
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Cost and Time Efficient Resource

Aware Scheduling in Fog

Computing Environment

by

Jawad Usman Arshed

A dissertation submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Computing

Department of Computer Science

2023

www.cust.edu.pk
www.cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Cost and Time Efficient Resource Aware

Scheduling in Fog Computing Environment

By

Jawad Usman Arshed

(DCS161007)

Dr. Zulfiqar Ali, Associate Professor

University of Essex Wivenhoe, Colchester, UK

(Foreign Evaluator 1)

Dr. Pan Gao, Associate Professor

Nanjing University of Aeronautics and Astronautics, China

(Foreign Evaluator 2)

Dr. Mohammad Masroor Ahmed

(Research Supervisor)

Dr. Abdul Basit Siddiqui

(Head, Department of Computer Science)

Dr. Muhammad Abdul Qadir

(Dean, Faculty of Computing)

DEPARTMENT OF COMPUTER SCIENCE

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2023

ii

Copyright © 2023 by Jawad Usman Arshed

All rights reserved. No part of this dissertation may be reproduced, distributed,

or transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

iii

Dedicated to the memory of my LATE Father

Muhammad Arshed

vii

List of Publications

It is certified that following publication(s) have been made out of the research

work that has been carried out for this dissertation:-

1. Arshed, J. U, and Ahmed, M., RACE: Resource Aware Cost-Efficient

Scheduler for Cloud Fog Environment, IEEE Access, Volume 9, Pages:

65688-65701, 2021.

DOI: 10.1109/ACCESS.2021.3068817

2. Arshed, J. U, Ahmed, M., Muhammad, T, Afzal., M, Arif., M, & Bazezew.,

GA-IRACE:Genetic Algorithm-Based Improved Resource Aware Cost Effi-

cient Scheduler for Cloud Fog Computing Environment, Wireless Commu-

nications and Mobile Computing, Volume 2022.

https://doi.org/10.1155/2022/6355192

(Jawad Usman Arshed)

Registration No: DCS161007

viii

Acknowledgement

First and foremost, I thank Almighty ALLAH for bestowing me the strength,

knowledge and ability for completing this study. Secondly, I wish to pay my grat-

itude to my respected teachers and especially to my supervisor Dr. Mohammad

Masroor Ahmed for his guidance, and moral support during the whole process.

It would not be wrong to say that without him it was impossible to accomplish

this task. Furthermore, I am thankful to Dr. Yasir Nauman for his continuous

guidance and discussion in (PCN) research lab, from my synopsis defense to the

paper writing. Lastly, I would like to express my deepest gratitude for the spirit

of moral courage and support I received from my late father, mother, and wives

in achieving this great milestone.

(Jawad Usman Arshed)

ix

Abstract

With the growth of (IoT) devices, the amount of data produced daily has increased

significantly. This growing amount of data demands Cloud computing services to

process, store, and analyze it. Furthermore, real-time applications, for example,

smart health, online gaming, and traffic management, cannot work with high la-

tency. The use of Cloud services for such applications increases the execution

delay with an increase in bandwidth usage from end users to the Cloud and the

Cloud services cost. Fog computing is one of the emerging architectures designed

to give quality service to applications by moving Cloud services closer to the edge

of the network. The heterogeneous and distributed nature of resources at the fog

layer makes it challenging to give an efficient scheduler in the fog layer, which

reduces the latency for applications with minimum bandwidth and the monetary

cost for these applications. This study is an attempt towards efficient schedul-

ing at the fog layer. Broadly this study presents a novel idea of Resource Aware

scheduling (RACE), which organizes the application modules in a fog environ-

ment, taking into account both the computational capabilities of fog devices and

the computational demands of the applications. The proposed approach consists of

two parts: One part categorizes the incoming application modules based on their

computation and bandwidth requirement and makes a prioritized list of modules

for placement at the fog layer. The second part schedule the modules from fog

to the Cloud layer as per the defined priority. To stabilize the idea, a large range

of experiments is carried out using the iFogSim simulator, which shows that, in

most circumstances, our method surpasses the traditional Cloud placement and

baseline methodology. Increase in number of application modules affects the ex-

ecution time of applications with an increase in bandwidth and monetary cost of

applications. On the other hand the limited capacity at the network’s edge, may

increase the delay for the applications, whereas sending modules to the Cloud can

increase the cost and bandwidth. Therefore, there is a need for schedulers that

can provide a balanced solution for connecting parameters. The second part of

the thesis proposes a modified nature-inspired approach GA-IRACE (Improved

x

Resource Aware Cost Efficient Scheduler) for Cloud fog environment. The opti-

mized placement of application modules from fog to the Cloud layer improves the

execution time of applications. The results demonstrate a 15-40% improvement

in execution time, cost, and bandwidth usage when using the proposed improved

GA-based approach.

Contents

Author’s Declaration v

Plagiarism Undertaking vi

List of Publications vii

Acknowledgement viii

Abstract ix

List of Figures xiv

List of Tables xvi

Abbreviations xvii

Symbols xviii

1 Introduction 1

1.1 Limitations of Cloud Computing . 3

1.1.1 Ineffective use of Network Resources 4

1.1.2 Awareness of latency . 4

1.1.3 Location awareness . 5

1.2 Challenges with Fog Computing . 6

1.2.1 Selection of a Master Node 6

1.2.2 Limited Resources of Fog Devices 7

1.2.3 Connectivity . 8

1.2.4 Command Restrictions . 8

1.3 Scheduling in Fog Computing . 9

1.4 Motivation . 9

1.5 Problem Statement . 11

1.6 Research Questions . 11

1.7 Research Methodology . 11

1.8 Research Contribution . 13

1.9 Research Evaluation . 14

xi

xii

1.10 Thesis Organization . 15

2 Background and Related Work 16

2.1 Background . 16

2.1.1 Edge Computing . 17

2.1.2 Mobile Edge Computing (MEC) 17

2.1.3 Mobile Cloud Computing (MCC) 17

2.1.4 Fog Computing(FC) . 18

2.2 Architecture of Fog Computing . 18

2.2.1 Terminal/User Layer of Fog Computing Architecture 20

2.2.2 Fog Layer of Fog Computing Architecture 20

2.2.3 Cloud Layer of Fog Computing Architecture 21

2.2.4 Virtualization Layer and Physical Layer 22

2.2.5 Monitoring or Observation Layer 23

2.2.6 Pre-processing Layer . 23

2.2.7 Temporary Storage . 23

2.2.8 Security Layer . 24

2.2.9 Transport Layer . 24

2.3 The Products for Fog Computing 25

2.3.1 Cisco IOx . 25

2.3.2 Local Grid-Based Platform for Fog Computing 25

2.3.3 Gateways and Fog-Based Equipment 26

2.4 Fog Computing Applications . 27

2.5 Aspects of Fog Computing . 31

2.6 Resource Allocation . 34

2.7 Resource Aware Scheduling for Fog Environment 34

2.8 Heuristic Based Resource Allocation 41

2.9 Gap Analysis . 50

3 Resource Aware Cost-Efficient Scheduler for Cloud Fog Environ-
ment 51

3.1 Introduction . 51

3.2 Architecture of Fog Computing Environment 54

3.3 The Three-Tier Architecture of Fog Computing Environment 54

3.3.1 User Layer . 54

3.3.2 Fog Layer . 55

3.3.3 Cloud Layer . 55

3.4 Scheduling in Fog Computing . 56

3.5 System Model and Problem Formulation 58

3.6 Application Model . 63

3.7 RACE System Architecture . 63

3.8 RACE Algorithm . 66

3.9 Evaluation and Analysis of Results 68

3.10 Simulation Results . 70

xiii

3.11 Conclusions . 79

4 Genetic Algorithm based Improved Resource-Aware Cost Effi-
cient Scheduler for Fog Environment 81

4.1 Introduction . 81

4.2 Architectural Model . 84

4.2.1 End Devices/End Layer/User Layer 85

4.2.2 Fog Layer . 85

4.2.3 Cloud Layer . 85

4.3 Scheduling in Fog Computing . 86

4.4 Problem Formulation . 87

4.5 Design and Implementation . 91

4.5.1 Chromosome Encoding . 95

4.5.2 Parent Selection Strategy 97

4.5.3 Fitness Function . 98

4.5.4 Crossover Operator . 99

4.5.5 Mutation . 101

4.6 Simulation and Result Discussion 102

4.6.1 Discussion of Experimental Results 103

4.7 Conclusions . 112

5 Conclusion and Future Work 113

5.1 Conclusions . 113

5.2 Limitations . 117

5.3 Future Research Directions . 117

Bibliography 120

List of Figures

1.1 Fog Architecture . 2

1.2 Challenges with Fog Computing . 7

1.3 Research Methodology . 12

2.1 Fog Computing Environment . 19

2.2 The Layered Architecture of the Fog Environment 22

2.3 Applications of Fog Computing . 28

3.1 Cloud Fog Architecture . 53

3.2 The Three-Tier Architecture of Fog Computing [111] 55

3.3 Scheduling in Cloud Fog Computing Environment 56

3.4 Application Model . 63

3.5 RACE System Architecture . 65

3.6 One of the Network Topology used in Simulation [90] 68

3.7 Execution Time of Three Applications Under Network Topology of
4 FDs . 71

3.8 Bandwidth Consumption of Three Applications Under Network Topol-
ogy of 4 FDs . 72

3.9 Monetary Cost of Three Applications Under Network Topology of
4 FDs . 73

3.10 Execution Time of Three Applications Under Network Topology of
8 FDs . 74

3.11 Bandwidth Consumption of Three Applications Under Network Topol-
ogy of 8 FDs . 75

3.12 Monetary Cost of Three Applications Under Network Topology of
8 FDs . 76

3.13 Execution Time of Three Applications Under Network Topology of
10 FDs . 77

3.14 Bandwidth Consumption of Three Applications Under Network Topol-
ogy of 10 FDs . 78

3.15 Monetary Cost of Three Applications Under Network Topology of
10 FDs . 79

4.1 The Three Layer Architecture of Cloud Fog Computing Environment 84

4.2 Example on Scheduling of Application Modules in Cloud Fog Envi-
ronment . 86

4.3 Flowchart of GA-IRACE . 94

xiv

xv

4.4 Chromosome Creation . 97

4.5 Crossover Operation . 98

4.6 Mutation Operation . 100

4.7 Example of Network Topology used in the Simulation [90] 102

4.8 Execution Time with 4FDs . 104

4.9 Bandwidth Consumption with 4FDs 105

4.10 Monetary Cost with 4FDs . 106

4.11 Execution Time with 4FDs . 107

4.12 Bandwidth Consumption with 8FDs 107

4.13 Monetary Cost with 8FDs . 108

4.14 Execution Time with 10FDs . 109

4.15 Bandwidth Consumption with 10FDs 110

4.16 Monetary Cost with 10FDs . 111

List of Tables

2.1 Summary of Literature Review Techniques 48

3.1 Preliminary Notation Used in RACE System and Performance Model 58

3.2 Experimental Setup for the Simulation of RACE 70

4.1 GA-IRACE System Preliminary Notations 88

4.2 GA-IRACE Parameter Setting . 91

4.3 GA-IRACE Simulation Setup . 103

xvi

Abbreviations

BT Bandwidth Threshold

CFP Cloud Fog Placement

CLOUD CLOUD Datacenters

COP Cloud Only Placement

CP Computation Power

CR Computation Requirement

CT Compputation Threshold

EFT Estimated Finish Time

ET Estimated Time

FD Fog Device

FOP Fog Only Placement

GA Genetic Algorithm

GA-IRACE Genetic Algorithm Based Improved Resource

Aware Cost Efficient Scheduler

IOT Internet of Things

MI Millions of Instruction

MIPS Millions of Instruction per second

RACE Resource Aware Cost Efficient Scheduler

REM(M) Remaining Module

ST Start Time

TCP Traditional Cloud Placement

xvii

Symbols

Ccm Communication Cost

Cp Processing Cost

Max(g) Maximum Generations

P Population

MR Remaining Modules

xviii

Chapter 1

Introduction

The emergence of Internet of Things (IoT) has paved the way for new communities

that bridge the gap between people and their technological accouterments. With

its potential to improve metropolitan administration, e-health, and incident man-

agement, IoT is an intriguing opportunity for public investment to better people’s

quality of life. By 2025, the IoT might have an annual effect of about 11 trillion

dollars, equal to 11% of the global economy [1]. As the IoT has expanded rapidly,

the number of connected devices has skyrocketed [2].

According to a 2015 press release[3], there are now more internet-connected de-

vices than people worldwide. This staggering figure is projected to reach 38.5

billion by 2020 [3], up to around five connected gadgets per individual. Increas-

ing Internet-enabled gadgets have accumulated a massive amount of data, which

requires substantial computing capacity to process.

In recent years, it has been proposed that Cloud computing [4] provides data ser-

vice consumers with flexible and efficient services. The idea behind ”the Cloud” is

to centralize resources like servers and data repositories, linking super-fast comput-

ers with high-speed networks. As an infrastructure-level service, Cloud computing

can accommodate the ever-increasing data storage and processing requirements

of IoT -based devices and gadgets. IoT gadgets often benefit from cloud-based

computing resources, but this is not always the case.

1

Introduction 2

While cloud-based computing resources are often the best for IoT gadgets, this is

not always the case. Most healthcare, emergency response, video streaming, and

other geo-distributed IoT applications have stringent latency requirements that

aren’t effectively met by Cloud data centers [5]. In response to these issues, Cisco

coined the concept of Fog [6] in 2012.

Fog is a kind of distributed computing that bridges the gap between central cloud

infrastructure and edge devices used in the IoT. For Cloud-based services to be

brought closer to IoT devices, fog provides storage and computation capabilities

[7]. Figure 1.1 depicts a typical fog environment comprising of classic networking

components such as routers, proxy servers, base stations, switches, etc.

Figure 1.1: Fog Architecture

Fog computing provides the same computations, storage, and networking capabil-

ities on a highly virtualized platform that sits between end devices and traditional

Cloud servers. In the context of IoT, Fog computing is a compromise between

distributed Cloud servers and centralized edge devices.

Introduction 3

Fog computing delivers Cloud-based services closer to IoT devices by providing

computation, networking, and storage services [7]. Fog computing’s network capa-

bilities allow Cloud services to be deployed across a large region. Fog computing

will enable characteristics like situational cognizance, mobile support, instanta-

neous communications, adaptability, and integration [8]. Fog computing, in par-

ticular, makes it possible to perform computations close to the network’s periphery

[9]. Fog computing surpasses Cloud computing in meeting user expectations for

IoT applications [10].

1.1 Limitations of Cloud Computing

The volume of Big data is increasing at an alarming rate because of how rapidly

IoT technologies are being implemented. According to [11] there were around 30

billion linked devices all over the world by the year 2020 which may increased

to almost 80 billion by the year 2025, almost three times as many in just five

years. One prediction states that by the year 2025, around 152,000 brand-new

devices will be connected to the internet each and every minute. International

Data Corporation IDC has made a prediction that by the year 2020, around forty

percent of data will be processed at the edge, and this prediction was published.

It is difficult to send all of the data that is made to the cloud because of the costs

of connectivity. Since this is the case, it is preferable to process the data locally,

rather than transmitting it to the cloud, so that it may be more conveniently

accessed by the users [11].

The IoT was developed to facilitate the opening of additional doors leading to

opportunities that have the potential to contribute to a more desirable future

by increasing profits and reducing expenses. This is accomplished by providing

improved insights in situations in which massive amounts of data on their own are

insufficient. In order for businesses to make the most of the IoT’s revolution, they

need to provide a platform that enables them to collect, manage, and analyze a

Introduction 4

large amount of data from sensors in an effective manner that is also cost-efficient

[12].

1.1.1 Ineffective use of Network Resources

Because of its tremendous compute and processing resource capacity, the Cloud

is the ideal location for processing large amounts of data. However, the volume of

network traffic considerably grows if all of the created data is sent to the Cloud

for processing. As a result, it is important to both mine data in order to detect

the pattern at the edge level and reduce the volume of data that is present at the

edge level. Certain applications, such as those used in video surveillance systems,

produce a significant amount of data in the form of video.

There are two major problems that are caused by these types of systems. To

begin, if upload all of the video data to the Cloud, it might potentially use up all

of the bandwidth that is available before uploading them to the Cloud. Second,

processing data at the edge of the network is difficult for the simple reason that

it requires a significant amount of computing power. The Cloud is the ideal lo-

cation for the processing of large amounts of data, as was indicated previously;

however, the problem is that we do not have a limitless amount of bandwidth that

is available to us. While video data are essential for the prevention of criminal

activity and the establishment of an intelligent monitoring system in a smart city,

the complexity of such systems will continue to grow over time. Therefore, dealing

with applications that require to process video files via the Cloud is not the most

comfortable approach to handle the situation [13].

1.1.2 Awareness of latency

When compared to other types of applications, those that utilize augmented re-

ality, online gaming, smart homes, and smart traffic are especially vulnerable to

the effects of latency. In the vast majority of situations, fog nodes are located one

or two hops away from the user. As a consequence of this, the fog idea, when

Introduction 5

applied to the processing of Big data at the edge, is easily capable of supporting

applications that are cognizant of their level of latency. The Cloud, on the other

hand, is located at a multiple hop distance, which is quite a distance from the user

and resulting in a higher latency than fog. This distance also makes the Cloud

more difficult to access. In addition, latency has an impact on the enterprises that

operate on the internet. For example, a delay of 100 milliseconds could result in

a 1% loss in sales for Amazon, whereas a delay of 500 milliseconds would result in

a 20% decrease in traffic for Google [14].

1.1.3 Location awareness

The vast majority of applications for the IoT are aware of their context, which

indicates that, the way in which they process data is affected by the surrounding

environment and the applications that are immediately adjacent to them. Sending

all of these context-aware application requests to the Cloud is not only impractical

but also not always possible. This is because bandwidth and delay limits make it

impossible. There are many applications for the IoT’s that require low processing

delays of less than a specific amount of milliseconds.

Some examples of these applications include those used in the healthcare industry,

automotive networks, applications for controlling drones, and emergency response

systems. Processing of data in real time is essential to the functioning of these ap-

plications. These application services never use data from far-away places; rather,

they always rely on the environmental data from their immediate surroundings.

With the use of location awareness, which is also utilized in intelligent traffic ap-

plications, the pattern of the traffic, including things like roadwork, roadblocks,

traffic congestion, and accidents can all be observed. The developers of these

programmers promote the exchange of information between vehicles that are con-

nected to one another in order to improve both the navigation of vehicles and the

management of traffic [15].

Introduction 6

An additional illustration of the intelligent surveillance application system, enables

a law enforcement officer stationed at a local police station to view a video stream

of potentially dangerous individuals in the vicinity of his assigned area, as well as to

monitor their movements and take appropriate preventative measures. Processing

and executing applications in the Cloud may not be as efficient as they may be

under the parameters indicated above if the Cloud has high reaction times [16].

1.2 Challenges with Fog Computing

The Cloud is utilized for all phases of the data processing life cycle, including

pre-processing, post-processing, and processing of extensive data, all of which are

wholly reliant on the Cloud. On the other hand, when fog computing is used, the

data streams are pre-processed locally through several spatially distributed mobile

or stationary devices. It is possible to install these gadgets in a specific place

permanently, or they can be moved around depending on the situation. After the

data has been processed, it is sent to a cloud data center for any post-processing

that may be necessary.

Pre-processing, transformation, and post-processing are the three stages that make

up the life cycle of data processing in a fog environment. These phases are also

called by their respective acronyms. The execution of applications data on fog

poses several issues because fog devices can be mobile and have restricted resource

capacities; as a result, many challenges need to be solved. Some of the key chal-

lenges that cover the key concerns raised regarding the execution of applications

on fog are shown in Figure 1.2 and explained below: [17].

1.2.1 Selection of a Master Node

The possibility of many Fog computing devices being mobile may make it challeng-

ing to build a cluster of Fog computing devices. This is because mobile devices

Introduction 7

are frequently being moved, making it difficult for them to remain in one loca-

tion. When working with huge volumes of data using the map-reduce processing

paradigm, it is vital to select a master node, which is mainly responsible for keep-

ing track of jobs. A master node prevents jobs from becoming lost or forgotten.

Without a primary node, jobs may not be completed correctly. It is essential to

rerun the whole operation if the master node is relocated to a different cluster.

This is because it will have an impact on the way the job is managed. Selecting

the master nodes for the Fog cluster can be a challenging endeavor. Choosing a

master node from among the stationary nodes, on the other hand, is an effective

method for solving this problem.

Figure 1.2: Challenges with Fog Computing

1.2.2 Limited Resources of Fog Devices

Computing devices that use fog have fewer resources available for processing data

than traditional computing devices. Compared to those found in the Cloud, the

resources that can be accessed through fog devices are extremely limited. Never-

theless, by assembling Fog clusters, data processing can be carried out on these

devices. Any device that can perform computation can function as a fog device,

Introduction 8

including user devices and all network management devices. Fog devices can take

on many different forms.

In most cases, these devices come equipped with their own operating systems and

software programmer, which account for the majority of the resources utilized

by the system. Running applications developed with fog is always the second

priority on these devices. Therefore, an effective and well-thought-out policy for

the distribution of jobs is required to safeguard a significant number of job failures.

1.2.3 Connectivity

Most devices in fog computing and the Internet of Things are connected via wire-

less communication, hampered by interference and fading. As a result of these

problems, there are peaks and valleys in the amount of accessible bandwidth.

Furthermore, there are many gadgets and sensors that are always communicating

with one another in the fog’s atmosphere.In addition, there will be a rise in the

overall number of devices connected to the internet as time goes on.

To find a solution to this problem, it is important to come up with a good model

that can estimate the number of connected devices in a fog and predict how many

resources will be added before the system breaks down. After that, there will be

a chance of finding a solution [18].

1.2.4 Command Restrictions

In the fog computing paradigm, a fog device can be any device that can process,

store, and connect to a network. As a result, mobile devices powered by batteries,

such as laptops, smartphones, and tablets, can function as fog devices. The device

can turn off due to low battery levels while the computation is still in progress

because the amount of energy these devices can provide is limited.

As a result, it will be necessary to reschedule any tasks being completed before the

power goes out so that they can be carried out on another device. Consequently,

Introduction 9

the scheduler might know the total energy available to a mobile device before

delegating a task to that device. Second, there is a wide variety of sensor devices,

and the batteries that power these devices typically need to be recharged regularly.

These batteries can become discharged over time if they are not appropriately

maintained.

Because a malfunction caused by the battery may result in severe injury in some

instances, this can be a complex problem to resolve. For example, body sen-

sor networks are used to monitor patients. They need to employ energy-efficient

methods by incorporating primary data analytics, which will reduce the amount

of data that has to be stored and transferred, causing to save a significant amount

of money.

1.3 Scheduling in Fog Computing

Scheduling refers to the process of efficiently allocating resources to application

modules. It is up to fog schedulers to select the appropriate fog device or Cloud for

the application. Reduced make-span, minimal monetary cost, increased through-

put, decreased energy usage and low bandwidth usage, etc., are some of the pri-

mary goals of a fog scheduler. Poor resource allocation in a Fog computing envi-

ronment may lead to slower application performance, more wait time, more costs,

and missed Service Level Agreements (SLAs).

1.4 Motivation

Cloud computing originated from the idea of distributed computing and has ma-

tured into an advanced computing infrastructure in recent years [4]. Users’ tasks

run in parallel on many virtual machines in the Cloud. With increased data

expected to be kept in the Cloud, network disruptions and unavailability are ex-

acerbated, making it impossible to store such data. Substantial amounts of digital

Introduction 10

data provide a security risk during storage. Maintaining low latency and allowing

high mobility are only two of the upcoming issues that Cloud computing will have

to overcome due to the explosion in data and the proliferation of connected de-

vices. In response, the idea of Fog computing emerged to address these concerns.

The term ”fog” describes a distributed paradigm in which processing, storage, and

networking resources are relocated to devices on the network’s edge [19].

Since Fog computing enables processing closer to the data sources, it minimizes

the latency and cost of transmitting data to a distant Cloud. The fog is a com-

plementary technology to the Cloud that processes data at the network’s edge.

It consists of many nodes, or individual components, spread out over the globe.

Fog’s horizontal and hierarchical structure allows it to connect everything between

the edge and the Cloud. Routers, switches, gateways and access points etc., are all

examples of conventional network infrastructure under the umbrella term ”fog net-

work”. As a result of fog computing, decision-making is decentralized, bandwidth

is effectively utilized, operating costs are reduced, interoperability is achieved,

and continuous operations can occur even when reliable network connectivity is

difficult to establish.

The term ”Fog computing” was coined in 2012 [19] by Cisco, the firm that orig-

inated the idea. The growth of electronic devices is to blame for the enormous

amount of data generated. Processing the data generated by IoT devices is an

everyday use case for Cloud computing environments. However, several challenges

make uploading such large datasets to the Cloud arduous. Transferring this much

information to the Cloud is wasteful and time-consuming for most applications,

especially those extremely sensitive to latency. Consequently, assessing data at its

source reduces latency, alleviates strain on the primary network, and keeps critical

data secure by retaining it inside the network. Fog can process large amounts

of data, providing strong backing for the IoT underlying architecture. Reduced

latency, improved location awareness, and support for real-time applications are

some ways fog be helpful.

Introduction 11

1.5 Problem Statement

The Fog computing method shifts data processing, transmission, and storage to

the edge of a network. The placement of application modules in fog environ-

ment is important to achieve the certain goals of reducing the execution time of

applications with minimum Cloud resources cost and the efficient resource utiliza-

tion. Scheduling is a NP-hard problem. In Fog computing, scheduling becomes

harder due to the heterogeneous devices, user mobility, and varying application

requirements. There are several issues related to fog scheduling such as latency-

aware placement of application modules, high bandwidth usage, higher monetary

cost and execution time of applications. To overcome the issues like high band-

width usage, high execution time, high monetary cost, there is a need to develop

a resource-aware scheduler for Fog computing environment which can schedule

the incoming application modules in such a way to minimize the execution time

of applications, reduce the monetary cost of application execution, and minimize

bandwidth utilization by maximum utilization of fog devices.

1.6 Research Questions

1. How to reduce the execution time of applications with efficient resource

utilization at fog layer?

2. How to develop a resource aware scheduler, so that the bandwidth and the

monetary cost of applications should be minimized.

1.7 Research Methodology

This thesis uses the same research methodology as presented in [20]. We started

our research with the goal of finding job placement solutions in heterogeneous

environments. As part of this process, a literature review (Chapter 2) was con-

ducted,

Introduction 12

Figure 1.3: Research Methodology

including articles from top conferences and journals. From literature review it was

observed that: In addition to bringing the benefits and power of Cloud computing

closer to where data is created and acted upon, efficient scheduling at the fog layer

reduces the amount of data that is sent to the Cloud, thus reducing bandwidth

consumption and associated costs. Moreover, it also reduces latency and improves

overall responsiveness because data processing takes place near the data. As a

result of this observation, research questions were developed (Section 1.6). To an-

swer these research questions comprehensive solutions were designed (Section 3.8,

Section 4.5). An experimental plan was developed to test the validity of the pro-

posed solution. At the end the experiments were performed to verify the viability

of the proposed solution (Section 3.9, Section 4.6) in order to answer the research

questions in Section 1.6. An overview of the adopted research methodology can

be found in Figure 1.3.

1.8 Research Contribution

Following are the major contributions of this research work:

Introduction 13

� In-depth critical analysis of the state of the art scheduling approaches, re-

source aware scheduling and heuristic based resource allocation approaches

in a Cloud Fog computing environment to identify the strengths and limita-

tions of these approaches.

� Empirical evaluation of the state-of-the-art heuristic-based tasks scheduling

algorithms has been performed. Moreover, experimental evaluation of most

prominent and state-of-the-art algorithms provides baseline for the resource

aware cost efficient scheduler in Cloud Fog computing environment.

� In Cloud Fog computing environment, the application modules are relo-

cated from the fog to the Cloud, our unique strategy help users save money

while taking advantage of the speed and scalability of Cloud computing. We

have introduced the priority based resource aware scheduling approach in

Cloud fog computing environment. The incoming application modules are

categorized on the basis of their computation and bandwidth requirement.

The categorization of application modules helps us to make the prioritized

list of the application modules, in which the incoming application modules

are placed on the basis of the priority assigned by the scheduler. We have

used the iFogSim simulator to test our approach under different network

topologies of Cloud Fog computing environment and found better results as

compared to other state of the art approaches [21].

� The increased in number of applications reduces the efficiency of the system

in terms of the execution time, the band width and the monetary cost of

application miodules. We have introduced the nature inspired approach

(GA-IRACE) for job scheduling in Cloud Fog computing environment. The

Genetic algorithm (GA) is used to iteratively improve the suggested solution

based on how long it takes various applications to complete their tasks.

The chromosome-based issue representation is first encoded in the proposed

method by considering the application’s attributes and the fog devices. The

solutions evolved by changing various parameters in GA by employing the

re-population operators.

Introduction 14

GA is implemented to schedule the application components, and the results

have been validated using the iFogSim simulator. A set of three unique

application corpora and state-of-the-art techniques are used to evaluate GA-

IRACE ’s performance. The findings indicate that the suggested GA-based

approach reduces execution time, cost, and bandwidth utilization by 15-40%.

Additionally, compared to fundamental algorithms, the enhanced scheduling

makes less use of Cloud resources, is faster, and requires less bandwidth [22].

1.9 Research Evaluation

The significance of the proposed approach is evaluated by using the iFogSim sim-

ulator. The iFogSim is open-source software that models and analyses the perfor-

mance of Cloud fog settings and services. iFogSim architecture [23] is frequently

used to represent many types of computing paradigms. Since the proposed method

has few practical uses in the actual world, it would not be easy to test it in a real-

world fog environment. In addition, research and development in a simulated

environment is currently favored since this is a developing yet novel industry.

Different versions of this scenario have been built using three different network

topologies, each with specific workloads. The term ”workload” describes all the

application modules deployed in Cloud fog architecture. The millions of instruc-

tions(MI) values for the application modules vary between 50 and 700. For ex-

periments, three distinct datasets are used, one for each kind of power-hungry

program.

We use simulation to examine the RACE algorithm’s efficiency across three sce-

narios, looking at how it fares in terms of cost, usage of bandwidth, and execution

time. The simulation parameters are the total number of modules, millions of

instructions (MI) for each module, the total number of fog devices, and the CPU

MIPS of fog devices and the Cloud.

Introduction 15

For the GA-IRACE we also used the simulation using iFogSim simulator to eval-

uate the performance of optimized placement of application modules at fog layer.

The simulation is tested under three different scenarios of using the different net-

work topologies at the fog layer.

1.10 Thesis Organization

The thesis is divided into five further chapters. Chapter 2 dives into the specifics of

Fog computing and resource allocation by examining the current state-of-the-art

resource-aware scheduling for fog environment algorithms. Moreover the chapter

also covers the kinds of scheduling algorithms, the goals of scheduling, the benefits

and drawbacks of cutting-edge task scheduling algorithms. Chapter 2 also includes

an overview and discussion of research gaps.

In Chapter 3 the discussion is about the development of a resource aware scheduler

for the Cloud Fog computing environment The applications are placed in Cloud

Fog Computing enviromnment by considering the processing requirement of the

application modules and the processing capabilities of the fog devices at fog layer.

Meanwhile the bandwidth and the monetary cost of the Cloud resources was also

under consideration.

Chapter 4 is about the development of improved nature inspired approach GA-

IRACE. This chapter discusses the use of genetic algorithm for the optimized

placement of application modules from fog to the Cloud.

The conclusion of the thesis is discussed in Chapter 5. In addition, a number of

research directions are provided for researchers to explore in future research.

Chapter 2

Background and Related Work

This chapter provides the background information required to familiarize the

reader with the study conducted in this thesis. Moreover, the prior research work

related to job scheduling in Cloud Fog computing environment is also presented

in this chapter.

2.1 Background

The fog computing system is a distributed computing system in which information,

processing, storage, and applications are distributed between the data source and

the cloud. [24]. Because of their similarity, Fog computing is frequently used

interchangeably with Edge computing. This is used by a variety of enterprises to

increase production, as well as to assure security and fulfill legal obligations [25].

While Cloud computing is suitable for resource-intensive, long-term analytic, fog

networking is a valuable complement since it enables shorter-term analytic to be

conducted at the edge. Even while edge devices and sensors are the sources of data

production and gathering, they may not necessarily have the resources necessary to

perform advanced analytics. In most cases, cloud servers are physically located too

far away from the end user to provide an accurate analysis and prompt response

to data in real-time [26].

16

Background and Related work 17

2.1.1 Edge Computing

The main components of an Edge computing system are the end devices, the edge

devices, servers, and so on. These parts can be geared up with the chops needed to

enable computing at the edge. Since it is a decentralized kind of computing that

operates at the network’s edge, Edge computing can respond to user requests for

computational services much more quickly. The Edge computing system usually

refuses to provide the raw data in large quantities to the central network. On the

other hand, Edge computing focuses on the end devices rather than the Cloud or

Cloud-based services [27]. There have been several paradigms established in the

area of Edge and Cloud computing. One possible future development is Mobile

Edge Computing (MEC) followed by Fog Computing (FC) and Mobile Cloud

Computing (MCC).

2.1.2 Mobile Edge Computing (MEC)

It is widely agreed that Mobile Edge Computing (MEC) is a necessary component

of the current generation of cellular base stations. It allows for the co-location

of cellular base stations and edge servers [28]. To improve network performance,

MEC strives to provide clients with adaptive, instantaneous access to cellular

services. There have been recent advancements in MEC that make possible for

it to enable 5G communications. In addition, it seeks adaptable entry to radio

network data for content distribution and application creation [29].

2.1.3 Mobile Cloud Computing (MCC)

In comparison to running these kinds of high-computation applications on the mo-

bile devices themselves, it is far more practical to use Mobile Cloud Computing

(MCC). The processing resources needed for offloading and local execution of mo-

bile applications near their end users are made available by MCC [30]. The edge

network in MCC often houses lightweight Cloud servers known as cloudlets [31].

Background and Related work 18

Cloudlets provide a three-tiered hierarchical application deployment architecture

for mobile applications, which includes end-user mobile devices and Cloud data

centers. Briefly expressed, MCC is an approach to improve mobile customers

Quality of Experience (QoE) by integrating Cloud computing, mobile comput-

ing, and wireless connectivity. MCC opens up new markets for both traditional

network service providers and Cloud providers.

2.1.4 Fog Computing(FC)

In the same way, as MEC and MCC permit computation at the edge, Fog com-

puting can do the same. It is important to note, though, that fog computing is not

restricted to edge networks, but can also be implemented within the core network

as well [8]. Fog computing relies on both central and edge networking components

to perform its computations.

2.2 Architecture of Fog Computing

Fog architecture refers to the practice of computing, storing, and processing data

by utilizing the services offered by end devices such as switches, routers, and

multiplexers. The software, hardware, and logical components of the network, in

addition to the physical features of the network, that collectively make up the fog

computing architecture join together to create a massive network that is made up

of a large number of devices that are all connected. After that, several operations

can be carried out by utilizing this network.

The most important architectural features are the physical and geographical dis-

tribution of fog nodes, the fog architecture’s protocols, and the topology of the

fog architecture. Distributing functions across many different layers, the types

and quantities of protocols used, and the restrictions imposed at each layer is

called ”fog architecture.” This term refers to all of these aspects of the practice.

Furthermore, it relates to the practice as a whole [32].

Background and Related work 19

Figure 2.1: Fog Computing Environment

In the past few years, several studies proposed different architectures for Fog com-

puting [6, 33–40]. According to these studies, all proposed Fog computing archi-

tectures characterize the concept of data processing at the edge and the usage of

fog devices for temporary storage. In contrast, Cloud infrastructure will be used

for long-term storage. Since Fog computing is much less centralized than tradi-

tional forms of computing, Bonomi et al. [6] first proposed architecture for Fog

computing consisted of three layers.

The middle layer created as a result of Fog computing and is positioned between

the end devices and the Cloud is referred to as the ”fog layer,.” The term ”fog

layer” is used to characterize this layer. The fog layer delivers Cloud services to the

network’s periphery, where users can access them [41]. Figure 2.1 illustrates the

three tier hierarchical architecture of Fog computing environment and is explained

as follows:

Background and Related work 20

2.2.1 Terminal/User Layer of Fog Computing Architec-

ture

� The terminal layer, also called the user layer in the hierarchical architecture

of Fog computing, is the foundation of fog architecture and comprises various

endpoints such as smartphones, sensors, intelligent cars, readers, and smart

cards.

� The sensing and recording apparatus are located within this layer. The

devices can be found dispersed across a large area, frequently at a significant

distance from one another.

� The sensing and information collection functions are the primary focuses of

this layer. This layer covers a wide range of devices, including those built

on different platforms and with different architectural designs.

� Devices can function in environments that contain a variety of different types

of technology and communications.

2.2.2 Fog Layer of Fog Computing Architecture

� Routers, gateways, and other kinds of fog servers are some examples of the

kinds of devices that can be discovered at the fog layer. In addition, the fog

layer is sometimes referred to as the fog nodes as a collective word. Other

devices, such as access points, base stations, and specific fog servers, are

some devices that could potentially be located in the fog layer.

� Fog nodes are distinguishable from other nodes in a network due to their

location on the network’s periphery and their name. In certain situations,

an edge could be situated one hop away from an end device.

� The fog nodes are located right in the midst of the network, between the

cloud data centers and the end devices.

Background and Related work 21

� Fog nodes can either be permanently installed, like the ones that are found

in a bus terminal or a coffee shop, or they can be mobile, like the ones that

are installed inside a moving vehicle. The provisioning of services to end

devices is the responsibility of fog nodes. The fog nodes can temporarily

compute, transfer, and store the data.

� The provisioning of services to the end devices is the responsibility of fog

nodes. The data can be temporarily computed, transferred, and stored by

the fog nodes.

� IP core networks make it possible to connect fog nodes to Cloud data centers,

paving the way for interaction and collaboration with the Cloud to enhance

processing and storage capacities. This is done to improve the capabilities

of both processing and storage.

2.2.3 Cloud Layer of Fog Computing Architecture

� In this layer, computation and analysis are carried out, and data are persisted

for subsequent user access and backup purposes.

� Cloud tier is made up of a variety of storage devices, including powerful com-

puters, that can provide a significant amount of space for storing information

(servers)

� For processing power and storage capacity, this layer is unsurpassed.

� Cloud computing is carried out across a distributed network of enormous

data centers. With exceptional processing power levels, users are provided

with all of the benefits that contribute to the overall attractiveness of Cloud

computing by data centers. The data centers offer scalability and on-demand

access to the available computing resources.

� Clouds, which comprise the highest layer of the fog structure, can be found

somewhere in the atmosphere. In fog architecture, it is used to permanently

Background and Related work 22

store data and acts as a backup at the same time. Cloud storage is typically

utilized for user data that the user does not currently require.

Aside from this, several researchers have proposed other architectures, such as

hierarchical, layered, and network-based [6]. Aazam et al. [33] proposed a lay-

ered architecture comprised of the three-layers, as shown in Figure 2.1. Another

architecture was proposed by Atlam et al. and H. & V et al. [42, 43] comprises

of six layers: the physical and virtualization layer, the monitoring layer, the pre-

processing layer, the temporary storage layer, the security layer, and the transport

layer. These six layers are shown in the Figure 2.2 and are explained below:

Figure 2.2: The Layered Architecture of the Fog Environment

2.2.4 Virtualization Layer and Physical Layer

This layer is made up of physical and virtual nodes. The primary function of the

nodes, which are situated in various locations, is data collection. Nodes typically

use sensing technology to compile information regarding the environment in which

they are located. A node can refer to a device that runs on its own, such as a mobile

phone, or it can refer to a component of a larger device, such as a temperature

sensor that is mounted inside of a vehicle.

Background and Related work 23

Regardless of whether a node is standalone or a part of a larger piece of hardware,

data is gathered from the environment around this node by the sensors employed

here, which are then sent to the upper layers via gateways to be processed further

[44].

2.2.5 Monitoring or Observation Layer

The monitoring or observation layer monitors the nodes connected with various

activities and responsibilities. Several metrics may be monitored, such as the

amount of time that nodes work, the temperature, the maximum battery life of

the device, and any other physical properties they possess. In the other metrics,

this layer specifies when and which node must perform the job. It also takes care of

the requirements for any additional tasks that must be carried out to accomplish

the primary task [45].

2.2.6 Pre-processing Layer

The pre-processing layer is responsible for a wide variety of data operations, most

of which are related to analysis. After the data has been passed through the pre-

processing layer, it has been cleaned, and any remaining undesired data may be

found using a search. The process of gleaning valuable and pertinent information

from the copious amounts of data gathered by the end devices is an essential com-

ponent of the data analysis carried out at this layer. When using data for a given

purpose, one of the most vital considerations is whether it has been previously

evaluated [46].

2.2.7 Temporary Storage

The temporary storage layer is responsible for the distribution and replication

of data in a manner that is not permanent. This layer makes use of storage

virtualization technologies such as virtual storage area network (VSAN). After

Background and Related work 24

the data have been transferred to the Cloud from this layer, the temporary layer

will be emptied of its contents, and the data will be deleted [46].

2.2.8 Security Layer

The security layer is in charge of ensuring the confidentiality of the data, maintain-

ing the data’s integrity, and encrypting and decrypting the data, in addition to its

other responsibilities. When working with fog computing data, one’s identity can

be protected in several ways. Among these ways is the protection of an individ-

ual’s privacy about the use of the system, an individual’s data, and an individual’s

location. Even after being sent to the fog nodes, the data’s confidentiality will be

maintained with a security layer. The security layer prevents unauthorized parties

from gaining access to the information and ensures that it cannot be viewed by

anyone else. The security layer will maintain the data’s confidentiality even after

the data has been sent to the fog nodes [47].

2.2.9 Transport Layer

The fundamental objective of the transport layer is to guarantee the secure trans-

mission of data that has been fine-grained and partially processed to the cloud

layer, where it can subsequently be kept forever. This layer also fine-tunes the

data before it is transferred. It has been determined that collecting and uploading

the relevant portion of the data will help improve operational efficiency. Before

being uploaded onto the Cloud, the data travels through intelligent gateways. Be-

cause fog computing has limited resources, the communication protocols employed

have been intended to be as lightweight and efficient as possible [47].

Background and Related work 25

2.3 The Products for Fog Computing

The term ”Fog computing” refers to a technique that moves some of the operations

of a data center to the outside of the network. The fog provides a small amount

of computing, storage, and networking services decentralized between the end

devices and the traditional cloud computing data centers. The primary goal of

Fog computing is to provide low and consistent latency for time-sensitive IoT

applications. Some of the products at the fog later are as follows:

2.3.1 Cisco IOx

Integrating sensors connected to the Internet of Things and the Cloud, the Cisco

IOx application platform makes it possible to carry out processing in the fog

close to the end devices. The IOS and Linux operating systems, fog director, the

Software Development Kit (SDK) and development tools, and fog applications are

the four parts that come together to form Cisco IOx. Linux is an open-source

network operating system (NOS) that can be modified.

In contrast, Cisco IOS is the most popular network operating system (NOS) that

provides safe network connectivity. This platform was created specifically for

running applications on the infrastructure of the Cisco IoT network. With fog

director’s assistance, the applications being run on the Cisco IOx environment can

simplify their administration for greater efficiency. The SDK and the development

tools supply the developers with a selection of tools, a command line utility, and

web-based applications. Applications considered to be in the ”fog” category can

be deployed relatively quickly and run on infrastructure fueled by Cisco IOx [48].

2.3.2 Local Grid-Based Platform for Fog Computing

The platform for fog computing is provided by the local grid, an embedded soft-

ware package that can be installed on any peripheral devices connected to the

network. The local grid can transform various communication protocols into an

Background and Related work 26

open standard computing platform designed for use in fog. Every sensor, switch,

router, machine, and edge device that needs secure access can have the embedded

software installed on them, and it will run on the infrastructure IOx enables [49].

In addition to this, it facilitates peer-to-peer (P2P) communication across numer-

ous edge devices, which enables real-time coordination and control even in the

absence of a central server. The acronym P2P often refers to the communication

of this kind. Through the incorporation of intelligence network communication,

the local grid also features a communication infrastructure connected to the Cloud.

This adds to a reduction in the amount of latency that occurs, a reduction in the

amount of bandwidth consumed, and an increase in the level of security achieved.

With the support of this platform, distributed data processing and decision making

may be carried out locally on edge devices [49].

2.3.3 Gateways and Fog-Based Equipment

Regarding fog devices and gateways, also referred to as computer on modules, in

addition to the proprietary products currently on the market, various other options

can be used instead. Alternatively, these choices may be utilized in place of the

products. Devices such as the Intel Edison, Arduino, Odroid-XU4 Raspberry Pi,

and Asus Tinker Board fall under this category. Most people have adopted the

Raspberry Pi group [50]. On the other hand, there is a possibility to have vendors

who produce devices that are more powerful than the Raspberry Pi at a price

comparable to what Raspberry Pi charges for its products.

Most of these devices are compatible with the Android operating system and can

run on other operating systems such as windows, RISC operating system, Ubuntu

MATE, Caspian, and OpenELEC. The Android operating system is compatible

with the vast majority of these devices. Throughout the past few years, a signifi-

cant number of research studies utilizing these computers on various modules have

been carried out to implement the fog environment for processing applications data

[51]

Background and Related work 27

2.4 Fog Computing Applications

For Cloud computing, data is stored and processed in off-site data centers. Because

of the dispersed nature of the Fog computing architecture, smart devices on the

network’s edge exert some control over the applications’ operations, despite the

fact that most Cloud-based software is managed automatically. Fog computing

is a dispersed architecture; part of the application’s operations will be controlled

by the smart devices located at the network’s edge, however, other applications

continue to be administered remotely.

A simple explanation would be to use smart devices on the network’s edge to

do all the tasks that would otherwise be performed in the Cloud. For the most

effective processing of data, fog serves are there as an intermediate layer between

the Cloud and hardware. Therefore, there will be a reduction in the amount of

data that must be sent to the Cloud. In addition to improving Cloud security,

Fog computing also serves as a firewall. A wide range of applications as shown in

Figure 2.3 might be improved by using the Fog computing paradigm. Some of the

most important applications are listed below.

� Real-Time Video Analytics:

For the smart city to provide traffic management and associated services,

widespread deployment of cameras in the town or along the road is neces-

sary. Tasks like item tracking/identification, etc., that need a lot of storage

space and processing power are ideal for Fog computing. The next phase

directly delivers alerts, events, video descriptions, or video summaries to

users, databases, or central servers. It is possible for fog to process massive

volumes of video streams and low-bandwidth output data in real time [52].

Fog servers can be equipped with privacy-preserving features to reduce the

risk of a government-run surveillance program leaking data into the public

domain.

Background and Related work 28

Figure 2.3: Applications of Fog Computing

� Health Care System:

As IoT devices are becoming pervasive, they can be used to track various

healthcare processes. Ubiquitous computing’s architectural components are

beginning to include Fog computing. Due to increased network latency,

Cloud-based e-healthcare solutions are not suitable for use during medical

emergencies.

Many healthcare computer tasks are handled by neighboring fog nodes, re-

ducing wait times and increasing accessibility, thanks to Fog computing.

Some applications in smart health care must be completed immediately,

while others may tolerate some wait. Healthcare providers, for example,

record and store patient data so they can analyze it later. This method of

storing and retrieving data is not time-sensitive and can tolerate some delay.

However, quicker data processing is needed to produce emergency alarms in

other situations, such as when a patient’s life is in danger. Due to the po-

tentially fatal consequences of a delayed reaction to an emergency warning,

such tasks are more latency important [53].

Background and Related work 29

� Augmented Reality (AR):

Augmented reality smartphones, tablets, and smart glasses are popular plat-

forms for applications that add contextual information to the user’s perspec-

tive of the environment. Microsoft hololens, Google glass and Sony smart

eyeglass are just three examples of primary products and initiatives from

recent years. High computer power to analyze video streaming and high

bandwidth for data transfer are typical requirements for augmented reality

applications.

Ordinary augmented reality applications, for instance, must analyze video

frames in real-time using a computer vision algorithm, in addition to han-

dling other inputs like speech and sensors, before finally displaying relevant

data to users. Delays in a sequence of successive exchanges, however, have

a profound effect on humans. Users who endure processing delays of several

milliseconds or more get frustrated and leave critical comments. Wearable

cognitive aid based on Google glass and cloudlet, powered by an augmented

reality (AR) system enabled by Fog computing, provides the user with tips on

engaging with others via real-time scene analysis. Offloading computation-

intensive tasks to a neighboring cloudlet allows the system to meet stringent

end-to-end latency constraints. Services are automatically degraded in the

event of a network outage or when remote cloudlets are unavailable [54].

� Self-Driving Vehicles:

By exchanging valuable information, vehicular-ad-hoc networks (VANETs)

ensure traffic efficiency, driving safety, and convenience in Intelligent Trans-

portation Systems (ITS) [55, 56]. VANETs and their related applications

such as self-driving have developed dramatically in capability and data trans-

fer over the past few years. Thus, higher data storage, computation, and

communication levels are required. As a result of these requirements, a

new computing paradigm i.e., Vehicular Fog Computing (VFC) has been

proposed. Vehicular Fog Computing (VFC), which combines mobility, loca-

tion awareness, and low latency to satisfy the demands of the application

[55, 57, 58].

Background and Related work 30

As part of VFC, end-user clients or near-user edge devices are collaboratively

used to carry out substantial amounts of computation and communication

[58]. VFC differs from existing techniques in that it has dense geographical

distribution, supports mobility, and is close to end users [58], in addition to

traditional Cloud characteristics, such as computing, storage, and applica-

tions.

� Content Delivery and Caching:

Once server-side optimizations have been made, traditional online content

delivery systems will no longer be able to respond to changes in user demand.

To improve web performance, however, we need specific data only available

at or near the client’s network. When thinking about web optimization [59],

considers this novel angle, the setting of Fog computing. The fog server

provides dynamic, adaptable optimization based on information gathered

from clients’ devices and the surrounding network. Also, the fog server’s

proximity to the client allows it to get insight into the client’s system and user

history, allowing for more refined web page rendering. Additional bandwidth

can be saved, and delivery delay can be decreased by optimizing caching

inside fog nodes.

� Real-Time Data Analytics:

Data can be moved from its point of creation to other locations via Fog

computing infrastructure, enabling real-time analytics. Manufacturing sys-

tems’ data is sent to financial institutions’ real-time data systems through

Fog computing for real-time analytics. Most effectively exemplifying grid

computing is the modern electric power grid. The electrical network of to-

day is intelligent and adaptive, requiring less manufacturing and electricity,

yet still being responsive. With Fog computing, data doesn’t need to be

sent to a central place in order to be processed, making it especially useful

in situations when data is being created at a distance. For the sake of not

overwhelming the Cloud, some of the data that may be produced from a

single sensor or a collection of sensors can be handled locally. Some of the

most prevalent examples of this are electric meters [60].

Background and Related work 31

� Education:

Since the advent of Covid-19, educational institutions have been forced to

adapt to the changing technological landscape. The whole industry evolved

to rely significantly on computers, and many workers eager to further their

careers turned to distance learning. The Fog computing platform simpli-

fies collaboration and ensures the continued operation of data storage and

management networks. It enhances scalability, elasticity, and redundancy

in educational systems to keep data private, flexible, and secure. Maintain-

ing records in the education sector is vital since information in the systems

may be both organized and informal. Fog/Edge computing helps with data

collection, processing, and application enhancement. As Fog computing be-

comes more widely used, it is increasingly being included in the academic

system. This allows for technical progress in a very ancient field, enhancing

data storage and instruction quality [61].

� Entertainment:

The entertainment industry has made tremendous progress during the last

several decades. Producer and consumer interest have been quite strong.

Just consider the vast sports broadcasting industry, which includes networks

such as NBC sports and ESPN news channels etc., which regularly broad-

cast coverage of events held in large arenas. Many fans desire minute-by-

minute updates on their favorite sports. Captured footage is stored in the

Cloud, where video processing services and algorithms process it and send

it through streaming to users’ devices. The enhanced gaming application

results from Fog computing’s decreased latency, increased bandwidth uti-

lization, and protected user privacy[62].

2.5 Aspects of Fog Computing

The Fog computing process, transmission, and storage capabilities are provided

by equipment that is geographically near the end user. Being in such proximity to

Background and Related work 32

consumers is great for honing service abilities and is also its main advantage over

more traditional computer designs, including the following benefits and features.

� Real-Time Communication with Minimal Delay:

In a local area network, fog nodes near the network’s periphery collect data

from sensors and other devices, then analyze and store that information.

It provides fast, high-quality localized services powered by endpoints while

significantly reducing data flow over the internet. It demonstrates that Fog

computing is ideal for time- or latency-sensitive applications because it al-

lows instant communication [58]. Fog computing’s service latency is much

lower than Cloud computing’s, as proved by [5], which theoretically mod-

eled the architecture of fog. After applying fog to the face identification and

resolution problem, the experimental findings of [63] reveal that it took less

time than Cloud computing.

� Facilitation of Mobility:

Given the wide variety of endpoints commonly used in fog situations, the

terminal layer is frequently in motion while the other terminals, such as

traffic cameras, do not move. Both mobile and stationary data processing

equipment may function as fog nodes in the fog layer. Having no restrictions

on where it may be used, it can be used in the airport, coffee shops, trains,

buses, etc., [64, 65]. The development of smartphones and other devices

gives the user the option of whether or not to upload their information to a

central server, as Fog computing is the direct communication of mobile and

other devices for storage and processing. Mobile data analysis occurs for

the massive data volume need to be processed by either the final device or

an intermediary device. Inherent routing, communication, and addressing

mechanisms allow fog applications to interact directly with people and mo-

bile devices. Locator/ID separation protocol for mobile nodes may simplify

mobility techniques by separating host and location identifiers [66, 67].

� Data Dissemination and Decentralization:

In contrast to their cloud-based counterparts, services and applications for

Background and Related work 33

Fog computing are best suited for decentralized network deployment. The

system needs a lot of well-placed nodes to watch the endpoints and figure

out where they are, which is necessary if it is to be mobile. Due to the

decentralized nature of Fog computing, data is processed closer to the edge

than at a centralized location. This feature could improve location-based

services, real-time decisions, and large amounts of information processing.

All pervasive devices can only reach their full potential if they are part

of a thriving IoT and ubiquitous computing ecosystem. Fog computing

applications in the Internet of Vehicles (IoV), cars and vehicular access points

can connect and work together to provide a wide range of services [55].

� Data Protection:

Because Fog computing works in close proximity to its users, it allows pri-

vacy and protecting personal space to be maintained. The first line of defense

might be to encrypt and separate data used by fog nodes as measures like

isolation, integrity check access control policy, and encryption to keep pri-

vate information safe. Second, Fog computing may prevent problems from

occurring while the software is being updated. The update of firmware on

a remote device may lose contact with the server; a common issue could

be resolved with fog as for Fog computing systems, only algorithms and

micro-applications are updated rather than firmware [68].

� Energy-Efficient:

The fog nodes of a Fog computing architecture can be located anywhere. Due

to the low concentration, there is no need for an extra cooling system. Also,

it has been shown that this connection can use less energy if the commu-

nication range is shorter and mobile nodes have better energy management

policies [69]. Fog computing is a much better choice when it comes to the

environment. Researchers in [5] used modeling to show that Fog computing

is a more environmentally friendly platform with the usage of almost 48%

less energy than traditional Cloud computing.

Background and Related work 34

2.6 Resource Allocation

Due to the availability of different Quality of Service QoS criteria, including CPU,

memory, speed, and stability, resource allocation [25] in Fog computing differs

from the conventional and distributed computing environment. In resource man-

agement, several requests may be stacked up in a queue. The Cloud’s biggest

problems are the time it takes to transfer data from end user to the Cloud for

required operations and then send back to the end user causing delays, bandwidth

utilization [26]. These problems are addressed by Fog computing’s deployment

of incoming application modules to devices near the network’s edge with a load-

balancing mechanism focused from edge of the network to the Cloud.

2.7 Resource Aware Scheduling for Fog Environ-

ment

Users of fog services may be in several places at once, making mobility a difficult

obstacle to overcome. Fog computing’s user mobility makes resource allocation a

challenging task. It is possible for a particular device to become overloaded when

users with different types of applications, such as latency-tolerant and latency

sensitive(cpu, storage, and bandwidth), are in range of it at the same time. Luiz

F. et al. [70] presented three methods for the mobility problem: First Come First

Serve (FCFS), delay-priority and concurrent.

When a considerable number of application modules are scheduled concurrently,

system resources will inevitably become overburdened in a concurrent system. By

holding off on downloading Cloud-based application modules until the client device

has adequate processing power, the FCFS approach avoids resource congestion

as latency-sensitive or latency-tolerant. While the suggested method effectively

prevents resource contention across fog devices, it comes at the cost of increased

network latency for time-critical programs.

Background and Related work 35

When determining which devices should host which application modules, the delay

priority technique presented in [70] gives preference to devices closest to the user

and those with the least amount of processing power. The unused portion of a fog

device’s processing power is uploaded to the Cloud when it reaches its limit. As

the number of application modules grows, the suggested technique helps minimize

latency for latency-sensitive applications, but at the cost of increasing network

usage and financial demands on Cloud resources.

A resource-aware scheduling strategy was designed by [24] to help increase pro-

ductivity in a Cloud Fog Computing environment. The resource-aware scheduling

technique considers the device’s CPU, RAM, and network throughput when de-

termining which application modules to execute on fog devices. Prioritization is

determined by the CPU requirements and capabilities of newly incoming appli-

cation modules or devices i.e., fog or Cloud. Recursive binary search is used to

narrow down the pool of potential fog devices until one is found that meets the

module’s requirements for processing power, memory, and data transfer rate. The

proposed fix is wasteful and fails to consider the cost of using the Cloud services.

The authors calculated the cost and time it will take to implement their solu-

tion on fog or cloud based on Estimated Start Time (EST) and Estimated Finish

Time (EFT), as well as the mapping cost of each application module. Modules

are distributed among nodes and are determined by calculating the best com-

promise between cost and makespan (Fog device or Cloud). With the proposed

approach, programs run slower while using less resources. For Big data processing

framework V. Cardellini et al. [26] suggested a distributed Quality of Service QoS

aware scheduling algorithm. Apache storm was used to perform the research on

a cluster of eight worker nodes. The authors have updated the Storm distributed

scheduler to increase its awareness of quality-of-service requirements. Experiments

indicate that the suggested scheduler improves application execution performance

compared to Storm’s default scheduler.

L. Ni, J. Zhang, et al. [71] created a pricing synchronized petri net-based resource

management technique for Fog computing. The basic idea is that the recipient

Background and Related work 36

may choose the ones that will offer them the most excellent satisfaction among

various options. The proposed method considers the cost and time required to

complete application modules. A user with a large credit limit may use secure

tools to help them finish their work. Credit evaluations for users and resources

have some wiggle space under this system. In addition, the proposed plan does

not account for how those resources would be used. In [72], D. Rahbari et al.

propose employing symbiotic organism search (SOS) to enhance the efficiency of

the knapsack scheduling method. CPU utilization and virtual machine throughput

are considered when determining the fitness function. The author used the iFogsim

simulator to gauge the improvement in energy usage and network utilization. The

proposed algorithm was compared to the baseline FCFS algorithm, the knapsack

algorithm, and the knapsack SOS technique. However, the proposed approach is

careless since it does not consider the resource utilization.

Latency-aware application module management using fog layer clusters was sug-

gested by R. Mahmud et al. in [14]. Two developed algorithms support the pro-

posed technique for application management. The first method correlates delays

across an application’s components to arrive at an overall delay. Those parts of the

application that can function with a more significant latency are kept higher in the

stack, while the remaining parts are handled by the fog layer. Regarding service

punctuality, the suggested method satisfies the standards of QOS. This method

does not include the cost of using Cloud resources with application modules that

can better handle service delays.

A strategy for optimizing the fog layer’s effects was presented by R. Mahmud et al.

in [14]. The suggested technique uses a heuristic in which modules are transferred

from a vacant fog node to an occupied one. In this manner, energy can be saved,

and resources can be better utilized when fog nodes are fully utilized. However,

communication delays may occur after a module migration because data will first

reach the source node and then be relayed to the host node.

In order to find a middle ground between application up-time and Cloud resource

costs, X. Pham et al. [73] suggested an approach. The authors save cost by using

Background and Related work 37

Cloud resources and shorten the time needed to build interdependent modules. In

mapping procedure the over all CPU is estimated in terms of time, money, and

effort. To minimize both costs and delays, jobs are distributed among available

nodes. The technique leads to inequitable load distribution and disregards re-

source efficiency. S. Agarwal et al. [74] used virtualization technology to provide

a framework and technique for efficient resource allocation in a Fog computing

environment. At the fog layer, the suggested architecture places fog servers (FS)

and a fog service manager (FSM). Every customer makes a separate request to

FS. If there is enough processing power, FSM will take care of it by partition-

ing the module into smaller pieces and distributing them across the available FS .

The modules will be delayed if the fog layer processing resources are utilized. The

main disadvantage of this approach is the lengthened time to completion whenever

modules are required to wait for the availability of resources.

The priority-based scheduling strategy proposed by T. Choudhari et al. [75] aims

to reduce expenses without sacrificing response times. Fog nodes (also known as

fog servers) from the fog layer architecture described in [76] were employed in this

study. The fog layer’s processors are under the watchful eye of the fog server’s.

Time limits have been set for submitting the various application sections. Tasks are

prioritized according to their impact on maintaining an elevated service quality

level and tracked using the due module dates. A module’s priority determines

which processors will process it. The proposed procedure does not think about

making the most of the limited resources. In [77], Sun et al. proposed a two-level

resource scheduling algorithm in which the fog layer is divided into clusters. Each

resource is assigned to a different fog cluster or fog node within a given cluster.

The researchers claim that they could reduce delays and improve job execution

solidity.

In [25], Xuan-Qui et al. proposed a task scheduling technique for dependent tasks

on each other. The author used the Directed Acyclic Graph (DAG) to represent

tasks. The growth of these intertwined efforts requires constant and open lines

of communication. A priority is created by traversing the DAG and assigning

the prioritized jobs to the fog nodes. The assignment of modules is based on

Background and Related work 38

the fog devices’ resource limitations. The proposed technique has a low resource

utilization rate and increases the application’s execution time.

A job scheduling and the image placement strategy on a storage server was pro-

posed by Zeng et al. [78]. The embeded clients and the fog nodes perform the

computations by using the shared storage. To ensure the timely completion of

tasks without sacrificing quality, deadlines are set to expire as soon as feasible.

Each step is meticulously planned to ensure the best possible user experience. J.

Zhang et al. [71] proposed a dynamic resource allocation technique to improve the

use of existing resources and, by extension, the value provided to users. Priced

Timed Petri Nets (PTPNs) consider both the time it takes to complete the task

and the trustworthiness of the fog nodes when choosing how to allocate the avail-

able resources.

A deadline-based resource provisioning and allocation method considering chang-

ing user needs has been presented by Naha et al. [79]. Time-sensitive applications

cannot be run without addressing the issue of dynamic resource allocation in the

fog Cloud environment. Their efforts aimed to allocate resources to decrease pro-

cessing time while allowing them to complete their jobs by their due dates. Power,

speed, and bandwidth are used to rank the available resources. The requests are

processed in order of their fog layer priority. The Cloud-based assignments are sent

to the cloud if fog cannot complete it. The authors tested their algorithm using

CloudSim tool. The author claimed that 12% of the processing time was saved.

Aside from that, they haven’t done anything to improve efficiency in managing

resources, responding to requests, or prioritizing resources.

Another scheduling and allocation approach was introduced by Abdelmoneem, R.

M. et al. [80] named mobility-aware heuristic based scheduling and allocation

approach (MobMBAR). The system was developed for use in healthcare, making

it mobile and adaptable to various settings. Patients’ whereabouts have become

the center of attention. Firstly, they have outlined a transfer procedure that aids

in transporting mobile sink devices from one gateway to another. Consistent with

the goals of this policy, the change in network status is indicated by a decrease

Background and Related work 39

in the intensity of the incoming signal. The maximum number of devices that

may communicate with gateway is also considered in determining this policy. The

organizing and allocating approach has two distinct halves.

One is the ranking stage which comes first, followed by the scheduling stage. After

determining which tasks are most urgent, the ranking process begins. For this

purpose the Weighted Sum Method (WSM) was employed in their deliberations

whereby relative importance may be placed on each job which keeps an eye on

the users’ geographic location shift. iFogSim has been used to analyze how well

the suggested process works. In terms of efficiency, the algorithm was superior to

make-span compared to every other way. The outcomes were a shorter make-span,

a smaller network the pressure, and faster reaction times. However, the researchers

have no project scheduling and due dates regarding resources.

The Hosseinioun et al.[81] proposed an approach to reduce the make-span while

increasing the resource usage. The dynamic voltage and frequency scaling (DVFS)

algorithm was developed to reduce energy usage. A hybrid method, the Invasive

Weed Optimization and Culture Algorithm (IWO-CA) is used to build valid se-

quences of tasks. There are two stages to the suggested approach. To begin, the

author constructs a task queue with the optimum priority for scheduling purposes.

Second, the fog servers can access the power and frequency needed. The authors

claim that the HEFT method efficiently allocated jobs to processors. There are

three phases of Invasive Weed Optimization (IWO). The first stage is initiation,

reproduction, geographical spread, and competitive extinction.

The jobs are assigned at startup using a height distribution approach, which con-

siders the lowest and most incredible heights. These parameters are used to gener-

ate the first population. In the next stage, reproduction, the population reproduces

by making new individuals based on the solutions that have been chosen with the

least fitness. The generated seeds in discrete solution space are dispersed with

the help of the significant code distance approach. However, short code distance

is used to provide local optimizations. The authors claims while comparing the

Background and Related work 40

proposed method with (EES), (HEFT-T), (DEWTS), and (HEFT-B) that the al-

gorithm did well by reducing the make-span and maximized resource consumption.

However, the author don’t consider the reaction time and resource utilization in

their efforts. Task scheduling and resource allocation are two significant obstacles

to the fog-Cloud computing paradigm.

Priority Aware Genetic Method (PGA), introduced by Hoseiny et al. [82], was

a new scheduling algorithm designed to solve these problems. Their goal is to

maximize the proportion of jobs finished before the due date while minimizing the

total amount of time spent on computation. Their method prioritizes tasks and

identifies the best node to carry them out. The suggested solution is broken up

into two stages.

In the first stage, tasks are categorized according to factors such as due dates,

while in the second stage, the PGA is applied to the organized tasks. After that,

two to-do lists, fog-list and Cloud-list, are compiled. Dates due on tasks and the

percentage of instructions given are used to compile these lists. The two lists are

then processed by PGA simultaneously. The second step involves the employment

of a binary masking approach for crossover. A roulette wheel selection technique

often chooses the first parent in a crossover. Then, a new mask vector and second

parent are chosen. The kids of a binary mask operator retain their parents’ genetic

makeup. Mask vector bits may be 0 or 1.

When the bit’s value is one, gene swapping occurs between the parents, but genes

have been copied without being swapped when it is zero. They have looked at how

their method stacks up against Ant-Mating Optimization (AMO) and Power Of

2 Choices (PO2C). The algorithm did better with reduction in processing time,

however, they do not have a very varied datasets to work with. Further, resource

prioritizing has not been considered.

Background and Related work 41

2.8 Heuristic Based Resource Allocation

Resource allocation heuristics based on ”penalty and incentive schemes” were sug-

gested by Z.Pooranian et al. [83]. The problem was seen as a ”bin packing

penalty-aware” problem to allocate resources using fog servers considered as bins

instead of containers. The VMs, on the other hand, are packs that must be

served according to time and frequency constraints. For some iterations following

a penalty, the server remains unallocated. D. T. Hoang [84] developed a heuristic-

based job scheduling mechanism to optimize performance and get low latency in

Cloud fog architecture. The author suggests an area-based fog architecture for

task distribution in fog and Cloud environments.

A two-tiered resource scheduling method was presented by Sun et al. in [85], which

partitions the fog layer into clusters. A fog cluster or fog node is first assigned

responsibility for a particular resource. The author used the idea of genetic algo-

rithm with non-dominated sorting for resource scheduling to optimize for many

objectives concurrently across all fog nodes for a specific cluster. According to the

researcher, this strategy reduced wasted time and boosted faith in the project’s

eventual success.

A recursive binary search approach was used to help the author choose the best

possible instrument. However, the suggested method of transferring modules from

the fog layer to the Cloud does not account for the price of Cloud services. A

deadline-aware job scheduling system for tiered-based IoT architecture was de-

scribed by Jianhua Fan et al. [86]. To determine the location of module place-

ment, it is essential to put the service provider’s requirements first. An empty

or one-filled knapsack was the source of the issue. The primary objective was to

maximize their long-term net profit with an optimization strategy based on Ant

Colony Optimization (ACO). Other algorithms, such as FCFS and Min-min, are

compared to the proposed technique. Time and material lags are not taken into

consideration in their assessment.

Background and Related work 42

Zenith, developed by Jinlai Xu et al. [87], is the optimal method for allocating

resources in edge computing. Service providers and edge infrastructure providers

may be able to reach a legally binding agreement via resource allocation. Edge

servers agree to the specific requirements to ensure that the offloaded application

modules are scheduled on time and that the allotted computing resources are acces-

sible. The authors introduced an independent variable resource allocation model.

The proposed approach distributes edge computing resources independently of the

provider’s infrastructure. The cost of using Cloud services is not included in the

suggested method. The objectives of Fog computing is to accommodate several

programs with different latency requirements and delay thresholds. By consider-

ing the latency requirements the Liu et al. [88] proposed a strategy that combines

the quickest feasible time to accomplish a job with the mining of association rules

for minimum execution time. Rules for assigning tasks to Fog nodes are generated

using the priori algorithm.

X. Pham, et.al. [89] proposed an algorithm to achieve a balance between applica-

tion execution time and cost of using Cloud resources. The authors try to minimize

the make-span of the interdependent modules while reducing the monetary cost of

using Cloud resources. The estimated starting time, estimated finishing time, and

monetary cost of mapping each for all processors is calculated. The make-span

and monetary cost trade-off values are used for the assignment of tasks to the

nodes. This approach results in load imbalance with poor resource utilization.

Gupta et al. [90] introduced a novel technique of task scheduling for latency-

sensitive applications based on experimental data demonstrating the superiority

of modules hosted near the network’s edge over those hosted in the Cloud. To

calculate the energy consumption, network utilization, and loop delay the author

used the EEG Tractor Beam game by using the FCFS strategy. Fog computing’s

resource allocation was investigated by L. F. Bittencourt et al. [70], who compared

the performance of latency-tolerant versus latency-sensitive jobs. The application’s

parts were structured using a contemporary FCFS and delay-priority approach.

The concurrent scheduling method encounters difficulties when there are several

Background and Related work 43

scheduled modules and a limited number of shared resources. By shifting process-

ing from the fog to the Cloud, FCFS slows down latency-sensitive applications and

increases network traffic. To deal with latency-sensitive applications, the author

devised a delay priority strategy that involves transferring them from fog to the

Cloud in a hierarchical order of delay sensitivity.

However, the suggested technique starts to break down when dealing with many

application modules, leading to more time spent in network traffic, longer ex-

ecution times, and higher overall costs associated with using Cloud resources.

Prioritization-based work scheduling was developed by T. Choudhari et al. [75]

to reduce response times and costs. In the fog layer, jobs are received only when

they are the least urgent. As assignments come in, the clock starts ticking and

deadlines become more prominent. Several small data centers are spread across

each fog layer and linked by a network of fog nodes. When the resources in a fog

layer are exhausted, the work is transferred to the Cloud.

The suggested method aims to compromise small memory footprints and fast

processing speeds. In addition, other important goals are overlooked, such as using

the network efficiently. The S. Bitam et al. [91] proposed a scheduling algorithm

drew inspired from the behavior of bee swarms. The suggested approach was

developed with balancing memory use and computational performance as its key

goals.

Reinforcement learning was utilized by K. Gai et al. [92] to enhance the quality

of the user experience and maximize the use of available resources. The author

discussed two reinforcing methods that may be used to improve the accuracy of

cost-mapping tables and the distribution of resources. Each user request required

its unique configuration of fog nodes to achieve a specific objective, such as lowering

latency. The double deep Q-learning model (DDQ) was introduced by Zhang et al.

[93] for use in edge computing to reduce energy consumption. Several techniques

for dynamically adjusting voltage and frequency scaling (DVFS) were evaluated

using the (DDQ) technique. The author used linear rectified units as activation

functions rather than sigmoid ones to prevent gradient vanishing.

Background and Related work 44

Rahbari et al. [94] used the greedy knapsack-based scheduling (GKS) approach

for scheduling the tasks in Cloud fog environment. The researchers claims that

the suggested method achieves better energy savings and execution cost results

than concurrent scheduling, FCFS scheduling, and delay priority scheduling.

Mai et al.[95] used deep reinforcement learning for real-time job scheduling in their

work. The researchers used a reinforcement learning approach and evolutionary

strategies to train a neural network. Consequently, only a handful of algorithms

that make good use of available resources have been examined since Fog computing

is still in its infancy. Despite fog computing’s infancy, relatively few studies have

examined Big data applications in fog environments So far, most of the efforts have

been focused on improving the healthcare system. For the purpose of managing Big

data in Fog computing for telehealth applications, a service-oriented architecture

has been suggested as a potential solution [96].

The fog layer of the network was augmented with low-powered embedded comput-

ers so that this architecture could be produced. The raw data that these embedded

computers have access to be processed through data mining and analytics by the

embedded computers. The use cases of speech motor disorder and cardiovascular

detection were both considered for this research. The fog layer was responsible for

the processing of raw data for both of the use cases that were considered. Once the

raw data from speech motor disorder sensors or cardiovascular detection sensors

have been processed, all detected patterns are saved, and the one that is most

unique is uploaded to the Cloud for further analysis.

During the preliminary research, it was determined that the smartwatch was the

one responsible for sending speech data to the fog device. The fog device is re-

sponsible for carrying out the feature extraction, pattern mining, and compression

stages that follow the previous step in the processing sequence. The fundamental

frequency and loudness characteristics of speech are altered in this manner so that

they are transformed into an average form. After that, the data representing the

speech is further compressed before being uploaded to the Cloud. The Cloud is

Background and Related work 45

responsible for carrying out the necessary processing to convert the average fun-

damental frequency and loudness that it has received into the time series of the

original speech. This conversion is carried out in real time. For the purpose of this

specific case study, the Dynamic Time Warping (DTW) method was utilized for

the purpose of voice data mining in order to extract information. This was done in

order to better understand the data. In addition, the Clinical Speech Processing

Chain (CLIP) algorithm was added in order to compute relevant clinical metrics

such as fundamental frequency and loudness. The mining of voice data was made

possible by utilizing both of these algorithms in conjunction with one another.

DTW was utilized in the other case study, which centered on ECG monitoring,

with the objective of pattern recognition. Following the discovery of the pattern,

the data that had been previously processed were transferred to the Cloud so that

they could be subjected to additional analysis [96].

Kabirzadeh et al.[97] presented a hyper-heuristic approach to fog network sched-

ules, focusing on the difficulty of scheduling workflows in a Fog computing setting.

Various nodes in a sensor network serve as receivers, soaking up data about their

local surroundings. When the nodes are in the communication range of the gate-

ways, they will send the information to the fog machines. The most efficient way

of assigning virtual machines (VMs) to particular modules in fog-based systems

was determined using meta-heuristic techniques. A fitness function examines each

algorithm’s results to determine whether the modules are utilizing their resources

efficiently. They propose picking a heuristic that works well for the current task

as part of their strategy. By shrinking the size of a heuristic algorithm, it could

improve its decision-making ability for distributing resources with specific con-

straints to users following the sort of workflows while reducing simulation time

and energy usage. Algorithmically, the authors consider the specific workflow that

was selected using the best available heuristic algorithm’s inputs. Although current

efforts in Fog computing such as resource management are designed for non-VM

applications such as task scheduling, virtual machine containers can be utilized

for VM s since they are quicker and require fewer resources. It takes considerable

time to boot and set up containers or virtual machines.

Background and Related work 46

The delay in execution is a significant problem for time-sensitive applications. For

example, a virtual machine must be established on the fog node before a request

can be processed. A VM may still run on fog nodes if the power goes off. The VM

might begin processing as soon as a request is received. However, resource waste

will be unavoidable if these conditions are placed on the use of the virtual machine.

In addition to transmitting image files, virtual machines may be assigned tasks

and resources without worrying about where they will be located.

Yin et al.[98] propose methods that might shorten the time required to complete

jobs. The authors made significant contributions by researching optimal work

schedules and developing intelligent manufacturing processes. Their scheduling

strategies are based on the container concept, which is at the heart of the author’s

model of containers and task processing. They have broken down the tasks at

hand into manageable chunks, each of which must be reviewed, authorized, and

then assigned to the fog, a single computer, or an abstract network. The work is

considered finished if the amount of time it took to do is less than the maximum

time permitted.

The container resource allocations may be altered without adding extra expenses

to the system, which is not the case with virtual machines. Because of this, the

number of jobs assigned to a fog node ensures that all available resources are used

effectively. It is expected that the reassignment strategy would also significantly

reduce the delays. According to their findings, the scheduling algorithm and the

reallocation mechanism can potentially increase the number of tasks accepted by

5%. A possible 10% reduction in work time is possible using this method.

When simplifying the service model, they brush over the inevitable limitations of

Cloud-based assets in favor of removing the related computing Cloud. S. Bitam et

al. [76] used the Bee’s swarms to optimize the scheduling of tasks in a Fog Com-

puting. For effectively allocating modules to fog devices, the authors proposed a

bio-inspired approach based on the Bee’s life algorithm. The suggested method

aims to find the best balance between processing speed and memory use. Particle

Swarm Optimization (PSO) and a Genetic algorithm (GA) are contrasted with the

Background and Related work 47

proposed method based on a simulation of Bee’s life to determine which is more

successful and efficient. However, the suggested approach disregards the signifi-

cance of resource allocation and network bandwidth in optimizing the processing

performance of the underlying Fog computing environment.

To guarantee the consistent scheduling of scientific operations in the Cloud, Ro-

driguez, et al. [99] created a workflow responsive resource provisioning and schedul-

ing WRPS method. Its purpose is to save the user time and money by facilitating

the completion of Cloud-based activities. The proposed approach is adaptable to

delays and varying conditions common in Cloud computing. To solve this problem

in pseudo-polynomial time, the authors break the workflow into bundles of similar

tasks and pipelines with the same deadline.

The main goal of the proposed approach is to complete the task within the user-

specified deadline while utilizing as few resources as possible. Their simulation

findings show that it is robust and sensitive to the performance fluctuation of the

Cloud, can scale concerning the number of activities in a workflow, and can deliver

solutions of better quality than those supplied by state-of-the-art algorithms. A

heuristic-based system for scheduling tasks has been presented for use in a hybrid

fog Cloud environment by Ali et al. [100].

The authors state that determining whether or not to carry out operations at the

fog or cloud device is a significant problem. The suggested method aims to increase

the tasks success rate while decreasing their make-span and average turnaround

time. When a task is received, the fog layer determines whether it can be processed

locally or must be sent to the Cloud by sorting their to-dos in increasing order of

urgency to ensure they get things done on time even while the clock is ticking.

Once that is done, the least busy virtual machine Vm is given the job based on

the task’s computational needs.

The authors used the iFogSim simulator to test their approach and compared the

results to those obtained using the Real Time Task Processing (RTTP), the First-

in, First-out (FIFO), and the Shortest-Job-First (SJF) algorithms. To reduce the

Background and Related work 48

load on the fog layer’s resources the proposed approach sends requests with flexible

due dates to the Cloud.

Table 2.1: Summary of Literature Review Techniques

References Response Time Make Span
Monetary

Cost

Resource

Utilization

Luiz F. et al. [70] ✗ ✗ ✓ ✓

Taneja et al. [24] ✓ ✗ ✓ ✓

Xuan-Qui et al. [25] ✓ ✓ ✓ ✗

V.Cardelli et al. [26] ✗ ✗ ✓ ✓

D. Rahbari et al. [72] ✗ ✗ ✓ ✓

R. Mahmud et al. in [14] ✗ ✗ ✓ ✓

X. Pham et al. [89] ✗ ✗ ✓ ✓

S. Agarwal et al. [74] ✓ ✗ ✓ ✓

T. Choudhari et al. [75] ✓ ✗ ✓ ✗

S. Bitam et al. [76] ✗ ✗ ✓ ✗

J. Zhang et al. [71] ✓ ✓ ✓ ✓

Naha et al. [79] ✓ ✗ ✓ ✗

Abdelmoneem et al. [80] ✓ ✓ ✓ ✗

Hosseinioun et al. [81] ✗ ✓ ✗ ✓

Z.Pooranian et al. [83] ✓ ✗ ✓ ✗

D. T. Hoang [84] ✓ ✗ ✗ ✓

Sun et al. [77] ✗ ✗ ✓ ✓

Jianhua Fan et al. [86] ✓ ✗ ✓ ✗

Jinlai Xu et al. [87] ✓ ✗ ✗ ✗

Liu et al. [88] ✗ ✗ ✓ ✓

K. Gai et al. [92] ✓ ✗ ✓ ✓

Rahbari et al. [94] ✗ ✗ ✓ ✓

Mai et al. [95] ✗ ✗ ✗ ✓

Kabirzadeh et al. [97] ✗ ✗ ✓ ✓

Background and Related work 49

Yin et al. [98] ✓ ✗ ✗ ✓

Rodriguez et al. [99] ✗ ✓ ✓ ✗

Ali et al. [100] ✓ ✓ ✗ ✓

Xu et al. [101] ✓ ✓ ✗ ✗

When allocating resources, the authors fail to take into account the relative im-

portance of various tasks.

Xu, J., et al. [101] proposed a work scheduling technique (LBP-ACS) that com-

bines laxity-based priority algorithms with ant colony systems. The deadline for

each work is included in the overall priority ranking. A laxity-based algorithm

is combined with an ant colony system to reduce overall energy usage and es-

tablish a strategy for scheduling jobs. Each task’s laxity is determined using the

laxity-based priority algorithm (LBA), which is then used to determine the relative

importance of smaller jobs.

After that, the jobs in the Directed Acyclic Graph(DAG) are organized and se-

quenced. The sensitivity of jobs is represented by the shortest amount of time that

may be postponed before the deadline. For a given task, a lower laxity number

suggests more importance. The ant colony-based constrained optimization method

(COA-ACS) is utilized to delegate jobs which take a list of jobs and VM s as input.

Following the determination of the first pheromone, the appropriate assets may

be chosen.

After finding the both regional and international pheromone values the final deci-

sion is based on the least draining route’s energy requirements. The effectiveness

of the suggested method is measured against those of greedy for energy (GFE),

and heterogeneous earliest finish time (HEFT). The authors claim that LBP-ACS

scored better than its competitors in terms of failure rate because it considers

due dates when determining which activities to prioritize. Prioritizing resources

and prompt responses have not been taken into account. The summary of the

literature review is given in Table 2.1.

Background and Related work 50

2.9 Gap Analysis

From the literature, it has been concluded that different factors including applica-

tion type [70], monetary cost [76, 86, 89], makespan [25, 73], latency [14, 87, 102],

network usage [24, 70, 72] and execution time [74, 75] affect the placement of

application modules in Fog computing environment.

To deal with latency a number of scheduling approaches have been proposed in

[14, 70, 87, 102]. Latency oriented scheduling heuristics results in reduced net-

work usage. However, these scheduling schemes cause longer execution time of

applications and resource contention at fog layer. The scheduling approaches in

[24, 25, 73–75] achieve a balance between application execution time and mone-

tary cost of using Cloud resources. However, these approaches suffer from poor

resource utilization at fog layer with increase in bandwidth usage. In order to meet

QoS in terms of user-defined deadline, the proposed approaches [14, 86, 102], re-

duce the probability of deadline violation to a reasonable level; however, results in

decreased resource utilization and increase network usage. To address these issues

and achieve maximum resource utilization at fog layer with minimum execution

time of the incoming applications, reduced the network usage and the monetary

cost of the applications there is a need to have a scheduling technique which can

reduce the execution time of the applications with less bandwidth consumption

and the monetary cost of using Cloud resources.

Chapter 3

Resource Aware Cost-Efficient

Scheduler for Cloud Fog

Environment

3.1 Introduction

The Internet of Things (IoT) facilitates the development of novel social relation-

ships between people and their technological devices. The government has invested

heavily in the IoT because of its potential benefits in life and different fields of

science like municipal management, e-health, disaster recovery, etc. The num-

ber of devices communicating with one another has skyrocketed as the IoT has

grown [2]. A 2015 press release [103] on the IoT shows that the total number of

internet-connected devices has already reached $13.4 billion, surpassing the hu-

man population. It is estimated that by 2020 [103], there will be 38.5 billion of

these devices, or around five for every person on the planet. It is predicted that

by 2025, the IoTs might affect the global economy by around $11 trillion annually

[1], as much as 11 percent of the whole economy.

The growing volumes of data created by the many IoT devices need substantial

computing power. To fulfill the demands of computing resources, a great number

51

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 52

of data centers have been set up. According to the conventional view of Cloud

computing, customers of data services would benefit from efficient and flexible

services [4]. There are two leading players in the traditional Cloud computing

model:

1. Consumers who use Cloud resources

2. Cloud service providers

Companies that acquire and make available different Cloud resources (such as data

storage, data processing, etc.) to end users are known as ”Cloud service providers”

(CSP)s. The Cloud service provider provides its customers with a selection of pay-

as-you-go resources [104]. The CSP typically provides a web-based interface via

which the Cloud user can access the leased resources.

The task scheduling heuristic [105] receives jobs from clients through tasks/-

cloudlets from the Cloud task manager. A user’s computationally difficult task

is received and then distributed to the virtual machine (VM) that is best suited

to do it. The task scheduling heuristic can collect information about VM s com-

puting power, current workload, etc., by exchanging information with resource

management. A resource manager oversees and controls the Cloud’s virtual and

physical resources. The availability and settings of a pooled set of resources may

be adjusted on the fly. Cloud computing stores and processes data in remote data

centers connected by supercomputers and lightning-fast networks.

For the processing and data storage needs of IoT devices, Cloud computing can

offer scalable infrastructure-level services; however, it is not necessarily the best

practice for IoT devices to use Cloud computing. Cloud data centers can not

adequately meet the latency needs of most globally scattered IoT applications

like healthcare, emergency response, video streaming, etc., resulting in sluggish

distribution, clogged networks, and low Quality of Service (QoS) [5].

Depending on the amount of time and effort required for data transfer from the

user to Cloud resources, a delay may occur [106]. The Fog computing that Cisco

helped create in 2012 [19] aims to solve these problems by working with the Cloud.

Fog computing is a network-peripheral implementation of Cloud computing [6,

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 53

7]. Standard pieces of networking hardware like routers, hubs, and switches are

typically used in Fog computing architectures. It is possible to put these network

hardware devices closer to IoT as presented in Figure 3.1.

One other way these devices boost the efficiency with which customers’ applica-

tions may be operated is the capacity to store data locally or in the Cloud and

connect to other devices and the internet. In addition to facilitating location

awareness, mobile support, real-time communication, compatibility, and scalabil-

ity, Fog computing is a critical component of these technologies [8]. One of the

main ideas behind Fog computing is that data processing power should be kept as

near as possible to the original data creation point [107].

As a result, Fog computing is beneficial in several ways, including reduced net-

work traffic, improved service latency, and lower overall costs associated with using

Cloud resources. Thus, instead of simply relying on Cloud computing, IoT appli-

cations may use Fog computing to meet user needs [10] .

Figure 3.1: Cloud Fog Architecture

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 54

3.2 Architecture of Fog Computing Environment

The Fog computing concept introduces a new computational paradigm in which

services like computation, communication, and storage are at the network’s edge.

The core concept of Fog computing is to place data storage and computation close

to the end-user (i.e., at the network’s edge). Cloud computing and Fog computing

are not detached from each other as Fog computing can utilize the Cloud resources

for application demanding large scale processing and storage requirements. This

provides a novel type of applications and services [8]. Cloud-Fog architecture

along with end-users collectively formulates three-tier architecture [108] of the

Fog computing environment as revealed in Figure 3.1.

3.3 The Three-Tier Architecture of Fog Com-

puting Environment

Most of the architectures suggested for Fog computing in recent years come from

the same three-layer framework. Fog computing introduces a layer between end

devices and Cloud called the fog layer, which enlarges Cloud services to the network

edge [109]. The three-tier hierarchical architecture consists of the following three

layers:

3.3.1 User Layer

The user layer as shown in Figure 3.2 is the nearest layer to the user and consists

of IoT devices like sensors, smart cards, readers, and mobile phones. Although

mobile phones have computation power, yet these devices are often used as smart

sensing devices in the Fog computing environment. IoT devices are geographically

dispersed and are accountable to sense data from physical objects or environments.

IoT devices transferred the data which is sensed, to the fog layer as depicted in

Figure 3.2 for necessary storage and processing.

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 55

3.3.2 Fog Layer

Fog layer as presented in Figure 3.2 is situated at the network edge and is the

fundamental component of the Fog computing environment. Fog layer is formed of

traditional networking gadgets (i.e., switches, routers, set-top boxes, proxy servers,

and base station BS, etc.,). These devices may be static at some fixed locations

like parks, streets, cafes, shopping centers, and bus terminals, etc., or movable

with a moving carrier and are widely distributed among Cloud and end devices.

These devices may be resource-poor (low computation power, memory, etc.,) such

as access points, routers [110], or have resource-rich devices such as cloudlets [23].

Figure 3.2: The Three-Tier Architecture of Fog Computing [111]

3.3.3 Cloud Layer

Cloud layer as shown in Figure 3.2 comprises of several high capacity servers and

storage devices delivering various application services. It can process and store a

huge amount of data. Though, like traditional Cloud computing, the Cloud layer

does not have to perform all storage and computations [110]. Cloud resources are

used for application demanding large scale processing and storage requirements.

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 56

3.4 Scheduling in Fog Computing

An application module must be mapped with resources (such as CPU, memory,

bandwidth, etc.) to make the best use of available resources via a process called

scheduling. A fog scheduler’s primary responsibility is to determine which stage of

an application is next to run based on the availability of suitable modules. Reduced

execution time of applications, minimal monetary cost, increased throughput, less

bandwidth consumption, etc., are some of the primary goals of a fog scheduler.

Figure 3.3: Scheduling in Cloud Fog Computing Environment

The inappropriate allocation of the resources in the Fog computing environment

degrades the execution time of application, increases latency, increases in mone-

tary cost, and failure to meet the service level agreements. A scheduling example

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 57

in the Fog computing environment is presented in Figure 3.3 that shows a hier-

archical, bi-directional computing infrastructure. Edge devices can communicate

with cloudlets and other network devices at the fog layer. Five users (U1, U2, U3,

U4, and U5) are presented in Figure 3.3 at the user layer.

Every user is running an application either A1 or A2. Each application comprises

three modules (M1, M2 and M3). The scheduler at the fog layer, based on defined

scheduling policies, decides which application modules will be placed at the fog

layer and which modules will be executed at the upper layer i.e., Cloud. As shown

in Figure 3.3, modules M1 and M2 of A1 for U1 and M1 and M3 of A2 for U2 are

placed at fog layer while M3 of A1 for U1 and M2 of A2 for U2 are placed at Cloud.

For U3 all application modules (i.e., M1, M2, and M3) are successfully mapped at

fog device in the range of U3. Similarly, for U4 and U5, modules M1 and M2 of A1

for U4 and M1 and M2 of A2 for U5 are placed at fog layer while M3 of A1 and A2

for U4 and U5 are placed at Cloud.

This study introduces a resource-aware scheduler to allocate the arriving appli-

cation modules to fog devices. The proposed innovative technique for moving

application modules from the fog to the Cloud layer allows for more efficient use

of Cloud resources at a lesser expense of execution time, network bandwidth, and

the Cloud resources cost. Following is a summary of the research’s most significant

findings:

� We provide a Resource Aware scheduler for moving application modules

between the fog and the Cloud layers, which helps to make the most efficient

use of available resources.

� We have defined the priorities for the application module placement to reduce

data transfer, run time, and cost of using the Cloud.

� The resource aware policy has been implemented using iFogSim’s simulator

and compared to conventional Cloud placement methods and fog placement

strategies. As the findings reveal, our approach has led to a dramatic increase

in efficiency. The abbreviations used in the paper are listed in 3.1.

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 58

Table 3.1: Preliminary Notation Used in RACE System and Performance
Model

Notations Descriptions

RACE Resource Aware Cost-Efficient Scheduler

Mi ith Module

MI Millions of Instruction

MIPS Millions of Instruction per second

FD Fog Device

Cloud Cloud Datacenters

Pri Prioritized List

CT Computation Threshold

BT Bandwidth Threshold

CR Computation Requirement

BR Bandwidth Requirement

FOP Fog only Placement

CFP Cloud Fog Placement

TCP Traditional Cloud Placement

The rest of the chapter is organized as follows: The problem formulation is de-

scribed in section 3.5 with the application model for the proposed algorithm is ex-

plained in section 3.6. The architecture and the algorithms of RACE are explained

in section 3.7 and 3.8 respectively. The experimental evaluation is discussed in 3.9

with the discussion of simulation results in 3.10. Finally the chapter is concluded

in section 3.11.

3.5 System Model and Problem Formulation

This section explores a thorough overview of the projected scheduling heuristic

Resource Aware Cost-Efficient Scheduler (RACE). The system architecture, ap-

plication model, algorithm, and overhead analysis are disclosed in this segment.

By combining the advantages of edge and Cloud computing, the fog Cloud solu-

tion facilitates low-latency communication across a large geographical area, thus

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 59

enabling for a computation, networking, and storage resources distribution frame-

work between the unified Cloud and the remote end-users. In reality, it encourages

versatility as well as resource and device flexibility.

The user layer consists of end devices, while the fog layer has small servers, routers,

access points, gateways, etc., which can host application modules [112]. The de-

vices at the fog layer have limited processing power because of the hardware con-

straints of the resources each one possesses. In contrast, the Cloud contains the

same resources produced by several VMs, each of which may be set to a unique

configuration that reveals the VMs computational power. Because the Cloud as

a whole has so much more computational and resource capacity than a typical

system in the fog layer, the Cloud seems limitless to the fog devices.

Hence, the complete range of resources comprises of fog devices and the Cloud

VMs. The network node’s computing power (or resource capacity) is constrained

by a common set of limited constraints and may be defined as a series of three

simple narrow down parameters, termed as RAM, CPU, and Bandwidth. Simi-

larly, applications with their modules may be intensive in computation or intensive

in bandwidth [30, 90, 113, 114] as required by their computation and bandwidth

requirements. Thus if Mi represents an application module and CR shows the

computation requirement for the application module in module set then it can be

represented as follows:

Let M = {M1, M2, M3 Mn} be the set of modules of user input jobs with

their computation and bandwidth requirement as follows:

Let C = {CRM1, CRM2, CRM3 CRMn} be the computation requirement

of each module in module set M.

Let B = {BRM1, BRM2, BRM3 BRMn} be the bandwidth requirement of

each module in module set M.

Let F = {FD1, FD2, FD3 FDn} be the list of fog devices are arranged

in descending order of their computation power.

Mi = {CRMi, BRMi} (3.1)

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 60

Where i = 1 to n. Equation 3.1 shows the computation requirement CRMi and

the bandwidth requirement BRMi of each module in a consolidated way. In order

to find threshold for the computation and bandwidth requirement of application

modules we used the median of the given values. As the mean is the average of

the given values, while a mode is the frequency of occurrences of a given number.

Since we want to separate the upper half from the lower half, therefore we use the

median.

CT = median(C) (3.2)

BT = median(B) (3.3)

Where CT is the computation threshold and BT is the bandwidth threshold for

the module Mi in module set M . The input modules may be compute-intensive,

bandwidth-intensive, or both the compute and bandwidth-intensive. In order to

address either of these three scenarios, this research defines a priority list Pri(M)

comprising of four different categories C1, C2, C3, and C4 w.r.t their computation

and bandwidth requirement. These categories are combined from C1 to C4 respec-

tively and make another list of application modules as Pri(M), the prioritized list

of modules.

Pri(M)

CRMi > CT&&BRMi > BT → C1

CRMi < CT&&BRMi > BT → C2

CRMi < CT&&BRMi < BT → C3

CRMi > CT&&BRMi < BT → C4

where i = 1 to n

(3.4)

The compute-intensive modules from Pri(M) are assigned to the available heavy/pow-

erful fog devices. After these modules have been assigned, the next assignment is

for the modules with less compute but bandwidth intensive as in C2, the remaining

modules in the priority list.

These modules are mapped to the fog devices as moving such modules to the

Cloud consumes the bandwidth of the network with time delay for the output

increases the execution time of the application. After the successful mapping of

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 61

these modules, the next assignment is for the C3 the modules with less compute-

intensive and less bandwidth-intensive. These modules are mapped to the available

fog devices; however, in case, all fog devices are full and cannot accommodate more

modules, then the modules will be assigned to the Cloud.

After the selection of modules from Pri(M) we have two different scenarios for

assigning modules to the available fog devices. If the number of modules are less

than or equal to the number of fog devices, then the first module is given to the

first fog device and the second module is assigned to the second fog device and so

on until all modules are mapped to the available fog devices. The module mapping

for the scenario is represented in equation 3.5 given below.

M : Pri(Mi)→ FDj where i ≤ j (3.5)

In other scenario when number of modules are greater than the number of fog

devices, the module mapping for the prioritized list Pri(M) of modules is presented

in equation 3.6.

M : Pri(Mi)→ FDj where i ≥ j

if MI(Mi) ≤MIPS(FDj)
(3.6)

After each successful assignment of Mi to FDj, MIPS of FDj will be updated as

presented in equation 3.7 given below.

FDj∗ = MIPS(FDj)−MI(Mi) (3.7)

If the condition in equation 3.6 get fails (assignment unsuccessful), then the fog

device will be removed from the available list of fog devices F and the same is

repeated for the updated list of fog devices F∗ (equation 3.8).

F∗ = F \ FDj (3.8)

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 62

If the F∗ becomes empty and the Pri(M) still have unmapped modules, then all

the remaining modules will be assigned to the Cloud (equation 3.9).

Pri(M)→ Cloud (3.9)

To improve the execution time of the application modules with minimum band-

width and less monetary cost of using Cloud resources, we also considered the

execution time and finish time of the application modules mapped at the fog

layer. The modules are assigned to the fog devices on the basis of their arrival

in the Pri(M), the first module mapped to the first fog device available in the

list, the second module mapped to the second fog device, and so on. The module

mapping is shown in equation 3.10 as follows.

M : Pri(M)→ FDj where i = j (3.10)

After the successful mapping of modules from Pri(M) to FDj equal to the number

of fog devices, remaining modules from Pri(M) will be mapped as follows in

Equations (3.11) to (3.15). In equation 3.11 ET computes the execution time of

the ith module Mi on jth fog device FDj. The computed execution time is used in

equation 3.12 to find the execution time of all application modules placed at the

fog device FDj.

ET (Mi) =
MI(Mi)

MIPS(FDj)
(3.11)

X =
n∑

i=1

ET (Mi)→ FDj (3.12)

In equation 3.13 k is any arbitrary module from 1 to n which is going to be map

on any arbitrary fog device FDj where j varies from 1 to n.

Y = ET (Mk)→ FDj (3.13)

The estimated finish time of the kth module on jth fog device is the sum of the

execution time of all application modules placed on the jth fog device along with

the execution time of kth module going to be placed on the jth fog device. Equation

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 63

3.14 compute the estimated finish time of the kth module on jth fog device.

EFT (Mk) = X + Y (3.14)

After finding the EFT of the kth module on all the available fog devices the kth

module will be placed on the fog device, for which the kth module has the minimum

finish time as computed using the equation 3.15.

Mk → (min(EFT (FDj),Mk)) where 1 ≤ j ≥ n (3.15)

3.6 Application Model

On the basis of aforesaid scenarios and data-operations, we have deliberated the

application model given below for the experiments. Figure 3.4 shows the applica-

tion with different application modules. Each application comprises a number of

modules with bandwidth requirements and computation requirements.

Figure 3.4: Application Model

3.7 RACE System Architecture

RACE is based on the scheduling of application modules on the basis of their

computation and bandwidth requirements. RACE comprises of two sub schedulers

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 64

Module categorization and Module mapping. The system architecture of RACE

is depicted in Figure 3.5.

The first step is to sort the fog devices and application modules in ascending

order as per their computation power and computation requirements respectively.

The sorted list of application modules is passed to ModuleCat function. The

ModuleCat (shown in Figure 3.5) classifies the application components as per

their computational and data transfer needs and provides a ranked list of those

modules (PL).

The next step is to check the PL for the availability of application modules. If

PL is non-empty, then a list of fog devices LFd is checked for the availability of a

fog device Fi for module mapping. The modules are mapped to the selected fog

device Fi until its CPU capacity (i.e., remaining CPU capacity is greater than the

module computing requirement) is full. When the CPU capacity of Fi is full, Fi

is removed from the LFd. When LFd becomes empty and PL is not empty then

all remaining modules from PL are mapped to the Cloud.

R
esou

rce
A
w
are

C
ost-E

ffi
cien

t
S
chedu

ler
for

C
lou

d
F
og

E
n
viron

m
en

t
65

Figure 3.5: RACE System Architecture

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 66

3.8 RACE Algorithm

This section explains the proposed RACE algorithm (shown in Algorithm 1) with

its two primary modules i.e., Module Scheduler and Compare Module. List of

modules (LM) with module computation requirement in million instructions MI

is provided as an input to Algorithm 1 for mapping modules at fog devices. The

Algorithm 1 first sorts the LFd and LM in ascending order as per their compu-

tation power and computation requirement respectively (lines 2-3). The for loop

from line 3 to line 16 classify the modules into four categories i.e.,

(1) High computation High bandwidth

(2) Low computation High bandwidth

(3) Low Computation Low bandwidth

(4) High computation Low bandwidth

as per their computation requirement and bandwidth requirement. Line 17 con-

catenates these four categories and make the PL. The for loop from line 16 to

line 24 selects each Mi from PL and check the appropriate Fi for the placement

of Mi. The process of selecting Fi from LFd for the placement of Mi is elaborated

in Algorithm 2 and is explained below. LFd and Mi are provided as an input to

Algorithm 2. The while loop starts at line 2 and repeats until LFd becomes empty

or all modules have successfully mapped at fog devices. Line 3 checks if the LFd

is empty, it means all devices at the fog layer are full, and control moves back to

Algorithm 1. In case the fog devices are available at fog layer then loop from line 6

to line 15 verifies the availability of the Fi. At line 7 Fi is selected with minimum

execution time. After selecting the Fi at Line 7, the selected Fi is checked, if the

available Fi has enough CPU capacity to accommodate the incoming module, will

return to Algorithm 1. In case the selected Fi could not accommodate the module

(line 11), the selected Fi will be removed from the LFd and the same is repeated

for the new LFd. After the selection of Fi for the placement of Mi, line 20 in

Algorithm 1 updates the capacity of the selected fog device. If no appropriate

fog device is found for placement, then the remaining modules are mapped to the

Cloud (line 22 in Algorithm 1). In this way, the proposed strategy iterates from

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 67

Input: i) List of Fog devices LFd with their Processing Power (MIPS)

ii) List of Modules LM with their computation requirement CR and

bandwidth requirement (BR)

Output: modulemap[][]: Mapping of modules LM on LFd

MODULEMAP (List of Fog devices LFd, List of modules LM)

begin:

Sorting of Fog devices according to their computation power in ascending

order

Sorting of modules according to their computation requirement in ascending

order

Compute CT = Median of the CR of all modules in the list

Compute BT = Median of the BR of all modules in the list

for i = 0 to LM .size do

if LMiCR
> CT and LMiBR

> BT then
add LMi to category 1

end

else if LMiCR
< CT and LMiBR

> BT then
add LMi to category 2

end

else if LMiCR
< CT and LMiBR

< BT then
add LMi to category 3

end

else if LMiCR
> CT and LMiBR

< BT then
add LMi to category 4

end

end

Concatenate all categories to make Prioritized list (PL) of modules

for i = 0 to PL.size do
d = compare(LFd, PL[i]);

if d! = −1 then
Taskmap.insert(LFd[d], PL[i]);

update Cap(LFd[d]);

end

else
place all remaining task to cloud :

end

return modulemap;

end

end
Algorithm 1: ModuleScheduler

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 68

fog devices to the Cloud with maximum utilization of fog devices by assigning

priority to modules based on their computation requirement and bandwidth usage

improves the execution time with reducing cost and network usage.

Figure 3.6: One of the Network Topology used in Simulation [90]

3.9 Evaluation and Analysis of Results

To determine the efficacy of the proposed approach, iFogSim [90] simulates a fog

system. The CloudSim architecture [115] is the foundation of iFogSim, widely

used to model many computing environments [116, 117]. Table 3.2 shows the sim-

ulation parameters. Three distinct network topologies and workloads are used to

create this scenario’s variations. Figure 3.6 is a graphic representation of one of

these topologies, as produced by iFogSim. The workload is defined as the number

of applications with different modules for the placement at Cloud fog architec-

ture. The MI’s of application modules vary from the 50MI to 700MI as shown

in Table 3.2. The applications may be compute-intensive or bandwidth intensive.

For experiments we have the datasets of three different applications Application1

(A1) mixed (Compute bandwidth intensive), Application2 (A2) compute-intensive,

and Application3 (A3) bandwidth intensive. With these applications, we run the

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 69

Input: i) List of Fog devices (LFd with their Processing Power MIPS)

ii) Modules Mi from list of modules LM

Output: Selected Fog Device for mapping

COMPARE List of Fog devices LFd, PL(Mi)

begin:

while true do

if isEmpty(LFd) then
reurn -1

end

else

for i = 0 to LFd.size do
SFd[i]=device with minimum execution time

if SFd[i]cpu > PL(Mi) then
return i

end

else
remove SFd from LFd

end

LFd=updated LFd

if isEmpty(LFd) then
return -1

end

end

end

end

end
Algorithm 2: CompareModule

simulation for three different scenarios and analyze the performance of the RACE

algorithm in the context of execution time, bandwidth consumption, and cost for

each application.

Scenario 1: The bandwidth, cost and execution time of applications when placed

only at the Cloud.

Scenario 2: What will be the effect on execution time, bandwidth usage, and

cost when only fog devices are part of the simulation.

Scenario 3: Applications are placed in the Cloud fog environment, by placing

application modules from fog devices to the Cloud.

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 70

Table 3.2: Experimental Setup for the Simulation of RACE

Number of Applications = 3
Application Type Mixed(Compute +

Bandwidth Inten-
sive) (Application-1)

Compute Intensive
(Application-2)

Bandwidth Inten-
sive (Application-3)

No of Modules 10 15 15
MI in modules 20-200 40-500 100-900
No of Fog Devices 10
CPU(MIPS) of Fog
Devices

200-3000

CPU(MIPS) of
Cloud

42800

We make use of iFogSim [90], which is inspired from CloudSim [115]. The sug-

gested approach’s efficacy was evaluated with the use of this open-source frame-

work, which models and analyses the performance of Cloud fog environments and

services. The Intel Core i3-4030U Quad-core CPU (1.9 GHz clock speed) and two

gigabytes of main memory are used in this research for experimentation. Table 3.2

illustrates the configuration detail for the employed simulation environment. In

this work, we evaluate RACE’s efficacy in comparison to that of the classic Cloud

placement and Taneja. et al. [24].

3.10 Simulation Results

Execution time, bandwidth utilization, and the cost of Cloud resources are evalu-

ated between the suggested fog-Cloud placement strategy (RACE Scheduling Al-

gorithm) and the standard Cloud-based placement approach. Figures 3.7 to 3.15

show the simulation results, which show that the suggested placement technique

has a positive effect on execution time, bandwidth utilization, and cost across all

three network topologies.

The results of the simulation, Figures 3.7 to 3.15 show an immensely favorable im-

pact on the monetary cost when using Cloud resources, execution time and band-

width in the proposed positioning approach on all the three network topologies

used. Figure 3.7 depicts that in the case of Application-1 (A1), the RACE(CFP)

improves the execution time to 20%, 8%, and 3% compared to the traditional

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 71

Cloud placement or Cloud only placement (COP), the RACE(FOP), and the al-

gorithm proposed by Taneja. et al. [24], respectively. The RACE(FOP) and

Taneja. et al. [24] also improved the execution time of A1 to 12% and 17%,

respectively, compared with the COP strategy. It can be seen that for A1, the

RACE(CFP) outperforms in comparison with all three placement strategies.

Figure 3.7: Execution Time of Three Applications Under Network Topology
of 4 FDs

For Application-2 (A2), the compute-intensive application, although the execution

time of COP is comparatively less than RACE(FOP) because all the placements

are at the CLOUD, which has high processing resources but still the RACE(CFP)

improves the execution time to 12% and 20% as compared to the COP and

RACE(FOP) respectively. The RACE(CFP) also improves the execution time to

5% compared to the Taneja. et al. [24]. For Application-3 (A3), the bandwidth-

intensive application, the RACE(FOP), has better execution time than COP be-

cause the modules in A3 are less compute-intensive, and their placement at the fog

layer has little impact on their execution time while placing them in the Cloud.

In fog to cloud placement of modules, our proposed RACE(CFP) algorithm per-

formed better. The RACE(CFP) strategy improved the execution time by 15%,

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 72

12%, and 3%, respectively, compared to the COP, RACE(FOP), and Taneja. et

al. [24]. The RACE(FOP) and Taneja. et al. [24] also improved the execution

time to 15% and 26% respectively for A3 compared to the COP.

Figure 3.8: Bandwidth Consumption of Three Applications Under Network
Topology of 4 FDs

The results shown in Figure 3.7 concludes that the RACE(CFP) has better results

in execution time for all three applications in comparison to the COP, RACE(FOP)

and Taneja. et al. [24] The bandwidth consumption of the three applications when

using the network topology having four fog devices is shown in Figure 3.8. For A1,

the mixed application w.r.t computation and bandwidth requirement, the COP

have the maximum bandwidth consumption as all the modules are placed at the

Cloud layer causing maximum bandwidth utilization.

In the case of RACE(FOP), as all modules are placed at the fog layer, the very

one layer to the user, the bandwidth consumption reduces to 40% as compared

to the COP. The RACE(CFP) also reduces the bandwidth consumption to 38%

when compared with theCOP. Similarly, the Taneja. et al.[24] also improves the

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 73

bandwidth consumption to 34% compared to the COP. For A2, the compute-

intensive application, the COP has the maximum bandwidth consumption of 37%

as all the modules are placed at the Cloud layer.

Figure 3.9: Monetary Cost of Three Applications Under Network Topology
of 4 FDs

In the case of RACE(FOP), as the modules are placed only at the Fog layer

has only 9% of bandwidth consumption.The RACE(CFP) and the Taneja. et

al. [24] has a bandwidth consumption of 25% and 29%, respectively, as both

approaches use the Cloud resources and the Fog layer. For A3, the bandwidth-

intensive application, the COP has the maximum bandwidth consumption of 60%

as all the modules are placed at the Cloud layer. The RACE(CFP) strategy

improves the bandwidth consumption to almost 5% as compared to the Taneja.

et al. [24].

It can be seen that the overall performance of RACE(CFP) is better than all the

approaches except the RACE(FOP). The monetary cost of using Cloud resources

for the three applications is shown in Figure 3.9. It can be seen that RACE(FOP)

has a lower monetary cost than RACE(CFP), COP, and Taneja et al. [24] because

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 74

the RACE(FOP) approach uses all fog layer resources, which are less expensive

than cloud resources.

Figure 3.10: Execution Time of Three Applications Under Network Topology
of 8 FDs

For A1, when using the COP strategy, the monetary cost reaches 58%, whereas

the Taneja. et al.[24], and RACE(CFP) reduces the cost to 25% and 16%, re-

spectively. Similarly, for A2, the COP has the maximum cost of 38% compared

with the Taneja. et al.[24], which reduces the cost to 34%. The RACE(CFP) has

better results by reducing the cost to the 28%. For A3, the bandwidth intensive

application the COP has a cost of 52%, which reduces to 28% by Taneja. et al.[24].

For the RACE(CFP), as the application modules are placed from fog to the Cloud

by considering their intensity, the approach reduces the cost to 19%. It can be seen

in Figure 3.9 that although RACE(FOP) has less cost for all three applications,

the RACE(CFP) also reduces the cost than COP and Taneja. et al.[24] when

considering the Cloud fog layer for scheduling application modules in a Cloud

fog environment. Figure 3.10 depicts the execution time of the three applications

when using the eight fog devices. It can be seen that the execution time of A1

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 75

reduces by the three approaches, i.e., RACE(CFP), RACE(FOP), and Taneja.et

al.[24]

Figure 3.11: Bandwidth Consumption of Three Applications Under Network
Topology of 8 FDs

because increasing the number of fog devices ensures that maximum modules can

be accommodated at the fog layer. For the execution time of A1 the RACE(CFP)

and RACE(FOP) have almost the same results. However, the execution time

improves from the COP and Taneja. et al.[24] by 5% and 48%, respectively.

For A2, the compute-intensive applications the RACE(CFP) improves the execu-

tion time by 43% from COP, 18% from RACE(FOP) and 11% from Taneja. et

al.[24]. It can be seen that an increase in the number of fog devices affects the

execution time for all approaches. However, our scheduling policy has overall good

performance from COP, RACE(FOP), and Taneja. et al.[24].

Similarly, the increase in the number of fog devices also affects the execution time of

A3, as seen in Figure 3.10. TheRACE(CFP) improves the execution time by 41%,

9% and 6% from COP, RACE(FOP) and Taneja.et al.[24] respectively. Figure 3.11

presents the bandwidth consumption for three applications with network topology

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 76

of eight fog devices. It can be found in the figure that in the case of COP, the

bandwidth consumption for all three applications is higher as all the modules

are placed in the Cloud, which increases the bandwidth consumption. For A1,

RACE(FOP) improves the bandwidth by 45% and 3% compared to COP and

Taneja. et al.[24].

Figure 3.12: Monetary Cost of Three Applications Under Network Topology
of 8 FDs

For A2 the RACE(CFP) improves the bandwidth consumption by 35% and 3% in

comparison to the COP and Taneja. et al.[24]. Compared to the RACE(CFP), the

RACE(FOP) has 4% better results because all modules are placed at the fog layer.

For A3, the bandwidth-intensive application the RACE(FOP) has less bandwidth

consumption from all three approaches i.e., RACE(CFP), COP and Taneja. et al.

[24]. The RACE(CFP) has consumed 37% and 3% less bandwidth as compared

to COP and Taneja. et al.[24]. Figure 3.12 presents the monetary cost of using

Cloud resources for the three different applications, i.e., A1, A2, and A3 having

the network topology of eight fog devices.

The figure shows that RACE(FOP) performs well for A1, A2, and A3 as all modules

are placed at the fog layer, decreasing the Cloud resources cost. For A1, the

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 77

RACE(CFP) has better performance with less monetary cost of 63% and 4% as

compared to the COP and Taneja.et al.[24]. Similarly, it can be seen in Figure 3.12

that the RACE(CFP) has 15% and 4% less monetary cost for A2 when compared

with the COP and Taneja.et al.[24]. For A3 the RACE(CFP) also has 33% and

23% less monetary cost from the RACE(CFP) and Taneja.et al.[24].

Figure 3.13: Execution Time of Three Applications Under Network Topology
of 10 FDs

Figures 3.13 to 3.15 display the simulation results of execution time, bandwidth

consumed, and the Cloud resources cost for three applications A1, A2, A3, while us-

ing the network topology of ten fog devices. The favorable impact of RACE(CFP)

can be seen in the execution time of three applications in Figure 3.13. As the

number of fog devices increases, the execution times of all three applications im-

proved. For A1 the RACE(CFP) reduces the execution time to 1%, 3% and 52%

respectively as compared to the RACE(FOP), COP, and Taneja. et al.[24].

As the RACE(CFP) uses both the fog and the Cloud layer for processing the exe-

cution time for A2, improves with 12%, 5%, and 46% respectively when compared

with the RACE(FOP), COP, and Taneja. et al.[24]. The same improvement can

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 78

be seen with A3, the RACE(CFP) reduces the execution time with 5%, 2%, and

49% respectively in comparison to the RACE(FOP), COP, and Taneja. et al.[24].

Figure 3.14: Bandwidth Consumption of Three Applications Under Network
Topology of 10 FDs

Figure 3.14 shows the bandwidth consumption of three applications when using

the network topology of ten fog devices. For A1 the bandwidth consumption

when using the COP is higher as 61% because all modules are placed at the

CLOUD. The RACE(FOP) has better performance than the COP and Taneja.

et al.[24] with 15% bandwidth consumption improving 46% and 2%, respectively.

For A2, the RACE(CFP) consumes only 3% more bandwidth as compared to the

RACE(FOP); however, it improves the bandwidth consumption as 2% and 37%

from COP and Taneja. et al.[24]. The same results can be seen for A3 for which

the RACE(CFP) and RACE(FOP) have almost the same bandwidth consumption

with an improvement of 41% and 2% from COP and Taneja. et al.[24].

The graph in Figure 3.15 displays the monetary cost of using Cloud resources. It

can be observed in the Figure 3.15 that the RACE(FOP) has better results for all

three applications because all modules are placed at the fog layer, which reduces

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 79

the overall cost. For A1 the RACE(CFP) reduces the cost to 51% and 9% from

COP and Taneja. et al.[24].

Figure 3.15: Monetary Cost of Three Applications Under Network Topology
of 10 FDs

For A2 the same improvement can be seen with RACE(CFP) as 34% and 6%

less cost as compared to the COP and Taneja. et al.[24]. For A3, the bandwidth-

intensive application, the RACE(CFP) has almost the same results as RACE(FOP)

due to increase in the number of fog devices. The RACE(CFP) improves the mon-

etary cost by 23% and 73% from the COP and Taneja. et al.[24].

3.11 Conclusions

Fog computing has great potential to aid several IoT applications. In this re-

search, we introduced a Resource Aware Scheduler to optimize the deployment of

application components across a three-tier Fog Cloud infrastructure. The simula-

tion results by using the iFogSim simulator show that the proposed algorithm has

better results from Taneja. et al. [24] and the traditional Cloud placement for the

Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment 80

bandwidth usage, execution time, and the monetary cost performance. Incoming

applications and their associated modules characterize the workload. We have put

the RACE algorithm through its paces using three distinct approaches: placing

workload in the Cloud, in the fog layer, and from the fog layer into the Cloud.

Whether measured by execution time, bandwidth, or cost, the RACE(CFP) per-

forms well across the board. The RACE(FOP) performs better with higher num-

bers of fog devices in some cases. Still, in general, the RACE(CFP) has a better

execution time, bandwidth consumption, and monetary cost performance.

Chapter 4

Genetic Algorithm based

Improved Resource-Aware Cost

Efficient Scheduler for Fog

Environment

4.1 Introduction

The IoT is the networked interconnection of everyday items, including comput-

ers, farms, industries, and vehicles [118–120]. The IoT has made everyday items

”smart” or capable of sensing, processing, and communicating efficiently via a

network to carry out essential activities independently of human intervention

[121, 122]. With the rapid development of IoT, the number of devices connecting

to the network is rapidly increasing. According to a report from D. Manyika et

al. [123], by 2025, the IoT is expected to have a theoretical impact of 11 tril-

lion per year, reflecting 11 percent of the global economy. According to a press

release in 2015 [103], 13.4 billion connected devices to the internet already out-

numbered humans on the earth. A new study from Juniper Research predicts 38.5

billion connected IoT devices by 2020, a 285% increase from 2015 [3], which is

81

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 82

a staggering figure. In Cisco’s annual internet report, the number of devices and

connections connected to the internet is expected to increase from 18.4 billion in

2018 to 30 billion by 2023 [124].

As IoT devices grow, a massive amount of data will generate, also known as

Big data. Several data centers have been configured as a Cloud to accommodate

the enormous amount of Big data generated by IoT devices. In the tradition of

Cloud Computing, data service subscribers are projected to be able to benefit from

efficient and flexible services [4]. There are two main actors in traditional Cloud

computing, i.e., Cloud Service Providers (CSP) and Cloud users or customers

[125]. Users lease the CSP’s resources on a pay-per-use basis. The CSP acquires

Cloud resources, such as storage, processing, and so on, and make those resources

available to Cloud users [126]. Customer tasks are received by the Cloud task

manager in the form of cloudlets and are passed to the task scheduler [21].

These traditional Clouds are expected to provide data service subscribers with

flexible and efficient Cloud computing [4]. The transferring of data between the

end-user and the Cloud requires high bandwidth for processing, causing delays

[106]. Moreover, if some geo-spatially distributed and time-sensitive applications,

such as smart healthcare monitoring, virtual reality, smart traffic surveillance, etc.

send their requests for processing to the remote Cloud, may impact the quality

of service due to the delay caused by the resource bottlenecks and the bandwidth

constraints [58, 127, 128]. Many approaches such as Mobile computing, Edge

computing, and Fog computing have been proposed to overcome this limitation

by bringing computation and storage services closer to the end-user application

[32, 42]. Recently, Fog computing has received the most attention among the

various proposed approaches.

Fog computing is a new concept introduced by CISCO [6]. It is an extension of

Cloud computing which provides the services like storage and processing to the

IoT users at the edge of the network to reduce network congestion and latency [90].

In contrast to specialized computing facilities such as data centers, Fog computing

uses a vast number of locally distributed fog servers, which can be smartphones,

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 83

intelligent gateways, switches, routers, access points, and cellular base stations

with limited aptitudes in terms of storage, and processing power [23, 25, 129].

The Sense Process Actuate Model (SPAM) is commonly used in Fog computing

to detect and collect data through sensors and then send the collected data to fog

devices for processing. Fog nodes can send data from the fog layer to the Cloud,

where it is stored and processed for long-term analytic. The data transferred

from the fog layer to the Cloud for processing reduces the task’s execution time,

but it may increase the bandwidth and the monetary cost when using the Cloud

resources [21].

Nonetheless, real-time applications need a quicker reaction time than delay-tolerant

ones. As a result, these applications must compete for limited resources. One of

the biggest struggles of Fog computing is managing the limited resources and time

sensitive applications [130]. When jobs are scheduled efficiently, they can produce

timely and accurate responses, which are important for any smart application. A

patient’s medical status, for instance, must be reported quickly in a smart health-

care system if the patient is to have any chance of survival.

Similarly, in an innovative home application, the security surveillance applica-

tion must report immediately if any suspicious activity happens [128]. Therefore,

some efficient job scheduling algorithm is needed to make optimal use of these

resource-constrained and heterogeneous fog devices [88]. In this work, we propose

a GA-based optimized policy for placing application modules in a Cloud fog envi-

ronment, which minimizes the execution time of applications with optimized usage

of bandwidth and the application’s monetary cost. The contributions of the paper

are summarized as follows:

An optimized scheduling technique is proposed for mapping application modules

in a Cloud Fog computing environment. The proposed solution is leveraged by

a genetic algorithm to evolve the solution using the applications’ execution time.

Initially, the proposed approach takes into account application and fog device

properties to encode the chromosome-based representation of the problem. Then,

genetic algorithm-based mutation and crossover operators are employed to evolve

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 84

the solutions using multiple variations of the parameters. The evolved solution has

been utilized to schedule the application modules, using the iFogSim simulator to

validate the results. Experimental results are also compared with baseline and

state-of-the-art algorithms for three application corpus.

4.2 Architectural Model

Fog computing is a new computing paradigm that enables storage, processing,

and communication at the edge of the network. Fog computing can use Cloud

data-centers to process and store large-scale applications [6, 131, 132].

Figure 4.1 shows the fog architecture, in collaboration with end-users and Cloud,

developing a three-layer hierarchical, bi-directional design [108]. In the Cloud fog

architecture, the top layer is made up of the Cloud layer, with fog devices acting as

an intermediate layer in the middle. The bottom-most layer or end layer comprises

end-users with sensors or actuators.

Figure 4.1: The Three Layer Architecture of Cloud Fog Computing Environ-
ment

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 85

4.2.1 End Devices/End Layer/User Layer

The user layer is the closest to the end-user, with many heterogeneous and mobile

devices. These devices consist of IoT devices like sensors (temperature sensors,

heartbeat sensors, GPS sensors, etc.), smart cards, mobile phones, cameras, con-

nected cars, and laptops. Data from these external devices is converted into signals

and sent to fog nodes for processing. End devices are frequently battery-powered

and relatively restricted in CPU and memory, resulting in limited battery life. End

devices often generate data that must be processed and stored elsewhere because

the end device’s processing or storage capacity is insufficient. In some cases, end

devices require data from a different source. As a result, end devices are frequently

connected to a network. However, uninterrupted connectivity may not always be

possible.

4.2.2 Fog Layer

The computational resources present at the fog layer near the network’s edge

are referred to as fog nodes. Usually, the fog layer is made up of devices like

routers/switches, proxy servers and cellular base stations that are incapable of

doing extensive computations or storing large amounts of data. Fog devices may

be resource-poor in memory and computation power like access points and routers

[110], or they can be resource-rich like cloudlets [23]. Existing network equipment,

such as gateways, routers, and switches, can operate as fog nodes if they have

adequate free resources.

4.2.3 Cloud Layer

The Cloud layer is the topmost layer of the Cloud fog architecture with multiple

high-speed servers having massive storage capacity, which provides various appli-

cation and storage services, as shown in Figure 4.1. The Cloud layer of the Cloud

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 86

fog environment resources is used for applications that need a lot of processing

power and storage space.

Figure 4.2: Example on Scheduling of Application Modules in Cloud Fog
Environment

4.3 Scheduling in Fog Computing

Scheduling refers to arranging application modules onto computing resources for

better utilization of resources such as CPU, memory, bandwidth, etc. Application

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 87

modules may be scheduled everywhere, from the fog to the Cloud, owing to the

design of the Fog computing environment according to module requirements with

the following combinations [85, 86, 133]

Figure 4.2 shows an example of a scheduling problem in the fog environment.

We consider five users (U1, U2, U3, U4, and U5) at the user layer who want to

execute their applications at the fog layer. Each user has two applications, either

A1 or A2, comprising three modules (M1, M2, and M3). Based on the defined

scheduling policies, the scheduler decides the mapping of modules in the Cloud

fog environment. As shown in Figure 4.2, modules M1, M2 of A1 for U1 and M3

of A1 and M1 of A2 for U2 are selected for execution at the fog layer, while M2 of

A1 for U1 and M3 of A1 for U2 are mapped at the Cloud layer for execution.

Similarly a fog device in the range of U3 has successfully mapped all application

modules (M1, M2, and M3). For U4 and U5, modules M2 of A1, M3 of A1 for U4

and M1, M3 of A2 for U5 are mapped at fog layer while M1 of A1 for U4 and M2

of A2 for U5 are placed at Cloud. The abbreviations used in the paper are listed

in Table 4.1. The rest of the chapter is organized as follows:

The problem formulation is described in section 4.4. The design and implemen-

tation of the problem are covered in section 4.5. Section 4.6 discusses simulation

results, and section 4.7 concludes the chapter with future work.

1. The modules are offloaded from end devices to the fog and Cloud layers when

all three layers are involved according to the modules’ requirements.

2. Only the fog layer is involved by offloading the modules from end devices to

the fog nodes.

4.4 Problem Formulation

Fog computing is the concept of utilizing fog node services for end devices that

help them to overcome capacity constraints. When the device’s generated data

exceeds its capacity, it can connect to a fog node, pass data to the fog node, and

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 88

Table 4.1: GA-IRACE System Preliminary Notations

Notations Descriptions

GA-IRACE Improved Resource Aware Cost-Efficient Scheduler with Genetic Algorithm

MI Million of Instruction

MIPS Million of Instruction per second

M List of Modules

F List of Fog Devices

IOT Internet of Things

CT Computation Threshold

BT Bandwidth Threshold

CR Computation Requirement

BR Bandwidth Requirement

CP Computation Power

ST Start Time

EFT Estimated Finish Time

offload data to the fog node for processing. Since the network transfers between

the fog node and the end devices have minimal latency and the fog node’s have the

relatively high processing power, it allows the entire process to be quick, enabling

real-time interactions.

However, the offloading of tasks from the fog to the Cloud layer and the efficient

scheduling at the fog layer becomes critical for latency-sensitive applications like

traffic control, augmented reality and gaming. In case when all the application

modules are accommodated at the fog layer, it may reduce the monetary cost

and bandwidth of the application modules. Still, it may increase the application’s

execution time due to the limited power of the fog devices not being affordable

for the time-sensitive applications. On the other hand, when data is transferred

from the fog to the Cloud layer for processing, it may reduce the task’s execution

time, increasing the bandwidth and the monetary cost for applications [21, 134].

Therefore we are essentially concerned with formulating the goal of scheduling

in a cloud fog environment that can reduce the application execution time while

optimizing the bandwidth and monetary cost.

The entire set of resources consists of fog devices (FDs) and Cloud resources

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 89

(CLOUD). The CPU, RAM, and Bandwidth of a node in a network are standard

metrics used to characterize its resource capability. Modules (Mi) of applications

may differ in terms of their computational and bandwidth requirements, depending

on how they perform computations and use bandwidth [30, 90, 113, 114]. There-

fore, if Mi represents the application module with its computation requirement as

CR and bandwidth requirement as BR then it can be represented as follows:

Let M = {M1, M2, M3 Mn} be the set of modules of user input jobs with

their computation and bandwidth requirement as follows:

Let C = {CRM1, CRM2, CRM3 CRMn} be the computation requirement

of each module in module set M.

Let B = {BRM1, BRM2, BRM3 BRMn} be the bandwidth requirement of

each module in module set M.

Let F = {FD1, FD2, FD3 FDn} be the list of fog devices.

CT = median(C) (4.1)

BT = median(B) (4.2)

The computation threshold CT and bandwidth threshold BT are represented in

equations 4.1 and 4.2.

∀Mi

∃Mi ∈M

CRMi > CT

BRMi > BT

 =⇒Mi → Cloud (4.3)

Alternatively: Mi →M∗

Because the modules may be computationally or bandwidth-intensive, we begin

our module mapping by categorizing them, as shown in equation 4.3. The modules

with more extensive computation requirements than the computation threshold

are directly sent towards the Cloud for required operation, whereas the remaining

modules are stored in the list M∗ for optimized scheduling. Equation 4.4 shows

the actual start time of the module Mi on the fog device FDj.

In equation 4.4 STi,j shows the start time of the module. The modules executed

before Mi on the fog device FDj are denoted by pred(Mi) .The module Mi cannot

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 90

start its execution until its predecessor completes its execution. If more than one

module needs to be executed simultaneously on same device i.e., FDj we select

a task according to the order in which modules are scheduled. The execution

time of the module Mi on the scheduled fog device can be calculated as shown in

equation 4.5.

STi,j =

0; pred(Mi) = 0

max

k ∈ pred(Mi)

{
ETj,k(k → j)

}
if(pred(Mi) ̸= 0)

(4.4)

ET(i,j) =
MI(Mi)

MIPS(FDj)
, ∀Mi ∈M,

∀ FDj ∈ F

(4.5)

The estimated finish time EFT of a module Mi scheduled on a fog device FDj

can be calculated in equation 4.6.

EFTi,j = STi,j + ETi,j (4.6)

Let Pn be the processing node, either fog or the Cloud, where the modules are

scheduled for processing. The cost Cost(Mi,Pn) is the monetary cost of executing

the application modules Mi when scheduled on Pn is computed as shown in the

following equation 4.7.

Cost(Mi, Pn) =

Cp(Mi, Pn) + Cs(Mi, Pn) + Ccm(Mi, Pn)+∑
Pn∈Ncloud

Ccm(Mi, Pn) if(Pn ∈ Ncloud)

otherwise∑
Pn∈Nfog

Ccm(Mi, Pn) if(Pn ∈ Nfog)

(4.7)

The processing cost in equation 4.7 is calculated as:

CpMi, Pn) = c1 ∗ Ti; Ti = A(Mi, Pn) (4.8)

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 91

Table 4.2: GA-IRACE Parameter Setting

Parameters Values

Number of population 100

Population Size 50

Reproduction Operator Crossover and Mutation

Crossover type Single point

Mutation rate 1%, 3%, 5%

Stopping criteria 100 iterations

Where c1is the processing cost per time unit of the application module on the node

Pn. The communication cost for sending outgoing data from the Cloud node Pn

can be calculated using equation 4.9 in which c2 shows the price per unit of data.

Ccm(Mi, Pn) = c2 ∗

(
Mj∈pred(Mi)∑
Mi∈Ex(Pn)

Ci

)
(4.9)

The overall cost of an application can be computed as given below in the following

equation 4.10:

Cost(A) =
n∑

i=1

C(Mi) (4.10)

Similarly, the bandwidth requirement will also be the sum of all the application

modules placed on Cloud and fog devices and is computed as shown in the following

equation 4.11.

BW (A) =

Pk ∗BRMi

, if(Mi → cloud)

BRMi
, if(Mi → fog)

∀(Mi, Pn) ∈ A

(4.11)

4.5 Design and Implementation

The Genetic Algorithm (GA) was created by Holland in 1975 [135] based on the

theory of natural selection, according to which the fittest individuals are chosen

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 92

to reproduce the next generation. The GAs begins with a primary population of

chromosomes. A new population is formed in each generation using genetic oper-

ators such as mutation, crossover, and selection. The mutation operator searches

the entire search space to recover lost genetic information and maintain population

diversity. The crossover is the process of selecting two individuals and producing

a new child from them.

The crossover operator’s main task is to collect and combine both parents’ positive

characteristics to make more suitable offspring. In evolutionary algorithms, the

selection operator is analogous to natural selection, which results in the survival

of the fittest individuals. During evolution, the best solutions’ genetic information

has a higher chance of being passed down to future generations through reproduc-

tion.The main goal of the selection operators is to survive the fittest individuals

by increasing the number of appropriate solutions in the next generation’s popu-

lation. It increases the chances of choosing the best current-generation solutions

as parents and producing offspring. As a result, a new population emerges, es-

tablishing the next generation. The process is repeated until all of the specified

stopping criteria have been met.

The basic flow of the Genetic Algorithm for our proposed scheduling model is

shown in Figure 4.3. The scheduling is based on the computation and bandwidth

requirements of application modules. After finding the threshold for application

modules w.r.t the compute and bandwidth intensity, the more dense modules are

sent directly to the Cloud for processing. The remaining application modules are

sent to the GA for the optimized placement over the fog layer. In the next step,

the parameters are initialed as the number of populations and the chromosomes

in each population. We have used populations from 50 to 100 for our experiments,

each having 50 chromosomes. The parameter setting is defined in the Table 4.2.

For the initial population, we have used random numbers.

The fitness function is applied to the initial population to find the best chromo-

somes for the next population. After applying the fitness function on the randomly

generated initial population, the fitness value is checked in the next phase to select

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 93

the best chromosomes. We used the 20% ratio to choose the best chromosomes

from the initial population to become part of the new population. The remaining

chromosomes are sent to the next phase to apply crossover and mutation operator,

as shown in Figure 4.3 (selection of chromosomes for the new population). The

20 selected best chromosomes from the initial population, and the remaining 80

chromosomes after applying crossover and mutation create the new population.

The process is repeated until found the converged solution.

Algorithm 3 describes the main scheduling algorithm. After finding the threshold

at lines 2 and 3, the application modules with more than computation and band-

width threshold are directly passed to the Cloud for the processing from lines 4 to

7. The remaining modules are then passed to the genetic algorithm to define the

optimized scheduling policy lines 9 to 12.

The performance of meta-heuristics is greatly influenced by the initial solutions.

i.e., if the GA starts with a good initial population, it will almost certainly result in

better final solutions. The diversity of an algorithm loses when a rule generates all

the initial solutions as the produced solutions may be close to a particular solution

space. In literature, most initial populations are randomly generated; therefore,

we also decided to start the initial population randomly.

Algorithm 4 describes the main genetic algorithm for our proposed approach. For

the initial population, we have the number of application modules from M1 to

Mn that need to be scheduled and the number of fog devices from F1 to Fn as

the resources for the application modules. The random numbers are generated

according to the size of the number of application modules. For example, if we

have four applications that need to be scheduled as A1, A2, A3, and A4 with

modules as 14, 50, 30, and 20, respectively, the total number of modules that need

to be scheduled is 114.

Hence we generate the 114 unique random numbers. In step 2, the initial popu-

lation is generated at random based on chromosome encoding. These produced

random numbers are assigned to each application module as their placement or-

der in the scheduling scheme on the available fog devices, as shown in Figure 4.4.

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 94

Figure 4.3: Flowchart of GA-IRACE

Step 3 to 5 computes the fitness value for each individual in the initial population.

After finding the fitness, steps 6-25 conduct the evolution’s iteratively.

We have selected the best 10% of individual for the next population from step

6 to 19. Steps 22 to 25 determine the individuals for crossover, mutation, and

chromosome modificationbased on their fitness value.

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 95

Input: i)List of Modules (LM) with their computation requirement (CR)

and bandwidth requirement (BR)

ii) List of Fog devices (LFd) with their Processing Power (MIPS)

Output: modulemap[][]: Mapping of modules LM on LFd

MODULEMAP (LM , LFd)

begin:

Find Computation Threshold (CT) for CR

Find Bandwidth Threshold (BT) for BR

for i = 0 to LM.size do

if LMi(CPU) > CT and LMi(network) > BT then
MAP (LM → CLOUD)

end

else
LM(R) ← LMi

end

end

modulemap[][] = RACE-GA (LM(R), LFd)

return modulemap

end
Algorithm 3: GA-IRACE Scheduler

4.5.1 Chromosome Encoding

The first step in implementing GA is to create a chromosome-like scheme for the

problem information. In our scheduling problem, we have to reduce the execution

time while optimizing the monetary cost and the use of network bandwidth. The

entire set of resources consists of fog devices (FDs) and Cloud resources (CLOUD).

The Bandwidth, RAM, and CPU often describe a network node’s resource capac-

ity. Similarly, the AiMi application modules may be intensive w.r.t computation

and bandwidth, depending on their specific needs [30, 90, 113, 114].

A two-dimensional matrix represents each application module and each fog device.

As can be seen in Figure 4.4, modules are allocated to resources in rows, with each

column representing a different resource type. The assignments of modules are

under the scheme generated through random numbers. One random number gen-

erated is associated with one application module showing the application module’s

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 96

Input: i) List of Modules (LM) with their computation requirement (CR)

and bandwidth requirement (BR)

ii) List of Fog devices (LFd) with their Processing Power (MIPS)

iii) Size of population (P)

iv) Maximum Generation (Maxg)

Output: modulemap[][]: Mapping of modules LM on LFd

RACE-GA (LM , LFd, P , Maxg)

begin:

POP = InitialPopulation (LM , LFd, P)

for each Chromosomes in POP do
Calculate fitness

end

for generation = 1 to Maxg do
new Elite fitness = Calculate F itness (POP, P)

if (elite fitness()> new elite.fitness()) then
Elite POP = Elite ind

end

else
new POP = Elite ind

end

for i = 1 to Elite POP do
POP.insert(Elite POP)

end

for j = 1 to new POP do
POP.insert(new POP)

end

Elite POP = Top 10%ofPOP

New POP = POP – Elite POP

Parents = Selection (New POP, P)

Children = Crossover (Parents, P)

Mutated POP = Mutation (Children, P)

POP = Mutated POP + Elite POP
end

return Elite POP

end
Algorithm 4: GA-IRACE

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 97

position under the resource. e.g., the application module having random number 1

will be assigned first. Similarly, the module associated with random number 2 will

be given to the next resource and in a similar fashion; all the modules are set to

the available resources according to the assigned random numbers. One complete

assignment of application modules to the fog devices according to the produced

random numbers shows the completion of one chromosome as illustrated in Figure

4.4.

Figure 4.4: Chromosome Creation

4.5.2 Parent Selection Strategy

A parent selection is a method of selecting the chromosomes for crossing from

among the current population. In our scenario, the fitness value for all the chro-

mosomes in the population is calculated after the initial population is created

by randomly assigning resources to application modules, as shown in Figure 4.3.

Based on the calculated fitness value, the top 10 chromosomes are selected for the

following population, while the remaining chromosomes are forwarded to the next

phase as parents for the process of crossover and mutation.

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 98

Figure 4.5: Crossover Operation

4.5.3 Fitness Function

In the evolutionary algorithm, the fitness function determines the quality of the

solution during the evolution process. In this study, the fitness of a schedule is

related to minimizing the application’s execution time, as shown in Equation 4.6.

The fitness function is shown in the following equation 4.12 given below.

Fitness =
n∑

i=1

EFT (Mi), ∀(Mi ∈ A) (4.12)

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 99

Where Mi show the application modules to be scheduled on the available fog

devices. The EFT in equation 4.12 shows the estimated finish time of the appli-

cation module and is computed using equation 4.6. The main objective of this

optimization is to minimize the fitness value.

4.5.4 Crossover Operator

By swapping the information contained in the existing parents, the crossover oper-

ator is aimed at developing more compatible chromosomes, also known as offspring.

In our case, we have the chromosome comprising of the application modules and

their placement on the available resources. In chromosome arrangements, we have

two options for the crossover operation.

1. Replace the fog resources of parent-1 (P1) with the fog resources of parent-2

(P2) without changing the sequence of application modules.

2. Arrange the application modules and resources in the chromosome in a 2D

array format so that application modules are placed column-wise. Each

subsequent row shows the assignment of fog devices for these application

modules.

We have selected option 2 for our crossover method in which each row shows one

chromosome, as shown in Figure 4.5. With crossover points CP1 and CP2, the

two chromosomes are designated as parent-1 (P1) and parent-2 (P2). The cross

points are selected as the central point of the P1 and P2. All the genes between

CP1 from P1 are copied at CP2 of P2. Similarly, the genes from CP2 of P2 are

copied to the CP1 of P1. The two new chromosomes, each carrying some genetic

information from both parents, are created and are added to the new population.

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 100

Input: i) Two parent individual′s C1, C2

ii) Fog Device configuration, FDC

Output: new C1 , new C2

Crossover(C1;C2)

begin:

r1 = length(C1)/2

r2 = length(C2)

for i = r1 to r2 do
V1 = C1.Module[i]

new C1 ← V1

new C1 ← FDC[V1]

V2 = C2.Module[i]

new C1 ← FDC[V2]

end

for j = 1 to r1 do
V3 = C2.Module[j]

new C2 ← V3

new C2 ← FDC[V3]

V4 ← C1.Module[j]

new C2 ← FDC[V4]

end

return new C1

return new C2

end
Algorithm 5: Crossover

Figure 4.6: Mutation Operation

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 101

The process is repeated to create new chromosomes of the subsequent population.

Algorithm 5 describes the crossover operation for our proposed methodology in

which, at step 1, the two chromosomes are passed to the algorithm for crossover

operation.

Input: i)Chromosome C1

ii)Mutation rate Mr

Output: Mutated C1, M C1

Mutation (C1,Mr)

begin:

length = C1.size()

for i= 1 to length do
Value = random ()

if (Mr ≤ V alue) then
M C1 ←C1.Module[i]

M C1 ← FDC[Mi]

end

end

return M C1

end
Algorithm 6: Mutation

We have used the one-point crossover method in which the central point is desig-

nated as ’crossover point’ at line 2. From lines 4 to 7, the genes to the left of the

crossover point of C1 are copied to the new chromosome new C1 along with the

resource configuration i.e., the allocated fog devices for processing. Similarly from

lines 9 to 13 the genes to the right of the crossover point, as well as the resource

configuration, i.e., the assigned fog devices for processing, are copied to the new

chromosome new C1.

4.5.5 Mutation

As a genetic operator, mutation provides genetic diversity in a population of ge-

netic algorithm chromosomes from generation to generation. We have used the

single-point mutation method, one of the common methods for implementing the

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 102

mutation operator. Algorithm 6 shows the mutation method for our proposed

approach in which, at line 4, the random numbers are generated for each gene in

the chromosome.

Figure 4.7: Example of Network Topology used in the Simulation [90]

In line 5 the generated random number is checked with the defined mutation rate.

From line 6-8 the chromosomes are mutated if the generated random number and

the mutation rate match with each other. Figure 4.6 also reflects the mutation

process in which the random number generated for g2 in c1 is selected for swapping

with g4 in c1. Similarly the following gene selected for swapping is A1M2 and A1M4.

The process is repeated for all genes in each chromosome.

4.6 Simulation and Result Discussion

For experiments, we have used the system with an Intel Core i7-8550U Quad-core

processor (clocked at 1.9 GHz) and 8 GB of main memory. The GA is implemented

in C# to generate the optimized scheduling policy for the application modules.

The scheduled policy obtained from GA is then passed to the fog system simulated

in iFogSim [90].

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 103

To ensure that our suggested strategy is effective, we have modeled and analyzed

the Cloud fog ecosystem using the open-source iFogSim framework. Table 4.3

outlines the simulation environment settings for our experiments. The population

size used for the genetic algorithm was 100, with chromosome size remaining 50

in each population. Similarly, the crossover rate was set to 5% with the mutation

rate of 3% [136], as shown in Table 4.2.

To verify the performance of GA-IRACE, we have used three different scenarios

with network topologies of 4, 8, and 10 in a Cloud Fog computing environment.

Figure 4.7 shows a graphical representation of one of these topologies generated

using iFogSim. We have used the workload of three different applications A1, A2,

and A3, with varying scales as bandwidth-intensive, compute-intensive and mixed

(bandwidth and compute-intensive). The number of modules in the application

varies from 70 to 100, with MI’s of the module ranges from 100 to 900MI as shown

in Table 4.3.

Table 4.3: GA-IRACE Simulation Setup

Application Type Compute Intensive
(Application-1)

Compute Intensive
(Application-2)

Mixed (Compute +
Bandwidth Inten-
sive) (Application-
3)

No of Modules 70 80 100
MI in modules 100-900 20-200 40-500
No of Fog Devices 4,8,10
CPU(MIPS) of Fog
Devices

200-3000

CPU(MIPS) of Cloud 42800

4.6.1 Discussion of Experimental Results

In the experiments, the proposed scheduling algorithm GA-IRACE was com-

pared with the traditional Cloud placement, also called conventional Cloud place-

ment (CCP), random solution, RACE [21] and the other baseline algorithms, i.e.,

Taneja. et al. [24] regarding bandwidth consumption, execution time, and the

Cloud resources cost. The simulation findings Figures 4.8 to 4.16 show that the

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 104

proposed placement technique has a tremendously positive effect on execution

time, bandwidth, and monetary cost of applications in all three network topolo-

gies.

Figure 4.8: Execution Time with 4FDs

Figure 4.8 shows that the execution time of A1 is significantly improved as 13%,

5%, 7%, and 5%, respectively, when using the GA-IRACE scheduling policy as

compared to the random solution, RACE [21], Taneja. et al.[24] and CCP. It can

be seen in Figure 4.8 that increasing the number of applications with modules

affects the performance of RACE [21] however, the optimized scheduling policy

of GA-IRACE improves the execution time with the placement of application

modules from fog to the Cloud layer. For A2 the bandwidth-intensive application

GA-IRACE improves the execution time to 11%, 5%, 3%, and 6%, respectively,

compared to the random solution, Taneja. et al.[24], RACE [21] and CCP.

Similarly, for A3, the mixed application for computation and bandwidth-intensive,

the GA-IRACE is faster than the baseline algorithm, the Taneja. et al.[24], the

RACE [21], CCP and the random solution in execution time as 5%, 4%, 3%, and

9% respectively.

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 105

Figure 4.9 shows the bandwidth consumption of three applications, i.e., A1, A2,

and A3. It can be seen that all three applications have maximum bandwidth con-

sumption when considering only the CCP and the random placement. Considering

the fog devices with the Cloud resources reduces the bandwidth consumption for

three applications by RACE [21] and the Taneja. et al. [24], however, the GA-

IRACE has the better results from all three baseline algorithms.

Figure 4.9: Bandwidth Consumption with 4FDs

For A1, the GA-IRACE consumes 4%, 2%, 20%, and 25% less bandwidth con-

sumption when compared with the Taneja. et al.[24], RACE [21], random solu-

tion, and CCP. Similarly, for A2, the random solution and CCP have the maximum

bandwidth consumption of 37% and 39%, respectively, due to the nature of the

application and the placement strategy in which maximum modules are placed at

the Cloud. GA-IRACE improves the bandwidth consumption of A2 to 7%, 8%,

32% and 34% when compared with the RACE [21], Taneja. et al.[24], random

solution, and CCP.

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 106

Figure 4.10: Monetary Cost with 4FDs

Similar improvements can be seen for A3 for which using the GA-IRACE reduces

the bandwidth consumption to 25%, 19%, 7%, and 4% when compared with the

random solution, CCP, Taneja. et al.[24] and RACE [21]. The increase in usage

of Cloud resources increases the monetary cost of the application, as shown in

Figure 4.10 in which the CCP and random solution strategy has the maximum

monetary cost for all three applications in comparison to the Taneja. et al.[24],

RACE [21] and GA-IRACE.

The optimized scheduling of GA-IRACE reduces the monetary cost for A1 to 7%

and 4% from the Taneja. et al.[24] and RACE [21] scheduling scheme. For A2

the GA-IRACE reduces the monetary cost to 3%, 5%, 33%, and 29% respectively,

compared to Taneja. et al.[24], RACE [21], random solution and CCP. For A3 the

GA-IRACE also has better results for monetary cost with an improvement of 2%

and 4% compared with the Taneja. et al.[24], RACE [21] placement strategy.

Increasing the number of fog devices improves the execution time of the applica-

tions along with changes in bandwidth consumption and the monetary cost, as

can be seen from Figures 4.11 to 4.13.

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 107

Figure 4.11: Execution Time with 4FDs

Figure 4.11 shows the efficient scheduling of our proposed algorithm for the three

applications, i.e., A1, A2, and A3, respectively.

Figure 4.12: Bandwidth Consumption with 8FDs

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 108

It can be seen in Figure 4.11 that the GA-IRACE improves the execution time

for A1 from the RACE algorithm [21], Taneja. et al. [24], random solution, and

CCP as 5%, 7%, 13% and 5% respectively. Similarly, for A2, the GA-IRACE has

a better performance with less execution time of 9%, 6%, 17%, and 13% compared

to the Taneja. et al. [24], RACE algorithm [21], random solution and CCP.

For A3, the mixed application for computing and bandwidth-intensive the Taneja.

et al.[24], and RACE algorithm [21] has minor improvement in the execution

Figure 4.13: Monetary Cost with 8FDs

time of 2% and 3% when compared with the CCP. However, both improves the

execution time to 4% and 6% compared to the random solution. The GA-IRACE

has less execution time of 7% and 5% compared with the Taneja. et al. [24] and

RACE algorithm [21]. Figure 4.12 illustrates the positive impact of GA-IRACE

on the bandwidth consumption when we have eight fog devices.

By adding more fog nodes, bandwidth consumption is improved compared to CCP

that uses the Cloud as a platform for modules, requiring more bandwidth from

the end user to the Cloud.

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 109

Figure 4.14: Execution Time with 10FDs

Although, the performance of RACE [21] is 4% better than Taneja. et al.[24]

for A1, 3% for A2 and 3% for A3 however, GA-IRACE outperforms for all three

applications with lower bandwidth consumption. Figure 4.12 shows that GA-

IRACE has 2%, 7% and 4% less bandwidth consumption than the RACE [21].

Figure 4.13 shows the monetary cost for the three applications with eight fog

devices. Although Taneja. et al.[24] improves the monetary cost for A1 when

compared with the random solution and the CCP ; however, the RACE [21] has

5% less monetary cost with better utilization of resources at the fog layer. Fol-

lowing this, the GA-IRACE has a lower monetary cost of 4% than the RACE

[21]. For A2, the GA-IRACE has the less monetary cost of 3% and 6% than

the Taneja. et al.[24] and RACE [21]. Similarly, for A3, the GA-IRACE also

improves the monetary cost with 4% and 5% less compared to the Taneja. et

al.[24] and RACE [21]. Figures 4.14 to 4.16 illustrates the execution time of three

applications, bandwidth, and the monetary cost when using the network topol-

ogy of ten fog devices. Figure 4.14 depicts that in the case of A1, GA-IRACE

improves the execution time compared to the CCP, random solution, RACE [21],

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 110

and the baseline algorithm, i.e., Taneja. et al.[24] with 38%, 45%, 7% and 10%

respectively.

Figure 4.15: Bandwidth Consumption with 10FDs

For A2, the bandwidth-intensive application, the execution time improves to 3%

and 2% respectively by GA-IRACE scheduling policy compared with the RACE

[21], and Taneja. et al.[24]. Similarly, for A3, the GA-IRACE also has better

results with an improvement of 6% and 9% respectively, in execution time as

compared to RACE [21], and Taneja. et al.[24]. From all the three approaches,

our proposed approach, i.e., GA-IRACE, better absorbs the increasing number of

fog devices and has a lower monetary cost for all three applications.

A graph of the bandwidth consumption is presented in Figure 4.15 for the three

applications with 10 fog devices. For the three applications A1, A2, and A3, the

CCP consumes the most bandwidth, as the modules are located within the Cloud.

For RACE [21] and Taneja. et al.[24], shifting modules from the fog to the Cloud

layer under the defined scheduling policy reduces the bandwidth consumption for

A1 to 25% and 20%, respectively, compared to the CCP. Similar improvement

can be seen in comparison to the random solution for which the RACE [21] and

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 111

Taneja. et al.[24] has 16% and 14% less bandwidth consumption for A1, 12% and

7% for A2, and 10% and 6% for A3.

Figure 4.16: Monetary Cost with 10FDs

In comparison to CCP, random solution and other baseline algorithms (RACE

[21], Taneja. et al.[24]), GA-IRACE has better results for A1 with an improvement

of 32%, 23%, 7%, and 8% respectively. For A2, the GA-IRACE also improves the

bandwidth consumption to 6% and 11% in comparison to the RACE [21] and

Taneja. et al. [24] baseline algorithms. In Figure 4.16, the cost per application

for using Cloud resources in a network topology of 10 fog devices is shown. As

shown in Figure 4.16, by adding more resources to the fog layer, Cloud resources

are used with less monetary cost, as there are adequate resources at the fog layer.

Therefore, the RACE [21] scheduling policy has less cost for all three applications

when compared with the CCP, random solution, GA-IRACE, and the Taneja. et

al.[24]. However, the efficient scheduling with maximum resource utilization also

affects the performance as it can be seen that the optimized scheduling with GA-

IRACE has better results of 43%, 38%, and 29% respectively from CCP, random

solution and Taneja. et al.[24]. Similarly, the GA-IRACE has a lower monetary

Genetic Algorithm based Improved Resource Aware Cost-Efficient Scheduler 112

cost of 6%, 7%, and 15% for A2, 7%, 40%, and 53% for A3 when compared with

the Taneja. et al.[24], random solution and CCP.

4.7 Conclusions

Advances in communication technologies have anticipated the ubiquitous use of

Internet of Things (IoT) devices in the future. Consequently, proper utilization

of Cloud computing for real-time applications regarding latency, cost, and band-

width consumption remains inevitable. The Fog computing paradigm mitigates

this limitation because it provides a convenient and efficient way to provide a pro-

cessing facility close to the edge of the user network. However, scheduling jobs on

Fog computing becomes a challenging task due to the resource constraint of edge

devices. This research presents a genetic algorithm-based strategy for optimizing

module scheduling across the fog and Cloud layers of the three-tier Cloud Fog

computing architecture.

According to the results, implementing the GA-based recommendation improves

execution time, cost, and bandwidth utilization by 15-40%. Furthermore, com-

pared to fundamental algorithms, the enhanced scheduling makes less use of net-

work resources, faster and has less financial costs for using the Cloud resources.

This work can be extended in several directions in the future. We utilize only

the execution time metric as a fitness function to evolve the scheduling of the ap-

plication modules. However, the monetary cost, bandwidth requirements, and/or

latency can be studied as a fitness function. Another direction for the future is

developing a multi-objective fitness function to find the trade-offs between these

factors in the context of Cloud Fog computing scheduling. Another exciting as-

pect of the study would be to evaluate the proposed approach for large corpus

applications.

Chapter 5

Conclusion and Future Work

5.1 Conclusions

Increases in the capacity of networks indicate that IoT devices will soon be com-

monplace, which means optimizing Cloud services for real-time applications con-

cerning latency, cost, and bandwidth usage will continue to be essential. Fog

computing can overcome this barrier because it places a processing facility at the

user network’s edge, which is more accessible and efficient. However, edge devices’

limited resources make scheduling work on Fog computing arduous. This study

introduces a heuristic based and a genetic algorithm-based approach to improving

module scheduling in the three-tier Cloud Fog computing architecture.

Data produced daily by the IoT has skyrocketed as the number of connected de-

vices has grown. Using Cloud services is essential for storing, processing, and

analyzing this massive volume of data. Thanks to cloud computing, we now have

a simple mechanism for archiving, processing, and analyzing this deluge of infor-

mation. Real-time applications like smart city management, healthcare, online

gaming, and autonomous cars are hampered by the high latency and bandwidth

requirements. By using Cloud services, these applications slow down execution,

increase the price and bandwidth costs for end users. The Fog computing ar-

chitecture is one of the emerging technologies designed to provide quality service

113

Conclusion and Future Work 114

to applications by bringing Cloud services closer to the edge of the network. As

technologies like the IoT, Cloud computing, and mobile internet advance quickly,

the Fog computing paradigm is becoming more critical. Fog computing’s main

objective is to address the issues that have surfaced with Cloud computing. The

system’s resources are dynamic and spread out around the globe, making man-

agement difficult. A well-oiled system for scheduling and allocating resources is

essential to make the most of these assets and guarantee customer satisfaction.

Fog computing, which moves Cloud resources to the network’s edge, might be used

to provide quality of service(QoS) for such applications. Since the execution time

depends on the kind of application and the level of computing required, we cannot

predict how long it will take if all of the modules are placed on fog. Putting every-

thing on the Cloud ensures quicker processing times but at the cost of increased

bandwidth and Cloud resources. Since there is a delay in moving applications

from fog to the Cloud, execution time might sometimes increase. Thus, applica-

tions need to be scheduled from the fog layer to the cloud layer. Scheduling is

normally NP-hard, but Fog computing makes scheduling more challenging due to

the diversity and scattered nature of fog layer resources, user mobility, and varying

application requirements.

Taking into mind the computing capabilities of fog devices and the computa-

tional needs of the applications, we provide a novel scheduling approach termed

RACE in the first part of this thesis. The Resource Aware Cost-Efficient scheduler

(RACE) aims to reduce the financial cost of using Cloud resources while maximiz-

ing resource utilization at the fog layer. The heuristics we implemented in RACE

scheduling considered computation and bandwidth usage, stacking applications so

that applications with fewer resources were at the bottom and applications with

more resources were grouped and placed at the top.

There are two aspects to the proposed strategy: One section sorts incoming appli-

cation modules by computing, and bandwidth needs to generate a list of modules

in order of priority for placement in the fog layer. Based on the prioritized list, the

application modules are placed from the fog to the Cloud layer, closely monitoring

Conclusion and Future Work 115

resource capacity and module requirements Chapter 3 covers the RACE. Since

our solution involves moving application components from the fog to the Cloud,

taking the benefit of the scalability and speed of the Cloud at a reduced cost, a

weighted ranking mechanism for the placement of application modules has been

created to lessen the impact on latency, processing time, and the price of using

Cloud resources. Both whole applications and their portions are considered to be

aspects of the workload.

The experiments were carried out on the three application datasets, varying the

network topology of fog devices at the fog layer from 4 to 10. The simulations

are carried out with the placement of application modules by using only the Fog

layer, only using the Cloud layer, and a hybrid Cloud-Fog configuration. The real-

world testing of the suggested approach would be challenging due to its limited

applicability. Also, with the novelty and rapid evolution of this sector, it is now

preferred to conduct research and development in a virtual environment; therefore,

we have used an open-source program for simulating and analyzing the operation

of Cloud fog infrastructure and services. The iFogSim architecture is widely used

to model various computer system designs. Three variations of this situation, each

with a unique network topology and workload, have been developed.

In most cases, extensive modeling with the iFogSim simulator confirms that our ap-

proach outperforms the conventional Cloud placementCCP and baseline methods.

Regarding time efficiency, cost efficiency, and reducing network traffic, RACE(CFP)

performs well across the board. The RACE(FOP) has better results for the band-

width and Cloud resources cost but for compute-intensive applications; it reduces

the execution time to almost 10%. Compared to the CCP, the RACE(FOP) im-

proves the execution time from 20% to 30% with an increase in the number of

fog devices. For bandwidth and the Cloud resources cost, the RACE(FOP) has

almost 30% to 60% less bandwidth and Cloud resources cost when compared with

the CCP. The RACE(CFP) strategy has 20% to 40% better results in execution

time, bandwidth consumption, and the Cloud resource cost with an increase in

the number of fog devices at the Fog layer for RACE(FOP), the CCP, and the

Taneja. et al. [24]

Conclusion and Future Work 116

The simulation results of RACE show that the proposed scheduling method, when

applied using the combination of fog and the Cloud layer, is more effective than

the methods of Taneja. et al. [24], the more common Cloud methods, and the

stand-alone fog placement approaches. However, as the number of applications

expanded, they became resource-intensive, needing more time to execute and more

bandwidth. Also, sending modules to the Cloud raises cost and bandwidth, and

sending them to the network’s edge causes delays for applications. Therefore

optimized scheduling of applications modules from fog to the Cloud is required.

The second section of the thesis suggests an enhanced version of a Resource-

Aware, Cost-Effective Scheduler (GA-IRACE) for the Cloud fog setting. The

findings show that the proposed enhanced GA-based strategy reduces execution

time, costs, and bandwidth utilization by 15-40%.

Since we need to optimize the execution time and the bandwidth, we turned to

GA for help. GA-IRACE ’s module placement optimization saves time and money

by strategically placing applications inside a Cloud’s infrastructure. GA-IRACE ’s

execution time was also lower than that of the RACE algorithm, particularly as

the number of applications increased. Therefore, GA-IRACE was used to carry

out optimized placement, producing better results than any other approach.

A genetic algorithm repeatedly refines the proposed answer using data on how

long it takes different programs to do their work. At the outset, the suggested

technique encodes the chromosome-based problem representation by considering

the features of the application and the fog devices. Using re-population operators,

the solutions emerged by modifying the GA’s many parameters. The program

uses GA to schedule its components, and the results have been verified using the

iFogSim simulator.

The experiments are carried out on the three application datasets with modules

varying from 70 to 100 and the MI in modules ranging from 100 to 500. The exper-

iments are varied under three different network topologies, changing the number

of fog devices from 4 to 10 at the fog layer. The iFogSim simulator was used to

compare the GA-IRACE with the RACE and other baseline algorithms.

Conclusion and Future Work 117

Simulation results show an improvement of 15% to 20% in execution time, band-

width, and the Cloud resources cost. For all three applications, the GA-IRACE

has less execution time, with low bandwidth consumption and Cloud resources

cost of almost 10% to 15% when compared with the baseline algorithms. As a

bonus, the improved scheduling uses fewer Cloud resources, is quicker, and needs

less bandwidth than the standard approach.

The optimized placement of application modules using GA-IRACE reduces the

execution time and has less bandwidth and overall costs when using Cloud re-

sources. Compared to the results of the RACE algorithm, the execution time

with GA-IRACE was also lower, especially in the case of an increasing number of

applications. As a result, GA-IRACE was used to perform optimized placement,

yielding superior results compared to alternative methods.

5.2 Limitations

Following are some of the limitations of the work proposed in this thesis.

1. A limitation of the scheduling approach proposed in this thesis is that

the computation and the bandwidth requirement of all application modules

should be known before mapping in Cloud fog computing environment.

2. In this research, it is assumed that the execution starts after the successful

mapping of all incoming application modules arrived at the same time.

3. This research do not consider the deadline of application modules.

5.3 Future Research Directions

A list of possible research directions is presented in this section for further devel-

opment of the work in this thesis.

Conclusion and Future Work 118

1. Future work of this research has numerous factors, such as time constraints

associated with latency-sensitive applications. since there are different time-

constraints depending on the application. As a glimpse into the future, it has

to be considered how Fog computing may support these sorts of applications.

2. This work can be extended in several directions in the future. We utilize only

the execution time metric as a fitness function to evolve the scheduling of the

application modules. However, the monetary cost, bandwidth requirements,

and/or latency can be studied as a fitness function. Another direction for the

future is developing a multi-objective fitness function to find the trade-offs

between these factors in the context of Cloud Fog computing scheduling.

Another exciting aspect of the study would be to evaluate the proposed

approach for large corpus applications.

3. Fog computing is a new paradigm facing many challenges, from scheduling

application modules to placing fog servers with efficient resource utilization

and security issues. The efficient utilization of the resources at the fog layer

with satisfying the deadline constraints is a big challenge. The heterogeneous

and limited computation power of fog devices at the fog layer is a significant

obstacle to satisfying the quality constraint.

4. The offloading of tasks from the fog layer to the Cloud for the delay sensitive

applications to be placed at the fog layer when all devices are full may affect

the performance due to data transfer cost as faced in Cloud. Moreover, novel

techniques should be investigated for sharing of resources at the fog layer.

5. There is a need to define energy-efficient algorithms to save the devices’

energy at the fog layer since they are not so energy-efficient. Among the

strategies used by the researcher is to sleep idle devices or make those devices

inactive by transferring the load to other devices. Due to the interdependence

between application modules, the FSP must accurately estimate the dynamic

resource requirements. Resource demand prediction techniques based on

regression and machine learning are needed in Fog computing.

Conclusion and Future Work 119

6. In the fog, devices may send data or computationally intensive applications

to a nearby fog node rather than to the Cloud. While offloading might

decrease device energy usage, it may increase execution time due to addi-

tional waiting and processing on fog servers and during device transmission.

Finding the appropriate offloading probability and transmit power for each

device requires a multi-objective optimization problem with the shared goal

of reducing execution time, cost, and energy consumption.

7. The number of devices connected to fog nodes and at different gateways

raises security concerns in Fog computing. In fog nodes, each device has

a unique IP address, and hackers can use this information to access the

information. More research is required to secure the data at the fog layer.

Bibliography

[1] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, J. Bughin, and

D. Aharon, “Unlocking the potential of the internet of things,” McKinsey

Global Institute, vol. 1, 2015.

[2] F. S. Collins, E. D. Green, A. E. Guttmacher, and M. S. Guyer, “A vision

for the future of genomics research,” nature, vol. 422, no. 6934, pp. 835–847,

2003.

[3] S. Smith, ““‘internet of things’ connected devices to almost triple to over 38

billion units by 2020 - juniper,” 2016.

[4] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud com-

puting systems,” in 2009 Fifth International Joint Conference on INC, IMS

and IDC, pp. 44–51, 2009.

[5] S. Misra and S. Sarkar, “Theoretical modelling of fog computing: A green

computing paradigm to support iot applications,” IET Networks, vol. 5, 02

2016.

[6] F. Bonomi, R. A. Milito, J. Zhu, and S. Addepalli, “Fog computing and its

role in the internet of things,” in MCC ’12, 2012.

[7] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,

“Fog computing: Principles, architectures, and applications,” in Internet of

things, pp. 61–75, Elsevier, 2016.

[8] N. V. and R. Lavanya, Fog Computing and Its Role in the Internet of Things,

pp. 63–71. 01 2019.

120

Bibliography 121

[9] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos,

“Challenges and opportunities in edge computing,” in 2016 IEEE Interna-

tional Conference on Smart Cloud (SmartCloud), pp. 20–26, IEEE, 2016.

[10] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of fog

computing in the context of internet of things,” IEEE Transactions on Cloud

Computing, vol. 6, no. 1, pp. 46–59, 2018.

[11] M. Amani, A. Ghorbanian, S. A. Ahmadi, M. Kakooei, A. Moghimi, S. M.

Mirmazloumi, S. H. A. Moghaddam, S. Mahdavi, M. Ghahremanloo, S. Par-

sian, et al., “Google earth engine cloud computing platform for remote sens-

ing big data applications: A comprehensive review,” IEEE Journal of Se-

lected Topics in Applied Earth Observations and Remote Sensing, vol. 13,

pp. 5326–5350, 2020.

[12] A. P. Plageras, K. E. Psannis, C. Stergiou, H. Wang, and B. B. Gupta, “Ef-

ficient iot-based sensor big data collection–processing and analysis in smart

buildings,” Future Generation Computer Systems, vol. 82, pp. 349–357, 2018.

[13] S. Lu, J. Wu, Y. Duan, N. Wang, and J. Fang, “Towards cost-efficient re-

source provisioning with multiple mobile users in fog computing,” Journal

of Parallel and Distributed Computing, vol. 146, pp. 96–106, 2020.

[14] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware applica-

tion module management for fog computing environments,” ACM Transac-

tions on Internet Technology (TOIT), vol. 19, no. 1, pp. 1–21, 2018.

[15] H. Tabrizchi and M. Kuchaki Rafsanjani, “A survey on security challenges

in cloud computing: issues, threats, and solutions,” The journal of super-

computing, vol. 76, no. 12, pp. 9493–9532, 2020.

[16] M. Al Yami and D. Schaefer, “Fog computing as a complementary approach

to cloud computing,” in 2019 International Conference on Computer and

Information Sciences (ICCIS), pp. 1–5, IEEE, 2019.

Bibliography 122

[17] S. Kunal, A. Saha, and R. Amin, “An overview of cloud-fog computing:

Architectures, applications with security challenges,” Security and Privacy,

vol. 2, no. 4, p. e72, 2019.

[18] A. M. Alqahtani, S. H. Mohamed, T. E. El-Gorashi, and J. M. Elmirghani,

“Pon-based connectivity for fog computing,” in 2020 22nd International

Conference on Transparent Optical Networks (ICTON), pp. 1–6, IEEE, 2020.

[19] F. Bonomi, R. A. Milito, J. Zhu, and S. Addepalli, “Fog computing and its

role in the internet of things,” in MCC ’12, 2012.

[20] V. K. Vaishnavi and W. Kuechler, Design science research methods and

patterns: innovating information and communication technology. Crc Press,

2015.

[21] J. U. Arshed and M. Ahmed, “Race: Resource aware cost-efficient scheduler

for cloud fog environment,” IEEE Access, vol. 9, pp. 65688–65701, 2021.

[22] J. U. Arshed, M. Ahmed, T. Muhammad, M. Afzal, M. Arif, and B. Bazezew,

“Ga-irace: Genetic algorithm-based improved resource aware cost-efficient

scheduler for cloud fog computing environment,” Wireless Communications

and Mobile Computing, vol. 2022, 2022.

[23] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and appli-

cations,” in 2015 Third IEEE workshop on hot topics in web systems and

technologies (HotWeb), pp. 73–78, IEEE, 2015.

[24] M. Taneja and A. Davy, “Resource aware placement of iot application mod-

ules in fog-cloud computing paradigm,” in 2017 IFIP/IEEE Symposium on

Integrated Network and Service Management (IM), pp. 1222–1228, IEEE,

2017.

[25] X.-Q. Pham and E.-N. Huh, “Towards task scheduling in a cloud-fog comput-

ing system,” in 2016 18th Asia-Pacific network operations and management

symposium (APNOMS), pp. 1–4, IEEE, 2016.

Bibliography 123

[26] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “On qos-aware

scheduling of data stream applications over fog computing infrastructures,”

07 2015.

[27] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and

challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646, 2016.

[28] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge

computing—a key technology towards 5g,” ETSI white paper, vol. 11, no. 11,

pp. 1–16, 2015.

[29] E. Cau, M. Corici, P. Bellavista, L. Foschini, G. Carella, A. Edmonds, and

T. M. Bohnert, “Efficient exploitation of mobile edge computing for virtual-

ized 5g in epc architectures,” in 2016 4th IEEE international conference on

mobile cloud computing, services, and engineering (MobileCloud), pp. 100–

109, IEEE, 2016.

[30] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile

cloud computing: Taxonomy and open challenges,” IEEE Communications

Surveys Tutorials, vol. 16, no. 1, pp. 369–392, 2014.

[31] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and K. Ha,

“The role of cloudlets in hostile environments,” IEEE Pervasive Computing,

vol. 12, no. 4, pp. 40–49, 2013.

[32] M. Aazam, S. Zeadally, and K. A. Harras, “Fog computing architecture,

evaluation, and future research directions,” IEEE Communications Maga-

zine, vol. 56, no. 5, pp. 46–52, 2018.

[33] M. Aazam and E.-N. Huh, “Fog computing micro datacenter based dynamic

resource estimation and pricing model for iot,” in 2015 IEEE 29th Interna-

tional Conference on Advanced Information Networking and Applications,

pp. 687–694, IEEE, 2015.

Bibliography 124

[34] H. R. Arkian, A. Diyanat, and A. Pourkhalili, “Mist: Fog-based data an-

alytics scheme with cost-efficient resource provisioning for iot crowdsens-

ing applications,” Journal of Network and Computer Applications, vol. 82,

pp. 152–165, 2017.

[35] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun, “Fog computing:

Focusing on mobile users at the edge,” arXiv preprint arXiv:1502.01815,

2015.

[36] N. K. Giang, M. Blackstock, R. Lea, and V. C. Leung, “Developing iot

applications in the fog: A distributed dataflow approach,” in 2015 5th In-

ternational Conference on the Internet of Things (IOT), pp. 155–162, IEEE,

2015.

[37] O. C. A. W. Group et al., “Openfog architecture overview,” White Paper

OPFWP001, vol. 216, p. 35, 2016.

[38] K. Intharawijitr, K. Iida, and H. Koga, “Analysis of fog model considering

computing and communication latency in 5g cellular networks,” in 2016

IEEE international conference on pervasive computing and communication

workshops (PerCom workshops), pp. 1–4, IEEE, 2016.

[39] M. A. Nadeem and M. A. Saeed, “Fog computing: An emerging paradigm,”

in 2016 Sixth International Conference on Innovative Computing Technology

(INTECH), pp. 83–86, IEEE, 2016.

[40] M. Taneja and A. Davy, “Resource aware placement of data analytics plat-

form in fog computing,” Procedia Computer Science, vol. 97, pp. 153–156,

2016.

[41] W. Zhang, Z. Zhang, and H.-C. Chao, “Cooperative fog computing for deal-

ing with big data in the internet of vehicles: Architecture and hierarchical

resource management,” IEEE Communications Magazine, vol. 55, no. 12,

pp. 60–67, 2017.

Bibliography 125

[42] H. Sabireen and V. Neelanarayanan, “A review on fog computing: Architec-

ture, fog with iot, algorithms and research challenges,” Ict Express, vol. 7,

no. 2, pp. 162–176, 2021.

[43] H. F. Atlam, R. J. Walters, and G. B. Wills, “Fog computing and the internet

of things: A review,” big data and cognitive computing, vol. 2, no. 2, p. 10,

2018.

[44] P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and A. Leon-Garcia,

“Fog computing: a comprehensive architectural survey,” IEEE Access, vol. 8,

pp. 69105–69133, 2020.

[45] A. Paul, H. Pinjari, W.-H. Hong, H. C. Seo, and S. Rho, “Fog computing-

based iot for health monitoring system,” Journal of Sensors, vol. 2018, 2018.

[46] H. Sabireen and V. Neelanarayanan, “A review on fog computing: Architec-

ture, fog with iot, algorithms and research challenges,” Ict Express, vol. 7,

no. 2, pp. 162–176, 2021.

[47] K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni, “A systematic survey

of industrial internet of things security: Requirements and fog computing

opportunities,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4,

pp. 2489–2520, 2020.

[48] R. K. Naha, S. Garg, and A. Chan, “Fog computing architecture: Survey

and challenges,” arXiv preprint arXiv:1811.09047, 2018.

[49] M. M. Hussain and M. S. Beg, “Fog computing for internet of things (iot)-

aided smart grid architectures,” Big Data and cognitive computing, vol. 3,

no. 1, p. 8, 2019.

[50] M. A. Nadeem and M. A. Saeed, “Fog computing: An emerging paradigm,”

in 2016 Sixth International Conference on Innovative Computing Technology

(INTECH), pp. 83–86, IEEE, 2016.

Bibliography 126

[51] S. Thiruchadai Pandeeswari and S. Padmavathi, “Fog based architectures for

iot: survey on motivations, challenges and solution perspectives,” in Inter-

national Conference on Remote Engineering and Virtual Instrumentation,

pp. 298–305, Springer, 2019.

[52] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications

and issues,” in Proceedings of the 2015 workshop on mobile big data, pp. 37–

42, 2015.

[53] B. Jamil, M. Shojafar, I. Ahmed, A. Ullah, K. Munir, and H. Ijaz, “A job

scheduling algorithm for delay and performance optimization in fog com-

puting,” Concurrency and Computation: Practice and Experience, vol. 32,

no. 7, p. e5581, 2020.

[54] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dynamic

resource allocation and parallel execution in the cloud for mobile code of-

floading,” in 2012 Proceedings IEEE Infocom, pp. 945–953, IEEE, 2012.

[55] K. Kai, W. Cong, and L. Tao, “Fog computing for vehicular ad-hoc networks:

paradigms, scenarios, and issues,” the journal of China Universities of Posts

and Telecommunications, vol. 23, no. 2, pp. 56–96, 2016.

[56] C. Chen, T. Qiu, J. Hu, Z. Ren, Y. Zhou, and A. K. Sangaiah, “A congestion

avoidance game for information exchange on intersections in heterogeneous

vehicular networks,” Journal of Network and Computer Applications, vol. 85,

pp. 116–126, 2017.

[57] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular fog com-

puting: A viewpoint of vehicles as the infrastructures,” IEEE Transactions

on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873, 2016.

[58] F. Bonomi, “Connected vehicles, the internet of things, and fog computing,”

in The eighth ACM international workshop on vehicular inter-networking

(VANET), Las Vegas, USA, pp. 13–15, sn, 2011.

Bibliography 127

[59] R. Karasik, O. Simeone, and S. S. Shitz, “How much can d2d communication

reduce content delivery latency in fog networks with edge caching?,” IEEE

Transactions on Communications, vol. 68, no. 4, pp. 2308–2323, 2019.

[60] S. Singh and A. Yassine, “Iot big data analytics with fog computing for

household energy management in smart grids,” in International Conference

on Smart Grid and Internet of Things, pp. 13–22, Springer, 2018.

[61] T. M. Fernández-Caramés and P. Fraga-Lamas, “Towards next generation

teaching, learning, and context-aware applications for higher education: A

review on blockchain, iot, fog and edge computing enabled smart campuses

and universities,” Applied Sciences, vol. 9, no. 21, p. 4479, 2019.

[62] S. Rani, A. Kataria, and M. Chauhan, “Fog computing in industry 4.0: Ap-

plications and challenges—a research roadmap,” Energy Conservation Solu-

tions for Fog-Edge Computing Paradigms, pp. 173–190, 2022.

[63] P. Hu, H. Ning, T. Qiu, Y. Zhang, and X. Luo, “Fog computing based face

identification and resolution scheme in internet of things,” IEEE transactions

on industrial informatics, vol. 13, no. 4, pp. 1910–1920, 2016.

[64] P. Varshney and Y. Simmhan, “Demystifying fog computing: Characterizing

architectures, applications and abstractions,” in 2017 IEEE 1st international

conference on fog and edge computing (ICFEC), pp. 115–124, IEEE, 2017.

[65] M. S. Hossain and M. Atiquzzaman, “Cost analysis of mobility protocols,”

Telecommunication Systems, vol. 52, no. 4, pp. 2271–2285, 2013.

[66] A. Rodŕıguez Natal, L. Jakab, M. Portolés, V. Ermagan, P. Natarajan,

F. Maino, D. Meyer, and A. Cabellos Aparicio, “Lisp-mn: mobile networking

through lisp,” Wireless personal communications, vol. 70, no. 1, pp. 253–266,

2013.

[67] A. Natraj, “Fog computing focusing on users at the edge of internet

of things,” International Journal of Engineering Research, vol. 5, no. 5,

pp. 1004–1008, 2016.

Bibliography 128

[68] K. Lee, D. Kim, D. Ha, U. Rajput, and H. Oh, “On security and privacy

issues of fog computing supported internet of things environment,” in 2015

6th International Conference on the Network of the Future (NOF), pp. 1–3,

IEEE, 2015.

[69] Y. Zhang, D. Niyato, P. Wang, and D. I. Kim, “Optimal energy manage-

ment policy of mobile energy gateway,” IEEE Transactions on Vehicular

Technology, vol. 65, no. 5, pp. 3685–3699, 2015.

[70] L. Bittencourt, J. Diaz-Montes, R. Buyya, O. Rana, and M. Parashar,

“Mobility-aware application scheduling in fog computing,” 2017. Publisher

Copyright: © 2014 IEEE.

[71] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, “Resource allocation strategy

in fog computing based on priced timed petri nets,” IEEE Internet of Things

Journal, vol. 4, no. 5, pp. 1216–1228, 2017.

[72] D. Rahbari and M. Nickray, “Scheduling of fog networks with optimized

knapsack by symbiotic organisms search,” in 2017 21st Conference of Open

Innovations Association (FRUCT), pp. 278–283, 2017.

[73] X.-Q. Pham, N. D. Man, N. D. T. Tri, N. Q. Thai, and E.-N. Huh, “A cost-

and performance-effective approach for task scheduling based on collabora-

tion between cloud and fog computing,” International Journal of Distributed

Sensor Networks, vol. 13, no. 11, p. 1550147717742073, 2017.

[74] S. Agarwal, S. Yadav, and A. Yadav, “An efficient architecture and algo-

rithm for resource provisioning in fog computing,” International Journal of

Information Engineering and Electronic Business, vol. 8, pp. 48–61, 01 2016.

[75] T. Choudhari, M. Moh, and T.-S. Moh, “Prioritized task scheduling in fog

computing,” in Proceedings of the ACMSE 2018 Conference, ACMSE ’18,

(New York, NY, USA), Association for Computing Machinery, 2018.

Bibliography 129

[76] S. Bitam, S. Zeadally, and A. Mellouk, “Fog computing job scheduling op-

timization based on bees swarm,” Enterprise Information Systems, vol. 12,

pp. 1–25, 04 2017.

[77] Y. Sun, F. Lin, and H. Xu, “Multi-objective optimization of resource schedul-

ing in fog computing using an improved nsga-ii,” Wireless Personal Com-

munications, vol. 102, no. 2, pp. 1369–1385, 2018.

[78] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization of

task scheduling and image placement in fog computing supported software-

defined embedded system,” IEEE Transactions on Computers, vol. 65, pp. 1–

1, 12 2016.

[79] R. K. Naha, S. Garg, A. Chan, and S. K. Battula, “Deadline-based dynamic

resource allocation and provisioning algorithms in fog-cloud environment,”

Future Generation Computer Systems, vol. 104, pp. 131–141, 2020.

[80] R. M. Abdelmoneem, A. Benslimane, and E. Shaaban, “Mobility-aware task

scheduling in cloud-fog iot-based healthcare architectures,” Computer Net-

works, vol. 179, p. 107348, 2020.

[81] P. Hosseinioun, M. Kheirabadi, S. R. K. Tabbakh, and R. Ghaemi, “A

new energy-aware tasks scheduling approach in fog computing using hybrid

meta-heuristic algorithm,” Journal of Parallel and Distributed Computing,

vol. 143, pp. 88–96, 2020.

[82] F. Hoseiny, S. Azizi, M. Shojafar, F. Ahmadiazar, and R. Tafazolli, “Pga:

a priority-aware genetic algorithm for task scheduling in heterogeneous fog-

cloud computing,” in IEEE INFOCOM 2021-IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), pp. 1–6, IEEE, 2021.

[83] Z. Pooranian, M. Shojafar, P. G. V. Naranjo, L. Chiaraviglio, and M. Conti,

“A novel distributed fog-based networked architecture to preserve energy in

fog data centers,” in 2017 IEEE 14th International Conference on Mobile

Ad Hoc and Sensor Systems (MASS), pp. 604–609, IEEE, 2017.

Bibliography 130

[84] D. Hoang and T. D. Dang, “Fbrc: Optimization of task scheduling in

fog-based region and cloud,” in 2017 IEEE Trustcom/BigDataSE/ICESS,

pp. 1109–1114, IEEE, 2017.

[85] X. Sun and N. Ansari, “Primal: Profit maximization avatar placement for

mobile edge computing,” in 2016 IEEE International Conference on Com-

munications (ICC), pp. 1–6, 2016.

[86] J. Fan, X. Wei, T. Wang, T. Lan, and S. Subramaniam, “Deadline-aware

task scheduling in a tiered iot infrastructure,” pp. 1–7, 12 2017.

[87] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, “Zenith: Utility-aware

resource allocation for edge computing,” in 2017 IEEE international confer-

ence on edge computing (EDGE), pp. 47–54, IEEE, 2017.

[88] L. Liu, D. Qi, N. Zhou, and Y. Wu, “A task scheduling algorithm based on

classification mining in fog computing environment,” Wireless Communica-

tions and Mobile Computing, vol. 2018, pp. 1–11, 08 2018.

[89] X.-Q. Pham, N. D. Man, N. D. T. Tri, N. Q. Thai, and E.-N. Huh, “A cost-

and performance-effective approach for task scheduling based on collabora-

tion between cloud and fog computing,” International Journal of Distributed

Sensor Networks, vol. 13, no. 11, p. 1550147717742073, 2017.

[90] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A

toolkit for modeling and simulation of resource management techniques in

the internet of things, edge and fog computing environments,” Software:

Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[91] S. Bitam, S. Zeadally, and A. Mellouk, “Fog computing job scheduling op-

timization based on bees swarm,” Enterprise Information Systems, vol. 12,

pp. 1–25, 04 2017.

[92] K. Gai and M. Qiu, “Optimal resource allocation using reinforcement learn-

ing for iot content-centric services,” Appl. Soft Comput., vol. 70, pp. 12–21,

2018.

Bibliography 131

[93] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li, “A double

deep q-learning model for energy-efficient edge scheduling,” IEEE Transac-

tions on Services Computing, vol. 12, pp. 739–749, sep 2019.

[94] D. Rahbari and M. Nickray, “Low-latency and energy-efficient scheduling in

fog-based iot applications,” Turkish Journal of Electrical Engineering and

Computer Sciences, vol. 27, no. 2, pp. 1406–1427, 2019.

[95] L. Mai, N.-N. Dao, and M. Park, “Real-time task assignment approach lever-

aging reinforcement learning with evolution strategies for long-term latency

minimization in fog computing,” Sensors, vol. 18, no. 9, 2018.

[96] A. Yassine, S. Singh, M. S. Hossain, and G. Muhammad, “Iot big data

analytics for smart homes with fog and cloud computing,” Future Generation

Computer Systems, vol. 91, pp. 563–573, 2019.

[97] S. Kabirzadeh, D. Rahbari, and M. Nickray, “A hyper heuristic algorithm for

scheduling of fog networks,” in 2017 21st Conference of Open Innovations

Association (FRUCT), pp. 148–155, IEEE, 2017.

[98] L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation in

fog computing based on containers for smart manufacturing,” IEEE Trans-

actions on Industrial Informatics, vol. 14, no. 10, pp. 4712–4721, 2018.

[99] M. A. Rodriguez and R. Buyya, “A responsive knapsack-based algorithm

for resource provisioning and scheduling of scientific workflows in clouds,”

in 2015 44th International Conference on Parallel Processing, pp. 839–848,

IEEE, 2015.

[100] H. S. Ali, R. R. Rout, P. Parimi, and S. K. Das, “Real-time task scheduling

in fog-cloud computing framework for iot applications: a fuzzy logic based

approach,” in 2021 International Conference on COMmunication Systems

& NETworkS (COMSNETS), pp. 556–564, IEEE, 2021.

Bibliography 132

[101] J. Xu, Z. Hao, R. Zhang, and X. Sun, “A method based on the combination

of laxity and ant colony system for cloud-fog task scheduling,” IEEE Access,

vol. 7, pp. 116218–116226, 2019.

[102] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H. C. Cankaya,

Q. Zhang, W. Xie, and J. P. Jue, “Qos-aware dynamic fog service provision-

ing,” arXiv preprint arXiv:1802.00800, 2018.

[103] S. Smith, “‘internet of things’ connected devices to almost triple to over 38

billion units by 2020 - juniper,” 2016.

[104] M. Ibrahim, S. Nabi, A. Baz, H. Alhakami, M. Raza, A. Hussain, K. Salah,

and K. Djemame, “An in-depth empirical investigation of state-of-the-art

scheduling approaches for cloud computing,” IEEE Access, vol. PP, pp. 1–1,

07 2020.

[105] A. Hussain, M. Aleem, A. Khan, M. Iqbal, and A. Islam, “Ralba: a

computation-aware load balancing scheduler for cloud computing,” Cluster

Computing, vol. 21, 09 2018.

[106] Sandvine, “Sandvine global internet phenomena report 2h-2015,sandvine

corp., p. 17, 2015,doi:10.1007/s13398-014-0173-7.2,” 2015.

[107] J. Cao, Q. Zhang, and W. Shi, “Challenges and opportunities in edge com-

puting,” Edge Computing: A Primer, pp. 59–70, 2018.

[108] A. T. Thien and R. Colomo-Palacios, “A systematic literature review of fog

computing,” Nokobit, vol. 24, no. 1, pp. 28–30, 2016.

[109] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: archi-

tecture, key technologies, applications and open issues,” Journal of Network

and Computer Applications, vol. 98, pp. 27–42, 2017.

[110] M. Hajibaba and S. Gorgin, “A review on modern distributed computing

paradigms: Cloud computing, jungle computing and fog computing,” Jour-

nal of Computing and Information Technology, vol. 22, p. 69, 01 2014.

Bibliography 133

[111] I. Stojmenovic, S. Wen, X. Huang, and H. Luan, “An overview of fog com-

puting and its security issues,” Concurrency and Computation: Practice and

Experience, vol. 28, no. 10, pp. 2991–3005, 2016.

[112] E. Kavvadia, S. Sagiadinos, K. Oikonomou, G. Tsioutsiouliklis, and S. Aı̈ssa,

“Elastic virtual machine placement in cloud computing network environ-

ments,” Comput. Netw., vol. 93, p. 435–447, dec 2015.

[113] R. Mahmud, R. Kotagiri, and R. Buyya, Fog Computing: A Taxonomy,

Survey and Future Directions, pp. 103–130. Singapore: Springer Singapore,

2018.

[114] “Advancing the state of mobile cloud computing,” in MCS’12 - Proceed-

ings of the 3rd ACM Workshop on Mobile Cloud Computing and Services,

MCS’12 - Proceedings of the 3rd ACM Workshop on Mobile Cloud Comput-

ing and Services, pp. 21–27, Association for Computing Machinery, Inc, 2012.

3rd ACM Workshop on Mobile Cloud Computing and Services, MCS’12 ;

Conference date: 25-06-2012 Through 25-06-2012.

[115] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya,

“Cloudsim: a toolkit for modeling and simulation of cloud computing en-

vironments and evaluation of resource provisioning algorithms,” Software:

Practice and Experience, vol. 41, 2011.

[116] W. Lin, C. Liang, J. Z. Wang, and R. Buyya, “Bandwidth-aware divisible

task scheduling for cloud computing,” Software: Practice and Experience,

vol. 44, no. 2, pp. 163–174, 2014.

[117] M. Mahmud, M. Afrin, M. A. Razzaque, M. Hassan, A. Alelaiwi, and M. Al-

rubaian, “Maximizing quality of experience through context-aware mobile

application scheduling in cloudlet infrastructure,” Software: Practice and

Experience, vol. 46, pp. n/a–n/a, 11 2016.

[118] M. Arif, G. Wang, M. Z. A. Bhuiyan, T. Wang, and J. Chen, “A survey on

security attacks in vanets: Communication, applications and challenges,”

Vehicular Communications, vol. 19, p. 100179, 2019.

Bibliography 134

[119] M. Arif, G. Wang, V. E. Balas, O. Geman, A. Castiglione, and J. Chen, “Sdn

based communications privacy-preserving architecture for vanets using fog

computing,” Vehicular Communications, vol. 26, p. 100265, 2020.

[120] T. Wang, Y. Liang, Y. Zhang, X. Zheng, M. Arif, J. Wang, and Q. Jin, “An

intelligent dynamic offloading from cloud to edge for smart iot systems with

big data,” IEEE Transactions on Network Science and Engineering, vol. 7,

no. 4, pp. 2598–2607, 2020.

[121] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H.

Abawajy, “Fog of everything: Energy-efficient networked computing ar-

chitectures, research challenges, and a case study,” IEEE access, vol. 5,

pp. 9882–9910, 2017.

[122] M. Arif, G. Wang, T. Peng, V. E. Balas, O. Geman, and J. Chen, “Optimiza-

tion of communication in vanets using fuzzy logic and artificial bee colony,”

Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6145–6157, 2020.

[123] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, J. Bughin, and

D. Aharon, “Unlocking the potential of the internet of things,” Feb 2020.

[124] G. Patrick, “Iot and the network: What is the future?.” https://blogs.

cisco.com/networking/iot-and-the-network-what-is-the-future,

May 2013.

[125] S. Nabi and M. Ahmed, “Og-radl: overall performance-based resource-aware

dynamic load-balancer for deadline constrained cloud tasks,” The Journal

of Supercomputing, vol. 77, 07 2021.

[126] S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam, “Adpso: adaptive pso-

based task scheduling approach for cloud computing,” Sensors, vol. 22, no. 3,

p. 920, 2022.

[127] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang, “Multitier fog

computing with large-scale iot data analytics for smart cities,” IEEE Internet

of Things Journal, vol. 5, no. 2, pp. 677–686, 2018.

https://blogs.cisco.com/networking/iot-and-the-network-what-is-the-future
https://blogs.cisco.com/networking/iot-and-the-network-what-is-the-future

Bibliography 135

[128] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: To-

wards a comprehensive definition of fog computing,” SIGCOMM Comput.

Commun. Rev., vol. 44, p. 27–32, oct 2014.

[129] X. Lyu, C. Ren, W. Ni, H. Tian, and R. Liu, “Distributed optimization

of collaborative regions in large-scale inhomogeneous fog computing,” IEEE

Journal on Selected Areas in Communications, vol. PP, 02 2018.

[130] M. Shojafar, N. Cordeschi, and E. Baccarelli, “Energy-efficient adaptive re-

source management for real-time vehicular cloud services,” IEEE Transac-

tions on Cloud Computing, vol. 7, pp. 196–209, 03 2019.

[131] M. Arif, J. Chen, G. Wang, O. Geman, and V. E. Balas, “Privacy preserving

and data publication for vehicular trajectories with differential privacy,”

Measurement, vol. 173, p. 108675, 2021.

[132] M. Arif, W. Balzano, A. Fontanella, S. Stranieri, G. Wang, and X. Xing,

“Integration of 5g, vanets and blockchain technology,” in 2020 IEEE 19th

International Conference on Trust, Security and Privacy in Computing and

Communications (TrustCom), pp. 2007–2013, IEEE, 2020.

[133] W. Tärneberg, A. Mehta, E. Wadbro, J. Tordsson, J. Eker, M. Kihl, and

E. Elmroth, “Dynamic application placement in the mobile cloud network,”

Future Generation Computer Systems, vol. 70, 07 2016.

[134] N. Khan, I. A. Khan, J. U. Arshed, M. Afzal, M. M. Ahmed, and M. Arif,

“5g-eecc: Energy-efficient collaboration-based content sharing strategy in

device-to-device communication,” Security and Communication Networks,

vol. 2022, 2022.

[135] J. H. Holland, Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence. MIT

press, 1992.

[136] S. G. Ahmad, E. U. Munir, and W. Nisar, “Pega: A performance effective

genetic algorithm for task scheduling in heterogeneous systems,” in 2012

Bibliography 136

IEEE 14th International Conference on High Performance Computing and

Communication & 2012 IEEE 9th International Conference on Embedded

Software and Systems, pp. 1082–1087, IEEE, 2012.

	Author's Declaration
	Plagiarism Undertaking
	List of Publications
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Limitations of Cloud Computing
	1.1.1 Ineffective use of Network Resources
	1.1.2 Awareness of latency
	1.1.3 Location awareness

	1.2 Challenges with Fog Computing
	1.2.1 Selection of a Master Node
	1.2.2 Limited Resources of Fog Devices
	1.2.3 Connectivity
	1.2.4 Command Restrictions

	1.3 Scheduling in Fog Computing
	1.4 Motivation
	1.5 Problem Statement
	1.6 Research Questions
	1.7 Research Methodology
	1.8 Research Contribution
	1.9 Research Evaluation
	1.10 Thesis Organization

	2 Background and Related Work
	2.1 Background
	2.1.1 Edge Computing
	2.1.2 Mobile Edge Computing (MEC)
	2.1.3 Mobile Cloud Computing (MCC)
	2.1.4 Fog Computing(FC)

	2.2 Architecture of Fog Computing
	2.2.1 Terminal/User Layer of Fog Computing Architecture
	2.2.2 Fog Layer of Fog Computing Architecture
	2.2.3 Cloud Layer of Fog Computing Architecture
	2.2.4 Virtualization Layer and Physical Layer
	2.2.5 Monitoring or Observation Layer
	2.2.6 Pre-processing Layer
	2.2.7 Temporary Storage
	2.2.8 Security Layer
	2.2.9 Transport Layer

	2.3 The Products for Fog Computing
	2.3.1 Cisco IOx
	2.3.2 Local Grid-Based Platform for Fog Computing
	2.3.3 Gateways and Fog-Based Equipment

	2.4 Fog Computing Applications
	2.5 Aspects of Fog Computing
	2.6 Resource Allocation
	2.7 Resource Aware Scheduling for Fog Environment
	2.8 Heuristic Based Resource Allocation
	2.9 Gap Analysis

	3 Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment
	3.1 Introduction
	3.2 Architecture of Fog Computing Environment
	3.3 The Three-Tier Architecture of Fog Computing Environment
	3.3.1 User Layer
	3.3.2 Fog Layer
	3.3.3 Cloud Layer

	3.4 Scheduling in Fog Computing
	3.5 System Model and Problem Formulation
	3.6 Application Model
	3.7 RACE System Architecture
	3.8 RACE Algorithm
	3.9 Evaluation and Analysis of Results
	3.10 Simulation Results
	3.11 Conclusions

	4 Genetic Algorithm based Improved Resource-Aware Cost Efficient Scheduler for Fog Environment
	4.1 Introduction
	4.2 Architectural Model
	4.2.1 End Devices/End Layer/User Layer
	4.2.2 Fog Layer
	4.2.3 Cloud Layer

	4.3 Scheduling in Fog Computing
	4.4 Problem Formulation
	4.5 Design and Implementation
	4.5.1 Chromosome Encoding
	4.5.2 Parent Selection Strategy
	4.5.3 Fitness Function
	4.5.4 Crossover Operator
	4.5.5 Mutation

	4.6 Simulation and Result Discussion
	4.6.1 Discussion of Experimental Results

	4.7 Conclusions

	5 Conclusion and Future Work
	5.1 Conclusions
	5.2 Limitations
	5.3 Future Research Directions

	Bibliography

