks on multiple processing elements [66]. To schedule these tasks

optimally, graph partitioning algorithms are being used in research [16, 29, 31, 34–

38] to place frequently communicating components of the DAG closer to each other

to reduce latency which may improve overall throughput, too. But most of them

[35, 37, 57, 58, 61] are either resource-unaware or non-adaptive. As a result, it is

difficult to decide on the power of cluster resources. Similarly, some techniques

[24, 35, 37, 58] are proposed for homogenous clusters only and are unable to assign

workload according to the node’s computing power (heterogeneity).
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In recent years, resource-aware schedulers [15, 19–22, 25, 26] are also proposed

which are either non-adaptive or static in nature and can not accommodate real-

time (dynamic) changes. Moreover, CPU, Memory, and bandwidth are considered

a resource by existing resource-aware schedulers, however, they do not truly rep-

resent the computation power of a node [93]. To address these issues, we present

Gr-Storm: A Graph algorithm-based job scheduler for Stream Processing En-

gines (Apache Storm) which assigns frequently communicating DAG components

closer to each other such that minimum nodes are employed for job execution.

3.5.1 Max-flow Min-cut Algorithm

Since we implemented Gr-Storm using the Max-flow min-cut algorithm [53], we

briefly introduce it here. The Max-flow min-cut theorem states that in a flow

network, the largest amount of flow passing from the source to the sink is equal

to the total weight of the edges in the minimum cut. A cut is a division of the

vertices of the network into two parts, with the source in one part and the sink

in the other. For example, a network having a value of the flow of 7 is shown in

Fig. 3.6. The mark on each arrow, in the form x/y, shows the flow (x) and the

capacity (y). The flows coming from the source total seven (4+3=7), as do the

flows into the sink (3+4=7).

The vertex in white and grey form the subsets S and T of an s-t cut, whose cut-set

holds the dashed edges. The capacity of the s-t cut is 7, which equals the value

of flow. The theorem says that the value of flow and the capacity of the s-t cut

are both optimal in this network. The flow through each of the dashed edges is

at full capacity. By contrast, there is spare capacity in the right-hand part of the

network. If there were no flow between nodes 1 and 2, then the inputs to the sink

would change to 4/4 and 3/5 with the total flow remaining 7. But, if the flow from

node 1 to node 2 were doubled to 2, then the inputs to the sink would change to

2/4 and 5/5 which is still seven [53]. With the help of this algorithm, Gr-Storm

partitions the application’s DAG when needed. If an application is needed to be

scheduled on 2 nodes, then DAG is divided into 2 sub-graphs.
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Figure 3.6: Example [53].

3.5.2 Gr-Storm Scheduler

The Gr-Storm scheduler maps Storm topology (weighted acyclic graph of compu-

tation) on a heterogeneous cluster with improved resource utilization and increased

throughput. Gr-Storm maps computational requirements (processing and commu-

nication requirements) of a topology on the available network of workers (with a

given processing and communication power) in an optimal way to maximize the

average throughput per node of the cluster against the given topology.

Gr-Storm schedule the jobs in two phases:

1. The first phase, termed Graph Partitioning, formulates a weighted di-

rected acyclic graph (W-DAG) from the topology with intra-executors (spouts

and bolts) communication requirements. The graph is then processed by the

max-flow min-cut algorithm [53] which gives us limiting communication

links in the network and maximum flow which can be achieved with the

limiting links. The limiting links can then be used to distribute the group

of executors between different workers of the cluster. Groups of frequently

communicating executors can be assigned to the same or nearby workers to

reduce inter-worker communication costs.

2. The second phase, Physical Mapping, intelligently maps to a pool of work-

ers by assigning all the groups of executors to a worker based on the worker’s

computation power (starting from most powerful to the least) and reduced



Proposed System 88

communication needs as per the modelled W-DAG. A group with maximum

processing requirements can be assigned to a worker with higher computa-

tional power.

Algorithm 10 is a driver program for the proposed Gr-Storm scheduler. The algo-

rithm gets unassigned jobs as input and produces the physical map for scheduling.

Initially, with the help of the topology’s code, the topology’s DAG is retrieved

(line 2). Inter-executor traffic is retrieved from the Provenance Data to generate

modelled DAG (line 3) as W_DAG.

For Graph partitioning of the executors, W_DAG is passed to Max-flow_Min-cut

[53] (line 4). Finally, Map_Partitions_To_Workers is invoked for the physical

mapping of partitions to workers (line 5).

Algorithm 10: Gr-Storm Scheduler

Input: Unassigned Topologies (T[ ])

Output: Topologies to Cluster Nodes Physical Mapping

1 while all t in T [ ] are not assigned do
2 DAG ← get_Topology_DAG(t)

3 W_DAG ← get_Modeled_DAG(DAG)

4 Graph_Partitions ← max-Flow_Min-Cut(W_DAG)

5 Physical_Mapping ← map_Partitions_To_Workers(Graph_Partitions)
6 end
7 return Physical_Mapping

After the executor’s partitioning into groups, the next step is to map these parti-

tions to workers which is performed by Map_Partitions_To_Workers (as shown

in algorithm 11). Map_Partitions_To_Workers after retrieving the cluster’s node,

calculates the computation power in Floating Point Operations Per Second (FLOPS)

for each node using Equation (3.1)(lines 2–6). As a result, all computing nodes are

ranked in terms of FLOPS irrespective of their hardware specifications to handle
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heterogeneity [91]. FLOPS define the total number of calculations a processor can

perform in a second [93].

Algorithm 11: Gr-Storm : Map Partitions to Workers
Input: Graph Partitions
Output: Physical Mapping

1 ClusterNode Nodes ← ClusterInfo.getNodes()

2 foreach n ∈ Nodes do
3 cores ← n.getCores()
4 frequency ← n.getFrequency()
5 flops ← n.getFLOPs()
6 n.GFLOPS ← cores × frequency × flops

// Equation 3.1
7 end

8 Nodes ← Nodes.Sort(‘Desc’)

9 Graph_Partitions ← Graph_Partitions.Sort(‘Desc’)

10 foreach p ∈ Graph_Partitions do
11 if n.FreeSlots equals to 0 then
12 n = Nodes.getNextNode()
13 end
14 Physical_Mapping.add(p, n)
15 decrement n.FreeSlots to 1
16 end
17 return Physical_Mapping

After FLOPS calculation, the nodes are sorted in descending order with respect

to their computing capacity (line 8). As a result, nodes with the highest FLOPS

value will come on the top. Also, graph partitions are sorted in descending order

according to their inter-executor communication (line 9). Similarly, the graph

partition having the highest communication traffic will be on the top of the list.

In the end, the partition with the highest communication traffic (first element

from the list) is assigned to the most powerful worker (first entry from the list).
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Figure 3.7: An Example Topology with Inter-executor Communication Traffic
for Gr-Storm.

Partitions are allocated to workers (line 14), once all workers are used then the

next machine is occupied (lines 11–13). With this approach, minimum machines

are used, and inter-machine communication is also decreased.

To demonstrate how the Gr-Storm algorithm partitions a topology’s weighted

DAG, consider an example topology t in Fig. 3.7. Spout A, B and Bolt A, B,

C and D represent the executors of the topology and the numbers on the edge

of the topology DAG represent the communication traffic between the executors.

For Graph partitioning of the executors, W_DAG is passed to Max-flow_Min-cut

[53] (line 4).

Fig. 3.8 shows different possible options available for graph partitioning. Ac-

cording to Max-flow Min-cut algorithm [53], a minimum cut should be applied to

partition the graph having maximum flow. The total flow of the graph is 35 from

source to sink. If we break the group with 47 data flows then we have to apply 5

cuts. Only the right most cut with 35 value is fulfilling the algorithm constraints

with 3 cuts. All other lines either contain less flow or more cuts. Therefore, we will

place Bolt D in one partition and the remaining executors in another partition.
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Figure 3.8: Graph Partitioning Example of Max-flow Min-cut Algorithm.

3.6 Comparison of the Proposed Schedulers

Contemplating the highlighted research gaps, a traffic-aware and resource-aware

job scheduling system for SPE in a heterogeneous environment is proposed in this

chapter. Based on the proposed system, 4 different dynamic scheduling algorithms

using topology’s DAG and supervisor node computing power are presented to

achieve high throughput and maximize resource provisioning. For ease of reader, a

discussion related to comparing the variants of the proposed schedulers is presented

in Table 3.11.

• TOP-Storm finds the maximum number of executors that can be placed in

a single worker process using the executor’s connectivity from the topology’s

DAG. Based on this connectivity, the longest path is calculated and assigned

to the most powerful computing machine in the heterogeneous cluster.

TOP-Storm consists of two phases:

1. Logical grouping involves the grouping of executors which is done

using DAG.

2. Physical mapping assigns frequently communicating executors group

to a node based on the node’s computation power starting from most

powerful to least.
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Table 3.11: Comparison of the Proposed Schedulers

Algorithm Name Scheduling Mechanism

TOP-Storm
Logical grouping involves DAG-based grouping of executors.

Physical mapping based on communication and computation power.

A3-Storm
Logical grouping: Traffic, as well as the topology’s DAG, is employed.

Physical mapping same as TOP-Storm.

BAN-Storm
Logical grouping same as A3-Storm.

Physical mapping relies on bandwidth, FLOPs, and installed memory.

Gr-Storm
Logical grouping: Max-flow min-cut algorithm partitions executors.

Physical mapping same as A3-Storm.

The time complexity of first phase is O(eu × eps) where eu is all unassigned

executors for a topology and eps is maximum executors per slot. For second

phase, time complexity is O(n) where n is the number of unassigned nodes

in the cluster. The overall time complexity to generate a scheduler for a

given topology t will be O(eu × eps) + O(n).

• A3-Storm is an extension of TOP-Storm Scheduler. In this scheme, traf-

fic, as well as the topology structure, is employed while preparing the ex-

ecution plan. A3-Storm reads inter-executor traffic and sorts them in de-

scending order. It starts assigning executors to the worker process according

to their traffic. For the next executor assignment, traffic communication of

unassigned executors is compared with assigned executors and the executor

with the highest communication with the already assigned executor is se-

lected. After all executors assignment to slots, the physical assignment is

made starting from the most powerful machine and so on. The time com-

plexity for A3-Storm is same as TOP-Storm because of the fact that only

communication traffic has been introduced which will take constant time

O(1).

• BAN-Storm is an extension of A3-Storm in which logical grouping re-

mains same but the physical mapping is performed based on the node’s

bandwidth along FLOPs and installed memory. The time complexity for
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BAN-Storm is similar to A3-Storm because both are sharing same logical

grouping phase and bandwidth is employed int he physical mapping phase.

• Gr-Storm further extends A3-Storm scheduler. The first phase formu-

lates the topology’s DAG with intra-executor computation requirements and

inter-executor communication requirements to generate a modelled DAG,

which is then given to the max-flow min-cut algorithm to produce a par-

titioned graph of executors. The second phase which belongs to physical

mapping remains same.

The logical grouping phase of Gr-Storm is based upon max-flow min-cut

algorithm. The worst-case time complexity for finding the maximum flow

and minimum cut in a flow network is O(V E2), where V is the number of

nodes and E is the number of edges in the network. The algorithm may

need to run E iterations to find the maximum flow, and in each iteration, it

needs to find an augmenting path from the source to the sink. For second

phase, time complexity is O(n) where n is the number of available nodes in

the cluster. Therefore, the overall time complexity for a given topology t

will be O(V E2) + O(n).



Chapter 4

Experimental Evaluation and

Results

This chapter describes the experimental setup including software/hardware con-

figurations, three benchmarked scheduling heuristics (employed for experimental

evaluation), and the two topologies used to evaluate the system throughput and

resource usage for each experimented scheduler.

4.1 Experimental Setup

A real heterogeneous Apache Storm cluster is configured with one nimbus node,

one ZooKeeper node, and nine supervisor nodes to evaluate the performance of the

proposed schedulers. Ubuntu 19.04 64-bit is installed on each node with network

connectivity of either 100 or 1000 Mb/s. Each node has a Java OpenJDK 13 exe-

cuting on top of the Ubuntu operating system and uses Apache Storm 2.0.0 as the

base framework orchestrated by Apache Zookeeper 3.4.13, with dependent libraries

i.e., zeromq 4.3.2 and JZMQ 3.1.1 Python 3.7.3 used for scripting purposes.

A heterogeneous system configuration has been adapted that comprises high-

capacity nodes (in terms of computation) equipped with 8 cores whereas the low-

capacity nodes have 4 cores. This configuration is used to achieve heterogeneity.

94



Experimental Evaluation and Results 95

As a fair comparison, the proposed schedulers are built as an extension of Apache

Storm 2.0.0 and the comparable approaches (default scheduler, resource-aware

scheduler, and isolation scheduler) are also directly extracted from this release.

Table 4.1 contains experimental environment hardware configurations. In this

table, the first column is representing the name of the machine followed by the

installed processor on that machine. In the next column, floating point operations

per cycle are written. GFLOPs are calculated with the help of equation 3.1 which

requires number_of_cores, cycle/second which is the clock frequency of a core (in

Hz), and flops/cycle. RAM installed on each node is also mentioned here because

it can play an important role in topology execution. That’s why equation 3.2 is

devised to highlight the installed RAM on each node. Next, the computation power

of each node is calculated based on the output of the equation 3.1 and installed

RAM. As a result, a numeric value is received which helps in assigning an index

number to each node. This index number is used later on at the time of task

assignment. A smaller number represents more powerful nodes as compared to a

larger number. During task assignment, nodes with a smaller number are used first

which ensures the usage of powerful nodes as compared to less powerful nodes to

achieve better throughput. The main reason for this selection is that in a dedicated

cluster with different computing nodes selection of more powerful nodes ultimately

enhances throughput. This node selection technique is a major difference between

the proposed schedulers and the state-of-the-art schedulers (default scheduler and

isolation scheduler).

4.2 Benchmarked Scheduling Heuristics

The Apache Storm ships with multiple schedulers [98] for example Default Sched-

uler, Isolation Scheduler, Resource-aware Scheduler, and Multitenant Scheduler.

The first three follow single-tenant architecture while the last one uses multitenant
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architecture. Multitenancy refers to a software architecture in which a single in-

stance of software serves multiple customers. Systems designed in such a manner

are often called shared. All four proposed schedulers are derived from the default

scheduler which is based on single-tenant architecture. Therefore, the proposed

schedulers are compared with the following three state-of-the-art single-tenancy

schedulers:

1. The default Apache Storm scheduler assigns tasks to pre-configured worker

processes and then assigns these worker processes to machines in a round-

robin fashion. This leads to an even distribution of workload among available

machines in the cluster [89].

2. The Resource-Aware Storm [22] scheduler, is a system that implements

resource-aware scheduling within Storm. RA-Storm is designed to increase

overall throughput by maximizing resource utilization while minimizing net-

work latency. When scheduling tasks, RA-Storm can satisfy both soft and

hard resource constraints as well as minimize network distance between com-

ponents that communicate with each other. It consists of two main parts,

task selection, and node selection. First, RA-Storm obtains a list of unas-

signed tasks using breadth-first traversal. Second, a node is selected for each

task based on physical distance with bandwidth consideration.

3. The Isolation [99] scheduler makes it easy and safe to share a cluster among

many topologies. The isolation scheduler lets you specify which topologies

should be isolated, meaning that they run on a dedicated set of machines

within the cluster with no co-executing topologies. These isolated topolo-

gies are given priority in the cluster, so resources will be allocated to isolated

topologies if there’s competition with non-isolated topologies. Once all iso-

lated topologies are allocated, the remaining machines on the cluster are

shared among all non-isolated topologies. The isolation scheduler solves the

resource contention problem between topologies by providing full isolation

between topologies.
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Table 4.1: Hardware Configurations of the Employed Experimental Cluster.

Hostname Processor FLOPs /
Cycle

GFLOPs
(Equation 3.1)

RAM
(GB)

Computation Power
(Equation 3.2)

Index

Nimbus
Zookeeper
Node-A
Node-B
Nodes-C

Intel Core i7-6700
CPU @ 3.40GHz x 8

6816 185395 3.7 148317 1

Nod-D
Node-E
Node-F

Intel Core i5-4460
CPU @ 3.20GHz x 41

6385 81728 7.7 65384 2

Node-G
Node-H
Node-I

Intel Core i5
CPU M 460 @ 2.53GHz
x 4

5054 51147 3.7 40918 3

1Core i5 processors are considered mid-range CPUs with a moderate number of cores and threads. Their impact on results can vary depending on the
requirements. In cases where substantial computational power or parallel processing is necessary, a Core i5 system may face limitations and performance
constraints. However, any negative effects are expected to be consistent across all scheduling heuristics employed in the experiments.
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Figure 4.1: Layout of Linear Topology.

4.3 Test Topology Selection and Scenario Used

The Storm has various types of topology structures for example, linear topology

layout (Fig. 4.1), diamond topology layout (Fig. 4.2), and star topology layout

(Fig. 4.3). For homogeneous systems, a symmetric topology that evenly dis-

tributes the workload across cores is suitable to leverage the full processing power

of the multicore processors. In contrast, heterogeneous systems benefit from an

asymmetric topology that assigns tasks based on core capabilities, optimizing re-

source utilization across different cores. The performance of the proposed schemes

is evaluated with the help of 2 linear benchmark topologies. Those topologies are

selected that can process data and make decisions. In this context, the topolo-

gies which are shipped with Apache Storm suit [100] and used by researchers as a

benchmark are the following:

Figure 4.2: Layout of Diamond Topology.
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Figure 4.3: Layout of Star Topology.

1. Word Count Topology [101] breaks sentences into words and then counts

the number of occurrences of each word as shown in listing 4.1.

2. Exclamation Topology [14] breaks sentences into words and then appends

three exclamation marks (!!!) to the words as shown in listing 4.2. It uses

a spout that generates random words and two bolts that just append three

exclamation marks to each word. As a result, we get words with six excla-

mation marks. For example, the word “Ruzainah”, passes through 2 bolts

which at the end produce “Ruzainah!!!!!!”[102].

For the evaluation of the proposed schemes using 2 topologies with 3 state-of-the-

art schedulers different scenarios are designed to test the suitability of the proposed

Table 4.2: Different Scenarios for the Experiments.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Total Supervisor Nodes 9

Number of Available Slots on Each Supervisor Node 3 4 5

Total Available Slots for Topology Execution 27 (9 nodes x 3 slots) 36 (9 nodes x 4 slots) 45 (9 nodes x 5 slots)

Slots Required for Topology Execution 3 4 5 4 5 5
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1 public static void main(String[] args) throws Exception {
2 TopologyBuilder builder = new TopologyBuilder();
3

4 builder.setSpout("spout", new RandomSentenceSpout(),
5);

5 builder.setBolt("split", new SplitSentence(),
8).shuffleGrouping("spout");

6 builder.setBolt("count", new WordCount(),
12).fieldsGrouping("split", new Fields("word"));

7

8 Config conf = new Config();
9 conf.setDebug(true);

10

11 if (args != null && args.length > 0){
12 conf.setNumWorkers(3);
13 StormSubmitter.submitTopology(args[0], conf,

builder.createTopology());
14 }
15 else{
16 conf.setMaxTaskParallelism(3);
17

18 LocalCluster cluster = new LocalCluster();
19 cluster.submitTopology("word-count", conf,

builder.createTopology());
20

21 Thread.sleep(10000);
22 cluster.shutdown();
23 }
24 }

Listing 4.1: Word count topology

schemes. Overall 6 different scenarios are designed as shown in Table 4.2. Each

scheduler for word count as well as for exclamation topology is executed under

these scenarios and results are recorded. For example, the number of slots required

for topology execution varied from 3 to 5 for both topologies. Tuple processing by

each scheduler is recorded with a varying number of worker processes to analyze

the impact on throughput. Similarly, the number of available worker processes for

each node also varied from 3 to 5 (for details see Table 4.2). For example, Scenario

4 states that we have 4 slots per supervisor node and we have 9 supervisor nodes

in the given cluster. As a total, we have 36 (4 slots x 9 nodes) slots available for

topology scheduling. For scenario 4, 4 slots are required by topology for execution.

Therefore, 4 slots from 36 available slots will be selected for topology execution
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1 public static void main(String[] args) throws Exception {
2 TopologyBuilder builder = new TopologyBuilder();
3

4 builder.setSpout("word", new TestWordSpout(), 10);
5 builder.setBolt("exclaim1", new ExclamationBolt(),

3).shuffleGrouping("word");
6 builder.setBolt("exclaim2", new ExclamationBolt(),

2).shuffleGrouping("exclaim1");
7

8 Config conf = new Config();
9 conf.setDebug(true);

10

11 if (args != null && args.length > 0) {
12 conf.setNumWorkers(3);
13 StormSubmitter.submitTopology(args[0], conf,

builder.createTopology());
14 }
15 else {
16 LocalCluster cluster = new LocalCluster();
17 cluster.submitTopology("test", conf,

builder.createTopology());
18 Utils.sleep(10000);
19 cluster.killTopology("test");
20 cluster.shutdown();
21 }
22 }

Listing 4.2: Exclamation topology

by the scheduler. This selection of slots will vary from the scheduler to scheduler

based on their algorithm. For a fair comparison, each experiment is performed

for 20 minutes time slots while reading (of the employed performance metrics) is

recorded at a 1-minute interval.

4.4 Comparison with State-of-the-art Schedulers

4.4.1 Word Count Topology

Using the word count topology, a performance comparison of the employed schedul-

ing mechanisms (see Fig. 4.4-4.9), average throughput (see Fig. 4.10), average

throughput per node (see Fig. 4.12), and the number of supervisor nodes used (i.e.,
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resource usage as shown in Fig. 4.11) is presented. This comparison is performed

using scenarios 1–6 (see Table 4.2).

Figure 4.4: Performance Comparison of the Scheduling Algorithms for Word
Count Topology using Scenario 1.

For scenario 1, we have 3 slots per supervisor (a total of 27 slots as we have 9 super-

visor nodes) and 3 slots are required by the word count topology for execution. Fig.

4.4 shows inter-executor traffic produced using scenario 1. Here, the TOP-Storm,

BAN-Storm and Gr-Storm improve approximately 6% on average throughput and

the A3-Storm improves approximately 8% as compared to the default scheduler

(see results in Fig. 4.10). The proposed schedulers attain commendable results

while using only 60% of computational resources (i.e., 3 supervisor node of the

employed cluster) with respect to the default scheduler which acquires 5 nodes of

the cluster for execution (see Fig. 4.11). The reason for this assignment is that

the proposed schedulers consume all available slots of a selected node and then

employ the next node for scheduling. On the other hand, the default scheduler

makes such an assignment in a round-robin fashion.
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Figure 4.5: Performance Comparison of the Scheduling Algorithms for Word
Count Topology using Scenario 2.

The performance comparison between the proposed schedulers and 3 baseline

scheduling algorithms executed using scenario 2 is shown in Fig. 4.5. Improvement

in average throughput (see Fig. 4.10) is observed at 4% and 1% for A3-Storm and

Gr-Storm, respectively (with 33% less computational resources (as shown in Fig.

4.11)).

Fig. 4.6 shows the inter-node traffic-related results for the schedulers. From

Fig. 4.6, it is observed that the TOP-Storm outperforms all the other scheduling

heuristics for different performance metrics. Average throughput (shown in Fig.

4.10) attained up to 5% for the TOP-Storm scheduler using 4 supervisor nodes

while the default scheduler consumed 7 supervisor nodes (as shown in Fig. 4.11).

As shown in Fig. 4.7, similar performance results were attained for the scheduling

algorithms executed using scenario 4 with a single computing node (see Fig. 4.11).

Gr-Storm attained up to 28% improvement (in Fig. 4.10). In scenario 5, we have

4 slots per node and 5 slots are required by the word count topology.
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Figure 4.6: Performance Comparison of the Scheduling Algorithms for Word
Count Topology using Scenario 3.

Figure 4.7: Performance Comparison of the Scheduling Algorithms for Word
Count Topology using Scenario 4.
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Figure 4.8: Performance Comparison of the Scheduling Algorithms for Word
Count Topology using Scenario 5.

Figure 4.9: Performance Comparison of the Scheduling Algorithms for Word
Count Topology using Scenario 6.



Experimental Evaluation and Results 106

Figure 4.10: Average Throughput Calculated using Equation 1.1 for Word
Count Topology.

Fig. 4.8 shows inter-executor traffic produced using this scenario. Here, the Gr-

Storm improves performance by approximately up to 24% on average throughput.

When scenario 6 is deployed (Fig. 4.9) then the TRA-Storm computes up to 25%

more tuples in the given time (Fig. 4.10) with 58% fewer resources (Fig. 4.11).
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Figure 4.11: The Number of Nodes Used for Word Count by Scheduling
Algorithms.

4.4.2 Word Count Topology - Result Analysis

Figure 4.10 shows the average throughput produced using scenarios 1 to 6 with

the y-axis representing average tuples processed (throughput). Experiments run

for hours, however, the performance after around fifteen minutes remains nearly

the same.

In figure 4.10, we can see that in all 6 scenarios the proposed schedulers performed

better as compared to the state-of-the-art schemes. A3-Storm processed maximum

tuples for scenarios 1 and 2. TOP-Storm remains the top performer for scenarios 3

and 6. RA-Storm performed best in scenarios 4 and 5. These scenarios are based

on a different number of slots available on each supervisor node and the number

of slots required by a topology to run. As a result, the scheduling algorithms

generate different execution plans which ultimately affect the throughput.

According to Figure 4.10, it is observed that some results are identical. This is

due to the scheduling mechanism of the benchmarked algorithms. To understand
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Figure 4.12: Average Throughput per Node for Word Count Topology Cal-
culated using Equation 1.2.
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their working, let’s take an example. Suppose we have to schedule a topology

using 3 slots. In the given cluster, if we have 3 supervisor nodes with a single slot

on each node. Using round-robin technique, topology will be scheduled, and all 3

slots are being used. Furthermore, if number of slots are increased from 1 to 2 on

each node and try to regenerate new execution plan with 3 required slots then still

same execution plan will be generated by the default storm scheduler because the

default scheduler occupy slot from one node and move to another node for next

slot in round-robin fashion. Therefore, if 3 slots are required and in the cluster

of 3 nodes same execution plan will be generated whether each node has 1 slot or

3 slots. From Table 4.2, it is obvious that number of available slots are same for

scenarios 1 – 3, scenarios 4 - 5 and scenario 6 and required number of slots are

variable for all these scenarios. That’s why for the default storm scheduler, we

have same results for scenario 1, scenarios 2 – 3, and scenarios 4 – 6.

In Figure 4.11, the total number of nodes used by each scheduling algorithm

is presented. Due to the compact allocation scheme, the processed schedulers

employed a minimum number of supervisor nodes in each case. As a result, the

average throughput per node for word count topology under scenarios 1 to 6 (see

Figure 4.12) is almost double.

4.4.3 Exclamation Topology

The same procedure is repeated for exclamation topology. Average throughput

(Fig. 4.19), and resource usage (Fig. 4.20) for exclamation topology are shown

here. This comparison is also performed using the scenarios given in Table 4.2.

For scenario 1, we have 3 slots per supervisor, also we need 3 slots to execute

the topology. Fig. 4.13 shows inter-executor traffic produced using scenario 1.

Gr-Storm attain a modest 2% improvement in average throughput as compared to

the default scheduler (see Fig. 4.19). However, Gr-Storm achieves a 2% improved

throughput with 40% less computational resource acquisition as compared to the

default scheduler (4.20). The default scheduler uses a round-robin approach that
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Figure 4.13: Performance Comparison of the Scheduling Algorithms for Ex-
clamation Topology using Scenario 1.

engages maximum supervisor nodes in the cluster. As a result, inter-node traffic

is increased, and throughput is decreased.

The performance comparison of the algorithms under scenario 2 is shown in Fig.

4.14. Improvement in average throughput (Fig. 4.19) is 23% for BAN-Storm

respectively with 66% resources (Fig. 28).

Fig. 4.15 shows a performance comparison between schedulers in terms of inter-

node traffic. From Fig. 4.15, it is observed that A3-Storm outperforms other

scheduling algorithms in every performance metric. Average throughput (shown

in Fig. 4.19) is improved to 23% for the A3-Storm scheduler using 4 supervisor

nodes while the default is using 7 supervisors (Fig. 4.20).

As shown in Fig. 4.16, the same performance metric curve of these scheduling

algorithms under scenario 4 has a different magnitude (see Fig. 4.19). TOP-

Storm achieved 3% (in Fig. 4.19) and the reason for having a minor improvement

in average throughput is that we have a total of 18 executors for exclamation
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Figure 4.14: Performance Comparison of the Scheduling Algorithms for Ex-
clamation Topology using Scenario 2.

Figure 4.15: Performance Comparison of the Scheduling Algorithms for Ex-
clamation Topology using Scenario 3.
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Figure 4.16: Performance Comparison of the Scheduling Algorithms for Ex-
clamation Topology using Scenario 4.

topology. As the number of slots is increasing then inter-executor communication

is also increasing. For scenarios with fewer slots, we have better results.

For the execution of scenario 5, we have 4 slots per node and 5 slots in total

are required for the execution of exclamation topology. Fig. 4.17 shows inter-

executor communication produced using scenario 5. Both TOP-Storm and TRA-

Storm improved around 3% (as shown in Fig. 4.19) with only 4/7 resources when

compared to the default scheduler (see Fig. 4.20). When scenario 6 is deployed

(Fig. 4.18) then the A3-Storm processed 2% more tuples in the given time (Fig.

4.19) with the consumption of 20% resources (Fig. 4.20).

4.4.4 Exclamation Topology - Result Analysis

In figure 4.19, we can see that in all 6 scenarios the proposed schedulers performed

better as compared to the state-of-the-art schemes. Gr-Storm processed maximum
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Figure 4.17: Performance Comparison of the Scheduling Algorithms for Ex-
clamation Topology using Scenario 5.

Figure 4.18: Performance Comparison of the Scheduling Algorithms for Ex-
clamation Topology using Scenario 6.
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Figure 4.19: Average Throughput Calculated using Equation 1.1 of the
Scheduling Algorithms for Exclamation Topology.

tuples for scenario 1. However, Ban-Storm performed well in scenario 2. A3-Storm

remains the top performer for scenarios 3, 5, and 6. TOP-Storm performed best

in scenario 4.
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Figure 4.20: The Number of Nodes Used for Exclamation Topology by
Scheduling Algorithms.

With the help of Equation 1.2, the average throughput per node for the proposed

schedulers and baseline scheduling algorithms are calculated as shown in Figure

4.21. significant Improvement in average throughput per node is achieved by the

proposed schedulers with respect to the default scheduler and isolation scheduler

with fewer resources concerning the other schedulers (as shown in Figure 4.20).

The reason is that the proposed schemes consume all available slots of a machine

and then use the next machine. Conversely, the default Storm uses a round-robin

approach.

4.5 Result Analysis

It is evident from the results that the proposed schedulers are more efficient

(in terms of throughput and resource utilization) as compared to state-of-the-art

scheduling heuristics. Results show the importance of considering inter-tasks com-

munication for stream-based scheduling heuristics. These results will be difficult
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Figure 4.21: Average Throughput per Node for Exclamation Topology Cal-
culated using Equation 1.2.

to achieve if the available resources or communication patterns between executors

are ignored.

The default scheduler uses a round-robin approach which may increase inter-node
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traffic and decrease throughput. Similarly, it engages maximum supervisor nodes

in the cluster. Conversely, the proposed schedulers consume all available slots

of a node and then move to the next node if required. In this way, a compact

slots assignment is achieved which is directly proportional to higher throughput.

In summary, up to 2 times for word count and 1 and half times for exclamation

topologies higher average throughput has been attained with reduced resource

acquisition (i.e., 60% fewer resources). For configurations where fewer resources

are employed, the difference in average throughput is also minimal and vice versa.

The Isolation scheduler executes topologies in isolation on a dedicated cluster.

The isolation scheduler generates different mappings as compared to the default

scheduler. Instead of throughput, this scheduler focuses to improve maximum

cluster utilization which increases inter-node traffic and adversely affects through-

put. It has been shown (in Fig. 4.12 and Fig. 4.21) that for both topologies

(Word Count Topology [101] and Exclamation Topology [14]) isolation scheduler

performed worst for cluster configurations (see Table 4.2).

R-Storm is designed to increase throughput by maximizing resource utilization

while minimizing network latency. R-Storm considers memory and CPU as well

as minimizing the network distance between components that communicate with

each other. R-Storm ignores the number of required slots provided by the user

at the time of topology submission. Based on resources required by a topology,

R-Storm distributes executors among different slots and then packs slots to nodes

as compact as possible. If the desired number of slots is not available in the

cluster, then R-Storm does not execute the topology. Similarly, the user cannot

force R-Storm to use fewer/more slots than calculated by R-Storm. Hence, over-

provisioning or under-utilization is a common scenario in this case. For example,

we have 28 executors for word count topology. When R-Storm generates mapping

then it divides them into 5 slots having 6 executors each. 2 extra executors are

generated where each executor occupies 768 MB space in memory. That’s why

we have attained R-Storm’s results for scenarios 4–6 (see Fig. 4.10) only for word

count topology where 5 slots are used. With over-provisioning, R-Storm performs

slightly better than the proposed schemes. The same is the case for exclamation
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topology where we have a total of 18 executors. R-Storm divided them into 3 slots

(6 executors each). That’s why we attained R-Storm’s results for scenario 1 only

(see Fig. 4.19) only for exclamation topology where 3 slots are used. In this case,

when equal resources are used then A3-Storm outperforms R-Storm by attaining

9% on average higher throughput.

Overall, these results demonstrate the ability of the proposed schedulers to ef-

ficiently place more communicating executors closer considering the topology’s

traffic resulting in overall higher tuple execution throughput. Additionally, the

state-of-the-art schedulers (i.e., default and isolation) cannot also consolidate com-

putational resources while occupying the resources even if they are not required.

4.5.1 Summary

From the results, it is obvious that topology mapping with respect to resources and

communication patterns is a better scheduling choice. It performs better in terms

of resource usage and throughput as compared to other scheduling algorithms.

These results will be difficult to achieve if the available resources or communication

patterns between executors are ignored.



Chapter 5

Conclusion and Future Work

This chapter concludes the thesis by summarizing the research findings pertaining

to the proposed system and schedulers. Moreover, this Chapter provides an insight

into promising open issues for future work in this area.

5.1 Research Findings

Through an extensive literature survey, it was identified that existing SPEs can

benefit from improved scheduling techniques. The primary objective of this re-

search was to propose a scheduling scheme for SPEs that achieves near-maximum

throughput while employing a minimum number of resources.

In order to meet the research objective, a traffic-aware and resource-aware job

scheduling system for SPE in a heterogeneous environment is proposed. Based on

this system, four dynamic schedulers were presented to optimize task assignment

and resource utilization by considering communication patterns and computational

requirements. The first scheduler, TOP-Storm, calculates the longest path in the

topology’s DAG and assigns it to the most powerful computing machine. The sec-

ond scheduler, A3-Storm, prioritizes tasks based on inter-task communication

and assigns them to computing nodes accordingly. It compares unassigned tasks’

119
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communication with already assigned tasks to make optimal assignments. Sim-

ilarly, BAN-Storm, focuses on regularly communicating tasks and maps them

closer to each other. This results in a smaller number of provisioned nodes in the

cluster. Lastly, Gr-Storm, uses the max-flow min-cut algorithm to partition the

graph and then intelligently assigns executors to workers based on computation

power and communication needs. These schedulers aim to enhance throughput

and resource utilization by optimizing task assignment in a heterogeneous cluster.

These proposed schedulers were evaluated using two benchmark topologies (word

count topology and exclamation topology) with three state-of-the-art schedulers

(default scheduler, R-Storm, and isolation scheduler). Results showed that the

proposed schedulers outperformed the default scheduler in average throughput by

28% (which means that it can process 56 more tuples per second) with up to 40%

fewer resources. Similarly, as compared to the isolation scheduler, improvement

in throughput is up to 200% (which is 197 more tuples per second) with 60%

of resources used. Moreover, R-Storm achieved the same throughput with over-

provisioning by employing two extra slots for word count topology execution.

Experiments with the exclamation topology showed up to 23% (that is 17 ad-

ditional tuples in a second) and 112% (50 extra tuples per second), enhanced

throughput as compared to default and isolation scheduler. When equal resources

are used then this work outperforms R-Storm by 4% (which is 4 tuples per second)

on average throughput for exclamation topology and yields a significant amount of

resource savings through consolidation. This accomplishment aligns with the main

research objective of the study, which aimed to achieve near-maximum throughput

in a way that a minimum number of resources are employed.

5.2 Future Directions

In this thesis, topology, traffic and resource-aware schedulers with enhanced through-

put and improved resource utilization are presented. There are several potential
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research directions which could be explored and investigated. These research di-

rections are as follows:

• A data stream processing application can be represented as DAG. There-

fore, different graph traversal algorithms for example, Breadth-First Search,

Depth-First Search etc. have been used in the literature for the scheduling of

streaming applications. Similarly, we have applied a graph-algorithm Max-

flow Min-cut [53] in Gr-Storm. As a comparative analysis, topological sort

can also be applied. Topological sort-based schedulers are already found in

the literature [15, 103–105] as well but we want to investigate how differently

our proposed scheduler adds value in this domain.

• Load-awareness is another important aspect to be considered while schedul-

ing. Load-awareness means the actual workload on the computing node

should be considered while assigning jobs instead of using a round-robin

technique. In this way, resource under-utilization and over-utilization prob-

lems can also be addressed.

• SPEs work on the architecture of distributed computing. If a job is scheduled

in such a way that some part is being deployed on one location and the

remaining part on the other remote location, then latency may increase.

Therefore to reduce latency, the location of each computing node can play

an important role in real-time applications. That’s why, the computing

node’s location should be considered while scheduling jobs. These types

of schedulers are called location-aware schedulers. This can be a potential

direction for the extension of this work.

• For any SPE, different types of jobs exist. Like memory-bound, cpu-bound,

io-bound and network-bound etc. In this work, we have employed cpu-bound

jobs. As an extension to this work, other job types can be tested to see the

suitability of the proposed work. Similarly, in a cluster different machines

are suitable for different types of jobs. Therefore, we want to propose a job

type-aware scheduler in which computing nodes are selected according to

the needs and want of the job.
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• In this work, equations 3.2, and 3.3 used α, β, and γ with manually assigned

values. In future, some machine learning algorithms can be explored to sys-

tematically assign values to α, β, and γ based on historical communication

and computational requirement of the topology.

• Cloud computing is a flexible, low-cost, on-demand service platform used

as an infrastructure. Due to a shared environment, service-level agreement

(SLA) between customers and service providers is becoming an ingredient

to measure customer satisfaction level (CSL), currently lacking in SPEs.

To address this need, SLA-based scheduling can also be introduced in the

proposed work as well.

• In this work, a physical cluster consisting of 11 machines has been employed

for experimentations. Some online cloud services can also be used for per-

formance comparison.

• The comparison done in this dissertation used two metrics: throughput and

resource utilization. In future, an enhancement in the performance can be

carried out for other metrics, such as complete latency, the amount of mem-

ory used etc.

• The system proposed (see Chapter 3) in this dissertation consists of 5 major

modules, Tune Scheduling is one of them. It is a real-time monitoring

module which measures how the streaming application performs under a real

workload and make adjustment in the execution plan accordingly. It acquires

the computation power of each node as well as the overall inter-executor

traffic patterns. Considering the traffic patterns and the resources utilized,

the execution plan is re-adjusted and fine-tuned accordingly (if required). To

make more reasonable tunning, evolutionary computation models or machine

learning models can be employed here as well.

• In this work, the experiments were conducted using two benchmark topolo-

gies (for example, Word Count Topology and Exclamation Topology etc.).

To check the suitability and performance of the proposed work, other topolo-

gies can also be employed.
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• The proposed algorithms are making scheduling decisions based on topol-

ogy’s DAG. As an extension of this work, it can be adapted for other SPEs

as well such as Apache Spark, Apache Flink etc.

• This work aims to solve a multi-objective scheduling problem. Other ob-

jectives can also be considered, such as the energy consumption as well as

reducing the cost of operators’ deployment.

• Resource elasticity is an important concept in SPEs, as it affects the allo-

cation of resources in a computing cluster. In general, resources with low

elasticity are considered to be more critical, as they are less responsive to

changes in the cluster. As a future work, the functionality to support elas-

ticity in the proposed work can also be investigated as well.

• This research work employed Ubuntu for experimentation. However, the in-

vestigation of other operating systems in future studies can provide valuable

insights by assessing their impact on overall performance.

• As a future research direction, it would be valuable to investigate how SPEs

can leverage quantum computing to optimize complex tasks that involve

handling large volumes of real-time data. Quantum computing’s unique

ability to perform parallel computations and explore multiple states simulta-

neously holds the potential to enhance the efficiency of processing algorithms

in SPEs.

• Gr-Storm maps computational requirements of the topology on the avail-

able computation power of workers (JVM) in an optimal way to maximize

through and resource utilization. A graph algorithm (max-flow min-cut) is

used to produce a partitioned graph of executors. In future work, we in-

tend to investigate the use of other graph partitioning algorithms to classify

highly computational tasks in a DAG.
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