
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

A Robust Routing Architecture

for Hybrid Wireless Mesh and

Software Defined Networks

by

Mukhtiar Bano

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering

Department of Electrical Engineering

2023

www.cust.edu.pk
www.cust.edu.pk
mbano2017@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

A Robust Routing Architecture for Hybrid

Wireless Mesh and Software Defined Networks

By

Mukhtiar Bano

(PCE141001)

Dr. Thierry Turletti, Professor

INRIA Sophia Antipolis, Cedex, France

(Foreign Evaluator 1)

Dr. Isabelle Guérin Lassous, Professor

Université Lyon I UFR d’Informatique, Bâtiment Nautibus, France

(Foreign Evaluator 2)

Dr. Amir Qayyum

(Thesis Supervisor)

Dr. Noor Muhammad Khan

(Head, Department of Electrical Engineering)

Dr. Imtiaz Ahmad Taj

(Dean, Faculty of Engineering)

DEPARTMENT OF ELECTRICAL ENGINEERING

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2023

ii

Copyright © 2023 by Mukhtiar Bano

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

iii

To my parents

Thanks for teaching me the ethics and discipline that today guide my life.

To my family

Thanks for your unconditional love and support.

vii

List of Publications

It is certified that following publication(s) has been made out of the research work

that has been carried out for this thesis:-

1. Bano, Mukhtiar, Amir Qayyum, Rao Naveed Bin Rais, and Syed Sher-

jeel A. Gilani. ”Soft-Mesh: A Robust Routing Architecture for Hybrid

SDN and Wireless Mesh Networks.” IEEE Access 9 (2021): 87715-87730.

DOI:10.1109/ACCESS.2021.3089020

2. Gilani, Syed Sherjeel A., Amir Qayyum, Rao Naveed Bin Rais, and Mukhtiar

Bano. ”SDNMesh: An SDN based routing architecture for wireless mesh net-

works.” IEEE Access 8 (2020): 136769-136781. DOI: 10.1109/ACCESS.2020

.3011651

3. Bano, Mukhtiar, Rao Naveed Bin Rais, Syed Sherjeel A. Gilani, and Amir

Qayyum. ”SDNHybridMesh: A hybrid routing architecture for SDN based

wireless mesh networks.” In Workshops of the International Conference on

Advanced Information Networking and Applications, pp. 366-375. Springer,

Cham, 2020. DOI: 10.1007/978-3-030-44038-1 33

4. Bano, Mukhtiar, Syed Sherjeel A. Gilani, and Amir Qayyum. ”A compar-

ative analysis of hybrid routing schemes for SDN based wireless mesh net-

works.” In 2018 IEEE 20th International Conference on High Performance

Computing and Communications; IEEE 16th International Conference on

Smart City; IEEE 4th International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), pp. 1189-1194. IEEE, 2018. DOI: 10.1109/HPC-

C/SmartCity/DSS.2018.00200

(Mukhtiar Bano)

Registration No: PCE141001

viii

Acknowledgement

Many people have encouraged, impacted, and assisted me during the process that

led to this dissertation. First and foremost, I want to express my gratitude to my

supervisor, Dr. Amir Qayyum, for allowing me to do my research. His critical

but always constructive style, as well as his attention to the tiniest details, aided

me in various facets of completing rigorous scientific work. I appreciate all of his

invaluable counsel, constructive criticism, and moral support. Dr. Qayyum has

served as a mentor in both my academic and personal lives, always guiding and

assisting me when I face difficulties and disappointments. I’d also like to express

my gratitude to Dr. Rao Naveed Bin Rais, equally important have been his critical

reviews, suggestions, and counsel. I am grateful for his time and contribution to

my dissertation.

Many thanks to all of my co-workers who assisted, encouraged, and accompanied

me in overcoming all of the challenges in my research. Last but not least, I’d

like to express my gratitude to my family. None of this would have been possible

without their help throughout and after the journey.

(Mukhtiar Bano)

Registration No: PCE141001

ix

Abstract

Wireless Mesh Networks (WMNs) are considered self-organizing, self-healing, and

self-configuring networks. Notwithstanding these appealing characteristics, WMNs

face a number of challenges including scalability, reliability, and connection fail-

ures, as well as mobility, flexibility, and other network management problems.

To address these issues, WMNs must be made programmable, allowing standard

approaches to be modified and applied using software programs, which can be

accomplished by incorporating Software Defined Networking (SDN) architecture.

SDN, as a cutting-edge technology, promises to make network management and

routing challenges in wireless mesh networks easier. The existing solutions mainly

propose for entire network paradigm shift from legacy WMN to SDN. However,

a few existing solutions propose partial deployment resulting in interoperability

issues of hybrid architectures. The evolution of the legacy network model as a

whole, causes technical, operational, and economic challenges that can be avoided

by a seamless interoperability between SDN and current IP devices.

This research presents a Robust Routing Architecture for Hybrid Wireless Mesh

and Software Defined Networks, by systematically and gradually migrating WMNs

to SDNs in an effective manner. The primary goal of this study is to improve the

routing of wireless mesh networks by partial and incremental transitioning from

legacy network to software defined network. Such transition makes WMNs pro-

grammable to address the issues and challenges of various network services such

as routing, load balancing, network control, and traffic engineering. In addition,

the architecture of SDN node is modified which facilitates in bridging the interop-

erability gap between SDN nodes and legacy nodes. Nonetheless, software defined

networking paradigm faces the challenge of single-point-of-failure due to central-

ized controlling entity ‘SDN Controller’, the proposed hybrid routing approach

also addresses routing challenge in case of controller failure or unreachable. The

proposed approach makes congestion control easier by load balancing approach

that makes use of adaptive network monitoring module. It allows a network ad-

ministrator to keep track of network traffic as well as link information such as link

utilization and bandwidth, that are required by the controller for load balancing.

x

For evaluation purpose Mininet-WiFi Simulator is used to run several experiments

to evaluate the performance of the proposed architecture by generating a hybrid

network topology with varying number of nodes that is 50, 100, 150, 200, and 250

nodes respectively, with varied proportions of SDN hybrid and legacy nodes. Fur-

thermore, the percentage of SDN hybrid nodes and legacy nodes in the network

topology is configurable to produce three alternative simulation scenarios, with

10%, 25%, and 50% of SDN hybrid nodes and 90%, 75%, and 50% of legacy nodes

in the network topology.

The OLSR and BATMAN routing systems are simulated because they are re-

garded to be more stable than any other standard routing approaches for wireless

mesh networks. Soft-Mesh architecture has been compared to wmSDN and Hakiri

for hybrid approaches. In terms of different performance measures, such as average

UDP throughput, end-to-end delay, packet drop ratio, and routing overhead, the

suggested routing Soft-Mesh gives improved results. For the incremental fraction

of SDN hybrid nodes, Soft-Mesh improves the results by 70%. As a result, our

findings suggest that the SDN method will benefit the distributed routing proto-

col’s operations. Furthermore, the proposed routing architecture also provides a

routing solution in case of controller goes down or failure occurs, this particular

solution makes our routing approach robust and reliable. Results show that our

proposed routing architecture’s average throughput behavior, packet drop ratio,

end-to-end delay, and routing overhead are extremely similar to that of OLSR with

a little increase due to the rules already installed by controller at the setting up of

network. Such an improvement is brought about by the cohabitation of OpenFlow

and OLSR in the SDN hybrid nodes architecture.

The proposed network monitoring architecture ‘AdNetMon’, is a flexible, adapt

able, and expandable architecture for hybrid SDN network, that is introduced in

this chapter. The generic RESTful API can be used to specify almost every aspect

of monitoring. Furthermore, new techniques can replace the basic components in

the proposed architecture without affecting the other components. We introduced

an adaptive scheduling approach for flow statistics gathering to demonstrate the

xi

effectiveness of the proposed architecture. Using this approach, we created a spe-

cific use case of monitoring connection consumption. We assessed and compared

it to the performance of Flowsense and a periodic polling method. We discov-

ered that the proposed approach can collect statistics with more accuracy than

Flowsense. Despite this, the incurred communications cost is up to 50% higher

than in a comparable periodic poling technique.

Contents

Author’s Declaration v

Plagiarism Undertaking vi

List of Publications vii

Acknowledgement viii

Abstract ix

List of Figures xv

List of Tables xviii

Abbreviations xix

Symbols xx

1 Introduction 1

1.1 Wireless Mesh Networks . 2

1.2 Challenges in Wireless Mesh Networks 3

1.3 Software Defined Network . 4

1.4 SDN in WMNs: Challenges and Solutions 6

1.5 Advantages of Hybrid WMN and SDN 8

1.6 Problem Statement . 9

1.7 Aim and Objectives . 10

1.8 Dissertation Goals and Contribution 11

1.9 Methodology and Techniques . 12

1.10 Organization of this Dissertation 13

2 Background for Proposed Routing Architecture 14

2.1 SDN Controller - OpenDaylight . 14

2.2 OpenFlow Switch – Architecture and Operations 16

2.3 Simulation Environment . 22

2.3.1 Mininet-Wifi . 22

2.3.2 Networks Namespace (NNS) 23

xii

xiii

2.3.3 Open vSwitch (OVS) . 23

3 Hybrid Wireless Mesh and Software Defined Networks: Review
of Existing Approaches 24

3.1 Introduction . 24

3.2 Existing Hybrid SDN Routing Approaches 28

3.2.1 Coexistence-Based Hybrid Routing 28

3.2.2 Cohabitation-based Hybrid Routing 37

3.3 Control Plane Failure Recovery Mechanisms in Hybrid SDN Approach 40

3.4 Network Monitoring Applications for Hybrid SDN Approach 43

3.5 Conclusion . 49

4 Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless
Mesh and Software Defined Networks 51

4.1 Introduction . 51

4.2 Architecture of the Proposed Routing Approach 52

4.2.1 Routing Module of Proposed Architecture 54

4.2.1.1 SDN Hybrid Nodes – Cohabitation of OpenFlow
& OLSR . 55

4.2.1.2 Legacy Nodes with OLSR Protocol 56

4.2.1.3 Standard Operations of Proposed Routing Module 59

4.2.2 Load Balancing Module . 64

4.2.3 Traffic Measurement Module 65

4.2.4 Controller Failure Recovery Mechanism 66

4.3 Simulation Model and Results Analysis 66

4.3.1 Simulation Model . 68

4.3.2 Simulation Results and Analysis 71

4.3.2.1 Throughput . 72

4.3.2.2 Packet Drop Ratio 75

4.3.2.3 End-to-End Delay 77

4.3.2.4 Routing Overhead 81

4.3.3 Evaluation of Controller Failure Handling 84

4.4 Mathematical Model for the Proposed Routing Architecture 93

4.5 Conclusion . 93

5 AdNetMon: An Adaptive Network Monitoring Architecture for
Hybrid Wireless Mesh and Software Defined Networks 95

5.1 Introduction . 95

5.2 Network Monitoring Architecture 97

5.3 An Adaptive Network Monitoring Algorithm 99

5.3.1 Link Utilization Monitoring 102

5.3.2 Evaluation . 104

5.3.2.1 Simulation Model 104

5.3.2.2 Evaluation Metrics 105

5.3.2.3 Results . 106

5.4 Conclusion . 109

xiv

6 Conclusion and Future Work 110

6.1 Conclusion . 110

6.2 Future Work . 112

Bibliography 114

List of Figures

1.1 (a) Traditional networking (b) Software-defined networking 2

1.2 Wireless Mesh Network . 3

1.3 Architecture of Software-Defined Networking (SDN) 5

1.4 Packet Processing in SDNs . 6

1.5 Methodology of Proposed Architecture 13

2.1 OpenDaylight SDN Controller Architecture [52] 16

2.2 OpenFlow Switch Architecture [54] 16

2.3 Message Exchange between OpenDaylight Controller and Open-
Flow Switch . 17

2.4 Packet flow in Pipeline Processing 17

2.5 Flowchart of packet flow through an OpenFlow switch 18

2.6 Rule installation in OpenFlow Switch 20

2.7 OpenFlow Switch cannot buffer packets 21

2.8 Flow table is full in OpenFlow Switch 21

2.9 Mininet-Wifi Architecture [56] . 22

2.10 Architecture of Open vSwitch (OVS) [59] 23

3.1 Existing Hybrid WMN and SDN Approaches 27

3.2 Coexistence-based Hybrid (SDN/IP) Routing 28

3.3 Waypoint enforcement in Panopticon 30

3.4 Cohabitation-based Hybrid (SDN/IP) Routing 37

3.5 OSHI Hybrid SDN/IP Node Architecture 39

3.6 Architecture of hSDN . 42

3.7 Architecture of OpenSketch . 45

4.1 Architecture of Soft-Mesh . 53

4.2 Topology Discovery Protocol . 54

4.3 The SDN Hybrid Node Architecture 57

4.4 MPR Selection in OLSR . 58

4.5 Flowchart of TC Messages in OLSR Routing Protocol 59

4.6 Flow Chart of Proposed Routing Module 60

4.7 Working of SDN Hybrid Node . 62

4.8 Working of Legacy Node . 64

4.9 Topology for Proposed Routing Architecture 67

4.10 Mininet-WiFi Simulation of Soft-Mesh using ODL Platform 70

4.11 Mininet-WiFi Simulation of Soft-Mesh with Mobile Nodes 70

xv

xvi

4.12 Average UDP Throughput - Scenario 01 (10% of SDN hybrid nodes
and 90% of legacy nodes) . 73

4.13 Average UDP Throughput - Scenario 02 (25% of SDN hybrid nodes
and 75% of legacy nodes) . 73

4.14 Average UDP Throughput - Scenario 03 (50% of SDN hybrid nodes
and 50% of legacy nodes) . 74

4.15 Packet Drop Ratio - Scenario 01 (10% of SDN hybrid nodes and
90% of legacy nodes) . 75

4.16 Packet Drop Ratio - Scenario 02 (25% of SDN hybrid nodes and
75% of legacy nodes) . 76

4.17 Packet Drop Ratio - Scenario 03 (50% of SDN hybrid nodes and
50% of legacy nodes) . 76

4.18 Average End-to-End Delay - Scenario 01 (10% of SDN hybrid nodes
and 90% of legacy nodes) . 79

4.19 Average End-to-End Delay - Scenario 02 (25% of SDN hybrid nodes
and 75% of legacy nodes) . 79

4.20 Average End-to-End Delay - Scenario 03 (50% of SDN hybrid nodes
and 50% of legacy nodes) . 80

4.21 Routing Overhead - Scenario 01 (10% of SDN hybrid nodes and
90% of legacy nodes) . 81

4.22 Routing Overhead - Scenario 02 (25% of SDN hybrid nodes and
75% of legacy nodes) . 82

4.23 Routing Overhead - Scenario 03 (50% of SDN hybrid nodes and
50% of legacy nodes) . 82

4.24 Controller Failure in Soft-Mesh . 84

4.25 OpenFlow and OLSR Interaction 85

4.26 Average UDP Throughput - Scenario 02 (25% of SDN hybrid nodes
and 75% of legacy nodes) . 86

4.27 Packet Drop Ratio - Scenario 02 (25% of SDN hybrid nodes and
75% of legacy nodes) . 87

4.28 Average End-to-End Delay - Scenario 02 (25% of SDN hybrid nodes
and 75% of legacy nodes) . 87

4.29 Routing Overhead - Scenario 02 (25% of SDN hybrid nodes and
75% of legacy nodes) . 88

4.30 Average UDP Throughput - Scenario 03 (50% of SDN hybrid nodes
and 50% of legacy nodes) . 89

4.31 Packet Drop Ratio - Scenario 03 (50% of SDN hybrid nodes and
50% of legacy nodes) . 89

4.32 End-to-End Delay - Scenario 03 (50% of SDN hybrid nodes and
50% of legacy nodes) . 90

4.33 Routing Overhead - Scenario 03 (50% of SDN hybrid nodes and
50% of legacy nodes) . 90

5.1 SDN Software Stack . 98

5.2 Network Monitoring Architecture 99

5.3 Topology for Network Monitoring Architecture 105

xvii

5.4 Link Utilization Measurement . 106

5.5 Messaging Overhead Measurement 107

5.6 Minimum Polling Frequency Effect Measurement for Link Utilization108

5.7 Minimum Polling Frequency Effect Measurement for Messaging Over-
head . 109

List of Tables

2.1 Comparison of SDN Controllers . 15
2.2 OpenFlow Protocol Messages . 19

3.1 Existing Routing Protocols of Wireless Mesh Networks 25
3.2 Comparison of Hybrid SDN Network with Traditional Networks . . 26
3.3 Coexistance-Based Hybrid (SDN/IP) Routing Approaches 36
3.4 Cohabitation-Based Hybrid (SDN/IP) Routing Approaches 40
3.5 Control Plane Failure Recovery Mechanisms for Hybrid SDN Ap-

proach . 42
3.6 Network Monitoring Applications for Hybrid SDN Approach 48

4.1 Simulation Parameters of Soft-Mesh Architecture 71
4.2 Comparison of Soft-Mesh with existing Traditional and Hybrid (SD-

N/IP) Routing Approaches . 91
4.2 Comparison of Soft-Mesh with existing Traditional and Hybrid (SD-

N/IP) Routing Approaches . 92

5.1 Simulation Parameters of Adaptive Network Monitoring Algorithm 101
5.2 Openflow Messages for Adaptive Network Monitoring Algorithm . . 104

xviii

Abbreviations

APIs Applications Programming Interfaces

BMCP Budgeted Maximum Coverage Problem

CBR Constant bitrate

CPLR Control Packet Loss Ratio

CW Continuous wave

EFTM Embedded Flow Table Manager

GPIA Generic Path Inconsistency Avoider

IP Internet Protocol

Mbps Megabits per Second

MPR Multi-point relays

NFV Network function virtualization

O2O OLSR-to-OpenFlow

ODL OpenDaylight

OSGi Open Service Gateway Initiative

OVS Open vSwitch

RTT Round-trip time

SCTs Solitary Confinement Trees

SDN Software-Defined Networking

SLA Service Level Agreements

TCAM Ternary Content Addressable Memory

TC Traffic Control

WMNs Wireless Mesh Networks

WPA Wi-Fi Protected Access

xix

Symbols

τ Initial Statitics collection timeout

β Beta

ϕ Phi

α Alpha

∞ Infinity

△ Threshold

xx

Chapter 1

Introduction

Traditional network administration is getting increasingly complex and difficult

to handle user demands and network consumption growth at a rapid rate. De-

spite the fact that various types of applications including cloud computing, mobile

data, huge datasets, and multimedia applications along with huge network traf-

fic, have been used to generate significant revenue, these applications continue

to present network operators with numerous operational and performance chal-

lenges [1]. Modern networks must still be efficient and flexible while coping with

these issues; nonetheless, network programming is one way for making these net-

works more efficient and versatile. Software-Defined Networking (SDN) paradigm,

which is based on the idea of centralizing control and administration and provides

a solution for network management and control concerns, can be used to accom-

plish network programmability. As illustrated by Figure 1.1, the decoupling of

data management layer and control management layer [2, 3] by SDN reduces the

complexity of network management and makes it possible for revolutionary innova-

tion and transformation through the programmability of network interfaces [4–6].

Furthermore, the SDN control plane gives a centralized view of the distributed

network, enabling for more efficient network service orchestration and automa-

tion. SDN can predict future service demands and assign resources in advance,

unlike previous protocols that can only react after services have been built. Fur-

thermore, SDN-based network applications provide highly granular user-defined

1

Introduction 2

per-application traffic flow limitations [7, 8].

The SDN design has several advantages over traditional network topologies, includ-

ing traffic engineering policy adjustment, optimization of live or run-time traffic,

and the provision of unique services such as packets being processed differently

depending on the user or application [9]. SDN and NFV operate jointly to make

service providers and network operators have greater control over the networks

by allowing them to start and terminate network activities and services on the

fly. NFV [10] is all about the software implementation of network functions and

their execution on non-specialized, shared hardware while decreasing CAPEX and

OPEX.

Figure 1.1: (a) Traditional networking (b) Software-defined networking

1.1 Wireless Mesh Networks

Radio nodes are grouped in a mesh topology to form a Wireless Mesh Network

(WMN), these nodes include mesh clients, mesh routers, and gateways (as shown

by Figure 1.2). WMN does not support frequent mobility, as it causes spending

more time updating routes than providing data. The topology of a wireless mesh

network is more static, allowing for route computation and data delivery to their

destinations. As a result, this is a centralized low-mobility wireless ad hoc network.

It is also not a totally all-wireless ad hoc network because it sometimes relies on

Introduction 3

static nodes to act as gateways. Laptops, cell phones, and other wireless devices

are used as mesh clients. Mesh routers route traffic to and from gateways, which

may or may not be online. A mesh cloud is the coverage area of all radio nodes

acting as a single network. Access to this mesh cloud is dependent on radio nodes

collaborating to form a radio network. When one node ceases to function, the other

nodes can still communicate with one another, either directly or via one or more

intermediary nodes that makes mesh network both dependable and redundant.

Figure 1.2: Wireless Mesh Network

1.2 Challenges in Wireless Mesh Networks

In today’s communication systems and internet access applications due to its ar-

chitecture, WMNs are progressively getting more significance. WMN features a

long-standing and reliable network architecture that includes Adhoc networks,

MANETs, and other wireless systems. WMN is intrinsically adaptable due to the

variety of network nodes it contains, such as switches, cell- phones, and routers.

WMNs, on the other hand, are difficult to manage because the addition and re-

moval of nodes from the network can cause dynamic topology changes and a wide

range of communication requirements [11]. Congestion has worsened as a result

of the WMN’s insufficient number of gates. WMNs must use appropriate resource

Introduction 4

allocation to overcome these issues along with other main challenges like traffic

engineering and load balancing [12].

In addition, a multi-hop environment also affects network performance and causes

packet loss [13]. Other considerations include variable connection quality, network

asymmetry, and traffic load [14, 15]. Furthermore, any changes to WMN network

nodes after they have been created and deployed may necessitate the replacement

of all or part of the hardware equipment, resulting in a large rise in operational

costs. WMNs confront a range of routing challenges, including fluctuating con-

nection quality, network heterogeneity, and traffic load [16], in addition to the

aforementioned network management requirements. While multi-hop WMNs re-

main a popular internet access option, their effectiveness is somewhat dependent

on strong routing protocols. In addition, installing a large number of different

devices, especially in a WMN, results in security weaknesses in wireless channels,

bandwidth limitations, link and device instability, power limitations, as well as

restrictions in backhaul, all of which impair performance. Furthermore, the pre-

ceding has an effect on data availability and network dependability, both of which

are important factors in remote locations. As a result, in order to maximize band-

width usage, minimize delays in packet delivery, reduced costs to access data,

and enabling of throughput improvement under a range of applications/services,

the protocols used must be adaptive to topology changes. Furthermore, routing

protocols in these situations must have a high rate of convergence, low overhead,

and low latency [17]. As a result of making WMN programmable, software-based

adjustments may be possible.

1.3 Software Defined Network

The network administration (control) plane is split from the data plane in Software

Defined Networking (SDN) [18], a new networking paradigm. A centralised con-

troller is widely used to control routers/switches [19, 20]. In SDN paradigm, it is

the responsibility of controller to make sure the network devices install forwarding

rules to manage users’ created traffic flows [21]. Using a common programming

Introduction 5

interface, such as an OpenFlow-based interface, the switches monitor and route

network traffic flows according to the controller’s policies [22–26]. Network con-

trol and management are made easier by separating the network control and data

planes [27, 28].

Figure 1.3: Architecture of Software-Defined Networking (SDN)

The three fundamental layers of the SDN architecture are the application layer,

control plane layer, and data plane layer, as shown in Figure 1.3. Network op-

erations and programs that are regularly used by organizations include security

systems, firewalls, and load balancing. The logically centralized SDN controller

is represented by the SDN brain, a control plane layer. The policies are man-

aged by the controller, who is based on a computer. The data plane layer is

made up of physical devices like routers, nodes, and other network devices. To

construct a three-layer relationship, applications programming interfaces (APIs),

also known as northbound and southbound APIs, are used. Northbound APIs,

such as RESTful [29], link to the controller, whereas southbound APIs, such as

OpenFlow, connect to the controller and data plane devices. Some of the most

popular controllers include OpenDaylight, Floodlight, Ryu, and POX [30]. When

Introduction 6

an SDN node (using the OpenFlow protocol) gets the first packet of a flow, it asks

the controller for the flow’s forward route, and the controller installs the required

rules in the node firmware. These rules, as shown in Figure 1.4, detail the behavior

required by the packet [31]. The controller is in charge of developing the rules that

each node in the forwarding chain need. An originating node that does not have a

path associated with the accompanying packet can send a route request message

[32].

Figure 1.4: Packet Processing in SDNs

1.4 SDN in WMNs: Challenges and Solutions

Existing research focuses on making a complete paradigm change from conven-

tional networks to software-defined networking, taking into consideration Open-

Flow protocol extensions and alterations. Embedding SDN technology into the

WMN networking paradigm is the main focus of present research that results

in developing a hybrid network based on SDN-enabled nodes and conventional

nodes in the network architecture. As a new and promising architecture, SDN

Introduction 7

adds agility and flexibility to WMNs, addressing the aforementioned routing and

management concerns [33]. By remotely controlling and configuring mesh routers

and converting them into simple data forwarders, SDN achieves the goal of pro-

grammable WMNs. Traffic management in WMNs can also be improved by using

congestion control and load balancing algorithms. Using a single controller to

implement SDN, on the other hand, could compromise network dependability.

When changing the SDN paradigm, fault tolerance must be taken into account

[34]. Depending on the user and system parameters, network operators must ap-

ply different QoS policies [35]. Network efficiency significantly rises as a result

of integrating SDN into the WMN, and traffic engineering also gets more effec-

tive [36]. On the other hand, rip-and-replace is not a practical approach for the

widespread adoption of any contemporary networking technology. Network oper-

ators are not expected to update their equipment when transitioning to a modern

technological paradigm [37]. Full adoption of SDN is not feasible due to certain

economic and operational constraints, such as support for all network nodes and

management by a logically centralized controller. As a result, a gradual hybrid

deployment of SDN and WMN is required [38].

Additionally, the management of data, processing capabilities of wireless nodes and

speed of media are becoming increasingly important to networks. Furthermore,

challenges arise when SDN routing is used in conjunction with existing protocols.

When only a few wireless nodes are activated in a single network, multi-hop link-

layer routing issues, such as MAC layer-based routing, exist. When implementing

data processing capabilities like filtering and routing, which may be done using a

variety of protocols, adopting OpenFlow nodes instead of legacy nodes gives you

greater flexibility. This adaptability would aid in improving traffic engineering,

mobility management, a more widespread efficient use of WMN communication

resources as well as advanced routing [39]. WMN-integrated OpenFlow makes net-

work administration easier by using a centralized approach to run and control the

logical issues of network by processing actions according to the criteria that has

matched for network nodes implemented with OpenFlow. We must overcome some

WMN-related challenges to achieve these benefits, such as wireless channel unre-

liability that can temporarily disrupt controller communications, unavailability of

Introduction 8

auto learning mechanism, spanning tree protocol or other commonly used layer 2

protocols to support switch-controller communication for switching purpose [40].

1.5 Advantages of Hybrid WMN and SDN

SDN networks have a number of advantages over traditional networks, including

easier network management and security policy implementation [41]. For a variety

of reasons, SDN is rarely fully implemented in networks. One of the main prob-

lems is a lack of CAPEX and OPEX for a new network infrastructure. Businesses

are sometimes hesitant to invest major resources in constructing a new network

infrastructure from the ground up, and they are also concerned about downtime

during the SDN transition. Installing a few SDN-capable devices [42] alongside

the network devices with conventional protocols and gradually, incrementally sub-

stituting traditional devices with SDN-enabled devices, as depicted in Figure ??,

is one approach to solving these problems. The following are some of the benefits

of integrating SDN with traditional networks:

1. In terms of Capital expenditures (CAPEX) and Operational Expenditures

(OPEX), migrating from conventional network to SDN is significantly ex-

pensive. To replace all current traditional devices with SDN devices, a large

investment in SDN device acquisitions is required. After full deployment of

SDN and the building of a pure SDN network, more budgetary requirements

are necessary for training the operators to design, develop, and to realize the

SDN network [42]. Such restrictions can be alleviated by partial deployment.

2. With hybrid network based on SDN-enabled devices, we can make use of

advantages of SDN, , a new promising paradigm, that does not commit to

complete network transitioning to SDN. For instance, Thousands of hun-

dreds forwarding entries are controlled and monitored by ISPs, , however,

generally thousands of forwarding entries are managed by SDN-enabled de-

vices [43]. As a result, the ISP may manage these forwarding entries using

Introduction 9

hybrid network based on SDN-enabled devices in the access network while

also gaining from SDN in the distribution network [44].

3. Data traffic flows can be controlled precisely with SDN. A hybrid network

based on SDN-enabled devices can be created if only a small piece of the

network needs fine-grained management by adopting SDN for that segment

and relying on conventional networking for the rest [45].

4. For specialised services such as controlling the functionality of forwarding

devices and various network domains by SDN controller, traditional routing

protocols are especially helpful. In order to make SDN controller free from

those responsibilities, that are successfully managed by traditional routing

protocols, a hybrid SDN network based on SDN-enabled devices can be

created [46].

5. A software-defined network (SDN) architecture is an idea that is still in its

infancy. As a result, SDN equipment is less developed than conventional

networking equipment. Network administrators could be reluctant to com-

pletely upgrade the outdated network as a result. Hybrid network based on

SDN-enabled devices make it easier to transition from traditional network

devices to SDN-enabled devices. A network operator would be able to add

gradually more SDN hardware and evaluate SDN functionality in practical

situations. For instance, Google [47] has employed SDN for the manage-

ment of network and control functions for a number of years [48]. Future

applications of SDN technology could include both small and medium-sized

businesses and larger significant organizations.

1.6 Problem Statement

Transitioning from wireless mesh networks paradigms to software defined network-

ing has remained a challenge for academia and the research community to date.

Since the launch of SDN and OpenFlow technology, adoption has been gradual,

Introduction 10

particularly among smaller businesses with less resources and networks. Surpris-

ingly, the biggest difficulty with SDN is that it has just a small number of applica-

tions in the networking business. SDN is approached in a variety of ways by differ-

ent vendors, ranging from hardware-centric models and virtualization platforms to

hyper-converged networking and controller-less solutions. Backward compatibil-

ity, interoperability, and control packet management are the primary obstacles for

SDN deployment in existing wireless networks. Coexistence of legacy nodes in the

hybrid architecture results in a high number of control packets being managed in

the backbone network, putting an excessive strain on the controller that can be al-

leviated by making forwarding devices intelligent or smart. Furthermore, network

management is often handled at two levels: (1) real-time network traffic, and (2)

network parameter adjustment and both of these should be done via centralized

control. The major goal of this research is to propose routing architecture for

hybrid networks comprising of conventional and SDN-enabled hybrid nodes and

to suggest changes to the SDN switch architecture that would allow it to work

over wireless mesh networks.

The proposed hybrid architecture could be a better solution to the problems out-

lined above. The major goal of this research is to suggest techniques and changes

to the SDN switch architecture that would allow it to work over wireless mesh

networks. The research will focus on building mechanisms for controlling legacy

nodes via controllers in a hybrid environment, which will necessitate the creation of

new WMN-specific rules, actions, and commands. Examples of network functions

include traffic engineering, network monitoring, load balancing, and routing.

1.7 Aim and Objectives

The goal of this study is to examine existing routing methodologies in hybrid SDN

and WMNs and propose a methodology for improving routing protocol perfor-

mance so that improved traffic management and monitoring can be accomplished

more quickly and cost-effectively. Our study’s key goals are as follows:

Introduction 11

� To look into the existing routing methods for wireless mesh networks and

elicit the best features for use in the proposed technique

� To improve the performance of the WMNs routing design as well as to im-

prove its network monitoring framework

� To propose a reliable routing architecture for a hybrid topology that includes

SDN hybrid nodes as well as legacy nodes

� In the event of a controller failure or an unreachable controller, a routing

method will be proposed

� The architecture of SDN nodes must be changed in order to create a Smart

SDN hybrid node

� To develop a mechanism for adaptive network monitoring and traffic mea-

surement

1.8 Dissertation Goals and Contribution

To improve the performance of wireless mesh networks and enable smooth inter-

operability between legacy mesh nodes and SDN nodes, we offer a robust routing

architecture for hybrid Wireless Mesh and Software Defined Networks. The sug-

gested routing approach alters the SDN node architecture by combining IP-based

forwarding with OLSR routing and SDN forwarding with the OpenFlow protocol

to create a hybrid and coexisting architecture. It should be emphasized that our

research does not endorse the SDN method as a replacement for existing routing

approaches. The purpose of this research is to understand that an SDN-based

architecture can help with WMN routing to improve its performance rather than

arbitrarily equating legacy routing approaches that use an in-band technique of

signaling with the centralized approach that employs out-of-band technique of

signaling. It is explored the legacy protocols can be used with SDN networking

architecture and to what extent the former can help the latter. In addition, as

Introduction 12

compared to previous hybrid routing architectures, the proposed routing archi-

tecture offers a cost-effective solution and seamless compatibility between conven-

tional and SDN-enabled devices. The following are some of the research’s major

contributions:

1. A routing architecture for hybrid networks comprising of conventional mesh

nodes and SDN-enabled hybrid nodes while providing robustness.

2. The architectural modification of SDN nodes to create an SDN hybrid node

that allows the data plane to adapt to network topology changes without

the controller having to query each time a flow is added to the network.

3. An adaptive network monitoring enables a network administrator to monitor

network traffic as well as link data such as link utilization and bandwidth.

1.9 Methodology and Techniques

The methodology used for conducting the proposed research and its simulation is

shown in Figure 1.5. The details are as given as:

1. Design of a network model while taking some assumptions such as mobility

in the network, diversified number of flows etc. under consideration.

2. Compare and analyze existing routing architecture in WMN and SDN net-

working domain.

3. Propose the architecture that include hybrid routing, modification of SDN

switch architecture, network monitoring mechanism, and routing in case of

controller failure or unreachable.

4. Evaluate the proposed architecture using simulation tools and then validat-

ing the results by performing a thorough analysis.

Introduction 13

Figure 1.5: Methodology of Proposed Architecture

1.10 Organization of this Dissertation

The structure of this dissertation is organized in the following way: Chapter 2

provides the background for proposed routing architecture whereas Chapter 3

investigates the related research and implementations on existing hybrid SDN/IP

routing solutions. A robust routing solution for hybrid WMN and SDN is proposed

in Chapter 4, while recovering from controller failure, a routing approach is also

described to eliminate the possibility of a single point of failure. This chapter also

explains the simulation model as well as analysis of results achieved. An adaptive

network monitoring technique and analysis of its results are presented in Chapter

5. Chapter 6 concludes the dissertation while describing its future work as well.

Chapter 2

Background for Proposed

Routing Architecture

The proposed routing architecture makes use of available tools and technologies

for its simulation purpose, that are discussed in details in subsequent sections.

2.1 SDN Controller - OpenDaylight

The SDN controller serves as a foundation for implementing the proposed archi-

tecture “Soft-Mesh”. Various SDN controller platforms are available, including

NOX, POX, Beacon, Ryu, Floodlight, ONOS, and OpenDaylight (ODL) [49]. Ta-

ble 2.1 summarizes the main features of above mentioned SDN controllers. The

given comparison provides us with two main opensource choices, ONOS and ODL.

The goal of ODL is to connect legacy (such as BGP, SNMP, etc.) and NGN (such

as OpenFlow and SDN) networks. In general, Carriers are more interested in

ONOS since it places a greater emphasis on performance factors and clustering

to boost availability and scalability. As a result, ONOS places a greater emphasis

on carrier-grade networks, and telcos participate in their projects. ODL features

more vendors than ONOS, including Cisco, Juniper, and NES. Therefore, for the

purpose of implementation, we choose OpenDaylight SDN Controller, and network

nodes including SDN hybrid and legacy nodes. OpenFlow protocol is used as a

14

Background for Proposed Routing Architecture 15

southbound API to create communication between control plane and data plane.

OpenDaylight (ODL) is a Java-based open-source project that has the backing

of a number of important networking firms, including IBM, Cisco, Juniper, and

VMWare. As a result, it can be used on any hardware and operating system plat-

form that supports Java [50].

Table 2.1: Comparison of SDN Controllers

The design of the OpenDaylight SDN Controller is shown in Figure 2.1. The

OpenDaylight SDN Controller has several layers. The higher layer is composed of

apps with business and network logic. The architecture of the middle layer may

contain SDN abstractions. This layer hosts both north-bound and south-bound

APIs. The northbound APIs that the controller exposes are used by applications.

OpenDaylight supports both bidirectional REST and the Open Service Gateway

Initiative (OSGi)1 framework for the northbound API. The business logic is con-

tained in the applications that are above the middle layer. These apps acquire

network intelligence, execute analytics algorithms, and then orchestrate any new

rules across the network via the controller. The bottom layer, however, is made up

of both actual and virtual devices [51]. Figure 2.2 illustrates the message exchange

between OpenDaylight controller and OpenFlow Switch.

Background for Proposed Routing Architecture 16

Figure 2.1: OpenDaylight SDN Controller Architecture [52]

2.2 OpenFlow Switch – Architecture and Oper-

ations

A communications protocol known as OpenFlow allows the control plane to de-

couple from the forwarding plane of many devices and communicate with it from

a single location, increasing functionality and programmability [53]. Figure 2.2

illustrates the components of an OpenFlow logical switch, which include one or

more flow tables, a group table, and one or more OpenFlow channels to an external

controller. These tables execute packet lookups and forwarding.

Figure 2.2: OpenFlow Switch Architecture [54]

Background for Proposed Routing Architecture 17

Using the OpenFlow protocol, the switch and controller exchange information,

and the controller controls the switch, as shown by Figure 2.3. The controller can

create, update, and remove flow entries from flow tables in the both proactive and

reactive manner.

Figure 2.3: Message Exchange between OpenDaylight Controller and Open-
Flow Switch

There is an OpenFlow Pipeline contains multiple flow table, and is used for pro-

cessing the packets to interact with other flow tables as shown in Figure 2.4.

Figure 2.4: Packet flow in Pipeline Processing

Background for Proposed Routing Architecture 18

An OpenFlow Switch executes the actions depicted in Figure 2.5 upon receiving

a packet. Based on pipeline processing, the switch may do table lookups in other

flow tables after beginning with the initial flow table. The OpenFlow protocol

supports the message types including, 1) controller-to-switch, 2) asynchronous,

and 3) symmetric. Each message type has its own subtypes. Table 2.2 presents

the type of messages used by OpenFlow protocol.

Figure 2.5: Flowchart of packet flow through an OpenFlow switch

Background for Proposed Routing Architecture 19

Table 2.2: OpenFlow Protocol Messages

Background for Proposed Routing Architecture 20

When an OpenFlow switch gets a packet that cannot be matched to an existing

flow rule, the packet will be buffered by switch before asking the controller for

a new flow rule with an OFPT PACKET IN message also includes data packet

header fields. The controller then responds with an OFPT FLOW MOD message

that specifies the action to be taken on the data packet and the amount of time

for which to keep the flow rule in its flow table. A timeout is used to describe

this interval. Each flow rule has two associated timeout values: a soft timeout for

idle periods of inactivity known as idle timeout value, which is triggered when the

flow is inactive, and a hard timeout, which is triggered when the timer expires, as

illustrated by Figure 2.6. When any of these durations expires, the switch deletes

the associated flow entry from its flow table and notifies the controller with an

OFPT FLOW REMOVED message.

Figure 2.6: Rule installation in OpenFlow Switch

Background for Proposed Routing Architecture 21

The OpenFlow specification requires the switch to send the whole packet to the

controller wrapped within the OFPT PACKET IN message, except in cases where

the switch lacks buffering capability or the input buffer is full. A message called

OFPT PACKET OUT, which also comprises the whole data packet, is the con-

troller’s response in this situation. The switch merely executes the related action

without installing any flow rules, as shown in Figure 2.7.

Figure 2.7: OpenFlow Switch cannot buffer packets

If the flow table of switch is full, then upon receiving an instruction to install a

flow rule, it sends an OFPT ERROR message to the controller with error code

OFPFMFC TABLE FULL, the packet is dropped then, as shown by the Figure

2.8.

Figure 2.8: Flow table is full in OpenFlow Switch

Background for Proposed Routing Architecture 22

2.3 Simulation Environment

The simulation environment of our proposed architecture uses the following com-

ponents:

2.3.1 Mininet-Wifi

Based on the 802.11 hwsim wireless simulation driver and the common Linux

wireless drivers, the network emulator Mininet-WiFi [55] uses virtualized WiFi

Stations and Access Points. It also imitates the features of mobile stations, such

as movement and location in relation to access points. Mininet-WiFi gives all the

common SDN emulation skills by introducing extra features. In addition, it utilizes

a few programs, including iw, iwconfig, and wpa supplicant. The first two are used

for wireless interface configuration and data collection, while the third is utilized

with Hostapd, among other things, implement WPA (Wi-Fi Protected Access).

They are both necessary tools, and TC (Traffic Control) is an additional one. The

rate, delay, latency, and loss parameters of the Linux kernel packet scheduler are

set using this. It could imitate real-world behavior more faithfully by applying

these settings to the virtual interfaces of stations and APs. The architecture of

Mininet- WiFi is depicted in Figure 2.9.

Figure 2.9: Mininet-Wifi Architecture [56]

Background for Proposed Routing Architecture 23

2.3.2 Networks Namespace (NNS)

A network namespace is a separate replica of the network stack with its own

network devices, routes, and firewall rules. In other words, each NNS creates an

abstraction layer that creates segregated network resources for processes within a

certain user area [57].

2.3.3 Open vSwitch (OVS)

A virtual switch that supports OpenFlow is called Open vSwitch (OVS). A phys-

ical switch’s operation is comparable to this one. Physical network adapters and

several virtual network adapters are connected to a virtual switch’s two ends. The

virtual switch searches for MAC addresses and keeps a mapping database. To

finish data forwarding, locate the necessary virtual machine link [58]. Figure 2.10

demonstrates the architecture of Open vSwitch (OVS).

Figure 2.10: Architecture of Open vSwitch (OVS) [59]

Chapter 3

Hybrid Wireless Mesh and

Software Defined Networks:

Review of Existing Approaches

3.1 Introduction

WMN features a long-standing and reliable network architecture and is intrinsi-

cally adaptable due to the variety of network nodes it contains, as mentioned in

section 1.1. On the other hand, WMNs are difficult to manage because the addition

and removal of nodes from the network can cause dynamic topology changes and

a wide range of communication and routing requirements. Table 3.1 summarizes

the existing routing strategies used in WMNs.

Existing SDN research focuses on a complete paradigm change from traditional

networks to software-defined networking, taking into account OpenFlow protocol

extensions and alterations. Rip-and-replace, on the other hand, is not a viable

strategy for mass adoption of any modern networking technology. Network op-

erators are not expected to update their equipment when transitioning to a new

technical paradigm.

24

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 25

Table 3.1: Existing Routing Protocols of Wireless Mesh Networks

Full adoption of SDN is not possible due to certain economic and operational

constraints, such as support for all network nodes and management by a logically

centralized controller. As a result, a hybrid solution consisting of gradual and

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 26

incremental transition of legacy networking to software defined networking is re-

quired. Table 3.2 compares the key features of hybrid networks and traditional

networks.

Table 3.2: Comparison of Hybrid SDN Network with Traditional Networks

The term hybrid refers to two or more layers. A hybrid SDN is a networking

strategy that uses both traditional networking and SDN protocols in the same en-

vironment. Instead of passing control to the hardware, SDN sends it to a controller

software program. Network engineers were able to create new SDN technologies

and support switched fabrics across several vendors’ hardware and application-

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 27

specific integrated circuits using a hybrid SDN. This effectively allowed legacy

networking devices or environments to run SDN technology, such as OpenFlow,

without requiring a total infrastructure rebuild. This chapter provides a com-

prehensive review of existing hybrid approaches with respect to three domains

that are hybrid routing approaches, control plane failure mechanisms and network

monitoring applications used by existing hybrid SDN approaches as illustrated by

Figure 3.1.

Figure 3.1: Existing Hybrid WMN and SDN Approaches

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 28

3.2 Existing Hybrid SDN Routing Approaches

This section examines numerous hybrid routing systems that integrate SDN archi-

tecture with WMNs to address the load balancing, traffic engineering, and mobility

management challenges that mesh networks encounter as a result of topological

changes. However, depending on the implementation frameworks employed, we

divide hybrid routing strategies into two categories:

1. Coexistence-based hybrid routing

2. Cohabitation-based hybrid routing

3.2.1 Coexistence-Based Hybrid Routing

As shown in Figure 3.2, in WMN and SDN hybrid routing solutions based on coex-

istence of SDN-enabled devices and conventional devices, that are being deployed

in a traditional topology and a hybrid network is created. By constructing such

a hybrid network, there is the possibility to use existing conventional nodes, to

give conventional networks a management control that exists in SDN networking

technology. Such networks therefore have a variety of appealing characteristics.

The proposed architecture analyses the usage of traditional routing protocols as

AODV, OSPF, OLSR, and other routing protocols in legacy nodes and usage of

OpenFlow in SDN nodes.

Figure 3.2: Coexistence-based Hybrid (SDN/IP) Routing

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 29

Levin et al. [60] proposed ”Panopticon,” a significant contribution for building

hybrid network based on SDN-enabled devices. By combining traditional and

SDN-based network, Panopticon provides a logical (virtual) SDN network that

has the same benefits as a complete SDN network. ”Panopticon”, a terminol-

ogy known for prison design with each cell arranged in a circle and is reachable

from a central watchtower for management and inspection [61]. Panopticon en-

ables the installation of all SDN network-specific applications on a physical SDN

network. The waypoint enforcement technique [62],is known to be the core con-

cept of Panopticon. Every packet crossing over the source-destination pair passes

through an SDN-enabled device is required by the waypoint technique. Once the

packet reaches the SDN-enabled device, it is processed by the controller. As a

result, every packet is handled precisely as it would be in a network that only

used SDN. Figure 3.3 (a) demonstrated an example of Panopticon architecture

with logical and physical network topologies. SCTs, are overlaid to develop con-

nectivity between the ports that are SDN-controlled SDN-enabled devices using

physical architecture, the logical perspective is shown in Figure 3.3 (b). Moreover,

a spanning tree is identified by using VLAN ID known as virtual local area net-

work identification [62, 63]. Levin et al. [64, 65] studied a few usage situations

and gathered experimental data to show logical SDN functions. The results of the

study demonstrate that when 10% of conventional switches are replaced with SDN

switches, SDN nodes manage around 25% of the traffic. The results demonstrate

a 40% performance gain over the initial network.

Vissicchio et al. [65] developed an architecture to provide an alternate solution

for resilience in SDN-based networks. The author proposed Interior Gateway

Protocol (IGP) [66] to address the issues of recovery from network failure and

robustness. Conventional protocols with a high degree of distribution can swiftly

fix transient network problems. The controller configures routing patterns tin

order to avoid the restrictions inherent to the scattered conventional protocols

and achieves optimization of the network in the long-term perspective. Local

agents are put up on each hybrid SDN switch to exchange routing information,

and distributed classical IGPs are used to construct backup routes. In case of

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 30

Figure 3.3: Waypoint enforcement in Panopticon

link failure, IGP routing information is being employed for the reconnection and

re-establishment of a connection.

In hybrid SDN switches, Vissicchio et al. [67] investigated the interaction of dis-

tributed such as OSPF and centralized such as SDN routing control planes. Traffic

engineering and improved robustness are two important advantages of this collab-

oration. In addition, the flexibility of routing can be increased by using hybrid

nodes based on SDN and conventional architecture, and the network function

virtualization can also be provided by using such hybrid nodes. However, the

interaction between centralized and distributed control management layer causes

the Fresh forwarding abnormalities. It presented the prerequisites for attaining

collaboration as well as a theoretical framework of control plane that is based on

problem free routing for resolving these forwarding abnormalities.

The operation of conventional and SDN-enabled networks and potential business

prospects and research challenges in the hybrid SDN network environment, are

all examined by Vissicchio et al. [68]. Based on the diverse functions of con-

ventional and SDN networks, the author presented a number of potential SDN

models based on hybrid networks, including the topology-based model, service-

based model, traffic class-based model, and integrated model. The network is

divided into zones by the network architecture based on topology where each zone

is either SDN-based or conventional network-based. Several functions are delivered

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 31

by SDN, in addition to those provided by conventional networking architectures,

that includes forwarding based on the type of network. For some traffic classes,

like TCP traffic, the class-based paradigm uses SDN, whereas for others it uses

traditional networking. Inconsistent forwarding can result from updating a hybrid

SDN network because multiple control planes operate concurrently [69].

Legacy devices provide forwarding tables at the control plane using RIP [70] or

distance vector routing protocols like OSPF [71], which use link state routing. The

SDN controller issues commands to SDN devices, which the SDN devices then use

to fill their forwarding tables. To stop inconsistencies from spreading through

network updates, Vissicchio et al. [69] introduce the Generic Path Inconsistency

Avoider (GPIA) approach. In order to create the forwarding tables, nodes in a

hybrid network using SDN routing strategy as well as conventional protocols for

routing purpose. A network update is a modification made between the network’s

initial configuration and its final configuration. Several operations are performed

on a node during a network upgrade. The calculation of forwarding tables may

change as a result of an operation.

The forwarding tables at legacy or SDN devices can also have entries added or

removed. According to the proposed GPIA method, (i) consistent forwarding

is provided by the conventional routing protocol in case of SDN routing is not

functional [72]; (ii) existence of consistent forwarding in the initial and final con-

figurations of networks. By modelling the modification, that is, computing the

resulting intermediate forwarding paths and contrasting the intermediate configu-

ration with the initial and final network configurations, the recommended method

determines whether this update results in forwarding inconsistencies [73, 74]. The

GPIA technique will need to be expanded in the future to include more than

one node. In addition, GPIA’s scalability and adaptability must be thoroughly

investigated. This technique is the more recent and efficient of the two since it

employs the Generic Path Inconsistency Avoider (GPIA) algorithm with higher

performance. As a result, both traditional ISP networks and data center networks

can benefit from this strategy [75]. Peng et al. [76] advocates introducing SDN

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 32

nodes gradually by gradually increasing the number of nodes, resulting in im-

proved traffic forwarding. The suggested architecture is based on the OSPF [71]

and OpenFlow [77] protocols, with the number of simulation efficiency metrics for

hops and the use of links taken into account. It achieves a significant reduction in

network congestion and load balancing.

The OSPF/SDN traffic engineering problem was handled by Guo et al. [78],

who created an incremental migration deployment method based on a heuristics

approach. In order to improve traffic engineering, Guo et al. looked into and pro-

posed that in ISP networks we can place SDN-enabled devices along with tradi-

tional devices. The main objective of such mechanism for migration is to establish

the best router placement within an ISP network in order to reduce the maximum

connection use. A genetic algorithm selects the optimal migration sequence from a

variety of alternate ones. The greedy approach and the static migration algorithm

are two further heuristic methods under development.

A traffic engineering architecture based on hybrid networks of SDN, which is able

to manage a number of traffic metrics, was developed by Guo et al. [79]. Effective

solutions are required for the NP-hard multiple TM traffic engineering problem.

For the optimization of routing, Guo et al. implemented a weight change mech-

anism based on offline mode for traditional devices with a number of TMs based

on ratio optimization splitting in online mode. A data mining strategy is used

to extract information from previous TMs by keeping past data for all previous

TMs and developing a coefficient based on weight for those TMs used as represen-

tative. According to simulation results, the suggested method provides effective

traffic engineering. The SDN/OSPF Traffic Engineering (SOTE) method for hy-

brid network based on SDN-enabled devices was introduced by Guo et al. [80].

In traditional networks, routing based on OSPF [71] frequently results in network

congestion on the shortest pathways. According to Guo et al., the solution to the

OSPF congestion issue is centralized SDN control. The suggested method reduces

the maximum link utilization by enhancing the OSPF weight setting. The flows

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 33

that arrive at the SDN switches are divided by the SDN controller. The conven-

tional nodes employ OSPF on a regular basis. The SOTE Algorithm gives satis-

factory results even with SDN-enabled devices are used only 30% in the network.

The SOTE analysis in [80] has the drawback of only considering the congestion

factor.

Labraoui et al. [81] looked at how an SDN-assisted solution could help reduce

routing overhead, accelerate convergence, and reduce packet losses. The SDN-

only architecture can boost data throughput by up to 22% while reducing packet

loss by up to 25%, making this approach as efficient as a reference system. In this

approach, authors looked into a scenario in which the SDN solution was combined

with a traditional distributed protocol. This OLSR-based solution consists of two

parts: (1) limiting the MPR broadcast scope to a small number of hops, and (2)

assisting the SDN controller with routing when hosts are detected outside of the

MPR broadcast scope. It improved the packet delivery ratio by 20% and reduced

the number of lost packets by 20%. As a result, it shows that the SDN strat-

egy can help with distributed routing protocol operations. Indeed, the proposed

solution’s centralized structure introduces additional types of issues, such as the

development of a Single Point of Failure [82]. For WMNs, distributed routing

methods have been in use for a long time and are an important aspect of mesh

networks. However, each one is designed to address a distinct WMN issue, and as

a result, they have been known to fail under certain circumstances. If link load

is not taken into consideration, a protocol’s computed shortest path may quickly

become overwhelmed under heavy traffic conditions. By providing load balancing

services and dynamically provisioning links, SDN could help the routing service.

Labraoui et al. [83] presented a method that would allow the RAN to be offloaded

via WiFi access networks using Wireless Mesh Networks (WMNs) generated by

the smartphones themselves, with SDN control of IP communications in the edge

networks. The tool utilized is NEON, a lightweight SDN utility for dynamic net-

works [84]. Wang et al. [85] proposed an architecture for QoS Routing employing

residual energy and hop count as efficiency indicators for route selection in a multi-

hop wireless network linked with SDN. The concept of Multipoint Relay (MPR) is

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 34

used to optimize transmissions. The controller determines the shortest path, and

the Dijkstra Algorithm [86] is used to generate various paths.

He et al. [87] created an aerial satellite overlay hybrid network to build a new SD-

N/IP network architecture. By cooperatively managing both networks, the design

makes it easier to overcome the difficulties and inconsistencies of hybrid SDN.

While a centralized network based on SDN is established using the network of

satellite, then the ground is used to establish the conventional network. A number

of networks are developed on the ground, and the SDN control is used to manage

at the overlay level with satellite. Sockets and openflow are used to construct

an unique routing model. The packets are subsequently forwarded in accordance

with a routing protocol maintained by the routing engine server once the SDN con-

troller has installed the appropriate forwarding entries at the switches. Quagga

[88] decodes routing protocol packets and transmits the routing information to the

SDN controller, which has a comprehensive understanding of the entire network.

Gradual deployment strategies are advised for hybrid networks based on SDN and

conventional networks. He et al. [87] focused in particular on a satellite overlay

networking scenario. With middle box deployment, this approach handles reliably

the path failure cases with reduced overhead while providing good performance.

The ISP networks’ evolution has been investigated by Poularakis et al. [89] with

respect to SDN networks. The ISP networks can be progressively converted to

the SDN-enabled networks over an extended period, that may cover many years.

Moreover, Poularakis et al. advise against completing the transition in a single

stage based on variation in network traffic as well as topologies. Programmable

traffic and non-programmable traffic are the two types of network traffic used in

the hybrid SDN network created by the migration scenarios [90]. The two primary

objectives that are taken into consideration are the maximisation of programmable

traffic and the optimization of traffic engineering (TE) flexibility [91]. The for-

mulation of the programmable traffic problem uses a variation of the Budgeted

Maximum Coverage Problem (BMCP) [92]. The research of this technology re-

veals a 54% increase in programmable traffic, allowing for more effective traffic

engineering.

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 35

To maximize the amount of SDN benefits, Xu et al. [93] looked into hybrid

photonic SDN deployment alongside traditional hardware. In the majority of

hybrid SDN installations, traditional devices are swapped out for SDN devices so

that the SDN controller can manage the majority of the traffic. It suggested a

duplicate deployment strategy in which the deployment of SDN-enabled devices is

”in addition to” existing devices as opposed to ”in substitute of” them. All traffic

flows in this hybrid network are collaboratively negotiated by traditional routing

protocols along with the SDN controller. The authors used approximation scheme

based on a randomized rounding approach along with traffic mapping that solves

the problem of routing optimization and joint nature of duplicate deployment

for throughput maximization with a constrained budget. The suggested solution

increases throughput by 26% in comparison to standard routing. The key benefit

of the duplicate deployment is that it increases the utilization of resources allocated

to a network and its throughput without requiring any modifications to the existing

network architecture [94].

Caria et al. [95] offer the partitioning of a hybrid network based on SDN and con-

ventional networks method for optical circuits of varying nature. The partitioning

model uses a method developed by Caria et al [96] earlier, that involved breaking

an OSPF network into multiple segments. SDN controller handles SDN-enabled

devices directly and connects the OSPF segments. This method integrates SDN

based partitioning with those optical circuits that used as bypasses. To put it

another way, optical bypasses improve the initial OSPF segmentation, allowing

network operators to better manage their networks. The partitioned segments are

used to handle huge traffic along the network. In addition, it achieves optimiza-

tion of utilization of resource by using optical bypasses [97]. Network operators

do not have to completely migrate to optical transport or SDN-only transport

when using the Caria et al. [95] method. In a hybrid network based on SDN and

conventional nodes, the recommended mechanism achieves effective link use and

enhances network management and control, according to simulation results.

Martinez et al. [98] proposed a hybrid network based on service type and wireless

mesh network of backhaul. The proposed architecture blends the advantages of

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 36

centralization concept of SDN and conventional network layout in diverse nature.

Three levels make up the wireless mesh backhaul concept. In order to produce

low-cost capacity at a lower layer, millimeter wave and sub-6 GHz technology are

coupled. The control layer of this network is composed of distributed and cen-

tralized networks with time sensitive services and data sensitive services. Network

services based on energy-efficiency and routing are placed at the top (application)

layer. According to the simulation results, the service-based hybrid SDN strategy

beats a centralized SDN model by a factor of six by lowering latency. In order to

prevent improper communication between the SDN controller and the forwarding

nodes when the Control Packet Loss Ratio (CPLR) of the control channel reaches

an unacceptable level, Osman et al. [99] introduced a hybrid-SDN strategy with

switches network control logic. Furthermore, it allows for the acquisition of aggre-

gated throughput and latency numbers that are comparable to those provided by

canonical-SDN under low CPLR.

Table 3.3: Coexistance-Based Hybrid (SDN/IP) Routing Approaches

Approach Features Protocol Limitations

Levin et al.

and

Load balancing, fault tolerance,

link recovery

OSPF,

EIGRP,

OpenFlow

Location and number

of SDN switches, ad-

ditional computation to

find efficient paths

Vissicchio

et al.

Flexibility, partial robustness, OSPF, GPIA Topological position and

scalability

Peng et al. Load balancing, congestion con-

trol, and making traffic fast-

forwarding

OpenFlow,

OSPF

Information exchange

b/w SDN and IP nodes

Guo et al. Traffic Engineering and link uti-

lization

OSPF, Open-

Flow, SOTE,

Migration sequence of

SDN nodes

He et al. Collaborative management, OSPF or RIP,

OpenFlow

Information exchange

b/w SDN and IP nodes

Labraoui et

al.

Reliability and performance im-

provement

OpenFlow,

OLSR

One hop communica-

tion b/w Controller and

nodes

Wang et al. QoS Routing, Single/multipath

routing, and disjoint multipath

OSPF, Open-

Flow

Expansion in network

size

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 37

Approach Features Protocol Limitations

Xu et al. Duplicated Deployment scheme OSPF or

BGP, ECMP,

OpenFlow

Capacity of traditional

legacy devices to remove

from the network

Caria et al. Network management and con-

trol, efficient link utilization

OSPF, Open-

Flow

Flexibility and scalabil-

ity of the hybrid SDN

network

Poularakis

et al.

SDN upgrade scheduling, break

the routing path into segments

OSPF, Open-

Flow

Highly heterogeneous

network environment,

Controller only main-

tain an abstract view of

topology

Martinez et

al.

Resilient to path failures, sup-

ports dynamic flow installation

BDN, GPRS,

OpenFlow

Incurs high overhead,

does not consider path

stretch

3.2.2 Cohabitation-based Hybrid Routing

As illustrated in Figure 3.4, the goal of the cohabitation-based hybrid routing

strategy is to change the logical architecture of the SDN hybrid switch to allow

OpenFlow and IP forwarding to coexist with traditional routing protocols like

OLSR, OSPF, AODV, etc. The former is used to communicate with SDN nodes,

while the latter is used to communicate with legacy nodes. In other words, network

switches that are hybrid SDN switches have both SDN and conventional routing

functionalities.

Figure 3.4: Cohabitation-based Hybrid (SDN/IP) Routing

Dely et al. [100] developed a cohabitation-based hybrid architecture to handle a

variety of hybrid SDN issues, including performance optimization, efficient and

scalable customer mobility, scalable routing, load balancing, and so on. The divi-

sion of physical interface is done and virtual interfaces are created. Each virtual

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 38

interface contains its own SSID. The data traffic is managed by these virtual in-

terfaces. Topological alterations, on the other hand, have a significant impact on

this architecture [101]. OLSR [102] is a traffic control system. The data flow is

managed via OpenFlow by the centralized controller, and resource allocation is

also defined. The architecture makes use of a monitoring and control manager to

help with mobility management and the NOX operating system to generate flow

tables. When tackling the controller’s main challenge, Detti et al. [103] adopted

Dely et al. [100] as a reference architecture and made some changes to eliminate a

single point of failure. As a fallback, it employs a distributed control system. For

traffic data and control, a single SSID is employed. Mesh access points (MAP)

are used in the architecture, which are linked to a centralized controller [104]. A

number of virtual interfaces that connect to other nodes are included in each MAP.

To manage data and control, many subnets are employed. OLSR [102] is used in

this architecture to handle routing and swap the switching table in the event of

controller failure. This type of architecture allows for traffic optimization.

A hybrid architecture based on the extension of Detti et al. [105] was recom-

mended by Salsano et al. to improve fault tolerance. Flow tables and controllers

are created in line with the MAPs and controllers of the Embedded Flow Ta-

ble Manager (EFTM). The synchronization of controllers in such systems is quite

difficult [106]. Solutions are required for (a) scalability and fault tolerance, (b)

managing the OpenFlow protocol’s latency requirements for controller communi-

cation, (c) integrating WAN switches, and (d) managing the latency requirements.

A realistic evaluation platform is needed, especially for networks with thousands

of nodes and links. The Open Network Operating System (ONOS) has a refer-

ence node implementation that is open-source and an emulation framework that is

open-source [107]. An IP forwarding engine, an IP routing daemon, and an Open-

Flow capable switch are all part of the Open-Source Hybrid IP/SDN (OSHI) node

(OFCS). The OFCS is depicted in Figure 3.5 as consisting of an OpenvSwitch

(OVS) [108] and an IP forwarding engine created using Quagga [88] and IP net-

working capabilities of the Linux kernel. In contrast to the OFCS, which is con-

nected to actual network interfaces, the IP forwarding engine is connected to a set

of virtual OFCS ports. The OSHI framework may be implemented and evaluated

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 39

using the Mantoo, a collection of management tools for hybrid networks based on

SDN along with conventional nodes and large-scale nature. Mantoo [109–111] can

be used to create a realistic network environment with large-scale. Mantoo is used

for the configuration and testing of OSHI networking architecture and services on

dispersed SDN testbeds and a Mininet simulation.

Figure 3.5: OSHI Hybrid SDN/IP Node Architecture

Hakiri et al. [112] introduced SDNs with WMNs for network virtualization, rout-

ing, and traffic engineering in smart cities, enabling enhanced network capacity

and flexibility. A wireless mesh network and software defined networking (SDN)

were used in this approach to provide a strong and user-friendly system for im-

plementing smart city services. SDN was implemented into WMNs by Hakiri

et al. [112] in order to create and maintain a reliable Cyber Physical System

(CPS) network that satisfies the QoS criteria of CPS applications. By chang-

ing the OpenFlow protocol, a unique technique for routing, network monitoring,

and traffic engineering is being offered. The bootstrapping method, a significant

advancement, enables both centralized and distributed SDN control planes and

makes a dis- tinction between problems with distributed systems and fundamen-

tal controller concerns. The authors proposed employing a modified open flow

protocol that supports both distributed and centralized SDN control planes to

provide network monitoring and traffic engineering [113, 114]. Shastry et al. [115]

suggested a software-defined wireless mesh network design to address the problems

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 40

with traffic balancing brought on by node mobility. In order to reduce the SDN

controller’s overall response time in a complicated network topology, the proposed

model assesses the chance of connection failure in the topology. A different set

of paths is suggested after a connection loss is foreseen based on the network’s

successful traffic stability, reducing control plane overhead [116]. Software-defined

networking is used by Kuznetsova et al. [117] to manage wireless mesh sensor net-

works. By using an SDN controller to govern the network, they are able to increase

bandwidth, jitter time, and packet loss performance. A review of the characteris-

tics, workings, protocols, goals, and constraints of the current cohabitation-based

hybrid routing techniques is given in Table 3.4.

Table 3.4: Cohabitation-Based Hybrid (SDN/IP) Routing Approaches

Approach Features Protocol Limitations

Dely et al. Load balancing, mobility man-

agement, and optimization of re-

source allocation

OLSR, Open-

Flow

Fault tolerance, MAP

association and flow

path optimization

Detti et al. Reliability under controller fail-

ure and traffic optimization

OLSR, Open-

Flow

Excessive packet-in traf-

fic, dynamic topology

Salsano et

al.

Multiple controllers’ deploy-

ment, fault tolerance, A man-

agement tool, fast restoration,

and traffic engineering

OSPF,

MPLS, Open-

Flow

Synchronization of mul-

tiple active controllers,

frequent rule updating,

dynamic topology

Hakiri et

al.

Network virtualization, routing

and traffic engineering, heuris-

tic algorithm based on the sub-

modularity concept

OLSR, Open-

Flow

wireless network re-

sources and radio

resources management

3.3 Control Plane Failure Recovery Mechanisms

in Hybrid SDN Approach

In SDN design, the separation of the control plane from the data plane presents

a new point of failure: control plane failure. The community has put little effort

into addressing the flaws of the SDN paradigm when it comes to the reliabil-

ity of the control plane (including controller failures and control channel losses).

Multiple SDN controllers were suggested by Lara et al. [118] as a way to avoid

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 41

SDN controller failure (controller redundancy); however, this approach may also

raise issues with consistency. HyperFlow was introduced by Tootoonchian et al.

[119] and is based on physically distributed controllers that are synchronized via

a publish/subscribe system. For inter-controller synchronization, ONOS requires

complicated procedures. Designing strategies to deal with control plane unrelia-

bility is another alternative.

In the event of channel failure, Omizo et al. [120] presented ResilientFlow to

restore the control channel via alternate channels (path redundancy). On the

other hand, these researches focused on a specific type of issue, like an SDN

controller or control channel failure. In addition, implementing a hierarchy or

cascade deployment method could be a fix for SDN controller problems. Since

version 1.3 [118], OpenFlow has enabled several SDN controllers for regulating

a comparable set of forwarding nodes. Event ordering, unreliable event delivery,

and command repetition are three inconsistencies that continue to be of concern.

During an SDN controller failure, Katta et al. [121] proposed Ravana to ensure

event sequencing, accurate event processing, and command execution for exactly

once. A module called OLSR-to-OpenFlow (O2O) was proposed in wmSDN by

Detti et al. [122] for the forwarding of OpenFlow packets according to the set rules.

In order to recover from the SDN controller failure, the O2O module is responsible

for forward nodes to dump in the routing tables based on OLSR algorithm. This

approach demands that routing tables be transformed into SDN rules. Kobo et al.

[123] investigated that very little effort is being made that resolve the challenges

of degradation of the performance of control channel, while the deployment of

multi-hop wireless networks should be considered for the services of small cells,

despite the fact that SDN controllers are implemented with complex functionalities

that are used for the handling of management of cluster, and the master ship of

device to guarantee the handling of events in a consistent manner, in case when

controller fails. In hSDN, illustrated by Figure 3.6, Osman et al. [124] specifically

addresses the problem of control channel failure by proposing a straightforward

and a quick strategy for the recovery of SDN controller from occurring of faults,

and other events like channel used for control plane communications gets failed or

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 42

degraded. The authors propose variations in Control Packet Loss Ratio (CPLR)

in the communication of control plane.

Figure 3.6: Architecture of hSDN

Table 3.5 provides the summary of Control Plane Failure Recovery Mechanisms

in existing hybrid SDN approaches

Table 3.5: Control Plane Failure Recovery Mechanisms for Hybrid SDN Ap-
proach

Mechanism SDN Controller

Failure

Control Commu-

nication Channel

Failure

Degraded Con-

trol Communica-

tion Channel

Tootoonchian et al. :
HyperFlow

Yes No No

Omizo et al. : Re-
silientFlow

No Yes No

Katta et al. : Ravana Yes No No
Detti et al. : wmSDN Yes No No
Osman et al. : hSDN Yes Yes Yes

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 43

3.4 Network Monitoring Applications for Hybrid

SDN Approach

As hybrid network based on SDN-enabled devices allow both classical and SDN

devices to coexist and work together, they are becoming increasingly popular.

However, fine-grained monitoring is needed to leverage the benefits of SDN and

achieve near-optimal traffic engineering performance with little SDN implementa-

tion. Monitoring related developments in hybrid network based on SDN-enabled

networking are discussed in this section.

OpenNetMon is a network monitoring module that offers numerous methods for

gauging various aspects of network performance, according to Van et al. [125].

OpenNetMon has the ability to continuously track network delays, packet loss

rates, and speed. First, while measuring throughput rate, it employs a variable

frequency to query simply the final switch on the forwarding path. S/T can

be used to determine the forwarding path throughput. ‘S’ represents a flow’s

packets count that is retuned within the Time ‘T’ used for sampling by the counter.

The forwarding path shows some packet loss that is taken by collecting counter

statistics from the first and last switches on the path, dividing the result by the

time, and lastly subtracting the first counter’s increase from the last counter’s

increment in a measurement cycle. OpenNetMon sends probing messages to the

forwarding path’s data layers in order to ascertain the delay. These messages travel

through each node before returning to the controller along the forwarding path.

Calculating the time differences will give us the delays regarding communication.

Despite the fact that there are a lot of network flows overall, it is impractical to

measure the size of each flow separately due to the Ternary Content Addressable

Memory (TCAM) table and the CPU’s restricted measurement capabilities. The

iSTAMP approach created by Malboubi et al. [126] tackles this problem. It

assesses the convergence flow or the magnitude of the k flows of biggest nature,

then the integrated traffic matrix is estimated using the technologies that are

most appropriate. Despite appearing the striking of stability among the resource

constraints of a particular network and accuracy in measurement. The iSTAMP

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 44

has the below mentioned drawbacks. 1) given the limitations on flow aggregation

practicality, the flows are combined into a single one having same destination

node, when SDN switches forward packets, and the priority and wildcard matching

principles are used to select a forwarding item. When aggregating flows, however,

the iSTAMP approach stays clear of these limitations. The iSTAMP measures

single flows over a number of varying periods that determines the highest number

of flows, which generates measurement costs that cannot be disregarded.

Tootoonchian et al. [127] presented ‘OpenTM’ that is an estimate approach for

the matrix of SDN traffic. Based on the routing information and flow forward- ing

path details supplied by the controller, all of the active flows can be detected by

proposed approach. The OpenTM offers a variety of selective querying mechanisms

for receiving precise information on packet number and flow evaluation for routing

nodes. To effectively manage a range of measurement tasks and applications, a

comprehensive framework for SDN statistics measurement must be developed. The

PayLess is a polling-based flow measuring platform with low costs, according to

Chowdhury et al. [128]. The PayLess framework, which provides programs with

a RESTful interface, is a component of the OpenFlow controller. Interfaces of

standardized programming for the application used in networks while maintaining

the application’s data that is used for networks is the main features of Payless

architecture. The framework for traffic measurement may be expanded to include

the unique components of users, tasks are defined using JSON format.

According to Yu et al. [129], the OpenSketch, a framework to measure the net-

work statistics is an abstract framework in nature that broadly uses SDN technol-

ogy. According to proposed solution, flow-based measurement is inadequate for

the needs of various users due to flaws including counter overhead and measure-

ment inaccuracy. Contrarily, OpenSketch enables user customization, and various

tasks have distinct hardware needs, making it challenging to perform many tasks

on the same system, in order to properly address adaptability and effectiveness.

When measuring control and data layers, OpenSketch advises keeping them sepa-

rate since data layers are created as three-phase processes that can be constantly

changed. A variety of hash methods are available in the OpenSketch first stage to

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 45

map packets into a tiny quantity of measurement data. Furthermore, network ap-

plications require multiple concurrent flow monitoring jobs rather than providing

a single measurement activity at a time.

Figure 3.7: Architecture of OpenSketch

The DREAM is an adaptive hardware resource management architecture that suc-

cessfully balances measurement precision and resource costs, according to Moshref

et al. [130]. The significant features of the DREAM architecture are as follows.

1. The accuracy of measurement of a flow is determined by the hardware re-

sources allotted to it. There will come a moment where the ability to pro-

mote task accuracy decreases as the quantity of resources allotted to the

work increases

2. Because the resources required by measurement activities vary based on the

time and magnitude of the flow, these resources can be adjusted to improve

their utilization efficiency.

The user layer, which makes up the top level of the DREAM, is in charge of

creating measurement tasks, which include, among other things, activity kinds,

specific flow thresholds, and accuracy standards. The SDN controller’s DREAM

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 46

algorithms are at an intermediate level. They take user tasks, create task objects

that are related to them, and then divide these abstract responsibilities over several

switches. In practice, the deployment process entails both storing measurement

logic in the TCAM and requesting TCAM resources from the switch [131]. Based

on input from real-time traffic monitoring, the DREAM algorithms may adjust

the resources allotted to each task or combine resources from other activities to

determine the accuracy of measurements. On the other hand, depending on the

situation at hand, the algorithms can choose whether or not to accept a new

assignment. Basically, SDN-enabled devices are used to evaluate resources to

store and to report flow statistics in real-time. Hartung et al. [132] presented

SOFTmon, a NOS-independent monitoring system based on switch, port, and

flow-level information, although accuracy is limited to certain tasks.

In order to reduce the number of monitoring messages, the amount of bandwidth

used, and the reporting latency at the control plane, Yahyaoui et al. [133] created

a heuristic approach based on a flow monitoring method. Determining which

switch would report statistics on which flow was the challenge. A low-overhead

in-band network telemetry and monitoring solution for wireless mesh networks

was presented by Haxhibeqiri et al. [134]. The majority of industrial applications

demand determinism in terms of latency, reliability, and throughput; nevertheless,

enabling end-to-end network monitoring, which takes into account end devices as

well, is the first step in network verification. This paper presents the design of a

proof-of-concept (PoC) implementation for an in-band network telemetry enabled

node architecture. A real-world SDN-based wireless network is monitored using

the proof-of-concept implementation, enabling on-the-fly (re)configuration based

on data monitoring. The suggested in-band monitoring technology offers a six-

fold lower overhead than existing active monitoring methods on a one-hop link.

Further evidence of the suitability of the recommended monitoring technique is

provided by the fact that (re)configuration choices based on observed data satisfy

the specified application criteria.

The hybrid federated control architecture proposed by Bellavista et al. [135] is

based on a middleware that controls the quality of service (QoS) in spontaneous

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 47

networks, i.e., WMNs, where mesh clients not only create their own multi-hop net-

works but also integrate into the network infrastructure. In conventional WMNs,

infrastructure network administrators deploy mesh routers, but mesh clients often

operate on a best-effort basis. Because of this, network-wide collaboration is dif-

ficult. However, [135] envisions a networking environment in which mesh routers

and clients work together to share information about the resources made avail-

able, hence maintaining the necessary QoS. In this scenario, a WMN is composed

of numerous closely spaced subsets of nodes that are each under the supervision

of a single controller. Network traffic is managed autonomously by controllers on

each island, while they collaborate with one another to decide how to prioritize

traffic flows between the islands. WMN nodes regularly check the availability of

their controller and, if necessary, can switch to a better one. Every WMN node

that utilizes the recommended middleware has the capability of turning into a

controller. A node assumes the controller position inside an island based on a

node election system that evaluates various crucial factors such as computing ca-

pability, energy, and incentive mechanisms. For instance, WMN nodes have the

ability to dynamically collaborate by selecting a new controller when necessary,

such as when the current controller runs out of power.

The FlowSense [135] monitoring module Yu et al. designed for the SDN controller

may assess dynamic changes in network flows in accordance with the signals the

SDN controller receives. After receiving a message stating that a particular flow

has been removed, the controller, calculates the flow’s throughput rate, it divides

the flows values by its size. The reactive OpenFlow installations caused the cre-

ation of FlowSense, switches send control signals whenever a new flow enters or a

flow entry expires. The presence of a large number of flows generates a significant

number of control packets, which can overwhelm both the controller, that cannot

handle all control traffic in a timely manner, and the switches, that cannot run

at line speed and quickly deplete their flow tables. Controllers in networks of 100

switches, for example, may have to process up to 10 million PacketIn messages

per second with fresh flows entering every 10s. In practice, the need for scalability

drives operators to increasingly adopt alternative OpenFlow deployments, such as

distributing controller functionality across multiple machines, proactively setting

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 48

up rules to never expire to avoid triggering control traffic, and using wildcard rules

to reduce control traffic.

Table 3.6 summarizes the available network monitoring apps utilized by hybrid

SDN and WMNs.

Table 3.6: Network Monitoring Applications for Hybrid SDN Approach

Method Features Analysis

Van et al. : Open-

NetMon

Data fetching is adaptive Increase in accuracy with in-

creasing overhead

Malboubi et al. : iS-

TAMP

Partitioning of TCAM for

traffic aggregation and de-

aggregation

Increase in accuracy with ad-

ditional mechanism prioritize

flows

Tootoonchian et al. :

OpenTM

Continuous polling to collect

flow statistics

Increase in accuracy with in-

creasing overhead

Yu et al. :

FlowSense

PacketIn and FlowRemoved

OpenFlow messages used

Increase in accuracy with de-

creasing overhead

Chowdhury et al. :

PayLess

The polling algorithm is adap-

tive with flow frequency

Variation in accuracy and

overhead with polling interval

length

Yu et al. : OpenS-

ketch

Query-based monitoring,

Wildcard rules at switches for

only monitoring a large ag-

gregate of flows instead of all

flows for reducing monitoring

overhead.

Low memory consumption

with high accuracy

Moshref et al. :

DREAM

Dynamic deployment of re-

sources with the required level

accuracy level, Hash-based

switches for collection of traf-

fic information

Concurrent tasks give more

accuracy, Increase in accuracy

with the careful delegation of

monitoring rules

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 49

Method Features Analysis

Hartung et al. :

SOFTmon

NOS-independent monitoring

with utilization information

on switch, port, and on a flow

level

Accurate for specific tasks

only

Yahyaoui et al. A heuristic solution, decreases

monitoring messages, band-

width consumption and re-

porting latency

Identifies the switch to report

statistics for a specific flow

Haxhibeqiri et al. low-overhead in-band network

telemetry, proof-of-concept

implementation monitors

a real-world SDN-based

wireless network, allows for

on-the-fly (re)configuration

six-fold reduced overhead

Bellavista et al. Hybrid federated control ar-

chitecture, A middleware to

manage QoS

Controller election is dynamic

whereas controller selection is

opportunistic

3.5 Conclusion

In coexistence-based hybrid routing schemes Levin et al. [47], Vissicchio et al.

[136], and Guo et al. [137] consider the physical position of the controller, the

number of SDN nodes and the scalability of the controller as the most impor-

tant control management challenges. In wide or highly complex networks where

controllers have to make fast decisions on a high frequency of events such as con-

nection failures, dynamic traffic demands, regular arrival of new flows, etc., these

problems may be very critical. However, He et al.[138], Labraoui et al. [85], Wang

et al. [100], and Xu et al. [139] consider the sharing of topological information

between traditional routers and SDN nodes as the most critical issues, and SDN

nodes need to be intelligent enough to exchange link-state messages to get their

neighbors information. The analysis of cohabitation-based hybrid routing schemes

Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches 50

shows that Dely et al. [140], wmSDN by Detti et al. [141], Salsano et al. [132] and

Hakiri et al. [142] consider fault tolerance, excessive control traffic, and dynamic

topology as the most significant challenges for the blending of SDN and IP in one

node. These challenges may be mitigated by designing SDN nodes in such a way

as to have a local management entity that may be used to create a logical inter-

face between the two different paradigms of centralized and distributed network

solutions.

The analysis of control plane failure mechanisms illustrates that hSDN approach

by Usman et. al [124] addresses all the three aspects of control plane failure that

include controller failure, control channel Failure, and degraded control channel.

However, HyperFlow by Tootoonchian et al. [119], Ravana by Katta et al. [121],

and wmSDN by Detti et al. [138] proposed the solution for controller failure

issue whereas ResilientFlow by Omizo et al. [120] proposed a solution for control

channel Failure issue.

Furthermore, the analysis for network monitoring approaches show that mostly the

existing solutions such as OpenNetMon by Van et al. [143], iSTAMP by Malboubi

et al. [144], OpenTM by Tootoonchian et al. [145], and DREAM by Moshref et

al. [131, 146], result in increase in accuracy on the cost of increasing overhead.

However, OpenSketch by Yu et al. [129], and FlowSense by Yu et al. [141] result

in high accuracy with low memory consumption and low overhead respectively.

Chapter 4

Soft-Mesh: A Robust Routing

Architecture for Hybrid Wireless

Mesh and Software Defined

Networks

4.1 Introduction

The choice of the best path and the transmission of data along it are both cru-

cially dependent on routing protocols. Any routing protocol is built on the cost

metric. The output of a routing protocol improves with greater cost metrics. The

cost measure of a network link is the cost of sending packets across that channel.

Due to the uneven distribution of link characteristics among nodes, defining a

cost indicator for wireless networks is considerably more difficult than for conven-

tional wired networks. The quality of wireless network transmission is impacted

by a number of issues, including interference, channel fading, obstructions, and

background noise [138]. However, WMNs, in particular, are thought to be self-

organizing and dynamically configured, with nodes that form and maintain mesh

connections on their own. This feature gives WMNs many advantages such as

easy and cheaper installation, reliable connectivity, flexible interoperability with

51

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 52

other existing wireless networks [139]. Despite these numerous benefits, the num-

ber of users wishing to exchange information is increasing, resulting in issues such

as packet loss, increased transmission delay, and overcrowding of gateways, which

serve as network exit points. It is feasible to implement routing and traffic load-

balancing algorithms at the gateways using the Software Defined Network (SDN)

architecture and the Openflow protocol, which may be deployed at the level of

the SDN Controller [140]. As WMNs can operate on a multi-protocol basis down

to the transport layer headers, the introduction of SDN ideas into these networks

gives these networks more flexibility in the implementation of packet processing

activities like routing and filtering. This versatility can promote creativity in the

control of equipment mobility, intricate traffic engineering, and the most effective

use of the constrained communication capabilities of WMNs. Furthermore, by re-

designing network control logic, the network management in WMNs is simplified

by incorporating SDN technology.

4.2 Architecture of the Proposed Routing Ap-

proach

The main platforms, technologies, and techniques employed for the evaluation of

our suggested hybrid method are described in this section. The SDN controller

platform serves as a foundation for implementing the proposed architecture ‘Soft-

Mesh’. Numerous SDN controller platforms are available, including NOX, POX,

Beacon, Ryu, Floodlight, ONOS, and OpenDaylight (ODL) [141]. In general,

Carriers are more interested in ONOS since it places a greater emphasis on per-

formance factors and clustering to boost availability and scalability. As a result,

ONOS places a greater emphasis on carrier-grade networks, and telcos participate

in their projects. ODL features more vendors than ONOS, including Cisco, Ju-

niper, and NES. Therefore, for the purpose of implementation, we choose Open-

Daylight SDN Controller, and network nodes including SDN hybrid and legacy

nodes. The detailed description of ODL SDN controller is provided in Section

2.1. OpenFlow protocol is used as a southbound API to create communication

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 53

between control plane and data plane, detailed description is provided in Section

2.2. However, the subsequent sections provide the description of SDN hybrid and

legacy mesh nodes.

A node in the SDN networking architecture queries the controller for path infor-

mation when it wants to connect to another node, which results in the application

of the required routing rules. In this instance, creating connections from one node

to another depends on the connection to the controller node. Due to the static

nature of network nodes in wired networks, routing rules do not frequently change

or update, having little impact on the controller’s node connectivity. The constant

mobility of nodes in wireless networks, particularly wireless mesh networks, has

a substantial impact on node-to-node communication. The issues of WMN back-

bone routing and network monitoring are the foundation of the suggested routing

design, called “Soft-Mesh”. The proposed routing considers a hybrid topology

under discussion, as shown in Figure 4.1, consists of an SDN Controller connected

to SDN hybrid nodes and legacy nodes. This method uses IP-based forwarding for

data packet delivery and OpenFlow for control traffic. Four modules make up the

controller: load balancing, network monitoring, traffic measuring, and routing.

Figure 4.1: Architecture of Soft-Mesh

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 54

4.2.1 Routing Module of Proposed Architecture

In order to manage the network and provide services like routing, an SDN con-

troller needs up-to-date knowledge of the network state, in particular the network

topology. Topology discovery is not supported by any specific feature in OpenFlow

switches; it is the controller’s sole obligation to provide this service. Furthermore,

topology discovery in OpenFlow-based SDNs is not defined by any formal stan-

dards. However, the majority of current controller platforms use the OpenFlow

Discovery Protocol to implement topology discovery (OFDP). The IEEE 802 Lo-

cal Area Network’s Link Layer Discovery Protocol (LLDP), which enables nodes

to broadcast their capabilities and neighbors to other nodes, is used by OFDP.

Switches do not forward LLDP packets; instead, each port of the switch is used to

send each packet across a single hop to a multicast address that has been bridge-

filtered. Every switch keeps the information learned from LLDP packets it has

received in a local Management Information Base (MIB). By crawling each node

in the network and obtaining the pertinent information from the MIB, such as via

SNMP, a network management system can determine the network topology. The

protocol is demonstrated in Figure 4.2.

Figure 4.2: Topology Discovery Protocol

The proposed routing module provides the shortest path approach to construct an

effective routing strategy to route packets across the hybrid nodes and legacy nodes

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 55

[147, 148]. As illustrated in Figure 4.3, there are two submodules that make up

the hybrid node routing function. One supports SDN routing by implementing the

OpenFlow protocol to transmit routing rules and policies, while the other supports

IP routing by using the traditional OLSR routing protocol. Cohabitation of SDN

and IP is preferred in order for the controller to, where possible, send the best

path options to the nodes. If the controller is down or unavailable, packets are

sent via the conventional routing protocol. Every SDN node keeps track of its

neighbors, often updates the routing table, and selects the shortest new route to

every destination. The controller accomplishes this by obtaining topology data

from nearby SDN nodes.

4.2.1.1 SDN Hybrid Nodes – Cohabitation of OpenFlow & OLSR

We separated the routing functionality into two layers, in order to enable effective

and scalable routing in wireless mesh nodes in order to support SDN integration.

The OpenFlow protocol is supported by the top layer of SDN routing for data

transmission. At the lowest layer, both the OLSR routing protocol and IP-based

forwarding are used. It is the former’s duty to inform the SDN controller of Open-

Flow policies. This latter component is in charge of directing IP routing within

the OLSR interfaces of the mesh nodes. We employ an in-band control mecha-

nism to establish long-distance wireless communication among the wireless mesh

backhaul in order to allow the controllers to speak with all of the geographically

dispersed nodes. IP-based and SDN routing have two benefits. Before setting the

mesh nodes, the controller can use its own routing algorithms to find the optimum

route and add, remove, or update OpenFlow rules. The most recent network con-

ditions can also be given by the nearest mesh node. To route packets in accordance

with OLSR routing tables at the controller’s request, the second technique makes

use of OpenFlow protocol. The addition or deletion of a new mesh node or wireless

link is just one example of the changes to the topology graph that OLSR provides.

The routing database is frequently updated, the newest shortest route is chosen

for each destination, and each wireless mesh node keeps track of its neighbors in

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 56

a list known as the multipoint relays (MPR) selection list. The Controller then

gets the topological information from its mesh nodes.

As shown by the Figure 4.3, by dividing each physical node into two full-duplex

virtual nodes, each with its own virtual hardware resources and virtual wireless

interface, such as PHY1 and PHY2, the coexistence of OpenFlow and OLSR serves

to address the issue of network virtualization as well as the challenge of effective

and scalable routing. OLSR and OpenFlow are bridged by using virtual interfaces

br0, br1, br3. It also contains two wireless interfaces wlan0 and wlan1 for wireless

mesh network whereas another interface tap is used to integrate a real mesh node

into SDN environment. In order to support four virtual APs on a node, ESSID 1

and ESSID 2 are two non-overlapping virtual APs that can be created from each

physical access point (AP). Since each virtual ESSID has its own virtual wireless

channel, mobile clients can switch between them and communicate across the vir-

tualized channels. Each SSID passes communications independently of the others

in order to differentiate control traffic, or signaling, from other communications,

i.e., data. A physical AP can be split into two virtual ones for two reasons. The

first benefit is the optimal scheduling of airtime fairness through channel sharing,

which enables efficient downlink bandwidth sharing between several smart clients.

Second, it resolves the difficulties with uplink channel access when several clients

send at once, allowing those smart clients to transmit quickly and at high data

rates. It is also possible for clients to be synchronized with the wireless network

and for each virtual AP to emit Beacon messages in order to give its own traffic in-

dicator map thanks to the ability of two virtualized access points to coexist inside

of one wireless node. These beacon frames, also known as management frames,

are used by mesh nodes to verify that every client connected to a wireless node

is still active. This method allows for the simultaneous use of current link layer

protocols and MAC setting changes.

4.2.1.2 Legacy Nodes with OLSR Protocol

Along with SDN hybrid nodes, the topology under consideration also includes

legacy nodes. Each legacy node uses the OLSR routing protocol, which maintains

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 57

Figure 4.3: The SDN Hybrid Node Architecture

an orderly database outlining the topology of an autonomous system. The lo-

cal state information of each router, the network state information related to the

router (the routers connected to this network), the external state information (the

external routing information of this autonomous system), and other components

are all included in this database. In contrast to distance vector routing tech-

nologies, each OLSR-running router disseminates the corresponding status data

throughout an independent system. Each node regularly floods the status of its

links in the OLSR routing protocol and rebroadcasts the link state information

it has received from its neighbors. Nodes keep note of the link state data they

receive from other nodes, which is then utilized to calculate the next hop to each

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 58

destination. A spanning tree is expanded by the nodes, that leads to acquiring

complete network topology.

The OLSR protocol employs the MultiPoint Relaying (MPR) approach to min-

imize message flooding. This is accomplished by having each network node, N,

select a collection of close-by nodes to serve as multipoint relays, or MPR(N),

and retransmit control packets from N-Non-MPR(N) neighbors process the con-

trol packets sent to them by N, but they do not forward the messages. When

MPR(N) is selected, all of N’s two-hop neighbors are covered by MPR’s (one-hop

neighbors). The diffusion mechanism of TC messages in OLSR routing protocol

is an essential component of its optimization that is based on the process of MPR

selection. The MPR selection process of OLSR routing protocol is demonstrated

by Figure 4.4 whereas Figure 4.5 illustrates flow chart of topology control messages

in OLSR.

Figure 4.4: MPR Selection in OLSR

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 59

Figure 4.5: Flowchart of TC Messages in OLSR Routing Protocol

4.2.1.3 Standard Operations of Proposed Routing Module

Standard operations of the proposed routing method are presented in this section.

On receiving the packet of a particular flow, a hybrid node analyses the first packet

of a relevant flow when it gets it to decide where it should be routed as the next

hop, as illustrated by Figure 4.6. It works in one of the two ways, SDN forwarding

and IP forwarding.

1. In case of SDN forwarding, OpenFlow performs following operations

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 60

(a) If the received packet belongs to an SDN Switch, extract packet header

information and match with flow table entry

(b) If the match is successful, next hop is determined and

(c) If it is unsuccessful then header information is forwarded to the con-

troller

(d) Controller updates the flow table with relevant match action

(e) This lookup process is the repeated until the destination is identified

2. In case of IP forwarding, next hop is determined by OLSR protocol that is

cohabited with OpenFlow protocol

Figure 4.6: Flow Chart of Proposed Routing Module

As shown in Figure 4.7, two tables are used in the SDN hybrid node architecture;

TCAM table and SRAM table respectively. For IP forwarding entries, the latter

is used, whereas the former is used for OpenFlow forwarding entries. The software

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 61

node OpenVSwitch, which implements a software pipeline based on flow tables

[149], is used by each hybrid node to forward OpenFlow messages. An IP-based

forwarding daemon using the common OLSR routing protocol is also included

[150]. OpenVSwitch utilizes virtual network interfaces to take advantage of IP

networks’ capacity to route packets along the quickest path, bridging OpenFlow

and conventional routing protocols. When an OpenFlow message is received, the

following actions are taken:

1. Extract the header for the packet to get flow specifications

2. To balance the flow table, look at TCAM table entries

3. If the respective flow entry is not identified, then it forwards packet infor-

mation to the controller.

4. The controller sends to the hybrid node the packet relevant rules

5. The SDN hybrid node flow table is updated accordingly

6. If the flow input in the TCAM table is found, the next hop is calculated,

then the packet is forwarded.

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 62

Figure 4.7: Working of SDN Hybrid Node

Using the control subnet, nodes periodically send the controller their nearby in-

formation tables so that the controller can see the entire network’s topology. It

periodically finds the shortest path (in terms of the number of hops) from the

source to the destination using Dijkstra’s Algorithm [151]. The controller notifies

participating nodes (source and intermediate nodes) of the modified rules if an

optimal path is found. The graph topology, which includes all reachable nodes

and the links connecting them, is used by the controller to identify the new opti-

mal path, as demonstrated by Algorithm 4.1. The process then creates updated

OpenFlow rules to program flow entries at each stage of the software pipeline. The

equivalent was put up by the nodes. For each iteration, the optimal path function

enables the search for the optimum path. We created all of the processes and

features necessary for data routing along the predetermined path on the controller

side. It specifically uses the routing feature to send data to SDN routers. From

the arriving packets, the data path is first collected, then data and protocols are

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 63

used to initialize the SDN controller. All routers in the destination path are then

introduced to OpenFlow rules.

In contrast, if the IP packet is received, the next hop is determined using the

OLSR routing protocol, and the message is according to that calculation. Figure

4.8 shows how a legacy node functions when the standard OLSR routing protocol

is used. Using HELLO messages, it primarily collects information from its 1-hop

and 2-hop neighbors before selecting Multipoint Relays (MPRs). These relays are

utilized when forwarding a transmitted packet to reduce the number of redundant

retransmissions. This strategy restricts the node collection retransmitted by a

packet from all nodes to a subset of all nodes. In this manner, it computes its

forwarding table.

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 64

Figure 4.8: Working of Legacy Node

4.2.2 Load Balancing Module

A network monitoring and traffic analysis module collects node and connection

statistics before turning on this module to deal with the congestion problem. To

direct traffic to the optimum link, the controller considers connection parameters

such as bandwidth, latency/delay, and connection utilization. The load balanc-

ing technique used to choose the optimum route is shown in Algorithm 4.2. It

chooses the new rules for the new route to the new mesh nodes, which are the

MAC and IP addresses. In the event that a new path is established by sending

FLOW MOD messages end-to-end, the controller floods all ports to the selected

virtual nodes. In addition, it opens the client connection to enable packet delivery

while simultaneously determining and keeping track of the network topology. The

default parameters are set by the controller in order to create the path and to check

the link states. The load balancing algorithm detects the network bottleneck and

starts calculating new OpenFlow rules to reroute the traffic over new links when

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 65

the client’s bandwidth utilization reaches the ”Th” level and there is traffic con-

gestion. The controller then floods all ports (using OpenFlow FlowMod packets)

in the direction of the targeted nodes along its path. The controller chooses the

new optimal path, which consists of all accessible nodes N and the connections

E connecting them, based on the graph topology. Then, in order to program the

flow entries inside the software pipeline, it installs new OpenFlow rules in each

node.

4.2.3 Traffic Measurement Module

The controller can calculate traffic from the final SDN node on the forwarding

path and ascertain the throughput of the forwarding path by using the counter

that is used to provide packets’ count of sample period. The probe messages are

sent by the controller to the data plane layers. These signals travel via each node

along the path before returning to the controller, making it possible to gauge time

differences and contact delays.

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 66

4.2.4 Controller Failure Recovery Mechanism

Addressing problems with failure recovery and network robustness, distributed

legacy protocols are used to swiftly fix momentary network issues. An SDN con-

troller configures the routing paths while avoiding the shortcomings of the dis-

tributed classical protocols to guarantee long-term optimal network performance.

Each hybrid SDN switch is configured with local agents to exchange routing in-

formation, and backup routes are built using a distributed classical OLSR. When

a connection breaks down, these local agents use the OLSR routing information

to reconnect the network and restore connectivity. Link failures in pure SDN

networks can be quickly rectified in this fashion by leveraging the backup routes

obtained from a traditional switch function.

The OLSR-to-OpenFlow (O2O) module regularly regulates the controller’s live-

liness using standard OpenFlow methods. The O2O enters an emergency status

when the controller fails (for example, because of a hardware or communication

issue), during which it deletes all of the rules the controller added to the flow table

and the entire OLSR routing table, including all routes outside the control-subnet

and the de- fault route advertised by the gateways. By doing this, OLSR gains

a significant amount of control over mesh routing, but OpenFlow techniques are

always used for forwarding. When the controller can be reached, the O2O ex-

its emergency mode and deletes the flow table rules governing routes outside the

control-subnet. This forces current data flows to deliver packet-in data units to

the controller, which will then decide how to reroute them.

4.3 Simulation Model and Results Analysis

In WMNs, deploying topologies and locating nodes has become a complicated is-

sue. The neighborhood and interference relationships can change depending on

where the nodes and controller are placed [155]. The network topology based on

SDN controllers, SDN hybrid nodes, and legacy nodes is taken into consideration

by our proposed routing architecture ‘Soft-Mesh’ is illustrated by Figure 4.9. The

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 67

SDN controller can be physically located anywhere in the network, but it must be

logically centralized. With SDN hybrid nodes and legacy nodes, we’ve assumed

that the controller is one hop away. Another assumption is that SDN controller

must have all or at least one SDN Hybrid node as its 1-hop neighbor, such assump-

tion facilitates in establishing connection between controller and legacy nodes. The

SDN Hybrid node, necessitates two interfaces and hence two subnets, one for con-

trol packets and the other for data packets. The controller has direct access to

all nodes in the control subnet (one-hop), whereas the data network is a normal

multi-hop network in which data must pass through numerous nodes to reach its

destination. By employing OLSR information to reconstruct the whole topology

of the network for route calculation, the controller would have knowledge about

other nodes that are more than one hop distant. This implies that a strictly cen-

tralized solution is im- possible, hence SDN is combined with a distributed routing

protocol to transport control messages from remote nodes to the controller.

Figure 4.9: Topology for Proposed Routing Architecture

Nodes use the control subnet to broadcast their adjacent information tables to the

controller on a regular basis, giving the controller a global view of the network’s

topology. Dijkstra’s algorithm determines the shortest route (in terms of number

of hops) from the source to the destination on a regular basis. The controller

notifies participating nodes (source and intermediate nodes) of the modified rules

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 68

if an optimal path is found. The graph topology, which includes all of the accessible

nodes as well as the links connecting them, is used by the controller to construct

the new optimum path. The software pipeline’s flow entries are then programmed

on each path using new OpenFlow rules that have been deployed. The nodes

install the respective rules in their routing tables and the path is formed. An

SDN architecture must include a controller since it has a comprehensive view of

the whole network, including data plane SDN devices. It establishes a connection

between these resources and management software, carrying out flow operations

between the devices as specified by application rules [159]. SDN controllers are

built with Java, Python, event-oriented, etc. As long as the controller uses the

same Openflow version, the emulation platform theoretically may handle any kind

of controller. The java based OpenFlow controller in our testbed, ODL, is used to

create networking applications for topologies of 50, 100, 150, 200, and 250 nodes

of SDN hybrid nodes and legacy nodes, respectively.

4.3.1 Simulation Model

The proposed routing architecture ‘Soft-Mesh’ uses Mininet-WiFi simulator as its

simulation framework, which provides a simple network for creating OpenFlow

applications. A controller, legacy nodes, and SDN hybrid nodes make up the

topology under investigation. The OpenDaylight (ODL) SDN Controller [152] is

utilized, and Soft-Mesh is implemented as a network application on the ODL con-

troller, as shown by Figure 4.10 and 4.10. We compared Soft-Mesh’s to that of

the classic routing systems OLSR and BATMAN [153], which are considered to be

the most stable of all traditional routing approaches for wireless mesh networks.

Soft-Mesh design has been compared against wmSDN [103] and Hakiri [112] for

hybrid systems, employing performance criteria such as Average UDP Through-

put, Packet Loss Ratio, End-to-End Delay, and Routing Overhead. Simulations

are carried out for topologies of 50, 100, 150, 200, and 250 nodes of SDN hybrid

nodes and legacy nodes, respectively. Furthermore, the percentage of SDN hybrid

nodes and legacy nodes in the network topology is configurable to produce three

alternative simulation scenarios:

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 69

1. Scenario 01: This scenario consists of 50, 100, 150, 200, and 250 nodes of

SDN hybrid nodes and legacy nodes, with 10% of SDN hybrid nodes and

90% of legacy nodes in the network topology, respectively. The scale of the

topology has also been kept configurable, with 500m*500m topologies for 50

and 100 nodes and 1000m*1000m topologies for 150, 200, and 250 nodes

2. Scenario 02: This scenario consists of 50, 100, 150, 200, and 250 nodes of

SDN hybrid nodes and legacy nodes, with 25% of SDN hybrid nodes and

75% of legacy nodes in the network topology, respectively. The scale of the

topology has also been kept configurable, with 500m*500m topologies for 50

and 100 nodes and 1000m*1000m topologies for 150, 200, and 250 nodes

3. Scenario 03: This scenario consists of 50, 100, 150, 200, and 250 nodes of

SDN hybrid nodes and legacy nodes, with 50% of SDN hybrid nodes and

50% of legacy nodes in the network topology, respectively. The scale of the

topology has also been kept configurable, with 500m*500m topologies for 50

and 100 nodes and 1000m*1000m topologies for 150, 200, and 250 nodes.

To obtain more accurate findings, simulations are carried out numerous times,

each with around 10 tests for the specified number of nodes, while using the Ran-

dom walk mobility model to explore support for node mobility in the algorithm.

Standard deviations for the required performance measures were also taken into

account to observe how the outcomes varied. The mac80211 hwsim is used for

the MAC Layer, with an operating time of 17ms for an AP, 63ms for the station,

10ms for two nodes, and 350ms for the AP and stations. Constant bitrate (CBR)

traffic flows are used. The mobility model random walk follows the mobile node’s

speed, which is between 10 and 50 m/s. The parameters used in our simulations

are presented in table 4.1.

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 70

Figure 4.10: Mininet-WiFi Simulation of Soft-Mesh using ODL Platform

Figure 4.11: Mininet-WiFi Simulation of Soft-Mesh with Mobile Nodes

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 71

Table 4.1: Simulation Parameters of Soft-Mesh Architecture

Parameters Value

Simulator Mininet-WiFi

Protocols OLSR, BATMAN, wmSDN, Hakiri, Soft-Mesh

Simulation Time 100 seconds

PHY and MAC model 802.11n

No of nodes 50, 100, 150, 200, 250

Proportion (SDN hybrid

nodes% + Legacy nodes%)

10%+90%, 25%+75%, 50%+50%

Topology Size 500m * 500m (50 and 100 nodes), 1000m * 1000m

(150, 200 and 250 nodes)

Mobility Model Random Walk

Mobility Speed Min 10 m/s, Max 50 m/s

Traffic rate (Mbps) 5 Mbps

Traffic Type UDP/TCP

Traffic flows Characteristics Constant Bit Rate (CBR)

Packet Size (byte) 1500 bytes

HELLO emission interval 2 seconds

Controller-Node message

emission

3 seconds

Timeout for unused routes 10 seconds

Topology reconstruction in-

terval

5 seconds

4.3.2 Simulation Results and Analysis

This section compares the proposed routing architecture Soft-Mesh to existing

traditional and hybrid SDN/IP routing architectures in terms of performance pa-

rameters such as average UDP throughput, end-to-end delay, packet drop ratio,

and routing overhead. The OLSR and BATMAN routing systems are simulated

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 72

as they are considered relatively more stable than any other standard routing

approaches for wireless mesh networks.

4.3.2.1 Throughput

The throughput of a routing design is a crucial performance indicator. We use

UDP traffic exchange between end users and set the packet size to 1,500 bytes in

order to evaluate the performance and robustness of our suggested architecture in

terms of throughput. Each node delivers data at a rate of 5 Mbps, as assumed. All

nodes are considered in a full mesh architecture, and the data traffic is determined

by averaging out the different packet forwarding sections. The nodes are placed

in various locations, and the controller side traffic is monitored to evaluate the

effects of OLSR forwarding and OpenFlow. We assume that the controller has

already pushed down and installed the flow rules in the OpenFlow tables of the

underlying mesh nodes. Therefore, the packets arriving at a certain ingress port

of a node are immediately forwarded to its physical output port in order to allow

the packets to reach the future hop. The following is how the throughput metric

is extracted:

Throughput =
TotalRecievedPayload

T imeLastPacketReceived− TimeFirstPacketTransmitted
(4.1)

Figures 4.12, 4.13, and 4.14 displays the throughput as determined by the Iperf

measurement tool [154] for the aforementioned three scenarios, based on varying

number of network nodes in the topology, including the fraction of SDN hybrid

nodes and legacy nodes. To guarantee the consistency of the findings, we con-

ducted the trials several times. Each run contains one of the following three forms

of traffic: end-user UDP/IP data traffic; OLSR forwarding traffic; and OpenFlow

control traffic. The maximum estimated throughput for scenarios 01, 02, and 03,

respectively, is limited to 9 Mbps, 15 Mbps, and 17.5 Mbps. However, the typical

throughput is very nearly 14 Mbps. The volume of OLSR traffic, thread priorities,

CPU interruptions, data plane to control plane encapsulation, and the transmis-

sion of OpenFlow control information over the network are just a few of the factors

that might cause the throughput to decrease. The average throughput falls closer

to 7 Mbps with such unpredictable traffic, which we consider to be a decent deal.

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 73

Figure 4.12: Average UDP Throughput - Scenario 01 (10% of SDN hybrid
nodes and 90% of legacy nodes)

Figure 4.13: Average UDP Throughput - Scenario 02 (25% of SDN hybrid
nodes and 75% of legacy nodes)

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 74

Figure 4.14: Average UDP Throughput - Scenario 03 (50% of SDN hybrid
nodes and 50% of legacy nodes)

The simulation results clearly show that the proposed routing architecture Soft-

Mesh’s outperforms conventional protocols and other existing hybrid alternative

solutions, this is mainly because of low latency. The fundamental properties of

the SDN paradigm are directly linked to this performance improvement. The

network’s topology is continuously monitored, allowing for quick identification of

changes and recalculation of new routes for the network’s continuing traffic flows.

The necessary rules are sent to the nodes and installed along the measured path

without flooding the network if the recalculation improves the node’s identifica-

tion. In contrast, network flooding serves as the main mechanism for spreading

information about topology change in distributed protocols. As the process of

flooding causes significant delays and lengthens the time it takes for the routing

protocols to converge. In short, Soft-Mesh routing reacts to topology changes

more quickly than standard protocols and ensures the best paths (in terms of hop

count) are taken at all times. This results in the best performance in terms of

UDP throughput. It is possible to fine-tune the flow distribution using SDN and

WMN, such as via load-balancing between alternative routes.

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 75

4.3.2.2 Packet Drop Ratio

Packet loss is a useful indicator of a routing protocol’s effectiveness in maximiz-

ing internode interface exchanges and to check application’s dependability. Data

about the lost packets is gathered as a result of the absence of a routing rule. To

provide an in-depth analysis of the average relative error in the throughput, we

estimated the per-flow packet loss by polling the flow data, assuming a relation-

ship between the link packet loss and the throughput. The packet loss can be

calculated by subtracting the average throughput of the edge node on the client

side from the edge node on the server side. Figures 4.15, 4.16 and 4.17 depict the

packet drop ratio for the aforementioned three scenarios, with OLSR having the

highest dropped packet rate and thus the slowest convergence phase. BATMAN

follows OLSR due to its relatively long update intervals and lack of an overhead

optimization mechanism. Because of its buffering function, BATMAN has a lower

packet drop ratio than OLSR. The number of nodes increases the packet loss. The

ability of route protocols to optimize routes and the overhead they incur, two cru-

cial considerations, will therefore directly affect the rate of packet loss. However,

due to collisions and erroneous packets, interference frequently has a direct effect

on the rate of packet loss.

Figure 4.15: Packet Drop Ratio - Scenario 01 (10% of SDN hybrid nodes and
90% of legacy nodes)

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 76

Figure 4.16: Packet Drop Ratio - Scenario 02 (25% of SDN hybrid nodes and
75% of legacy nodes)

Figure 4.17: Packet Drop Ratio - Scenario 03 (50% of SDN hybrid nodes and
50% of legacy nodes)

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 77

The average error is extremely near to 1%, according to the information on packet

loss. The average packet loss is calculated by subtracting the difference between

the packet counters in the edge nodes between the client and the server. These

measures offer a sufficient evaluation of service degradation. The present Open-

Flow design does not support QoS service differentiation and only supports per-

class packet categorization, scheduling, and forwarding. As a result, traffic priority

does not provide any protection for computational flows. The outcomes of the sim-

ulation show how well our technology supports SDN-based communication in the

context of enhancing WMN performance.

4.3.2.3 End-to-End Delay

The end-to-end delay gives the predictability of the response times that can be

used to measure real-timeliness of an application. This delay is depicted as the

amount of time it takes for a packet to go from the source mesh node to the

destination node. We repeated this experiment multiple times while maintaining

the standard latency. One-way delays are difficult to measure because packets

experience a variety of network delays, such as collection delays, queuing delays,

transmission delays, and propagation delays. As a result, we calculated the one-

sided delay and estimated the round-trip time (RTT) by assuming half of the

RTT. In addition, we determined how long it would take to deliver a packet to

the controller before it would get its node unreachable. The controller periodically

broadcasts route request messages in an effort to address the issues of mobility,

node failure, and connection failure. The findings demonstrate that in 50 and 100

node network topologies, the end-to-end delay of present hybrid and Soft-Mesh

architecture is higher. End-to-end delay is higher in legacy routing protocols than

in SDN networks for network topologies with 150, 200, and 250 nodes, respectively.

In traditional networks, after the routing table has been defined, each packet must

be questioned and forwarded. The network scale grows along with the size of

the routing database, which slows down querying and forwarding. In SDN, the

data packet that the node receives is first transmitted to the controller, after

which the controller pushes the flow entries to the node, the packets can then be

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 78

forwarded using the flow table query. Since the OpenvSwitch flow table scale is

smaller than the node routing table size in networks with a similar architecture,

the OpenvSwitch forwarding speed will be higher when the network scale is high.

After the controller updates the node’s Open-Flow rules, the controller-switch

delay decreases to roughly 3 ms and goes to approximately 10 ms during startup.

To check whether an idle control connection might be a sign of a break in controller-

switch communication, just the OpenFlow maintain alive messages are now being

exchanged. The network receives a new mobile client at time 40 seconds, but

neither the controller nor the switch are aware of the client’s forwarding policies.

In order to set new forwarding rules for packets coming from that client, they

begin communicating. At 80 seconds, the same event takes place. In each of those

situations, the controller-switch delay is restricted to less than 10 ms in all other

situations and to 15 ms during setup. A network bottleneck is not caused by the

controller-switch delay. The latency is typically near to zero when setup traffic

is not injected into the network. Each time new OpenFlow rules are negotiated

between the controller and the switches, the latency increases to about 30 ms.

The maximum delay in any case is 20 milliseconds. In a manner similar to that,

the experiment demonstrated that real-time applications require the preservation

of predictable delays, or a lower jitter, of approximately 2.5ms.

End− to− EndDelay =
TotalDelay

TotalReceivedPackets
(4.2)

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 79

Figure 4.18: Average End-to-End Delay - Scenario 01 (10% of SDN hybrid
nodes and 90% of legacy nodes)

Figure 4.19: Average End-to-End Delay - Scenario 02 (25% of SDN hybrid
nodes and 75% of legacy nodes)

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 80

Figure 4.20: Average End-to-End Delay - Scenario 03 (50% of SDN hybrid
nodes and 50% of legacy nodes)

Simulations are conducted with varying number of nodes for all the scenarios

mentioned in Section 5.3, in order to test performance metric end-to-end delay.

Additionally, we contrasted our solution’s delay with classical routing protocol

OLSR and BATMAN, wmSDN and Hakiri for hybrid architectures. We repeated

this test numerous times, averaging the results each time. Additionally examined

and explicitly compared to the number of broken links was the controller-switch

latency for reconnecting them in the event of failure. The controller attempts

to establish a connection with all switches using discovery messages in order to

determine the fastest path to all underlying SDN nodes. Figures 4.18, 4.19 and 4.20

demonstrate the simulation results, that clearly show that as compared to other

traditional and existing hybrid routing approaches, our approach exhibits lower

delay. Our technique has a maximum 20ms delay, which is nearly 50% shorter than

that of the other approaches, compared to other traditional approaches OLSR and

BATMAN, and existing hybrid approaches wmSDN and Hakiri, respectively. The

same pattern was also seen when we compared the number of broken wireless links

to the delay after the controller re-connection. As the number of hops between

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 81

switches increases, our solution performs better than the other approaches. The

SDN nodes have a greater connection establishment to the controller than in the

other existing solutions.

4.3.2.4 Routing Overhead

As demonstrated in Figures 4.21, 4.22, and 4.23, the global routing burden that

routing protocols experience grows proportionally with the size of the network. In

addition, OLSR, while offering the highest network performance among conven-

tional routing algorithms, has a high overhead than BATMAN protocol. Better

outcomes are possible even when the controller and hosts exchange messages at a

high rate because to the centralized SDN operation, which eliminates the need for

flooding required by the OLSR protocol. As a result, the impact of interference

and convergence time will be reduced by employing the SDN technique and having

less overhead.

Figure 4.21: Routing Overhead - Scenario 01 (10% of SDN hybrid nodes and
90% of legacy nodes)

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 82

Figure 4.22: Routing Overhead - Scenario 02 (25% of SDN hybrid nodes and
75% of legacy nodes)

Figure 4.23: Routing Overhead - Scenario 03 (50% of SDN hybrid nodes and
50% of legacy nodes)

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 83

We evaluate the performance overhead of each mesh node to OLSR for IP routing

and OpenFlow forwarding when applying our hybrid routing scheme. Every gate-

way has an Internet connection, and each node’s routing table receives the default

route, 0.0.0.0/0, via OLSR. Each node also has access to OpenvSwitch, which can

forward OpenFlow messages and is bridged to IP forwarding via the br network

interfaces. In this case, it is possible to perform flow-based forwarding operations

using our hybrid routing approach, while still routing those flows between different

mesh nodes using OLSR to more efficiently utilize IP networks’ capacity to route

packets to the shortest path between the source and destination.

After the initiation phase, OpenFlow generates control traffic when new rules are

added by the SDN controller to the pertinent node. The OLSR traffic remains

steady as expected, but as new rules are introduced, the OpenFlow traffic in-

creases. OpenFlow increases control traffic by about 4 Mbps, and overall traffic is

six times higher than when OLSR is used as the routing protocol. The controller’s

ability to inject new flow entries into the node means that all of the new Open-

Flow rules have been installed, which reduces the amount of OpenFlow control

traffic. Unlike OLSR and OpenFlow, our method does not add any extra control

flow while installing new rules. Because of this, our method does not raise node

overhead. Estimating the overhead of the extra infrastructural components is es-

sential. Thus, we assessed the volume of control traffic that was sent between the

controller and the underlying nodes in order to calculate the controller overhead.

We also contrasted this traffic with data traffic exchanges, in which the controller

updates the flow tables of the nodes.

The simulations are carried out roughly 10 times, and the evaluation is based on

the average values. There were three separate matching actions in the controller

traffic that was gathered: OpenFlow packets, Ethernet packets (like ARP), and

data packets (i.e., TCP packets). Wireshark is used to record the controller traffic

passing across the nodes, while Tcpdump is employed for analysis. Control around

15% of the overall traffic exchanged in the wireless network is OpenFlow traffic,

whereas 75% of it is data traffic and 10% is Ethernet traffic. To provide host

reachability between remote hosts, Ethernet traffic must be exchanged during the

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 84

startup phase. In reality, the early hosts broadcast PACKET OUT messages to

every node in the network using ARP requests. To determine the source port map-

ping, the nodes analyze these requests. After the controller gets ARP responses,

it becomes aware of all Ethernet addresses and the source MAC address will be

linked to the port. The ports of the underlying node can now receive FLOW MOD

messages from the controller. When compared to TCP data traffic, the control

overhead of broadcasting OpenFlow messages is minor, being around twice that of

Ethernet traffic. The overhead brought on by the control traffic is thus negligible.

4.3.3 Evaluation of Controller Failure Handling

We carried out simulations to address controller failure also, as demonstrated by

Figure 4.24. Its goal is to demonstrate the efficiency of the OLSR-to-OpenFlow

(O2O) module (shown by Figure 4.25) in handling such situations in addition to

continuing the routing process in the event of controller failure.

Figure 4.24: Controller Failure in Soft-Mesh

For this, we take into account the network topology in Scenario 02 (25% of SDN

hybrid nodes and 75% of legacy nodes) and Scenario 03 (50% of SDN hybrid

nodes and 50% of legacy nodes). TCP flows are selected for testing and sent to

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 85

Figure 4.25: OpenFlow and OLSR Interaction

clients on the Internet via a public server source. The flows begin at time 0, and

during the simulation’s 100-second running time, the controller experiences a 40-

second outage that we imitate by terminating the relevant ODL process. The O2O

module dumps all of the OLSR routes, including the default route of 0.0.0.0/0,

transmits the flows, and the corresponding throughputs are reduced by half during

the controller outage. It is crucial to keep in mind that the timeout we set up to

make sure the controller is functioning properly results in a delay of roughly 10

seconds between the controller failing and the O2O module actually responding.

When the outage time for the controller is ended, the O2O module detects the

controller’s presence and removes any previously added OLSR routes that don’t

impact the control subnet from the flow tables. As a result, a flow setup phase

takes place, during which the controller assigns flows to SDN hybrid nodes, and

performance levels return to those attained at the test’s beginning, this also takes

the delay of approximately 10 seconds in the resumption of controller.

Furthermore, it is evident from the results as displayed in Figures 4.26, 4.27, 4.28

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 86

and 4.29 average throughput behavior, packet drop ratio, end-to-end delay, and

routing overhead for the Scenario 02 that comprised of 25% SDN hybrid nodes

and 75% legacy mesh nodes. It is noteworthy that, being the distributed routing

protocols the traditional OLSR and BATMAN do not use controller, thus not

included in this particular simulation scenario. Furthermore, among the hybrid

SDN routing protocols, Hakiri [104] does not address the issue of controller failure.

Thus, simulation results show that our proposed approach provides extremely

similar results to that of OLSR with a little increase due to the rules already

installed by controller at the setting up of network. Such an improvement is

brought about by the cohabitation of OpenFlow and OLSR in the SDN hybrid

nodes architecture.

Figure 4.26: Average UDP Throughput - Scenario 02 (25% of SDN hybrid
nodes and 75% of legacy nodes)

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 87

Figure 4.27: Packet Drop Ratio - Scenario 02 (25% of SDN hybrid nodes and
75% of legacy nodes)

Figure 4.28: Average End-to-End Delay - Scenario 02 (25% of SDN hybrid
nodes and 75% of legacy nodes)

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 88

Figure 4.29: Routing Overhead - Scenario 02 (25% of SDN hybrid nodes and
75% of legacy nodes)

Figures 4.30, 4.31, 4.32, and 4.33 show the simulation results for scenario 03 with

50% SDN hybrid nodes and 50% legacy mesh nodes. It gives better results of

average throughput behavior, packet drop ratio, end-to-end delay, and routing

overhead as compared to the scenario 02 due to increase in number of SDN hybrid

nodes.

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 89

Figure 4.30: Average UDP Throughput - Scenario 03 (50% of SDN hybrid
nodes and 50% of legacy nodes)

Figure 4.31: Packet Drop Ratio - Scenario 03 (50% of SDN hybrid nodes and
50% of legacy nodes)

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 90

Figure 4.32: End-to-End Delay - Scenario 03 (50% of SDN hybrid nodes and
50% of legacy nodes)

Figure 4.33: Routing Overhead - Scenario 03 (50% of SDN hybrid nodes and
50% of legacy nodes)

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 91

The analysis of simulation data demonstrates that the centralized approach and

out-of-band signaling of proposed routing architecture ‘Soft-Mesh’ allow WMNs to

get around the drawbacks of dispersed routing. Based on a centralized strategy,

SDN routing establishes communication between nodes through the controller.

The controller is asked for information regarding the way to a certain node when

a node needs to connect to another node, which results in the implementation of

the proper routing rules. In this regard, communication to the controller node

is crucial for creating connections between nodes. Due to the static nature of

network nodes in wired networks, routing rules do not alter or update frequently,

hence the controller’s node connectivity is unaffected. However, frequent node

migration in wireless networks has a significant impact on node communication,

particularly in wireless mesh networks. In comparison to conventional BATMAN

and OLSR routing protocols and other hybrid (SDN/IP) routing approaches, the

suggested Soft-Mesh routing architecture is more beneficial for WMN. The subse-

quent approaches, which seek to determine the best path to the controller, cause

connections to be established between the controller and the node to take longer,

allowing the controller to be unavailable for longer periods of time. Table 4.2

shows the comparison between the proposed Soft-Mesh architecture and existing

traditional and hybrid (SDN/IP) routing systems.

Table 4.2: Comparison of Soft-Mesh with existing Traditional and Hybrid
(SDN/IP) Routing Approaches

Features OLSR BATMAN wmSDN Hakiri Proposed

TraditionalRouting Hybrid

(SDN/IP)

Routing Architecture

(Soft

Mesh)

Scalability Easily

Scalable

Easily

Scalable

Possibly

Scalable

Possibly

Scalable

Easily Scal-

able

Reliability High High Possibly

High

Possibly

High

Very High

Controller

Failure

Solution

No Con-

troller

exists

No Con-

troller

exists

Switch to

traditional

routing

No solution

proposed

Switch to

traditional

routing

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 92

Table 4.2: Comparison of Soft-Mesh with existing Traditional and Hybrid
(SDN/IP) Routing Approaches

Features OLSR BATMAN wmSDN Hakiri Proposed

TraditionalRouting Hybrid

(SDN/IP)

Routing Architecture

(Soft

Mesh)

Resource

Optimiza-

tion

Not at all Not at all Possibly

Optimized

Moderately

Optimized

Highly opti-

mized

Congestion

Control

Mechanism

Not at all Not at all No conges-

tion control

Load balanc-

ing mecha-

nism

Load balanc-

ing mecha-

nism

Network

Pro-

grammabil-

ity

Not at all Not at all ProgrammableProgrammable Programmable

Network

Monitoring

Not at all Not at all Simple Net-

work Moni-

toring

Simple

Network

Monitoring

(Few nodes

need to be

replaced with

SDN hybrid

nodes)

Cost-

effectiveness

Effective

(All nodes

are legacy

nodes)

Effective

(All nodes

are legacy

nodes)

Highly Ex-

pensive (All

nodes need

to be re-

placed with

SDN hybrid

nodes)

Highly Ex-

pensive (All

nodes need

to be re-

placed with

SDN hybrid

nodes)

Effective

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 93

4.4 Mathematical Model for the Proposed Rout-

ing Architecture

This section presents the mathematical model of the proposed architecture which

provides the basis for computing aggregated flows.

The graph of WMN is represented by

G = (V, E)

where V and E represent the set of all vertices (i.e., nodes) and edges (i.e., links),

respectively.

Let TDv denote the traffic demand of the flows generated in node v, Let TDv =

{fID:1, fID:2, fID:3, ..., fID:n} denote the traffic demands for n flows,

Given a traffic distribution △v, the outgoing flows’ demands in different paths of

node v can be obtained by using the below model:

{fp1A1, fp2A2, ..., f pnAn} = △v × TDv ∀v ∈ V (4.3)

where fp1A1 implies the rate of flow A that is sent out from node v on path p.

As the aggregated flows must be less than their capacity c(e) on each connection

in the time slot τ , we have:

Σp∈f(e)f
p ≤ c(e) ∀e ∈ E (4.4)

The network monitoring and traffic measurement module makes use of aggregated

flow parameters to get the statistics of network traffic on each node.

4.5 Conclusion

The proposed routing architecture Soft-Mesh improves the routing efficiency and

scalability of wireless mesh networks by systematically and gradually migrating

WMNs to SDNs in an effective manner. The major goal of this research is to

Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined

Networks 94

merge SDN with WMN using a hybrid topology, as well as to investigate routing

issues and their consequences while modifying the SDN node architecture. The

suggested hybrid routing architecture is taken into account by legacy nodes and

SDN hybrid nodes. The proposed routing architecture combines the features two

categories of hybrid wireless mesh and software defined networks that include

coexistence-based and cohabition-based hybrid approaches. In order to establish

smooth interoperability between SDN and legacy nodes, SDN nodes are made

hybrid where coexist OLSR routing for IP-based forwarding, and the OpenFlow

protocol for SDN forwarding.

Simulations are carried out on topologies with varying number of nodes such as

50, 100, 150, 200, and 250 SDN hybrid nodes and legacy nodes, respectively.

Furthermore, the percentage of SDN hybrid nodes and legacy nodes in the network

topology is configurable to produce three alternative simulation scenarios, with

10%, 25%, and 50% of SDN hybrid nodes and 90%, 75%, and 50% of legacy

nodes in the network topology. The OLSR and BATMAN routing systems are

simulated because they are regarded to be more stable than any other standard

routing approaches for wireless mesh networks. Soft-Mesh architecture has been

compared to wmSDN and Hakiri for hybrid approaches. In terms of different

performance measures, such as average UDP throughput, end-to-end delay, packet

drop ratio, and routing overhead, the suggested routing Soft-Mesh gives improved

results. For the incremental fraction of SDN hybrid nodes, Soft-Mesh improves

the results by 70%. As a result, our findings suggest that the SDN method will

benefit the distributed routing protocol’s operations. Furthermore, the proposed

routing architecture also provides a routing solution in case of controller goes down

or failure occurs, this particular solution makes our routing approach robust and

reliable. Results show that our proposed routing architecture’s average throughput

behavior, packet drop ratio, end-to-end delay, and routing overhead are extremely

similar to that of OLSR with a little increase due to the rules already installed by

controller at the setting up of network. Such an improvement is brought about by

the cohabitation of OpenFlow and OLSR in the SDN hybrid nodes architecture.

Chapter 5

AdNetMon: An Adaptive

Network Monitoring Architecture

for Hybrid Wireless Mesh and

Software Defined Networks

5.1 Introduction

In network administration, monitoring is very challenging. The applications re-

quire accuracy with getting statistics in time for managing the resources of net-

work while performing aggregation at different levels. Conversely, the overhead

of network must be minimized for collecting the data. The majority of the tasks

related to manage the networks that include enforcement of SLAs, load balancing,

accounting, precise and in time statistics collection, traffic engineering, intrusion

detection, etc. The use of management applications is getting significant in order

to monitor the resources of network with aggregation of statistics at different lev-

els. For instance, network applications generally used for load balancing to address

the issue of congestion control require traffic statistics per second for each port.

However, the rate of packet drops at interfaces used for incoming and outgoing

traffic are needed by the application for enforcement of security measures.

95

AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh &

Software Defined Networks 96

A number of aggregation levels, reduced delay, and accuracy should be available

for management applications to choose from in a well-designed network monitor-

ing architecture. The monitoring architecture’s responsibility is to choose network

resources and poll for statistics collection. The monitoring architecture should

prevent unnecessary monitoring overhead while gathering, processing, and dissem-

inating monitored data at the designated aggregation level and frequency. Today’s

IP network monitoring solutions are ad hoc and challenging to implement, for a

smooth network administration and management, an efficient monitoring, precise

and accurate application is required. There are three techniques presented by [155–

157] for sample-based and direct monitoring in conventional networks, however,

these techniques bear a large overhead. Additionally, some network equipment

suppliers have their own methods for gathering traffic statistics [155, 157]. Be-

cause there is a lack of openness and compatibility across different approaches and

technologies, collecting network traffic data in traditional IP networks has become

a challenging task.

According to SDN, the management applications are built by using an interface of

programming that is provided by control plane rather than an interface for con-

figuration for fine-tuning network characteristics. The enhanced programmability

allows for the simplification of network administration duties and the simplifica-

tion of distributed configuration [158]. A built-in interface for the communication

between control-data plane pair has been created that is known as OpenFlow pro-

tocol. At the controller, OpenFlow provides primitives for collecting statistics on

each flow. The controller can get information on current flows by polling switches.

Instead, it may ask a switch to report flow statistics on a regular basis (upon flow

timeout). The controller’s viewpoint of the network is shown. The capabilities

of an OpenFlow Controller can be leveraged to build sophisticated and efficient

monitoring systems. However, under the present situation, the control plane is

integrated with the SDN based network management application as opposed to

existing application independent of such an integration.

In this chapter, we propose an SDN based adaptive network monitoring architec-

ture that provides several benefits for developing an architecture to manage the

AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh &

Software Defined Networks 97

network resources, and implemented with the available platform used by SDN con-

troller. The proposed network monitoring architecture provides network overview

and an algorithm for collection of nodes’ statistics. Generally, there exists a trade-

off between accuracy and resources such as network bandwidth, CPU, memory etc;

used for the monitoring of network resources, thus an adaptive architecture has

been proposed for monitoring of networks as well as scheduling the collection of

statistics.

5.2 Network Monitoring Architecture

Figure 5.1 displays our monitoring architecture along with presenting the stack of

software for installation of SDN based network. Typically, OpenFlow controllers

offer a development environment for creating specialized network applications in-

dependent network technologies and complexities. The North- bound API is a

programming interface that an OpenFlow controller provides to network applica-

tions. Each application has a different requirement for the level of detail needed

for statistics collection. Aggregate statistics are required by some applications

whereas per-flow data are desired by others. An ISP’s user billing application, for

instance, would anticipate getting use information for each traffic flow occurring

over the customer’s home network. The OpenFlow API and the present con-

troller implementations do not support these aggregate levels (e.g., NOX, POX,

and Floodlight). A controller’s implementation will become significantly more

complex if monitoring functionalities are added. As a result, a distinct layer is

required to separate network applications and controller design from monitoring

complexity.

To achieve this, we provide an adaptive and effective architecture for network

monitoring that obtains network statistics by using RESTful API, that is used by

the controller to communicate with application layer as a northbound API. The

high-level monitoring needs for the applications are translated by the monitoring

architecture. Additionally, it hides the intricacies of storage organization and data

collection.

AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh &

Software Defined Networks 98

Figure 5.1: SDN Software Stack

Figure 5.1 illustrates software stack of SDN whereas Figure 5.2 shows the monitor-

ing architecture with its components. These components are described in further

details below:

� Request Analyzer: This component transforms application-level high-level

primitives into flow-level primitives. This module is in charge of connecting

to other modules.

� Scheduler: It is employed to schedule the network’s switches for polling in

order to compile statistics. For each flow, queue, and port, aggregate data

is available on switches with OpenFlow support. A scheduling mechanism is

used to determine the polling time.

� Node Selector: When a statistics collection event is scheduled, one or

more switches must be identified and selected for statistics collecting. This

component chooses which switches must be polled in order to collect the

right information at the appointed time. Simple formulas can be used only

the ingress switch needs to be queried in order to learn about a flow.

AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh &

Software Defined Networks 99

� Aggregator and Data Store: These are used to gather and store raw data

from switches that have been preset. At the necessary levels of aggregation,

network monitoring statistics are calculated using the acquired data. Data

store is a representation of the storage system. Examples include relational

databases, standard files, and key-value storage.

Figure 5.2: Network Monitoring Architecture

5.3 An Adaptive Network Monitoring Algorithm

An adaptive monitoring strategy to maintain tabs on network resources is pre-

sented in this section. The production of accurate and timely information while

consuming the least amount of network capacity is our aim. The communication

from switch to controller is supposed to be carried out via the OpenFlow protocol.

OpenFlow uses the fields gathered from the headers of the packets for identification

of flows at different layers that layer 2 – layer 4. In case, such a flow received by a

switch not matching with any of the existing rules available in forwarding table, a

PACKET IN message is sent to the controller. The relevant rules for forwarding

are installed by the controller in the respective node using FLOW MOD message.

An idle timeout is specified by the controller for forwarding of rules. After this

point, a forwarding rule (and any associated flows) are deactivated from the node.

AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh &

Software Defined Networks 100

In case of ejection of a flow, the node used to transmit a FLOW REMOVED mes-

sage towards the controller. It contains two pieces of information: 1) the flow’s

duration and 2) the number of matching bytes.

For connection consumption monitoring, the previous methodologies advise only

tracking the PACKET IN and FLOW REMOVED messages. This method does

have a noticeable average lag in retrieving subsequent statistics, though. The

ability to monitor traffic peaks is also problematic. The controller can, however,

use these messages to send the switch a FLOW STATISTICS REQUEST mes-

sage in order to get information about a particular flow. The switch transmits

to the controller two type of information in a FLOW STATISTICS REPLY mes-

sage, that is byte count (total number of bytes) and time duration it takes for

that flow. Flow statistics can be easily gathered by polling the switches with

the FLOW STATISTICS REQUEST message at regular intervals. Extremely ac-

curate data are produced by polling often (i.e., with a small polling interval).

However, there will be significant network monitoring overhead as a result. In

order to balance network overhead and statistics collection accuracy, we suggest a

variable frequency flow statistics collecting approach.

A new entry is added into the active flow table coupled with a τ milliseconds as ini-

tial statistics collection timeout, on receiving a PACKET IN message by the con-

troller. In addition, it will further receive the flow’s statistics in a FLOW REMOVED

message in case, within τ milliseconds the flow gets expired. Otherwise, a FLOW STATISTICS REQUEST

message will be sent to the relevant switch by the controller to collect statistics

on that flow. ‘α, a small constant multiplies with the timeout, if there is no sig-

nificant change in the collected statistics results in no change in the number of

bytes received during this time period and bytes do not exceed a threshold ‘△’.

This operation is iteratively used until timeout value reaches its maximum limit

τmax. In contrast, if significant change in the collected statistics results in a big

change in the number of bytes received and bytes exceed a threshold ‘△’. This

operation is iteratively used until timeout value reaches its minimum limit τmin,

another constant β is used to divide the flow’s scheduling timeout. For flows

that greatly increase link utilization at that time, polling frequency is kept higher,

AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh &

Software Defined Networks 101

however polling frequency is kept lower for flows reducing link utilization. If their

contribution increases, the proposed methodology will alter the scheduling time-

out, changing the polling frequency to reflect the increase in traffic. By batching

FLOW STATISTICS REQUEST messages for flows with the same timeout, we

further enhance this method. By doing this, network monitoring traffic will be

reduced and variable-frequency polling effectiveness will be preserved. Algorithm

5.1 shows the pseudocode for the description of proposed flow statistics collection

method whereas simulation parameters of Adaptive Network Monitoring Algo-

rithm are illustrated by Table 5.1.

Table 5.1: Simulation Parameters of Adaptive Network Monitoring Algorithm

Symbol Unit Description

τ Millisecond Initial statistics collection timeout

△ Byte Byte Count Threshold for τmin & τmax

α Constant Constant Value for τmax

β Constant Constant Value for τmin

τmax Millisecond Maximum timeout value

τmin Millisecond Minimum timeout value

AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh &

Software Defined Networks 102

5.3.1 Link Utilization Monitoring

Monitoring of link utilization has been performed by using the OpenDaylight

(ODL) controller platform as a tangible application of our suggested architecture

and monitoring methodology.

It’s worth noting that the architecture we’ve proposed is designed to run simula-

tions and demonstrate the efficacy of our approach. As a result, without sacrificing

generality, we established the following simplification assumption concerning flow

identification and matching. The simulations were carried out in UDP mode us-

ing Iperf [159]. There was also some DHCP activity on the underlying network,

which utilizes UDP as well. It’s worth mentioning that our suggested monitoring

architecture’s components aren’t completely in place yet. As a result, we turned

to an ODL module to develop the link utilization monitoring application.

AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh &

Software Defined Networks 103

The PACKET IN and FLOW REMOVED messages are investigated for the pur-

pose of monitoring the additions and deletions of flows from switches. The schedul-

ing timeout value served as an index in a hash table that was also preserved. There

is a list of active flows in each bucket with a timeout of milliseconds that needs to

be polled every millisecond. Every millisecond, a worker thread for each bucket

in the hash table wakes up and sends a FLOW STATISTICS REQUEST message

to the switches responsible for the flows in that bucket. The monitoring module

receives the FLOW STATISTICS REPLY messages asynchronously. This estab-

lishes a benchmark for measuring each reply message. Divide the difference in

bytes from the previous checkpoint by the difference in time from the previous

checkpoint to determine a flow’s contribution. The monitoring module evaluates

the measurement checkpoints on the pertinent link and, if necessary, adjusts the

consumption of earlier checkpoints. Depending on the change in the number of

bytes since the previous measurement checkpoint, the active flow entries are trans-

ferred between the buckets of the hash table with lower or higher timeout values.

As of right now, we have a fundamental REST API that provides a way to obtain

link statistics for any link in the network. On the other hand, in the long run, we

would like to build a REST API that would enable third-party apps to register a

specific flow for analytics and monitoring. Although some flow identification and

matching assumptions are made throughout the simulation, this does not change

how universal our suggested approach is. Our long-term goal is to have a fully op-

erational monitoring system that makes it possible to gather flow data efficiently.

The statistics made available by our approach will make it much easier to construct

network monitoring applications. The scheduler component of this design is at the

core of the proposed scheduling approach, and the only presumptions made here

are for the development of a link utilization monitoring application that uses our

architecture. The Openflow messages used in the suggested network monitoring

architecture are described in detail in Table5.2.

AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh &

Software Defined Networks 104

Table 5.2: Openflow Messages for Adaptive Network Monitoring Algorithm

OpenFlow Message Type Message Description

PACKET IN A packet-in message is sent to the controller for all pack-

ets that do not have a matching flow entry or if a packet

matches an entry with a send to controller action. It

gives the packet’s control over to the controller.

FLOW MOD It alters the flow entry message. This message is sent

by the controller to change the flow table.

FLOW REMOVED This message alerts the controller that a flow entry has

been removed from a flow table. When the flow expires,

the flow modify message additionally indicates whether

the switch should send a flow removal message to the

controller.

FLOW STATISTICS REQUEST It’s a request for individual flow statistics. This mes-

sage is used by the controller to query individual flow

statistics.

FLOW STATISTICS REPLY It’s a response message for an individual flow statistic.

In response to a request for individual flow statistics,

the switch sends this message.

5.3.2 Evaluation

The performance of the proposed network monitoring architecture is presented in

this section. The simulation is run for a baseline situation in which the controller

polls the switches at a fixed interval to collect link utilization data. Mininet-Wifi

simulator was used to simulate a network that included a controller, SDN hybrid

nodes, and traditional routers. Section 5.3.2.1 describes the simulation model,

while Section 5.3.2.2 covers the assessment metrics. Finally, in Section 5.3.2.3, the

results are provided in comparison to the existing network monitoring architectures

periodic polling and FlowSense [141].

5.3.2.1 Simulation Model

A full mesh topology is considered to be investigated for this work, as shown in

Figure 5.3. Iperf was used to generate UDP flows between hosts for a total of 100s.

Generally, a number of network applications use UDP protocol for communication

instead of TCP protocol due to its inherent advantages such as rapid delivery,

AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh &

Software Defined Networks 105

efficiency, less overhead etc. Therefore, we investigated UDP flows during our

study. The idle timeout for the active flows of switches is taken 5 seconds. We

have also intentionally established pauses between traffic flows that vary in time

in order to assess various scenarios. As seen in the figure, between the 28th and

30th second, as well as between the 33rd and 35th second, a pause less than the

soft timeout was included to see how the proposed scheduling algorithm and the

FlowSense [141] respond to abrupt traffic spikes. For our scheduling method, we

set the minimum and maximum polling intervals to 500ms and 5s respectively. A

one-second polling period was used by the constant. The byte count threshold

for τmin and τmax parameter △ were set to 100MB. Finally, after considering the

concept of additive-increase multiplicative-decrease (AIMD) algorithm used for

TCP congestion control we have set α and β to 2 and 6, respectively, as indicated

in Section 4.3. To quickly react and adapt to any changes in traffic, β was set

to a higher value than the value of α as it plays an active role in reaching the

minimum timeout value τmin. Thus, higher value of β will result in minimum

value of timeout.

Figure 5.3: Topology for Network Monitoring Architecture

5.3.2.2 Evaluation Metrics

1. Link Utilization: It is referred to as the link’s immediate throughput and

is expressed in megabits per second (Mbps). It is reported that the link

between switches S1 and S4 is used (Figure 5.3), exhibits a large variety of

usage variations, is a component of all flows, and is the most often utilized

one In order to examine how the accuracy-to-monitoring overhead trade-off

AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh &

Software Defined Networks 106

is impacted, we additionally test various minimum polling interval (min)

options.

2. Overhead: The controller’s total number of FLOW STATISTICS REQUEST

messages is utilised to determine overhead.

5.3.2.3 Results

1. Link Utilization: Figure 5.4 shows three independent techniques’ measure-

ments of the S1 and S4 link’s consumption over the course of the simulation.

Periodic polling is the most like the traffic in the default setup. Because

of its extremely fine-grained measurement, FlowSense [141] is unable to de-

tect spikes in traffic. Since less traffic pauses than the soft timeout value,

FlowSense [141] displays a lower usage than is actually the case. On the other

hand, the use pattern discovered through routine polling is remarkably sim-

ilar to our suggested technique. Despite not completely recording the initial

traffic surge, it quickly adjusted and was able to successfully capture the

next one.

Figure 5.4: Link Utilization Measurement

2. Overhead: Figure 5.5 displays the communications overhead of the first

scenario and the method we recommend. FlowSense[141] has no messaging

overhead and is therefore not represented in the diagram because it does

not transmit FLOW STATISTICS REQUEST messages. The fixed polling

technique polls every active flow when the specified timeout expires causing

injection of a number of control messages into the network. However, the

AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh &

Software Defined Networks 107

adaptive feature of our proposed architecture reduces the injection of unnec-

essary number of messages in the network. In some cases, our method deliv-

ers nearly 50% fewer signals than the periodic polling method even though

it has more query points across the timeline and collects information about

flows with fewer network messages each time. Although FlowSense[141] has

no measurement overhead, it is far less precise than our adaptive schedul-

ing method. Averaging at 5:5 messages per second as opposed to periodic

polling’s 10:5 messages per second, the suggested network monitoring archi-

tecture also creates a very little amount of monitoring traffic. In conclusion,

the proposed technique for scheduling flow statistics can achieve accuracy

comparable to the constant periodic polling approach while utilising less

messaging overhead.

Figure 5.5: Messaging Overhead Measurement

3. Minimum Polling Frequency Effect, τmin: Our scheduling system adapts

to the traffic pattern, as shown in Flow Statistics Collection Algorithm.

The polling frequency swiftly falls and reaches τmin in response to a rapidly

changing traffic spike. The effect of τmin on monitoring accuracy is seen

in Figure 5.6. For τmin = 250ms, the accuracy of monitoring data is high,

but a steadily decrease can be observed with increasing the values of τmin

values. But as in Figure 5.7, monitoring precision can be achieved at the

cost of network overhead. The different values ofτmin are used to calculate

RMS error with monitoring accuracy, that varies depending on application

AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh &

Software Defined Networks 108

requirement. In addition to that, we compared CPU utilization of the pro-

posed architecture with FlowSense [141] and Periodic Polling [127], initially

the proposed network monitoring architecture gives 30% CPU utilization,

then remains stable at 20% CPU utilization. Moreover, FlowSense[141] and

Periodic Polling [127] give 50% and 90% CPU utilization respectively at ini-

tial and then get stable at 30% and 60% CPU utilization respectively. The

reason for higher CPU utilization in the beginning is that initially it takes

time to setup the flow statistics collection environment and resources alloca-

tion. The analysis shows that the proposed network monitoring architecture

is adaptive and polling occurs on the basis of requirement, thus gives bet-

ter results as compared with FlowSense[141] and Periodic polling [127], and

outperforms in terms of CPU utilization.

Figure 5.6: Minimum Polling Frequency Effect Measurement for Link Utiliza-
tion

AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh &

Software Defined Networks 109

Figure 5.7: Minimum Polling Frequency Effect Measurement for Messaging
Overhead

5.4 Conclusion

The proposed network monitoring architecture is a flexible, adaptable, and ex-

pandable architecture for hybrid SDN network, that is introduced in this chapter.

The generic RESTful API can be used to specify almost every aspect of monitoring.

Furthermore, new techniques can replace the basic components in the proposed

architecture without affecting the other components. We introduced an adaptive

scheduling approach for flow statistics gathering to demonstrate the effectiveness

of the proposed architecture. Using this approach, we created a specific use case of

monitoring connection consumption. We assessed and compared it to the perfor-

mance of FlowSense [141] and a Periodic polling [127] method. We found that the

suggested method can collect statistics more precisely than FlowSense [141]. The

analysis shows that the proposed network monitoring architecture gives better re-

sults as compared with FlowSense[141] and Periodic polling [127], and outperforms

in terms of CPU utilization.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Soft-Mesh, a robust routing architecture for hybrid SDN and wireless mesh net-

works is presented in this study. The major goal of this research is to merge SDN

with WMN using a hybrid topology, as well as to investigate routing issues and

their consequences while modifying the SDN node architecture. The suggested

hybrid routing architecture is taken into account by legacy nodes and SDN hybrid

nodes. The proposed routing architecture combines the features two categories of

hybrid wireless mesh and software defined networks that include coexistence-based

and cohabition-based hybrid approaches. In order to establish smooth interoper-

ability between SDN and legacy nodes, SDN nodes are made hybrid where coexist

OLSR routing for IP-based forwarding, and the OpenFlow protocol for SDN for-

warding. It should be emphasized that our research does not support the use of

SDN routing to replace traditional routing methodologies. The purpose of this

research is to understand that an SDN-based architecture may help with WMN

routing to improve its performance rather than arbitrarily equating legacy rout-

ing techniques using in-band signaling, and with the centralized approach using

out-of-band signaling. It is explored how legacy protocols can be used with SDN

networking architecture and to what extent the former can help the latter. In

110

Conclusion and Recommendations 111

addition, when compared to other hybrid routing architectures, Soft-Mesh ar-

chitecture delivers a cost-effective solution with smooth interoperability between

conventional and SDN nodes.

Simulations are carried out on topologies with varying number of nodes such as

50, 100, 150, 200, and 250 SDN hybrid nodes and legacy nodes, respectively.

Furthermore, the percentage of SDN hybrid nodes and legacy nodes in the network

topology is configurable to produce three alternative simulation scenarios, with

10%, 25%, and 50% of SDN hybrid nodes and 90%, 75%, and 50% of legacy nodes

in the network topology. The scale of the topology has also been kept configurable,

with 500m*500m topologies for 50 and 100 nodes and 1000m*1000m topologies

for 150, 200, and 250 nodes. The OLSR and BATMAN routing systems are

simulated because they are regarded to be more stable than any other standard

routing approaches for wireless mesh networks. Soft-Mesh architecture has been

compared to wmSDN and Hakiri for hybrid approaches. In terms of different

performance measures, such as average UDP throughput, end-to-end delay, packet

drop ratio, and routing overhead, the suggested routing Soft-Mesh gives improved

results. For the incremental fraction of SDN hybrid nodes, Soft-Mesh improves

the results by 70%. As a result, our findings suggest that the SDN method will

benefit the distributed routing protocol’s operations. Furthermore, the proposed

routing architecture also provides a routing solution in case of controller goes down

or failure occurs, this particular solution makes our routing approach robust and

reliable. Results show that our proposed routing architecture’s average throughput

behavior, packet drop ratio, end-to-end delay, and routing overhead are extremely

similar to that of OLSR with a little increase due to the rules already installed by

controller at the setting up of network. Such an improvement is brought about by

the cohabitation of OpenFlow and OLSR in the SDN hybrid nodes architecture.

The proposed network monitoring architecture ‘AdNetMon’, is a flexible, adapt

able, and expandable architecture for hybrid SDN network, that is introduced in

this chapter. The generic RESTful API can be used to specify almost every aspect

of monitoring. Furthermore, new techniques can replace the basic components in

the proposed architecture without affecting the other components. We introduced

Conclusion and Recommendations 112

an adaptive scheduling approach for flow statistics gathering to demonstrate the

effectiveness of the proposed architecture. Using this approach, we created a spe-

cific use case of monitoring connection consumption. We assessed and compared

it to the performance of Flowsense and a periodic polling method. We discov-

ered that the proposed approach can collect statistics with more accuracy than

Flowsense. Despite this, the incurred communications cost is up to 50% higher

than in a comparable periodic poling technique.

6.2 Future Work

We propose to use SDN-based WMNs solutions to address the major difficulties

in the IoT area, emphasizing their benefits while exposing their flaws. There are

numerous fresh areas for further study. Moreover, our proposed architecture can

be evaluated using distributed controllers’ applications. Resource management

for data centers and wireless network resources has been the main focus of recent

developments. Second, current wireless devices require a variety of modulation

methods to conform to a specific radio interface, which limits their ability to adapt

to the increasing demands on bandwidth and frequency spectrum resources. SDN,

on the other hand, makes the data plane programmable. The coexistence of SDN

and Software Defined Radio (SDR), which may necessitate a cross-layer design,

can, in our opinion, combine network resource management and radio resource

management. Future projects will also incorporate a time-sensitive networking el-

ement. Our long-term goal for this project is to develop a hybrid SDN monitoring

architecture that is community-driven and open source. This should provide a full

abstraction layer for the SDN control platform on top of which network monitor-

ing applications can be quickly developed. We want to build an independent QoS

policy enforcement application on top of the suggested network monitoring archi-

tecture, then carry out comprehensive OpenFlow tests to assess the performance

of our solution. Our long-term objective is to enable interoperability between the

proposed approach and platforms that employ distributed controllers.

Conclusion and Recommendations 113

Moreover, our future objective is to create an open source and community driven

hybrid SDN monitoring architecture. This ought to give the SDN control platform

a complete abstraction layer on top of which applications for network monitoring

can be easily built. On top of the suggested network monitoring architecture, we

want to construct an autonomous QoS policy enforcement application, and then

conduct extensive experiments to evaluate the performance of our design using

OpenFlow.

Bibliography

[1] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined

networking: State of the art and research challenges,” Computer Networks,

vol. 72, pp. 74–98, 2014.

[2] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig, “Software-defined networking: A comprehensive survey,” Pro-

ceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[3] F. de OliveiraSilva, J. H. de Souza Pereira, P. F. Rosa, and S. T. Kofuji,

“Enabling future internet architecture research and experimentation by us-

ing software defined networking,” in 2012 European Workshop on Software

Defined Networking, pp. 73–78, IEEE, 2012.

[4] A. Drescher, “A survey of software-defined wireless networks,” Dept. Com-

put. Sci. Eng., Washington Univ. St. Louis, St. Louis, MO, USA, Tech. Rep,

pp. 1–15, 2014.

[5] J. F. G. Orrego and J. P. U. Duque, “Throughput and delay evaluation

framework integrating sdn and ieee 802.11 s wmn,” in 2017 IEEE 9th Latin-

American Conference on Communications (LATINCOM), pp. 1–6, IEEE,

2017.

[6] C. Chaudet and Y. Haddad, “Wireless software defined networks: Chal-

lenges and opportunities,” in 2013 IEEE International Conference on Mi-

crowaves, Communications, Antennas and Electronic Systems (COMCAS

2013), pp. 1–5, IEEE, 2013.

114

Bibliography 115

[7] S. S. A. Gilani, A. Qayyum, R. N. B. Rais, and M. Bano, “Sdnmesh: An

sdn based routing architecture for wireless mesh networks,” IEEE Access,

vol. 8, pp. 136769–136781, 2020.

[8] T. Bakhshi, “State of the art and recent research advances in software defined

networking,” Wireless Communications and Mobile Computing, vol. 2017,

2017.

[9] A. Maleki, M. Hossain, J.-P. Georges, E. Rondeau, and T. Divoux, “An sdn

perspective to mitigate the energy consumption of core networks–géant2,”

in International SEEDS conference, pp. 233–244, 2017.

[10] L. Cominardi, C. J. Bernardos, P. Serrano, A. Banchs, and A. de la Oliva,

“Experimental evaluation of sdn-based service provisioning in mobile net-

works,” Computer Standards & Interfaces, vol. 58, pp. 158–166, 2018.

[11] H. Huang, P. Li, S. Guo, and W. Zhuang, “Software-defined wireless mesh

networks: architecture and traffic orchestration,” IEEE network, vol. 29,

no. 4, pp. 24–30, 2015.

[12] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop wireless

mesh networks,” in Proceedings of the 10th annual international conference

on Mobile computing and networking, pp. 114–128, 2004.

[13] I. T. Haque and N. Abu-Ghazaleh, “Wireless software defined networking: A

survey and taxonomy,” IEEE Communications Surveys & Tutorials, vol. 18,

no. 4, pp. 2713–2737, 2016.

[14] M. L. Sichitiu, “Wireless mesh networks: opportunities and challenges,” in

Proceedings of World Wireless Congress, vol. 2, p. 21, Citeseer, 2005.

[15] M. Eslami, O. Karimi, and T. Khodadadi, “A survey on wireless mesh net-

works: Architecture, specifications and challenges,” in 2014 IEEE 5th Con-

trol and System Graduate Research Colloquium, pp. 219–222, IEEE, 2014.

[16] S. Y. Shahdad, A. Sabahath, and R. Parveez, “Architecture, issues and

challenges of wireless mesh network,” in 2016 International Conference on

Communication and Signal Processing (ICCSP), pp. 0557–0560, IEEE, 2016.

Bibliography 116

[17] A. O. Ajayi, A. A. Adigun, and W. O. Ismaila, “A review of routing protocols

for practical rural wireless mesh networks (wmns),” International Journal

of Computer Applications, vol. 114, no. 16, 2015.

[18] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intellectual

history of programmable networks,” ACM SIGCOMM Computer Commu-

nication Review, vol. 44, no. 2, pp. 87–98, 2014.

[19] R. Alvizu, G. Maier, N. Kukreja, A. Pattavina, R. Morro, A. Capello, and

C. Cavazzoni, “Comprehensive survey on t-sdn: Software-defined networking

for transport networks,” IEEE Communications Surveys & Tutorials, vol. 19,

no. 4, pp. 2232–2283, 2017.

[20] M. Mousa, A. M. Bahaa-Eldin, and M. Sobh, “Software defined networking

concepts and challenges,” in 2016 11th International Conference on Com-

puter Engineering & Systems (ICCES), pp. 79–90, IEEE, 2016.

[21] S. Schaller and D. Hood, “Software defined networking architecture stan-

dardization,” Computer standards & interfaces, vol. 54, pp. 197–202, 2017.

[22] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation

in campus networks,” ACM SIGCOMM computer communication review,

vol. 38, no. 2, pp. 69–74, 2008.

[23] Y.-D. Lin, Y.-K. Lai, C.-Y. Wang, and Y.-C. Lai, “Ofbench: Performance

test suite on openflow switches,” IEEE Systems Journal, vol. 12, no. 3,

pp. 2949–2959, 2017.

[24] Y.-D. Lin, Y.-C. Lai, H.-Y. Teng, C.-C. Liao, and Y.-C. Kao, “Scalable mul-

ticasting with multiple shared trees in software defined networking,” Journal

of Network and Computer Applications, vol. 78, pp. 125–133, 2017.

[25] A. Rostami, T. Jungel, A. Koepsel, H. Woesner, and A. Wolisz, “Oran:

Openflow routers for academic networks,” in 2012 IEEE 13Th international

conference on high performance switching and routing, pp. 216–222, IEEE,

2012.

Bibliography 117

[26] Z. Kerravala, “Configuration management delivers business resiliency,” The

Yankee Group, 2002.

[27] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown, and

S. Shenker, “Rethinking enterprise network control,” IEEE/ACM Transac-

tions on Networking, vol. 17, no. 4, pp. 1270–1283, 2009.

[28] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-

fying middlebox policy enforcement using sdn,” in Proceedings of the ACM

SIGCOMM 2013 conference on SIGCOMM, pp. 27–38, 2013.

[29] A. Arcuri, “Restful api automated test case generation with evomaster,”

ACM Transactions on Software Engineering and Methodology (TOSEM),

vol. 28, no. 1, pp. 1–37, 2019.

[30] M. Paliwal, D. Shrimankar, and O. Tembhurne, “Controllers in sdn: A re-

view report,” IEEE access, vol. 6, pp. 36256–36270, 2018.

[31] D. S. Rana, S. A. Dhondiyal, and S. K. Chamoli, “Software defined network-

ing (sdn) challenges, issues and solution,” International journal of computer

sciences and engineering, vol. 7, no. 1, pp. 884–889, 2019.

[32] P. Pinyoanuntapong, Software defined wireless mesh networks: from theory

to practice. PhD thesis, Wichita State University, 2017.

[33] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “Research challenges

for traffic engineering in software defined networks,” IEEE Network, vol. 30,

no. 3, pp. 52–58, 2016.

[34] P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-

Shabibi, K.-C. Wang, and J. Bi, “Seamless interworking of sdn and ip,”

in Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM,

pp. 475–476, 2013.

[35] V. Nascimento, M. Moraes, R. Gomes, B. Pinheiro, A. Abelém, V. C. Borges,

K. V. Cardoso, and E. Cerqueira, “Filling the gap between software defined

networking and wireless mesh networks,” in 10th International Conference

Bibliography 118

on Network and Service Management (CNSM) and Workshop, pp. 451–454,

IEEE, 2014.

[36] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu, “Traffic engineering in sdn/ospf

hybrid network,” in 2014 IEEE 22nd International Conference on Network

Protocols, pp. 563–568, IEEE, 2014.

[37] C. E. Rothenberg, A. Vidal, M. Salvador, et al., “Hybrid networking towards

a software defined era,” in Network Innovation through OpenFlow and SDN:

Principles and Design, pp. 153–198, CRC Press, 2014.

[38] M. Bano, S. S. A. Gilani, and A. Qayyum, “A comparative analysis of hy-

brid routing schemes for sdn based wireless mesh networks,” in 2018 IEEE

20th International Conference on High Performance Computing and Com-

munications; IEEE 16th International Conference on Smart City; IEEE 4th

International Conference on Data Science and Systems (HPCC/SmartCi-

ty/DSS), pp. 1189–1194, IEEE, 2018.

[39] M. Bano, R. N. B. Rais, S. S. A. Gilani, and A. Qayyum, “Sdnhybridmesh: A

hybrid routing architecture for sdn based wireless mesh networks,” in Work-

shops of the International Conference on Advanced Information Networking

and Applications, pp. 366–375, Springer, 2020.

[40] Y. Chai and X.-J. Zeng, “The development of green wireless mesh network:

a survey,” Journal of Smart Environments and Green Computing, vol. 1,

no. 1, pp. 47–59, 2021.

[41] R. Amin, M. Reisslein, and N. Shah, “Hybrid sdn networks: A survey of

existing approaches,” IEEE Communications Surveys & Tutorials, vol. 20,

no. 4, pp. 3259–3306, 2018.

[42] M. Markovitch and S. Schmid, “Shear: A highly available and flexible

network architecture marrying distributed and logically centralized control

planes,” in 2015 IEEE 23rd International Conference on Network Protocols

(ICNP), pp. 78–89, IEEE, 2015.

Bibliography 119

[43] Y. Sinha, K. Haribabu, et al., “A survey: Hybrid sdn,” Journal of Network

and Computer Applications, vol. 100, pp. 35–55, 2017.

[44] J. Galán-Jiménez, “Exploiting the control power of sdn during the transition

from ip to sdn networks,” International Journal of Communication Systems,

vol. 31, no. 5, p. e3504, 2018.

[45] H. Park, B. Cho, I.-s. Hwang, and J. R. Lee, “Study on the sdn-ip–based

solution of well-known bottleneck problems in private sector of national r&e

network for big data transfer,” Concurrency and Computation: Practice and

Experience, vol. 30, no. 1, p. e4365, 2018.

[46] M. Tanha, D. Sajjadi, R. Ruby, and J. Pan, “Traffic engineering enhance-

ment by progressive migration to sdn,” IEEE Communications Letters,

vol. 22, no. 3, pp. 438–441, 2018.

[47] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,

J. Wanderer, J. Zhou, M. Zhu, et al., “B4: Experience with a globally-

deployed software defined wan,” ACM SIGCOMM Computer Communica-

tion Review, vol. 43, no. 4, pp. 3–14, 2013.

[48] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, C. Bhagat, S. Jain,

J. Kaimal, S. Liang, K. Mendelev, et al., “B4 and after: managing hierarchy,

partitioning, and asymmetry for availability and scale in google’s software-

defined wan,” in Proceedings of the 2018 Conference of the ACM Special

Interest Group on Data Communication, pp. 74–87, 2018.

[49] D. E. Henni, A. Ghomari, and Y. Hadjadj-Aoul, “A consistent qos routing

strategy for video streaming services in sdn networks,” International Journal

of Communication Systems, vol. 33, no. 10, p. e4177, 2020.

[50] S.-H. Tseng, A. Tang, G. L. Choudhury, and S. Tse, “Routing stability in hy-

brid software-defined networks,” IEEE/ACM Transactions On Networking,

vol. 27, no. 2, pp. 790–804, 2019.

Bibliography 120

[51] H. Wang, Y. Yu, and Q. Yuan, “Application of dijkstra algorithm in robot

path-planning,” in 2011 second international conference on mechanic au-

tomation and control engineering, pp. 1067–1069, IEEE, 2011.

[52] S. Aditi, K. Mahadev, S. Prasad, S. Eswaran, and P. Honnavalli, “Openday-

light as software defined networking controller: Shortcomings and possible

solutions,” in 2022 IEEE International Conference on Electronics, Comput-

ing and Communication Technologies (CONECCT), pp. 1–6, IEEE, 2022.

[53] R. Durner, A. Blenk, and W. Kellerer, “Performance study of dynamic qos

management for openflow-enabled sdn switches,” in 2015 IEEE 23rd Inter-

national Symposium on Quality of Service (IWQoS), pp. 177–182, IEEE,

2015.

[54] L. S. Peter, H. Kobo, and V. M. Srivastava, “A comparative review analysis

of openflow and p4 protocols based on software defined networks,” Data In-

telligence and Cognitive Informatics: Proceedings of ICDICI 2022, pp. 699–

711, 2022.

[55] R. R. Fontes, S. Afzal, S. H. Brito, M. A. Santos, and C. E. Rothenberg,

“Mininet-wifi: Emulating software-defined wireless networks,” in 2015 11th

International Conference on Network and Service Management (CNSM),

pp. 384–389, IEEE, 2015.

[56] S. Ali, M. Pandey, and N. Tyagi, “Sdfog-mesh: A software-defined fog com-

puting architecture over wireless mesh networks for semi-permanent smart

environments,” Computer Networks, vol. 211, p. 108985, 2022.

[57] R. Rosen, “Linux containers and the future cloud,” Linux J, vol. 240, no. 4,

pp. 86–95, 2014.

[58] W. J. Lee, J. W. Shin, H. Y. Lee, and M. Y. Chung, “Testbed implemen-

tation for routing wlan traffic in software defined wireless mesh network,”

in 2016 Eighth International Conference on Ubiquitous and Future Networks

(ICUFN), pp. 1052–1055, IEEE, 2016.

Bibliography 121

[59] T. Osiński and H. Tarasiuk, “New approaches to data plane programma-

bility for software datapaths in the nfv infrastructure,” in 2023 IEEE 9th

International Conference on Network Softwarization (NetSoft), pp. 320–325,

IEEE, 2023.

[60] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann, “Panopti-

con: Reaping the {Benefits} of incremental {SDN} deployment in enterprise

networks,” in 2014 USENIX Annual Technical Conference (USENIX ATC

14), pp. 333–345, 2014.

[61] M. Canini, A. Feldmann, D. Levin, F. Schaffert, and S. Schmid, “Software-

defined networks: Incremental deployment with panopticon,” Computer,

vol. 47, no. 11, pp. 56–60, 2014.

[62] M. Swamy, K. Haribabu, A. Bhatia, et al., “Achieving waypoint enforce-

ment in multi-vlan hybrid sdn,” in 2018 10th International Conference on

Communication Systems & Networks (COMSNETS), pp. 519–521, IEEE,

2018.

[63] R. C. Sofia, “A survey of advanced ethernet forwarding approaches,” IEEE

Communications surveys & tutorials, vol. 11, no. 1, pp. 92–115, 2009.

[64] M. Yu, J. Rexford, X. Sun, S. Rao, and N. Feamster, “A survey of virtual

lan usage in campus networks,” IEEE Communications Magazine, vol. 49,

no. 7, pp. 98–103, 2011.

[65] O. Tilmans and S. Vissicchio, “Igp-as-a-backup for robust sdn networks,”

in 10th International Conference on Network and Service Management

(CNSM) and Workshop, pp. 127–135, IEEE, 2014.

[66] J. Rekhter, “Nsfnet backbone spf based interior gateway protocol,” in Inter-

net Request for Comments Series RFC 1074, Citeseer, 1990.

[67] S. Vissicchio, L. Cittadini, O. Bonaventure, G. G. Xie, and L. Vanbever,

“On the co-existence of distributed and centralized routing control-planes,”

in 2015 IEEE Conference on Computer Communications (INFOCOM),

pp. 469–477, IEEE, 2015.

Bibliography 122

[68] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and research

challenges of hybrid software defined networks,” ACM SIGCOMM Computer

Communication Review, vol. 44, no. 2, pp. 70–75, 2014.

[69] S. Vissicchio, L. Vanbever, L. Cittadini, G. G. Xie, and O. Bonaventure,

“Safe update of hybrid sdn networks,” IEEE/ACM Transactions on Net-

working, vol. 25, no. 3, pp. 1649–1662, 2017.

[70] J. Schot and A. Rip, “The past and future of constructive technology assess-

ment,” Technological forecasting and social change, vol. 54, no. 2-3, pp. 251–

268, 1997.

[71] D. Kim, “A framework for hierarchical clustering of a link-state internet

routing domain,” in International Conference on Information Networking,

pp. 839–848, Springer, 2003.

[72] L. Vanbever and S. Vissicchio, “Enabling {SDN} in old school networks with

{Software-Controlled} routing protocols,” in Open Networking Summit 2014

(ONS 2014), 2014.

[73] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central control

over distributed routing,” in Proceedings of the 2015 ACM Conference on

Special Interest Group on Data Communication, pp. 43–56, 2015.

[74] K.-T. Foerster, S. Schmid, and S. Vissicchio, “Survey of consistent software-

defined network updates,” IEEE Communications Surveys & Tutorials,

vol. 21, no. 2, pp. 1435–1461, 2018.

[75] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils, T. Telkamp,

and P. Francois, “A declarative and expressive approach to control forward-

ing paths in carrier-grade networks,” ACM SIGCOMM computer communi-

cation review, vol. 45, no. 4, pp. 15–28, 2015.

[76] Y. Peng, L. Guo, Q. Deng, Z. Ning, and L. Zhang, “A novel hybrid routing

forwarding algorithm in sdn enabled wireless mesh networks,” in 2015 IEEE

17th International Conference on High Performance Computing and Com-

munications, 2015 IEEE 7th International Symposium on Cyberspace Safety

Bibliography 123

and Security, and 2015 IEEE 12th International Conference on Embedded

Software and Systems, pp. 1806–1811, IEEE, 2015.

[77] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation

in campus networks,” ACM SIGCOMM computer communication review,

vol. 38, no. 2, pp. 69–74, 2008.

[78] Y. Guo, Z. Wang, X. Yin, X. Shi, J. Wu, and H. Zhang, “Incremental

deployment for traffic engineering in hybrid sdn network,” in 2015 IEEE

34th international performance computing and communications conference

(IPCCC), pp. 1–8, IEEE, 2015.

[79] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu, “Traffic engineering in hybrid

sdn networks with multiple traffic matrices,” Computer Networks, vol. 126,

pp. 187–199, 2017.

[80] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu, “Traffic engineering in sdn/ospf

hybrid network,” in 2014 IEEE 22nd International Conference on Network

Protocols, pp. 563–568, IEEE, 2014.

[81] M. Labraoui, M. M. Boc, and A. Fladenmuller, “Software defined

networking-assisted routing in wireless mesh networks,” in 2016 In-

ternational Wireless Communications and Mobile Computing Conference

(IWCMC), pp. 377–382, IEEE, 2016.

[82] M. Labraoui, C. Chatzinakis, M. M. Boc, and A. Fladenmuller, “On ad-

dressing mobility issues in wireless mesh networks using software-defined

networking,” in 2016 Eighth International Conference on Ubiquitous and

Future Networks (ICUFN), pp. 903–908, IEEE, 2016.

[83] M. Labraoui, M. M. Boc, and A. Fladenmuller, “Opportunistic sdn-

controlled wireless mesh network for mobile traffic offloading,” in 2017 Inter-

national Conference on Selected Topics in Mobile and Wireless Networking

(MoWNeT), pp. 1–7, IEEE, 2017.

Bibliography 124

[84] M. Labraoui, M. Boc, and A. Fladenmuller, “Self-configuration mechanisms

for sdn deployment in wireless mesh networks,” in 2017 IEEE 18th Interna-

tional Symposium on A World of Wireless, Mobile and Multimedia Networks

(WoWMoM), pp. 1–4, IEEE, 2017.

[85] J. Wang, Y. Miao, P. Zhou, M. S. Hossain, and S. M. M. Rahman, “A

software defined network routing in wireless multihop network,” Journal of

Network and Computer Applications, vol. 85, pp. 76–83, 2017.

[86] N. Makariye, “Towards shortest path computation using dijkstra algorithm,”

in 2017 International Conference on IoT and Application (ICIOT), pp. 1–3,

IEEE, 2017.

[87] L. He, X. Zhang, Z. Cheng, and Y. Jiang, “Design and implementation of

sdn/ip hybrid space information network prototype,” in 2016 IEEE/CIC

International Conference on Communications in China (ICCC Workshops),

pp. 1–6, IEEE, 2016.

[88] L. He, X. Zhang, Z. Cheng, and Y. Jiang, “Design and implementation of

sdn/ip hybrid space information network prototype,” in 2016 IEEE/CIC

International Conference on Communications in China (ICCC Workshops),

pp. 1–6, IEEE, 2016.

[89] P. Jakma and D. Lamparter, “Introduction to the quagga routing suite,”

IEEE Network, vol. 28, no. 2, pp. 42–48, 2014.

[90] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Sdn-enabled tactical ad hoc

networks: Extending programmable control to the edge,” IEEE Communi-

cations Magazine, vol. 56, no. 7, pp. 132–138, 2018.

[91] K. Poularakis, Q. Qin, K. M. Marcus, K. S. Chan, K. K. Leung, and L. Tas-

siulas, “Hybrid sdn control in mobile ad hoc networks,” in 2019 IEEE In-

ternational Conference on Smart Computing (SMARTCOMP), pp. 110–114,

IEEE, 2019.

[92] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage

problem,” Information processing letters, vol. 70, no. 1, pp. 39–45, 1999.

Bibliography 125

[93] H. Xu, J. Fan, J. Wu, C. Qiao, and L. Huang, “Joint deployment and rout-

ing in hybrid sdns,” in 2017 IEEE/ACM 25th International Symposium on

Quality of Service (IWQoS), pp. 1–10, IEEE, 2017.

[94] H. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, and H. Wang, “Incre-

mental deployment and throughput maximization routing for a hybrid sdn,”

IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp. 1861–1875, 2017.

[95] M. Caria and A. Jukan, “The perfect match: Optical bypass and sdn parti-

tioning,” in 2015 IEEE 16th International Conference on High Performance

Switching and Routing (HPSR), pp. 1–6, IEEE, 2015.

[96] M. Caria, T. Das, A. Jukan, and M. Hoffmann, “Divide and conquer: Parti-

tioning ospf networks with sdn,” in 2015 IFIP/IEEE International Sympo-

sium on Integrated Network Management (IM), pp. 467–474, IEEE, 2015.

[97] M. Caria, A. Jukan, and M. Hoffmann, “Sdn partitioning: A centralized con-

trol plane for distributed routing protocols,” IEEE Transactions on Network

and Service Management, vol. 13, no. 3, pp. 381–393, 2016.

[98] J. Nunez-Martinez, J. Baranda, and J. Mangues-Bafalluy, “A service-based

model for the hybrid software defined wireless mesh backhaul of small cells,”

in 2015 11th International Conference on Network and Service Management

(CNSM), pp. 390–393, IEEE, 2015.

[99] M. Osman, J. Núñez-Mart́ınez, and J. Mangues-Bafalluy, “Hybrid sdn: Eval-

uation of the impact of an unreliable control channel,” in 2017 IEEE Con-

ference on Network Function Virtualization and Software Defined Networks

(NFV-SDN), pp. 242–246, IEEE, 2017.

[100] P. Dely, A. Kassler, and N. Bayer, “Openflow for wireless mesh networks,”

in 2011 proceedings of 20th international conference on computer communi-

cations and networks (ICCCN), pp. 1–6, IEEE, 2011.

[101] J. Vestin, P. Dely, A. Kassler, N. Bayer, H. Einsiedler, and C. Peylo, “Cloud-

mac: torwards software defined wlans,” in Proceedings of the 18th annual

Bibliography 126

international conference on Mobile computing and networking, pp. 393–396,

2012.

[102] D. Nguyen and P. Minet, “Analysis of mpr selection in the olsr protocol,”

in 21st International Conference on Advanced Information Networking and

Applications Workshops (AINAW’07), vol. 2, pp. 887–892, IEEE, 2007.

[103] A. Detti, C. Pisa, S. Salsano, and N. Blefari-Melazzi, “Wireless mesh soft-

ware defined networks (wmsdn),” in 2013 IEEE 9th international confer-

ence on wireless and mobile computing, networking and communications

(WiMob), pp. 89–95, IEEE, 2013.

[104] U. Ashraf, “Placing controllers in software-defined wireless mesh networks,”

in 2018 International Conference on Computing, Mathematics and Engi-

neering Technologies (iCoMET), pp. 1–4, IEEE, 2018.

[105] S. Salsano, G. Siracusano, A. Detti, C. Pisa, P. L. Ventre, and N. Blefari-

Melazzi, “Controller selection in a wireless mesh sdn under network parti-

tioning and merging scenarios,” arXiv preprint arXiv:1406.2470, 2014.

[106] H. Elzain and W. Yang, “Qos-aware topology discovery in decentralized soft-

ware defined wireless mesh network (d-sdwmn) architecture,” in Proceedings

of the 2018 2nd international conference on computer science and artificial

intelligence, pp. 158–162, 2018.

[107] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,

B. O’Connor, P. Radoslavov, W. Snow, et al., “Onos: towards an open,

distributed sdn os,” in Proceedings of the third workshop on Hot topics in

software defined networking, pp. 1–6, 2014.

[108] O. Sefraoui, M. Aissaoui, M. Eleuldj, et al., “Openstack: toward an open-

source solution for cloud computing,” International Journal of Computer

Applications, vol. 55, no. 3, pp. 38–42, 2012.

Bibliography 127

[109] S. Salsano, P. L. Ventre, F. Lombardo, G. Siracusano, M. Gerola, E. Sal-

vadori, M. Santuari, M. Campanella, and L. Prete, “Mantoo-a set of man-

agement tools for controlling sdn experiments,” in 2015 Fourth European

Workshop on Software Defined Networks, pp. 123–124, IEEE, 2015.

[110] S. Salsano, P. L. Ventre, L. Prete, G. Siracusano, M. Gerola, and E. Sal-

vadori, “Oshi-open source hybrid ip/sdn networking (and its emulation on

mininet and on distributed sdn testbeds),” in 2014 Third European Work-

shop on Software Defined Networks, pp. 13–18, IEEE, 2014.

[111] S. Salsano, P. L. Ventre, F. Lombardo, G. Siracusano, M. Gerola, E. Sal-

vadori, M. Santuari, M. Campanella, and L. Prete, “Hybrid ip/sdn net-

working: open implementation and experiment management tools,” IEEE

Transactions on Network and Service Management, vol. 13, no. 1, pp. 138–

153, 2015.

[112] A. Hakiri, A. Gokhale, and P. Patil, “A software defined wireless networking

for efficient communication in smart cities,” Distrib. Object Comput.(DOC)

Group, Vanderbilt Univ., Nashville, TN, USA, Tech. Rep, 2017.

[113] A. Hakiri, B. Sellami, S. B. Yahia, and P. Berthou, “A sdn-based iot archi-

tecture framework for efficient energy management in smart buildings,” in

2020 Global Information Infrastructure and Networking Symposium (GIIS),

pp. 1–6, IEEE, 2020.

[114] A. Hakiri, B. Sellami, P. Patil, P. Berthou, and A. Gokhale, “Man-

aging wireless fog networks using software-defined networking,” in 2017

IEEE/ACS 14th International Conference on Computer Systems and Ap-

plications (AICCSA), pp. 1149–1156, IEEE, 2017.

[115] N. Shastry and T. Keerthan Kumar, “Enhancing the performance of

software-defined wireless mesh network,” in International Conference on

Communication, Computing and Electronics Systems, pp. 1–14, Springer,

2020.

Bibliography 128

[116] H. Elzain and Y. Wu, “Software defined wireless mesh network flat distri-

bution control plane,” Future Internet, vol. 11, no. 8, p. 166, 2019.

[117] E. Kuznetsova, Y. Avakyan, V. Dai Pham, and R. Kirichek, “Applying the

concept of software-defined networking in wireless mesh network,” in Inter-

net of Things, Smart Spaces, and Next Generation Networks and Systems,

pp. 28–38, Springer, 2020.

[118] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using open-

flow: A survey,” IEEE communications surveys & tutorials, vol. 16, no. 1,

pp. 493–512, 2013.

[119] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane

for openflow,” in Proceedings of the 2010 internet network management con-

ference on Research on enterprise networking, vol. 3, pp. 10–5555, 2010.

[120] T. Omizo, T. Watanabe, T. Akiyama, and K. Iida, “Resilientflow: Deploy-

ments of distributed control channel maintenance modules to recover sdn

from unexpected failures,” IEICE Transactions on Communications, vol. 99,

no. 5, pp. 1041–1053, 2016.

[121] N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana: Controller

fault-tolerance in software-defined networking,” in Proceedings of the 1st

ACM SIGCOMM symposium on software defined networking research, pp. 1–

12, 2015.

[122] M. Hartung and M. Körner, “Softmon-traffic monitoring for sdn,” Procedia

Computer Science, vol. 110, pp. 516–523, 2017.

[123] H. I. Kobo, G. P. Hancke, and A. M. Abu-Mahfouz, “Towards a dis-

tributed control system for software defined wireless sensor networks,” in

IECON 2017-43rd annual conference of the IEEE industrial electronics so-

ciety, pp. 6125–6130, IEEE, 2017.

Bibliography 129

[124] M. Osman and J. Mangues-Bafalluy, “Hybrid sdn performance: Switching

between centralized and distributed modes under unreliable control commu-

nication channels,” Journal of Sensor and Actuator Networks, vol. 10, no. 3,

p. 57, 2021.

[125] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Network

monitoring in openflow software-defined networks,” in 2014 IEEE Network

Operations and Management Symposium (NOMS), pp. 1–8, IEEE, 2014.

[126] M. Malboubi, L. Wang, C.-N. Chuah, and P. Sharma, “Intelligent sdn based

traffic (de) aggregation and measurement paradigm (istamp),” in IEEE IN-

FOCOM 2014-IEEE Conference on Computer Communications, pp. 934–

942, IEEE, 2014.

[127] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: traffic matrix

estimator for openflow networks,” in International Conference on Passive

and Active Network Measurement, pp. 201–210, Springer, 2010.

[128] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha,

“Flowsense: Monitoring network utilization with zero measurement cost,”

in International Conference on Passive and Active Network Measurement,

pp. 31–41, Springer, 2013.

[129] M. Yu, L. Jose, and R. Miao, “Software {Defined}{Traffic} measurement

with {OpenSketch},” in 10th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 13), pp. 29–42, 2013.

[130] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Dream: dynamic resource

allocation for software-defined measurement,” in Proceedings of the 2014

ACM conference on SIGCOMM, pp. 419–430, 2014.

[131] M. Moshref, M. Yu, and R. Govindan, “Resource/accuracy tradeoffs in

software-defined measurement,” in Proceedings of the second ACM SIG-

COMM workshop on Hot topics in software defined networking, pp. 73–78,

2013.

Bibliography 130

[132] M. Hartung and M. Körner, “Softmon-traffic monitoring for sdn,” Procedia

Computer Science, vol. 110, pp. 516–523, 2017.

[133] H. Yahyaoui and M. F. Zhani, “On providing low-cost flow monitoring for sdn

networks,” in 2020 IEEE 9th International Conference on Cloud Networking

(CloudNet), pp. 1–6, IEEE, 2020.

[134] P. Bellavista, A. Dolci, C. Giannelli, and D. D. Padalino Montenero, “Sdn-

based traffic management middleware for spontaneous wmns,” Journal of

Network and Systems Management, vol. 28, no. 4, pp. 1575–1609, 2020.

[135] J. Haxhibeqiri, P. H. Isolani, J. M. Marquez-Barja, I. Moerman, and J. Hoe-

beke, “In-band network monitoring technique to support sdn-based wireless

networks,” IEEE Transactions on Network and Service Management, vol. 18,

no. 1, pp. 627–641, 2020.

[136] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and research

challenges of hybrid software defined networks,” ACM SIGCOMM Computer

Communication Review, vol. 44, no. 2, pp. 70–75, 2014.

[137] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu, “Traffic engineering in hybrid

sdn networks with multiple traffic matrices,” Computer Networks, vol. 126,

pp. 187–199, 2017.

[138] A. Detti, C. Pisa, S. Salsano, and N. Blefari-Melazzi, “Wireless mesh soft-

ware defined networks (wmsdn),” in 2013 IEEE 9th international confer-

ence on wireless and mobile computing, networking and communications

(WiMob), pp. 89–95, IEEE, 2013.

[139] A. Hakiri, A. Gokhale, and P. Berthou, “Software-defined wireless mesh

networking for reliable and real-time smart city cyber physical applications,”

in Proceedings of the 27th International Conference on Real-Time Networks

and Systems, pp. 165–175, 2019.

[140] Y. Zhang, “An adaptive flow counting method for anomaly detection in

sdn,” in Proceedings of the ninth ACM conference on Emerging networking

experiments and technologies, pp. 25–30, 2013.

Bibliography 131

[141] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha,

“Flowsense: Monitoring network utilization with zero measurement cost,”

in International Conference on Passive and Active Network Measurement,

pp. 31–41, Springer, 2013.

[142] Y. Chai and X.-J. Zeng, “The development of green wireless mesh network:

a survey,” Journal of Smart Environments and Green Computing, vol. 1,

no. 1, pp. 47–59, 2021.

[143] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Network

monitoring in openflow software-defined networks,” in 2014 IEEE Network

Operations and Management Symposium (NOMS), pp. 1–8, IEEE, 2014.

[144] M. Malboubi, L. Wang, C.-N. Chuah, and P. Sharma, “Intelligent sdn based

traffic (de) aggregation and measurement paradigm (istamp),” in IEEE IN-

FOCOM 2014-IEEE Conference on Computer Communications, pp. 934–

942, IEEE, 2014.

[145] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: traffic matrix

estimator for openflow networks,” in International Conference on Passive

and Active Network Measurement, pp. 201–210, Springer, 2010.

[146] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Dream: dynamic resource

allocation for software-defined measurement,” in Proceedings of the 2014

ACM conference on SIGCOMM, pp. 419–430, 2014.

[147] W. Wang, C.-H. Wang, and T. Javidi, “Reliable shortest path routing with

applications to wireless software-defined networking,” in 2018 IEEE Global

Communications Conference (GLOBECOM), pp. 1–6, IEEE, 2018.

[148] D. Sajjadi, Z. Zheng, R. Ruby, and J. Pan, “Randomized single-path flow

routing on sdn-aware wi-fi mesh networks,” in 2018 IEEE 15th International

Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 184–192,

IEEE, 2018.

Bibliography 132

[149] Y. Wang, T.-Y. C. Tai, R. Wang, S. Gobriel, J. Tseng, and J. Tsai, “Optimiz-

ing open vswitch to support millions of flows,” in GLOBECOM 2017-2017

IEEE Global Communications Conference, pp. 1–7, IEEE, 2017.

[150] T. Clausen and P. Jacquet, “Optimized link state routing protocol (olsr),”

tech. rep., 2003.

[151] D. E. Henni, A. Ghomari, and Y. Hadjadj-Aoul, “A consistent qos routing

strategy for video streaming services in sdn networks,” International Journal

of Communication Systems, vol. 33, no. 10, p. e4177, 2020.

[152] A. Eftimie and E. Borcoci, “Sdn controller implementation using openday-

light: experiments,” in 2020 13th International Conference on Communica-

tions (COMM), pp. 477–481, IEEE, 2020.

[153] D. Johnson, N. S. Ntlatlapa, and C. Aichele, “Simple pragmatic approach

to mesh routing using batman,” 2008.

[154] A. Tirumala, “Iperf: The tcp/udp bandwidth measurement tool,”

http://dast. nlanr. net/Projects/Iperf/, 1999.

[155] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better netflow,”

ACM SIGCOMM Computer Communication Review, vol. 34, no. 4, pp. 245–

256, 2004.

[156] J. Reves and S. Panchen, “Traffic monitoring with packet-based sampling

for defense against security threats,” InMon Technology Whitepaper, vol. 78,

2002.

[157] A. C. Myers, “Jflow: Practical mostly-static information flow control,” in

Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pp. 228–241, 1999.

[158] H. Kim and N. Feamster, “Improving network management with software de-

fined networking,” IEEE Communications Magazine, vol. 51, no. 2, pp. 114–

119, 2013.

Bibliography 133

[159] Y.-T. Han, E.-M. Lee, H.-S. Park, J.-Y. Ryu, C.-C. Kim, and M.-W. Song,

“Test and performance comparison of end-to-end available bandwidth mea-

surement tools,” in 2009 11th International Conference on Advanced Com-

munication Technology, vol. 1, pp. 370–372, IEEE, 2009.

	Author's Declaration
	Plagiarism Undertaking
	List of Publications
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Wireless Mesh Networks
	1.2 Challenges in Wireless Mesh Networks
	1.3 Software Defined Network
	1.4 SDN in WMNs: Challenges and Solutions
	1.5 Advantages of Hybrid WMN and SDN
	1.6 Problem Statement
	1.7 Aim and Objectives
	1.8 Dissertation Goals and Contribution
	1.9 Methodology and Techniques
	1.10 Organization of this Dissertation

	2 Background for Proposed Routing Architecture
	2.1 SDN Controller - OpenDaylight
	2.2 OpenFlow Switch – Architecture and Operations
	2.3 Simulation Environment
	2.3.1 Mininet-Wifi
	2.3.2 Networks Namespace (NNS)
	2.3.3 Open vSwitch (OVS)

	3 Hybrid Wireless Mesh and Software Defined Networks: Review of Existing Approaches
	3.1 Introduction
	3.2 Existing Hybrid SDN Routing Approaches
	3.2.1 Coexistence-Based Hybrid Routing
	3.2.2 Cohabitation-based Hybrid Routing

	3.3 Control Plane Failure Recovery Mechanisms in Hybrid SDN Approach
	3.4 Network Monitoring Applications for Hybrid SDN Approach
	3.5 Conclusion

	4 Soft-Mesh: A Robust Routing Architecture for Hybrid Wireless Mesh and Software Defined Networks
	4.1 Introduction
	4.2 Architecture of the Proposed Routing Approach
	4.2.1 Routing Module of Proposed Architecture
	4.2.1.1 SDN Hybrid Nodes – Cohabitation of OpenFlow & OLSR
	4.2.1.2 Legacy Nodes with OLSR Protocol
	4.2.1.3 Standard Operations of Proposed Routing Module

	4.2.2 Load Balancing Module
	4.2.3 Traffic Measurement Module
	4.2.4 Controller Failure Recovery Mechanism

	4.3 Simulation Model and Results Analysis
	4.3.1 Simulation Model
	4.3.2 Simulation Results and Analysis
	4.3.2.1 Throughput
	4.3.2.2 Packet Drop Ratio
	4.3.2.3 End-to-End Delay
	4.3.2.4 Routing Overhead

	4.3.3 Evaluation of Controller Failure Handling

	4.4 Mathematical Model for the Proposed Routing Architecture
	4.5 Conclusion

	5 AdNetMon: An Adaptive Network Monitoring Architecture for Hybrid Wireless Mesh and Software Defined Networks
	5.1 Introduction
	5.2 Network Monitoring Architecture
	5.3 An Adaptive Network Monitoring Algorithm
	5.3.1 Link Utilization Monitoring
	5.3.2 Evaluation
	5.3.2.1 Simulation Model
	5.3.2.2 Evaluation Metrics
	5.3.2.3 Results

	5.4 Conclusion

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

