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Abstract

Eco-driving is a strategy that provides a significant advantage by advising a veloc-

ity profile to the driver that consumes optimal energy. Extra energy consumption

through imprudent driving reduces overall range of EVs per charging cycle. More-

over, frequent charging accelerates the degradation process of battery thus reduces

it’s life cycle. Furthermore, careless and unbounded charging and discharging adds

another factor to effect the battery’s health. This work focuses on the eco-driving

based solution for EV to provide a velocity trajectory that not only improves the

range of EV through minimizing energy consumption but also indirectly improves

the life of battery. Pontryagin’s Minimum Principle (PMP) is used to provide

the optimal results in both unconstrained and constrained traffic environments.

Longitudinal dynamics of EV and battery dynamic model is used to improve the

range of EV and to see the instant effect of optimized velocity on battery’s energy

consumption and life. Problem is further extended to Powertrain Limitation based

Speed Guidance Model (PLSGM) that provides the exact tracking of advised speed

with the consideration of powertrain and actuator limitations. Zero order ideal and

First order Thevenin models of battery are used for separate scenarios. Charging

and discharging of a battery is bounded through constraints on its dynamics i.e.,

State of Charge (SoC). Further energy consumption is optimized through crossing

the traffic signals during their green duration with minimum use of brakes. Traffic

signals are considered as interior point constraints, hence solved using Multi Point

Boundary Value Problem (MPBVP) that converts the multi-phase problem into

single phase using continuity condition i.e., continuity of co-states through the use

of multiple shooting technique. Speed limits are applied to add the safety factor

to the problem.

Traffic is the key feature of driving environment and are considered as both single

and multiple leading vehicles on the route. Urban traffic is solved as either single

or multiple leading vehicle constraints to ensure the safe gap between EV with

eco-driving assistance and leading vehicles. Seven different scenarios with differ-

ent routes, battery models, boundary conditions, battery sizes and constraints are

considered i.e., from simple unconstrained case to complex driving environment



x

with traffic signals, urban traffic, speed bounds, charging/discharging limits on

the selected 5.3km route of Islamabad, Pakistan from Jinnah Avenue as starting

destination to Faisal Mosque as final destination. Simulation of Urban Mobil-

ity (SUMO) is used for the evaluation of traffic signals and traffic forecasting.

Achieved results for different scenarios prove the usefulness of applied strategy as

energy minimum solution that has improved ranging from 5 − 20% for different

scenarios, along with range. Furthermore, energy consumption comparison is also

performed between results achieved using MPBVP and TPBVP and results show

fair advantage with MPBVP. Moreover, overall affect of using the achieved op-

timal velocity profile indirectly improves the life of battery through minimizing

number of charging cycles. Battery life saving analysis is performed through the

comparison of charging rates and terminal DoD between EV using eco-driving and

leading vehicles without eco-driving assistance.
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Chapter 1

Introduction

From the last few decades, an exponential rise is seen in number of personal vehicles

on roads. Relaxed payment plans provided by the banks even in underdeveloped

countries can also be one of the major causes of this increase in personal vehicles.

Refer to Fig. 1.1 showing the trend of increase in sale of personal vehicles world-

wide from 2010 to 2022 [1]. It can be observed in Fig. 1.1 that rise in sale of

personal vehicles is much larger in the last 4 years, which put more stress on the

roads and available infrastructure.

This rise has highlighted certain questions, which need to be answered not only

Figure 1.1: Trend of increase in sale of personal vehicles world wide

[1]

1
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by automotive manufacturers but also by policymakers. Especially in underde-

veloped countries, where road capacities have not increased as required by the

current traffic demand due to certain limitations. Traffic congestion during peak

hours, high fuel consumption, long idle time at the signals, and increase in num-

ber of accidents are the major consequences being faced every day by the drivers.

Lack of coordination between automobile manufacturers and road development

and maintenance authorities is also one of the main causes as the development

and efficiency of modern vehicles depend on traffic and road conditions as well.

There is no doubt that the transportation sector has served the humanity in an

extraordinary way, but it has raised certain environmental and economic concerns.

Environmental concerns include emission of toxic materials into the atmosphere

that has detrimental effects on human health and the eco-system. Main pollutants

of air pollution are Carbon Monoxide (CO), Non-Methane Volatile Organic Com-

pounds (NMVOCs), Particular Matters (PM), Sulphur Oxides (SOx), Nitrogen

Oxides (NOx) and etc. Another major concern with this increase in number of

vehicles is an accelerated depletion in oil reservoirs because high percentage of

vehicles on the roads are still based on gasoline engines which completely depend

on fossil fuels.

1.1 Motivation and Background

Since the development of first gasoline-based engine back in 1886, tremendous

technological advancement is seen with every passing year. Major drawbacks

with gasoline engines are complete fossil fuel dependency and pollution emissions.

These concerns led the researchers and manufacturers to come up with some alter-

native idea. As a result, concept of HEVs (Hybrid Electric Vehicles) was proposed.

The superiority of HEV over conventional vehicle is the combination of both In-

ternal Combustion Engine (ICE) and Electric Motor (EM). Introduction of EM

along with ICE has minimized oil dependency and emission rate of gases but has

not completely eliminated, as the engine is still present.

To overcome both these issues, Electric Vehicles (EVs) were introduced as EVs
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Figure 1.2: Trend of increase in number of charging points in China and
Europe

[1]

use cleaner and greener source of energy and have no oil dependency. However,

EVs face limited capacity and life cycle of battery and are directly related to its

range. Battery capacity increases with an increase in its bulk weight, which has

certain limitations. This requires selection of optimal size of components, known

as component optimization. On the other hand, life cycle of battery can be im-

proved through careful use e.g., fast and unbounded charging. Early degradation

or replacement of battery increases the overall cost of the operation. Furthermore,

range of EV can also be enhanced by installing more charging stations on the

route, as Fig. 1.2 shows an increasing trend in number of charging stations in

China and Europe from 2015 to 2021 [1]. Another way to increase the range of

EVs is the meticulous use of available energy by drivers e.g., selection of optimal

route, trip time, use traffic and signal information, optimal speed, etc. All these

factors may combine together can save energy consumption during a trip.
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1.2 Thesis Objectives

The objective of this thesis revolves around applying an optimization algorithm

to an EV. This is achieved by finding optimal velocity to optimize energy con-

sumption. Energy management as a research field refers to optimizing the energy

consumption of a vehicle with respect to some cost parameters, when EV moves

from one point to the other. Applying optimal velocity during a trip is known as

velocity profile optimization or alternatively eco-driving. Eco-driving will be more

frequently used in this thesis. Real time traffic environment faces different kinds of

constraints, which degrade the performance of eco-driving. Furthermore, If early

replacement of battery is needed due to careless use, total cost of operation also

rises, as it is a very expensive component of EV. Driving environment strongly

decides, which driving behaviour is best suitable from energy consumption point

of view.

In view of the above discussion, major thesis objectives are:

1. Eco-driving formulation as necessary conditions of optimality to enhance the

range of EV.

2. Improve battery’s life through charging/discharging limits.

3. Study the impact of optimized velocity profile on battery’s life using terminal

Depth of Discharge and charging rate analysis.

4. Study the robustness of eco-driving as energy optimization strategy in real

world traffic environment.

1.3 Proposed Strategy

As discussed in previous sections that main contribution of this research is to find

velocity profile for EV for the sake of not only energy saving but battery’s life op-

timization. We have adopted model based approach that considers the dynamics
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of EV, battery and other components as the model based approaches allow use

of analytical approaches for optimization and more time efficient than heuristic

approaches [2–4].

Longitudinal dynamic model is considered to apply an appropriate speed control

strategy. Battery dynamics is also considered in the management of instantaneous

power supply and range extension of EV. Battery capacity is an important and de-

cisive factor and its remaining value must be checked before planning a trip. This

thesis also covers the development of different dynamic models of battery. Traf-

fic environment faces many constraints, some of which are traffic signals, speed

limits and traffic itself. Moreover, for the safe operation and slow degradation of

battery, constraints related to charging and discharging are considered. In order

to exactly follow the advised optimal velocity profile, vehicle backward simula-

tor is used and to consider te powertrain limitations, forward simulator is used.

Whereas, to include powertrain limitations with exact tracking of advised optimal

velocity, Powertrain Limitation based Speed Guidance Model (PLSGM) that uses

both simulators, is included [5].

Indirect optimization technique finds the optimal solution by satisfying optimal

and boundary conditions i.e., by solving the differential equations, is considered

in this thesis. One of the indirect trajectory optimization techniques i.e., Pon-

tryagin’s Minimum Principle (PMP) is chosen as an optimization tool, as it is

computationally less extensive algorithm and has the ability to handle both equal-

ity and inequality constraints [6]. PMP finds the optimal trajectory using open

loop optimal control and satisfying set of necessary conditions. Moreover, PMP

can also handle both boundary and intermediate constraints through TPBVP and

MPBVP simultaneously to achieve the optimal results.

1.4 Research Contributions

Main contribution of the research work presented in this thesis is the development

of eco-driving control strategy for EVs that consumes less energy with putting pos-

itive impact on battery, which ultimately becomes useful in extending the range of

EV. This framework is proposed for both linear and non-linear dynamic backward
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model of EV with the inclusion of battery model. Problem contains inequality,

terminal and interior point constraints. Proposed technique has transformed the

multi phase problem to single phase problem, when interior point constraints are

active.

Research work in this dissertation has following major contributions:

1. Concatenation of both EV and battery dynamic model to achieve energy

efficient velocity profile.

2. Development of PMP framework in the presence of road, EV, battery and

road constraints.

3. Use of SUMO (Simulation of Urban Mobility) environment for traffic and

signals forecasting to provide real traffic environment on the route of Islam-

abad, Pakistan.

4. Transformation of TPBVP (Two Point Boundary Value Problem) to MP-

BVP (Multipoint Boundary Value Problem) to solve multi-phase problem.

5. Problem extension to PLSGM to follow exactly the optimal velocity profiles

with the consideration of powertrain limitations.

1.5 Overview of the Thesis

In this section, thesis chapter wise overview is discussed and explained as in Fig.

1.3. In chapter 1, general issues related to present transport system are discussed.

Motivation and background behind this research is also discussed in details. Fur-

thermore, benefits and development that can contribute to the latest transport

system with focus on improvement in energy efficiency is also notified. Further-

more, research contribution using the proposed strategy is also highlighted. In

chapter 2 literature related to optimization framework for EVs and HEVs are dis-

cussed. Literature survey contains discussion on past efforts related to eco-driving

control for both HEVs and EVs and modeling of battery dynamics.
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Chapter 1
Introduction

1. Motivation & background

2. Thesis objectives

3. Research contribitions

4. Proposed strategy

Chapter 2
Range Extension
Problem of EVs

1. History, overview of EVs and
range extension optimization
strategies

2. Literature survey

3. Gap analysis

4. Problem statement

Chapter 3
Mathematical

Modeling

1. Mathematical model of EV

2. Mathematical models of bat-
tery

Chapter 4
General Prob-

lem Formulation
1. Derivation of necessary condi-

tions for general case

Chapter 5
Mathematical

Solutions for Dif-
ferent Scenarios

1. Derivation of Necessary condi-
tions for 7 different scenarios

2. Different modes of optimal
torque

Chapter 6
Simulation
and Results

1. Simulation and discussion on
results of 7 different scenarios

Chapter 7
Conclusion and

Future Work

1. Conclusion on achieved results

2. Future directions

Figure 1.3: Overview of Thesis
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Chapter 3 discusses mathematical modeling of EV and battery. Second order

backward vehicle model is discussed. For a simple case, linear model is considered

and then for a complex case, nonlinear model is considered. Two different mathe-

matical models of battery are discussed in this thesis. Zero order ideal model and

first order Thevenin models are used in this problem with some modeling assump-

tions.

In chapter 4, general optimization framework of PMP with terminal, inequality

and interior point constraints, is discussed. As the problem contains both terminal

and intermediate constraints. Examples of terminal and interior point constraints

are initial and final positions of a trip and location of traffic signal respectively.

For a simple scenario i.e., without interior point constraints, TPBVP (Two Point

Boundary Value Problem) is used as an iterative technique to satisfy necessary and

sufficient conditions of optimality. For more complex scenarios i.e., with traffic sig-

nals as interior point constraints, MPBVP (Multipoint Boundary Value Problem)

is used to satisfy necessary and sufficient conditions of optimality and also con-

tinuity condition. Moreover, PMP with both iterative techniques, is used for the

solution of eco-driving control problem for considered cases. Both cases contain

two sub problems i.e., non-urban and urban traffic.

In chapter 5, necessary conditions are derived for the considered scenarios of this

thesis that include unconstrained case, case with the inclusion of zero order ideal

battery model with free final velocity, inclusion of zero order ideal battery model

with fix final velocity, solution with interior point constraints, solution with inte-

rior point constraints and speed limits, inclusion of SoC dependent open circuit

voltage and internal resistance and inclusion of traffic constraint with both single

and multiple leading vehicles on the route.

In chapter 6, simulation and results are discussed and compared for different driv-

ing environments. Finally in chapter 7, future recommendations are discussed in

details.



Chapter 2

Range Extension Problem of

Electric Vehicle - An Overview

2.1 Introduction

With the detailed description about the summary and objectives of the thesis

in chapter 1, chapter 2 will focus towards the overview of EVs and its types.

Furthermore, past efforts in bringing advancement in the field of automotive will

also be reviewed along with gap analysis and proposed strategy. Finally short

and precise problem statement is given for the easy understanding of proposed

approach to the reader.

2.2 Overview of EVs (Electric Vehicles)

2.2.1 The Beginning

The first practical EV was produced in 1880s, however they were made popular in

late 19th and early 20th century, when electricity became the preferable method

for vehicle propulsion system. The General Motor (GM) EV1 was the first com-

mercial and modern designed EV produced by GM from 1996 to 1999 [7]. However,

9
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with more advancement in gasoline engines, vehicles based on ICE (Internal Com-

bustion Engine) started dominating the market. ICE works on the principle of gas

law in which ICE acts as a heat engine to produce mechanical energy in the form

of rotational motion of the crankshaft from chemical energy of fossil fuels. This

burning of fossil fuel releases noxious gases, whose major pollutants are discussed

in chapter 1. As a result, idea of replacing conventional vehicles with EVs again

started dominating the market from the last decade. Another factor which made

possible of EVs domination in the market is the development of cheaper and reli-

able energy storage devices i.e., battery technologies. Recent development in the

field of energy storage devices focuses on reducing battery size and charging time

with prolonged discharging time. Government in number of countries have in-

creased the incentives for automobile industries to manufacture more EVs. Global

Electric Car stock has increased in the last decade, as shared in report published

by IEA (International Energy Agency) in 2022 [1].

2.2.2 Classification of EVs

Depending upon the working principle and design configuration, EVs are broadly

classified into three main types, as defined below and shown in Fig. 2.2:-

Figure 2.1: Trend of increase in EVs stock

[1]



Range Extension Problem of Electric Vehicle-An Overview 11

BEVs

Types of EVs

FCEVs HEVs

Parallel Series

Figure 2.2: Types of EVs

1. Hybrid Vehicles

(a) Hybrid Electric Vehicles (HEVs) / Parallel HEVs

(b) Series HEVs / Plugin Hybrid Electric Vehicles (PHEVs)

2. Fuel Cell Electric Vehicles (FCEVs)

3. Battery Electric Vehicles (BEVs)

2.2.2.1 Hybrid Vehicles

As the name suggests, HEVs have both ICEs and Electric Motors (EMs). ICE gets

energy through the burning of gasoline fuel, while EM gets energy from energy

storage system i.e., battery. HEVs are further classified into two main categories;

parallel and series. In a parallel HEV, both the EM and the ICE provide power to

the vehicle and are connected to the transmission. When fuel flows to the engine

or when the EM is turned on, the power that is generated, is used to propel the

car. A controller decides when EM is to provide power to the vehicle and when

to switch to the ICE. Standard HEVs are parallel in configuration. Battery pack

in parallel HEV is only charged through regenerative mechanism. Examples of

parallels HEVs available in the market are Honda Civic Hybrid, Toyota Prius,

Toyota Camry etc. Fig. 2.3. shows Parallel HEV with its basic architecture and

main components.

Series HEV has different architecture, in which EM is solely responsible for

providing power to the vehicle. EM is powered by the battery pack or by the

generator, which is powered by the gasoline engine. The gasoline engine in a

series hybrid is not connected directly to the wheels of the vehicles and hence does
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not directly provide power to the car. Battery pack in HEV is charged through

regenerative braking mechanism or an electric outlet. A controller in series HEV

determines how much power is needed to move the vehicle and whether to pull it

from the battery or the generator. Series HEVs are also known as Plugin Hybrid

Electric Vehicles (PHEVs). Few examples of available models in the market are

Porsche Cayenne S E-Hybrid, Chevy Volt, Chrysler Pacifica, Ford C-Max Energi,

Ford Fusion Energi, Mercedes C350e, Mercedes S550e, Mercedes GLE550e etc.

Fig. 2.4. shows PHEV with its basic architecture and main components.

2.2.2.2 Fuel Cell Electric Vehicles (FCEVs)

FCEVs are the other types of EVs, and are also referred to as “ZERO EMISSION”

EVs. FCEVs are powered by compressed hydrogen gas and directly transform the

chemical energy into electrical energy. Few available models in the market are

Toyota Mirai, Hyundai Tucson FCEV, Riversimple Rasa, Honda Clarity Fuel Cell,

Hyundai Nexo etc. Fig. 2.5. shows Fuel Cell HEV with its basic architecture and

main components.

Figure 2.3: Basic components and configuration of Parallel HEVs
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Figure 2.4: Basic components and configuration of Plugin HEVs

2.2.2.3 Battery Electric Vehicles (BEVs) / Electric Vehicles (EVs)

EVs use EMs as propulsion system instead of ICEs. Battery is used as a sole

source of electric power to the system. Few of the available models in the markets

are Volkswagen e-Golf, Tesla Model 3, BMW i3, Chevy Bolt, Chevy Spark, Nissan

LEAF, Ford Focus Electric, etc. Basic configuration of EV is shown in Fig. 2.6.

Main components of EV are mentioned below:

1. Battery pack

2. Rectifier

3. Controller

4. EM

5. Transmission



Range Extension Problem of Electric Vehicle-An Overview 14

Figure 2.5: Basic components and configuration of Fuel Cell HEVs

Figure 2.6: Basic components and configuration of EVs
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6. Converter

7. Charging port

2.2.2.4 Battery pack

Battery pack in an EV acts as a source of DC power source. If power is required

by an EV, it gets a signal from the controller, where DC electrical energy will

transfer to the rectifier to be used to drive the vehicle. There are various types of

batteries used in EVs, with the most widely used are Lithium-Ion batteries, Lead

Acid batteries and Nickel-Metal Hydride batteries.

2.2.2.5 Rectifier

Rectifier is present in the EV system for power conversion. Electric outlet gets the

direct power from the socket to charge the battery. Power comes from the socket,

is the Alternating Current (AC), while power required to charge the battery is DC

hence, this power conversion from AC to DC is done through a rectifier.

2.2.2.6 Controller

The controller acts as the brain of an EV and controls the rate of charging and

discharging of a battery. Controller gets the input from car pedal and it transfers

the signal to the battery through a rectifier to supply the required power. It

manages the flow of electrical energy to control the speed of EM and torque it

produces.

2.2.2.7 Electric Motor (EM)

Main function of EM is to convert the electrical energy from the battery to me-

chanical energy to turn the wheels. Few of the types of EM used in EVs are

Direct Current (DC) motor, Alternating Current (AC) motor, Permanent Magnet

Synchronous Motor (PMSM), etc.
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Component optimization

Strategies for Range extension of EVs

Control Oprimization

Figure 2.7: Basic optimization strategies for the enhancement of range of EVs

2.2.2.8 Converter

The main function of the converter is to convert AC supply to DC supply. It is

used in EVs to domestic AC supply to DC to charge the battery.

2.2.2.9 Charging Port

Charging port connects the power socket to an external power supply to charge

the battery.

2.3 Range Extension of Electric Vehicles through

Optimization Strategy

With the latest trend in automotive industry, domination of EVs is on the rise. As

seen in Fig. 2.6, battery acts as the only power providing block to the whole trac-

tion system. Range of EV is limited as the battery capacity is also limited. To get

efficient results with minimum use of resources is the main customer requirement.

To enhance the range of EVs, careful use of available capacity is required, which in

terms of modern control theory is known as optimization strategy. Optimization

strategy is classified into two main categories, as mentioned in Fig. 2.7.

2.3.1 Component Optimization

Range of EV has a direct relation with battery’s capacity. Range of EV can be

improved with an increase in capacity of battery. Unfortunately, battery capacity

can be enhanced within certain limits as more increase in capacity requires an
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increase in size and weight of a battery. On the other hand, size of a battery cannot

be increased beyond a certain limit as it causes an increase in bulk weight of vehicle

and hence, more power is required to move a car of huge weight. This discussion

shows neither a very large nor a very small size of battery gives best results in

enhancing range of EVs hence, some optimal size is required. On the other hand,

one size of battery or EM may give best results for one vehicle but worst for

others e.g., EM size versus mass of a vehicle [8–10]. This selection of optimal size

of battery or any other component can be done through an optimization technique,

known as component optimization.

2.3.2 Control Optimization

Driving style has a direct link to energy consumption during a trip. Moving with

either smooth input or abrupt changes in pedal position cause huge difference in

energy consumption. This selection of optimal control input is called as control

optimization [11].

2.3.2.1 Velocity Control as an Energy Minimization Strategy

Velocity has a strong relation with energy consumption. Moving a vehicle either

at very high or very low speed is not an excellent option from an energy con-

sumption point of view. Driving with high speed consumes maximum energy with

minimum trip time whereas, low speed driving takes more time but consumes min-

imum energy. Velocity profile optimization works on finding the best velocity that

consumes minimum energy. This selection of optimal velocity profile is known as

velocity profile optimization or eco-driving [12].

2.4 Literature Survey

In this section, very detailed literature survey is discussed. As the main focus

of this thesis is to work on eco-driving control of EVs in real traffic scenarios.
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EMS

Literature Review

Control optimization BMS

HEVs Velocity profile optimization

Unconstrained case Constrainted case

Single mode Multiple modes

Figure 2.8: Literature Survey

Eco-driving is a strategy that does not depend on types of vehicles, hence related

works on every kind of vehicle is discussed here. Literature is divided as Energy

Management Strategy (EMS) foe HEVs and control optimization for EVs with re-

spect to different traffic environment. Traffic environment contains unconstrained

scenario, scenarios with different constraints such as signals, speed limits, urban

traffic, etc.

2.4.1 Energy Management Strategy (EMS) for HEVS

Energy Management Strategy (EMS) i.e., splitting of power between EM and en-

gine in HEVs during vehicle operation has been proposed in several works. In

the past, EMS has proved to be a very useful strategy in minimizing energy con-

sumption in HEVs [13]. Rule based EMS for PHEVs was proposed in [14]. In

this approach, selection of battery mode or engine mode depends upon the power

requirement. If power required exceeds the maximum power limit of EM, then

engine provides the remaining power, else EM will provide the required traction

demand. Charging of the battery is either provided by regenerative mechanism

or by the engine. In another problem, Adaptive rule based EMS was proposed

for parallel HEVs [15]. The effectiveness of this adaptive rule based EMS over

conventional EMS is the ability to dynamically adjusts the boundary between the
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motor region and the engine region according to the requirement of the duty cycle.

This boundary is adjusted intelligently such that an optimal behavior is achieved

by avoiding low efficiency regions. In this article, feedback controller based on Dy-

namic Programming (DP) and Equivalent Consumption Minimization Strategy

(ECMS) was analyzed to find system behaviour that is closed to optimal solution.

Path-dependent control of HEV was applied to improve fuel economy by opti-

mizing charging and discharging of battery on known route [16]. Route was de-

composed into series of segments with some known parameters. DP was used to

achieve the global optimal results. The idea of predictive planning of velocity con-

trol of vehicle for reducing fuel consumption was proposed in [17]. DP was used

with estimated traffic flow surface was used as the upper bound on the velocity

with the target of improving fuel economy.

In all these research problems, DP was used as OCP, which provides global opti-

mal results [18]. The main issue with DP is its high computational cost. Review

on the EMS for HEVs are compared in terms of adaptability, computation time

and results accuracy [19].

2.4.2 Velocity Profile Optimization Strategy

2.4.2.1 Unconstrained Cases

Velocity profile optimization is a very advanced methodology, used for the min-

imization of energy consumption during a trip. This technique is not vehicle

dependent and is being applied to every kind of vehicle with large variations in

energy consumption models and small in dynamical models. Several works on ve-

locity profile optimization for HEVs are available in the literature from simple to

complex problems. A framework was proposed to solve energy minimization prob-

lem through finding the optimal velocity profile. Optimization problem was solved

using cloud computing environment with the assumption that a route is known

in advance. Spatial domain DP was used to achieve the global optimal results to

send back to the driver for velocity advisory [20]. Velocity profile optimization for

HEVs was proposed in [21]. In this approach, DP was used to achieve the optimal
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velocity. In another problem, which was proposed by the same authors, velocity

profile optimization problem for HEV was solved [22]. In this problem, one as-

pect of the problem i.e., varying road grade was incorporated into an optimization

framework. However, route was divided into small intervals and road grade was

considered constant for each interval. In this problem, again DP was used as an

OCP to achieve the optimal results. PMP based optimal solution was proposed

for energy consumption minimization problem for HEV [23]. Road grade, speed

limits and gear shifting constraints were incorporated.

Velocity profile optimization has been applied to EVs as well. Eco-driving strategy

for EV was proposed using inversion based approach [24]. Single mode of optimal

control using only accelerating torque was considered in this problem with DC as

a mechanical source to the propulsion system. The problem was extended by the

same authors in [25]. In this problem instead of DC, AC motor was used as a source

of mechanical power to the propulsion system. Problem was taken one step ahead

by considering multiple modes of operation. Similar problem of eco-driving control

of EV was extended with Permanent Magnet Synchronous Motor (PMSM) as a

mechanical source [26]. In this problem PMP was used as an OCP with constraints

on vehicle speed. Two Point Boundary Value Problem (TPBVP) was used to sat-

isfy boundary constraints and necessary and sufficient conditions of optimality.

Energy sensing ecological control of EV was proposed in [27]. Shortest time and

maximum cruise distance problem were established separately. Relation between

vehicle longitudinal dynamics and energy consumption was analyzed. Eco-driving

control strategy for electric vehicle, which is based on powertrain, was proposed

in [28]. Battery thermal effect was taken into consideration however, DP was used

to solve the problem without road constraints.

2.4.2.2 Presence of Traffic Signals on the Route

Traffic signals are the key features of urban traffic environment. Traffic signals are

normally installed on the roads to control huge traffic network through Stop&Go

but they pose an adverse impact on energy consumption by standing idle for the

signals to turn green. Several works on reducing this idle time have been found
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in the literature. An analytical solution to energy minimization problem for HEV

was proposed using PMP [29]. In the first step, unconstrained case was solved i.e.,

without a traffic signal and then constrained case was solved with a fixed single

traffic signal. Problem was divided into two phases. First phase started from

initial point of a trip and ended up at a signal location. Whereas, second phase is

a region from a signal location to a concluding point of a trip. Fuel consumption

for constrained case was added up as terminal cost to the fuel consumption of the

unconstrained case. Analytical and numerical solution to HEV with three traffic

signals were proposed [30]. PMP was used with equality (point wise) constraints.

Problem was formulated as multi-phase, where first phase started at the starting

point and ended up at a first signal and so on. Signal reaching time was assumed

to be constant. Connected vehicles equipped with Speed Advisory system (SAS)

was proposed to reduce fuel consumption by reducing idling time at the signals

during their red light [31]. Vehicle switches between engine mode on and off using

bang-bang control that caused discomfort to the vehicle occupants.

Review on energy saving potential of connected and automated vehicles using

optimal control theory and latest communication protocols were addressed [32].

Authors proposed the use of short range radar with known traffic signal informa-

tion for the prediction and to schedule a velocity trajectory with implementation

of algorithm in cruise control system [33, 34]. Single vehicle based scenario was

considered in this problem using Predictive Cruise Control (PCC). Authors pro-

posed a pruning algorithm to cross traffic signals during their green light [35].

Multistage optimal control of EV on signalized intersection was proposed [36].

Velocity profile optimization strategy with time constraint was applied without

the consideration of traffic.

2.4.2.3 Urban Traffic Scenario

Traffic is an essential feature and posses an adverse impact not only on the energy

consumption but time consumption of the trip. An Explicit Model Predictive

Control (EMPC) was developed to realize real time control for the purpose to

reduce energy consumption with minimum distance between preceding vehicles
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[37]. However, linearized vehicle model without battery dynamics and absence

of traffic signals on the route made the scope very limited. Authors presented

an analytical and numerical solution using velocity profile strategy for EVs [38].

Authors showcased the benefit of full and partial road preview with traffic signals,

speed limits and car following constraints separately.

2.4.3 Inclusion of Battery Dynamics in Eco-driving Prob-

lems

Battery plays a very critical role in EMS of HEVs and in range extension of

EVs, as discussed in above sections. Different models of battery are discussed

for problems related to HEVs. However, it is observed in the literature that

integration and consideration of both EV and battery dynamics is not available in

the literature. The simplest model is the zero order ideal model [5]. It is a circuit

based approach with State of Charge (SoC) i.e., battery remaining capacity as

the system dynamics. To get more detailed analysis and to add more complexities

to the system, first order Thevenin model is discussed [39]. In this approach also,

SOC is the only considered system dynamic. Basic difference between Thevenin

model and ideal model is the inclusion of RC block to the system. Open circuit

voltage and internal resistance are normally SoC dependent, however, range of

operation of battery is the decisive factor in this dependency.

2.5 Research Analysis

Existing literature has been extensively reviewed to study optimal control strategy

for all types of vehicles. Efforts are mentioned in sequence; starting from an uncon-

strained case of HEVs and EVs to complex scenarios i.e., with increasing number

of constraints. However main focus was on EMS for HEVs and velocity profile

optimization approach for HEVs, EVs and conventional vehicles. The first part

of the literature focused on simple rule based and adaptive EMS approaches for

HEVs. EMS showed very efficient results, however, strategy and scope are limited
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to HEVs. In the next part of the literature survey, velocity profile optimization for

both HEVs and EVs is discussed. It has been observed that efforts to minimize

energy consumption using velocity profile optimization for HEVs have been fruit-

ful. Problem formulation was done in multiple steps, starting from a very simple

unconstrained case to complex scenarios i.e., with the number of constraints and

close to real traffic environment. It has been observed in the literature that many

constraints i.e., traffic signals and urban traffic were handled separately.

Velocity profile optimization solution for EVs are developed in multiple steps. In

the first step, simple unconstrained case with single mode of operation and DC

motor is discussed. Problem was modernized with different complex mathematical

models and more than one mode of operations. Simple DC motor was replaced

with more complex motor models i.e., AC motor and PMSM etc. In the next part

of the literature, works related to the handling of traffic signals in the optimiza-

tion problem were discussed for both HEVs and EVs. Several works have been

discussed to avoid or minimize the idle time at the signals. Similar approach using

PMP is also included in the literature, however, necessary and sufficient conditions

of the optimality were not properly followed because of multi-phase nature of the

problem. Most of the problems did not include urban traffic and on the other

hand, if traffic is considered, then signals are avoided to limit the complexity of

the problem.

To the best of our knowledge, eco-driving with the consideration of its impact on

battery is not available in the literature. It goes without saying that battery is the

most critical component and the only source of power in the electric vehicle and

hence its role in range extension of EVs cannot be further emphasized. Battery

capacity affects the range on one trip and measured in terms of State of Charge or

Depth of Discharge. Moreover, battery life which is measured in terms of charg-

ing and discharging cycles, is an indirect long term benefit. Early replacement of

battery due to careless behaviour during either charging or discharging increases

the overall operational cost of the vehicle over its lifetime of 5 or 10 years.

The overall Gap, which is drawn from the discussed literature, is this thesis covers

not only eco-driving control strategy for EV, but also the issues that EV can face

due to the careless use of battery. Furthermore, when the impact of important
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factors on battery’s health are ignored e.g., maximum charging/discharging limits,

charging rates and number of charging/discharging cycles, its degradation process

accelerates. Furthermore, the combination and number of constraints covered,

have not found in the literature at this level of generality.

2.6 Problem Statement

To solve an eco-driving problem of an EV with battery constraints such as charg-

ing/discharging limits, road constraints such as speed limits, preceding vehicles

and traffic signals along with motor torque limits through Powertrain Limitation

based Speed Guidance Model (PLSGM).

2.7 Chapter Summary

After the discussion on thesis objectives, proposed strategy and research contribu-

tion in chapter 1, in this chapter past efforts in the extension of range of EVs are

discussed in details. At the start of the chapter, beginning and evolution of EV

technology is discussed. Furthermore, overview of EV with basic types and archi-

tecture are discussed with basic components of EVs and their working principles.

Range extension problem of EV through different optimization strategies i.e., com-

ponent and control optimization are explained with pictorial representations. Past

efforts through detailed literature survey are explained through velocity control as

energy minimization strategy. Literature survey is well divided further into EMS

for HEVs and velocity profile optimization for EVs for both unconstrained and

different constrained scenarios. Chapter is concluded with a problem statement

based on research analysis and gap.



Chapter 3

Mathematical Modeling

3.1 Introduction

Velocity profile optimization is one of the energy minimization strategies being

applied to control or minimize the energy consumption of vehicle during a trip.

Modeling for velocity profile optimization may have two approaches: create plant

to apply and test energy minimization strategy, or create embedded models to solve

analytically or numerically. Plant models are more accurate and computationally

heavier than embedded models. The main objective in both approaches is to

reproduce the energy flow from vehicle to powertrain, which is further used to

accurately estimate the fuel consumption based on both the driver inputs and the

road load. Other quantities e.g., battery aging, pollutant emissions etc may be of

interest and depends upon applications.

There are so much losses in the powertrain at every step that the mechanical power

produced at the wheels is very less as compared to electrical power produced by

the battery. Furthermore, conversion from one form of energy to the other form of

energy adds more losses to the system by further reducing the output power e.g.,

electrical to mechanical conversion through EM. Moreover, when power transfers

from one device to other, there occurs friction losses in the system. Energy losses

is modeled using efficiency map, in which efficiency is obtained based on operating

conditions of the system e.g., EM efficiency as a function of input torque and

25
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output angular speed, as explained in Fig. 3.10. EV energy consumption can be

calculated using both backward and forward vehicle modeling approaches [5, 40–

42]. The backward modeling method is a quasi-static approach that works on the

assumption that a prescribed velocity is exactly followed by EV. In this approach,

drive cycle is divided into small time intervals, during which speed, acceleration

and torque remain constant. Moreover, internal powertrain dynamics are neglected

and average values of all variables are taken during the selected sampling time.

Each component of powertrain is modeled using efficiency map, fuel consumption

map or power loss map. On the other hand, forward modeling approach works on

first-principle description of each components of powertrain. Dynamic equations

describing the evolution of its state and the degree of modeling detail depend on

the time scale and the nature of the phenomena that the model should predict.

In backward modeling approach, force follows velocity and then tractive force is

calculated. In this approach, it is assumed that vehicle is following a prescribed

velocity. On the other hand, in forward modeling approach, desired drive cycle is

compared with actual speed and braking or throttle command is generated using

a driver model.

3.2 Vehicle Energy Analysis

In this thesis, vehicle energy analysis, in which EV is considered as a point mass

with interaction to external factors, is studied to measure power and energy to

move on particular velocity. The approach is useful to understand the longitudinal

dynamics and energy characteristics of EV.

3.2.1 Kinematic Model

Dynamic equation of motion with equilibrium forces on EV with point mass of

M moving with velocity v in longitudinal direction, as shown in Fig. 3.1, can be

expressed as [43]:
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Table 3.1: Description of symbols used in EV modeling

Symbol Unit Description

Ftrac N Tractive force

M kg Mass of vehicle

g m
s2

Gravitational acceleration

Froll N Rolling resistance force

θ ◦, Degrees Road gradient

Fgrade N Force to cover gradient

Finertia N Force of inerta

Faero N Aerodynamic force

v m
s

Velocity of EV

Fpwt N Force applied by powertrain

Fbrake N Braking force

ρ kg
m3 Air density

Af m2 EV frontal area

Cd Unit less Drag co-efficient

Cr Unit less Rolling resistance co-efficient

τ Nm Motor torque

η Unit less Transmission efficiency

γ Unit less Transmission ratio

Rt m Wheel radius

x m Position of EV

τsetpt Nm Desired torque

τreqfeedfwd Nm Torque request feed forward

τreqfeedback Nm Torque request feedback

vfeedback
m
s

Velocity feedback

vsetpt
m
s

Desired velocity

vactualspeed
m
s

Actual velocity

Mv̇ = Finertia = Ftrac − Froll − Faero − Fgrade (3.1)

where M is the mass of EV, v is the longitudinal velocity, Finertia is the inertial

force, Ftrac = Fpwt − Fbrake is the tractive force. Tractive force is positive when

vehicle is moving in forward direction and gets negative when it is moving in

opposite direction. Froll is the rolling resistance, Faero is the aerodynamic drag

force and Fgrade is the gradient force.

Definition 3.2.1. Aerodynamic drag force is the resistive force which is acting upon
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Figure 3.1: Forces acting on vehicle

the vehicle gushing through the air in opposite direction to the motion of vehicle.

The aerodynamic drag force is expressed as:

Faero =
ρAfCdv

2

2
(3.2)

where ρ is the air density, Af is the EV frontal area, Cd is the drag co-efficient.

Definition 3.2.2. Rolling resistance forces are offered by the tires during the motion

on any hard surface. Resistance of these forces increases with the increase in

hardness or roughness of the material. Reaction forces act on the centre of wheels

to oppose these forces and to keep the wheel rolling and moving. The rolling

resistance force is expressed as [44]:

Froll = Crmg cos(θ) (3.3)

where Cr is the rolling resistance co-efficient, g is the gravitation force and θ is

the angle of road gradient with respect to tires.

Definition 3.2.3. Gradient force is the force that is produced by the weight of the

vehicle during a slope on the road in either direction. Gradient force expressed as:
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Figure 3.2: Backward vehicle simulator

Fgrade = Mg sin(θ) (3.4)

As mentioned above, backward and forward are the two modeling approaches

considered for vehicle energy analysis, as mentioned below with their mathematical

relations and block diagrams.

3.2.2 Backward Modeling Approach

In backward modeling approach, force follows velocity and then tractive force is

calculated based on the velocity with which vehicle is following, as shown in Fig.

3.2. Eqn. (3.1) can be rearranged to obtain backward simulator equation as

follows:

Ftrac = Fpwt − Fbrake = Finertia + Froll + Faero + Fgrade (3.5)

Energy required to move the vehicle is calculated based on the expression as:

E = Ftracv (3.6)
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Figure 3.3: Forward vehicle simulator

3.2.3 Forward Modeling Approach

Eqn. (3.1) corresponds to forward vehicle simulator, in which acceleration i.e.,
dv

dt
is calculated based on the tractive force applied to move the vehicle for some dis-

tance. Speed of the vehicle is then calculated by integrating acceleration obtained

in step one. Block diagram corresponds to forward vehicle simulator, as shown in

Fig. 3.3.

3.3 Powertrain Limitation based Speed Guidance

Model (PLSGM)

Both the backward and forward approaches have their strengths and weaknesses.

Backward modeling approach is typically used for fuel consumption analysis over

the given velocity trajectory with the assumption that trajectory is be exactly fol-

lowed by the driver. Whereas, in forward approach, it is not possible to follow the

exact profile, however error can be minimized through proper tuning of the driver

block. Moreover, backward simulator completely ignores actuator and powertrain

limitations with the assumption that the vehicle has the capacity to follow every

trajectory being advised to it. This causes problem for the drive cycle, which may
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Figure 3.4: Powertrain Limitation based Speed Guidance Model (PLSGM)

require more power that a powertrain can deliver. On the other hand, forward

simulators do not face such issues, because velocity is calculated from the tractive

force, which can be saturated if the powertrain limitation exceeds. For this reason,

forward simulators are used for the analysis of the system at saturation levels and

also for the acceleration test of the vehicle.

PLSGM combines the advantages of both the simulators i.e., uses backward model

to accurately follow the speed trajectory and uses forward model to manage power-

train limitations to avoid saturation of the actuators [5]. Block diagram of PLSGM

is as shown in Fig. 3.4.

Refer to Fig. 3.4, where forward model, a driver block uses vehicle dynam-

ics to calculate torque request feed forward. On the other hand another vehicle

dynamic block uses actual speed profile to calculate the torque request feed back-

ward. Combined torque effect is given back to vehicle model to reduce the error

between actual and desired speed profile. Expressions of backward forward models

are already mentioned in above sections. Combined expressions of torque i.e., τ

and velocities v between forward and backward simulators are mentioned as:

τset pt = τreq feedforward + τreq feedback

vfeedback = vset pt − vactual (3.7)
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where τreq feedforward is the torque request feed forward from the forward simulator

and τreq feedback is the torque feedback required to produce the desired velocity

profile and τset pt is the torque set point to generate velocity of set or desired

value. Similarly vfeedback is the velocity given to the feedback simulator or the

desired velocity, vset pt is the velocity at the set points and vactual is the actual

velocity generated from the torque request using feed forward controller. Goal is

to have minimum error between the actual velocity and feedback velocity.

3.4 Mathematical Model of Electric Vehicle

EV longitudinal dynamics are obtained using Eqn. (3.1). Position and velocity are

the states of the system. Dividing Eqn. (3.1) by M on both sides and putting the

values of Faero, Fgrade and Froll from above section, longitudinal speed dynamics

is expressed as:

v̇ = h1τη
sign(τ) − h2v2 − h0 −W (3.8)

where

h1 =
γ

mRt

, h0 = g sin(θ(x(t)))− gCr

h2 =
ρAfcd

2m
, W =

Fbrk
m

(3.9)

Similarly position dynamic is simply the integral of velocity, expressed as:

ẋ = v (3.10)

where sign(τ) is used to incorporate both accelerating and braking torques into

the system [26]. In this thesis both linear and non-linear models of EV are used

for separate scenarios [45]. For linear model, h2 in Eqn. (3.8) is assumed to be

zero [45]. Furthermore, road grade is kept constant during a trip, i.e., putting

θ = 0 in Eqn. (3.8).
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Table 3.2: Description of symbols used in battery modeling

Symbol Unit Description

vt V Terminal voltage

voc V Open circuit voltage

I(t) A Battery current

r0 Ω Internal resistance

Pbatt W Battery power

Qnorm whr Nominal capacity

ηcol Unit less Battery efficiency

SoC Unit less State of Charge

DoD Unit less Depth of Discharge

Ra Ω Electrochemical diffusion resistance

Ca F Electrochemical diffusion capacitance

Ri Ω Charging/discharging resistance

vr V Voltage across Ri

va V Voltage across Ra

∇td sec Sampling time interval

Pmech W Motor power

ηm Unit less Motor efficiency

3.5 Mathematical Model of Battery

Battery plays a very critical role in the range extension of EV. As battery is the

only source of power to the system and if its stored charge finishes during a trip,

it can affect not only trip quality but also trip time etc. Variety of battery models

are discussed to show the interaction with EVs [46]. Batteries face aging issues

when used for long hours in EVs, as a result loss in terminal voltage and increase

in internal resistance and hence reduction in vehicle performance. Latest research

is focusing on finding the suitable battery models to predict the end life with given

environmental conditions and velocity cycle, such as [47–51]. However, in short

period of time, this aging factor does not play a significant role [5], hence not

taken into account in this thesis.

In this thesis, dynamical model of EV is combined with battery to continuously

monitor the battery remaining capacity and instant effect of selection of pedal
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Figure 3.5: Zero order circuit based battery ideal model

position on battery to improve the range of EV and life of battery. Single order

battery dynamics is considered in this thesis i.e., SoC, which is defined as the

ratio between the instantaneous capacity to the nominal capacity. Two different

models are considered in this thesis, which are:

1. Zero order ideal model

2. First order Thevenin model

3.5.1 Zero order Ideal Model

Circuit based model of the battery is as shown in Fig. 3.5, with internal resistance

i.e., r0(soc) and open circuit voltage voc(soc) as the two main variables to influence

output voltage i.e, vt. The mathematical model of zero order circuit based ideal

model with manipulation of battery power expressions is used [52–55].

Output voltage is expressed as:

vt = voc(soc)− I(t)r0(soc) (3.11)
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where I(t) is the current flowing through the battery and calculated using

Pbatt = vtI(t) = vocI(t)− r0I2(t) (3.12)

and expressed as:

I(t) =
voc(soc)

2r0(soc)
−

√
voc2(soc)

4r20(soc)
− Pbatt
r0(soc)

(3.13)

SoC dynamics is expressed as:

˙soc =
−I(t)

Qnormη
sign(I(t))
col

(3.14)

where Qnorm is the nominal capacity of battery and ηcol is the coulombic battery

efficiency that depends upon current operating conditions i.e., temperature and

current intensity [44].

SoC dynamics in terms of voc(soc) and r0(soc) is expressed as:

˙soc =
1

Qnormη
sign(I(t))
col

[
−voc(soc)

2r0(soc)
+

√
voc2(soc)

4r20(soc)
− Pbatt
r0(soc)

]
(3.15)

where Pbatt is the battery electrical power and can be expressed as:

Pbatt = voc(soc)I(t)− I(t)2r0(soc) (3.16)

Zero order ideal model is further divided into sub cases, which are

1. Constant r0 and voc

2. SoC dependent r0 and voc

3.5.1.1 Constant r0 and voc

It is observed in Fig. 3.6 & 3.7 that major variations in both the variables are

observed at the extreme values of SoC i.e., after 0.8 and before 0.2, while they
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Figure 3.6: Internal resistance as a function of SoC

both stay close to constant values in the region between 0.8 and 0.2, hence constant

values of r0 and voc are considered to ease the calculation. Furthermore, r0(soc)

and voc(soc) are replaced by r0 and voc respectively.

3.5.1.2 SoC dependent r0 and voc

It has been observed that r0(soc) and voc(soc) have direct relation and dependency

on SoC and can be seen clearly in Fig. 3.6 & 3.7 respectively [56–58]. Detailed

analysis of Fig. 3.6 & 3.7, show that when battery discharges, its resistance in-

creases that causes increase in system losses and its output voltage decreases that

causes decrease in battery output power [5, 37, 57, 59, 60]. This reason requires

consideration of SoC dependent r0 and voc.

Quartic equations are considered for voc and r0 dependencies over SoC as men-

tioned in Eqn. (3.17).

voc(soc) = a1(soc)
4 + a2(soc)

3 + a3(soc)
2 + a4(soc) + a5 (3.17)
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During discharging,

r0(soc) = b1(soc)
4 + b2(soc)

3 + b3(soc)
2 + b4(soc) + b5 (3.18)

During charging,

r0(soc) = c1(soc)
4 + c2(soc)

3 + c3(soc)
2 + c4(soc) + c5 (3.19)

Curve fitting tool is used to obtain the values of a′s, b′s and c′s, which are men-

tioned in voc and r0 characteristics over SoC, as mentioned in Table. 3.3:

3.5.2 First order Thevenin Model

Detailed study of dynamic behaviour of lithium ion battery requires more accurate

and reliable models, which not only increases the complexity of the system but
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Table 3.3: Numerical values of co-efficients of quartic equation

Co-efficient a1 a2 a3 a4 a5

Value -.67 2.8 -3.42 1.93 3.18

Co-efficient b1 b2 b3 b4 b5

Value .0064 -.015 .012 -.0041 .0015

Co-efficient c1 c2 c3 c4 c5

Value -.0063 .00625 .00506 -.00621 .00237

Figure 3.8: Circuit based battery First order Thevenin Model

also the computation time [39, 61]. Accuracy of the model increases by increasing

number of resistor and capacitor (RC) networks, as shown in Fig. 3.8. First order

Thevenin model is considered to cope with the trade-off between complexity and

accuracy. Refer to Fig. 3.8, where Rself−discharge represents the self losses during

the period when charge is stored for a long time. Rself−discharge increases 2% in

every 10 months, so can be ignored whereas, Ra and Ca are the electrochemical

diffusion resistance and capacitance respectively. Rcharge and Rdischarge are the

internal resistances of the battery during charging and discharging respectively

and are already explained with detail in previous section.

Electrical behaviour of the battery is expressed as:

v̇a =
−va
RaCa

+
I(t)

Ca
(3.20)
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and

vt = voc − va − vr (3.21)

where vr is the voltage across Ri i.e., Rcharge/Rdischarge and will be expressed

differently during charging and discharging as:-

vr =

I(t)Rdischarge During discharging

−I(t)Rcharge During charging

(3.22)

In this model, constant values of r0(soc) and voc(soc) are considered based on

the selected range of operation of SoC and to ease the calculations and are simply

replaced with r0 and voc. The discrete form of Eqn. ( 3.20) & ( 3.21) can be derived

using zero order hold method (ZoH) [62] i.e., H(z) = (1 − z)−1Z(L−1{H(s)
s
}).

where H(s) is the Laplace transform [63], which will be calculated in next section

to obtain H(z) [64].

3.5.2.1 Laplace Transformation Method

By assuming va = 0 and by applying Laplace transformation to equation 3.20,

we get:

sva(s)− va(0) = − 1

CaRa

va(s) +
1

Ca
I(s) (3.23)

Procedure of getting Eqn. (3.23) from Eqn. (3.21) is explained in Appendix A.

H(s) =
va(s)

I(s)
=

1

Ca(s)(s+ 1
RaCa

)
(3.24)

Discretized model using ZoH transformation and the corresponding solution is

given as:-

H(z) =
Ra(1− e

−∇td
RaCa )z−1

1− z−1e
−∇td
RaCa

(3.25)
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Transformation from Eqn. (3.24) to Eqn. (3.25) is explained in Appendix B with

detail.

On taking inverse Z-transform of Eqn. (3.25), discrete form is written as:-

vk+1
a = vkae

−∇td
RaCa +RaI(t)k(1− e

−∇td
RaCa ) (3.26)

where ∇td is the sampling interval and k is discrete time index and it is a non-

negative integer number because estimation starts at t = 0 second.

Pbatt in terms of Pmech is expressed as:

P k
batt =

P k
mech

ηm
= vkt I(t)k = vkocI

k − vkaI(t)k −Rk
i I(t)2k (3.27)

Using quadratic formula, I(t)k is calculated and expressed as:

I(t)k =
vkoc
2Rk

i

 vka
2Rk

i

−

√√√√ v
2(k)
oc

4R
2(k)
i

− v
2(k)
a

4R
2(k)
i

− vkav
k
oc

2R
2(k)
i

− P k
mech

ηmRk
i

 (3.28)

where Pmech is:

Pmech =
b1τv

ηm
(3.29)

where b1 is the relation between linear velocity i.e., v and angular velocity i.e., ω,

and expressed as:

b1 =
γ

Rt

(3.30)

SoC dynamics in discrete form is given as:-

sock+1 − sock = −I(t)k

Qnormη
sign(I(t)k)
col

(3.31)

Similarly DoD, is the Depth of Discharge and is the opposite of SoC and explains

the used capacity, can be expressed as [65]:

DoDk+1 = 1− SoCk+1 (3.32)
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Figure 3.9: Basic working and components of PMSM

[67]

3.6 Electric Motor (EM)

Electric Motor (EM) converts the electrical power coming from the battery to

mechanical power or motor power, Pmech, through rectifier as shown in Fig. 3.11.

Permanent Magnet Synchronous Motor (PMSM) is used here because of high speed

and smooth torque requirements with low noise [66].

3.6.1 Permanent Magnet Synchronous Motor (PMSM)

PMSMs are the synchronous motors, which use permanent magnet to generate

Electromotive Force (EMF), which is defined as the electric potential produced by

changing the magnetic field. It contains rotor and stator, however instead of rotor

windings, permanent magnet is used as rotor to generate magnetic field, as shown

in Fig. 3.9. Furthermore, it provides stable output torque.

In this thesis, instead of using complete EM dynamics, its efficiency map is used

[66]. Efficiency map is used to plot a contour of EM efficiency over torque and
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angular speed breakpoints. It also describes the maximum efficiency for any

torque/speed combination, which is used to find the feasibility of particular driving

cycle using range of operating points. Efficiency map of used PMSM is as shown

in Fig. 3.10, which shows the relation of τ vs ω with efficiency. Fig. 3.10 shows

that there is a specific efficiency at every angular velocity vs torque breakpoints

for both positive and negative values.

Based on the motor efficiency i.e., ηm is calculated from Fig. 3.10, the output of

the battery is given to the EM and gets the output power as Pmech, shown in Fig.

3.11. If ηm is the motor efficiency, then it is expressed as:

Efficiency map of selected PMSM
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Figure 3.10: Efficiency map of used PMSM

Figure 3.11: Relation between Battery Power and Motor Power
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ηm =


Pmech

Pbatt
During motoring

Pbatt

Pmech
During generation

(3.33)

where, Pmech is already defined in Eqn. (3.29).

3.7 Chapter Summary

After the discussion on past efforts in range extension problem to EV and prob-

lem statement based on gap and research analysis in chapter 2, Chapter 3 mainly

focuses on modeling of EV and battery. In the first part of this chapter, Mathemat-

ical modeling of EV based on energy analysis is discussed. Longitudinal dynamics

of EV are derived with x and v as the states of the system. Furthermore, vehicle

backward model for velocity tracking and forward model for powertrain limita-

tions are discussed and derived. Modeling is extended to driver model based on

Powertrain Limitation based Speed Guidance Model (PLSGM). In the second part

of this chapter, two different mathematical models of battery are discussed. First

zero order ideal model is discussed and secondly First order Thevenin model is

discussed with SoC as the state of the system. Mathematical model of PMSM is

discussed using its efficiency map.



Chapter 4

General Problem Formulation

with Equality, Inequality and

Interior Point Constraints

4.1 Introduction

Energy optimization during a trip can be achieved through different control tech-

niques. OCP works on finding an admissible control trajectory u : [ta, tb]→ Ω ⊆

Rm that generates a corresponding state trajectory x : [ta, tb] → Rn such that

the cost functional J(u) is minimized. There are two major trajectory optimiza-

tion strategies being applied in finding optimal trajectory problems; direct and

indirect [68]. A direct technique works on finding direct numerical solutions by

constructing a sequence of continually improving approximations to find the op-

timal solution, whereas, indirect method finds optimal solutions by analytically

constructing and numerically solving the necessary and sufficient conditions of op-

timality [69].

DP provides the global optimal solution however, this technique suffers high com-

putational time due to backward discretized model [18, 70]. PMP was proposed by

Russian mathematician Lev Semenovich Pontryagin with his students in 1958 [71].

It can be regarded as one of the beginning of modern optimal control theory along

44
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with DP [70, 72–74]. PMP works on finding the optimal control by satisfying the

necessary conditions of optimality [6]. A control that is found using conditions

of minimum principle is called extremal control. All extremal controls are not

optimal however, optimal control is always an extremal. Several formulations of

PMP exist and the use of particular design depends on the application [6, 72].

4.2 General Formulation of Pontryagin’s Mini-

mum Principle (PMP)

In this thesis, necessary conditions of optimality, also known as PMP, are used to

find the optimal solution [72]. Different formulations are discussed, as:

1. The optimal control with fixed final state

2. The optimal control with free final state

4.2.1 The Optimal Control with Fixed Final State

The optimal control problem revolves around finding a piecewise continuous con-

trol u : [t0, tf ] → Ω such that the system with following constraints are satisfied.

A Dynamic system is defined as:

ẋ = f(x(t), u(t), t) (4.1)

where t ∈ [t0, tf ]. Constraints on initial and final state are:

x(t0) = x0 x(tf ) = xf (4.2)

with cost functional

J(u) = h(x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t)dt (4.3)
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is minimized. h(x(tf ), tf ) is the terminal cost and L(x(t), u(t), t) is the running

cost of the system.

Hamiltonian is formed as:

H(x(t), u(t), λ(t), λ0(t)) = λ0L(x(t), u(t), t) + λTf(x(t), u(t), t) (4.4)

Theorem 4.1. Considering u∗ : [t0, tf ] → Ω as optimal control, then there exist

conditions, which need to be satisfied.

ẋ(t) = 5λH = f(x∗(t), u∗(t), t)

x(t0) = x0

x(tf ) = xf

λ∗0(t) = −λ5x H = −
[
∂f

∂x
(x∗(t), u∗(t), t)

]T
λ∗(t) (4.5)

If Hamiltonian H(x∗(t), u(t), λ∗(t), λ∗0(t), ) has global minimum then there exist

additional condition

H(x∗(t), u∗(t), λ∗(t), λ∗0(t), t) ≤ H(x∗(t), u(t), λ∗(t), λ∗0(t), t) (4.6)

If tf is free then there exists an additional condition

H(x∗(t), u∗(t), λ∗(t), λ∗0(t), tf ) = −λ∗0
∂h(tf )

∂t
(tf ) (4.7)

Proof is given in [72].

4.2.2 The Optimal Control with Free Final State

Cost functional with free final state becomes:

J(u) =

∫ tf

t0

L(x(t), u(t), t)dt (4.8)

H(x(t), u(t), λ(t), λ0(t)) = λ0L(x(t), u(t), t) + λTf(x(t), u(t), t) (4.9)
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Theorem 4.2. Considering u∗ : [t0, tf ] → Ω as optimal control, then there exist

conditions, which need to be satisfied [72].

ẋ(t) = 5λH = f(x∗(t), u∗(t), t)

x(t0) = x0

λ∗0(t) = −λ5x H = −
[
∂f

∂x
(x∗(t), u∗(t), t)

]T
λ∗(t)

λ∗tf = 5h(x∗(tf ), tf ) (4.10)

If Hamiltonian H(x∗(t), u(t), λ∗(t), λ∗0(t), ) has global minimum with respect to u ∈

Ω then there exists condition

H(x∗(t), u∗(t), λ∗(t), λ∗0(t), t) ≤ H(x∗(t), u(t), λ∗(t), λ∗0(t), t) (4.11)

If tf is free then there exists an additional condition

H(x∗(t), u∗(t), λ∗(t), λ∗0(t), tf ) = −λ∗0
∂h(x(tf ), tf )

∂t
(tf ) (4.12)

4.2.3 Necessary Conditions and Pontryagin’s Minimum

Principle

After the derivation of both fixed and free final value of state, the necessary con-

ditions are defined as [6]:

ẋ∗ =
∂H

∂λ
(x∗, u∗, λ∗, t)

λ̇∗ = −∂H
∂x

(x∗, u∗, λ∗, t)

0 =
∂H

∂u
(x∗, u∗, λ∗, t)


for all t ∈ [t0, tf ] (4.13)

These sets of necessary conditions of optimal control are called as PMP, as shown

in Fig. 4.1 with sequence of steps as explained below.

1. Define cost functional.

2. Formulate Hamiltonian.



General Problem Formulation with Equality, Inequality and Interior Point
Constraints 48

Figure 4.1: Flow of steps using PMP

3. Find control that minimizes Hamiltonian.

4. Find state and co-state variations.

5. Determine optimal state and co-state.

4.2.4 Boundary Conditions

Boundary conditions as discussed in previous section are state and time dependent

i.e., fixed/free final state or fixed/free final time.

4.2.4.1 Two Point Boundary Value Problem (TPBVP)

Distributed conditions on both sides of the boundaries of the states are expressed

as the boundary constraints on co-states as:

ẋ∗ = f1(x
∗, u∗, λ∗, t)

λ̇∗ = f2(x
∗, u∗, λ∗, t) (4.14)

x∗(t0) = x0 (4.15)

λ∗(tf ) =
∂h

∂x
(x∗(tf )) (4.16)

if

x(tf ) = fixed, λ(tf ) = free (4.17)
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Table 4.1: Boundary conditions using necessary conditions of optimality
(PMP)

Problem Variables
variations

Boundary conditions

Fixed tf
Specified x(tf )

δxf = δx(tf ) = 0
δtf = 0

x∗(t0) = x0
x∗(tf ) = xf

Fixed tf
Free x(tf )

δxf = δx(tf )
δtf = 0

x∗(t0) = x0
∂h
∂x(x∗(tf ))− λ∗(tf ) = 0

Free tf
Specified x(tf )

δxf = 0

x∗(t0) = x0
x∗(tf ) = xf
H(x∗tf , u

∗tf , λ
∗tf , tf )

+∂h
∂t (x

∗(tf ), tf ) = 0

Free tf
Free x(tf )

x∗(t0) = x0
∂h
∂x(x∗(tf ))− λ∗(tf ) = 0
H(x∗tf , u

∗tf , λ
∗tf , tf )

+∂h
∂t (x

∗(tf ), tf ) = 0
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where u∗ is the control found in Eqn. (4.13).

Presence of specified values of either state or co-state at two boundaries i.e., t0 and

tf make it a Two Point Boundary Value Problem (TPBVP) [75], which requires

certain numerical iterative techniques to achieve these boundary conditions and

are discussed in details in next section.

4.2.5 Numerical Iterative Techniques for TPBVP

These iterative techniques are used to satisfy these necessary conditions with some

initial guess. The selection of a particular iterative method is based upon the final

value of co-state, fixed or free. Two major classification of iterative techniques for

this particular requirement are:

1. Shooting method

2. Gradient projection method

4.2.5.1 Shooting Method

Shooting method is an iterative technique used to find the solution of TPBVP for

the case, where final value of state is fixed. In this case, there is no constraint on

final value of it’s co-state. Shooting method works in forward direction i.e., using

an initial guess of a co-state to find the final value close to the desired specified

value. If initial go close to the desired value, increment or decrement the previous

initial guess will either come close to or go far away from the desired state value

[5, 76, 77], as explained by a flowchart, shown in Fig. 4.2 and by following the

steps explained below.

1. Initialize co-state i.e., λ(0) with some initial guess.

2. Formulate Hamiltonian with respect to cost functional.

3. Find an optimal control with boundary conditions i.e., x(tf ).
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Figure 4.2: Flowchart of shooting method

4. If boundary conditions are satisfied within some reasonable range then quit

the algorithm, otherwise adjusts initial conditions to restart the problem.

4.2.5.2 Gradient Projection Method

Gradient method is normally used to achieve the boundary conditions for the case

in which final values of states are free, as in this case, the terminal boundary

condition for the co-states are λ(tf ) = ∂h
∂x

(x∗(tf )). To solve this problem, called

gradient projection method is considered [6]. This approach solves the state equa-

tions forward in time and the co-state equations backward in time. The complete

algorithm is summarized by the following steps and with flowchart in Fig. 4.3 [78].

1. Choose some random co-state boundary values i.e., λtf and set the stopping

criteria ∆max.

2. Choose α between 0 and 1 and initialize iteration number n = 1 and set the

stopping criteria εmax.

3. Set Λ0(t) = 0 for complete simulation time i.e., t0 < t ≤ tf .

4. Solve the state equations forward in time.

5. Solve the co-state equation backward in time and update the effective co-

state Λn :

Λn = (1− α)λn−1 + αλn
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6. If ε = ||Λn−λn|| < εmax then go to next step, otherwise again solve the state

equations with new and updated effective co-state and repeat the procedure

from step 4.

7. If ||x−x(T )|| < ∆max then quit the algorithm, otherwise again initialize the

updated effective co-state and repeat the procedure from step 1.

The value of α is related to the convergence rate of the algorithm.

4.2.6 Interior Point Constraints

There are some other constraints, that do not exist on the boundaries e.g., at the

start or end of trip, however, they occur at some intermediate points of a journey

[22]. These constraints are called interior point constraints because of nature of

their occurring time or maybe location as explained by example in Fig. 4.4. If the

value of state is fixed at point where interior constraint has occurred, then that

case can be solved using ordinary TPBVP e.g., Charging a vehicle during a trip,

stopping at a signal during a red light. These both scenarios require velocity to

be zero i.e., v(ti) = 0 as shown in Fig. 4.3(a) and because of fixed velocity, its

co-state can have any free value, as explained in Eqn. (4.17). However, if the value

of velocity or another state is free e.g., traffic signal during green light, then this

requires velocity of any value other than zero i.e., v 6= 0, as shown in Fig. 4.3(b).

This scenario requires it’s co-state to be of fixed value, as explained in Eqn. (4.14).

This fixed value needs to be same at the end of t = ti and also at the start of t = ti

[79]. This constraint on co-state cannot be handled using conventional TPBVP, as

it can only solve the boundary constraints, as discussed in previous section. There

is another iterative technique that can solve the problem including interior point

constraints, known as Multi Point Boundary Value Problem (MPBVP).

4.2.6.1 Multi Point Boundary Value Problem

MPBVP is the extension of TPBVP along with continuity condition, which states

that for a free value of state at some intermediate points of trip [80], it’s co-state
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Figure 4.3: Flowchart of gradient method
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Figure 4.4: Scenario containing interior point constraint

must possess continuity just before and after the time a constraint occurs [79].This

strategy converts the multi-phase problem into single phase. Mathematically it

can be expressed as:

λ(t+i ) ≈ λ(t−i ) (4.18)

where ti is some intermediate time at which constraint has occurred and t+i is the

instant just after a constraint has occurred and t−i is the instant just before a

constraint has occurred.

4.2.7 Numerical Iterative Technique for MPBVP: Multi-

ple Shooting Method

Multiple shooting method divides the problem into sub-phases, where a phase

is a region between two interior point constraints [81]. Continuity of co-state is

ensured using backward direction such that by adjusting the final value of co-

state, its initial value becomes equal to the final value of co-state of previous

phase. Moreover, final value of it’s state at the junction point also becomes equal
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to the desired value. Major steps of multiple shooting method are explained as

below and in Fig. 4.5:

1. Transform the single phase trajectory into sub-phases.

2. Initialize the algorithm with some random value at the start of each sub-

phase as unknown initial value of it’s co-state i.e., λ(t0) to find final value of

state and co-state.

3. Enforce continuity condition for required co-state at the phase junctions

using final value of co-state λ(ti+) of next phase to find its initial value i.e.,

λ(ti−1−) of previous phase.

4.2.8 Inquality Constraints

Presence of inequality constraints, which are different from equality or boundary

constraints, make the system more complex [82, 83]. However, there are certain

limitations, which cannot be expressed as boundary, equality or interior point

constraints e.g., current upper or lower bound in electrical devices, speed limits

on the roads, etc.

4.2.8.1 Penalty Function Approach

System bounds can be handled once considered as inequality constraints in theory

of optimal control. There are certain ways to tackle these constraints, out of which

penalty function approach is one of the most adopted and reliable techniques [83–

85]. Penalty function approach can be explained very easily by the example.

There is a speed limit on the road of 70km/hr. If a driver crosses the limit, he

will pay a penalty of 50$. Penalty function approach works exactly the same way

i.e., by converting the constrained optimization problem to unconstrained through

the inclusion of artificially set penalty for violating the constraints. Mathematical
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Figure 4.5: Flowchart of multiple shooting method
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Figure 4.6: Penalty function approach

expression for the additive penalty function can be expressed as below and shown

in Fig. 4.6.

P (x) =


0 if xmin ≤ x ≤ xmax

K if x ≤ xmin

−K if x ≥ xmax

(4.19)

The value of K is determined using an iterative strategy or by hit and trial

to ensure that the cost of Hamiltonian becomes high whenever the constrained

trajectory hits the lower bound and becomes low when hits the upper bound and

the penalty function is not active i.e., by adding a zero term to the Hamiltonian,

when it stays within its allowable bounds.

4.3 Chapter Summary

In this chapter general formulation of PMP is discussed in details. Necessary con-

ditions are derived for free and fixed final values of states and time. Furthermore

concept of TPBVP is added to the problem of boundary constraints. Two differ-

ent numerical iterative techniques are discussed i.e., shooting method and gradient
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method. Problem is further extended to MPBVP and multiple shooting method

for interior point constraints. Iterative algorithms are explained step by step for

TPBVP and MPBVP. Penalty function approach is explained with an example

for inequality constraints. These methods are applied in Chapter 5.



Chapter 5

Eco-driving Solution for Different

Scenarios

5.1 Introduction

After the derivation of necessary conditions with initial, final, inequality and in-

terior point constraints in chapter 4, this chapter focuses on eco-driving solutions

for both unconstrained and constrained cases. Problem revolves around finding

velocity profile that consumes optimal energy. Scenarios considered in this thesis

are:

1. Unconstrained case.

2. Inclusion of zero order ideal battery model with charging/discharging limits

and free final velocity.

3. Inclusion of zero order ideal battery model with charging/discharging limits

and fixed final velocity.

4. Solution with traffic signals as interior point constraints.

5. Solution with traffic signals as interior point constraints and speed limits on

the route.

59
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6. Solution with traffic signals and SoC dependent voc and r0.

7. Solution with traffic signals and leading vehicle constraints in an urban en-

vironment.

5.2 Unconstrained Case

In this case, simplest of the scenario is considered with only linear longitudinal

dynamics of EV. Linear model of EV is considered with h2 = 0 in Eqn. (3.8). No

battery dynamics are considered in this case. Problem is formulated as:x(t0) = 0 x(tf ) = D

v(0) = 0 v(tf ) = 0

(5.1)

where x(t0) and x(tf ) are the initial and final positions of EV respectively with

D as the desired final position. Similarly v(t0) and v(tf ) are the initial and final

velocities respectively. Cost functional J is defined as:

J =

∫ tf

t0

b1τv

ηm
(5.2)

Goal of the problem in Eqn. (5.1) with cost functional in Eqn. (5.2) is to find the

optimal velocity profile that consumes optimal battery energy with fixed initial

and final positions and velocities of EV.

Hamiltonian of cost functional J is expressed using the procedure explained in

Eqn. (4.9) and longitudinal linear dynamics as mentioned in Eqn. (3.8) & (3.10).

H =
b1τv

ηm
+ λ1(v) + λ2(h1τη

sign(τ) − h0 −W ) (5.3)

Next step is to find optimal controls that minimize the Hamiltonian as defined

above. There are two optimal controls i.e., accelerating and braking torques i.e.,

τ+ and τ− respectively. τ+ is applied when sign(τ) is considered positive and τ−

is applied when sign(τ) is considered negative.
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Accelerating torque is obtained as:

τ+ =
∂H

∂τ
=
b1v

ηm
+ λ2h1η (5.4)

Similarly braking torque is expressed as:

τ− =
∂H

∂τ
=
b1v

ηm
+
λ2h1
η

(5.5)

Position state equation is expressed as:

ẋ =
∂H

∂λ1
= v (5.6)

Velocity state equation is expressed as:

v̇ =
∂H

∂λ2
= h1τη

sign(τ) − h0 −W (5.7)

Position co-state i.e., λ1 is expressed as:

λ̇1 = −∂H
∂x

= 0 (5.8)

Velocity co-state i.e., λ2 is expressed as:

λ̇2 = −∂H
∂v

= −b1τ
ηm
− λ1 (5.9)

From the Table. 3.1, with fixed final values of states, its co-states will have free

final values, if the terminal cost is zero i.e., h(x(tf ), tf ) = 0.

Numerical Iterative Technique:

In this case, as the final values of position and velocity are fixed, so with zero

terminal cost, final values of their co-states are free i.e., they have no restriction.

In this case shooting method is used, where with any initial guess on both co-states

i.e., λ1,2(t0) will take close to the desired location and final velocity close to zero.

If the initial guess do not take close to the desired final values of states, increment

or decrement the initial co-state values to achieve the close desired final states in

next few iterations.



Eco-driving Solution for Different Scenarios 62

5.3 Inclusion of Zero Order Ideal Battery Model

with Charging/Discharging Limits and Free

Final Velocity

Battery acts as the sole source of electrical power to the system however, due to

its limited capacity, it acts as one of the main components in deciding the range of

EV. Moreover, battery life gets affected by many factors, out of which charge and

discharge the battery beyond certain limits, accelerate its degradation process [86].

This limit is added using the inequality constraints to the optimization problem.

Zero order ideal battery dynamic model as explained by Eqn. (3.14) is used in

this case along with EV dynamics as explained in Eqn. (4.9). SoC dynamics for

zero order ideal battery is expressed as [45]:

˙soc =
−I(t)

Qnormη
sign(I(t))
col

(5.10)

where I(t) is the current flowing through the battery and expressed as:

I(t) =
voc
2r0
−

√
v2oc
4r20
− Pbatt

r0
(5.11)

Problem is formulated as: 
x(0) = 0 x(tf ) = D

v(0) = 0

socmin ≤ soc ≤ socmax

(5.12)

Goal is to to reach the fixed destination using velocity profile that consumes opti-

mal energy with fixed initial velocity, while keeping battery SoC within charging

and discharging limits. Charging and discharging constraint is applied to limit the

battery from getting fully charged and discharged. When the battery discharges

beyond 20% and gets charged more than 80%, its output gets reduced. However,

for this case, to ease the computation, r0 and voc are taken as constant values.
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Cost functional is same as defined in Eqn. (5.2). Corresponding Hamiltonian is

expressed as:

H =
b1τv

ηm
+ λ1v + λ2(h1τη

sign(τ) − h2v2 − h0 −W )

+(λ3 + P (SoC))(
−I(t)

Qnormη
sign(I(t))
col

) (5.13)

where P (soc) is the penalty function to keep SoC within desired limits, as ex-

plained by Eqn. (4.19).

Accelerating torque, τ+ is expressed as:

τ+ =
∂H

∂τ
=
f1
f2

(5.14)

where f1 is expressed as:

f1 = (λ3b1v + P (soc)b1v)2 − (b1vvocQnormηcol)
2 − (λ2h1ηmQnormηcolηvoc)

2

−(2b1vλ2h1ηmQ
2
normη

2
colv

2
oc) (5.15)

Similarly f2 is expressed as:

f2 = −(4r0b
3
1v

3Q2
norm)− (4r0Q

2
normηmη

2
colb1vλ

2
2h

2
1η

2)

−(8r0Q
2
normη

2
colb1

2v2λ2h1η) (5.16)

Braking torque, τ− is expressed as:

τ− =
∂H

∂τ
=
f3
f4

(5.17)

where f3 and f4 are expressed as:

f3 = (λ3b1v + P (soc)b1v)2 − (b1vvocQnorm)

η2col
− (λ2h1ηmQnormηcolηvoc)

2

−(2b1vλ2h1ηmQ
2
normη

2
colv

2
oc) (5.18)

f4 = −(4r0b
3
1v

3Q2
norm)− (

4r0Q
2
normηmb1vλ

2
2h

2
1

η2η2col
)− (

8r0Q
2
normb

2
1v

2λ2h1
ηη2col

) (5.19)
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In this case, nonlinear EV dynamics are considered as by Hamiltonian in ( 5.13):

ẋ =
∂H

∂λ1
= v (5.20)

v̇ =
∂H

∂λ2
= h1τη

sign(τ) − h0 − h2v2 −W (5.21)

Similarly, co-state equations are given as:

λ̇1 = −∂H
∂x

= 0 (5.22)

λ̇2 =
∂H

∂v
= −b1τ

ηm
− λ1 + (λ3b1τ + P (soc)b1τ)

1

2ηmr0Qnormη
sign(I(t))
col

√
v2oc
r20
− b1τv

ηmr0

(5.23)

λ̇3 = − ∂H

∂soc
= 0 (5.24)

Numerical Iterative Technique:

In this case, as the final value of position is fixed, while final values of velocity

and SoC are free. Shooting method with initial guess of position co-state λ1(t0)

will give the final value of position state because of free value of position co-state.

Whereas, λ2,3(tf ) = 0 will move in backward direction because of their fixed final

values and zero terminal cost.

Complete algorithm is summarized by the following major steps.

1. Initialize position co-state i.e., λ1 with some stopping criteria ∆max for final

value of states.

2. Select α between 0 and 1 with iteration number n = 1 and set the second

stopping criteria εmax for final value of co-states.

3. Set Λ0(t) = 0 for 0 < t ≤ T .
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4. Solve the three state equations and position co-state equation forward in

time.

5. Solve the velocity and SoC i.e., λ2,3 co-state equations backward in time and

update the effective co-state Λn
2,3 :

Λn
2,3 = (1− α)λn−12,3 + αλn2,3

6. If ε = ||Λn
2,3 − λ

n||
2,3 < εmax satisfies then move forward otherwise, again solve

the state equations with updated effective co-state and repeat the procedure

from step 4.

7. If ||x−x(tf )|| < ∆max satisfies then quit the algorithm, otherwise start with

new initial guess of position co-state and repeat the procedure from step 1

with new value of α.

The value of α is related to the convergence rate of the algorithm.

5.4 Inclusion of Zero Order Ideal Battery Model

with Charging/Discharging Limits and Fixed

Final Velocity

In this case, along with initial velocity, the final velocity of EV is also fixed i.e.,

v(tf ) = 0. Optimal controls, states and co-state equations are the same as derived

in previous scenario.

Problem becomes [55]: 
x(0) = 0 x(tf ) = D

v(0) = 0 v(tf ) = 0

socmin ≤ soc ≤ socmax

(5.25)

The basic difference between problem defined in Eqn. (5.1) & Eqn. (5.13) is

the numerical iterative technique to achieve the boundary conditions due to fixed
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final velocity. In this case, as the final values of position and velocity are fixed,

while final value of SoC is free. Shooting method with initial guess on position

and velocity co-states λ1,2(t0) will give the final value of position and velocity

states. However, with λ3(tf ) = 0, steepest gradient method will move the SoC in

backward direction. The complete algorithm is summarized as:

1. Initialize position and SoC co-states with some random guess i.e., λ1,2(t0)

and some stopping criteria ∆max for the final values of states.

2. Select α between 0 and 1 and set the iteration number n = 1 and stopping

criteria εmax for SoC co-state final value.

3. Set Λ0(t) = 0 for 0 < t ≤ T .

4. Solve the three state equations, position and velocity co-state equations for-

ward in time.

5. Solve SoC co-state equation i.e., λ3 backward in time and update effective

co-state Λn
3 := (1− α)λn−13 + αλn3

6. If ε = ||Λn
3−λ

n||
3 < εmax satisfies then move forward otherwise again solve the

state equations with updated effective co-state and repeat the procedure.

7. If ||x−x(tf )||&||v−v(tf )|| < ∆max satisfies then quit the algorithm, otherwise

start with new initial guess.

The value of α is related to convergence rate of the algorithm.

5.5 Solution with Traffic Signals as Interior Point

Constraints

Interior point constraints are those constraints that do not occur at the boundaries,

rather they appear at some intermediate points of trip, as explained in previous

chapter. They pose an adverse effect on numerical technique, as they cannot be
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handled using TPBVP. Cost functional is same as defined in Eqn. (5.2). Traffic

signals are considered as interior point constraints. Goal is to cross these signals

during their green duration i.e., when driver does not need to stop there.

Goal is to find optimal velocity profile that can reach a signal during their green

light time and following other constraints. Traffic signals timings are assumed to

be known in advance using V2I communication protocol. Initial and final velocity

and positions are fixed along with fixed signals locations.

Problem formulation for this case is expressed as [87]:
x(t0) = 0 x(ti) = xi and x(tf ) = D

v(t0) = 0 v(tf ) = 0

socmin ≤ soc ≤ socmax

(5.26)

Hamiltonian with interior point and other constraints is expressed as:

H =

[(
b1τv

ηm

)
+ (λ1v) +

(
λ2(h1τη

sign(τ) − h2v2 − h0 −W )
)

+

(
(λ3)(

−I(t)

Qnormη
sign(I(t))
col

)

)
+

(
β1
2

(x(tf )− xdes,tf )2
)

+
(
µ1(max(0, SoCmin − SoC)2 + max(0, SoC − SoCmax)2)

)
+

(
β2
2
v(tf )

2

)
+

(
ρi
2

5∑
i=1

(xti − xdes,ti)2
)]

(5.27)

where µ1 is the penalty factor to keep SoC between desired bounds. λ1,2,3 are the

three co-states. β1
2

(x(tf )−xdes,tf )2 is the position terminal constraint and β2
2
v(tf )

2

is the velocity terminal constraint. ρi
2

∑5
i=1[(xti − xdes,ti)2] are the 5 interior point

constraints that show 5 traffic signals on the route.

Accelerating torque i.e., τ+, is the optimal control that minimizes Hamiltonian,

when sign(η) and sign(I(t)) are positive.

It is expressed as

τ+ =

[
b1v

4r0ηmv2oc

]
−
[(

λ23b1v

Q2
normηmη

2
col

)
(

1

( b1v
ηm

)2 + (λ2h1
η2

) + (2b1vλ2h1
η

)

)] (5.28)
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Figure 5.1: Location of Five Signals with Destination Point

Similarly braking torque i.e., τ− is the optimal control that minimizes Hamiltonian,

when sign(η) and sign(I(t)) are negative. It is expressed as

τ− =

[
b1v

4r0ηmv2oc

]
−
[(

λ23b1vη
2
col

Q2
normηm

)
(

1

( b1v
ηm

)2 + (λ2h1η2) + (2b1vλ2h1η)

)] (5.29)

Co-state equations are obtained as:

λ̇1 = −∂H
∂x

= −β1(x(tf )− xdes,tf )− ρi
5∑
i=1

(xti − xdes,ti) (5.30)

λ̇2 = −∂H
∂v

=

[(
−b1τ
ηm

)
− λ1 + 2λ2h2v − β2v(tf )

+

 λ3b1τ

ηmr0Qnormη
sign(I(t))
col ( v

2
oc

4r20
− b1τv

ηmr0
)
1
2

 (5.31)

with constant values of r0 and voc, λ̇3 comes out to be

λ̇3 = − ∂H

∂soc
= [2µ1(max(0, socmin − soc))

−2µ2(max(0, soc− socmax))]
(5.32)

State equations are same as expressed in previous scenario.

Refer to Fig. 5.1, which shows the exact position of each traffic signal on the route

and explains that this is the scenario related to multi-phase problem, where phase
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Figure 5.2: Green and Red Duration of five signals on the route

is a region from starting point to first traffic signal and so on. Main objective is to

cross these signals when they are green. Major steps to decide the reaching time

at a coming signal are:-

1. Get a distance between upcoming signal and current location i.e., dis.

2. Get information about signal red and green time using V2I protocols.

3. Calculate optimal velocity i.e., vopt for the unconstrained case.

4. Assume it as unconstrained case that is no signal is there and calculate time

to reach at signal location using optimal velocity as calculated in previous

step using t = dis
vopt

.

5. If calculated time i.e., t can take to the signal during green light and also

other constraints are followed, then follow the route otherwise take next

green as the updated t.

Signals timings can be easily available using different V2I protocols. Fig. 5.2

shows the green and red light timings of five signals. Green light duration of five
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Figure 5.3: Continuity at the Junctions (Five traffic signals) for Multi-phase
Problem

Table 5.1: Continuity Condition at the Junction Points

Junction No Continuity Condition

Junction 1 λ2,3(t
−
1 ) ≈ λ2,3(t+1 )

Junction 2 λ2,3(t
−
2 ) ≈ λ2,3(t+2 )

Junction 3 λ2,3(t
−
3 ) ≈ λ2,3(t+3 )

Junction 4 λ2,3(t
−
4 ) ≈ λ2,3(t+4 )

Junction 5 λ2,3(t
−
5 ) ≈ λ2,3(t+5 )

signals are mentioned in seconds in Eqn. (5.33).

signal1 = [...60− 90, 120− 150, 180− 210, ...]

signal2 = [...60− 90, 120− 150, 180− 210, ...]

signal3 = [..120− 150, 180− 210, 240− 270..]

signal4 = [..120− 150, 180− 210, 240− 270..]

signal5 = [..150− 180, 210− 240, 270− 300..] (5.33)

As explained in previous chapter that MPBVP adds another condition to TPBVP,

which ensures smoothness and continuity of co-state with free final value of its state

just before and after the junction i.e., where an interior constraint has occurred,

known as continuity or corner condition. In this scenario, velocity and SoC are free

at the junction points, so their co-states must possess continuity at the signals.

Fig. 5.3 and Table. 5.1 explain the MPBVP with continuity condition at the

junction points. To achieve, continuities of the two co-states at the junctions,

multiple shooting technique is used. Steps of multiple shooting technique are:



Eco-driving Solution for Different Scenarios 71

1. Transform the single phase trajectory into sub-phases.

2. Initialize the algorithm with some random value at the start of each sub-

phase as unknown initial value of position co-state i.e., λ(t0) to find final

value of position.

3. Enforce continuity condition for velocity and SoC co-states at the phase

junctions using final values of their co-states i.e., λ2,3(ti+) of next phase to

find its initial values i.e., λ2,3(ti−1−) of previous phase.

5.5.1 Complete Algorithm

Complete algorithm is summarized as:

1. Initialize the algorithm with i = 0.

2. Increment i by 1.

3. Choose initial value of λ1 and define location of ith signal x(ti−,des).

4. Choose α between 0 and 1 with iteration number i.e., n = 1 and some

stopping criteria εmax for co-states.

5. Set Λ0(t) = 0 for ti−1+ < t ≤ ti− .

6. Define initial values of all the states to solve the state equations and first

co-state equation forward in time.

7. Define final value of velocity and SoC co-states to solve the λ2,3 backward

in time and update effective co-state Λn = (1− α)Λn−1 + αλn.

8. Check if ε = ||Λn−λn|| < εmax satisfies then go to step 10 for satisfying co-

state convergence for i = 1 and for i = 2, 3, 4, 5, 6 go to step 9 for continuity

condition. If ε = ||Λn−λn|| ≮ εmax do not satisfy for co-states convergence,

go back to step 7 with updated effective co-state.

9. If λ2,3(ti+)≈λ2,3(ti−) satisfies, go to next step, otherwise go back to step 7.
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10. If x(ti−) = x(ti−,des) < ∆max satisfies then move to next step either to

terminate the algorithm or to move to next junction. Otherwise, repeat the

procedure until continuity achieved.

11. If i = 6, stop the algorithm, otherwise repeat the procedure.

Value of α will help in converging the scheme as fast as possible.

5.6 Solution with Traffic Signals as Interior Point

Constraints and Speed Limits on the Route

Speed limits are applied on the roads for safety purposes. Traffic rules are made

to facilitate the public not only sitting in the cars but also for the pedestrians.

These speed limits play very critical role when looking from energy consumption

perspective as well. Therefore, in this scenario along with traffic signals and bat-

tery constraints, speed limits are also considered. Problem becomes:



x(t0) = 0 x(ti) = xi and x(tf ) = D

v(t0) = 0 v(tf ) = 0

socmin ≤ soc ≤ socmax

vmin ≤ v ≤ vmax

(5.34)

Hamiltonian with all these constraints is expressed as:

H =

[(
b1τv

ηm

)
+ (λ1v) +

(
λ2(h1τη

sign(τ) − h2v2 − h0 −W )
)

+

(
(λ3)(

−I(t)

Qnormη
sign(I(t))
col

)

)
+

(
β1
2

(x(tf )− xdes,tf )2
)

+
(
µ1(max(0, vmin − v)2 + max(0, v − vmax)2)

)
+
(
µ2(max(0, socmin − soc)2 + max(0, soc− socmax)2)

)
+

(
β2
2
v(tf )

2

)
+

(
ρi
2

5∑
i=1

(xti − xdes,ti)2
)]

(5.35)
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where µ1 and µ2 are the penalty factors to keep v and SoC between defined bounds.

β1
2

(x(tf )− xdes,tf )2 is the terminal position constraint and β2
2
v(tf )

2 is the velocity

terminal constraint. ρi
2

∑5
i=1[(xti − xdes,ti)2] are the interior point constraints that

show 5 traffic signals on the route.

Accelerating torque i.e., τ+, is expressed as:

τ+ =

[
b1v

4r0ηmv2oc

]
−
[(

λ23b1v

Q2
normηmη

2
col

)
(

1

( b1v
ηm

)2 + (λ2h1
η2

) + (2b1vλ2h1
η

)

)] (5.36)

Similarly braking torque i.e., τ− is the optimal input that maximizes Hamiltonian,

when sign(η) and sign(I(t)) are negative.

It is expressed as

τ− =

[
b1v

4r0ηmv2oc

]
−
[(

λ23b1vη
2
col

Q2
normηm

)
(

1

( b1v
ηm

)2 + (λ2h1η2) + (2b1vλ2h1η)

)] (5.37)

Co-state equations are obtained as:

λ̇1 = −∂H
∂x

= −β1(x(tf )− xdes,tf )− ρi
5∑
i=1

(xti − xdes,ti) (5.38)

λ̇2 = −∂H
∂v

=

[(
−b1τ
ηm

)
− λ1 + 2λ2h2v − β2v(tf )

+

 λ3b1τ

ηmr0Qnormη
sign(I(t))
col ( v

2
oc

4r20
− b1τv

ηmr0
)
1
2


+ (2µ1(max(0, vmin − v))− 2µ1(max(0, v − vmax)))]

(5.39)

λ̇3 = − ∂H

∂soc
= [2µ2(max(0, socmin − soc))

−2µ2(max(0, soc− socmax))]
(5.40)

State equations are same as expressed in previous scenario.

Complete algorithm adds another step to the procedure explained in previous case

that speed limits constraint also need to be followed using the penalty function.
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5.7 Solution with Traffic Signals and SoC Depen-

dent voc and r0

In previous cases, constant values of voc and r0 were assumed, however, for realistic

scenario, voc and r0 are SoC dependent and this dependency needs to be considered

to see the change in battery losses and output power [87].

Traffic signal timings are as mentioned in Eqn. (5.41).

signal1 = [..90− 120, 150− 180, 210− 240..]

signal2 = [..120− 150, 180− 210, 240− 270..]

signal3 = [..210− 240, 270− 300, 330− 360..]

signal4 = [..240− 270, 300− 330, 360− 390..]

signal5 = [..150− 180, 210− 240, 270− 300..] (5.41)

Problem for this case is formulated as:

x(0) = 0 x(ti) = xi and x(tf ) = D

v(0) = 0 v(tf ) = 0 for case 2: v(ti) = 0

socmin ≤ soc ≤ socmax

vmin ≤ v ≤ vmax

(5.42)

Hamiltonian for this case is defined as:

Figure 5.4: Location of four signals with destination point



Eco-driving Solution for Different Scenarios 75

Figure 5.5: Continuity at the Junctions (Four traffic signals) for Multi-phase
Problem

H =

[(
bτv

ηm

)
+ (λ1v) +

(
λ2(h1τη

sign(τ) − h2v2 − h0 −W )
)

+

(
(λ3)(

−I(t)

Qnormη
sign(I(t))
col

)

)
+

(
β1
2

(x(tf )− xdes,tf )2
)

+
(
µ1(max(0, vmin − v)2 + max(0, v − vmax)2)

)
+
(
µ2(max(0, socmin − soc)2 + max(0, soc− socmax)2)

)
+

(
β2
2
v(tf )

2

)
+

(
ρi
2

4∑
i=1

(xti − xdes,ti)2
)]

(5.43)

Optimal accelerating and braking torques are expressed as:

τ+ =

[
bv

4r0(soc)ηmv2oc(soc)

]
−
[(

λ23bv

Q2
normηmη

2
col

)
(

1

( bv
ηm

)2 + (λ2h1
η2

) + (2bvλ2h1
η

)

)] (5.44)

τ− =

[
bv

4r0(soc)ηmv2oc

]
−
[(

λ23bvη
2
col

Q2
normηm

)
(

1

( v
ηm

)2 + (λ2h1η2) + (2bvλ2h1η)

)] (5.45)

Co-state equations i.e., position λ1, velocity λ2 and SoC λ3 are expressed as:

λ̇1 = −∂H
∂x

= −β1(x(tf )− xdes,tf )− ρi
4∑
i=1

(xti − xdes,ti) (5.46)
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λ̇2 = −∂H
∂v

=

[(
− bτ
ηm

)
− λ1 + 2λ2h2v − β2v(tf )

+

 λ3bτ

ηmr0(soc)Qnormη
sign(I(t))
col ( v

2
oc(soc)

4r20(soc)
− b1τv

ηmr0(soc)
)
1
2


+ (2µ1(max(0, vmin − v))− 2µ1(max(0, v − vmax)))]

(5.47)

λ̇3 = − ∂H

∂soc
= [2µ2(max(0, socmin − soc))

−2µ2(max(0, soc− socmax))]− λ3f5(soc) + λ3f6(soc)

(5.48)

where f5(soc) and f6(soc) are defined as:

f5(soc) =

∂(
voc(SoC)
2r0(SoC)

)

∂soc

2Qnormη
sign(I(t))
col

(5.49)

f6(soc) =

∂

√
voc2(soc)

4r20(soc)
− Pbatt

r0(soc)

∂soc

2Qnormη
sign(I(t))
col

voc(soc)
2r0(soc)

−
√

voc2(soc)

4r20(soc)
+ Pbatt

r0(soc)

(5.50)

Numerical iterative algorithm is used as explained in previous scenario.

5.8 Solution with Traffic Signals and Leading Ve-

hicle Constraints in an Urban Environment

In previous cases, urban traffic environment were not considered to ease the com-

putation. In this case, traffic is considered both as single and multiple leading

vehicles on the route. Goal is to find an optimal velocity profile while keeping safe

distance ahead with leading vehicles and following other constraints. Problem is

formulated as: 

x(t0) = 0, x(ti) = xi x(tf ) = D,

v(t0) = 0 and v(tf ) = 0

socmin ≤ soc ≤ socmax,

vmin ≤ v ≤ vmax

x ≤ (xlead − xsafe)

(5.51)
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where i indicates ith traffic signal with ti as timing constraint on ith traffic signal,

which can be any value between green light duration of ith traffic signal. xlead

is fixed for single leading vehicle but for the case of multiple leading vehicles,

it changes continuously, vehicle that get close to host EV, becomes the leading

vehicle.

Hamiltonian for the scenarios is expressed as:

H = b1τv
ηm

+ λ1v + λ2(h1τη
sign(τ) − h2v2 − h0 −W )− λ3

[
Iload(t)

Qnormη
sign(I(t))
col

]
+β1

2
(x(tf )− xdes,tf )2 + µ1(max(0, vmin − v)2) + max((0, v − vmax)2))

+µ2(max(0, socmin − soc)2) + max(0, soc− socmax)2) + β2
2
v(tf )

2

+ρi
2

∑5
i=1[(xti − xdes,ti)2] + µ3(max(0, x− (xlead − xsafe)2)) (5.52)

Accelerating and braking torques are expressed as:

τ+ =
∂H

∂τ
= 0 =

b1v

4r0ηmv2oc
− λ23b1v

Q2ηmη2col

[
b21v

2

η2m
+ 2b1vλ2h1η + λ22h

2
1η

2
] (5.53)

τ− =
∂H

∂τ
= 0 =

b1v

4r0ηmv2oc
− λ23b1v

Q2ηm
η2col

[
b21v

2

η2m
+ 2b1vλ2h1

η
+

λ22h
2
1

η2

] (5.54)

Co-state equations are obtained as:-

λ̇1 = −∂H
∂x

= −β1(x(tf )− xdes,tf )− ρi
5∑
i=1

[(xti − xdes,ti)]

+2µ3(max(0, x− (xlead − xsafe))) (5.55)

λ̇2 = −∂H
∂v

= −b1τ
ηm
− λ1 + 2λ2h2v +

λ3b1τ

ηmr0Qη
sign(Iload(t))
col

[
v2oc
4r20
− b1τv

ηmr0

] 1
2

+2µ1[max(0, vmin − v)]− 2µ1[max(0, v − vmax)]− β2v(tf ) (5.56)

SoC co-state with constant voc and r0 becomes:

λ̇3 = − ∂H

∂soc
= 2µ2[max(0, socmin − soc)]− 2µ2[max(0, soc− socmax)] (5.57)
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5.8.1 Simulation of Urban Mobility (SUMO)

In this scenario, traffic signals timings are assumed to be known in advance and

route from Jinnah Avenue to Fasial Mosque is selected with five traffic signals is

considered. SUMO is an open source traffic simulation software, which is used for

the traffic and signals forecasting on the selected route. Traffic signals timings are

set as 50% duty cycle. Fig. 5.6 shows the SUMO view map of selected route with

zoomed view of traffic signals. Single and multiple vehicles are running on the the

selected route, which is formulated as leading vehicle constraint.

5.8.2 Numerical Iterative Technique

Refer to Fig. 5.7, that shows location of five traffic signals along with multiple

leading vehicles. Location of traffic signals in this problem is different from the

one discussed in previous case. This is because in this case real route from Jinnah

Avenue to Faisal Mosque, Islamabad, Pakistan is considered. Five traffic signals

Figure 5.6: SUMO map view of selected route with traffic signals
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Figure 5.7: Locations of traffic signals with multiple leading vehicles along
the route

Figure 5.8: Google map view of selected route with traffic signals, starting
and ending locations

0 100 200 300 400 500 600

Time [sec]

0

10

20

30
First and Second Signals Timings

0 100 200 300 400 500 600

Time [sec]

0

10

20

30
Third, Fourth and Fifth Signal Timings

Green

Red

Green

Red

Figure 5.9: Signal timings of the five signals on the route

are present on the route so five interior point constraints are present. Fig. shows

the Google map view of the selected route with traffic signals, start and end

positions. Signal timings are as mentioned in Eqn. (5.58).
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Signals 1 = [....31− 60, 91− 120, 151− 180, 211− 240....]

Signals 2 = [....31− 60, 91− 120, 151− 180, 211− 240....]

Signals 3 = [..301− 330, 361− 390, 421− 450, 481− 510..]

Signals 4 = [..301− 330, 361− 390, 421− 450, 481− 510..]

Signals 5 = [..301− 330, 361− 390, 421− 450, 481− 510..] (5.58)

Complete algorithm is explained as:

1. Initialize the algorithm with i = 0.

2. Increment i by 1.

3. Select λ1(t0) and measure ith signal location as x(ti−,des).

4. Select α with n = 1 and convergence stopping criteria for co-states εmax.

5. Set effective co-state i.e., Λ0(t) = 0 between starting time to signal’s reaching

time as ti−1+ < t ≤ ti− .

6. Define initial values of all the three states to solve the state equations and

first co-state equation forward in time.

7. Define final value of second and third co-states to solve the λ2,3 backward in

time and update effective co-state Λn = (1− α)Λn−1 + αλn.

8. Check if ε = ||Λn−λn|| < εmax satisfies then go to step 10 for i = 1 to further

satisfy the boundary conditions of states and for i = 2, 3, 4, 5, 6 go back to 9

to satisfy the continuity condition of co-states. If ε = ||Λn−λn|| ≮ εmax, go

back to step 7 to re-start the procedure with new updated effective co-state.

9. If λ2,3(ti+)≈λ2,3(ti−) satisfies, go to step 10, otherwise go to step 7.

10. If x(ti−) = x(ti−,des) < ∆max then return step 11, otherwise return to step 7.

11. If i = 6, terminate algorithm, otherwise repeat procedure for next signal.
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5.8.3 Smoothing of Chattering in Optimal Results

It is observed in this case that the presence of traffic as multiple or single leading

vehicle constraint causes fast switching in torque profiles, which may not look good

from driver’s perspective. Furthermore fast switching in torque profile consumes

more energy. Second order low pass butterworth filter with cutoff frequency of

270Hz, is used to smooth out these torque profiles [88]. Frequency response of a

transfer function of this filter is as shown in Fig. 5.10 with transfer function is as

mentioned below. Denominator co-efficients of a designed filter are mentioned in

Table. 5.2. Filtering is applied after the calculation of optimal results because of

offline nature of considered problem, procedure is highlighted in Fig. 5.11.
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Figure 5.10: Frequency response of 2nd order low pass Butterworth filter

Figure 5.11: Smoothing algorithm for torque profiles
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Table 5.2: Co-efficients of denominator of 2nd order lowpass filter

Co-efficients b0 b1 b2

Values .5690 1.138 .5690

H(s) =
1.75s2 + 1.65s+ .5858

s2 + 2s+ 1
(5.59)

5.9 Different Modes of Optimal Torque

Vehicle starts off the journey with maximum power and then continues the trip

with smooth velocity. When the surrounding vehicles are near by, it adjusts its

speed and when the destination is about to come, it starts reducing the speed

and applies the brakes to stop. Optimal torque is selected based on accelerating

and braking torques numerical values and are further bounded by motor maximum

accelerating and braking torques as τM and τm respectively. Selection of particular

mode is based upon the calculated values of τ+ and τ−, as explained below.

τopt =


τ+ if τ+ > 0, τ− > 0

0 if τ+ < 0, τ− > 0

τ− if τ+ < 0, τ− < 0

(5.60)

W (t) =

0 if λ2 > 0, I(t) < 0

W if λ2 < 0, I(t) > 0

(5.61)

τopt =

τM if τopt ≥ τM

τm if τopt ≤ τm

(5.62)

Six possible optimal torque modes are considered, which are listed as:-

1. First mode i.e., Maximum Acceleration (MA)
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2. Second mode i.e., Acceleration (A)

3. Third mode i.e., Coasting (C)

4. Fourth mode i.e., Deceleration (D)

5. Fifth mode i.e., Maximum Deceleration (MD)

6. Sixth mode i.e., Braking (B)

5.9.1 Maximum Acceleration (MA)

During this mode, accelerating torque i.e., τ+ goes to maximum level in positive

side but due to applied upper limit on actuator, it can only go to level of τM . On

the other hand, braking torque i.e., τ− in this mode also stays on the positive side.

Optimal torque and brake for this mode become

τopt = τM

Wopt = 0 (5.63)

5.9.2 Acceleration (A)

Once the trip has passed through the initial phase, EV switches to accelerating

mode. During this mode, accelerating torque i.e., τ+ becomes less than τM , but

remains on positive side. Optimal torque and brake for this mode become

τopt = τ+

Wopt = 0 (5.64)

5.9.3 Coasting (C)

During this mode, accelerating mode τ+ switches from positive to negative side

with braking torque i.e., τ− remains on positive side. Optimal torque and brake
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for this mode become

τopt = 0

Wopt = 0 (5.65)

5.9.4 Deceleration (D)

During this mode, EV switches from C to D mode. Both accelerating and braking

torques go to negative side. Optimal torque and brake during this mode become

τopt = τ−

Wopt = 0 (5.66)

5.9.5 Maximum Deceleration (MD)

Braking torque keeps going in negative side and when it gets close to saturation

limit i.e., τm but cannot cross it, it indicates the fifth mode has started. Optimal

torque and brake for this mode become

τopt = τm

Wopt = 0 (5.67)

5.9.6 Braking (B)

During the entire accelerating mode of operation, velocity co-state remains on the

negative side but once it goes on the positive side i.e., λ2 > 0, braking mode has

started. As a result, battery starts charging using regenerative braking mechanism.

Optimal control values for this mode are

τopt = τm

Wopt = W (5.68)
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These modes will be clearly observed in optimal torque trajectories for every case.

5.10 Chapter Summary

Using the general formulation of necessary conditions of optimality from Chapter

4, Chapter 5 focuses on the derivation of Hamiltonian, state, optimal control and

co-state equations for different scenarios. Scenarios included unconstrained case,

boundary conditions for final values of position, velocity and SoC, inequality con-

straints for charging/discharging and road speed limits, interior point constraints

for traffic signals, SoC dependent r0 and voc and leading vehicle constraints for the

inclusion of safe gap in urban traffic. Furthermore, six different modes of optimal

torque during accelerating and braking phase are discussed in details.



Chapter 6

Simulation and Results

6.1 Unconstrained case

In this scenario, unconstrained case is considered. Final position and velocity

are fixed. Six possible modes of optimal torques are considered, as explained in

chapter 5. Fig. 6.1 shows the states of EV with Fig. 6.1(a) shows the position

profile of EV and Fig. 6.1(b) shows the optimal velocity profile achieved using

PMP. Boundary conditions are as mentioned in Table. 6.1. Fig. 6.2 shows the

optimal torque profile with six different modes and energy consumption during

a trip. It can be seen clearly that from start, EV first followed the trip with

maximum accelerating mode and then it converts to an accelerating mode i.e.,

with comparatively smooth velocity profile. Once the EV has achieved certain

comfort zone, it then converts to coasting mode i.e. close to constant velocity and

when the destination is about to come, it first converts to deceleration followed

by maximum deceleration. Finally at the end brakes are applied to stop at final

destination and during this mode, energy consumption is on the negative side,

i.e., regenerative braking mechanism means energy is giving back to the system.

Fig. 6.3(a)&(b) show the position and velocity co-states respectively. Moreover,

velocity co-state remains on the negative side throughout the operation apart from

the braking phase. Energy consumption for EV during a trip is as mentioned in

Table. 6.1.

86
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Figure 6.1: States of EV for unconstrained case

0 5 10 15 20 25 30

Time [sec]

-20

0

20

40

T
o
r
q
u
e
 [
N

m
]

0

0.5

1

B
r
a
k
e
 p

r
o
fi
le

(a) Optimal torque and brake profile with different modes
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Figure 6.2: Optimal torque and brake profile with energy consumption during
a trip
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Figure 6.3: Co-states of EV for unconstrained case

Table 6.1: Boundary conditions and energy consumption for unconstrained
case

Variables Values

xf 150m

vf 0

λ1(tf ) free

λ2(tf ) free

Energy consumption 33wh

6.2 Inclusion of Zero Order Ideal Battery Model

with Charging/Discharging Limits and Free

Final Velocity

In this scenarios, battery dynamics are integrated with EV dynamics. The major

reason for considering battery dynamics is to enhance the range of EV. Moreover
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constraints are applied on battery SoC to limit the charging/discharging, which

indirectly improves its life. Fig. 6.4 shows the position profile of EV. Fig. 6.5 shows

the optimal velocity followed by EV and SoC of battery. It can be seen clearly

that when the velocity increases, SoC decreases i.e., battery discharges and when

the velocity of EV decreases during braking, SoC increases i.e., battery charges.

Optimal torque profile with five optimal modes and energy consumption during a

trip, are as shown in Fig. 6.6. It can be observed, as there is not brake applied

during a trip hence no energy recovery is observed in Fig. 6.6(b). Final position

is fixed, while final velocity and SoC are free, as mentioned in Table. 6.12. Fig.

6.7 shows the co-states of EV with Fig. 6.7(b) shows that final value of velocity

co-state is zero and that is because of free final velocity. Fig. 6.7(a)&(c) shows

the position and SoC co-states respectively. It can be seen that both position and

SoC co-states have constant values due to λ̇1 and λ̇3, as expressed in Eqn. (5.22)

& (5.24) respectively.
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Figure 6.4: Position profile of EV for constrained SoC case
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Figure 6.5: Velocity and SoC profiles of EV for constrained SoC case
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(a) Optimal torque and brake profile with different modes
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Figure 6.6: Optimal torque profile with energy consumption of EV for con-
strained SoC case
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Figure 6.7: Co-states of EV for constrained SoC case

Table 6.2: Boundary conditions, inequality constraints, battery size and en-
ergy consumption for SoC charging limits with free final velocity

Variables Values Variables Values

xtf 150m λ2(tf ) 0

λ1(tf ) free λ3(tf ) free

SoCmin 0.2 SoCmax 0.8

Battery size 50wh Energy consumption 30wh

6.3 Inclusion of Zero Order Ideal Battery Model

with Charging/Discharging Limits and Fixed

Final Velocity

This scenario is the extension of previous case with the difference that the final

value of velocity is fixed, as mentioned in Table. 6.3 along with other boundary

conditions, which are same from previous case. Final position of EV is fixed,
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as shown in Fig. 6.8. Similar to previous case, when velocity of EV increases,

its battery experiences discharging phase through the reduction in SoC. During

the coasting phase, almost no difference is observed in SoC, while during the

braking phase, its SoC gets increased i.e., by charging the battery, also known

as regenerative braking mechanism, as shown in Fig. 6.10(a)&(b). Fig. 6.11

shows the co-states of EV, with Fig. 6.11(a)&(c) show the position and SoC co-

states which remained constant throughout the operation and due to the values

of λ̇1 & λ̇3 in Eqn. (5.22) & (5.24) respectively. Fig. 6.11(b) is the pictorial

representation of velocity co-state, which has final value free due to the fixed final

velocity. Moreover, it can be seen clearly that velocity co-state goes to positive

side, once the brakes are applied.
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Figure 6.8: Position profile of EV for constrained SoC with fixed final velocity
case
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Figure 6.9: Velocity and SoC profiles of EV for constrained SoC with fixed
final velocity case

0 5 10 15 20 25 30

Time [sec]

-20

0

20

40

T
o

r
q

u
e

 [
N

m
]

0

0.5

1

B
r
a

k
e

 p
r
o

fi
le

(a) Optimal torque and brake profile with different modes
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Figure 6.10: Optimal torque and brake profile with energy consumption of
EV for constrained SoC with fixed final velocity case
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Figure 6.11: Co-states of EV for constrained SoC with fixed final velocity case

Table 6.3: Boundary conditions, inequality constraint, battery size and energy
consumption for SoC charging limits with fixed final velocity

Variables Values Variables Values

x0 0 xtf 350m

v0 0 vtf 0

SoCtf free λ1(tf ) free

SoCmin 0.2 SoCmax 0.8

λ2(tf ) free λ2(tf ) free

Battery size 100wh Energy consumption 62wh

6.4 Solution with Traffic Signals as Interior Point

Constraints

In this scenario, along with other constraints of previous scenario, traffic signals

are added as interior point constraints. Boundary conditions with inequality con-

straints are as mentioned in Table. 6.4. Location of every traffic signal is as
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Table 6.4: Boundary conditions, inequality constraints and battery size for
interior points scenario

Variables Values Variables Values

x0 0 xtf 5300m

v0 0 vtf 0

xti fixed vti free

SoCtf free λ3(tf ) free

SoCmin 0.2 SoCmax 0.8

λ1(tf ) free λ2(tf ) free

Battery size 5.5kwh λ2,3(ti) continuous

mentioned in Eqn. (5.22). Fig. 6.12 shows the position profile of EV with Fig.

6.13(a) shows the optimal velocity profile. It can be seen clearly that EV velocity

does not go to zero at the signals due to green duration, when compared with their

timing signals from Eqn. (5.33) and Fig. 5.2. Exact reaching time of EV at every

traffic signal is as mentioned in Table. 6.5. Fig. 6.13(b) shows the SoC of the

battery installed in EV, which shows that it charges only at the end of the route,

while no charging is observed during the signals locations, which was one of the

main goals of this work. Similarly Fig. 6.15 shows the optimal torque and brakes

profile with energy consumption, that explains more clearly that no braking phase

is observed during a trip.

EV has crossed these signals through coasting phase. Fig. 6.14 shows the co-

states of the system, with Fig. 6.13(a) shows the position co-state, while Fig.

6.14(b)&(c) show the velocity and SoC co-states respectively. Major point to be

noted in all the three co-state profiles is that there occur discontinuities at the

junctions in case of position co-state, while no discontinuities occur at the junc-

tions in case of velocity and SoC co-states. Exact comparison of values of λ2 at

every junction using MPBVP and TPBVP is as mentioned in Table. 6.6 with con-

stant λ3. Furthermore, energy consumption comparison using the two strategies

i.e., MPBVP and TPBVP is as mentioned in Table. 6.7. Fig. 6.16 shows the

used EM efficiency through the use of optimal torque and velocity break points.

Furthermore, average efficiency using efficiency map for the scenario is ∼ 93. .
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Figure 6.12: Position profile of EV with interior point constraints
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Figure 6.13: Velocity and SoC profiles of EV with interior point constraints
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Figure 6.14: Co-states of EV with interior point constraints
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(a) Optimal torque and brake profile with different modes
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Figure 6.15: Optimal torque and brake profile with energy consumption of
EV with interior point constraints
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Optimal torque and speed breakpoints over efficiency map of selected PMSM without speed limits
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Figure 6.16: Efficiency map with optimal torque and speed breakpoints

Table 6.5: Reaching time of EV at the signals

Signal No Time [sec]

1 83

2 146

3 201

4 241

5 292

Table 6.6: Comparison of co-state values at the junctions between MPBVP
and TPBVP

MPBVP TPBVP

λ2(t
−
i ) λ2(t

+
i ) λ2(t

−
i ) λ2(t

+
i )

-25 -25.32 -7.01 -14.41

-8.22 -8.15 -11.5 -45.85

-17 -16.1 -17.12 -21.26

-23 -22.17 -23.14 -32.13

-13.7 -13.8 -13.11 -83.7
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Table 6.7: Energy consumption comparison

MPBVP TPBVP

95.08wh 96.8wh

6.5 Solution with Traffic Signals as Interior Point

Constraints and Speed Limits on the Route

In this scenario, speed limits are added to the previous scenario. Boundary condi-

tions, inequality constraints and interior point constraints are as mentioned Table.

6.4. Moreover, speed limits for different phases are mentioned in Table. 6.8. Fig.

6.17 shows the position profile with location of traffic signals and destination point.

Fig. 6.18 shows the optimal velocity profile with speed limits and SoC of the bat-

tery. Fig. 6.19 shows the co-states of the system, with position co-state that faces

discontinuities at the junctions due to fixed locations of signals in Fig. 6.19(a).

Fig. 6.19(b) shows the velocity co-state with continuities at the junctions using

MPBVP and multiple shooting method. Exact values of velocity co-state λ2 at

the junctions are mentioned in Table. 6.9. Fig. 6.20 shows the optimal torque

and brake profile with different modes and energy consumption during a trip. Fig.

6.20(a)&(b) shows that no braking and energy recovery phase is observed through-

out the operation apart from end point of trip. All the signals are crossed by EV

during their green duration, with exact reaching time is as mentioned in Table.

6.10. Furthermore, energy consumption comparison during a trip is as mentioned

in Table. 6.11. Fig. 6.21 shows the used EM efficiency through the use of optimal

torque and velocity break points with achieved average efficiency is ∼ 93%.

Table 6.8: Speed limits in every phase

Phase No vmin(km) vmax(km)

Phase 1 10 26.5

Phase 2 18.5 30

Phase 3 18.5 26.5

Phase 4 15 26.5

Phase 5 15 26.5

Phase 6 0 30
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Figure 6.17: Position profile of EV with interior point constraints and speed
limits
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Figure 6.18: Velocity and SoC profiles of EV with interior point constraints
and speed limits
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Figure 6.19: Co-states of EV with interior point constraints and speed limits
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Figure 6.20: Optimal torque and brake profile with energy consumption of
EV with interior point constraints and speed limits
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Optimal torque and speed breakpoints over efficiency map of selected PMSM with speed limits

0 50 100 150 200 250 300

Speed [rpm]

-30

-20

-10

0

10

20

30

T
o
r
q
u
e
 [
N

m
]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

Figure 6.21: Efficiency map with optimal torque and speed breakpoints and
speed limits

Table 6.9: Velocity co-state values at the junctions

λ2(t−i ) λ2(t+i )

-7.01 -7.942

-12.57 -12.93

-17.65 -17.8

-23.14 -23.41

-13.47 -13.37

Table 6.10: Reaching time at the signals with speed limits

Signal No. Time [sec]

1 85

2 150

3 207.2

4 244.7

5 295.9

Table 6.11: Energy consumption

Energy consumption 95.4wh
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6.6 Solution with Traffic Signals and SoC Depen-

dent voc and r0

In this scenario, internal resistance r0 and open circuit voltage voc are taken as

the function of SoC. Fig. 6.22 shows the position profile of EV with traffic

signals and final position. Fig. 6.23 shows the optimal velocity profile with SoC

of the battery. Again in this scenario, EV has successfully crossed all the signals

during their green duration and following continuity condition. Fig. 6.25 shows

the optimal torque and braking profile with energy consumption during a trip.

Fig. 6.26 shows the change in r0 and voc in (a) and (b) respectively. It shows

that once battery discharges, its output power gets reduces by reduction in voc

and increase in r0 that show losses. In these figures, it is not clearly observable

as the selected range of SoC is very small due to the applied eco-driving strategy.

Table. 6.13 shows the energy consumption comparison with and without using

eco-driving strategy. Fig. 6.27 shows the used EM efficiency map with average

efficiency is ∼ 92.4%.

Table 6.12: Velocity co-state values and reaching time at the signals for SoC
dependent voc and r0

Signal No. λ2(t
−
i ) λ2(t

+
i ) Reaching time

1 -8.714 -8.739 105.2

2 -15.3 -15.29 193

3 -.25 -.20 331.1

4 -.008 -.0002 374.7

Table 6.13: Energy consumption comparison between EV using eco-driving
strategy and vehicle without eco-driving assistance for SoC dependent voc and

r0

EV with eco-driving assistance 184wh

Vehicle without eco-driving assistance 217wh
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Figure 6.22: Position profile of EV with interior point constraints and SoC
dependent voc and r0
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Figure 6.23: Velocity and SoC profiles of EV with interior point constraints
and SoC dependent voc and r0
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Figure 6.24: Co-states of EV with interior point constraints and SoC depen-
dent voc and r0
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(a) Optimal torque and brake profile with different modes
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Figure 6.25: Optimal torque and brake profile with energy consumption of
EV with interior point constraints and SoC dependent voc and r0



Simulation and Results 106

0 50 100 150 200 250 300 350 400

Time [sec]

6

7

8

9

R
e
s
is

ta
n
c
e
 [
o
h
m

]

×10
-5 (a) Variation in r

0
 with change in SoC

0 50 100 150 200 250 300 350 400

Time [sec]

21.5

22

22.5

V
o
lt
a
g
e
 [
V

]

(b) Variation in v
oc

 with change in SoC
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Figure 6.27: Efficiency map with optimal torque and speed breakpoints with
SoC dependent voc and r0
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6.7 Solution with Traffic Signals and Leading Ve-

hicle Constraints in an Urban Environment

In the previous scenarios, traffic signals, charging/discharging limits, speed con-

straints and boundary conditions were considered however, it was assumed that

there was no traffic on the road. In this scenario, urban traffic is considered to

get close approximation to real environment. Two environments are considered

in this scenario, one is with single vehicle on the route and other is with multiple

vehicles. Traffic problem is considered and solved as leading vehicle constraint. If

a single vehicle is present on the route, then it is the only leading vehicle and safe

gap must need to be maintained but if multiple vehicles are running on the road

then the vehicle which gets close to EV with eco-driving assistance, becomes the

leading vehicle for that instant of time. Fig. 6.28 (a) and (b) show positions profile

of EV with eco-driving assistance and their leading vehicles without eco-driving

assistance for both the scenarios. Fig. 6.28(a) shows results of single leading ve-

hicle scenario, while Fig. 6.28(b) shows multiple leading vehicles scenario.

Fig. 6.29 shows the distance ahead and gap between EV and leading vehicles.

Fig. 6.29(a) shows the gap with single leading vehicle whereas, Fig. 6.29(b) shows

gap for the closest vehicle for multiple leading vehicles scenario. One important

thing to be noticed in Fig. 6.29 that for both the scenarios minimum safe gap

of 5m is violated at some points, however without collision EV has recovered

through switching from acceleration to coasting mode. Fig. 6.30 & Fig. 6.31

show the achieved velocities using PMP with both backward EV simulator and

PLSGM. Moreover, SoC and DoD for both the scenarios are shown in Fig. 6.30

and Fig. 6.31 (b) & (c) respectively with 5.5kwh of battery capacity, as used in

previous cases of problem with traffic signals. It can be seen observed that EV

using PLSGM has followed the advised velocities with great accuracy and without

powertrain saturation. In similar ways, Fig. 6.32 & Fig. 6.33 show leading vehicle

velocities with battery’s SoC and DoD. Velocities comparison show that proposed

approach of eco-driving assistance in Fig. 6.30 & Fig. 6.31 use very less braking
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Table 6.14: Co-state values comparison at the junction points between single
and multiple leading vehicles

Single leading vehicle Multiple leading vehicles

Signal λ2(t
−
i ) λ2(t

+
i ) λ3(t−i ) λ3(t+i ) λ2(t

−
i ) λ2(t

+
i ) λ3(t−i ) λ3(t+i )

i = 1 −5 −5.92 8.2 8.2 5.25 5.24 6.5 6.5

i = 2 −20.5 −22.28 8.2 8.2 −5.4 −5.42 6.5 6.5

i = 3 −10 −11.02 8.2 8.2 −2.3 −2.33 6.5 6.5

i = 4 −5 −6.18 8.2 8.2 −1 −1.71 6.5 6.5

i = 5 −3.5 −5.72 8.2 8.2 −.65 −.68 6.5 6.5

action as compared to different Stop&Go approach of leading vehicles as shown in

Fig. 6.32 & Fig. 6.33.

Moreover, it can be observed clearly that EV using eco-driving strategy has suc-

cessfully reached every signal during their green light duration, as mentioned in

Table. 6.15. Fig. 6.34 shows optimal torque profiles which is calculated using

PMP for both the scenarios. Optimal torque profiles switches from one mode to

other with braking mode at the end of trip. Fig. 6.35 shows the three co-states

for both the scenarios. Position co-states face discontinuities at the junctions,

which is acceptable because of fixed signals location. Velocities and SoC are

not fixed at the junctions, therefore continuity of their co-states are required and

hence achieved, as mentioned in Table. 6.14. Fig. 6.36 shows the comparison in

charging rates between EV with eco-driving assistance and leading vehicles with-

out eco-driving. Table. 3.7 shows the energy consumption, charging rates and

DoD comparison between EV with eco-driving assistance and their leading ve-

hicles without eco-driving strategies. Moreover, while looking at the discharged

battery’s status through SoC in Fig. 6.30, Fig. 6.31, Fig. 6.32 & Fig. 6.33, It can

be observed easily that using eco-driving strategy 5 to 20% less battery is used as

compared to leading vehicles without eco-driving assistance. Fig. 6.38 & Fig. 6.38

show the efficiency map with achieved efficiency is ∼ 94%. Furthermore, energy

consumption during a trip for both the scenarios are shown in Fig. 6.37.
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Figure 6.28: Position profiles of EV and leading vehicles (single and multiple
leading vehicles on the route)
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Figure 6.29: Distance ahead with leading vehicles (single and multiple leading
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Figure 6.30: Optimal Velocity (Backward and PLSGM), SoC and DoD with
single leading vehicle on the route
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Figure 6.31: Optimal Velocity (Backward and PLSGM), SoC and DoD with
multiple leading vehicles on the route



Simulation and Results 111

0 50 100 150 200 250 300 350 400

Time [sec]

0

50

100

V
e

lo
c
it
y
 [

k
m

/h
r
] (a) Leading vehicle velocity profile with single leading vehicle on the route

0 50 100 150 200 250 300 350 400

Time [sec]

0.6

0.7

0.8

S
O

C

(b) Leading vehicle SoC with single leading vehicle on the route

0 50 100 150 200 250 300 350 400

Time [sec]

0

0.2

0.4

D
O

D

(c) Leading vehicle DoD with single leading vehicle on the route

Figure 6.32: Velocity, SoC and DoD of leading vehicle without eco-driving
assistance (single leading vehicle)
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(a) Leading vehicle velocity profile with multiple leading vehicles on the route
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Figure 6.33: Velocity, SoC and DoD of leading vehicle without eco-driving
assistance (multiple leading vehicles)
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Figure 6.34: Comparison between optimal torque profiles with single and
multiple leading vehicles on the route
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Figure 6.35: Co-states of EV and battery with single and multiple leading
vehicles on the route
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Figure 6.36: Charging rate comparison between with and without eco-driving
assistance
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(a) Single preceding vehicle
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Figure 6.37: Energy consumption using eco-driving with single and multiple
preceding vehicle
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Optmal torque and speed breakponts over efficiency map of seleced PMSM with single leading vehicle
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Figure 6.38: Efficiency map with optimal torque and speed breakpoints with
single leading vehicle on the route

Optmal torque and speed breakponts over efficiency map of seleced PMSM with multiple leading vehicles

0 50 100 150 200 250 300 350 400

Speed [rpm]

-40

-30

-20

-10

0

10

20

30

40

T
o

r
q

u
e

 [
N

m
]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6.39: Efficiency map with optimal torque and speed breakpoints with
multiple leading vehicles on the route
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Table 6.15: Reaching time comparison between single and multiple leading
vehicles (backward and PLSGM)

Scenario Signal 1 Signal 2 Signal 3 Signal 4 Signal 5

Single leading 91sec 151sec 250sec 308sec 361.2sec

(backward simulator)

Single leading 92.3sec 156.9sec 249.5sec 305.7sec 368.4sec

(PLSGM)

Multiple leading 158sec 294sec 388sec 443sec 494sec

(backward simulator)

Multiple leading 157.1sec 295.1sec 386.1sec 442.3sec 490.8sec

(PLSGM)

Table 6.16: Energy consumption, average charging rates and DoD comparison
between non-eco driving and eco-driving strategies with single and multiple

leading vehicles

Scenario Energy Charging DoD

consumption rates

Single leading vehicle 460.32wh 3.165 .3265

without eco-driving

EV using eco-driving 364.94wh .2725 .2282

single leading vehicle

Multiple leading vehicles 745.14wh .4205 .3776

without eco-driving

EV using eco-driving 460.36wh .3316 .2689

multiple leading vehicles

6.8 Convergence Time for all the Scenarios

Convergence time for all the scenarios are as mentioned in Table. 6.17. Machine

used in simulating all the scenarios is Dell Core i7, 10th GEN, 1.50GHZ. First
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Table 6.17: Convergence time for all the scenarios

Scenario Convergence time(sec) α

First 3.527 .048

Second 3.555sec .048

Third 1.848sec .065

Fourth 18.968sec .075

Fifth 19.61sec .075

Sixth 20.10sec .055

Seventh 17.567sec .055

scenario is unconstrained case, second scenario is with the inclusion of zero order

battery model with free final velocity and third scenario is with the inclusion of

zero order battery model with fixed final velocity. Similarly, fourth scenario is

with the inclusion of traffic signals and fifth scenario is with the inclusion of traffic

signals and speed limits. Sixth scenario is SoC dependent voc and r0. Finally 7th

scenario is with the inclusion of urban traffic.

6.9 Chapter Summary

Main focus of Chapter 6 revolves around the achieved results through simulation

using Matlab. Seven different scenarios are considered i.e., from unconstrained to

complex constrained scenario. Optimal control with different modes, states, co-

states with continuity condition, where required, achieved efficiency over calculated

torque and speed breakpoints are simulated. Energy consumption comparison,

charging rates, terminal DoD are compared with vehicles which are not based on

eco-driving assistance in some scenarios.



Chapter 7

Conclusion and Future Work

7.1 Conclusion on Achieved Results

In this thesis, energy minimization strategy for EV has been proposed. Energy

consumption during the route is improved by optimizing velocity profile known as

eco-driving which is calculated using PMP. It is concluded that minimizing energy

consumption during a trip is equivalent to solving the necessary conditions of op-

timality. Moreover, PLSGM is used to counter both the issues faced in backward

and forward vehicle modeling approaches to exactly follow the advised optimal

velocity profile with consideration of powertrain limitations.

Battery dynamics are added to the system to extend the range of EV through

optimizing battery’s capacity. However, range extension is a very specific problem

that requires same components as used in the literature to compare the range. In

this thesis, range is improved through energy consumption comparison. Different

models of battery are used i.e., zero order ideal model and first order Thevenin

model. Longitudinal dynamics of EV is used with velocity as the decisive compo-

nent. Dynamic efficiency model of PMSM is used to provide the mechanical power

to the powertrain.

Seven different scenarios are simulated in this thesis, which is formulated and sim-

ulated in chapter 5 & 6 respectively. Proposed strategy of eco-driving has shown

that PMP has the ability to handle scenarios from simple to complex i.e., close

117
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to real traffic environment. Problem is well handled in the presence of differ-

ent boundary and inequality constraints using TPBVP with either shooting or

gradient method. However, with intermediate constraints, MPBVP with multi-

ple shooting method showed that multi-phase problem can be converted to single

phase problem. Conclusions with advantage are highlighted as:

1. Problem with battery dynamics and charging/discharging constraints with

either fixed or free final velocities have successfully maintained the defined

limits to contribute in improving battery’s life, which gets affected using

complete charging/discharged. voc and r0 characteristics with SoC in chapter

3 clearly highlight the advantage of this bounded charging and discharging.

2. Problem with traffic signals using the applied approach has successfully fol-

lowed the continuity of co-states thereby reaching the signals during their

green duration and following speed limits. Moreover, energy consumption

comparison has shown 4% improvement as compared to the problem using

TPBVP. Chapter 4 explains how this point helps in achieving the necessary

conditions.

3. EV with traffic i.e., either single or multiple leading vehicles have successfully

crossed the signals without braking with keeping safe gap with leading ve-

hicles. Moreover, driver using PLSGM has successfully followed the advised

optimal speed that is calculated using PMP. Energy consumption compari-

son has shown 5− 20% improvement.

4. Battery life improvement analysis is performed through the comparison of

charging rates, terminal DoD. Charging rate comparison has shown improve-

ment that also relates to number of charging and discharging cycles. Less

charging rate and terminal DoD mean less charging and discharging cycles

thereby improving battery life and efficiency [89, 90]. Chapter 6 has shown

that advantage achieved using the proposed approach that host EV has fol-

lowed the constraints and has also provided the advantage in terms of energy

consumption. Moreover, battery saving analysis has shown that proposed
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strategy is helpful in reducing battery’s degradation process, which otherwise

would increase the cost of the system by early replacing the battery.

7.2 Future Directions

There can be number of future directions. However looking at the scope of the

thesis, problem can be extended with the inclusion of separate or combination of

various directions, as:

1. Lane changing feature using lateral dynamics

2. Inclusion of comfort and time factor

3. Routing problem using optimal route selection

7.2.1 Lane Changing using Lateral Dynamics

It has been observed that problem with traffic has faced an issue i.e., with dense

traffic, extra time is taken by EV to reach the destination. This extra time taken by

EV is due to the slowness of traffic which is not in control and depends upon leading

vehicle and system has no ability to cross the leading vehicle. Lane changing

feature gives another option i.e., to change the lane [91, 92], instead of following

the leading vehicle as shown in Fig. 7.1. Optimal lane changing can add another

advantage both in terms of energy saving but also reducing the trip time of EV.

This switching between the lanes requires the development of lateral dynamics

along with longitudinal dynamics, which further enhances the complexity.

7.2.2 Inclusion of Comfort and Time Factor

It has been observed that comfort factor to the driver and other people in EV

adds another advantage during the trip. Comfort factor can be included using

constraint on maximum and minimum values of acceleration. Furthermore, trip
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Figure 7.1: Lane changing feature

time plays a critical role hence it is recommended as future direction to include

time in the objective function along with energy consumption.

7.2.3 Optimal Routing Problem

Nature of trip has a very significant impact on the energy consumption. With

the advance development of latest Global Positioning System (GPS), selection of

optimal route before the start of trip has become a key factor to further improve the

energy consumption [93–96]. Optimal route selection can be based upon minimum

time, shortest distance and minimum energy consumption. Hence, one of the key

future directions that can be used as the extension of the problem simulated in

this thesis, is the co-optimization of velocity and route to optimize both the route

and speed of EVs. This optimal route selection along with the velocity profile can

become very useful solution for the minimization of energy consumption for more

than one vehicle especially to serve in logistics and supply chain.
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Appendix A

v̇a = − va
RaCa

+
I(t)

Ca
(A.1)

where

f(t) = va (A.2)

Using the first derivative property of Laplace transform:

v̇a(t)
L←−−→ SVa(s)− va(0−) (A.3)

On applying integration by parts

L [v̇a(t)] =

∫ inf

0−
v̇a(t)e

−stdt) (A.4)

It becomes;

sVa(s)− Va(0) = − Va(s)
CaRa

+
I(s)

Ca
(A.5)
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Appendix B

Approximate relation between continuous frequency i.e., s and discrete frequency

i.e., z is expressed as:

z = esT (B.1)

where T is the sampling time.

ZoH transfer function in continuous frequency domain is expressed as:

H(s) =
Y (s)

X(s)
=

(1− esT )

sT
(B.2)

using the relation B.1, ZoH transfer function relation between continuous and

discrete frequency domain as:

H(z) =
Y (z)

X(z)
= (1− z−1)Z

[
L−1

(
H(s)

s

)]
(B.3)
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