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Abstract

Human-Robot collaboration (HRC) is an integral component of Cyber-Physical

Production systems (CPPS) where humans and robots share workspaces, increas-

ing the possibility of accidents. The complex nature of these systems increases

uncertainty, anomaly, and threats leading to physical and psychological safety is-

sues. In this work, first of all, a novel concept, ”Anxiety of CPS,” is defined and

categorized for expected and unprecedented situations that a CPS could encounter

using the Ishikawa method. Then, a connective decision-making framework is pro-

posed for a flexible CPS, which can quickly respond to dynamic changes and be

resilient to emergent hazards. A four-layered connective framework is presented

that can promptly respond to changing physical and psychological safety situa-

tions. The first layer performs the desired operation of the CPS and gets itself

aware of anomalies. Visual cues are used to gather the CPS’s current state (such

as human pose and object identification). The second layer assesses, categorizes,

and quantifies the developed situations’ severity as an anxiety factor. The third

layer mitigates the arising anxiety through the optimal allocation of resources. A

mathematical model is developed using Mixed-integer programming (MIP) to allo-

cate optimal resources that will tackle high-impact situations generating ’anxiety.’

The fourth layer makes decisions based on historical knowledge, the current state

of anxiety, and the suggested optimization using logic.

The proposed method was tested on realistic industrial scenarios incorporating a

Collaborative Robotic Cyber-Physical Production System (CRCPPS). The case

study shows that the technique is less time-intensive as the maximum time to de-

cide on a situation was found to be 0.03s. A survey highlighted that the method

leads to enhanced fluency, comfort, safety, and legibility during collaboration. The

proposed system was 16.85 % more accurate than the standard one. The signifi-

cance test of the results highlighted that the p-values were less than the threshold

p < 0.05. The results demonstrated that the method improves the decision-making

of a CPS facing a complex scenario, ensures physical and psychological safety, and

effectively enhances the productivity of the human-machine team. Therefore, the



x

proposed method is a real manifestation of the emerging concept of Industry 5.0,

which recommends the worker’s well-being along with the system’s efficiency and

productivity. The proposed framework can be applied to any industrial scenario

where HRC is involved, like manufacturing, assembling, packaging, etc.
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Chapter 1

Introduction

1.1 Background

The enabler for the fourth industrial revolution (Industry 4.0) is Cyber-Physical

Systems (CPS). They are intelligent system that contains both physical and com-

putational elements. The concept involves decision-making through real-time data

evaluation collected from interconnected sensors. The elements of CPS include lay-

ers of sensors, network, analysis, and execution [1]. Monostori [2] proposed overall

automation of these layers for production systems interconnecting necessary phys-

ical elements such as machines, robots, sensors, and conveyors through computer

science and termed it a Cyber-Physical Production System (CPPS). The proposed

mode of communication within the CPS is the Internet of things (IoT) due to its

capability of assigning a unique identity to each element [3]. Flexible systems

with high productivity are the demand of the modern industry. The latest CPPS

offers time-saving and mass customization and does not require reconfiguration in

the existing system. The decision-making is dependent on logic; however, these

systems lack the flexibility to handle deviations from the predefined. Extension of

the concept was necessitated from fixed to autonomous production systems using

artificial intelligence (AI) and IoT leads to a new domain of smart factories [4].

1
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Though technologies have evolved still, there is no substitute for human intelli-

gence. Pirvu et al. [5] explain that human involvement is now necessary to cover

the intelligence gap and supervision. The author presented an anthropocentric

cyber-physical system (ACPS), which confirmed humans’ essential requirement

in any CPS. Modern CPSs are now expected to handle social interaction issues

between humans, machines, and robots. A representation of a CPS elements’ con-

nectivity and the exchange of information is shown in Fig. 1.1.

Figure 1.1: Components of CPS.

1.2 Social Safety of Collaborative Cyber-Physical

Production System

The latest CPPS involves many collaborations between machines and humans to

fulfill the process. As humans and machines interact more, the modern CPPSs are

designed in social spaces which face various safety issues. Physical safety aspects

are in consideration due to this human-machine interaction [6]. On the other hand,

continuous interaction with the machines, monotonous operations, closeness, and

fatigue possess psychological discomfort to the operator [7]. Any deviations from
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the task would also pose a psychological threat to the system. The challenge is to

provide real-time evaluation of hazards and ensure safety. Designing such systems

requires information on social interaction. The information exchange among the

social elements can be through various interacting modes, which may be visual,

vocal, or physical gestures. In this context, the dynamic status of humans and CPS

components will be inferred by measuring their activity (i.e., recognizing and un-

derstanding their status while they participate in situations), these activities will

then be analyzed, and decisions will be made for necessary tasks to be performed

in the physical domain. The cognitive state/intention of the human operator is

very important, in addition to the state of other physical components. Islam et

al. [8] proposed an assessment of social metrics for smart factories through the

integration of AI and IoT.

Figure 1.2: Decision-Making for Safety Issues in CPS.

As machines and humans collaborate in the latest CPPS, the role of robots in mod-

ern production systems has also transformed from automation to collaboration. A

shared space is used by humans and robots, and they are expected to attain a
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common objective while conforming to the rules of social interaction. Here the

requirement is felt for collaborative robots (cobots). The robots that may perform

joint actions and obey rules of social interaction (like proxemics) still act efficiently

and legibly [9]. Cobots are now an essential component of modern CPPS [10]. The

concept of collaboration has taken its roots in the social characteristics of animals

and humans [11]. The robot’s features for collaboration depend on the typical

application in which it is used.

An example could be a robot distributing postal letters in offices that would need

specific social skills to understand the requirements of its customers through regu-

lar encounters. Some may require mail-in alphabetical order, or some may require

mail in terms of priority index. On the other hand, a robot that is employed to

assist disabled or aged persons must have an extensive list of social characteristics

to make them comfortable.

Khan et al. [12] presented a similar example of social interaction between robots

and humans in the food industry and highlighted the requirement of special abil-

ities and intelligence in these robots to act in the rising scenario. Moreover, the

need for legibility also comprises the requirement that demand cobot should infer

the actions performed by the human operator and vice versa [13].

As the requirement for safety in any CPS is essential, similarly, it is for a collab-

orative robotic CPS (CRCPS). Different physical safety protocols for HRC-based

CPS were presented by authors[14–17], whose activation is dependent on the prox-

imity between the cobot and the human operator. Sharma et al. [18] applied an

object classification technique to identify objects and the human body for the safe

operation of a robot. Khalid et al. [10] presented a survey on the capabilities of

the latest cobots for physical safety. The broad sensing techniques recognized to

evaluate safe operations were proximity and visual signatures.

A distinctive concept of psychological safety for a human operator was presented

by [7]. A CPS was proposed that encompassed the operator’s physical and psy-

chological safety. The separation between the cobot and the human was measured
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for hazard assessment. The safeties were ensured by controlling the speed of the

cobot.

Another paper described that legibility ensures psychological safety; a human

operator feels more comfortable assessing the robot’s goal through its intended

motion [19]. The notion of the legibility mentioned is restricted to the robot’s

motion only. All stakeholders of the CPPS must have the legibility of complete

processes and systems designed accordingly. Therefore, the broad categories of

safety for any CRCPPS in the social domain are physical and psychological safety.

As the industry transforms from automation to intelligence, a need is felt to ex-

tend the concept of psychological safety from humans to the CPSs. Psychological

safety is equally essential for an intelligent CPS as physical safety is perceived

[20]. The CPPS comprises processes from the supply chain to manufacturing,

assembly, packaging, and delivery. Any change in the expected outcome would

compromise the system’s efficiency, creating a psychological issue. Although in-

teractions among human operators, physical and computational layers of CPS can

be quite demanding in terms of cognitive resources, the psychological aspects of

safety are not extensively taken into account by existing systems. Yet there is no

connective framework that assesses and counters both physical and psychological

issues of a CPPS in a social domain. Flexible CPPS in this regard is required

to counter the uncertainties by defining contingencies. The above indicates the

importance of efficient and reliable integration of each component of CPPS for the

next generation, and a framework is required for a new system as follows:

a. A framework that can quantify both the physical and psychological safety

of the CPPS.

b. A framework that can assess the CPPS’s current state and accordingly pro-

vide a thinking base to make it flexible and safe.

c. A framework that can decide, optimize and control based on the situational

assessment.
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1.3 Problem Statement

The above-mentioned gap found in the literature dictates the following problem

statement:

A decision tool is required to provide a thinking base to the CPPS involving

Human-Robot Collaboration, which can cater to multiple real-time situations in

the overall scenario, addressing both physical and psychological safety issues.

1.4 Objectives

The problem statement leads to the following objectives:

a. To review the safety issues faced by CRCPS in the social domain.

b. To review the existing techniques that address the safety issues of CRCPS

in the social domain.

c. To quantify the social safety issues of a CPPS, both physical and psycholog-

ical, by defining relevant parameters.

d. To establish an AI-based method that can provide a thinking base for the

CPPS to cater to multiple situations generating social safety issues making

the CPPS flexible and safe.

e. To validate the proposed approach through an industrial problem case study.

1.5 Research Aim

The study aims to devise a framework that can assess and cater to social safety

issues of a collaborative robotic CPPS using AI and IoT.



Introduction 7

1.6 Research Design

The research is inspired by human behavior when they are exposed to physical or

psychological threats. Anxiety is generated in humans to provide safety against

these threats, the basis on which they analyze situations and take necessary ac-

tions. In this work, the research is further extended to CPSs, and a novel concept

of anxiety is proposed for the CPS. Therefore, a decision-making framework for

combined safety in the conceptual domain is developed after carrying out the lit-

erature review pertinent to existing physical and psychological safety frameworks

for CRCPPS. The idea for defining and quantifying anxiety generated by different

situations for a CPS is conceived. Then the methodology for the awareness and

assessment of the situations and the functioning of the CPPS is conceptualized.

Finally, the approach is validated through experimental case studies. A schematic

of the overall research methodology is given in Fig. 1.3.

1.7 Thesis Overview

The thesis is arranged as follows. Chapter 1 presents the aims and objectives of this

research. The chapter includes background, problem statement, aim, objectives,

and the research design. This chapter proposes a framework for decision-making

in the collaborative robotic CPPS.

Chapter 2 reviews the latest concepts in the realm of Industry 4.0 especially em-

phasizing the concepts of human-robot interaction and human-robot collaboration.

The chapter also discussed human-robot interaction in the social domain.

Chapter 3 highlighted the safety issues of collaborative robotic CPS. The chapter

explains the safety issues of CRCPS are mainly comprised of two aspects. The

first part presents various countermeasures to address the physical safety issues in

CRCPS. The second part presents the literature on psychological safety measures

for collaborative robotic systems. Further, the chapter overviews sensing and
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interfacing techniques to assess the issues. The chapter also provides literature on

combined safety systems that offer both physical and psychological safety.

Figure 1.3: Research Design.

Chapter 4 presents the concept of anxiety and its types in human beings. The

chapter then provides the novel idea of anxiety of CPS proposed for prioritizing
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the combined safety situations, i.e., physical and psychological safety both. The

chapter first defines a biomimetic concept of anxiety in CPS derived from the

medical terms and then quantifies them through a proposed model.

Chapter 5 explains the proposed method for a decision-making system that mit-

igates the anxiety generated by situations confronted by a CPPS. The chapter

presents a layered framework for the presented approach, and the four layers are

elaborated separately under their specific headings. Subsection 5.1.1 first gives an

overview of the CPS Layer, it’s working for the primary production plan, and the

situational awareness system. Subsection 5.1.2 presents the situational assessment

layer that provides a method to assess the anxiety of braved situations. Subsec-

tion 5.1.3 provides the optimization technique for resource allocation to emerging

situations; subsection 5.1.4 presents an overview of the decision-making system for

catering to situations generating anxiety through available resources.

Chapter 6 presents the experimental case study for the proposed case and its

validation. The case study includes implementing the proposed method in an

industrial packaging scenario. The chapter incorporates the results from the case

study, a discussion of the outcome, and a comparison of the proposed method with

contemporary systems.

Chapter 7 presents the experimental validation of the proposed method through a

second case study on an industrial assembly scenario. The chapter also includes a

survey comparing the standard and proposed methods. The survey also contains

two hypotheses one on the fluency of HRC and the second on perceived safety,

comfort, and legibility during collaboration when using the proposed method.

Chapter 8 summarizes the major conclusions of this work and outlines potential

areas of future work.



Chapter 2

Concepts, Technologies and

Techniques

2.1 Overview of Industrial Revolution

The Industrial Revolution, which began in the 18th century, marked a period

of profound technological, social, and economic change. This transformative era

saw the introduction of mechanized production methods, the emergence of new

technologies, and the transition from predominantly agrarian societies to indus-

trialized ones. The Industrial Revolution unfolded in multiple stages, from the

early proto-industrial revolution to the ongoing fifth industrial revolution. Each

phase brought significant advancements and societal shifts. This premise aims to

provide an overview of the major developments and transitions that characterized

the different stages of the Industrial Revolution [21], [22], [23]:

2.1.1 Proto-Industrial Revolution (17th to 18th Century)

The proto-industrial revolution, also known as the cottage industry or the putting-

out system, marked the initial stages of industrialization. During this period,

rural households engaged in small-scale production, such as textile weaving, in

10
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their homes. Merchants would provide raw materials and collect finished goods

for distribution. This phase laid the foundation for the mechanized production

that would follow.

2.1.2 First Industrial Revolution (18th to 19th Century)

The first industrial revolution began in Britain and later spread to other parts

of Europe and the United States. Key advancements included the mechanization

of textile production through inventions like the spinning jenny and the water

frame. Steam power, exemplified by James Watt’s steam engine, revolutionized

transportation, mining, and manufacturing. These innovations led to the estab-

lishment of factories and the rapid growth of industrial cities.

2.1.3 Second Industrial Revolution (Late 19th to Early

20th Century)

The second industrial revolution was characterized by significant technological ad-

vancements and industrial expansion. Notable innovations included the telegraph,

the telephone, and the light bulb. The widespread use of electricity, along with

the development of the internal combustion engine, fueled further industrializa-

tion and enabled the rise of the automobile and the expansion of rail networks.

This era also saw the emergence of large corporations and the beginning of mass

production.

2.1.4 Third Industrial Revolution (Late 20th Century)

The third industrial revolution, often referred to as the Digital Revolution or the

Information Age, emerged with the advent of computers and electronics. Key
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developments included the invention of the microprocessor and the rise of the in-

ternet. These technologies revolutionized communication, computing, and infor-

mation storage, enabling the automation of various processes and the emergence of

new industries such as telecommunications, electronics, and software development.

2.1.5 Fourth Industrial Revolution (Late 20th Century to

Present)

The fourth industrial revolution builds upon the third, characterized by the fusion

of digital, physical, and biological systems. It encompasses advancements in areas

such as artificial intelligence, robotics, automation, the Internet of Things (IoT),

3D printing, and nanotechnology. These technologies are transforming industries,

enabling smart manufacturing, autonomous vehicles, personalized medicine, and

the integration of digital systems into various aspects of society.

2.1.6 Fifth Industrial Revolution (Present and Future)

The fifth industrial revolution is an emerging concept that focuses on the potential

of technologies like artificial intelligence, blockchain, quantum computing, and

biotechnology to revolutionize industries and society further. This revolution aims

to create a more interconnected, sustainable, and equitable world by leveraging

advancements in digitalization, automation, and innovation. The fifth Industrial

Revolution is still in its early stages, and its full impact is yet to be realized.

2.2 Industry 4.0

It was the beginning of automation, when computers controlled machines and

later robots replaced human employees on production lines. The world entered
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the fourth industrial revolution known as Industry 4.0, where everything is con-

nected, and AI-fed computers control robots and remotely placed machines with-

out minute human intervention. Data exchange among the elements is essential

in this latest trend of automated manufacturing technologies. The concept pro-

poses the employment of IoT, CPSs, cloud computing, and cognitive computing

[24].The fourth industrial revolution was initially considered for manufacturing;

however, its context has evolved. A whole new concept has emerged: interaction

and control of computer, operator, and robot now depend on machine learning

[25].

The various collaborations between industry, government, and academia now be-

long to this terminology, leading to the new word “Industry 4.0”. Broadly speak-

ing, it is a manufacturing term that integrates smart factories, their related activi-

ties, production processes, and technology. However, Industry 4.0 does not simply

involve a group of technical tools like the IoT. It may include quality-related func-

tions like maintenance and consumer interaction/feedback. Quality improvement

can be achieved by analyzing real-time information, reducing inadequacies, and

eliminating mismatches in customer-focused environments where value-addition,

cost-effectiveness, and swiftness are essential requirements. The idea is also linked

to improving the supply chain, which is now digitally transformed. The idea is

also beneficial for businesses where novel approaches are used for their transfor-

mation through feedback. The paybacks are profitability, budget reduction, value

optimization, increased demand, and improved customer loyalty. One important

facet is customer demand flexibility, which requires more innovative products in

less time. The customer demand for the customization could be due to the ser-

vice/product being part of the highest level, standardized low margin, or the one

that will soon fade owing to “digital disruption” [26]. The German Federal Min-

istry for Education and Research refers: “The industry is on the threshold of the

fourth industrial revolution. Driven by the Internet, the real and virtual worlds

are increasingly coming together to form the Internet of Things. The industrial

production of the future will be characterized by strong personalization of products

in highly flexible production conditions (large series), the extensive integration of
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customers and business partners in the industry business through processes and

value-added services, and the association between high-quality production and

services leads to so-called hybrid products [2]”.

2.3 Industry 5.0

The conventional manufacturing concept places tasks at the core of the produc-

tion system, relegating workers to a passive role. However, future workplaces

will prioritize workers, shifting from task-centric to worker-centric approaches.

This paradigm shift anticipates an enhanced worker role, resulting in optimized

production performance. The new concept emphasizes the significance of align-

ing job roles with individual workers’ skills, experience, and characteristics. A

worker-centric system fosters knowledge and capabilities among workers, irrespec-

tive of age or position. Consequently, the manufacturing sector must adapt to the

emerging sustainability trend, encompassing environmental, economic, and social

dimensions. Europe has issued a series of directives to enhance workplace safety

and health to address these concerns. These directives seek to improve working

conditions, reduce the risk of accidents, and ultimately create an environment

that promotes a higher quality of life for workers. The principles of ergonomics

are implemented to boost productivity, enhance worker health and safety, meet

government regulations, or minimize worker claims. The ultimate objective is to

attain greater job satisfaction. Companies increasingly recognize the importance

of ergonomic adjustments in reducing injuries and costs while fostering employee

motivation and satisfaction [27]. Currently, manufacturing companies find them-

selves in a transitional phase known as Industry 4.0. However, a new transforma-

tive wave called Industry 5.0 is emerging, which is often referred to as the ”Age of

Augmentation.” In this phase, humans and machines work together in perfect har-

mony, achieving a symbiotic relationship. The concept of Industry 5.0 highlights

the importance of human-centric design in Cyber-Physical Production Systems

(CPPS), raising ethical concerns regarding the impact of technology on workers

and society as a whole.
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Industry 5.0, as an ideology, first surfaced in 2020 through a series of virtual

workshops where ideas were exchanged and discussions took place. It gained of-

ficial recognition in January 2021 when the European Commission (EC) formally

introduced and published it [28], [29]. The European Commission (EC) intro-

duced Industry 5.0 as a means to create more inclusive, resilient, sustainable, and

human-centered workplaces. The transition from Industry 4.0 to Industry 5.0

marks a shift in the relationship between humans and intelligent systems. While

Industry 4.0 mainly focuses on automating processes with digital technologies to

improve efficiency, Industry 5.0 emphasizes the synergy and collaboration between

humans and machines, giving priority to human desires and intentions. The goal

of Industry 5.0 is to reintegrate humans into factories, leveraging their cognitive

capabilities (creativity and knowledge) in collaboration with intelligent systems.

Machines are employed for work-intensive or repetitive tasks, while humans oversee

personalization and critical thinking.

Industry 5.0 empowers humans through the incorporation of innovative technolo-

gies and aims to place worker well-being at the forefront of production processes,

maintaining a balance between human and machine systems and embracing re-

silience and sustainable development across ecological, economic, and social di-

mensions. While Industry 4.0 focuses on production efficiency and flexibility

through digitalization and technologies, Industry 5.0 aligns with European so-

cietal goals, emphasizing job creation, resilient development, and industrial sus-

tainability while respecting planetary limits and worker well-being [30]. Therefore,

Industry 5.0 can be seen as an extension and progression of Industry 4.0, address-

ing the limitations of the latter in terms of industrial sustainability and worker

well-being. Industry visionaries foresee Industry 5.0 as a means to reintroduce the

human element into the manufacturing industry. The concept revolves around

harnessing the creative capabilities of human experts and their collaboration with

advanced, intelligent machinery. The idea is that Industry 5.0 will combine the

speed and precision of machines with the critical and cognitive thinking of hu-

mans. Unlike Industry 4.0, which primarily focuses on large-scale production with

robots, Industry 5.0 promotes more skilled jobs where intellectual professionals
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work alongside machines. Mass customization takes center stage in Industry 5.0,

with humans guiding robots to meet customer satisfaction. While Industry 4.0

emphasizes connectivity in Cyber-Physical Systems (CPS), Industry 5.0 builds

upon Industry 4.0 applications and establishes collaborative relationships between

humans and robots, known as collaborative robots (cobots). Furthermore, Indus-

try 5.0 brings additional advantages in terms of sustainability by offering greener

solutions, which is not a primary focus of previous industrial transformations.

The preservation of the natural environment is given greater consideration in the

context of Industry 5.0 [31].

Industry 5.0 represents the latest industrial revolution which involves the integra-

tion of advanced technologies like artificial intelligence (AI), robotics, internet of

things (IoT), and big data analytics with human capabilities in the manufacturing

sector. While Industry 4.0 focuses on connectivity and digitization of machines

and processes, Industry 5.0 builds upon those principles that recognize the value

of human skills, creativity, and problem-solving abilities in driving industrial ad-

vancement. The aim is to balance automation and human intervention, fostering

a harmonious coexistence between humans and machines within the manufactur-

ing environment [32]. The concept of Industry 5.0 encompasses the integration of

physical and virtual spaces with a human-centric approach, utilizing technologies

such as the Internet of Things (IoT), cobots, and augmented reality to achieve

a smart industry and digitally innovative society. Interactivity between humans

and machines distinguishes Industry 5.0 from Industry 4.0, as increased interac-

tion empowers operators to personalize products and services, creating synergistic

relationships between technological and social systems. The principles of Industry

5.0 can be applied to cyber-physical production systems (CPPS), including con-

ceptualization, learning, integration, data interoperability, information sharing,

use of 5G and 6G networks, automatic identification and traceability systems,

AI-based work assistance and supervision, industrial simulation, user application

of augmented reality systems, and the utilization of cobots to achieve intelligent

manufacturing systems [30].
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The integration of robotics into production systems not only improves produc-

tivity but also enhances worker well-being and creates safer work environments.

Robots, when operating within collaborative environments with humans, lever-

age the strengths of both individuals and technology. This partnership enables

the overcoming of limitations associated with awkward, repetitive, and potentially

hazardous tasks. As a result, workplaces are improved, and processes become more

repeatable and reliable [23]. The coupling of robots with the human mind through

brain-machine interfaces and advancements in artificial intelligence is gaining sig-

nificance. This development allows for the emergence of cobots that are aware

of human presence and prioritizes safety and risk considerations. These robots

have the ability to perceive, comprehend, and even anticipate not only human

actions but also the goals and expectations of human operators. Similar to ap-

prentices, these collaborative robots observe and learn from individuals as they

perform tasks. Once the learning process is complete, the cobots can execute

tasks in the same manner as their human counterparts. Consequently, working

alongside cobots gives humans a distinct sense of satisfaction and fulfillment [21].

Moreover, industry 5.0 emphasizes the manufacturing of robots and industrial

robots as a future direction. To fully harness the potential of emerging tech-

nologies, it is crucial to design new solutions, such as sociotechnical systems that

incorporate various human actors, cobots, and AI-based systems for assistance or

supervision. Implementing smart solutions that leverage collaborative robots and

AI can greatly alleviate physically and mentally demanding tasks. However, it is

important to address workers’ dual experience with such solutions. On the one

hand, workers may perceive their work as passive and monotonous, reduced to

mere monitoring tasks. On the other hand, they may face significant challenges

when troubleshooting issues with smart machines.

It is evident that there is a need to enhance work allocation and foster team-

work within human-machine teams. This will ensure that human workers remain

engaged and perceive their roles as meaningful and manageable. In the design of

human-machine systems, careful consideration should be given to worker roles and

the associated skills requirements. This will create an environment where human
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workers feel integrated into the loop and can actively contribute to the overall

process [33].

2.4 Manufacturing Transformation in Industry

4.0: Digital, Intelligent, Smart

Digital Manufacturing, Intelligent Manufacturing, and Smart Manufacturing are

closely related concepts that represent the evolution of manufacturing processes

through the integration of advanced technologies. While digital manufacturing

focuses on leveraging digital technologies, intelligent manufacturing incorporates

advanced computational intelligence and automation, and smart manufacturing

integrates digital technologies, intelligent systems, and real-time connectivity to

create a highly adaptive and efficient manufacturing ecosystem in the context of

Industry 4.0 [34], [35], [36], [37], [38], [39]:

2.4.1 Digital Manufacturing

Digital Manufacturing is a field that utilizes digital technologies and computer-

based systems to enhance different aspects of the manufacturing process. It encom-

passes digitizing and integrating information, processes, and systems across the en-

tire product lifecycle, including design, production, and supply chain management.

Digital Manufacturing in Industry 4.0 focuses on digitizing physical assets, connec-

tivity across the production line, and utilizing real-time data for decision-making

and process optimization. Digital Manufacturing incorporates various technologies

such as Computer-Aided Design (CAD), Computer-Aided Manufacturing (CAM),

simulation tools, and digital communication networks to improve manufacturing

operations’ efficiency, accuracy, and productivity.
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2.4.2 Intelligent Manufacturing

Intelligent Manufacturing takes manufacturing systems to the next level by in-

tegrating cutting-edge computational intelligence and automation technologies.

Intelligent Manufacturing in Industry 4.0 combines the power of Artificial Intel-

ligence (AI), Machine Learning (ML), the Internet of Things (IoT), and other

intelligent systems to enable machines, robots, and manufacturing processes to

acquire knowledge from data, independently make decisions, and adjust to dy-

namic environments. The ultimate goal of Intelligent Manufacturing is to enhance

adaptability, responsiveness, and quality while simultaneously lowering costs and

resource utilization.

2.4.3 Smart Manufacturing

Smart Manufacturing is an evolution of Digital Manufacturing and Intelligent

Manufacturing, capitalizing on advanced connectivity, real-time data analysis,

and cyber-physical systems. Its primary objective is establishing a fully inter-

connected and exceptionally efficient manufacturing ecosystem. Smart Manufac-

turing in Industry 4.0 integrates several elements like sensors, actuators, robotics,

data analysis, cloud computing, and the Industrial Internet of Things (IIoT) to

enable seamless information exchange and decision-making throughout the manu-

facturing value chain. This approach emphasizes continuous real-time monitoring,

analysis, and optimization of processes to improve productivity, flexibility, and en-

vironmental sustainability.

2.5 Evolution of Smart Manufacturing in Indus-

try 5.0

Industry 5.0 is a rising paradigm that aims to combine cutting-edge technologies

with human expertise within the manufacturing industry. The significance lies in
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the synergy between humans and machines, allowing them to work in tandem to

achieve increased productivity, innovation, and customization. Smart Manufac-

turing plays a pivotal role in facilitating Industry 5.0 by establishing the neces-

sary technological infrastructure to develop manufacturing systems that are more

adaptable and responsive [40], [41], [22], [42]:

2.5.1 Collaborative Robotics

Smart Manufacturing incorporates collaborative robots, commonly referred to as

cobots, which collaborate with human workers to enhance their abilities and com-

plement their skills. These cobots are capable of performing repetitive or haz-

ardous tasks, enabling humans to concentrate on intricate and innovative activi-

ties.

2.5.2 Data-Driven Decision-Making

Smart Manufacturing utilizes real-time information gathered from sensors, ma-

chinery, and interconnected devices to facilitate predictive and prescriptive ana-

lytics. This data-centric strategy enhances decision-making, optimizes production

operations, and enhances overall efficiency.

2.5.3 Adaptive Manufacturing Systems

Smart Manufacturing enables manufacturing systems to adapt quickly and seam-

lessly to changing product specifications, customer demands, and market condi-

tions. Through advanced automation, AI-based algorithms, and flexible produc-

tion technologies, smart manufacturing facilitates agile and customizable manu-

facturing processes.
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2.5.4 Digital Twins

Smart Manufacturing integrates the innovative concept of digital twins, which

serve as virtual replicas of physical products, processes, or systems. By leveraging

digital twins, manufacturers gain the ability to continuously monitor, analyze, and

optimize their operations in real time. This technological advancement contributes

to enhanced quality control, predictive maintenance capabilities, and minimized

downtime.

2.5.5 Cybersecurity

With the growing interconnectivity and data-driven nature of manufacturing sys-

tems, ensuring cybersecurity is of utmost importance. Smart Manufacturing em-

phasizes the implementation of robust cybersecurity protocols to safeguard intel-

lectual property, sensitive information, and the overall integrity of the manufac-

turing ecosystem.

2.6 Internet of Things

”Internet of Things” (IoT) is an arrangement where a hefty amount of integrated

elements communicate with each other using internet protocols [43]. The de-

vices employed in IoT are also called ”smart objects” owing to their connectivity

through the internet. Devices employed in the IoT and are not necessarily directly

operated by humans, e.g., different vehicle systems or smart devices employed in

buildings, are not directly operated but rather remotely commanded by the oper-

ator. The IoT provides a concept that extends networking to commonplace items

integrated with sensing capabilities. The computational ability of these systems,

which is not mandatory to be central, permits the remotely placed devices to

use, produce, and transfer the information without any human intervention [44].

The execution of the IoT is accomplished using various communication modes, all
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having distinct characteristics. The four widely used modes are device interact-

ing with devices, devices interacting with a gateway, devices interacting with the

cloud, and rear-end information sharing. The variation in these modes provides

users with value-added services and connectivity flexibility [45]. It means that

information transfer is sometimes direct amongst them, via a central computer

over a wired/wireless network with unique identification, or can be from the cloud

integrated with sensors. IoT devices include traditional personal computers, super-

computers, and universal devices such as smart home appliances, cellular phones,

embedded sensors, and wearable devices (smart watches, sports/health sensors),

all equipped with unique IP addresses. The connection between the devices can

be through a WiFi network or an Ethernet [46]. The type of networks commonly

used in the industry are Wireless Sensor Networks (WSNs). Their use especially

in manufacturing industry can provide information on progress of work, physical

status of products, tools and machinery, quantitative properties, information on

supply chain etc. Frequency recognition devices are commonly employed to assist

in capturing the status of above mentioned properties and ascertaining the per-

formance of manufacturing systems e.g. Radio Frequency Identification (RFID)

devices [47].

2.7 Smart Factories

It is a factory that learns from emerging requirements and then adapts itself ac-

cordingly, where a continuous stream of information comes from production and

operations in real time. These factories are further advanced from existing au-

tomated systems; their elements are wholly interconnected and have flexible pro-

cesses [48]. Information assimilation in a smart factory is system-wide collected

from humans, physical components, and control. The goal is to complete the

production process using digital technology, mainly for inventory tracking, main-

tenance monitoring, ongoing testing, or any act that happens through the process

cycle. The expected result is developing a more efficient and flexible system that
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may lower the execution cycle, adapt to internal/external situations, or even pre-

dict them to create a better position in a competitive market [49].

Figure 2.1: The Smart Factory.

As stated, the smart factory is flexible; it can self-manage the processes of the en-

tire production system. The system can adapt self-optimization and self-correction

dictated through a more extensive network in real time. While factories had a cer-

tain degree of automation in the past, the concept states that every task should

be considered a single entity with a higher degree of automation. Older machines

used linear logic to make decisions, e.g., getting started or shutting down based on

logic. Another example is the opening or closing of valves. However, when AI is

induced in CPSs, the computational ability makes complex decision-making pos-

sible, just like humans. AI is also incorporated into the automation processes to

increase optimization. On the other hand, connectivity has changed the produc-

tion processes; technology-based physical assets are now integrated through digital

entities. The two essential connectivity platforms are operations technology (OT)
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and information technology (IT). The IT/OT connections make it possible to in-

tegrate the decisions taken at the lowest task level with the production system

in a large-scale smart factory context. The change in connectivity from linear

operations to interconnected open processes also affects the supply chain networks

and impacts production through improved customer interaction with suppliers.

The new concepts changed the way corporations compete, which requires various

abilities such as integrated manufacturing systems (vertical integration), countless

operating systems (horizontally integrated systems), and comprehensive end-to-

end integration (holistic integration), ultimately improving the organization of a

complete supply chain [50]. Thus, the new concept is a step ahead of traditional

automation, which has transformed into a fully integrated and flexible system

where a continuous flow of data comes from the production and processes. These

systems operate in real-time and can adapt to unforeseen emerging situations.

2.8 Cyber-Physical System

Helen Gill of the National Science Foundation in the United States introduced

the terminology of Cyber-Physical systems in 2006. Cyber-Physical system (CPS)

includes physical and computer, and network subsystems. A typical model of a

CPS usually contains these elements; however, humans also exist in most. These

systems generally embody dynamic and static characteristics both during opera-

tion. Thus, a CPS can be described as an intelligent system consisting of physical

components and computer components (hard and soft), deeply connected while

sensing the varying conditions of the real world. The control of the processes is

done through network monitoring, and embedded computations, deployed with

feedback that affect the computations, and the computations affect the feedback

in a continuous loop.

The concept also refers to today’s popular terms Industry 4.0, Fog (comparatively

a closer Cloud), Internet of everything, IoT, Internet of industry, the TSensors

(trillion sensors), and Machine to Machine connectivity (M2M). The terminologies
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mentioned above reflect technological advancement that intertwines the informa-

tion domain with the physical domain [51]. A CPS can also be defined as the

product of a trans-disciplinary mechatronics design that integrates electronic con-

trol, software, computers, and mechanisms, as shown in Fig. 2.2.

Figure 2.2: Cyber-Physical Model.

By nature, it is complex as it involves elements at multi-dimensional and chrono-

logical levels. Examples of CPS applications include smarts system in transporta-

tion, structures, electric networks, health monitoring and recovery, precision agri-

culture, air fleet control, advanced manufacturing, etc. [1]. An excellent example

of CPS is an intelligent production line, where machines are supported by com-

munication with their dependent components. In terms of structure, all the CPS

models share four main layers: the sensors layer, the network layer, the analysis

layer, and the application layer. Generally, the layers incorporate additional secu-

rity and confidentiality mechanisms. The four-layer architecture is shown in Fig.

2.3.

Wu et al. [52] further added that in the case of the CPS, close association and co-

operation among the computational and physical components is extra significant,

shown in Fig. 2.4. The CPS connects the networked domain (i.e., information,

intelligence, and communication) with the physical domain via various sensing
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and actuating devices which may be mobile or static. From the figure, it is clear

that many problems require solutions at various architectural levels and distin-

guished design perspectives for achieving the coherence commonly observed in

mechatronics applications. Critical success factors for CPS include transverse do-

main information management, embedded and portable sensor technology, flexible

computational/storing technology, and privacy and security framework.

Figure 2.3: Four Layer Architecture of CPS.

Figure 2.4: A CPS Architecture. Adapted with permission from Yu-Chee
Tseng [52].
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From the above, the four layers are defined as:

• Physical layer - includes sensors and actuators and is employed to obtain

information. Data is gathered from the network monitoring sensors and

human activity in the workspace.

• Network layer - The vital element in this layer is a node resulting from com-

posite design integrating hardware and software. A combination of different

nodes forms a network.

• Decision layer - advanced technology, such as artificial intelligence, can be

used to obtain optimal decisions. This layer generates, memorizes, analyzes,

and processes distributed information through computations related to the

applications. In addition, it allows visualization, understanding, and inter-

pretation of data.

• Application layer – Tasks are generated to handle confronted issues that de-

pend on the information attained and analyzed, and the knowledge acquired

on similar problems from other cases. Various parameters are monitored in

this manner of interest, and appropriate decisions are taken to enhance a

CPS’s efficiency.

More recently, the CPS has emerged as a promising solution to augment human-

to-human, human-to-machine, human-to-object, and machine-to-machine interac-

tions in the physical and virtual worlds. The combination of cybernetic and phys-

ical systems now has numerous rewards over conventional embedded and control

systems. All accessible data, information, and services can be deployed and used

anytime and anywhere in the system. Today’s manufacturing industry faces sev-

eral challenges, such as the upcoming custom manufacturing requirements that

force them to move to a new Flexible manufacturing system (FMS) concept. The

questions then arise; what could be an appropriate set of methods and tools to

enable the realization of reliable adaptive production systems for dynamic man-

ufacturing processes that can be adjusted during implementation to ensure the
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high availability of these adaptive production systems? An enhanced FMS must

include network, physical, and cyber functions, ensuring maximum efficiency and

availability. This is achieved by the optimization capabilities built into the cyber,

network, and physical functions. Such capabilities are desirable in a vast range

of applications: e.g., custom manufacturing, maintenance operations, and more.

CPS embedded in production systems provide new opportunities to deliver real-

time information needed to effectively define the dynamically changing context in

these systems [53].

2.9 Cyber-Physical Production System

CPS has the huge potential to change day-to-day aspects of human needs. Con-

ceptions of self-driving cars, smart surgical applications, smart structures, smart

electric networks, smart manufacturing, and smart medical implants are quite a

few existing examples of the real-world [54]. Production Systems, which build

on recent and predictable developments in computing science (CS), information

and communication technology (ITC), and manufacturing science and technology

(MST), are an opportunity for the fourth industrial revolution and are known as

Cyber-physical production systems (CPPS) [55]. The first industrial revolution

contributed to the first mechanical loom in 1764, the second to the Ford assembly

belt in 1913, and the third to the first PLC in 1968. It is expected that CPPS can

bring about a great leap forward on par with the breakthroughs mentioned above

[2]; see Fig. 2.5.

CPPS consists of autonomous and collaborative elements connecting all production

levels, from process to machine to production network. The connectivity of the el-

ements is in a situation-dependent manner. Modeling their activity but predicting

their emerging behavior poses a wide range of fundamental and applied research

tasks without forgetting control at all tiers. The primary query is discovering the

relationships between autonomy, collaboration, response, and optimization. The

simulation and analytical methods are seen as of greater importance than ever.
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It is necessary to meet the application’s requirements in a case, developing sensor

technology, large volumes of data manipulation, information analysis and eluci-

dation, and safety and security aspects. Expectations for this new engineering

system are very high, requiring exploitation of the developing capabilities and in-

telligence in the latest emerging devices. However, success depends on collecting

information on the activities and the surroundings around the devices in which

they are submerged.

Figure 2.5: CPPS and Fourth Industrial Revolution.

CPPSs are anticipated to involve human-machine collaboration in unprecedented

means. They describe a production system involving computers and physical

systems and a place where humans and machines collaborate. While robots and

machines take on most of the work in manufacturing, medical applications, and

more, workers should always be in the work area as supervisors or for other tasks

that aren’t in the reach of the robots. Therefore, the robots and machines share

the same workspace with their human counterparts [20].
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The connectivity of the ”real” physical world with the corresponding representa-

tion of the ”virtual” cyberspace provides great potential for various applications.

In one paper, Ribeiro et al. [56] defined a CPPS as a combination of humans, pro-

duction tools, and composite products that incorporate numerous communication

interfaces. The interfaces are built according to the cyber-physical interactions

formula designed according to the manufacturing process. They exploit the in-

formation humans, machines, and products produced during the process loop and

the historical knowledge base to monitor and control the CPPS activities. This

insider awareness can be utilized at regular intervals for continuous improvement

and appraisal of the consumption of resources. Products built with cyber-physical

systems may create significance for external systems within the service-oriented

networks’ framework.

If we summarize the above, the advantage of the connectivity is additional access

to information whose analysis is valuable for further improvement of CPPS oper-

ations. CPPS elements capable of collecting and processing data, self-monitoring

specific tasks, and interacting with humans through interfaces are shown in Fig.

2.6.

Figure 2.6: Interaction between Human and Machine in a CPPS.
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2.10 Human-Robot Interaction

As stated above, implementing CPS technology in production systems leads to

CPPSs. In Fig. 2.7, it is shown that the CPPS consists of a physical component

(machines, robots, etc.) and a digital component (simulations, computations,

etc.) and their association with the human, considering the concerned domain

parameters.

Figure 2.7: CPPS and its Components Interaction with Humans.

The layout and latest technological tools enhance production, quality, and effi-

ciency. Other uses of these interactive CPPSs involving humans are supervision

and analytical upkeep. The physical and digital worlds’ connectivity depends on

information transfer between both worlds in a closed loop [57]. The human and

machine interface is called ”human-machine interaction (HMI).” The concept is

also associated with Human-Computer Interaction (HCI), which is dependent on

computer technology. On the one hand, HCI is concerned with the techniques

with which computers interface with humans; on the other, the innovative de-

sign of technology allows its implementation [58]. The field that incorporates all

the aspects of humans while interacting with robots is Human-Robot Interaction

(HRI). HRI in different fields is shown in Fig. 2.8.
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(a)

(b)

(c)

(d)

Figure 2.8: HRI in Advance Systems; (a) HRI in Surgery; (b) HRI in Manu-
facturing [63]; (c) HRI in Assisted Living, adapted with permission from Ross
Mead [64]; (d) HRI in Emergency explorations, adapted with permission from

Cindy L Bethel [65].
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Therefore, HMI is a multidiscipline area enabling human-machine interface, which

comprises the fields of HCI, robotics, humanoid robotics, AI, exoskeleton control,

and human-robot interaction (HRI) [59]. It is a dynamic engineering scheme im-

plemented through humans’ direct or indirect manipulation of machines; these

machines can be machine tools, conveyors, robots, etc. [56]. Technological devel-

opments like natural language processing, AI, and machine learning have signifi-

cantly impacted HMI in recent years. Furthermore, HMI encompasses the study

of human factors and ergonomics, considering human abilities, limitations, and

preferences in the design of machines.

Robotic systems are now an essential layer of CPPS. The robot’s intelligent in-

teraction with the world relies on embedded computing, communication, and the

ability to control and perceive the environment in real-time. Future robotic sys-

tems that will realize CPS vision include intelligent robotics in production systems,

life support systems in smart homes, surgery systems, exploration and emergency

response systems, and space exploration systems.

Karami et al. [60] envision that robots can effectively complete a joint task with

their human partners if they collaborate better. For better collaboration with the

human partner, the robot must be able to predict the partner’s intentions. The

robot can decide better for the collaborative mission using the information on the

collaborator’s intentions, providing comfort to its human counterpart.

Robin and Debra [61] devised HRI metrics under a taxonomy and classified them

into humans, robots, and systems. Many of these attributes have been inferred

from psychophysical indicators for the human type. For the robot, the HRI metrics

are: how long the robot can stay without direct supervision (Neglect tolerance),

the robot’s progress on assigned task (Plan state), awareness of own position/ori-

entation (Self-awareness), time in manual, autonomous, and unscheduled manual

operations. For the system, the metrics include five distinct sub-sections: the

participant’s coactivity and the system’s safety, reliability, efficiency, and produc-

tivity. The depiction of it can be seen in Fig. 2.9.
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Figure 2.9: Taxonomy of HRI Metrics [61].
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2.11 Human-Robot Collaboration

Human-centered systems are now considered necessary in the industry because

they improve productivity and ergonomics in complex dynamic situations. This

is why humans now perform collaborative tasks with the robots and machines in

the industry that require constant guidance. Collaboration is “cooperation with

counterparts, essentially in intellectual endeavors” [66].

A new term of Human-Machine Collaboration (HMC) arises in this context and

Human-Robot Collaboration (HRC) specifically for robots. Chandrasekaran et

al. [62] describe HRC as a measure for improved robot performance and reduced

tasks for humans. The aim is to see how machines and robots can be made more

interactive with humans for better task performance. More recently, the difference

between collaboration, coexistence, and safety involved in human-robot interaction

has been described by Villani et al. [67]. According to them, HRC no longer re-

stricts sharing physical space but spans from task to cognitive engagement. In any

engagement, safety needs assurance and accomplishment. The authors suggested

a nested hierarchy containing three stages of human and robot interface, wherein

a more significant commitment calls for functions of lower stages, as described in

Fig. 2.10.

Figure 2.10: Nested levels for HRC, Adapted with permission from Valeria
Villani [67].

Physical safety is the most inherent and important characteristic of robots working

closely with humans. The existing cobots are medium payloads generally used for
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the cellular phone and electronics industry. The main functions induced in these

cobots are collision detection and immediate hold-on detection, human employee

contact avoidance, and reduced speed on workspace violations.

Coexistence is the robot‘s quality to share the common workspace with different

entities, maximum applicable to human beings wherein human protection needs to

be continually guaranteed during coexistence. Coexistence is often referred to as

coaction; an instance of it is when a robot and a human operator are performing

collectively for the same task; however, no mutual contact or coordination of

intentions and movements is required [68].

Collaboration is the characteristic of a robot to perform a complex task in coordi-

nation and direct interaction, however, in two distinct ways. One is the physical

aspect, where there is a clear intention of contact for exchanging forces between

robots and humans [68]. By estimating or measuring these forces, robots ascertain

the intents of human counterparts and respond in turn [69, 70]. Second is con-

tactless collaboration, without physical interaction: coordinated actions directed

through connectivity and data transfer, such as by vocal commands, gestures, etc.

[71] or indirect communication, that is by perceiving intention [72] or attention

[73], for example, reading intentions through eye gaze.

Villani et al. [67] presented four collaboration schemes dictated by ISO 10218-

1/2 robotics standard: Safety-rated Monitored Stop, Hand Guiding, Speed and

Separation Monitoring, and Power & Force Limiting. The levels with respect to

safety provided by these schemes and their graphical depiction of each is shown in

Fig. 2.11.

Recently, Mukherjee et al. [74] identified various levels of HRI, which ranges

from fully programmed robotic systems to coexistence, assistance, cooperation,

collaboration, and autonomous system. Autonomous systems are the ones that

make independent decisions based on learning and intelligence, and accordingly

they take necessary actions.
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Figure 2.11: The Four Collaborative Operative Modes identified by Robot
Safety Standards. Adapted with permission from Valeria Villani [67].

2.12 Cobots in Industry

‘Cobot‘ is a short acronym for a collaborative robot that operates in conjunction

with a human counterpart. For the safety and ergonomic improvement of the

workspace, cobots are the best contenders for vigorous, non-ergonomic, repetitive,

and monotonous tasks [75]. Awkward posture, repetitive, and heavy physical work

are among the main causes of work-related musculoskeletal disorders (WMSDs);

the most common health problems affecting roughly three out of every five workers

in the EU-28. WMSDs can potentially lead to pain, functional limitations, impair-

ment, absence, as well as a significant socio-economic impact. The incidences of

WMSDs can further be aggravated due to workforce aging. Cobot assists its coun-

terpart by manipulating jobs, considering the constraints and directives defined by

the user. The directives and constraints are represented through user-defined vir-

tual interfaces [76]. Colgate and Peshkin [77] established the concept of a Cobot,
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which is primarily a programmable instruction-providing robot. The cobot recog-

nizes the virtual guide surface and positions the parts accordingly.

The significance of cobots to automated robots in the industry is that while in-

teracting with the counterpart, the former shares space and the same payload;

instead, the latter remains isolated from humans to ensure safety. Surdilovic et

al. [78] developed a new production system to bridge the gap between fully auto-

mated robots and passive handling devices. The advantage of these systems is that

they combine the qualities of both systems. These collaborative robots will help

humans instead of replacing them. Features of this new system are direct HRI,

computing power, and robot response based on detection ability, intelligence, ex-

perience, and skill. He termed them intelligent power assist devices (IPADs). A

depiction of IPADs is shown in Fig. 2.12.

From a CPS perspective, integrating humans and intelligent robots is crucial to

achieving better collaboration, cooperation, and organization to overcome complex

tasks. This HRC is at a revolutionary stage, and the robots are expected to act as

companions to humans, ascertain the behavior in real-time and react to deviations.

The continuous presence of robots and humans has brought safety issues, and the

latest cobots are designed to consider safety requirements. Khalid et al. [10]

presented a survey on the capabilities of the latest cobots, including safety.

Figure 2.12: Intelligent Power Assist Device.
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Table 2.1: Example of Collaborative Robots, adapted with permission from
Azfar Khalid [10]
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(a) (b)

(c) (d) (e)

Figure 2.13: Example of Cobots [10], (a) ABB Yumi—IRB 14000; (b) Rethink
Robotics, Sawyer; (c) Universal Robots, UR10; (d) NASA, Robonaut 2 ;(e)

KUKA, Germany, LBR iiwa 14 R820.

In Table 2.1, some examples of dexterous collaborative robots are shown that

include single or double arms with multiple degrees of freedom (DOF). It can

be seen that most of the cobots have high repeatability, depicting the ability

of these latest machines to manage complex jobs. The available cobots allow

gentle collisions with counterparts in the workspace through joints incorporating

internal force sensors. The head and arms of these cobots can accommodate

high or low-resolution machine vision cameras for monitoring. Visual markers are

included to quickly identify and track each tool the robot needs to perform its

job. All robots are programmed-compliant to be trained for a new task in the

production center. However, the maximum payload has a limitation that ranges

between small to medium, i.e., 0.5 to 14 kg. Immediate stop on impact, collision

detection, and deceleration on workspace violations are commonly implemented

technology features. There seems to be a paradigm shift in the industry and
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services concerning the role of robots, moving from conventional non-intelligent

robots to collaborative robots.

2.13 Social Human-Robot Interaction

When considering any novel technology, social and technical aspects are associ-

ated with its application in industrial practice. One of the key challenges facing

CPPS applications is designing a strategy that is safe, secure, anomalous resistant,

and resilient to a variety of rapidly changing unforeseen environments [20]. Social

science is the discipline dedicated to the learning of societies and the relations be-

tween individuals in these societies. The term was referred to earmark the ”science

of society,” the sociology field founded in the 19th century. Within society, social

interaction is a building block of that society which is an exchange of interaction

among individuals. Social interaction can be studied between social groups of two

people (dyads), three people (triads), or larger social groups. People design rules,

regulations, foundations, and systems in which they want to exist while interact-

ing with each other [79]. It is defined as ”any event in which one party has a

tangible influence on the overt actions or state of mind of the other” [80]. Gillin

[81] defined social interaction as ”the mutual or reciprocal influence leading to

behavioral change due to social contact and communication that is established by

alternating stimulus and response.” Therefore, it is an interdependent and recip-

rocal activity. As stated earlier, people design rules for interaction with others,

and social standards are accepted guidelines of conduct tolerable within a cluster

or society; they ensure order and predictability in society. Social norms can also

be changed or modified over time. We can say that social interactions comprise all

physical and psychological aspects. One of these social interactions’ prime facets

and requirements is safety, including physical and psychological safety. For ex-

ample, in a scuffle, a person involved in it feels safe from another until he is out

of the range of the other person’s limbs: this is physical protection, and until one

feels secure from other words or facial expressions: psychological protection. The
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safety hazard not only includes a current activity but a potential threat that is

also attributable to psychological issues, e.g., anxiety.

Conventionally, robots were used with nominal sensors and intelligence capabilities

in the industry. The tasks assigned to them were usually repetitive [82]. However,

recent developments in the industry have spawned a wide range of robots. The

up-gradations are common in services [83, 84], exploration and rescue [85, 86], and

therapy operations [87, 88]. The advent of human and robot interaction in the

aforementioned fields has given rise to the specialized area of HRI [89]. The field

of HRI is now transforming into social HRI and is of particular importance. The

interactions in this field include cognitive, social, and emotional activities with

the robots. [90]. Since these interactions occur continuously during collaborative

human and robot tasks, they place intense demands on collaborators’ personal and

environmental safety. In addition to physical contact, the control system of the

human-robot collaboration system must cater uncertainties and ensure stability.

Nass et al. [91] observed that the social factors which govern human-to-human

interaction also apply to human-computer interaction. This particular knowledge

necessitates robots to accustom themselves to a range of populace, and several

human requirements and behaviors. Moreover, as the concept of social interaction

in HRC matures, robots are now designed to be aware of social norms commonly

known as Social cobots. The outcome of this addition is further synchronization of

the collaborative tasks, thereby increase in the overall efficiency of the process [92].

A social robot is a self-governed robot which obey social norms while interacting

with humans and other physical entities in the workspace [93]. In a broader sense, a

society in a CPPS can be said to consist of social human and non-human members

who contribute to the system’s structure, connotation or dynamism in number of

ways. Robotics design in the social domain is especially difficult because the

robot has to accurately interpret human actions and react appropriately. Robots

in the social domain must attain a common understanding of communication using

conversational gestures, similar to the ones humans are capable of, like eye contact,

finger pointing, and hand and face gestures.
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Lemaignan et al. [9] emphasized the architecture of the decision layer of social

robots. The work was an endeavor to characterize the issues faced and present

a series of critical decision problems that must be solved for cognitive robots to

share space and tasks with humans successfully. The authors identified essen-

tial personal, collaborative, and cognitive skills, which were logical reasoning and

perception-based situational assessment, affordability analysis, representation and

acquisition of knowledge-based models for multiple actors (humans and robots

with their specific characteristics), multimodal dialogue, human conscious mis-

sion planning, and HRC task planning. Görür et al. [92] suggested a robotic

decision-making mechanism that predicts the human state of mind and responds

accordingly in an HRC task. The robot intervenes and helps the operator when

required. The primary aim of the robot is to accurately and non-intrusively esti-

mate when to intervene and when to help. The robot was designed to intervene

and assist by estimating the operator’s states (e.g., inattention, fatigue); however,

when available for the task, the operator notifies the robot to leave the task.

De Jong et al. [94] improved the perception, behavioral robustness, and interactive

social robots’ ability by incorporating a state-of-the-art visual and speech recogni-

tion system. They presented a multimodal approach to enhance social interaction

between robots and humans by integrating inputs from vision, gestures, voice,

and control devices (onboard tablets, mobile remotes, and external microphones).

Khoramshahi et al. [95] proposed a mechanism that adjusts generated movements

to match the required (i.e., desired speed) with those intended by the operator

(i.e., actual speed), thus moving along to accomplish the same task. They pro-

vided a rigorous analytical review of their method for stability, convergence, and

optimality, thereby generating safe and intuitive interactive behavior for humans.

Galin et al. [96] proposed an indexing technique for collaborative interaction be-

tween humans and robots. This index, combined with AI, will help to review

the effectiveness of HRI. Organizing the effective interaction between humans and

robots will achieve high economic efficiency and improve the quality of the pro-

duction process.
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One of the leading roles of social robots is to understand and manipulate prox-

emics using natural communicative gestures within the framework of the social

domain. Behaviors in proxemics are governed by sociocultural norms that govern

the sensory experience of each participant [97, 98]. It is necessary to understand

how social cues (speech and gestures) are generated and perceived by humans so

that cobots can perceive and use them similarly. Schegloff [99] suggested the ma-

jor usable cues: separation distance, the orientation of the hips and shoulders,

head posture, stance, and eye gaze. These gestures can be used to show interest

in starting, accepting, maintaining, ending, or avoiding social interactions. Mead

et al. [64] identified three types of feature representations for HRI commonly used

by computer models of proxemics:

• physical, dependent on collaborators’ separation and positioning;

• psychological, dependent on the collaborators’ affiliation; and

• psychophysiological, dependent on the sensing through social cues

The physical depictions of proxemics are related to the occupation of space by two

or more objects, connecting them through orientation and separation. Proxemics’

psychological manifestations involve interactive relationships amongst different en-

tities. There is little research linking the physical and psychological manifestations

of proxemics. Mead et al. [100] suggested the application of psychophysiological

representation for proxemics activities to model the agent’s state in the environ-

ment. It would involve linking physical and psychological manifestations, and

the agent’s representation in inter-agent interaction and the environment. Psy-

chophysiological manifestations are now thought to affect the perception of the

interaction between multiple agents and the social stimuli produced by them. In a

nutshell, psychophysiological representations are the ones that associate the sen-

sual involvement of social cues (voice, posture, gestures, etc.) with physical bounds

(location, positioning, etc.). In other words, man’s perception of sound, smell, or

sight tells him how far away the object is.
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Mead et al. [64] presented a computational framework for psychophysiological

proxemics in autonomous systems that control social robots. A proxemics trajec-

tory planner evaluating ”interaction potential” on a cost basis and a responsive

controller were deployed at each pose and time along a path. The aim was to

maximize the potential alongside the path conversant of the objective’s pose.

Figure 2.14: The psychophysical representation of proxemics. Adapted with
permission from Ross Mead [100].

Koay et al. [101] presented the proposal, application, and experimental validation

of the proxemics planner that relies on situational awareness intending to increase

the social interaction of robots by adjusting their distance and the pose with the

target. It tells the operator about the interactive distance based on sensory data

obtained from the operator, the robot, and the task. The case presented was; the

operator may stipulate that the robot may or may not be present at a particular

location while he is doing some activity or while he is at some location like watching

TV (activity) or in the kitchen (location).

Social intelligence in the history of AI and robotics appeared relatively recently.

However, it is becoming evident that social and interaction abilities are essential in

any context where human-to-human interaction or HRI is possible. The Human-

Robot Collaboration (HRC) currently demands a lot in terms of the peculiarity

of interactions among the elements and the behavior posed by them. The com-

plex dynamic environment coupled with uncertainty, anomaly, and threats raises
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questions about the safety and security of the CPPS in which HRC is involved.

Interactions in the social sphere include both physical and psychological safety

issues. An integrated approach that integrates AI and the knowledge domain is

needed to solve all problems collectively.

2.14 Conclusion

This chapter reviewed the latest concepts in the ambit of Industry 4.0, an emerging

trend for the automation of production systems using real-time communication.

The Internet of things (IoT) is the best mode of communication due to its ac-

cess to a range of devices, whether sensors, actuators, or control systems. The

chapter then highlighted the importance of smart systems in this domain, which

are autonomous and flexible systems that use IoT and AI. Cyber-Physical Sys-

tems (CPS) are highlighted to be an essential ingredient of these smart systems,

which incorporate the physical, computational, and networking elements. The lit-

erature review highlighted that the inclusion of CPS in the industry 4.0 domain

has emerged as a novel Cyber-Physical Production System (CPPS) concept. The

CPPS is the main essence of Industry 4.0 which encompasses manufacturing sci-

ence and technology (MST) in addition to physical, computational, and network

layers. It was observed that the latest CPS now includes human elements as there

is still no substitute for their intelligence and supervision capabilities. These sys-

tems are termed Anthropocentric Cyber-Physical Production Systems (ACPPS).

Due to the integration of human systems, the latest systems are now facing the

challenges of Human Machine Interaction (HMI). Robots are an essential element

of CPPSs, and the focus of the latest research has now shifted to Human-Robot

Interaction (HRI). Due to the participation of robots and humans in collective

tasks to achieve a common end-state goal, the concept has changed to collabo-

ration rather than interaction. The term Human-Robot Collaboration (HRC) is

the talk of the town. The latest robots are now designed to work with humans to

perform collaborative tasks and are known as Cobots. Humans being social ani-

mals, feel comfortable when social norms are being followed during human-human
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interactions. Research has shown that the same is equally suitable for HRI and

has increased the productivity and efficiency of systems. Robots are now being

designed as social elements of CPPSs and must adhere and adapt to the social

rules by getting firsthand information through social communication skills.

We may summarize the requirements of a smart robotic factory ascertained from

the literature. In that case, we can say that high productivity and flexibility

are essential to operate in the context of Industry 4.0, and to accomplish this,

robots may take on most of the work. Still, human workers must stay on the

shop floor as supervisors or for tasks out of reach of the robots. The continuous

presence of humans near the intelligent robots in the confined workspace also

changes the level of safety. The usual approach is to have human exposure with

the robot within a limited range and with proper safety controls resulting in a

complete shutdown (safekeeping) in the event of a worker encroachment in the

robot workspace. It causes disruption and resets processes, reducing productivity.

The approach of the future is to deploy CPPS where humans and robots safely

co-exist and collaborate. Collaborative robotics technology is developing rapidly;

however, research has oriented itself to HRI in the social domain. Robots, now

part of the social systems, are equally affected by social safety issues, including

physical and psychological problems.



Chapter 3

Safety in Collaborative Robotic

CPS

Direct deployment of the robots in fully shared workspaces increases the possi-

bility of accidents. The large amount of impact force created during an accident

can create minor, moderate, and major injuries to the human worker in case of

robot failure. A list of reported accidents includes fatality and non-fatality cases

in developed countries such as China, Japan, the United States, and Germany,

where robot use is widespread in the industry [102]. The nonfatal cases observed

include injury and pain using complete safety protocols and isolated work envi-

ronments. Environmental conditions, human error, and engineering error might

be the reason for the accidents during HRI. Jiang et al. [103] reported thirty-two

fatal and non-fatal accidents that happened due to maintenance and programming

errors. Charpentier et al. [104] reported thirty-one cases in which workers were

injured because of operator errors and maintenance errors, whereas eight were fa-

tal injuries. Therefore, in the future factory, safety will be an intrinsic part of the

Collaborative Robotic Cyber-Physical Systems [105]. Safe HRC can be classified

into two categories: the first and most apparent is physical safety. Maintenance of

physically safe HRC requires avoidance of unwanted contact between humans and

robots. The second, however often overlooked, is psychological safety, ensuring

HRC, which does not cause undue stress and discomfort.

48
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3.1 Physical Safety in Collaborative Tasks

With the numerous abilities of CPS to exhibit systematic guidance in a coupled en-

vironment and the reality that human-robotic collaborative structures must deal

with and satisfy industrial safety necessities, there is a specific need to develop

safety systems for such CPPSs. Azfar et al. [10] introduced two distinct concepts

of safety and security, which are interrelated and fall within the physical safety

scope of collaborative tasks. Security protects the system from humans acting

as invaders, and safety physically protects humans from the system, such as con-

tact avoidance. The author further makes it clear that security also incorporates

avoidance of cyber-issues despite the physical dangers. However, these terms are

considered a collective requirement for the CPS and are not differentiated in this

thesis. Safety is a vital requirement in the design of systems, machine tools, and

products, especially in collaborative environments where humans and robots work

together. Accordingly, new methodologies and instrumental support are needed to

develop human-robot collaborative safety schemes for industrial tasks [105]. Tra-

ditional working strategies do not permit safety measures due to dynamic changes

as they lack the capability to react intelligently to adaptive processes. Hence, most

of the existing safety systems that separate workers from machines (e.g., through

safety barriers) are inadequate to enable effective HRC [68].

Figure 3.1: Evolution of Safe Human Robot Collaboration. Adapted with
permission from Azfar Khalid [6].
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The CPPS working environment must adapt to work conditions and situations in

real-time. Contextual systems are on the rise to provide integrated, active, and

pervasive human protection, leading to novel and improved ways of interacting

and collaborating.

Collision avoidance is a common solution to provide physical safety, including

avoiding unwanted contact with people or environmental obstacles. It is one of

the largely studied fields in robotics, and plenty of designing and control strategies

have been suggested [106]. These techniques depend on the measurement of the

distance in-between the robot and the obstacle [17, 107]. Motion planning tech-

niques are one of the key strategies to estimate the collision-free trajectories like

configuration × time-space method [108], collision-free vertices [109, 110], repre-

sentation of objects as spheres, and exploring collision-free path [111], potential

field method [112], and virtual spring and damping methods [113]. Unfortunately,

collision avoidance can fail because of the sensors and robotic movement limita-

tions, as sometimes human actions are quicker than robotic actions. However, it

is nevertheless feasible to sense the bodily collision and counteract it [114–116],

which allows eradicating the robot from the contact area. In such circumstances,

robots can use variable stiffness actuation [117, 118] while effectively controlled

[119, 120], and light-weight robots with compliant joints [121] may be used to

lessen the impact forces on the contact. Lately, a multi-layered neural network

method involving dynamics of the manipulator joints (measurement of torque

through sensors and intrinsic joint positions through kinematics) has been used

[122] to discover the location of the collision on the robot (collided link).

While accidents due to sudden contact between humans and robots may be re-

stricted by designing lightweight/compliant mechanical manipulators [119] and

collision detection/response strategies [116], collision avoidance in complex, un-

predictable, and dynamic environments mainly depends on the employment of

exteroceptive sensors. A real-time collision avoidance technique consists basically

of 3 parts: (1) Perception, (2) Collision avoidance, and (3) Response. Perception

is related to the environment, collision avoidance is mainly incorporated through
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algorithms, and the robot generates a response. These strategies generate param-

eterized collision-free paths using trajectory calculations, and as the perception

of the environment is modified through sensors, the trajectory parameters are

updated at runtime.

Green et al. [66] highlighted two essential components of an active HRC-based

system. First, adjustable autonomy is a crucial part of an effective collaboration

that allows changing the degree of autonomy of the robotic system, which in-

creases productivity. Second, awareness of situations or knowledge of happenings

in the workspace is necessary for collaboration. The members must know what

is happening in the working space of robots to evade collision or accidents with

the robots. Researchers have proposed that mutual understanding is necessary

for robots to partner with humans effectively, i.e., the interaction must be mean-

ingful. The effectiveness of collaboration relies on awareness of collaborators and

environmental activities, intelligence to predict and control these activities, and

mental states to which humans may have contributed to the task. An HRC system

must benefit from adjustable autonomy and interfaces that allow the robots to op-

erate self-sufficiently and request help from their partner in case a problem arises.

Azfar et al. [10] recognized that traditional robots couldn’t be replaced with new

collaborative robots in the industry due to the massive economic fee involved.

However, existing can be transformed into intelligent for more collaborative tasks

by converting their surroundings through setting sensors across them and sensing

the human employee’s activities. Communication signals significantly improve the

performance in collaborative tasks; they must be deployed to detect the center of

attention. An essential component of the collaborative model is grounding, which

can be achieved through meaningful dialogue and interaction.

3.1.1 Sensing and Interfaces

Regardless of the approaches used to program the robot, sensors are frequently

applied to improve the operator’s interaction with the robot. Indeed, in addition

to the aspects related to safety functions, the use of additional sensing techniques
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has been seen to make the human-to-robot interaction just like a human-to-human

interaction, which in turn supplements the human capabilities because of favorable

interaction. The aforementioned eases the burden of communicating with the

robots; thus, people with no prior HRI knowledge or experience can easily and

effectively interact with the robots. The ultimate aim is to program and control

a robot through high-level behaviors abstracted from the robot language ensuring

effective collaboration [67]. It may be done by keeping in mind socially interactive

modes, like eye tracking, voice and speech recognition, gestures, facial expressions,

and haptic technology, further to the conventional ones like a mouse, keyboard,

touchpad, monitor, and touchscreen.

It is worth noting that in a few applications combination of these interactive modes

is used, and in some, they are integrated with augmented reality. Vision and voice

sensing structures are usually applied more in collaborative tasks.

Voice guidance is useful when hand-free interaction is required, e.g., when the

operator’s hands are not free or when the standard interaction system cannot

be adapted to the situation, as in the case of interaction with a mobile service

robot. The main advantage of voice communication is that it does not restrict

the operator’s mobility, and the operator can concentrate on their task without

taking their eyes off it. However, industrial scenarios use rare voice recognition

and language processing systems. Indeed, the poor popularity of voice control

systems in the industrial environment is due to the lack of reliable solutions and

the fact that any recognition error in this context will have a negative impact. Sig-

nificant side effects are in production, efficacy, and safety [67]. Generally, when

considering the use of voice interfaces, two main aspects need to be addressed:

speech recognition, which involves word recognition or phoneme, and language

processing, which includes sentence construction and semantic analysis. These

approaches are typically based on elementary voice commands. Many researchers

deal with voice control of assistive and mobile robots [123]. The ultimate goal

is to establish two-way communication that allows the robot to understand and

generate natural language. Pires [124] used a voice interface to control robotic
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production cells. He used the speech recognition interface for two particular in-

dustry illustrative examples, pick & place and welding. The strategy was intended

to clarify the potential interest of these HMIs for industrial applications. Simi-

larly, remote web-based voice control for robotic cells was proposed by [125] that

was based on near natural language strategy. A combination of automatic speech

recognition and remote web-based control of robotic cells attained this goal. Voice

commands were used [126] in conjunction with pointing commands. Recognized

voice commands activate the visual module that captures what the user pointed

at.

Visual sensing is one of the best adoptions today for incorporating sensor-based

collision avoidance strategies into robotics control systems. In addition, developing

cheap sensor technology, such as low-cost machine vision cameras, depth sensors,

etc., meets many requirements and provides economic and potent sensor systems.

Typically, vision systems are used to recognize objects/environments, make ges-

tures and detect human facial expressions. In a nutshell, we can say they are used

to identify the demonstrator’s actions and then transfer the decisions based on

these actions to the robot for the response. Sometimes, the recognized scene is

shown to the human operator in terms of appropriate visual feedback to make the

operator aware of the situation. Numerous works exist focusing on localization

and recognition of the humans and the objects around the robot using machine

vision technology. Dondrup et al. [127] used human-aware navigation for safe

human-robot interaction by detecting and tracking humans through Red Green

Blue-Depth (RGBD) cameras and lasers. Flacco et al. [17] used a fast sensing

method based on spatial depth to assess the distance between a robot and conceiv-

ably moving obstacles (including humans). The robotic arm reacts instantly to

human movements and other dynamic obstacles identified in the depth space, thus

avoiding collisions. Morato et al. [16] have established a mechanism for evaluating

the separation between humans and robots in 3D Euclidean space, which can be

used to generate safe movements for robots. To this end, an N-Kinect system

has been developed to construct an unambiguous model of spheres representing

human body parts. A simulation was used to evaluate the interference between



Safety in Collaborative Robotic CPS 54

humans and robots in the field. Sharma et al. [18] used a random decision forest

(RDF) classifier with a conditional random field (CRF) to label the pixel-based

class for real-world scenes. The aim was to segment real-world objects and pre-

emptive motion planning for safe human-robot collaboration (SHRC). Bogun et

al. [128] identified objects using 2D cameras and algorithms based on machine

learning. The authors used the Washington Scene Dataset and achieved a high

success rate (up to 82%). A comparable system using object detection developed

by Google achieved an 83% success rate [129]. Safeea and Pedro [107] used a

laser distance finder and inertial measurement unit (IMU) to detect human-robot

collisions in a human-robot interaction application. Humans and robots were rep-

resented by capsules, which allowed authors to calculate the minimum distance

between humans and robots in the workspace. A recent review by Junming et

al. [130] focused on gathering holistic vision-based information of objects, humans

and environment in a scene for better HRC. Choi et al. [131] used a mixed real-

ity system integrating deep learning and digital twin to measure safety distance

between the operator and the robot for ensuring safe HRC. Similarly, in another

paper Choi et al. [132] descried that how an extended reality approach can be

used for safe HRC. Rodrigue et al. [133] used deep learning segmentation meth-

ods for collision detection and to check whether the operator is wearing personal

protective equipment (PPE) or not. Secil et al. [134] used a skeletal tracking

algorithm on the capsules used by [107] for measuring their orientation, this was

then used for measuring the minimum distance between human and robot for safe

HRC. Karagiannis et al. [135] divided the space around the robot into different

security zones using vision-based monitoring for collision avoidance and adaptive

robot’s speed. Yi et al. [136] proposed a digital twin for collision avoidance using

depth camera-based human skeleton recognition.

Collectively, the performance of these visual techniques requires deliberate cali-

bration procedures, complex algorithms, and line-of-sight conditions. However,

the main strength of vision-based techniques is that they do not require any en-

vironmental alteration. Moreover, low-cost devices and open-source algorithms

have made it easy to apply these techniques to desired strategies. In addition
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to the above-mentioned voice and visual sensing techniques, several physiological

monitoring systems were proposed by researchers that extract the operator’s infor-

mation on response to robot movement or behavior. These physiological indicators

include skin electrical conductivity, heart rate, pupil dilation, and brain & muscle

nerve cell activity.

(a) (b)

Figure 3.2: Vision based applications for Safety; (a) Tracking of Humans
for safe HRI [127], adapted with permission from Marc Hanheide; (b) Collision
avoidance using depth space, adapted with permission from Alessandro De Luca

[17].

3.2 Psychological Safety in Collaborative Tasks

From the perspective of HRI, psychological safety means ensuring interactions that

do not cause undue stress and discomfort in the long run. For example, a robot

capable of moving a sharp end-effector device at very high speeds within a few

inches of the operator’s arm may cause extreme stress to the operator. Although

the system may prevent unwanted contact injuries, a person working with such a

system is likely to experience a constant state of discomfort and stress, which can

affect the health of the operator long term. Papetti et al. [75] identified ergonomics

as one of the major pillars for the design of human-oriented safe HRC systems.

Therefore, methods of ensuring both physical and psychological safety must be

developed and designed to meet the safety requirements of collaborative CPS [7].

A robot that can sense worker fatigue with whom it works in the workshop will

be able to take the essential safeguards to avoid accidents [137]. Recent advances
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in robotics and sensors have spawned many robots and their applications. Robots

are now found to be increasingly used with humans in the service industry, search

and rescue operations, and therapeutic applications. These applications require

researchers to build machines that identify, model, communicate, express, and

respond to emotional information, also known as ‘‘affective computing.’’ Under-

standing emotional cues in human communication are essential to comprehend

and interpreting emotional information. Accordingly, the robot must respond by

perceiving the emotional levels of the operator. Picard [138] states that “emotions

play an important role in shaping, learning, and deciding a variety of cognitive

functions.” Research in affective computing pioneered by Picard exploits this rela-

tionship to assess human affective states [139]. In psychology, affect refers to the

fundamental knowledge of feeling, emotion, or mood. In affective computing, we

look at the emotional features that are connected to human expressions. In the

case of machines, their expressions are separate from feelings; they can ignore the

presence of emotions pretty well. Machines that would have emotions are the con-

cerns of affective computing for psychological safety. However, with a machine, it

is simple to assess how expression does now no longer infer the underlying feeling

[140]. Consequently, endowing robots with a degree of emotional intelligence will

allow HRI to be more meaningful and natural. Moreover, in addition to normal

operations such as detecting obstacles or following walls, the robot, based on emo-

tional inputs, must perform actions related to approaching closer or exchanging

dialogue with humans [62]. An illustration of it was demonstrated earlier in a

human-computer integration where biosensors were mounted on the operator, and

physiological signals such as anxiety were measured in real-time and transmitted

to the robot [137]. Latent operator states such as frustration, fatigue, anxiety, and

commitment were incorporated. Therefore, a robot that can sense these internal

psychological states can immediately take purposeful action to help the operator.

Fig. 3.3 shows the affective-sensing-based HRI architecture. The physiological

cues of a person participating in a collaborative task were recorded. The related

cues were then analyzed to determine the person’s emotional state. The controller

used the associated affective information and other environmental data to decide
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on the subsequent course of action. The controller then command the robot to

perform the desired actions. In fact, the human work is also affected and influ-

enced by the robot operation and the cycle must be renewed. It was noted that

physiological responses are often spontaneous such as facial expressions or tone of

voice and have less reliance on culture, gender, and age.

Figure 3.3: Psychological Interaction Framework for HRI, adapted with per-
mission from Nilanjan Sarkar [137].

In another paper, biofeedback sensors were placed by [139] to calculate a person’s

affective state. The experimental setup is shown in Fig. 3.4.

Figure 3.4: Physiological Monitoring of Human Operator, adapted with per-
mission from Nilanjan Sarkar [139].
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3.2.1 Sensing and Interfaces

Several methods, such as voice intonation, gestures, facial expressions, and pos-

ture, can be used to determine the underlying emotions of a person interacting with

the robot. Physiology is another effective and promising way to assess a person’s

emotional state. It is related to biological signals such as heart activity, muscle

tension, blood pressure, skin conductivity, etc. Psychophysiology is the branch

of psychology concerned with the physiological basis of psychological processes.

In psychophysiology, emotions and physiology are closely related and affect each

other, hence have an excellent potential for affective computing. Sarkar [141] pro-

posed using multiple physiological cues to estimate the emotional state of humans

for subsequent modification of robot actions to make the user more comfortable.

Kulic and Croft [142] showed that measurement of cardiac activity, skin conduc-

tivity, and eye muscle activity in conjunction with fuzzy inference tools could be

used to estimate physiological states. The physiological conditions can be anxiety,

calm, and surprise to further monitor human response and subsequently change

the robot’s trajectory in real time for safe HRI. A similar set of physiological cues

and inference tools have been used in [143] for intention estimation and [144] for

anxiety perception to provide safe HRI in the industry. Instead of examining sud-

den changes in physiological cues, a hidden Markov model detector (HMM) based

on gradual physiological changes has been proposed by Kulic and Croft [145] for

HRI. The authors have demonstrated that the HMM approach gives better results

than the previous technique that used fuzzy inference tools. Various psychophysio-

logical sensing techniques, skin conductance response (SCR), blood-volume pulse,

electronic cardiograph (ECG), and abdominal and thoracic respiration were used

to measure the emotional state of the participants on robots actions who were

performing search and rescue operations [146, 147]. The robots performed differ-

ently when in emotive mode; they approached slower, lower to the ground, and

focused on the ”victim” to show caution, care, and concern. A novel framework

for HRI is proposed in [148], wherein a robot seamlessly adjusts its behavior based

on the physiological monitoring of humans. Physiological processing combined

with machine learning was used to model the affective state for an adaptive HRI.
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The robot-based basketball (RBB) mission, an HRI mission, was designed as an

experiment. The authors have shown that the robot can detect human psycholog-

ical states such as anxiety and joy in real-time through psychophysical feedback

and respond appropriately during an interactive task. The transition from one

emotional state to another, such as from an anxious state to a relaxed state, is ac-

companied by dynamic changes in the indicators of the autonomic nervous system

(ANS).

3.3 Combined Safety Systems in Collaborative

Tasks

Lasota et al. [7] have introduced a distinct concept of combining physical and

psychological safety for safe human-robot interaction. They presented a safe real-

time system capable of allowing safe human-robot interaction at low separation

distances without needing to modify or replace anything in the robot’s hardware.

By knowing the position of the robot and the human in the workspace, it is

possible to precisely adjust the robot’s speed using real-time separation distance

measurements. This will help prevent collisions in a way that is comfortable for

the operator. The authors developed a low latency, real-time protection gadget

to transform an existing industrial robot into a safe human-robot platform. The

system now guarantees the physical and psychological (comfort) protection of the

human collaborator without the need for specialized actuators or hardware addi-

tions. The developed system permitted HRI at a separation distance of as little as

6 cm. They had proven that in the context of psychological safety, only collision

avoidance is not enough to preserve human comfort for safe HRI. Furthermore,

it’s been highlighted that numerous parameters, consisting of end-effector speed,

separation distance, and advanced intimation of robotic motion, have a substan-

tial impact on the psychological pressure of human operators, although there may

be no contact between humans and robots. A virtual environment was used to

calculate the separation distance between the operator and the robot. As soon
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as the configuration of the human operator and the robot is refreshed inside the

virtual field, the distance of separation between both is estimated and commu-

nicated to the central program, which calculates the speed for adjustment and

updates the controller. The experimental and the virtual setup is shown in Fig.

3.5. In another paper, Lasota et al. [15] showed via quantitative metrics of the

same experiment that human-conscious motion planning leads to more effective

HRC.

Figure 3.5: Concept Encompassing both Physical and Psychological Safety,
adapted with permission from Julie A Shah [15].

Dragan et al. [19] described that psychological safety is ensured by legibility; the

operator feels more comfortable if he can judge the robot’s target by its intended

motion. The legibility further ensures physical safety as the intent of the robot’s

motion is known to the operator. The authors analyzed the advantage of robot

motion planning, which allows collaborators’ inferences for the success of a phys-

ical collaboration. An experimental setup has been designed in which the robot

and the operator had to prepare tea orders in collaboration. The robot grabs the

cup in line, and the operator collects the corresponding ingredients. Three types
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of robot movements were compared in the paper based on human comfort criteria.

The three types presented are functional motion, predictable motion, and legible

motion. The main comparison was made between predictable motion and legi-

ble motion since both are functional motion types. Legible motions were given

preference over predictable motions. The work, as a whole, supported the legible

motion and its employment in collaborative tasks, signifying that collaborators

had ease while coordinating with the robot. Functional motion is when the robot

approaches the target avoiding collisions but inefficiently. A predictable move-

ment corresponds to the collaborators’ expectations, given that the goal is known

in advance. A Legible motion is a readable movement in which the operator infers

the robot’s target continuously from its current motion. In the paper, the con-

cept of legibility proposed by the authors says that knowledge about an upcoming

task improves comfort and safety; they demonstrated in the experiment that the

operator could easily infer the robot’s target due to its intended motion, making

her more comfortable and safe in the collaborative tasks. While in a predictable

motion, the target is known prior to the robot’s movement, the operator still feels

uncomfortable due to the initial trajectory of the robot. The experimental setup

and the virtual representation of robot carrying task using the three types of mo-

tions are shown in Fig. 3.6. The concept of legibility outlined above was only

applied to the robot’s motion; there is a need to design a system that may ensure

the legibility of all processes involved in a CPPS.

Figure 3.6: Functional motion is deceptive; Predictable is efficient but am-
biguous; Legible motion makes intent more clear. Adapted with permission

from Anca Dragan [19].
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Recently, Chadalavada et al. [149] evaluated two-way communication for robot and

human navigation purposes. The study focuses on an industrial logistics applica-

tion wherein people interact with automated forklifts. The authors demonstrated

how a robot could show its intentions using spatial augmented reality (SAR) so

that humans can visually understand the robot’s navigational intent and feel safe

next to it. To determine the human intent, the authors analyzed the human oper-

ator trajectories and viewing patterns when interacting with automated forklifts.

They analyzed that people who are mostly looking at the particular side of the

robot ultimately decide to move on. On analysis of recorded trajectories, they

discovered that a mobile robot that projects its intentions (as in the case robot’s

intentions were projected onto the floor) encourages humans to proactively choose

safer paths and reduce shortest distances during interactions. The concept and

the setup is shown in Fig. 3.7.

(a) (b) (c)

Figure 3.7: Two way Communication for Intent Determination; (a) Implicit
Intention Transference Concept; (b) Human’s Intentions; (c) Robot’s Intentions.

Adapted with permission from Ravi Chadalavada [149].

A latest paper by Hanna et al. [150] gave a new concept of deliberate safety,

which proposes that a HRC based system must be able to switch between different

safety measures spanning from rigid parameter safety to close interactive safeties

like active and planned safety measures. The switching would depend on the

requirement of flexibility and efficiency.
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3.4 Conclusion

The literature review highlighted that the HRI in collaborative tasks poses many

safety challenges. These safety issues can be subdivided into two domains which

are physical and psychological safety issues. Extensive research is underway to ad-

dress the physical safety issues that mostly include contact and collision strategies

in the realm of collaboration and co-existence. However, there is rare research on

psychological safety issues in collaborative tasks that mostly relies on proxemics

and is limited to human operators’ psychological aspects. A recent literature sur-

vey by [151] has also confirmed this fact. It is also noted that in the related works,

part of the robot’s cognitive abilities constitutes their capacity to understand the

impact of their presence on the human’s companions and regulate their behavior

and reaction respectively. Psychophysiological systems are being incorporated to

bridge the gap between physical and psychological systems. This requires knowl-

edge of social senses in addition to estimates taken from physical parameters.

Here we are ignorant of a crucial aspect; while talking about the issues in the

social domain, the researchers only focus on the issues pertinent to human beings.

As industry 4.0 recommends using intelligent robots, the concept of comfort to

human users is equally pertinent to intelligent robots, i.e., physical and psycholog-

ical safety. However, being the contributors to the common end state, the safety

issues must not be limited to humans and robots; rather, the complete system

is vulnerable and has to be intelligent to address the social safety issues. Let us

consider an intelligent system working for the desired end state, which, if unable

to achieve it due to uncertainties, may face psychological stress if we relate it to

humans. On the other hand, the uncertainties may encompass physical safety is-

sues, meaning the stress can be due to any physical or psychological issue. In this

work, intelligent systems are meant as ‘ACPPS,’ which incorporates all physical,

computational, and human elements. Our research focuses on addressing both

physical and psychological issues faced by CPPS. This can be done by increasing

the flexibility in the system; first, get aware of uncertainties in the task, then ana-

lyze, decide and perform corrective actions. As evident from the literature review,
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despite some literature on proxemics, there is a lack of an integrated approach

that addresses both the physical and psychological safety issues of a collabora-

tive CPPS. Therefore, a connective framework should encompass the detection,

assessment, decision-making, and countermeasures of social safety issues. In other

words, we can say that a CPPS has to be flexible enough that it may handle the

braved uncertainties in a way to achieve the desired end state optimally.



Chapter 4

Anxiety of Cyber-Physical

Systems

4.1 Anxiety in Human Beings

The natural reaction of human beings to stress is anxiety. It can be said it is

the sense of worry or apprehension of what will emanate. The central task of the

overall system in the brain is to relate, real with anticipated stimuli, and then

operate in two roles. If the real situation is in accordance with the anticipated

stimuli, the brain operates in a “checking” role. In this case, behavioral control of

the body remains with the dormant portion of the brain. However, if the situation

is aversive, i.e., there is a mismatch between the real and the anticipated, the

brain operates in a “control” role. The brain, in this case, takes direct control of

the behavior. In this mode, there will be two courses of action. The first one is

the instant hang-up of any running motor program. Second, the motor program is

marked with the label “faulty,” which must be inspected for the mismatch. This

emanates two more concerns, (a) The detected program may be performed with

larger restrictions in the future (slower, intermittent, quickly disregarded, etc.),

(b) The labeled program is dealt with more caution whenever it occurs in the

65
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impending times, the brain will exercise its task with particular care; matching

real with anticipated.

It is assumed that the brain subjects each situation to an examination that spawns

over various parameters (e.g., brightness, hue, position, size, and relation to other

stimuli). The relationship between the subject’s response and behavior outcomes

can similarly be exposed to this type of multidimensional evaluation. In addition,

the brain also recruits explicit probing and investigation to draw deductions, which

gave rise to the mismatch. Among the probes, the brain explores for a specific

class that predicts disorder, i.e., situations linked with punishment, no reward,

or failure. Moreover, it is presumed that the brain identifies certain situations as

important and requires careful investigation [152]. Different classes of mismatch-

es/anxiety disorders are identified in medical science [153], [154], [155], [156], [157].

The broader categories are:

• General Anxiety Disorder is a day-to-day routine situation for which

refined solutions exist.

• Panic Disorder is a situation to which the affected person is not accus-

tomed and has a serious impact on the affected person, being instantaneous.

• Obsessive-Compulsive Disorder is a repetitive thought that leads to

ritual, and due to this disorder, a false alarm is generated.

• Post-traumatic Stress Disorder is a serious incident of the past that

causes disorder, and the affected person remains under constant stress that

it may occur again.

• Specific-Phobia/Agoraphobia is a specific situation that is critical but

known; anxiety may be relieved based on the situation’s knowledge.

• Social Anxiety is a communal problem not liked by humans and assessed

through observations like cleanliness, cluttering of objects in the environ-

ment, etc.
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4.2 Anxiety of Cyber-Physical Systems

A novel concept, Anxiety of a CPS, is proposed to assess physical and psychological

issues. Anxiety is the unpleasant state when an expectation is not achieved due

to any stressful, dangerous, or unfamiliar situation. The term anxiety needs to

elaborated more and should not be confused with risk. Risk is based on hazard,

whereas “anxiety can be defined as an urge to perform a particular job to avoid

a hazard or even to do a righteous job.” In real life, different situations are faced

while performing a certain task. It is pertinent to differentiate between a scenario

and a situation. A scenario is defined as the amalgamation of different situations

at one time, whereas a situation is one state of condition faced by the system.

Every situation will generate anxiety, but there would be limited resources to

handle each situation. However, there are different levels of anxiety generated

by situations, either to perform the intended task or a task to avoid any hazard.

Therefore, anxiety is defined and scaled for CPSs.

The technique presented in this work estimates the braved anxiety due to the

current situations. The module is initialized by the results of the Ishikawa analysis

that assigns an index to each anticipated situation. After initial indexing, a novel

and intelligent technique based on medical knowledge categorize situations into

different anxiety types. Each type relates to a particular level of severity.

4.3 Categorization of Anxiety

Certain considerations are taken into account to categorize and quantify the sit-

uations. The categories are named concerning the characteristics matched with

the medical anxieties. Each category defines severity, which shows one’s priority

over the other and declares its significance for counterstrategy. Thereby keeping

into consideration the category, the severity is calculated, and it can be said that

‘Quantification’ of psychological safety for the CPS is being done. The categories

will be re-evaluated on every subsequent iteration of a process. Change of category
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is the discretion of the human supervisor and depends on the severity and the re-

peatability of a situation. For this, a log is maintained for a particular situation’s

severity and category whenever it emerges. Anxiety for a situation is the sum of

the lowest severity limit and Ishikawa’s index I. The value of I ranges from 0 to

100.

A detailed description of each category is explained in the subsequent paragraph.

Panic is defined as a severe unknown incident. Panic is denoted by P , and it

is considered the highest level of anxiety. Any new situation causing defined

severity is considered panic, hence, identified from the impact of a severe unknown

situation. Examples can be a ‘collision of participants’ or a ‘power failure’. For

panic, action is to be taken by all stakeholders; however, it must be handled by

a human operator being the most intelligent resource. In the mentioned case, all

stakeholders of the CPS must stop the operation while the human may observe

the cause and rectify the issue.

Specific-phobia/Agoraphobia is the third level of anxiety that comprises the sit-

uations previously defined by the user. Agoraphobias are denoted by K. They

may be related to a particular resource and may not be affecting others, like user

interference in the cobot’s task may not affect the user; however, they affect the

cobot. Initially, all defined situations not considered in panic/obsession/social

norms be included in specific phobia. They may be transferred to the obsession

or post-traumatic category on confirmation of a false alarm or emergency/damage

caused by some situation. However, the final decision is the privilege of the human

supervisor.

The second-highest level of anxiety is Post-traumatic. The assessment criterion

can be the emergency stop button pulled by the operator and the declaration of

the situation as post-traumatic. In case post-traumatic is declared, the complete

system must stop, and the operator must rectify observations. After certain repe-

titions without any damage, the same may be transferred to Specific-Phobia with

the consent of the human supervisor. This category is denoted by T , and the value

within the category depends upon I.
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The fourth level of anxiety is General anxiety which is denoted by G. The ide-

al/intended situation is considered for general anxiety that will act as a reference

to categorize other situations.

Social norms are warnings that may not affect the current scenario; however, they

may affect the performance at a later stage. They are the fifth level and denoted by

N . They are the social aspects disturbing both humans and the system. Raising

observation to humans can remove such errors, e.g., raising caution for an expected

decrease in the distance between the operator and the cobot. The threshold level of

this distance is to be defined. Similarly, time delay while completing the intended

task is to be displayed. The value within the category is dependent upon I.

Obsessions are related to false alarms. These are previously defined/declared false

through Ishikawa, and a null value is given to them. They are the last level of

anxiety and are denoted by O. Repetition and continuity are the indicators of

the recognition of obsession. Feedback from the human supervisor is taken if a

situation from a specific phobia is repeated several times. For example, a foreign

object appearing in the work area does not affect operations and can be considered

an obsession. Three consecutive repetitions and authentication by the human su-

pervisor is the criterion defined to declare obsession. The leverage always remains

with the human supervisor to declare any situation into an obsession at any time.

Further identification in the category will be through the data collected/stored

through sensors, like the image of the item that appeared may be stored as an ob-

session. Total severity is also calculated for a particular instance, and an alarm is

raised if it crosses a certain limit. It is the sum of every current emerging situation

in a single iteration, whose severity is already defined.

Total severity = G+ P +O + T +K +N (4.1)

The criterion for categorizing and indexing anxiety in different situations faced by

the CPS is defined in Table 4.1.
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Table 4.1: Anxiety Categories

Level Name Description Severity Equation Detailed Description

1 Panic Emergency 80 to 100

P=80+ I×

20/100

Medical: a situation to

which the affected person

is not accustomed and has

a serious impact.

CPS: a severe unknown

incident identified by im-

pact, action be taken by

all stakeholders; however,

it must be handled by HC

being the most intelligent

resource.

2
Post-

traumatic

Trauma/

Fear
60 to 80

T= 60+ I×

20/100

Medical: serious inci-

dent of the past, the af-

fected person remains un-

der constant stress that it

may occur again.

CPS: assessment crite-

rion is an emergency dec-

laration by HC on occur-

rence. The complete sys-

tem must stop, and ob-

servations must be rec-

tified by the operator.

After certain repetitions

without any damage, the

same may be transferred

to Specific-Phobia.
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3

Agora-

phobia/

Specific-

Phobia

Known

Specific

Situation

20 to 60

K= 20+ I×

40/100

Medical: a specific situ-

ation that is critical but

known may be relieved

based on available knowl-

edge.

CPS: known situa-

tions previously defined

and not considered in

panic/obsession/social

norms. They may be

transferred to the obses-

sion or post-traumatic

category on confirma-

tion of a false alarm or

emergency.

4
General

Anxiety

Intended

Situation
20

G= 20

Medical: the day-to-

day routine situation for

which refined solutions

exist.

CPS: ideal/intended situ-

ation. Act as a reference

to categorize other situa-

tions.

5
Social

norms
Etiquettes 0 to 20

N= 0+ I×

20/100

Medical: a communal

problem not liked by hu-

mans.

CPS: warnings that may

not affect the current sce-

nario, however, may affect

the performance at a later

stage.
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6
Obses-

sion
False 0 O = 0

Medical: repetitive

thought that leads to

ritual or a false alarm.

CPS: previously de-

clared false alarms

through Ishikawa, and

a null value is assigned.

Repetition and continuity

are indicators; however,

confirmation from HC is

required.

The detailed procedure for calculating index I is explained here. The requirement

is that in case of multiple situations, the CPS must act on the situation having

maximum anxiety. When it comes to problem-solving in the behavioral and social

domain, there exists no capability in computers to overcome the human mind due

to its intrinsic properties of consciousness, perception, judgment, and thinking.

The problem is to establish a criterion to rank each situation’s priority. There-

fore, a management technique based on a brainstorming tool is used to cater to

the scenario faced by a CPS in the social domain. Ishikawa analysis is used to

find situations’ anxiety and further allot weight to each situation. A number of

experts in the domain may be consulted for brainstorming and assigning weights

to situations compared to others. Ishikawa is a team brainstorming tool that of-

fers an analytical and methodical technique of viewing the effect and the causes

that bestow that effect. Due to its cause-and-effect framework shape, it is also

mentioned as a Fishbone diagram [158]. The benefit of adopting Ishikawa analysis

is an organized approach that uses group knowledge for consultation to determine

the root causes of a problem [159]. In a typical Fishbone diagram, the effect is

usually a problem that needs to be resolved and is placed at the ”fish head”. The

causes of the effect are then laid out along the ”bones”, and classified as different

types along the branches. The anxiety, which is the effect in our case, is placed at

the head of the fishbone, whereas the situations leading to anxiety are placed as
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main headings along the bones. A method of assigning weights to each situation

is proposed; all other identified situations are placed as sub-headings under the

considered situation, and weights are assigned to them in relation to the main

heading, which could be 1 or 0. ‘1’ is assigned to other situation if it is decided to

have low priority than the main heading and ‘0’ if it has high priority. The weight

is assigned based on the voting of experts. The ranking of the situation (index I)

is the total of weights assigned under it. An illustration of the method is shown

in Fig. 4.1.

Figure 4.1: Method for Calculating Index I of Situations.

4.4 Anxiety Factor

The CPS may have several resources to handle various situations; the calculation

of matching scores through a mathematical model is proposed to estimate the

suitability of each resource to handle each situation, and termed as an anxiety

factor. The anxiety factor, i.e., the matching score, is specific to a particular

situation and resource and is dependent on the category and the variables related

to tasks/resources. Various key variables are proposed to calculate the anxiety
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factor through a mathematical formula. These variables denote the relation of

situations with resources.

4.4.1 Key Variables

A parameter is a set that lays out the conditions of a system’s operation. The

parameter defined for the problem is anxiety and denoted by A. Its value is defined

by the category of the particular situation, that is, G,P,O, etc., and calculated as

explained in Table 4.1. If there are S number of situations, we can relate them with

the values of anxiety. The other variables are also dependent on the knowledge of

experts. These values will subsequently be used in the solver mathematical model

to calculate the matching score of situations vs. resources. Now it is to be declared

which resource is most suitable to handle a particular situation. It requires the

assignment of each situation’s anxiety to one resource. For this, a task variable

is introduced in the calculations. It defines which task can better be performed

by which resource. It is denoted by t. The prior resource is assigned a lower

value and subsequently ascending value for lower priorities. e.g., two resources are

considered in this work, then ’0’ is assigned to the prior resource and ’1’ to the least

prior resource. A preference variable is the ascending order of anxiety level sorted

for different situations; it can also be referred to as a priority index number and

denoted by p. Few tasks cannot be performed by some of the resources or are not

preferable to be handled by some. For example, a foreign object in the workspace

may not be handled by a cobot due to its limited maneuverability, or a cobot’s

power failure cannot be handled by the cobot itself. To define this, the resource-

suitability variable is introduced, which has the value ’1’ if a resource is suitable

and ’0’ if not suitable. It is denoted by Q. To solve this assignment problem, we

need to identify which resource is assigned to which situation. A decision variable

X is introduced for each possible assignment of resources to the situation. In

general, it can be said that any decision variable Xrs equals ’1’ if resource r ∈ R

is assigned to the situation s ∈ S or ’0’ otherwise. The anxiety factor a is the
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value of anxiety calculated through the above variables for a particular situation

tackled by a specific resource.

4.4.2 Anxiety Factor Calculation

The anxiety factor for a corresponding resource and a situation is calculated as

follows:

ars = Qrs[Ars + (prs − trs)] (4.2)

A is the parameter, p is the preference variable, t is the task variable, and Q is the

resource suitability variable. To simplify the mathematical notation of the model

formulation, indices for resources r and situations s are defined. The expression

for a can be written as:

ars ∈ [0, 100 + S] for all resources r ∈ R and situations s ∈ S

r ∈ R : index and set of resources.

s ∈ S: index and set of situations. S is the total no of situations. The value of p

ranges from 1 to S, hence the range of anxiety factor is from 0 to 100 + S.

The value of t depends upon the number of resources. As two resources are

considered, then t = 0, 1. The value of Q will either be 0 or 1.

In equation (4.2), it can be seen that the first variable that affects the anxiety

factor is Q. This means that the foremost thing that defines the anxiety factor

is resource suitability. The second variable that dominates the equation is the

parameter A, which actually is the category of the situation under consideration

and itself dependent on the index I. This means the higher the parameter A; the

higher will be the anxiety factor. The third variable that has an influence on the

anxiety factor is the preference variable p. The variable p is also dependent on

the anxiety level I of the situation in consideration. As p is the ascending order

of variable I, therefore higher the anxiety level higher will be the variable p, and

subsequently higher will be the anxiety factor. The fourth variable is the task
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variable. It is defined to differentiate the priority of suitability among different

resources. The higher the priority, i.e., the lower t as it is negative in our case, the

higher will be the anxiety factor.

If we analyze equation (4.2), there are two portions. The first one defines the

priority of situations that is the parameter A, and the second portion within the

parenthesis actually defines the priority of resources in relevance to the situation.

The second portion calculates a sub-value dependent on the task suitability to

the resource. The equation (4.2) is defined to accommodate two resources, as

highlighted earlier. In case more resources need to be accommodated, the matching

scores, i.e., the anxiety factors calculated from this portion, have a limitation in

that they should only be compared within the bracket of the single situation in

relevance to the available resources, i.e., the anxiety factors calculated from the ts

of a single situation. It is to mention that the number of ts is equal to the number of

available resources. The limitation is because; as the number of resources increases

more than the situations, the value of this sub-portion may become negative, or

if the value of situations increases than the upper limit of the anxiety category,

the anxiety factor may coincide with the next category range. To overcome this

limitation, equation (4.2) may require necessary modification. First, the anxiety

factor may be limited to one decimal place only, e.g., 57.8; secondly, the preference

variable may be omitted, and only the positive task variable in the second portion

may be defined to spread in the succeeding decimal limits. The suggested changes

are highlighted in equation (4.3).

ars = Qrs[Ars + (trs/R× 0.1)] (4.3)

Where R is total number of resources. In this case range of variable t may start

from 1 to R.



Chapter 5

Proposed Method

The complex real-world industrial scenario comprises a large number of elements

that interact in a non-linear way with each other and exhibit the emergence of un-

planned activities, lack of complete knowledge, and ethical and safety issues. This

is a new domain of CPPS in which physical and psychological safety issues are

apparent. CPPS’s architecture and characteristics show that connectivity, socia-

bility, flexibility, adaptability, and highly automated nature are an inherent part

of its operation. These characteristics and properties clearly indicate that a com-

plex industrial CPPS cannot fully operate based on a conventional mathematical

control model. Our research focuses on addressing both physical and psychological

issues faced by a CPPS.

A layered framework is proposed for knowledge-based decision-making in a CPS,

as shown in Fig. 5.1. The method decides on the confronted situations to mitigate

their anxiety. The CPS, at the core, performs the desired operations through the

interactions between its physical component (PC), computer component (CC),

and human component (HC). Real-time sensing is incorporated through Visual, IR

cues, and other sensing methods for simultaneous detection of various situations.

A situational assessment layer is proposed above the central layer to assess the

anxiety of the situations faced. This layer uses the knowledge base of HC to assess

the anxiety generated by confronted situations. For this, indexing of anxiety for

expected situations and calculation of matching scores through a mathematical

77
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model is proposed for each resource vs. situation, as described in Chapter 4. The

matching score, i.e., the ‘anxiety factor,’ is the relevance of each situation’s anxiety

to each resource.

Figure 5.1: A Decision-Making Connective Framework for Anxiety Mitigation.

The third layer is the resource optimization layer, above the situational assessment

layer. A Mixed-integer programming (MIP) technique is proposed to formulate

an optimization model. This layer optimizes the allocation of available resources

through an optimization algorithm using the evaluated matching score, the ob-

jective function, and the defined constraints. The last is the logic-based decision-

making layer. As a complex dynamic scenario involving unprecedented situations

is faced, the solution for each situation is different and needs to be defined us-

ing the knowledge of experts, suggested optimization, and calculated anxieties.

A decision-making layer is suggested that ascertains the task assessment of var-

ious resources according to desired metrics and employs the allocated resources

to handle the complicated scenario. This layer embeds predefined logic to decide
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on complex situations and tasks with different resources using the experts’ knowl-

edge, evaluated optimization, and calculated anxieties. The logic remains specific

to each identical case/situation embedded in a CPS scenario. The proposed frame-

work is validated through an experimental case study of an assembly plant facing

several situations.

5.1 Decision-Making Framework

The fourth industrial revolution relying on CPS-based automation represents the

industry shift from centralized to decentralized, where autonomous and collab-

orative elements of a CPS are directly in communication with a computational

element, and services such as monitoring, control and optimization subscribe to

it in real-time. Therefore, a connective framework is proposed, and an overview

of its execution is shown in Fig. 5.2. A knowledge-based modular software sys-

tem is suggested where different modules represent different layers of the proposed

framework. However, the number of modules is not recommended to be fixed and

may vary as per the requirement of a particular case. The data of all the layers is

stored in a central database.

The basic modules are; the main module for the sensing and process control layer of

the CPS, the anxiety module for the situational assessment layer, the optimization

module for the resource optimization layer, and the decision-making module for

the decision-making layer. The main module holds the database and is connected

to other modules through information transfer. As mentioned earlier, the logic

remains specific for a particular case, and there could be several modules other

than the basic modules to represent different situations. The main module works

for the intended scenario and looks for the changes at every cycle of the operation.

In case multiple changes are faced, the anxiety module ascertains the matching

score for each situation. Accordingly, the situations with the higher anxiety factor

are assigned the best possible resources through the optimization module.
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Figure 5.2: Decision-Making Framework Execution.

The decision-making module looks after the contingencies to handle the braved
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situations. In this context, outputs from the anxiety and the optimization mod-

ules are given to the start of the decision-making module, which decides on the

assignment of resources to the tasks based on the defined logic. The general con-

nectivity of the modules is shown in Fig. 5.3; however, the logic representation is

shown for particular case studies in relevant chapters.

Figure 5.3: Module-based Software Implementation for Decision-Making.

The framework will now be explained layer by layer. The implementation of the

proposed method includes two types of actions, one to be taken before activating

the system and others are happening in real-time during the process cycle. Both

the pre-process and in-process steps concerning each layer are shown.

5.1.1 CPS Layer

The CPs layer is the main layer that controls all physical and human elements. The

physical component involves machines, robots, conveyors, sensors, display/output

devices, input devices, etc. The main role of the layer is to execute the intended

process for which the production plan is uploaded. The layer uses HC and PC

status to aid the completion of desired tasks and ascertain any change in the

process. For this, various sensing techniques, like proxemics, visual, physiological,

or social cues, etc., may be used. Different situations which are expected to affect
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the desired output are registered and identified through sensing techniques if they

emerge in the process. The preprocess formalities and the pseudo-code of the

process involved in the CPS layer are shown in Table 5.1.

Table 5.1: Process for CPS Layer

Ser Layer Pre-Process Formalities Process Pseudo-Code

1 CPS

Prepare Manufacturing/

Production plan

2 Register expected situations

3 Start

4 Upload Execution Plan

5 Initialize

6
Check the state of the human

component

7
Check the state of physical com-

ponents

8 While no uncertainty

9 Execute the process

10 If uncertainty

11
Go to the situational assess-

ment layer

12 Else go to initialize

13 End

5.1.2 Situational Assessment Layer

The Situational assessment layer assesses confronted situations for anxiety by using
the HC’s knowledge base. Prior to the process, different pre-process formalities are
performed. First, the expected situations index is calculated with HC’s knowledge
(Ishikawa analysis), as proposed in Chapter 4. The anxiety category of each
situation is then identified, as anticipated by HC. And based on the category, the
matching score for all expected situations is calculated, which states the resource
suitability to the particular situation. On the initialization of the process, the
layer first gets itself aware of the situations that are detected by the CPS layer.
The layer then links the matching scores to the related situations and re-estimates
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if the category of the situation changed by the HC during the operation. Details
of the process and pseudo code are shown in Table 5.2.

Table 5.2: Process for Situational Assessment Layer

Ser Layer Pre-Process Formalities Process Pseudo-Code

1
Situational

Assessment

Index the defined situations’

anxieties through the Ishikawa

method

2

Categorize situations into the

type of anxiety

3

Assign weights to key variables for

estimation of matching score

4

Calculate the matching score

(anxiety factor) with respect to

resources

5
Initialize

6
Upload the matching scores

7
Check the emerged situations

8

Check the matching score of

emerged situations

9
If the category is changed by the

operator

10
Re-designate the anxiety cat-

egory of the situation

11

Re-estimate the matching score

in case category is changed

12 Move to Resource Optimization
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5.1.3 Resource Optimization Layer

A number of optimization techniques can be found in the literature that is applied

to flexible CPSs. Li et al. [160] addressed the uncertainty issues generated in

manufacturing plants by employing robust optimization for process scheduling. In

[161], a CPS is deployed for an automotive electric part’s selective and adaptive

assembly; an optimization technique was applied by employing a holistic matching

approach. In another paper [162], a flexible manufacturing CPS adopted self-

optimization by learning real-time context sensitivity. Context extraction was

used for learning the context sensitivity of the discrete flexible manufacturing

system and the optimizer continuously improved the system’s performance. In

[163], a constraint-based approach was adopted to optimize the design parameters

of an intelligent electric vehicle. A co-design optimization approach was used

to determine how to automatically adapt the vehicle’s control while adjusting to

drivers’ driving styles. The optimization problem was formulated for a multi-

objective solution that caters to control and driving comfort requirements.

There is a need to identify the best resources that can handle the situations bearing

major impacts. This layer optimizes the resource allocation through an optimiza-

tion algorithm. The module checks the number of situations; if there is a single

situation, the program directly moves to the decision-making layer, and if there

are multiple situations, the program moves to the optimization algorithm. The

algorithm employs the mixed-integer programming (MIP) technique, using the

matching score (anxiety factor), objective function, and defined constraints. This

resource assignment problem is defined as “To determine the assignment of re-

sources which can deal with situations such that each situation is handled by one

optimized resource and each resource is assigned to at most one situation while

sequentially addressing the situations with maximum anxiety.” Since the prob-

lem incorporates both integers and variables, thus making the problem complex;

therefore, MIP is the best solution. The MIP can use both binary digits and

whole numbers, which greatly increases the scope of optimization problems while

satisfying the constraints and objective function. The Gurobi Optimizer [164] is
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one of the state-of-the-art solvers for mathematical optimization problems. The

MIP model of the stated problem is implemented in the Gurobi Optimizer. The

overall technique addresses all the situations sequentially in terms of priority. The

preprocess formalities and the pseudo-code of the layer are shown in Table 5.3.

Table 5.3: Process for Resource Optimization Layer

Ser Layer Pre-Process Formalities Process Pseudo-Code

1
Resource

Optimization

Defining the optimization criteria

for allocation of resources, the

objective function, and the con-

straints, MIP in our case

2 Initialize

3 Case 1: Single situation

4
Move to Decision-

Making Layer

5
Case 2: Multiple situa-

tions

6

Allocate resources to

situations through MIP

7
Move to Decision-

Making Layer

A decision variable X for each possible assignment of resources to the situations

is introduced. In general, we can say that any decision variable Xrs equals ’1’ if

resource r ∈ R is assigned to the situation s ∈ S or ’0’ otherwise.

5.1.3.1 Situation Constraint

This sub-section presents the constraint associated with situations. This constraint

ensures that each situation is handled by exactly one resource. This corresponds

to the following:

for r ∈ R
R∑

r=1

Xrs ≤ 1 (5.1)
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Less than < 1 is included to incorporate the null when no resource is assigned to

the situation in an iteration.

5.1.3.2 Resource Constraint

The resource constraint ensures that, at most, one situation is assigned to each

resource. However, it is possible sometimes that not all the resources are assigned.

For example, if CPS encounters two situations and only one resource is suitable

to handle both. Then the situations will be handled sequentially by the resource

in order of anxiety. We can write this constraint as follows:

for s ∈ S
S∑

s=1

Xrs ≤ 1 (5.2)

This constraint is less than < 1 to allow the possibility that a resource is not

assigned to any situation.

5.1.3.3 Objective Function

The objective is to maximize the total matching score (anxiety factor) of the

assignments that satisfy both the situation and resource constraints. The objective

function can be concisely written as follows:

for s ∈ S and r ∈ R Maximize
S∑

s=1

R∑
r=1

arsXrs (5.3)

5.1.4 Decision-Making Layer

As the CPS, in reality, faces a complex dynamic scenario involving unprecedented

situations, the solutions for different situations may vary and are required to be

defined through logic based on experts’ knowledge. The decision-making module

encompasses the logic defined by experts to handle the braved situations and de-

cides on the assignment of resources to tackle them. The main consideration for



Proposed Method 87

the assignment of resources is the allocation recommendation by the optimization

module; however, the implementation is carried out by the decision-making mod-

ule. Commands are then given to the physical resources, which could be a human

operator, a cobot, a machine, etc., depending on the ascertained tasks. The human

component is also given cautions through social signals on observation of social

norms and obsessions. The preprocess formalities and the pseudo-code of the layer

are shown in Table 5.4.

Table 5.4: Process for Decision-Making Layer

Ser Layer Pre-Process Formalities Process Pseudo-Code

1 Decision Making

Define and design the logic

for each situation with inputs

from experts for an anxiety

mitigation strategy

2 Initialize

3
Upload resource alloca-

tion data

4 Check situations

5
Check resource alloca-

tion to situations

6

Assign a task to available

resources based on allo-

cation and logic

7

Execute the task through

the PC

8
Exhibit social signals to

HC

9 Move to CPS Layer



Chapter 6

Experimental Validation 1

In this chapter, the proposed framework is validated on a case study of an in-

dustrial scenario facing multiple situations at a time. An example of a beverages

packaging industry is considered, as shown in Fig. 6.1. The industrial scenario

is implemented through a collaborative CPS incorporating a cobot and a human

operator. Bottles and cans arrive at a workstation from the production center in

a sequence. A cobot has to pick these items and place them at the designated

locations in a crate. A human supervisor monitors operations and places crates.

Despite replacing crates, the supervisor is also monitoring operations for anomalies

and erroneous activities, e.g., the supervisor will also look for defective items like

broken bottles or dented cans. It means he is in both collaborative and supervi-

sory roles. A total of twelve items have to be packaged, that is, six bottles and

six cans. As the packaging process completes, the supervisor removes the crate,

fills the space with an empty one, and gives a command for the next one; the

cobot moves accordingly. The cobot performs specific operations in collaboration

with the operator to complete the task, e.g., the robot picks bottles and cans in a

sequence from specific locations and drops them in specific slots in the crate. The

human supervisor is also responsible for corrective actions on wrong item arrival,

wrong sequence, or absence of item from the location.

88
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(a) (b)

Figure 6.1: Experimental Case 1, (a): Scenario; (b): Setup of Considered
Case.

6.1 Experimental Setup

A setup is established to implement the case under consideration, which involves a

universal robot (cobot) ver UR5, a machine vision camera, a Robotiq kit composed

of a camera and a gripper, an IR proximity sensor, and an Intel Core i5-2430M

CPU computer with 6 GB RAM. Python is used to run object detection/ pose

detection algorithms and to connect the components/algorithms output with UR5

software (PolyScope). The control box of UR5 has both digital and analog input-

s/outputs to interface with digital and analog devices. The interface amongst the

elements of the CPPS is shown in Fig. 6.2. It also needs to be highlighted here

that the complete setup is developed by using low-cost sensors/devices to imple-

ment the case study, meaning that the flexibility in the CPPS can be inculcated

through low-cost devices for detection and implementation.

Figure 6.2: Interfacing of CPPS Elements.



Experimental Validation 1 90

The main scenario of packaging is programmed in PolyScope to pick bottles and

cans from particular locations in a specific sequence and then place them in the

crate at their dedicated locations. For this, the waypoints for each pickup and

drop-off location are fed in PolyScope. Similarly, the waypoints for drop-off loca-

tions pertinent to the situations are set under the condition, the specific scenario

is performed. A setup is established to implement the case study, shown in Fig.

6.3.

Figure 6.3: Setup and Implementation of Approach for Case under Consider-
ation.

The connectivity of the HC, PC, and CC and their sub-components is shown in

Fig. 6.4.

6.2 Scenario’s Anxiety

There may be situations when the process may not proceed as intended, and it

may face various unwanted and unforeseen situations. To cater to this, different

situations were anticipated for both the cases that can emerge during a cycle;

these include the intended situation as well as unwanted situations. The intended

situation is the production plan and the situations that affect the production plan

are unwanted situations.
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Figure 6.4: Connectivity of CPS Components.
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The considered situations are: Right item: the main task/intended situation i.e.

the right items (beverages) are in place for pick and place operations; the Wrong

item: the item at the work location is either not in list or wrong in sequence; No

item: when no item appears at the work location; the Human interference: when

operator interferes in any task at any location, as he finds that the robot may not be

able to perform the task or he finds any anomaly; Displaced Crate: the operation

of packaging cannot be completed when the crate is displaced from the designated

location; Unidentified person: any unknown person in the workspace is a hazard to

the system and to himself; Foreign object: any object not required in the workspace

is also a hazard to the system; Obsession: any situation actually not affecting but

disturbing the outcome of the system; generally it is established after few iterations

when the operator realizes that the situation is a false alarm e.g. in the case study

the object detection algorithm detects the table on which the items are placed as a

foreign object; Time delay: the completion time variance in the intended operation;

Threshold Distance: the breach of minimum distance that is established to be safe

for collaboration between the human and the robot; Cobot Power Failure: in

case the cobot stops work due to power failure; Cobot Collision: in case the cobot

collides with the human operator. As stated, situations that can emerge during this

cycle include both anticipated and unforeseen. The situations with serious nature

of impact were considered to judge the unforeseen. The two situations incorporated

to differentiate unforeseen from anticipated are ‘power failure of the cobot’ and

’collision of the cobot’. To include social impact, situations; ‘unidentified person’,

foreign object’, ‘human intervention in the task’, ‘decreasing distance between

the cobot & the human’, ‘time delay in the work cycle’, and ‘obsession’ were

incorporated. Whereas the anticipated situations incorporated were the intended

scenario, i.e., the ‘right item’, the situation when the ‘wrong item’ is present, when

‘no item’ is present, and the ‘displaced crate’.

The question is how to map these situations to calculate the anxiety index and
anxiety factor and then analyze and decide on requisite actions. As soon as any
of the listed situations are detected through the visual sensing/other detection
techniques, an input of detection is given to the main program. The situation’s
severity, anxiety index, variables relative to resources, and anxiety factor already
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evaluated before the commencement of the operation are taken into account. The
severity I for each situation was assessed by the experts by assigning weights to
each situation against all other situations in the Ishikawa diagram. ‘1’ is assigned
to the other situation that is decided to have lower priority than the main situ-
ation, and ‘0’ if it has high priority. The weight is assigned based on the voting
of experts. The ranking of the situation (index I) is the total of weights assigned
under it. The estimate of severity posed by them calculated through Ishikawa is
shown in Table 6.1.

Table 6.1: Possible Situations and their Anxiety Level

Ser Situation Anxiety Level Index Severity(I)

1 Cobot Power Failure 11 1 100

2 Cobot Collision 10 0.91 91

3 Foreign Object 9 0.81 81

4 Unidentified Person 8 0.72 72

5 Human Intervention 7 0.63 63

6 Displaced Crate 6 0.54 54

7 Wrong Item in Place 5 0.45 45

8 No Item in Place 4 0.36 36

9 Right item in Place 3 0.27 27

10 Threshold Distance 2 0.18 18

11 Time Delay 1 0.09 9

12 Table 0 0 0

The Ishikawa analysis for the considered situations involved in the packaging sce-

nario is shown in Fig. 6.5. There are two resources, a human and a cobot, and

the CPS anticipates twelve situations. The anxiety A was then calculated for each

situation by putting in values of categories and severity as stated in Table 4.1.

The matching score ”a” was then estimated, as explained in chapter 4, for both

the resources, i.e., a human and a cobot, vs. the situations and fed into the central

database.
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Figure 6.5: Ishikawa Diagram for the Anxiety Calculation.
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The set of variables defined for the case is shown in Table 6.2.

Table 6.2: Variable Set
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Right item A1 t11 t21 p11 p21 Q11 Q21 X11 X21 a11 a21

Wrong item A2 t12 t22 p12 p22 Q12 Q22 X12 X22 a12 a22

No item A3 t13 t23 p13 p23 Q13 Q23 X13 X23 a13 a23

Human interference A4 t14 t24 p14 p24 Q14 Q24 X14 X24 a14 a24

Displaced crate A5 t15 t25 p15 p25 Q15 Q25 X15 X25 a15 a25

Unidentified person A6 t16 t26 p16 p26 Q16 Q26 X16 X26 a16 a26

Foreign object A7 t17 t27 p17 p27 Q17 Q27 X17 X27 a17 a27

Table A8 t18 t28 p18 p28 Q18 Q28 X18 X28 a18 a28

Time delay A9 t19 t29 p19 p29 Q19 Q29 X19 X29 a19 a29

Threshold distance A10 t110 t210 p110 p210 Q110 Q210 X110 X210 a110 a210

Cobot Power Failure A11 t111 t211 p111 p211 Q111 Q211 X111 X211 a111 a211

Cobot Collision A12 t112 t212 p112 p212 Q112 Q212 X112 X212 a112 a212

The severity, categories, the value of anxiety evaluated for the cases, and the

anxiety factors are shown in Table 6.3. It can be observed that the highest values

are for the panic ‘Cobot Power Failure’ and ‘Cobot Collision,’ and the lowest value

is for the obsession ‘Table.’ The ‘Right item’ is the intended situation; therefore, it

is assigned G. ‘Threshold distance’ and ‘Time delay’ have lesser values as observed

social norms.
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Table 6.3: Data Set

Situation

C
at

P
ar

.
(A

)

Ta
sk

V
ar

.(
t)

P
re

fe
re

nc
e

V
ar

.
(p

)

R
es

ou
rc

e
Su

it
ab

ili
ty

V
ar

.(
Q

)

H
um

an

C
ob

ot

H
um

an

C
ob

ot

H
um

an

C
ob

ot

Right item G 20 1 0 4 4 1 1

Wrong item K 38 1 0 6 6 1 1

No item K 34.4 0 1 5 5 1 0

Human interference K 45.2 1 0 8 8 0 1

Displaced crate K 41.6 1 0 7 7 1 1

Unidentified person K 48.8 0 1 9 9 1 0

Foreign object K 52.4 0 1 10 10 1 0

Table O 0 1 1 1 1 0 0

Time delay N 1.8 0 1 2 2 1 0

Threshold distance N 3.6 0 1 3 3 1 0

Cobot Power Failure P 100 0 1 12 12 1 0

Cobot Collision P 98.2 0 1 11 11 1 0

If we analyze the Table 6.3, we see that the first basis for the resource assignment

is the resource suitability variable Q. Suitable resources for a particular situation

are shown against Q, where ‘1’ describes the suitability of resources to tackle a

particular situation; if it is zero the resource cannot be assigned to the situation.

The second basis is the task variable t. The task priorities are defined through t;
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in our case, 0 is assigned to the preferred resource, and 1 is to the less preferred in

the table. Hence the resource having t=0 is assigned if it is not already committed

and if the resource suitability variable is not ‘0’.

The third basis is the preference variable p, the situation with the higher value

will be addressed first by the two resources, and the remaining will be addressed

subsequently after the disposal of the initial ones. The preferences of the situa-

tions defined are shown. The higher the parameter A, the higher the preference.

The cumulative effect of all these variables is the anxiety factor.

The anxiety factor calculated from the data set presented in Table 6.3 is shown

in Table 6.4. The table gives a clear depiction of when any situation appears,

which out of two resources can be assigned, which the prior resource is, and which

situation will be addressed first.

Table 6.4: Anxiety Factors

Situation
Anxiety Factor (a)

Human Cobot

Right item 23 24

Wrong item 43 44

No item 39.4 0

Human interference 0 53.2

Displaced crate 47.6 48.6

Unidentified person 57.8 0

Foreign object 62.4 0

Obsession 0 0

Time delay 3.8 0

Threshold distance 6.6 0

Cobot Power Failure 112 0

Cobot Collision 109.2 0
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6.3 Situational Awareness

For situational awareness, different techniques are used, like a right item, a wrong

item, no item, an unidentified person, and a foreign object are detected through

a visual cue (object detection). Similarly, the authorized operator is identified by

a mark (cross sign) on the helmet detected through the object detection module.

The displaced crate is detected through an IR sensor. The human intervention

situation is detected through another visual cue (pose estimation of a human op-

erator) via a camera installed above the workspace. The assessment metrics for

other situations: time delay is gauged through a clock measuring the complete

cycle, threshold distance is assessed from the separation between the cobot and

the object-detection-bounding-box covering the human supervisor, cobot collision

through impact sensor of the cobot, and cobot power failure through the power of

the cobot. A table was initially detected as a foreign object through object detec-

tion; however, it was later declared as an obsession, not obstructing the cobot’s

motion. Detection of various situations through visual cues is shown in Fig. 6.6.

(a) (b) (c)

(d) (e)

Figure 6.6: Detection of Situations through Visual Cues; (a): Right item; (b):
Wrong item; (c): Unidentified person; (d): Table; (e): Human intervention.
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6.4 Optimization Criterion for the Case

For the optimization algorithm, the decision variables Xrs were defined, which

shows the relationship for the assignment of available resources to the possible

situations. As 12 situations are considered, and two resources are available for

this particular case, therefore 24 decision variables were defined, which are to be

used in equations (5.1), (5.2), and (5.3).

As an example, X21 is the decision variable associated with assigning resource ’2’

to situation ’1’, and X12 is the decision variable associated with assigning resource

’1’ to situation ’2’. The situation constraints for this particular case were then

defined. As equation (5.1) contains the summation of the term r that represents

the resources, therefore, out of the available resources, i.e., ’resource 1’ (Human)

or ’resource 2’ (Cobot), either one can be assigned to one situation, 1 to 12. Hence,

12 equations were formed for the 12 situations. As an example, the first equation

for the resource constraint of ’situation 1’ (Right item) can be written as (6.1).

Similarly, eleven other situations’ constraints were formulated.

X11 +X21 ≤ 1 (6.1)

In the same way, resource constraints were defined. Equation (5.2) for the resource

constraint includes the summation of term s that represents the situations. As only

one situation can be assigned to one resource, therefore two equations were formed

for the two resources. The constraint for resource 1 (Human) can be written as

(6.2) in which the first index of every decision variable represents the resource

number and the second the situation number:

X11+X12+X13+X14+X15+X16+X17+X18+X19+X110+X111+X112 ≤ 1 (6.2)

Similarly, the constraint for resource 2 (Cobot) can be written as (6.3):

X21+X22+X23+X24+X25+X26+X27+X28+X29+X210+X211+X212 ≤ 1 (6.3)
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The objective function (5.3) contains the summation of both the indices s and r;

the equation contains the decision variable and the matching scores. Therefore, the

complete equation will have 24 terms. For illustration, the first term for situation

1 (Right item) is written as a11X11 if resource ‘Human’ is assigned and the second

term a21X21 if resource ‘Cobot’ is assigned, therefore the terms for the ‘Right

item’ situation are given in (6.4), where only one term in this summation will be

nonzero.

a11X11 + a21X21 (6.4)

Similarly, other terms for each resource versus each situation were included in the

objective function.

In totality, 15 equations were formed that, if calculated manually, are a cumber-

some process and were included in the Gurobi optimizer for computation.

6.5 Decision-Making Logic for the Case Study

A logic-based approach is applied to implement the desired strategy for the con-

sidered case. The framework is subdivided into five modules and three frameworks

for easy understanding. One additional module, ‘item in place,’ is incorporated,

which is specific to the case. Each subdivision is represented using the Integrated

Definition for Process Description Capture Method (IDEF) approach [165]. The

five modules are the main module, item in place module, anxiety module, opti-

mization module, and decision-making module.

The main module Fig. 6.7, integrates all the other modules; it keeps count of the

intended task (Right item) and looks for the situations identified in Table 6.1 at

every single iteration. On the assessment of single or multiple situations, the main

module ascertains the matching score through the anxiety module. Subsequently,

the optimization module identifies the highest matching score for the current sit-

uations vs. resources and allocates the resources accordingly.
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Figure 6.7: Main Module for Case 1.

The contingencies to handle other situations are also looked after by the decision-

making module Fig. 6.8. The logic in the figure represents what actions are to

be performed, whereas which resource must handle the task is decided on the

recommendation of the optimization module. For understanding, the tasks which

are to be performed by the human operator only are shown specifically in the

diagram. The actions of the cobot are implemented through the cobot’s software,

PolyScope. The software provides leverage to designate waypoints to the cobot

for each contingency and the count for the intended situation.
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Figure 6.8: Decision-Making Module for Case 1.
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The item in place module, Fig. 6.9, checks whether the right or wrong item is

in place. The module verifies it through object detection and the item count. If

some other item or the item not in a sequence is in place, the module adopts the

contingency plan through the decision-making module; otherwise, it works as per

the intended situation.

Figure 6.9: Item in Place Module for Case 1.

The decision-making module decides the contingencies for the identified situations

through actions performed by the resources. The actions are either performed by

the cobot or the human supervisor in our scenario, which is dependent on the

specific role assigned to the resource for a particular case.

The roles assigned to the situations are: in case of right item the robot will pick

and place the item at designated location, the human can do so but the preference

is given to the robot; in case of wrong item the robot will pick the item and place
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it at the spot dedicated for them, the count however, will not be increased and the

human has to place the right item at the location; in case of no item in location,

the robot moves to the next location and the human places the item at the drop

point; in case the human operator feels to interfere may be due to any anomaly

in the process or defected item, he may drop the item at the drop point or the

wrong item spot, the count will then be incorporated by checking the human pose

when doing action; in case of displaced crate, the robot adjusts it by pushing it

to the fixed enclosure and if the robot is not available then the human performs

it; in case unidentified person enters the workspace, the human has to remove it

from the area, a caution is displayed on the screen for the human to perform this

action; similarly if a foreign object appears in the workspace, a caution is raised

to the human to remove the object from the workspace, in both the last two cases

the robot stops action until the human presses the button for resume operation; in

case of obsession, none of the resources perform any action and perform the task

as intended; in case of time delay and threshold distance is breached, a caution is

given to the human operator to analyze and adjust accordingly; in case of cobot

power failure, the human checks the reason, rectify it and resume the operation,

however, the whole system is to remain at stand still; similarly in case of cobot

collision, the whole system comes to stop and the human checks, resolve the issue,

and then resume the operation.

If we may analyze, we see that all the actions are interlinked with the variables

assigned in Table 6.3 and Table 6.4. The experts actually decide the values of the

variables based on experience and consultation.

6.6 Results

Two machine vision cameras and a proximity sensor were used for the assessment

of the situations and to detect changes in the scenario. On detection of the right

item from the camera installed with the gripper, the item will be placed by the

cobot at the dedicated place in the crate. On detection of the wrong item, the
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item will be picked up by the cobot and placed at a spot dedicated to redun-

dant items. The vacant space will then be filled by the operator, and the cobot

will move to the specific location. At every next location, the item is checked to

determine whether right or wrong. In case no item is detected, the human will

place the item at the designated location, and the cobot will then move to the

next location. The system also requires protection from collisions like unidentified

persons or any foreign object in the workspace. These situations will be detected

through object detection techniques through camera input. On detection of any

from both situations, the system will be stopped, and a caution is raised to the

operator, who then has to remove the object or the person from the workspace;

until then, the system will not resume. The dedicated operator is identified by

the marked helmet he is wearing. The object detection of the operator through

a distant camera and the items through a camera installed on UR5 gripper are

shown in Fig. 6.10.

(a) (b)

Figure 6.10: Pictures showing Object Detection; (a) Detection of Operator;
(b) Detection of Bottles.

The bounding boxes around the objects show the accuracy of a match with which

the objects are detected by trained YOLOv3 [166]. Our object detection algorithm

was not only trained for the detection of objects used in the scenario but also for

the day-to-day general objects.

To judge the unforeseen, serious nature impacts are defined in the logic diagram,

which is ’power failure of the cobot’ and ’collision of the cobot’. The system
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will stop the operation, a caution will be raised by the system for the human

operator, and the operation will not resume until the issue is resolved by the

human supervisor. There could be different interventions by the human operator.

The human intervention can be due to two situations; one is that the operator

finds the item damaged/broken, and the second is that the operator assesses the

cobot may not be able to pick up the object due to its intended movement/the

placement of the object is not right. In the first case, the item will be placed by

the operator at the damaged/broken items spot; however, the count will not be

increased, and the cobot will return to the same location upon completion of the

task. In the second case, the operator will pick the item himself/herself and place

it in the crate, where the control system will increase the count so the cobot may

move to the next location. The combination of two pose detections will verify these

two cases, i.e., if pose 1 and pose 2 are in combination, then a damaged/broken

item is removed, and if pose 1 and pose 3 are in combination, then the operator

has interfered and placed the item in carton either to improve efficiency or bypass

imminent error in the system. Pose 1 is the pose of the operator when picking items

from the stage. Pose 2 is the pose of the operator when placing broken/damaged

items at their spot. Pose 3 is the pose of the operator while placing an item in

the crate, as mentioned in the second case. The particular pose of the operator is

detected via a camera installed above the setup, covering the workspace. Detection

of different poses of the operator through Open Pose [167] is shown in Fig. 6.11.

In case the crate is displaced from the dedicated location, it can be detected

through a proximity sensor. The cobot will move the crate to its proper place in

case of displacement by pushing it to the fixed enclosure. Considering the social

impact situations, first of all, if the ‘threshold distance’ is breached, i.e., the dis-

tance between the cobot & the human has decreased, a caution is raised, and the

operator must adjust his location. Similarly, caution is raised for the ‘time delay’

in the work cycle, and the operator must analyze the anomalies in the previous

cycle. In case the obsession is declared and detected, the system will remain nor-

mal.
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(a) (b)

(c)

Figure 6.11: Detection of Various Poses (a) Normal pose, (b) Pose1, and (c)
Pose2, of operator.

Our system is capable of detecting multiple situations. In case any two or multiple

scenarios are detected/overlapped, the action to be taken is decided based on the

priority set by the CPS. The priority, in this case, is set by the anxiety factor

of CPS, whose indexing is explained earlier, and subsequently, the resources are

allocated through an optimization algorithm.

As an example, two individual scenarios are shown, i.e., a displaced crate and

an unidentified person’s entry. An unidentified person is shown entering the

workspace and has mistakenly displaced the crate from its original position (see

Fig. 6.12). The unidentified person is detected through an object detection algo-

rithm, whereas the proximity sensor gives the output of the displaced crate to the

main program. As the two inputs are detected, the algorithm finds the anxiety

factor of each situation. The optimization algorithm decides the resource ‘human

operator’ for the unidentified person and the resource ‘cobot’ for the displaced

crate. Based on the decision given by the decision-making module, the algorithm



Experimental Validation 1 108

chooses the action for an unidentified person scenario, and the cobot stops working

initially. Until the unidentified person is removed from the workspace by the op-

erator, the cobot will not resume operation. The signal is then given to PolyScope

for the displaced crate situation; the cobot resumes operation and moves the crate

to its original location.

(a) (b)

Figure 6.12: Detection of Multiple Situations and Actions, (a) Detection of
Unidentified Person and System Halt, (b) Detection of Displaced Crate and

Crate being aligned by the Cobot.

6.6.1 Test Case

Two complete cycles, i.e., packaging of two crates/24 items, are considered for the

test case. A detailed list of situations encountered at each iteration throughout

the two cycles is shown in Table 6.5. Individual/total severity is calculated by the

system, and resource assignments are shown accordingly.

The important situations are discussed here. The situations that appeared at

the iterations are mentioned alongwith the decision taken by the system for each.

At the 1st iteration, a foreign object, i.e., a table, appeared with the right item

situation. The human supervisor assessed the table; as not an obstruction to the

cobot’s motion and declared it an obsession for subsequent iterations.

At the 2nd iteration, the table again appeared with the right item situation; how-
ever, considered an obsession this time.
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Table 6.5: Situations vs. Resource Assignment

It. Situations
Individual
Severities
(a)

Resource
Assignment

Total
Severity

Decision
Time (s)

1
Foreign Object,

Right item
62.4, 24

Human,

Cobot
86.4 0.03

2 Table, Right item 0, 24 Cobot 24 0.02

3 Table, Right item 0, 24 Cobot 24 0.02

4 Table, Right item 0, 24 Cobot 24 0.02

5 Table, Right item 0, 24 Cobot 24 0.02

6 Table, Right item 0, 24 Cobot 24 0.02

7
Unidentified Person,

Table, Right item
57.8, 0, 24

Human,

Cobot
81.8 0.02

8 Table, Right item 0, 24 Cobot 24 0.02

9 Table, Right item 0, 24 Cobot 24 0.02

10 Table, Right item 0, 24 Cobot 24 0.02

11
Displaced Crate, Table,

Right item
48.6, 0, 23

Cobot,

Human
71.6 0.03

12 Table, Right item 0, 24 Cobot 24 0.02

13 Table, Wrong item 0, 40 Cobot 40 0.03

14 Table, Right item 0, 24 Cobot 24 0.02

15 Table, Right item 0, 24 Cobot 24 0.02

16 Table, Right item 0, 24 Cobot 24 0.02

17 Table, Right item 0, 24 Cobot 24 0.02

18 Table, Right item 0, 24 Cobot 24 0.02

19 Table, Right item 0, 24 Cobot 24 0.02

20
Table, Wrong item,

Threshold Distance
0, 40, 6.3

Cobot,

Human
46.3 0.02

21 Table, Right item 0, 24 Cobot 24 0.02

22 Table, Right item 0, 24 Cobot 24 0.02

23
Table, Right item,

Cobot Collision
0, 24, 109.2

Cobot,

Human
133.2 0.02

24 Table, Right item 0, 24 Cobot 24 0.02

25 Table, Right item 0, 24 Cobot 24 0.02

26 Table, Right item 0, 24 Cobot 24 0.02

At the 7th iteration, an unidentified person entered the workspace while the ’Right
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item’ situation was encountered along with the table. The system chooses the

human for the ’Unidentified person situation’ and the cobot for the ’Right item

situation’.

At the 11th iteration, a ’Displaced crate’ situation appeared with a ‘Table’ and

the ’Right item’ situation. The system chooses the human for the ’Right item’

and the cobot for the ’Displaced crate’. Human is chosen this time for the right

item as the matching score for the combination (cobot, displaced crate) is more

than (cobot, right item).

At the 13th iteration, a wrong item appeared along with the table. The system

chooses the cobot to handle the wrong item situation.

Three situations that appeared at the 20th iteration were ’Wrong item’, ’Threshold

distance’, and ’Table’. The system chooses the two most prior situations, i.e.,

the wrong item and threshold distance and assigned resources cobot and human,

respectively.

In the 23rd iteration, the ’Right item’ situation appeared with the ’Table’; however,

during the cobot’s operation, the human supervisor sneezed and contacted the

cobot. This is the ’Cobot Collision’ situation, and the system was bound to stop.

The system assigned the human to the ’Cobot Collision’ and the cobot to the

’Right item’ situation. However, the cobot would not move until the human gives

a clear to the system as indicated in the decision-making diagram (Fig. 6.8). The

Right item situation will then be activated on the ‘resume operation’ command.

The maximum time taken to decide on a scenario is shown in Fig. 6.13, along with

the anxieties for each iteration. The system took 0.03s at maximum to decide upon

the high-impact situations and their assignment to the resources.

6.6.2 Discussion

Now the proposed method is compared with some contemporary systems in the

field developed in the recent past. The systems are compared in terms of the safety
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parameters and the system’s situational handling.

Figure 6.13: Anxiety Evaluation and Counter Strategy Decision Time.

It can be seen from Table 6.6 that the major contribution of the existing systems

was to provide collision avoidance using different techniques. This assures one

aspect of physical safety as seen in works of [17],[16],[107], and [122]. It can also be

noted that these systems were catering to only one situation for which the system

was designed. The minimal work for psychological safety assurance during HRI can

be seen in the works of Bekele et al. [148] and Dragan et al. [19]. These systems

were also designed to handle a single situation. The novel concept of legibility

was given in [19]; the task assigned to the robot varies with the human intent,

which is assessed during HRI. The situation confronted was single; however, the

variation in approach to perform the task makes it hybrid. The outcome achieved

was an early response and confidence to counter the confronted situation. Then,

the system presented in [7], [149] assures both physical and psychological safety

to the confronted single situation. The system presented in [149] also ensures

bi-directional intent to assure legibility.
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Table 6.6: Comparison of Proposed Method with Contemporary Systems

Authors Technique Safety Parameters Situation Handling

Flacco et al.

2012 [17]

Collision avoidance using

depth space

Physical Safety for safe

HRC
Caters single situation

Morato et

al. 2014 [16]

Kinect and sphere-based

simulation model for col-

lision avoidance

Physical Safety for safe

HRC
Caters single situation

Safeea and

Pedro, 2019

[107]

Laser scanner and In-

ertial measurement unit

(IMU) based model for

collision avoidance

Physical Safety for safe

HRC
Caters single situation

Sharkawy et

al. 2020

[122]

Neural network and

Torque-sensing for

collision detection

Physical Safety for safe

HRC
Caters single situation

Bekele et al.

2014 [148]

Physiological monitoring

for adaptive HRI
Psychological safety

Caters single situation

(difficulty level)

Lasota et al.

2014 [7]

Monitoring of separa-

tion distance for collision

avoidance and speed ad-

justment

Physical and psycholog-

ical safety for safe HRC
Caters single situation

Dragan et

al. 2015 [19]

Intent awareness for flu-

ent HRC

Psychological safety

(Legibility)

Cater single Hybrid sit-

uation

Chadalavada

et al. 2020

[149]

Bi-directional intent

communication using

spatial augmented real-

ity (SAR)

Physical and psycholog-

ical safety for safe HRC
Cater single situation

Islam et al.

2019 [168]

Situational awareness

through visual cues and

indexing of multiple

situations (Anxiety) for

safe HRI

Physical and psycholog-

ical safety for safe HRC

Caters multiple situa-

tions in order of prior-

ity (Handle highest pri-

ority situation at one

time)

Non-optimized

Broad technique for in-

dexing situations
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Proposed

Method

Connective Framework

for Anxiety Mitigation

by evaluation matching

score (Anxiety factor)

Ensure both physical

and psychological safety

of the whole CPS for en-

hanced productivity (in-

cluding Legibility)

Caters multiple situa-

tions at a time

Any number of situa-

tions and resources can

be incorporated

Optimized

Rationale-based index-

ing of situations

In our initial endeavor [168], despite ensuring physical and psychological safety,

the approach caters to multiple situations; however, one situation was handled

at a time in terms of priority. The anxiety of the system was ascertained to as-

sess the priority of situations. The indexing of anxiety was carried out through

a more generic approach which lacks a rationale for establishing different levels

of anxiety. The approach also lacked optimization as different available resources

were not utilized to cater to multiple situations, as only one situation was handled

at a time. The situational awareness was acquired through cost-effective and off-

the-shelf available sensors. The previous technique supports the current method,

however, a logical approach having a connection to different types of situations is

presented in the current approach. The technique makes it easy to differentiate

and prioritize situations with varying anxiety levels based on knowledge acquired

from nature. The current method employs all available resources to relieve the cur-

rent state of anxiety, hence the current approach is optimized. In the considered

case, two resources are available; we can see both are employed simultaneously to

tackle the braved situations. The technique provides leverage to incorporate any

number of resources by modifying the equations in the optimization algorithm,

which decides on situations by calculating matching scores of corresponding re-

sources vs. situations. There are times when only one resource is suitable to

handle several situations. At this stage, the first situations with higher anxiety

will be addressed, and the remaining will be catered for sequentially. For exam-

ple, suppose two situations are encountered, i.e., ’Unidentified person’ and ’Cobot
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Power Failure’. In that case, the resource ’Human’ is the only suitable resource to

handle both situations one by one in terms of anxiety.

It is also observed that social cues ensured legibility for both the robot and the

operator. In the case of the robot, it is ensured by object detection, displacement

sensing, and pose estimation techniques, whereas in the case of the operator,

through threshold distance, time delay, and other cautions mentioned in the logic

diagram. It is also notable to observe the time taken by the setup in deciding

on the braved situations. The system took 0.03s to decide upon the high-impact

situations and their assignment to the resources. This shows that the method

is not time-intensive, which can accrue benefits by combining human intelligence

with AI techniques. It is seen from the results that the proposed method provides

flexibility to the CPS by handling multiple situations at a time in an optimized

manner. The method as a whole improves the decision-making of a CPS facing a

complex scenario.



Chapter 7

Experimental Validation 2

In this chapter, the proposed framework is applied to a case study of a manufac-

turing scenario. An example of automotive industry parts assembly is considered,

as shown in Fig. 7.1. The scenario involves a cobot and a human operator per-

forming tasks depending on information through multiple sensors integrated with

a collaborative CPPS. Different parts are manufactured at workstations and arrive

at an assembly center. The outer case arrives through a conveyor at the center,

where a cobot picks two gears in a sequence and places them on the case for as-

sembly. A human supervisor performs assembly by aligning gears, placing the top

plate, and tightening screws. In addition to the assembly process, the supervisor

is also monitoring operations for anomalies and wrong operations, i.e., he is in

both collaborative and supervisory roles. As the assembly process completes, the

supervisor pushes the button for the next one, and the cobot moves accordingly.

The assembly is then transferred for packaging through the conveyor. The exper-

iment is designed to perform four assemblies in a cycle. The human supervisor is

also responsible for corrective actions on wrong item arrival, wrong sequence, or

absence of item from the location. This whole process is referred to as a standard

procedure.

Five modules were formulated to represent the case: the main module, item in

place module, anxiety module, optimization module, and decision-making module.

The main module holds the other modules, keeps count of the operations in the

115
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cycle and performs the intended task. It looks for the situations during each

iteration and ascertains the matching score through the anxiety module in case

multiple situations emerge. The optimization module then assigns the resources

to the situations by identifying the highest matching score through MIP using

equations (5.1), (5.2), and (5.3). The decision-making module then decides the

contingencies for the identified situations. The actions are either performed by the

cobot or the human supervisor. The item-in-place module is specific to this case

that checks whether the right or wrong item is in place through object detection

and item count.

Figure 7.1: Experimental Case 2, (a) Scenario; (b): Interface; (c): Setup of
Considered Case, (d): Setup from Different Angle; (e): Assembly.
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7.1 Scenario’s Anxiety

There may be situations when the process may not proceed as intended, and it

may face various unwanted and unforeseen situations. To cater to this, different

situations were anticipated for both the cases that can emerge during a cycle; these

include the intended situation as well as unwanted situations.

The considered situations are: Right item: the main task/intended situation i.e.

the right items (gears) are in place for pick and place operations/assembly; the

Wrong item: the item at the work location is either not in list or wrong in sequence;

No item: when no item appears at the work location; the Human interference:

when operator interferes in any task at any location, as he finds that the robot

may not be able to perform the task or he finds any anomaly; Displaced Case: the

operation of assembly cannot be completed when the case is displaced from the

designated location; Unidentified person: any unknown person in the workspace

is a hazard to the system and to himself; Foreign object: any object not required

in the workspace is also a hazard to the system; Obsession: any situation actually

not affecting but disturbing the outcome of the system; generally it is established

after few iterations when the operator realizes that the situation is a false alarm

e.g. in the case study the object detection algorithm detects the table on which

the items are placed as a foreign object; Time delay: the completion time variance

in the intended operation; Threshold Distance: the breach of minimum distance

that is established to be safe for collaboration between the human and the robot;

Cobot Power Failure: in case the cobot stops work due to power failure; Cobot

Collision: in case the cobot collides with the human operator. These situations

and their anxiety index calculated through Ishikawa are shown in Table 7.1.

There are two resources, a human and a cobot, and twelve situations are antic-

ipated. The matching score (ars) is estimated prior to the process for both the

resources vs. the twelve situations. The severity, categories, the value of anxiety

for the cases, were evaluated and the anxiety factors were then calculated. These

were then fed into the central database. The variables to estimate these were
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thoroughly deliberated upon by the experts. The data set generated is shown in

Table 7.2.

Table 7.1: Possible Situations and their Anxiety Index

Ser Situation Anxiety Level Index Severity(I)

1 Cobot Power Failure 11 1 100

2 Cobot Collision 10 0.91 91

3 Foreign Object 9 0.81 81

4 Unidentified Person 8 0.72 72

5 Human Intervention 7 0.63 63

6 Displaced Case 6 0.54 54

7 Wrong Item in Place 5 0.45 45

8 No Item in Place 4 0.36 36

9 Right item in Place 3 0.27 27

10 Threshold Distance 2 0.18 18

11 Time Delay 1 0.09 9

12 Obsession 0 0 0

If we analyze the Table 7.2, we see that the first basis for the resource assignment

is the resource suitability variable Q; if it is zero, the resource cannot be assigned

to the situation. The second basis is the task variable t; in our case, 0 is assigned

to the preferred resource. Hence the resource having t=0 is assigned if it is not

already committed and if the resource suitability variable is not ‘0’. The third basis

is the preference variable p, the situation with the higher value will be addressed

first by the two resources, and the remaining will be addressed subsequently after

the disposal of the initial ones.

The cumulative effect of all these variables is the anxiety factor. The table clearly

depicts when any situation appears, which out of two resources can be assigned,

which the prior resource is, and which situation will be addressed first.
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Table 7.2: Data Set

Sit. I Cat. A
t p Q a

H
um

an

C
ob

ot

H
um

an

C
ob

ot

H
um

an

C
ob

ot

H
um

an

C
ob

ot

Right item 27 G 20 1 0 4 4 1 1 23 24

Wrong item 45 K 38 1 0 6 6 1 1 43 44

No item 36 K 34.4 0 1 5 5 1 0 39.4 0

Human

interference
63 K 45.2 1 0 8 8 0 1 0 53.2

Displaced

case
54 K 41.6 1 0 7 7 1 1 47.6 48.6

Unidentified

person
72 K 48.8 0 1 9 9 1 0 57.8 0

Foreign

object
81 K 52.4 0 1 10 10 1 0 62.4 0

Obsession 0 O 0 1 1 1 1 0 0 0 0

Time delay 9 N 1.8 0 1 2 2 1 0 3.8 0

Threshold

distance
18 N 3.6 0 1 3 3 1 0 6.6 0

Cobot Power

Failure
100 P 100 0 1 12 12 1 0 112 0

Cobot

Collision
91 P 98.2 0 1 11 11 1 0 109.2 0

7.2 Situational Awareness

Different situational awareness techniques were used to detect the listed situations.

The object detection technique detects a right item, a wrong item, no item, an

unidentified person, and foreign objects. YOLOv3 [166] is trained to detect gears
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along with day-to-day general objects. RFID sensor in the helmet is used to

identify the authorized operator, an IR proximity sensor to detect the displaced

case, impact sensors in the cobot to detect cobot collision, a power sensor to detect

cobot power failure, and the clock to gauge the time delay.

The human interventions are detected through a pose estimation algorithm which

takes the feed through a camera installed above the workspace. Open pose [167] is

used to detect different human poses. The separation distance between the cobot

and the operator is used to evaluate the threshold distance; this was done by

calculating the distance between the center of the cobot and the operator detection

bounding box. A machine vision camera is placed to detect the objects, which are

two different types of gear. The gears were trained for detection using an online

platform Roboflow [169], and subsequently used in YOLOv3. The module adapts

the contingency plan if the right item is not in place through the decision-making

module.

7.3 Optimization Criterion for the Case

Twenty four decision variables are stated to formulate the optimization criterion

for this case, as there are twelve situations and two resources. Then the situa-

tion constraints were defined using equation (5.1); either ’resource 1’ (Human)

or ’resource 2’ (Cobot) can be assigned to a situation. Similarly, the resource

constraints using equation (5.2) were defined. In this way, a total of 14 equations

were formulated. Consequently, the objective function incorporating the matching

scores for the situations was developed as stated in (5.3). Situations constraints

for the situations were defined as:

r ∈ R
R∑

r=1

Xrs ≤ 1 (7.1)

R = (1, 2)

S = (1, 2, ..., 12)
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The constraint for resource 1 (Human) is:

X11+X12+X13+X14+X15+X16+X17+X18+X19+X110+X111+X112 ≤= 1 (7.2)

The constraint for resource 2 (Cobot) was defined as:

X21+X22+X23+X24+X25+X26+X27+X28+X29+X210+X211+X212 ≤= 1 (7.3)

The matching scores for the situations to formulate the objective function were

defined. Consequently, the objective function incorporating the matching score

for the situations is:

s ∈ S r ∈ R Maximize
S∑

s=1

R∑
r=1

arsXrs (7.4)

R = (1, 2)

S = (1, 2, ..., 12)

7.4 Decision-Making Logic for the Case Study

The decision-making module decides the contingencies for the identified situations

through actions performed by the resources. The actions are either performed by

the cobot or the human supervisor in our scenario, which are actually dependent

on the specific role assigned to the resource for a particular case.

The roles assigned to the situations are: in case of right item the robot will pick

and place the item at designated location, the human can do so but the preference

is given to the robot; in case of wrong item the robot will pick the item and place

it at the spot dedicated for them, the count however, will not be increased and the

human has to place the right item at the location; in case of no item in location,

the robot moves to the next location and the human places the item at the drop

point; in case the human operator feels to interfere may be due to any anomaly
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in the process or defected item, he may drop the item at the drop point or the

wrong item spot, the count will then be incorporated by checking the human pose

when doing action; in case of displaced case, the robot adjusts it by pushing it

to the fixed enclosure and if the robot is not available then the human performs

it; in case unidentified person enters the workspace, the human has to remove it

from the area, a caution is displayed on the screen for the human to perform this

action; similarly if a foreign object appears in the workspace, a caution is raised

to the human to remove the object from the workspace, in both the last two cases

the robot stops action until the human presses the button for resume operation; in

case of obsession, none of the resources perform any action and perform the task

as intended; in case of time delay and threshold distance is breached, a caution is

given to the human operator to analyse and adjust accordingly; in case of cobot

power failure, the human checks the reason, rectify it and resume the operation,

however, the whole system is to remain at stand still; similarly in case of cobot

collision, the whole system comes to stop and the human checks, resolve the issue,

and then resume the operation.

If we may analyze, we see that all the actions are interlinked with the variables

assigned in Table 7.2. The experts decide the variables’ values based on experience

and consultation.

The five formulated modules are similar to the previous case: the main module,

item in place module, anxiety module, optimization module, and decision-making

module. The anxiety and optimization modules comprise codes for calculating

anxiety, anxiety factors, and optimization algorithms. The main module, item-in-

place module, and decision-making module contains the logic for decision making.

The decision-making diagrams shows the contingencies to be performed when a

situation emerges. The resources to handle the contingencies are decided on the

recommendation of the optimization module. The actions are then performed by

either the cobot or the human supervisor as discussed above.

Logic diagrams for the main module and item-in-place module, are shown in Fig.

7.2 and Fig. 7.3 respectively.
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Figure 7.2: Case Study 2: Main Module.

Figure 7.3: Item in Place Module for Case 2.
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Logic diagrams for the decision-making module is shown in Fig. 7.4.

Figure 7.4: Decision-Making Module for Case 2.

7.5 Survey

A survey that consisted of participants pooled from university students and faculty

was carried out. The ages of the participants range from 19 to 40 years (M = 28.7,

SD = 7.73).
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The participants were informed before the experiment to continuously monitor

the screen for instructions during the operation. Previous research has shown

that similar surveys were carried out keeping in consideration metrics proposed

by Hoffman and Breazeal [170]. The surveys were based on individual execution

times, concurrent time of human-robot motion, and robot and idle human times.

These metrics are not valid for this experiment as one stereotype motion is not

considered for the completion of the task; rather, uncertainties are catered to that

depict the sequence of tasks may be different in every cycle. Therefore relevant

metrics are devised which are similar to the work in [15]. The subjects had nominal

knowledge of the specifics of the system and were briefed on the assigned task only.

A total of 20 subjects participated, the repeated-measure design was considered for

the experiment, and the subjects were divided into two randomly selected groups.

Two types of conditions were assigned, the first group includes those who first

worked with the decision-making design (n = 11), and the second group includes

those who worked with the standard design without a decision-making system (n

= 9). Before the experiment, the subjects were not informed what condition was

assigned and what metrics were being measured. Both quantitative and subjective

measures were ascertained. The quantitative measures include the decision time

taken to decide on each situation and the accuracy of the process. Based on the

questionnaire responses, the subjective measures include perceived safety, comfort,

and legibility.

First, both groups executed a training round, during which the participants per-

formed the complete experiment by themselves, without an assistant and the robot,

to familiarize themselves with the task. Next, all participants were provided with

a human assistant to perform the task collaboratively as would be required to per-

form with a robot in the subsequent phase, i.e., the 3rd phase. Finally, two task

executions were conducted firstly in one condition and later in a switched mode;

however, the sequence was different for both groups. A questionnaire is given to

participants after each task execution, as shown in Table 7.3. Each participant

performed two training sessions with the robot before each task execution to build

mental compatibility. To prevent any involuntary bias from the participants, the
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first task execution was conducted in a way that the participant was unaware of

which out of two conditions each participant had been assigned to. Before the

conduct of the alternate mode, participants were educated that the system would

behave differently during the second phase. The participants were briefed; the

robot may take some automated measures, and they are required to monitor in-

structions on the screen.

Table 7.3: Questionnaires

Fluency with the Collaborative Robot

1 I trusted the robot to do the right thing at the right time.

2 The robot did not understand how I desired the task to be executed.

3 The robot kept disturbing me during the task.

4 The robot and I worked together for better task performance.

Perceived safety, comfort, and legibility

5 I felt safe while working with the robot.

6 I trusted the robot would not harm me.

7 The robot moved too drastically for my comfort.

8 The robot endangered the safety of unknown persons in the workspace.

9 I understand what the robot will be doing ahead.

The questions, shown in Table 7.3, were intended to determine each participant’s

satisfaction with the robot as a teammate as well as his/her perceived safety,

comfort, and legibility. A 5-point Likert scale was used for the two questionnaires

on which the participants had to respond, strongly disagree to strongly agree for

the first questionnaire and much less to much more for the second questionnaire.

Based on the dependent measures, the two main hypotheses in this experiment

were as follows:

Hypothesis 1: Using a decision-making framework for anxiety will lead to more

fluent human-robot collaboration based on timely automated decisions and the

accuracy of the approach.
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Hypothesis 2: Participants will be more satisfied with the decision-making

framework performance while collaborating with the robot and feel more com-

fortable, safe, and legible compared to a CPPS that uses standard task planning.

The automated decision time cannot be calculated for both conditions as the stan-

dard approach does not cater to unprecedented situations; rather, the operator has

to stop the system and apply countermeasures. The accuracy of the approach is

defined as the number of errors (situations that could not be handled automat-

ically) observed during one cycle divided by the total number of iterations. At

least two situations were intentionally generated in each trial to check the system

response.

7.6 Results

As stated before, two types of gears were trained to be detected by the system

and subsequently to be picked and placed by the cobot for the assembly operation.

The detection of gears through the object detection technique is shown in Fig. 7.5.

(a) (b)

Figure 7.5: Recognition of Gears, (a): Detection of Gear 1; (b): Detection of
Gear 2.

Similarly, human detection is also carried out through the object detection tech-

nique. Results for the detection of an authorized operator and an unidentified

person are shown in Fig. 7.6. The identification of the authorized operator within
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the workspace through object detection is complemented by the RFID sensor in

the helmet.

(a) (b)

Figure 7.6: Recognition of Humans in Workspace, (a): Detection of Operator
in Blue; (b): Detection of Unidentified Person in Red.

Detection of two specific poses of the operator is shown in Fig. 7.7, the first is

the pose of the operator when interfering in assembly, and the second is the pose

of the operator while placing one of the gears himself. It is pertinent to mention

here that the contingencies were adopted only when a particular pose detected is

complemented by the position of the robot at the same location. This is because,

while doing parallel operations, the same pose could be detected while the cobot

may be operating at some other place.

(a) (b)

Figure 7.7: Detection of Human Interventions, (a): Detection of intervention
1; (b): Detection of intervention 2.
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Our approach is capable of detecting multiple situations and their disposal at once.

For example, two individual situations are considered at a time: a displaced case

and an unidentified person. An inspector entered the workspace and displaced the

outer case during inspection (see Fig. 7.8).

(a) (b)

Figure 7.8: Detection and Action on Multiple Situations, (a) Detection of
unidentified person and displaced case; (b) Picture showing the case being

aligned by the cobot.

The ‘unidentified person’ situation is detected by object detection, whereas the

‘displaced case’ is detected by the proximity sensor. As the two situations were

detected, the anxiety factors were calculated for both, and the optimization algo-

rithm decided the resource ‘human’ for the unidentified person and the resource

‘cobot’ for the displaced case. Based on the decision given by the decision-making

module, the algorithm chooses the action for an unidentified person scenario, and

the cobot stops working initially. Until the operator removed the unidentified

person from the workspace, the cobot did not resume its operation. The signal

was then given to the cobot’s software for the displaced case situation; the cobot

then resumed operation and moved the case to its original location by pushing it

to a fixed enclosure. The table on which gears were placed was initially detected

as a foreign object; however, it later declared obsession as not an obstruction to

the cobot’s motion, as shown in Fig. 7.9.

An example case is presented and a few situations are incorporated for under-

standing. Only the variant situations are discussed in this paragraph. A list of
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situations encountered at single iterations throughout the cycle is shown in Table

7.4. Individual and total severity is calculated for each iteration, and resources

are assigned accordingly.

Figure 7.9: Detection of Dining Table as Obsession.

At the 1st iteration, a foreign object situation along with the right item situation

emerged. As the object detection algorithm is trained to detect day-to-day items,

the table is detected as a foreign object. The human supervisor assessed that the

table was not creating a disturbance in the process and declared it an obsession.

Thereafter in subsequent iterations, the table reappeared as an obsession. In the

6th iteration, the right item situation was encountered along with the obsession;

however, an inspector came into the work area to inspect the process. The in-

spector was detected as an unidentified person who had entered the workspace.

The inspector had displaced the case while inspecting it, and another situation,

i.e., the displaced case, emerged. The right item situation diminishes as the item

is already placed. The system decided the human for the unidentified person and

the cobot for the displaced case.

At the 9th iteration, the right item situation appeared with obsession. While the
cobot was on the move, the human operator interfered at the assembly station
as he observed something there. This is the human intervention situation 1; the
system decided the cobot for the interference, which stopped at its location, and
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the human operator decided on the right item situation. As the cobot was on
its move, the operator left the item in the cobot’s grip and continued working at
the assembly station. On termination of the human intervention, the right item
situation is left, and the system then decides on the cobot to handle it, which
resumes the motion to the dedicated location for gear placement.

Table 7.4: Situations vs. Resource Assignment

Iter. Situations
Individual
Severities (a)

Resource
Assignment

Total
Severity

Decision
Time (s)

1
Foreign Object,

Right item
62.4, 24 Human, Cobot 86.4 0.03

2 Obsession, Right item 0, 24 Cobot 24 0.02

3 Obsession, Right item 0, 24 Cobot 24 0.02

4 Obsession, Right item 0, 24 Cobot 24 0.02

5 Obsession, Right item 0, 24 Cobot 24 0.02

6 Obsession, Right item 0, 24 Cobot 24 0.02

6
Unidentified Person,

Displaced Case
57.8, 48.6 Human, Cobot 106.4 0.02

7 Obsession, Right item 0, 24 Cobot 24 0.02

8 Obsession, Right item 0, 24 Cobot 24 0.02

9 Obsession, Right item 0, 24 Cobot 24 0.02

9
Human intervention1,

Right item
53.2, 23 Cobot, Human 76.2 0.03

9 Right item 24 Cobot 24 0.02

10 Obsession, Right item 0, 24 Cobot 24 0.03

10
Human intervention2,

Right item
53.2, 23 Cobot, Human 76.2 0.02

11 Obsession, Right item 0, 24 Cobot 24 0.02

12 Obsession, Right item 0, 24 Cobot 24 0.02

13 Obsession, Wrong item 0, 40 Cobot 40 0.02

14 Obsession, Right item 0, 24 Cobot 24 0.02

15 Obsession, Right item 0, 24 Cobot 24 0.02

16 Obsession, Right item 0, 24 Cobot 24 0.02

Then at the 10th iteration, the situation was normal in the beginning; however,

the operator observed that the gear that was to be picked by the cobot was not

properly placed. The operator then decided to pick the gear on its own; here, the
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human intervention situation emerged again. However, this time the count for the

item was incremented as the pose estimation detected pose 2. At this stage, there

were two situations; human intervention 2 and the right item. The system decided

the cobot for the human intervention and the human for the right item situation.

The cobot performed a stop operation while the operator placed the item in its

defined location. The time taken for decision for handling situations for the exam-

ple case is shown in Fig. 7.10. Anxieties, total anxiety, and the maximum anxiety

situation for each iteration are shown. The maximum time taken to decide on a

scenario was noted as 0.03s.

Figure 7.10: Anxiety Evaluation and Counter Strategy Decision Time.
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The quantitative analysis from the survey was carried out; the overall mean au-

tomated decision-time (MADT) for the proposed method and accuracy of both

approaches were calculated with a minimum of two situations in each cycle.

It was revealed that the mean automated decision time for a contingency is 0.21s,

as can be seen in Table 7.5. The decision-making system (accuracy of 89.98 %)

was found to be 16.85 % more accurate than the standard system (accuracy of

73.125 %).

The t-test for the significance of the results was conducted with a confidence level

set to p < 0.05 (95% confidence level), and the p-value for the test was found to

be p < 0.05. The Standard error mean (SEM) for the MADT was 9.36E-5, the

upper limit was 0.0211s, and the lower limit was 0.0208s.

Significant differences (at p < .05) were found for the questions of fluency with the

collaborative robot; the participants exposed to the decision-making system agreed

more strongly with “I trusted the robot to do the right thing at the right time” (p

= 5.99E -11) and “The robot and I worked together for better task performance” (p

= 7.43E -09) and disagreed more strongly with “The robot did not understand how

I desired the task to be executed” (p = 4.42E -11), and “The robot kept disturbing

during the task” (p = 7.94E -09). Similarly (at confidence level p < .05), significant

differences were found for the questions of perceived safety, comfort, and legibility;

the participants exposed to the decision-making system agreed much more with “I

felt safe while working with the robot” (p = 2.7E -14), “I trusted the robot would

not harm me” (p = 9.58E -16) and “I understand what robot will be doing ahead”

(p = 2.58E -10), and agreed much less with “The robot moved too drastic for my

comfort” (p = 1.79E -12), and “The robot endangered safety of unknown persons

in workspace” (p = 1.91E -14).

The results support both the hypothesis in favor of the decision-making system;

they indicate that the proposed approach leads to more fluent HRC (Hypothe-

sis 1) and also highlight that the method extends safety, comfort, and legibility

(Hypothesis 2).
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Table 7.5: Accuracy of Two Methods, Mean Automated Decision-Time and
the SEM

Subj.

Standard
Method

Decision-
Making Method

Remarks
Iter. Err. Acc. Iter. Err. Acc. MADT

1 8 2 75 16 1 93.75 0.0206

Subj. = Subject

Iter. = Iteration

Err. = Error

Acc. = Accuracy

Average Accuracy

(Standard) = 73.12 %

SEM=1.02

Average Accuracy

(Decision-Making Method)

= 89.98 %

SEM =0.94

MADT=0.021s

SEM = 9.36E-5

p = 1.83E-10

2 8 2 75 15 1 93.33 0.0206

3 8 2 75 14 1 92.85 0.0207

4 8 2 75 17 2 88.23 0.0211

5 8 2 75 16 1 93.75 0.0206

6 8 2 75 13 2 84.61 0.0215

7 8 2 75 12 1 91.66 0.0208

8 8 3 62.5 14 2 85.71 0.0214

9 8 2 75 10 2 80 0.022

10 8 3 62.5 11 1 90.90 0.0209

11 8 2 75 12 1 91.66 0.0208

12 8 2 75 10 1 90 0.021

13 8 2 75 15 3 80 0.022

14 8 3 62.5 14 1 92.85 0.0207

15 8 2 75 11 1 90.90 0.0209

16 8 2 75 12 1 91.66 0.0208

17 8 2 75 12 1 91.66 0.0208

18 8 2 75 11 1 90.90 0.0209

19 8 2 75 13 1 92.30 0.0207

20 8 2 75 14 1 92.85 0.0207

Figure 7.11: Mean Decision Time with Standard Error Mean (SEM) at 95%
Confidence.
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Figure 7.12: Accuracy of Conditions with Standard Error Mean (SEM) at
95% Confidence.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

Exponentially growing technologies, such as intelligent robots in the context of

Industry 4.0, are radically changing traditional manufacturing to intelligent manu-

facturing with increased productivity and flexibility. Workspaces are transformed

into fully shared spaces for performing tasks during human-robot collaboration

(HRC), increasing the possibility of accidents as compared to fully restricted and

partially shared workspaces. The interactions among them can be quite demand-

ing in terms of safety, employing both cognitive and physical resources. In this

work, a four-layered connective framework is proposed that can quickly respond

to changing physical and psychological safety situations. First, a scalable factor,

‘anxiety,’ to represent the gravity of expected/unforeseen situations a CPS could

encounter is defined and categorized through historical data using the Ishikawa

method. Second, current situational awareness of the CPS is ascertained through

visual cues (such as human pose, object identification, etc.). Third, a mathemati-

cal model is developed using Mixed-integer programming (MIP) to allocate optimal

resources, to tackle high-impact situations generating anxiety. Last, logic is de-

signed for an effective counter-mechanism to mitigate the generated anxiety based

136
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on historical knowledge, current state, and suggested optimization. The proposed

method was tested on real-world manufacturing scenarios involving HRC.

The research shows that the previous works address limited situations and solely

focus on a single aspect, e.g., collision avoidance, motion planning, or psychological

safety. The proposed method collectively addresses all the issues earmarked by the

experts that a CPPS may face. Here, the current method must be compared with

the previous work [168]. Only the most prior situation with maximum anxiety can

be handled using the previous method. Whereas the current approach is optimized,

that employs all available resources to relieve the current state of anxiety. The

method is feasible to include any number of resources by modifying the equations

in the anxiety and optimization algorithm. At times when limited resources are

available, situations with higher anxiety are addressed first, followed by lower

ones. The indexing of anxiety was carried out through a more generic approach in

the previous method that lacked rationale for scaling different levels. The current

method, though, partially uses the previous technique; however, a logical approach

with a biomimetic connection is presented, making it easy to differentiate and

prioritize situations. The limitation of this work is that the proposed approach is

validated for two resources only that were the human and the robot, using equation

(4.2), and can be applied to multiple resources using equation (4.3).

The results from the experimental validations demonstrated that the proposed

method improves the decision-making of a Cyber-physical production system (CPPS)

facing complex situations, ensures physical safety, and effectively enhances the pro-

ductivity of the human-robot team by leveraging psychological comfort. The pro-

posed framework is accommodative to incorporate any industrial scenario, whether

manufacturing, packaging or any other production scenario. The method combines

human knowledge and intelligence with AI techniques to minimize the decision

time; the maximum time recorded to decide on a scenario is 0.03s, which shows

that the method is not time-intensive.

The contribution of the work is that a framework is presented to address the

combined physical and psychological safety issues. While not only ensuring the
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human well being, the human-machine teamwork in a CPPS has been augmented

through meaningful and manageable task allocation thus improving productiv-

ity. The CPPS has been made more intelligent, aware, safe, resilient, and smart,

thereby alleviating the physical and mental tasks of humans. While considering

the worker role and associated skill requirement, an environment has been created

where the human operator feels more integrated into the loop and actively con-

tributes to the overall process. The decision-making of the production system is

improved, which provides it the flexibility to tackle multiple situations at once in

an optimal manner and can fit in any industrial scenario; manufacturing, assembly,

packaging, etc. As the proposed work allows a safe and comfortable working en-

vironment, optimized processing, and enhanced productivity by merely employing

low-cost sensing and interfacing technologies, thus ensuring social and economic

sustainability. The work exhibits the integration of computers in industry, which

is implemented in every layer of the proposed work, i.e., the functioning of the

CPS, situational assessment, optimization, and decision-making through software,

algorithms, AI, and interface. The amalgamation of four layers demonstrates the

contribution of AI in the industry, resulting in improved overall system produc-

tivity. Therefore, the work is a real manifestation of the concept of Industry 5.0

that allows the creation of a human-centric, resilient, and sustainable working en-

vironment for the industry while increasing the efficiency and productivity of a

CPPS.

8.2 Future Work

In the following, a list of possible future works related to this dissertation is pro-

posed:

• The existing system is dependent on predefined solutions, as the current

approach is initiated by a brainstorming tool to ascertain priority and so-

lutions to situations. The approach can further be improved by employing

machine learning techniques/AI-based knowledge systems, which will make
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it more intelligent; it is proposed that the system may learn through repeti-

tive patterns and solutions provided to the previously confronted situations

and automatically resort to the same solutions. That is to say, the CPPS

may learn in real time from the environment and will improve the knowledge

base continuously.

• Cloud base and semantic systems are emerging trends that may be incorpo-

rated to further enhance the capability and customization of these systems.

In this way, multiple situations can be updated and omitted automatically

in the system through distant central servers that many users can access.

However, it is still recommended that on-ground supervision be carried out

by the human component.

• Pragmatics and Ontology provide a solution to formalizing smart manu-

facturing knowledge in an interoperable way. As industry 4.0 recommends

the use of a coherent approach for semantic communication between mul-

tiple agents, ontology and pragmatic-based systems can be incorporated to

enhance the connectivity of these systems.

• Machine-learning-based image processing techniques were used as a tool,

which are known for uncertainties due to the statistical methods and prob-

ability distributions used in them. The probabilistic nature of these models

is prone to errors that cannot be ignored. In the future, the confidence level

of detection may be included in the calculation of the anxiety factor. The

method’s accuracy may either be increased by selecting a threshold level

of detection or adding a variable incorporating the detection level that will

affect the anxiety factor of the confronted situation.

• The utilization of digital twin technology in the industry is on the rise, par-

ticularly in conjunction with CPS. This entails generating a virtual depiction

of the CPS environment, integrating real-time data from various systems,

and employing sophisticated algorithms to allocate tasks efficiently and co-

ordinate operations. It is advisable to integrate a digital twin framework

into CRCPS, enabling the examination of situations related to ergonomic
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factors, potential hazards, and the optimization of collaborative workflows

to ensure the safety and well-being of human operators working alongside

robots.

The proposed model can be applied to any CPS confronting anxiety in various

situations. For the future, the motivation exists to apply the model to other

industrial problems and processes involving CPS, like business processes, supply

chain models, etc. The proposed model must be applied to various sectors of

existing industries to ensure human workers’ well-being and provide a collabo-

rative environment in consensus with all stakeholders. It can be applied to the

manufacturing industry to foster better collaboration between human workers and

advanced technologies, improving the system’s productivity. It can be applied to

the healthcare industry by integrating the combination of AI, IoT, and cobots.

This may enable accurate diagnostics, personalized treatment, and efficient mon-

itoring. The model can be applied to real-time incoming/outgoing supplies in the

supply chain using AI-driven analysis and collaborative decision-making between

humans, robots, and machines. This may lead to better inventory management

and increased efficiency of the system. The proposed work can be employed in

space programs requiring deliberate and tedious collaboration between humans

and robots. And lastly, it may be applied to service industries like food services

or especially where robots have to look after disabled and old people. This may

be done considering the ergonomic factors, which may provide relief and comfort

to these people.
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Appendix

A.1 Visual Cue

A cue defines the measurement that can be taken out from a sensor’s output.

The measurement could be statistical data or a signal in the user’s interest. It

is a systematic arrangement of data extracted from the signal that can be used

for further analysis. A visual cue is a cue related to vision in human beings,

which is the signal received from the eye and forwarded to the brain. The eye

processes the light from the surroundings and extracts data from it as per the

brain’s requirement. The visual cue is one of the main sources of information in

human beings and other living beings, despite other sensory cues. Therefore, it is

considered an overriding authority for other sensory systems. It can be related to

a proverb, “ Seeing is believing.”

Similarly, machine vision techniques are commonly used in machines to extract

various types of data related to surrounding and processes. The concept holds

good for the machines which are a part of CPPS. The visual cues used in this

dissertation are:

A.1
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A.1.1 Object Detection

Object detection and identification are essential tasks in computer vision that in-

volve locating and classifying objects within images or video streams. Over the

years, several approaches have been developed to address these challenges. The

Object Detection API is an open source available online which provides an oppor-

tunity to detect objects. TensorFlow and YOLO are object detection programming

interfaces that can be trained and deployed to detect common or special items.

Here is an overview of different object detection and identification techniques:

• Traditional Computer Vision Techniques: Before the emergence of deep

learning, traditional computer vision techniques were commonly used for ob-

ject detection. These methods involved handcrafted features like Haar-like

features or Histogram of Oriented Gradients (HOG), coupled with machine

learning classifiers such as support vector machines (SVM) or AdaBoost.

• Deep Learning-based Approaches: Deep learning has revolutionized object

detection and identification. Convolutional Neural Networks (CNNs) have

played a crucial role in enabling end-to-end learning. There are two popular

deep learning approaches for object detection.

Two-stage detectors, exemplified by the Region-based Convolutional Neural

Network (R-CNN) family, follow a two-step process. First, they generate

region proposals using algorithms like Selective Search or EdgeBoxes. Then,

these regions are classified using a CNN. Examples include Faster R-CNN

and Mask R-CNN.

One-stage detectors, such as You Only Look Once (YOLO) and Single Shot

MultiBox Detector (SSD), perform object detection in a single pass. These

models divide the image into a grid and predict bounding boxes and class

probabilities directly. They are generally faster but may sacrifice some ac-

curacy compared to two-stage detectors.
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• Anchor-based and Anchor-free Approaches: In recent years, there has been

a shift from anchor-based methods (e.g., Faster R-CNN) to anchor-free ap-

proaches. Anchor-free detectors, like CenterNet or EfficientDet, eliminate

the need for predefined anchor boxes. They directly predict object centers or

keypoints, resulting in simpler architectures and improved accuracy in some

cases.

• Transformer-based Approaches: Transformers, originally designed for natu-

ral language processing, have also demonstrated success in computer vision

tasks. Models like DETR (DEtection TRansformer) leverage transformer

architectures for end-to-end object detection. Instead of relying on anchor

boxes, they formulate object detection as a set prediction problem, achieving

competitive performance.

• Efficient Object Detection: Addressing the computational and memory con-

straints of object detection models has been a focus of research. Tech-

niques such as model compression, quantization, network architecture de-

sign, knowledge distillation, and hardware acceleration (e.g., GPUs and

TPUs) have been developed to overcome these challenges.

These APIs can extract data from the environment in real-time. They are now

being used in the industry to detect material, jobs, workpieces, products, etc.,

after requisite training.

These models wrecked the problems confronted by vision software programmers of

identifying and localizing numerous objects in a scene in real-time. It’s important

to note that the field of object detection and identification is continuously evolving,

with new approaches emerging regularly. The choice of approach depends on

specific requirements, available computational resources, and the trade-off between

accuracy and speed.

A demonstration of this is shown in the subsequent paragraph while applying the

technique to a live stream of objects that can be seen in Fig. A.1 and Fig. A.2.
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Figure A.1: First Image for Object Detection Test.

Figure A.2: Second Image for Object Detection Test.
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The algorithm successfully detected the objects in the surrounding. The bottles

and chairs detected are shown in Fig. A.3 and Fig. A.4.

Figure A.3: Result of First Image showing Bottle with 74% Accuracy.

Figure A.4: Result of Second Image showing Chair with 84% Accuracy.
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YOLO is a state-of-the-art object detection algorithm [171] that uses a neural

network to detect objects. It can detect daily items by employing a pre-trained

classifier network with its inbuilt data sets or can be trained to detect specific ob-

jects. It is famous for its fast detection ability with reasonable detection accuracy.

The accuracy of the algorithm can be improved by training through available data

can be trained to detect custom objects using the procedure explained in [166]. The

latest version of the algorithm, YOLOv3 [166], was applied to two live streams,

and the results are shown in Fig. A.5.

(a) (b)

Figure A.5: Object Detection, (a) Picture showing detection of bottles, (b)
Picture showing detection of a person.

A.1.2 Pose Estimation

Pose estimation is an estimation method that detects human pose in different

orientations. Open Pose [167] is an algorithm designed to simultaneously detect

the orientation of the human body, limbs, face, etc., which defines the pose of

the human body in a 2D image. Neural networks are utilized in the algorithm to

detect various body portions and their orientation with each other.
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The complete linkage of parts is called a full-body pose. The orientation of parts

is taken as 2D vectors, and the set of these vectors encompassing all parts repre-

sents a specific pose. The information from the pose estimation makes it feasible

for machines to consider different operator poses that depict different tasks. The

interference of a human operator in a machine’s job is one scenario that can be

ascertained through the pose estimation of the operator. It can be ascertained

that the pose is in line or otherwise with the job. A depiction of this can be seen

in Fig. A.6, where a person is detected in a standing pose and in second picture

while picking an object.

(a) (b)

Figure A.6: Pose Detection, (a) Picture showing pose of a standing person,
(b) Picture showing pose of person picking a bottle.

Moreover, sequential detection of different poses can relate to different tasks/si-

tuations; e.g., the number of poses in a sequence can depict a certain task or an

anomaly. A pose related to picking an item followed by a pose of its disposal may

depict its normal or abnormal situation. This can be done by detecting poses at

both locations, i.e., picking and disposal.
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A.2 UR-5 Polyscope

UR-5 is a lightweight collaborative robot that can tackle medium-duty applica-

tions, i.e., its payload capacity is 5 kg [172]. The arm of the UR-5 cobot comprises

linkages and joints; at one end, the robot is mounted called the base, and at the

other end of the manipulator, the tool can be attached. The motion of the robot’s

joints, linkages, and tools can be programmed through a user interface software,

Polyscope. However, the motion is restricted to the area directly above and below

the base.

The programming in the PolyScope can be done through a graphical user interface

(GUI), or the software can be installed on a computer. A touch panel is provided

with the cobot installed with the GUI making it easy for the users to program

without typing commands. Therefore, users with little programming knowledge

can use the robot. The system also has a control box that has ports for interfacing

with the robot, sensors, computer, and touch panel. The program in either system

comprises a list of commands for the robot’s action; however, it also contains

programming commands like ‘if’, ‘then’, and ‘ while loop’ etc. For most of the

tasks, programming can be done entirely using the touch panel, giving points

for the motion. These points in PolyScope’s language are called waypoints. As

the motion of the end effector is crucial for performing required tasks, the robot

is given an exact transformation for each link. However, where accuracy is not

essential, a series of waypoints can be given by manually taking the robot to that

point and registering it. For manual movement of the robot, an option for the

free drive is available in the software. The user can simply hold the robot and

position it in the location where he wants it by pressing the free drive button at

the back side of the touch panel. In addition to giving commands to the robot,

the program can direct signals to other devices while the robot is operating in

parallel. Similarly, the interface can also give input to other programs [173].
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A.3 Mixed Integer Programming

Optimization problems are often solved by Linear Programming (LP). The pro-

gramming described does not relate to writing a program in a computer language.

The linear relations between variables define objective functions and conditions.

The optimization problems vary from situation to situation and category of prob-

lem, making them complex. Here computer algorithms are used to solve these

problems known as solvers. The issue is to find the best algorithm for the con-

fronted problem. Solvers are mathematical techniques that use a number of equa-

tions to solve an optimization problem. In LP, the solution is only viable for linear

equalities and inequalities where equations only involve real numbers. The basis of

the optimization calculation is the objective function. This function is represented

by an equation that will either be maximized or minimized to find the solution.

The second basis is dependent on the constraints defined by certain other equa-

tions. While maximizing or minimizing the solution (highest or minimum value)

is found using various assignments of variables used in equations.

The problem becomes more complex when there is a requirement to include vari-

ables comprising binary digits or whole numbers, i.e., mixed integers (MI). In

this case, when integers are incorporated into calculations, LP is not viable. Here

comes the role of Mixed Integer Programming (MIP); however, it is comparatively

difficult to do calculations through MIP. LP calculations are done multiple times

in MIP in comparison to LP. Different techniques are in use for MIP, like Branch

And Bound (B&B) or Branch and Cut (B&C). In these techniques, the solver

de-integrates the area bounded by the equations. This is also termed as relax-

ation of LP problems. The LP for each bound is then solved with the method

explained above. The integers will then be assigned real numbers. Then B&B

or B&C program will run, and on the next bounds, LP is again calculated. The

process is repeated till the optimal answer is found, and all variables are integers.

This does not mean that the process starts from scratch; rather, the equations are

re-evaluated after the impact of the previous ones.
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A.3.1 Gurobi Optimizer

The Gurobi Optimizer [164] is one of the state-of-the-art solvers for optimization

problems. It allows the development of a mathematical model of an optimization

problem and automatically provides an optimal solution. It also allows adding

complexity to the model and still solving in an acceptable time. It provides in-

terfaces with multiple programming languages. The python API further makes

it easier to build models and solve them. One of the advantages of the Gurobi

solver is the decision-making that doesn’t rely on past data compared to machine

learning, where patterns from the past are used to make predictions. If something

changes in real-time, it can be adjusted on the way, and the solver finds the best

solution accordingly.

A.3.2 Gurobi Optimization Algorithm

The algorithm used for the optimization layer is stated below:

import gurobipy as gp

from gurobipy import GRB

# Resource and s i t u a t i o n s s e t s

R = [ ’Human ’ , ’ Cobot ’ ]

J = [ ’ RightItem ’ , ’ WrongItem ’ , ’ NoItem ’ , ’ HumanInterference ’ ,

’ DisplacedCase ’ , ’ Un ident i f i edUse r ’ , ’ Fore ignObject ’ ,

’ Obsess ion ’ , ’ TimeDelay ’ , ’ ThresholdDistance ’ ,

’ CobotFai lure ’ , ’ CobotCo l l i s i on ’ ]

a11=39

a12=40

a13=0

a14=0

a15=0

a16=0

a17=0

a18=0
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a19=0

a110 =6.3

a111=0

a112=0

a21=0

a22=0

a23=0

a24=0

a25=0

a26=0

a27=0

a28=0

a29=0

a210=0

a211=0

a212=0

# Matching anx ie ty data

combinations , anx ie ty = gp . mu l t i d i c t ({

( ’Human ’ , ’ RightItem ’ ) : a11 ,

( ’Human ’ , ’ WrongItem ’ ) : a12 ,

( ’Human ’ , ’ NoItem ’ ) : a13 ,

( ’Human ’ , ’ HumanInterference ’ ) : a14 ,

( ’Human ’ , ’ DisplacedCase ’ ) : a15 ,

( ’Human ’ , ’ Un ident i f i edUse r ’ ) : a16 ,

( ’Human ’ , ’ Fore ignObject ’ ) : a17 ,

( ’Human ’ , ’ Obsess ion ’ ) : a18 ,

( ’Human ’ , ’ TimeDelay ’ ) : a19 ,

( ’Human ’ , ’ ThresholdDistance ’ ) : a110 ,

( ’Human ’ , ’ CobotFai lure ’ ) : a111 ,

( ’Human ’ , ’ CobotCo l l i s i on ’ ) : a112 ,

( ’ Cobot ’ , ’ RightItem ’ ) : a21 ,

( ’ Cobot ’ , ’ WrongItem ’ ) : a22 ,

( ’ Cobot ’ , ’ NoItem ’ ) : a23 ,

( ’ Cobot ’ , ’ HumanInterference ’ ) : a24 ,

( ’ Cobot ’ , ’ DisplacedCase ’ ) : a25 ,

( ’ Cobot ’ , ’ Un ident i f i edUse r ’ ) : a26 ,

( ’ Cobot ’ , ’ Fore ignObject ’ ) : a27 ,

( ’ Cobot ’ , ’ Obsess ion ’ ) : a28 ,
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( ’ Cobot ’ , ’ TimeDelay ’ ) : a29 ,

( ’ Cobot ’ , ’ ThresholdDistance ’ ) : a210 ,

( ’ Cobot ’ , ’ CobotFai lure ’ ) : a211 ,

( ’ Cobot ’ , ’ CobotCo l l i s i on ’ ) : a212

})

# Declare and i n i t i a l i z e model

m = gp . Model ( ’RAP’ )

# Create d e c i s i o n v a r i a b l e s for the RAP model

x = m. addVars ( combinations , name=” a s s i gn ” )

# Create s i t u a t i o n c o n s t r a i n t s

s i t u a t i o n s = m. addConstrs ( ( x . sum( ’ ∗ ’ , j ) <= 1 for j in J ) ,

name=’ s i t u a t i o n ’ )

# Create r e s ou r c e c o n s t r a i n t s

r e s o u r c e s = m. addConstrs ( ( x . sum( r , ’ ∗ ’ ) <= 1 for r in R) ,

name=’ r e sou r c e ’ )

# Object ive : maximize t o t a l matching s co r e o f a l l ass ignments

m. s e tOb j e c t i v e ( x . prod ( anx ie ty ) , GRB.MAXIMIZE)

# Save model for i n s p e c t i o n

m. wr i t e ( ’RAP. lp ’ )

# Run opt imiza t i on engine

m. opt imize ( )

# Display optimal va lue s o f d e c i s i o n v a r i a b l e s

for v in m. getVars ( ) :

i f v . x > 1e −6:

p r i n t ( v . varName , v . x )

# Display optimal t o t a l matching anx ie ty

p r in t ( ’ Total matching anx ie ty : ’ , m. objVal )
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A.4 Ishikawa Diagram

The tool is named after Kaoru Ishikawa, who pioneered this idea in the 1960s [174].

His origin was from Japan, and he was a famous statistician known for quality con-

trol problems. The Ishikawa diagram is also called the Fishbone diagram, which

is used to lay out a problem in hand and its causes. The layout is the process’s

dispersion, whose shape is similar to a fish skeleton [175]. Then the root cause

is established through continuous brainstorming by experts. The sub-causes are

laid under the main causes, and a cumulative effect is found for each main cause

to establish which cause has a major impact. Therefore it offers an organized way

of looking at an issue and the cause that contributes to it. Due to this property,

some mention it as a cause-and-effect analysis [158]. The advantages that can

accrue from the analysis are a systematic methodology, deliberation and use of

knowledge by experts, and consolidation of a point of view. The study will also

identify the areas for further deliberation [159]. The issue that is to be analyzed

is placed at the skeleton head, and the causes are placed at the tentacles of the

skeleton. Each tentacle of the skeleton is classified as a particular main cause.

The sub-causes are distributed over the main cause tentacle. A typical Ishikawa

diagram is shown in Fig. A.7.

Figure A.7: Structure of Fish Bone Diagram.
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The purpose of drawing an Ishikawa diagram is:

• To determine the root causes of an issue.

• To concentrate on a specific issue without going into irrelevant considera-

tions.

• Identifying areas where a lack of data requires further deliberations.

A.4.1 Categorization Methods

The usual methods used for categorization are [176]:

• 8Ps: used for production, includes the product, people, place, price, process,

proof, performance, and promotion.

• 6M: used for manufacturing, includes the manpower, machines, material,

methods, mother nature (environment), and measurement.

• 5S: used for services, includes surroundings, suppliers, systems, skill, and

safety.

A.4.2 Steps [177]

Ishikawa analysis includes the following steps:

A.4.2.1 Step 1 – Identification of effect and required analysis

First of all, the problem must be framed and written in the box at the head. All

participants must be clear on the peculiarity of the issue under consideration. If

there is any doubt, the session may not be helpful. The following rules must be

applied:



Appendices A.15

• While deciding on the effect, it must be differentiated as a quality issue,

work problem, planning issue, etc.

• It is recommended to use operational descriptions of the effect.

• The effect must be identified as objective (positive) or issue (negative).

• The positive effect tends to foster pride and ownership. This encourages

participation and healthy discussion to achieve success. It is recommended

to express the effect in positive words if possible.

• Negative effects tend to sidetrack the team justifying why the problem oc-

curred and placing blame. Sometimes it is easier to focus on what causes

the problem. At the same time, we should be careful not to fall out for false.

A.4.2.2 Step 2 – Drawing of central line and effect box

• An arrow must be horizontally placed pointing to the effect.

• A brief narrative of the effect must be written.

• The effect must be written in a box.

A.4.2.3 Step 3 – Identification of main causes

The main causes can also be termed categories. They are the labels under which

sub-causes are listed. The diagram now will hae a central arrow and branches for

major causes and sub-causes as shown in Fig A.8.

• The major causes leading to the effect be listed. Labels for categories be

defined.

• The major causes decided after deliberation be written on the left side. Some

of them may be above the central arrow, and some below.



Appendices A.16

• Arrow may emanate diagonally from each cause to the central arrow. Simi-

larly, for sub-causes arrows may emanate from them leading to the diagonal

arrow of main cause.

Figure A.8: Major and Sub Causes in Fishbone Diagram.

A.4.2.4 Step 4 – Identification of specific factors

• The specific factors (sub-causes) as many, leading to the main cause, be

identified. They must be attached to the main branches, as explained in the

previous step.

• A description of each sub-cause may be filled.

• If a specific factor is applicable to more than one major cause, write it under

all relevant major causes.

A.4.2.5 Step 5 – Organization of Diagram

• Identify the detailed levels of causes. A series of questions would suffice.

• Organize the diagram.

• If there is too much cluttering, there may be a need to break the diagram

into smaller diagrams. In this case, any major cause will then be made an

effect for the sub-diagram.
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A.4.2.6 Step 6 – Analysis of the diagram

The analysis may identify the portions where further investigation is needed.

Pareto Chart may be used to focus on specific portions.

• The comparison may be drawn for all major categories. This is also called

“balance” of the diagram.

• Look for thick clusters. They represent the areas warranting more focus.

• A major category under which only a few sub-causes may warrant more

deliberation for further identification.

• The major categories having very few sub-branches may be combined if

possible.

• The specific factors that appear repeatedly be deliberated; they may be the

root cause.

• Deliberate on how to quantify each cause so as to measure the impact on

the effect.

A.4.2.7 Final Step – Weightage to Causes

A survey or board meeting may be arranged to give weightage to causes based on

voting, and accordingly, the main cause leading to the problem be identified. For

this Pareto chart can be a helpful tool.

The complete process explained above is represented in Fig. A.9.



Appendices A.18

Figure A.9: Steps for Fish Bone Diagram [178].
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