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Abstract

Online portfolio management algorithms have largely replaced human bookmak-

ers with the advent of computerized trading, which has transformed today’s stock

markets. These algorithms expedite the process of buying stocks. The computing

requirements of these algorithms, however, present difficulties in terms of both

speed and profitability. Slowing the rate at which stock data is supplied to the

decision-making computers is one way to address this issue by reducing the com-

putational load.

In order to overcome the computing difficulties inherent in performing online port-

folio optimization, this study presents the Decimated method. The approach uses

decimated data in an effort to keep performance steady while decreasing com-

putational demands. Decimation requires the application of strict theoretical re-

quirements generated from data analysis, including the selection of appropriate

statistical criteria and decimation rates.

This study uses the Decimated algorithm to the numbers from five well-known

businesses: Apple, Amazon.com, Alphabet, Meta Platforms, and Netflix. The

efficiency of the algorithm is measured by how well it handles investment decisions

in the allotted time frame. Results are shown using real-world stock market data

to verify the effectiveness of the suggested method.

The results show that the Decimated algorithm has promise as a method for op-

timizing the stock return in real time. The method exhibits stable performance

because it uses well-established ideas from information theory and makes calcu-

lated decisions about decimation rates. This study adds to our understanding of

the role of portfolio management methods in the context of automated trading and

sheds light on how to achieve optimal performance in this area while minimizing

computational costs.

Key words: Portfolio, OLMAR, SMAR, Stock, Online Trading, D-

OLMAR
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Chapter 1

Introduction

An interesting story of technology progress and financial democratization is the

historical path of online trading. The ultimate peak occurred in the 1980s with

the rise of personal computers and financial networks, even if the foundations

started growing in the 1960s with the introduction of Electronic Data Interchange

(EDI) for data transfer. The internet grew rapidly in the 1990s, which led to

the creation of online brokerage services like E*Trade and Charles Schwab. By

enabling everyone with an internet connection to easily trade stocks, bonds, and

other assets from the comfort of their homes, these platforms transformed financial

access. Online trading is significant in many ways, since it democratizes access to

financial markets and makes investment possible for those who would not otherwise

be able to use traditional brokerage services. Price transparency, efficiency, and

market liquidity have all grown as a result of this democratization. Furthermore,

new financial services and products including fractional shares, trading algorithms,

and mobile apps have all emerged as a result of internet trading. Due to these

advancements, investing has become more accessible and inexpensive for a wider

range of people, democratizing the process.

However, it is crucial to understand that there are risks associated with internet

trading. Online transactions’ convenience and quickness might lead to quick deci-

sions and excessive trade. Vigilance and precaution are also necessary due to the

increasing number of online scams and fraudulent activities. The following are a

few of the major changes:

1
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Democratization of Finance Online trading has shattered barriers related to

wealth and knowledge, broadening access to investing Han (2019).

Increased Market Liquidity The surge in participants has significantly en-

hanced market liquidity, streamlining trade execution Malceniece et al. (2019).

Enhanced Transparency Real-time quotes and accessible market data em-

power investors, reducing the information gap favoring professionals Urman and

Makhortykh (2023).

Innovation and Disruption Online platforms have been pivotal in introducing

new financial products and services, from fractional shares to automated invest-

ment tools Li et al. (2020).

Challenges and Risks The ease of online trading can lead to impulsive decisions

and overtrading, especially for inexperienced investors. Risks also include online

scams and cybersecurity threats El Hajj and Hammoud (2023).

A recent study by El Hajj and Hammoud (2023) highlights the ongoing relevance

and influence of online trading on the financial landscape by demonstrating how

the democratization of finance through online trading has enhanced market par-

ticipation and been linked to favorable economic outcomes.

Online trading has significantly improved the financial landscape despite these

obstacles, empowering people, increasing market efficiency, and encouraging inno-

vation. Investors expect more revolutionary developments as technology develops,

such as the introduction of blockchain-based trading and the incorporation of AI-

powered investing algorithms.

1.1 The Evolution of Online Trading and Learn-

ing in Financial Markets

The Internet’s widespread reach and the revolutionary potential of digital technol-

ogy have significantly changed the financial environment in recent decades. The
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dynamic interaction between online learning and online commerce, which is chang-

ing how people access, comprehend, and engage with the complex environment of

markets, is at the center of this revolution.

1.1.1 Increasing Access and Choice

In the past, financial markets were dominated by experienced experts and had

significant entry barriers. However, the introduction of online trading platforms

has broken down these boundaries, ushering in a period of democratization and

inclusivity. Platforms such as Interactive Brokers, E*Trade, and mobile apps like

Robinhood have played critical roles in democratizing financial participation by

making it available to a wide range of users, from seasoned experts to total begin-

ners Sathye (2004). This increased accessibility, aided by user-friendly interfaces

and lower middleman fees, has allowed people from all walks of life to traverse

markets and potentially accumulate wealth Stephens (2013).

1.1.2 Greater Access, Greater Accountability

Having more access to the financial markets is beneficial, but it also entails greater

accountability. The complex world of investing requires ongoing education and

skill development. This educational component is crucial in providing people with

the information and resources needed for online learning and in assisting them

in navigating the complex world of financial strategies and goods. Such informa-

tion makes it possible for people to make wise decisions, lower the risks involved

in online transactions, and foster an environment where participation is done re-

sponsibly Christensen et al. (2016).

1.1.3 Online Transactions and Learning Convergence

The integration of online learning and transactions is expected to support the

ongoing growth of the financial ecosystem, going beyond democratization and

empowerment. The financial market will probably see the development of new
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trading methods and the exploration of unexplored territory due to the arrive in

of new participants who are equipped with a variety of knowledge and analytical

tools Michael Spector (2017).

1.2 The Effect of Algorithmic Trading on the Fi-

nancial Environment

The financial environment has undergone a fundamental transformation due to the

disruptive influence of computerized trading, commonly referred to as algorithmic

trading. Algorithmic trading, which uses pre-programmed algorithms to execute

transactions based on predetermined criteria, analyzes enormous volumes of data

in milliseconds and takes advantage of short-lived market opportunities Fan et al.

(2012). Both praise and criticism have been directed towards this technological

advancement, which has brought up important issues of transparency, equity, and

possible risk amplification.

1.2.1 Algorithmic Trading’s Supporters and Detractors

Proponents of algorithmic trading emphasize the effectiveness and efficiency of

the practice, praising its quickness (which outpaces human comprehension) and

capacity to seize momentary arbitrage possibilities Brogaard et al. (2010). More-

over, its ability to analyze large amounts of data and spot intricate patterns is

thought to help traders make well-informed decisions and maybe lessen market

volatility Lattemann et al. (2012). It is hypothesized that removing the emotional

biases and impulsive choices that human traders frequently make will increase mar-

ket stability and create a more logical trading environment Sonkin and Johnson

(2017).
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1.2.2 Issues & Difficulties

Nonetheless, there are drawbacks to algorithmic trading’s quick rise. Since the

intricate algorithms function as ”black boxes” shrouded in secret, critics express

concerns about their opacity Hansen (2020). Due to linked algorithms that mag-

nify market collapses through cascading feedback loops, this lack of transparency

might increase suspicion and systemic risk Bardoscia et al. (2021). Furthermore,

market fragmentation and liquidity problems may be made worse by the high-

frequency nature of automated trading, making it more difficult for traditional

investors to engage in the market successfully Siering et al. (2017).

Demand for a Comprehensive Review of the Financial Ecosystem The financial

ecosystem needs to be thoroughly reevaluated in light of the rise of algorithmic

trading. In order to maintain openness and reduce potential dangers, regulatory

frameworks need to be modified

The findings of this study were intended to help financial professionals better man-

age the complexities that arise when dealing with a large variety of products. Our

goal was to create an algorithm that could efficiently process and assess large data

sets. We can improve computer performance and speed up decision making by in-

creasing the frequency with which stock data is sent to decision-making systems.

So, picking the finest stocks and precisely forecasting their performance over sev-

eral time periods was the primary emphasis of this study. Our primary goals were

to identify the most effective window size and frequency, and to draw attention to

the unique contributions this research made to the study of online learning.

1.3 Theoretical Framework

The optimal allocation of wealth between different best stock assets is a key re-

search subject in the fields of portfolio selection and applied financial engineering.

Both the Mean Variance Theory, made famous by Markowitz, and the Capital

Growth Theory, developed by Kelly, have been investigated as potential solutions

to this issue. When trying to optimize the portfolio’s predicted growth rate, the
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Mean Variance Theory looks just at a single time period, while the Capital Growth

Theory considers a range of time periods.

Optimal portfolio selection decisions can be gleaned from both theories, but the

”Online” approach that considers a number of time periods is the focus of this

study. The advent of high-frequency trading is just one example of how the trading

sector has been impacted by the development of information technology. Trad-

ing within short time frames (seconds to 24 hours) requires buying and selling

often. Massive volumes of intraday data are produced by high-frequency trading,

necessitating lightning-fast processing power. Timely reactions are vital to grasp

chances in today’s market, but human stockholders often have trouble keeping up

with the market’s rapid pace.

Complex difficulties and greater hazards are brought forth by high-frequency trad-

ing and the prediction of future price unpredictability. Although price patterns

are often interpreted subjectively, indicators can be used to make more objective

market predictions. Even if indications from indicators are there, these meth-

ods may not provide explanations for some market swings. In order to deal with

the complexities and uncertainties of high-frequency trading, this study suggests

employing machine learning approaches.

This study incorporates the Capital Growth Theory into a discussion of how to

maximize the equitable distribution of wealth for optimal investment decision mak-

ing. The ”Online” method, which takes into consideration numerous time periods

in investment decision-making, is highlighted. The study recognizes the value of

IT in high-frequency trading and emphasizes the importance of quick and efficient

tools and procedures. The study also suggests incorporating machine learning

strategies to deal with the difficulties of high-frequency trading and future price

forecasting uncertainty using the decimated data with varying sample size and

frequency.
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1.4 Research Gap

A significant challenge in the financial market pertains to the handling of big and

volatile data for stock market prediction and stock selection. With the advance-

ment of technology, there has been an exponential increase in the availability and

accessibility of financial data. This includes not only historical price and volume

data but also a wide range of alternative data sources such as news sentiment,

social media trends, and macroeconomic indicators.

However, the sheer volume and volatility of this data pose considerable challenges.

Traditional statistical models and analysis techniques often struggle to effectively

process and extract meaningful insights from such vast amounts of data. More-

over, the stock market is known for its inherent volatility, making it even more

challenging to accurately predict future price movements and optimize investment

portfolios.

Existing literature on stock market forecasting and stock selection frequently em-

phasizes the use of conventional data sets and techniques, such as daily or high-

frequency stock price data. However, there is a dearth of research examining

the efficacy and prospective benefits of using decimated data in these prediction

models.

A subset of the original data that has been systematically reduced or sampled at

specific intervals is referred to as decimated data. This reduction in data granular-

ity may have potential benefits, such as reducing noise, enhancing computational

efficiency, and capturing long-term trends as opposed to short-term fluctuations.

Consequently, decimated data can provide trustworthy insights and competitive

advantages in terms of precision, speed, and profitability in comparison to tradi-

tional data sets.

In this study, a custom-tailored algorithm was developed to utilize decimated

data for stock market forecasting and stock selection. This research investigates

the efficacy and performance of this approach through empirical analysis and eval-

uation, thereby contributing significantly to the fields of financial forecasting and

investment strategies.
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1.5 Problem Statement

Dealing with an enormous quantity of financial data can be difficult in the area

of stock prediction and selection. The challenge is that because markets generate

massive amounts of data in real time, it is critical to filter through the vital infor-

mation in order to make appropriate decisions. This is where ”data decimation”

comes in - it’s a method of reducing down the data using various ways, and it

could be a solution to deal with the complexities of dealing with large amounts of

financial data.

Despite the increased interest in data decimation, we don’t fully grasp how signifi-

cant it is and how it affects the accuracy of projecting stocks and making financial

decisions. This dissertation seeks to fill this knowledge gap by investigating how

data reduction approaches such as data decimation affect the efficacy of prediction

models in financial markets. We’ll look at the pros and downsides, such as the

danger of losing some information vs the benefits of faster calculations. In addi-

tion, this study looks at how data decimation works in real-world stock market

scenarios. This research determines if it helps prevent overly specific predictions

(overfitting), if it makes models easier to grasp, and if it improves the dependabil-

ity of forecasting algorithms. By delving into these crucial components, the study

seeks to provide a clear grasp of how critical data decimation is when it comes to

stock analyses.

1.6 Research Questions

This dissertation aims to investigate the following core questions:

1. Can the decimated data be used to trade on the basis of algorithm?

2. Does algorithm-based trading outperform market-based performance?

3. Is the long time frame better than the short time frame for forecasting and

devising?
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4. Does the algorithm-based trading strategy face more risk in comparison to

the passive investment strategy?

5. Does algorithm based strategy offer batter risk adjusted return against down-

side risk?

1.7 Research Objectives

The proposed method, as well as the incorporation of the decimated aspects,

will be thoroughly examined using the most recent empirical data to evaluate

its effectiveness across a variety of statistical circumstances. The study will dive

into critical aspects such as sample size and data collecting frequency, with a

focus on the ”Online” approach. This technique seeks to tackle the intricacies of

stock selection and prediction efficiently and quickly, while eliminating additional

responsibilities.

This research aims to improve traders’ decision-making capabilities in today’s

fast-paced financial markets by addressing these difficulties head-on and employ-

ing cutting-edge algorithms and approaches. The incorporation of the decimated

algorithm increases the potential for making informed and sensible decisions, al-

lowing traders to negotiate the high-frequency terrain with enhanced precision

and agility while reducing operational expenses. The following is a list of core

objectives of this study:

1. To propose an algorithm for investment decision.

2. To compare the the performance of proposed algorithm with market based

performance of stock.

3. To compare the risk of algorithm based trading with risk of the stock.

4. To examine the long horizon forecasting outperform the short horizon pre-

diction.

5. Is the algorithm-based trading strategy less risky than the passive investment

strategy?
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1.8 Significance of the Study

The suggested decimated algorithm for Online Stock Selection is developed with

the intention of improving upon existing methods. The algorithm’s goal is to max-

imize the ability of stock prediction and investment decision making by making use

of optimally decimated data and frequency. This algorithm places more emphasis

on the trade mechanism of ”Online” algorithms for resolving the stock forecasting

and selection concerns than do other existing techniques, which tend to rely on

theory or single stock trading.

In order to deal with the difficulties presented by large and unpredictable data

sets, the method uses decimated data. The method makes data processing quicker

and more efficient by lowering the amount of data without losing any relevant

information. As a result, businesses are better equipped to react quickly to shifts

in the market and seize opportunities that may otherwise go unnoticed.

The decimated algorithm has many potential applications, including quantitative

trading, automated wealth management, and the management of hedge funds. By

offering more precise stock market projections, it can aid in better decision making

for investment.

In conclusion, the suggested decimated algorithm is a feasible approach to ad-

dressing the challenges of enormous and changeable data in financial investment

management, which present obstacles to the complexities of stock selection and

prediction.

The proposed decimated algorithm for online stock selection and prediction is

useful for both academia and industry. The effects can be seen in a variety of

ways:

1. An important step forward, the decimated algorithm for online stock selec-

tion allows researchers to focus on the technical components of the problem.

It offers researchers a fresh viewpoint on the problems of stock selection &

prediction and a novel approach to resolving them.



Introduction 11

2. This research stands out because it tackles the challenging issue of stock se-

lection across many asset types, including equities, fixed income instruments,

and derivatives. Beyond the more limited fields of single-stock trading and

the theory of portfolio management, this research broadens the scope of

previous work.

3. The proposed algorithm uses computational intelligence techniques to fore-

cast financial time series. This integration improves the accuracy and relia-

bility of Online Stock Selection and Predictions.

4. This investigation into the ”Online” algorithmic trading mechanism provides

insight into the development of efficient and successful portfolio management

strategies for use in live market conditions.

5. The proposed algorithm improves upon existing techniques for optimizing

investment decision. It enlarges the possible avenues of inquiry, examination,

and refinement for scholars and students.

6. This research makes a significant impact by introducing AI-based techniques

to the field of computational finance. It allows academics to create innovative

computational models and conduct ground-breaking theoretical research.

7. This study helps to close the gap between the theoretical underpinnings of

portfolio management and its actual application in the real world. This opens

the door for academics to examine the practical implications of algorithmic

portfolio selection methods.

8. The suggested algorithm has applications in quantitative trading firms, hedge

funds, and automated wealth management services. It aids these businesses

in better managing their investment portfolios, resulting in higher returns

and lower losses.

9. Technological Advances This research contributes to the improvement of

cutting-edge high-frequency trading and data-processing methods. This
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technological development allows the company to take full use of the ben-

efits of online trading procedures and stay competitive in the face of the

ever-changing nature of financial markets.

Overall, the proposed decimation algorithm helps researchers, academics, and busi-

nesses make greater strides in their application of Online Stock Selection for port-

folio optimization. It has far-reaching consequences, from helping to close knowl-

edge gaps and advancing academic progress to enhancing the quality of investment

management decisions and increasing output.

1.9 Structure of Dissertation

The research study is thoroughly explored throughout this dissertation’s multiple

chapters.

The first chapter introduces the subject and then analyzes it in depth. It provides a

synopsis of the field of study, stressing its relevance and justification. This section,

describe the theoretical and conceptual foundations of the study and highlight the

contributions we want to make with this research.

The second chapter is a literature review that examines the history of online port-

folio selection strategies and provides a summary of the relevant studies. By exam-

ining the relevant research and outlining the gaps and limits of current techniques,

this chapter lays the groundwork for the succeeding chapters.

The theoretical foundations of the algorithms employed in online portfolio selection

are discussed in Chapter 3. Famous methods like online linear regression and online

passive regression are discussed. Following an overview of the methods currently

in use for online portfolio selection, the dissertation narrows in on the topic at

hand: online moving average methods and its modeling.

The findings of the research are summarized in Chapter 4. The results for each

method are presented separately, with the most important analyses highlighted.

This section’s goal is to give readers a thorough grounding in the outcomes of

using online moving average algorithms and its modeling.
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In the last chapter, reviewed the results and analyze their significance. It high-

lighted the importance of the findings and addresses their caveats. Suggestions for

potential future study topics and directions are provided in this section as well.

This dissertation is organized as follows: introduction; topic analysis; literature

review; theoretical framework; findings analysis; discussion and conclusion. This

structure helps researchers conduct in-depth studies and adds to the body of knowl-

edge in the domain of online portfolio management.

Chapter 5 serves as a concluding chapter, summarizing the discussion and impli-

cations of the results. It highlights the significance of the findings and discusses

their limitations. This chapter also offers suggestions for future research directions

and areas that could benefit from further investigation.

Overall, this dissertation follows a structured approach, beginning with an in-

depth analysis of the topic, followed by a literature survey, theoretical background,

analysis of results, and finally, a discussion and conclusion. This organization

ensures a comprehensive examination of the research area and contributes to the

existing knowledge in the field of online portfolio selection.
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Literature Review

The emergence of algorithmic trading, often known as ”Algo-Trading,” has had

a profound impact on regulatory frameworks and investment strategies in the

financial markets. The objective of this dissertation research is to investigate

this complex field in further detail, looking at its various techniques, efficacy,

drawbacks, and possible directions going forward.

2.1 Algorithmic Approaches

2.1.1 Algorithms Based on Fundamental Analysis

These algorithms evaluate the inherent value of a firm based on financial docu-

ments, economic statistics, and news sentiment. Although their long-term efficacy

is still up for question, studies by Battiston et al. (2012) and Fama and French

(2015) demonstrate their potential for alpha production.

2.1.2 Algorithms Based on Technical Analysis

These algorithms use past volume and price data to spot trends and patterns that

can be used to forecast future movements in the market. Relative Strength Index

(RSI) and Moving Averages are two well-known examples. Although beneficial for

14
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short-term trading, market efficiency has limitations, as noted by Bessembinder

and Chan (1998) and Lo et al. (2000).

2.1.3 Algorithms Based on Statistical Arbitrage

These algorithms take advantage of mean reversion occurrences by utilizing price

differences between comparable assets across markets. Russakovsky et al. (2015)

and Reddaf et al. (2020) both show that they are successful in identifying market

inefficiencies, mostly in short-term settings.

2.1.4 Algorithms Based on Machine Learning and Deep

Learning Concepts

By utilizing AI’s enormous potential, these algorithms examine a wide range of

data sets, such as news stories, social media posts, and even satellite images, in

order to spot possible trading opportunities. While highlighting their potential,

Guidotti et al. (2018) and Dong et al. (2023) warn about their ”black-box” char-

acter and overfitting vulnerability.

Existing methods for online portfolio selection (OLPS) generate explicit portfolio

updating strategies by describing previous portfolio optimization techniques. Ta-

ble: 3.1 identifies the major ideas and a few exemplary algorithms (Li and Hoi,

2014). Literature introduced a number of benchmark algorithms. Then, based

on the directions of weight transfer, offered three categories of principles or algo-

rithms with explicit portfolio updating strategies. The first strategy, ”follow the

winner,” gives more weight to experts or stocks that have performed better in the

past. The second strategy, called ”follow the loser,” on the other hand, gives less

successful experts or stocks more weight, or moves weight from winners to losers.

The pattern matching-based technique, the third category, builds portfolios based

on comparable historical patterns and lacks clear instructions. Finally, this review

described several similar meta-algorithms that are applied to a group of experts,

each of whom has any algorithm from the first three categories.



Literature Review 16

2.2 Historical Development of Online Portfolio

Strategies

One important question is whether financial data from Mathematical point of view

is random or not. Like any other signal or data that may be acoustical, electrical

or financial data series, they should be which can be electrical, acoustical, or

otherwise, financial data series should be exposed to the same signal analysis

procedures. A lot of literature claims data not to be random. In trading there

would have been no point it had been so. In financial market analysis, on chart

market price data versus time is often noted by traders (Neftci, 1991). Due to

bulls and bears market, each pattern is understood in a different way. These

patterns lead the market head. Peterson (1997a) suggested that through complete

randomness such patterns can take birth. Is there any reason for variation in

price of certain market if the market is a random process? The core reason is

that more traders use the technical analysis tool, i.e., prediction based on the past

data. If we can accept this so each trader has its own rule and past would give

the same future especially in Futures and Bond market. But individual markets

may not be assessed with these phenomena where investor and fund managers use

fundamental analysis tools, i.e. decision making also include the P/E ratio, MTB

ratio, etc. In these markets, the past data are not playing a role of the future

price function. So, in these markets, the non-randomness may cause other reason.

If it is correct that market is not random would we be able to predict the market

based on the mathematical model which based on the probabilistic rather than

deterministic.

The ”online” option emphasizes the significance of prompt and well-informed de-

cision making in portfolio selection. Using this method, investors would get data

on the market in order and allocate their funds right away. Multi-period portfolio

selection research is essential because of the sequential structure of the process.

According to Cover (1991), in such a situation, the portfolio is re-balanced to an

allocation determined by the next available trading period. The goal is to make

the most of the consistent logarithmic yield throughout a variety of time frames
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for making trades. Kelly (1956b) discusses the Capital Growth Theory, which

emphasizes the need of developing a sound betting strategy. It stresses the futility

of constantly risking one’s entire fortune on an advantageous but uncertain bet.

Kelly proposes a new method of betting that accelerates the rate at which one’s

wealth grows.

Researchers like Breiman (1960); Hakansson (1975); Bell and Cover (1980) have

expanded on these ideas. While Markowits (1952) work is a good example of a

single-period study, this investigation goes beyond that. Instead, it emphasizes

portfolio choices that maximize the present value of expected future returns, since

it is impossible to know for sure what will happen in the future and must instead

be approximated. There are many possible refinements to this rule.

The evaluation of the incorporation of ”anticipated” returns in investment de-

cisions relies heavily on the analysis of risk and reward tradeoffs. If you have

any reservations about the market’s efficiency, you shouldn’t base your investment

decisions exclusively on the discounted return you can achieve. Existing recom-

mendations do not universally favor an undiversified portfolio over a diversified

one, but there are exceptions.

Li and Ng (2000) broke with the common practice of creating short-term invest-

ment portfolios. To solve the portfolio selection issue over multiple time periods,

they used Markowitz’s mean-variance approach. The multi-period variance for-

mulation was kept tractable in its original settings, and they gave an analytical

solution for it. Investors were given newfound flexibility in their decision-making

thanks to this solution’s illumination of the dynamic tension between risk and

expected return.

Using stochastic control theory, Dai et al. (2010) presented a continuous-time

portfolio selection model that incorporated transaction costs. They used tools

like Lagrangian multipliers and partial differential equations to figure it out. We

classified the practical constraints, obtained the function value from the PDE,

and applied the Lagrange multiplier to solve the resulting algebraic problem. This

method provided a thorough structure for evaluating portfolio asset replacement

and selection.
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In a study of the market, El-Yaniv (1998) zeroed in on the selection and replace-

ment of portfolio assets as points of differentiation. Their study suggested exciting

new algorithms that improved upon prior approaches. Uncertain demand projec-

tions associated with stock buy and sell decisions are the primary focus of the

Optimal Investment Management (OIM) theory.

In addition, the study covers a wide range of interconnected issues that can be

broken down into their own subfields. There’s a class of investing strategies known

as ”Follow the Winner,” which includes putting greater weight on profitable stocks

than the market as a whole or the top-performing stock. Cover (1991) Universal

Portfolio Strategy is an example of such an approach. They developed algorithms

to boost the efficiency of investment portfolios. Cover and Ordentlich (1996) elab-

orated on this strategy by including side news and a polynomial factor, showing

that the capital achieved by the -weighted universal portfolio exceeds the capi-

tal of the best state-constant re-balanced portfolio at any time xn based on price

dynamics (xn) and side news (yn). This discovery is not limited to averages or

probabilities, but rather applies to each series independently.

Blum and Kalai (1997)) suggested a universal portfolio algorithm after investigat-

ing the effects of transaction costs on online portfolio management. The idea of

deep exterior regret was also considered. It is possible to modify these algorithms

to reduce swap remorse as well. Additionally, a “sleeping expert” can play an

important part in real-time selection (Blum and Mansour, 2007).

Vovk and Watkins (1998) proposed a new algorithm for picking arbitrarily good

investing strategies. Vovk (1990) also created algorithms to count this type of

strategy. Similarly aggregating algorithm (AA) proposed by Vovk (1990) was

called for a constant number of Constant Re-balanced Portfolios (CRPs).

Ordentlich and Cover (1998) wrote about how different price structures for “m”

assets across “n” periods are reflected in the market. The proportion of total

capital gained by a non-anticipating asset was compared to the wealth attained

by a leading constant adjustable portfolio, with the latter figure determined with

reference to the reflection portion of the pricing arrangement.
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Cross and Barron (2003) improved upon Cover’s research by creating a new uni-

versal portfolio approach. This method yields results that are comparable to

those obtained by knowing stock prices in advance. Specifically, within the pre-

determined portfolio categories, it performs better than the conventional constant

re-balanced portfolio strategy. These target groups are based on historical stock

prices and other data that is tangentially related to stock prices, making for a

more trustworthy portfolio classification. The ability to compute with simple

closed-form expressions in a polynomial number of steps is a significant benefit

of this method. However, other universal processes typically include numerical

estimation and exponential calculations.

Akcoglu et al. (2002) developed a common online algorithm for all investing strate-

gies. Methods for optimal offline determinations of daily average performance were

discussed. These methods take into account the distribution of wealth among

various shares and provide a fundamental foundation for universalizing investing

strategies. Their algorithms were designed with consideration for the exponential

time limits that they impose. In order to efficiently compute universal portfolios,

it is necessary to sample long concave functions, which opens up the method to a

wider range of investment strategies.

The Online Newton Step (ONS) approach was developed by Hazan et al. (2007)

to solve a rounded online optimization issue. A decision-maker in this scenario

will select plausible decision points in Euclidean space from a fixed set of options.

The decision-maker is presented with a set of convex cost functions at the outset

and is then given a concave payoff function associated with the selected spots.

Additive regret of 0(T), where T is an arbitrary time horizon specified for the

cost function, was introduced by Zinkevich (2003) in his straightforward online

gradient technique. These algorithms shed light on the follow-the-leader strategy

by utilizing Newton methods from offline optimization.

Kozat et al. (2008) created a competing approach for building a piece-wise constant

re-balanced portfolio using context trees and sequential probability assignments.

The optimum piece-wise constant re-balancing portfolio can be chosen with an

exponentiation complexity of 0(ln(n)). Subsequently, Kozat and Singer (2011)
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tackled a sequential-time investment problem. They investigated several invest-

ment strategies and thought about practical concerns, such as when and how to

re-balance a portfolio when dealing with transaction expenses.

Evidence theory, learning theory, and signal processing are just a few of the fields

that have looked into sequential portfolio investment strategies. While Helmbold

et al. (1998); Vovk and Watkins (1998); Borodin et al. (2003) dove into learn-

ing theory facets, Cover and Ordentlich (1996) investigated sequential universal

portfolio techniques. Semi-constant re-balanced portfolios were first introduced by

(Kozat et al., 2008), who developed this sequential strategy with an emphasis on

signal processing. By making adjustments to wealth depending on specific price

ratios, these portfolios strive to generate asymptotically high wealth equivalent to

the best Semi-Constant Re-balanced Portfolios (SCRP). Usually, decisions on such

portfolios are made retroactively. The authors also proposed a universal sequential

portfolio that maximizes wealth relative to the optimal SCRP while accounting

for fixed operation costs. These algorithms can only hope to outperform the best

SCRP recitation by a factor of O(ln(n)) in terms of wealth. These methods follow

a sequential structure and can be applied independently of the values of k and n.

The authors provide a thorough explanation of the methods’ usefulness, demon-

strating the methods’ linear complexity with respect to the n-length of the data,

and relating the methods to other well-known approaches.

Retrospectively based on real market outcomes, Helmbold et al. (1998) proposed

algorithms that reach the same wealth as the best constant rebalanced portfolio.

The multiplicative updating rule, developed by Kivinen and Warmuth (1997), uses

continuous storage and calculates the time per stock at each time period. The data

they collected backed up the assumption and shed light on the relatively minor

role that transaction fees play. For the purpose of minimizing exp-concave loss,

Hazan and Kale (2015) devised a highly effective approach. Portfolio selection

makes use of limitations to study the impact of return variability. Following the

seminal work of Cover (1991), this paper makes substantial contributions to the

study of regret boundaries for universal portfolio selection. According to data, in

a standard Geometric Brownian Motion model, more frequent trading does not
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inevitably result in more regret. The results of this study are the first to come

close to the GBM standard.

With this research, we hope to bridge the gap between traditional portfolio theory

and stochastic portfolio theory. The strong connection between regime switching

and competing models was demonstrated by a model provided (Hardy, 2001).

During the devastating economic collapse and slowdown in commerce that hit

in 1987, their efforts were widely recognized. The transition to a high volatility

regime can be seen in the increased volatility of equities returns during times of

economic turmoil. The unsuitability of Gaussian and Geometric distributions for

the market presents difficulties for this method in producing an accurate estimate

of the distribution. Stylized empirical data from a numerical analysis of pricing

discrepancies in several financial markets were reported (Cont, 2001).

These characteristics are not tied to any particular model of the profit-making

procedure but rather rest on broad qualitative notions. For stochastic models to

properly capture the underlying statistical features of profits, they must serve as

restrictions. However, modern models have had trouble successfully recreating all

these statistical properties, revealing some limitations. The “Follow the Loser”

strategy involves switching money from successful businesses to unsuccessful ones.

It proposes re-allocating capital from high performing assets to those that are

under-performing.

Mean reversion, as investigated by De Bondt and Thaler (1985), is the founda-

tion of the ”Follow the Loser” strategy. The results of their psychological tests

disproved the efficiency of markets by showing that people frequently exaggerate

the impact of recent developments on stock prices. The overreaction hypothesis

is supported by these results, which were derived from an examination of CRSP

monthly gain data. Previous losers tend to outperform previous winners in weak-

form markets.

Li et al. (2012) provide a novel online portfolio selection approach they call ”Pas-

sive Aggressive Mean Reversion” (PAMR) to better comprehend mean reversion.

Mean reversion trading is elucidated, and how PAMR takes advantage of the mean
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reversion features of financial markets to strike an optimal balance between return

and risk.

Binary classification, regression, uni-class prediction, multiclass problems, cost-

sensitive multiclass classification, and learning with structured output are only

some of the online learning issues that Shalev-Shwartz et al. (2003) examine

through a unified algorithmic lens. For the purpose of performing binary clas-

sifications online, they introduce a straightforward technique they name Passive-

Aggressive (PA). Several algorithms with bounded losses are derived, and the scope

of this framework extends all the way from optimal layout to system prediction.

All of the boundaries’ proofs rest on a common lemma.

The work gives a single lemma that forms the basis for proofs of all bounds, and

it concentrates on online environments. It emphasizes the importance of online

algorithms in the creation of efficient batch algorithms and draws attention to the

prospective extensions of this work.

Borodin et al. (2003) proposed the Anti-Correlation approach, which takes use of

statistically expected relationships between groups of stocks. While correlation

and other simple statistical relationships might provide substantial profits, it is

expected that more advanced machine learning approaches could produce even

better portfolio selection algorithms capable of bigger returns, notwithstanding

the existence of increased commission fees.

In addition, Duchi et al. (2008) provide two forecasting strategies and efficient

methodologies for projecting a vector onto the l1-ball. Both methods provide cor-

rect predictions, although the first does it in O(n) time (where n is the dimension

of the space) and the second in O(klog(n)) time (where k is the number of observ-

able) by accommodating k vectors with factors outside the l1-ball. Useful in text

categorization and other online learning contexts where feature space is limited.

Li et al. (2011b) present a method called Confidence Weighted Mean Reversion

that uses machine learning to build financial market portfolios into smart business

activities. The study’s primary goals are (1) creating trading algorithms for effi-

cient market behavior and (2) establishing non-parametric learning methodologies
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for effective policy learning. Confidence Weighted online learning is consistent with

the idea of mean reversion trading, and empirical evidence reveals that portfolio

changes, rather than absolute prices or price relative, play a key effect.

Dredze et al. (2008) offer a related work called Confidence-weighted linear clas-

sifiers, which are linear classifiers that are guided by confidence evidence. This

method provides a fresh way of learning that can be used to the problem of slug-

gish performance in NLP applications. Parameter sensitivity, decision making,

and distribution variance are all improved by the technique. It also streamlines

classifier combination techniques, which boosts NLP applications’ precision.

Using ideas from Gaussian distribution, the Confidence-weighted (CW) learning

techniques introduced by Crammer et al. (2012) present a new online portfolio

learning method for linear classifiers. In this method, the uncertainty in weights

and correlation measurements is represented by a covariance matrix. The scala-

bility of these methods is stressed, and an error-bound analysis is performed using

data from both synthetic and Natural Language Processing (NLP) studies.

The Confidence Weighted Mean Reversion, introduced by Li et al. (2013), is an

online portfolio selection policy that extends the functionality of the preceding

method. Mean reversion and confidence weighted online learning are brought

together in this method. Using the mean reversion trading method, the portfolio

weights are assumed to follow a Gaussian distribution and their distribution is

subsequently updated over time. The goal of this fresh strategy is to improve

portfolio management processes.

Mean reversion theory can be efficiently implemented in portfolio selection with

the help of the user-friendly framework provided by the Dense Weighted Mean Re-

version (DW-MR) model. Robust Median Reversion (RMR) is a novel method for

online trading that incorporates data from several time periods. It was introduced

by Li et al. (2013) Using the L1 median estimator in a mean reversion strategy

over a single time period, this method investigates the phenomenon of stock price

reversal.

Li and Hoi (2014) highlight the significance of online portfolio selection in the realm

of competitive finance, machine learning, and statistics. They offer a complete
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explanation and survey of numerous online portfolio selection procedures in a

number of distinct fields of study.

A third method, Pattern-Matching, is explored for non-parametric sequential in-

vesting strategies. This method ensures optimal development and uniform consis-

tency in both deterministic and ergodic markets. It provides a trustworthy means

of adjusting financial projections to match market trends.

Cover and Gluss (1986) suggest picking numerous consecutive portfolios according

to the market’s past performance. These portfolios not only detect differences,

but also shed light on potential outcomes. The method takes into account the

experimental distribution of the market across n periods in advance to construct

optimal portfolios.

Gyorfi and Schafer (2003) examine the use of loss functions such squared loss, 0-1

loss, and log utility for forecasting stationary time series. To this end, they stress

the need for developing universal prediction rules that hold true for all imaginable

stationary processes.

George and Hwang (2004) compared the results of three distinct investment strate-

gies. The first method invests broadly in the top 30% of high-return equities based

on historical data of individual stock performances. The second method uses past

industry return data to identify the top 30% of performing sectors. The third

strategy is an innovative method that considers how close a stock’s current price

is to its 52-week high. This duration-based strategy implies that closeness to the

52-week high predicts individual returns, regardless of whether or not the high-

est return was previously obtained. Traders rely on this time frame frequently,

utilizing it as a reference point to correct for biases and factor in the potential

impact of news. In the context of the market, it has been noted that stock val-

ues tend to climb and reach their highs during periods of positive news or good

news. Despite the fact that the available data suggests that the stock price may

increase further, surprisingly, traders typically refrain from bidding on these equi-

ties. Traders’ tendency toward caution has helped fuel the market’s recent price

rise.
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When unfavorable news hits the markets, stock prices typically fall from their

52-week highs. When investors hear bad news, they immediately begin selling the

affected stocks. Because of this influx of buyers, prices in the market have fallen.

These regularities call attention to the impact of investor behavior and market

psychology on stock prices. Market participants have an impact on the dynamics

of stock prices, as seen by the cautious approach during positive news periods and

the subsequent selling pressure during bad news periods.

When a stock’s price drops significantly from its 52-week high as a result of bad

news, however, investors are initially reluctant to sell. Investors’ reluctance to sell

at what they see as a bargain price is a factor in the market’s current bearish

trend.

Algorithms described in Györfi et al. (2006) have been subjected to both empirical

and theoretical testing, and they have been shown to be effective at tackling the

difficulties of sequential investing and deriving maximum returns with minimal

assumptions. These strategies use an in-depth familiarity with market dynamics

to consistently provide an asymptotic rate of return. There is empirical evidence

that demonstrates the usefulness of these tactics.

A kernel-based logarithmic estimating strategy for optimal investment was pre-

sented (Györfi et al., 2007). This method has the benefit of maximizing return

with the fewest necessary assumptions about the market. Even under the simpli-

fied assumptions of market stationarity and ergodicity, empirical evidence support

the usefulness of this strategy. It’s interesting to see that when tested with NYSE

data from the past, both semi-log-optimal and log-optimal methods fare similarly.

Ottucsák and Vajda (2007) asymptotic proposes a non-parametric Markowitz-type

technique, which is a streamlined version of the semi-log-optimal method. Portfolio

pickers based on closest neighbor approaches were subsequently proposed by Györfi

et al. (2008), which offer log-optimal solutions for a wide variety of stationary and

ergodic random processes. Empirical research verifies the methods’ durability,

demonstrating their utility in a range of contexts.
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Biau et al. (2010) created nonparametric strategies for sequential prediction by

employing an ensemble method called ”experts.” Their work involves a thorough

examination of real-world datasets, proving the approaches’ universal reliability

under modest assumptions. The findings demonstrate that nonparametric meth-

ods frequently beat ARMA techniques in terms of standardized cumulative esti-

mated error and are more versatile and faster to implement.

The goal of the log-optimal investment strategy described by Ormos and Urbán

(2013) is to produce a growth rate for investments that is nearly ideal. The rel-

evance of separate investment periods is emphasized, and the effect of reordering

costs on portfolio restructuring is analyzed. When experts forecast a negative

price shift, they recommend looking into a risk-free investment solution to protect

portfolios. The model also includes the potential for short selling. Expert pre-

dictions can be made even more accurate by tracking the market during bull and

bear times. A trades and quotes catalog is used to circumvent the problem of the

required security not being readily available in the market at closing prices.

Using iterative optimization techniques, the Meta-Learning Algorithms developed

by Das and Banerjee (2011) learn predictive models in data mining. Up front

optimization can be difficult with conventional methods. Online trading is domi-

nated by base algorithms, however Meta Algorithms demonstrate competitiveness

through their adaptable combination of strategies. These algorithms offer superior

performance to earlier portfolio algorithms. Meta-algorithms provide assurances

by adhering to a set of rules and limiting the optimal performance that can be

achieved by the best heuristics.

According to Agarwal et al. (2006), the online Newton Stages algorithm is in-

troduced as part of the Online Gradient & Newton Updates strategy for online

trading. This algorithm has theoretical guarantees and empirical data suggests

that it achieves those promises with remarkable speed in practice. In addition, it

outperforms other algorithms in keeping tabs on the best stocks.

Hazan and Seshadhri (2009) delves into the idea of education in a changing world.

They introduce techniques for online convex optimization that display adaptabil-

ity by frequently and rapidly locating local optima. They also suggest a different
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performance metric to use in conjunction with the common regret meter. In these

algorithms, performance is measured against an evolving benchmark and charac-

terized by a continuous flow of data. Using this method, regret-based algorithms

can be converted into adaptive algorithms, boosting their performance in dynamic

settings.

To implicitly or explicitly predict future price changes, many existing algorithms

incorporate specialized trading methods on top of the ideas of Capital Growth

Theory. The momentum technique, discussed in Lee and Swaminathan (2000), is

one example of such a trading strategy. Their studies center on how the Momen-

tum and Values approaches relate to one another. High turnover companies are

studied for their ability to attract additional interest and to sustain financial gains

in the future. They do, however, note that price momentum typically reverses

within the following five years. In conclusion, the results of this study indicate

that predictions about the future can be made with some accuracy using only

information about the past.

Cooper et al. (2004)’s momentum trading tactics place a premium on paying at-

tention to the current market environment. Overreaction models studies by Daniel

et al. (1998) and Hong and Stein (1999) lend credence to the momentum idea, in-

dicating that a momentum portfolio with a holding period of six months is more

likely to see positive returns during bull markets. As the market lags behind, the

momentum return rises, but even significant lags in yields are no guarantee of fu-

ture gains; yields might fall without being rejected. Overreaction theory predicts

that gains from momentum will be lost in the long run, and this is what actually

happens (Lee and Swaminathan, 2000; Jegadeesh and Titman, 2001) . In addi-

tion, they discover that negative market conditions can reverse significantly over

the long run even when they lack initial velocity. These results suggest that long-

term declines can’t be ascribed exclusively to the reversal of preceding momentum

but instead reflect the impact of conditional information on lagged market returns,

which are intrinsically linked to the forecasting of momentum trends.

Furthermore, progress has been made using cutting-edge methods of prediction.
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Llorente et al. (2002)) used a straightforward strategy to investigate the link be-

tween stock returns and trading activity. Their research showed that speculative

trade gains persist while risk-sharing trade returns reverse. The study also looked

at the correlation between volume and returns for specific stocks and found that

volume significantly affects correlation on a daily basis.

In addition, this investigation does not account for a number of additional con-

cerns or articles that deal with similar topics. Both probabilistic and determinis-

tic settings have devoted considerable effort to studying the universal forecasting

problem, and there are numerous commonalities between the two methods. In

particular, self-information loss is important in both contexts for a number of

reasons.

To begin, there are various reasons why self-information loss functions are signifi-

cant in their own right. The self-information loss function appears naturally when

viewing the forecasting problem as a problem of probability assignment, which is

a major factor. Second, the self-information loss function has been studied exten-

sively and provides a firm theoretical grounding. Finally, the self-information loss

function is commonly used as a starting point for deriving or relating conclusions

for other loss functions.

There is a noteworthy similarity between the probabilistic and deterministic mod-

els of universal forecasting (Dhar, 2011). The goal of many forecasting models in

regression and classification issues is to identify a single model that is capable of

reliably addressing the vast majority of the cases seen in the training data. The

hunt for a model that can generalize well across multiple examples is a cornerstone

of the study of forecasting.

The opposing extreme consists of a collection of copies called ”small disjoints,” each

of which is limited to a tiny fraction of the overall decision space. The advantages

and disadvantages of these two sorts of replicas have been well-documented and

explored. Single models, especially linear ones, are straightforward and easy to

understand. But if their complexity isn’t managed correctly, they might have

overfitting problems that cause big mistakes when used on out-of-sample data.
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Direct reinforcement (DR) methods, such as reinforcement learning, have been

investigated for their potential use in the context of predicting financial time se-

ries and engaging in single stock trading (Moody and Saffell, 2001). Stochastic

control issues form the basis of optimization strategies for trading systems and

asset allocations. In this article, we introduce recurrent reinforcement learning

(RRL), a specialized adaptive learning approach for portfolio selection. RRL uses

techniques like TD learning and Q-Learning, as opposed to classic dynamic pro-

gramming and reinforcement algorithms. To identify optimal solutions without the

dimensional complexity of Bellman’s method, RRL evaluates the value function

through control issues.

The accounting-based measurement of operational expenses and the optimization

of risk-adjusted return are both determined (Dempster et al., 2001). They use a

time-honored method of financial forecasting called technical analysis. Artificial

intelligence (AI) is often cited as a leading method in the present active research

domain. In the past, researchers have utilized approaches like out-of-sample testing

and genetic algorithms to create trading rules in the hope that they will provide

positive out-of-sample gains after accounting for operational costs.

The authors recommend utilizing well-known technical indicators as a starting

point for finding success. Common computational learning methods include rein-

forcement learning and genetic programming. The Marko decision problem can be

solved precisely with these methods. All strategies are equally important in pro-

ducing in-sample and out-of-sample returns, the authors discover when operational

costs are eliminated. Empirical data also show that the evolutionary algorithm

method excels when there are no operating expenses, but the other approaches all

perform poorly.

Overfitting to the sample data is another issue the authors bring out, noting that

if in-sample learning is not limited (Mahfoud and Mani, 1996). Genetic algorithm

is another method used in stock analysis. This method can be used to resolve

problems in databases, however it may be incompatible with more conventional

approaches. Results from financial forecasting utilizing the genetic algorithm and

a neural network system are compared for roughly 1600 equities. The genetic
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algorithm is shown to produce valid and trustworthy outcomes, according to the

study’s findings.

In contrast to the exogenously set rules used by most trading algorithms, the

evolutionary algorithms proposed by Allen and Karjalainen (1999) aim to optimize

trading performance. The rules that do not pass the out-of-sample test do not

outperform the buy-and-hold strategy if transaction costs are factored in. During

times of low volatility in commercial transactions, traders can make large returns

by adopting long positions, as do the guidelines. In contrast, negative earnings

are accompanied by excessive volatility, prompting the rules to switch to short

positions.

Volatility forecasting using Genetic Algorithms has been shown to be successful.

The empirical evidence shows that the volatility of inputs increases with the degree

of their interconnectedness, but variables that satisfy certain requirements can be

used as predictors over a specified time frame. Technical analysis has shown more

accurate at predicting currency market outcomes than other algorithms, including

those tried and tested (Tsang et al., 2004). In the field of machine learning, trading

strategies based on Artificial Intelligence (AI) have been increasingly popular over

the past two decades. When it comes to technical analysis indicators, AI-based

algorithms encompass a wider range, leading to well-defined and profitable trading

rules, than prior studies that concentrated on standalone trading rules or genetic

algorithms.

The algorithm Support Vector Machine (SVM) was developed by Cao and Tay

(2003) for the purpose of forecasting financial time series. In terms of general-

ization performance, SVM is superior to both multilayer backpropagation neural

networks and regularized radial basis function neural networks. To reduce the

maximum amount of generalization error, SVM employs the SRM (Structural

Risk Minimization) approach. To account for the inevitable structural shifts in

financial data, SVM employs adaptive parameters.

Creamer (2007) presented a method for decreasing bias in algorithms by giving

more consideration to training data and less to outliers. It should be highlighted,
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however, that these algorithms have high computational and financial require-

ments. Companies that use effective strategies have a better chance of succeeding

in the marketplace.

For a long time, investors have argued about whether or not market behavior

is random. When chartists plot market price data against time, they look for

shapes like rectangles and triangles, which they then use to infer the relative

strength of buyers and sellers in the market (Pring, 1991). Skeptics, however,

point out that these sorts of patterns can also result from chance occurrences

(Peterson, 1997b). Imagine the night sky crammed with stars to demonstrate

this. It’s common knowledge that celestial patterns like lions and bears are purely

coincidental, despite our ability to see them.

Computer programs can replicate market behavior by treating pricing as a random

walk, providing a way to test the theory of randomness in the market. According to

Peter J. Brockwell (1996), random walks are the sum of i.i.d. variables. Different

curves are produced every time the program is executed, and regular shapes like

triangles and rectangles are typically seen. Traders can use these patterns to help

them determine when to enter and quit a deal.

Ramsey theory, a field of mathematics, has particular situations that correlate

to this observed occurrence of seeming regularity emerging from randomness (Pe-

terson, 1997a). The existence of regular patterns among a large set of randomly

selected objects is explained by Ramsey theory (Mandelbrot, 1982; Avnir, 1998).

The concept of a one-dimensional Brownian motion to simulate price changes was

first suggested (Mandelbrot and Mandelbrot, 1982; Avnir et al., 1998). Small

particles suspended in a liquid exhibit Brownian motion, an irregular motion with

a normal (Gaussian) distribution. Bachelier admitted, however, that his Gaussian

random walk model did not perfectly fit the financial data.

Different viewpoints and insights from the fields of mathematics, statistics, and

finance theory are presented here to shed light on the ongoing dispute over the

existence of patterns and randomness in the market.
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There are two major observations that cast doubt on the idea that market price

fluctuations follow a normal distribution with a finite variance. In the first place,

there is time-varying behavior in the sample variance of price changes. This statis-

tic measures the typical squared dispersion around the mean for a given set of data.

The second issue is that not all instances of price fluctuations follow a normal dis-

tribution.

Price fluctuations, according to Mandelbrot’s 1963 proposal Mandelbrot and Man-

delbrot (1982); Mandelbrot (1983), Mantegna and Stanley (1995), follow a Levy

stable distribution with infinite variance and larger tails than those expected from

a normal process. This suggests that extreme price swings are more common than

would be expected from a normal distribution.

Mantegna and Stanley (1995) conducted additional research on the subject of S&P

500 index fluctuations. From one minute to one thousand minutes, they discovered

that the random process was best described by a Levy distribution. They proposed

the idea of a truncated Levy flight distribution, which has a finite variance, as a

solution to the problem of infinite variance. This distribution takes into account

the constraints of actual monetary systems.

These findings cast doubt on the commonplace belief that price fluctuations in the

financial sector are normally distributed and have a finite variance, stressing the

need to investigate other distributions and models that more closely match market

reality.

The efficient market hypothesis maintains that the market is inherently unpre-

dictable, regardless of the existence of different price distributions. However, the

hypothesis is incorrect since it presumes that all investors are aware of the same

piece of news at the same time. In practice, insiders know things before the general

public does, experienced traders keep a close eye on news updates in real time, and

mutual fund investors usually find out about news the same day or the day after.

Despite the ease with which information may now be shared, there will always be

discrepancies in how and when certain pieces of news reach individual traders and

investors.
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Palmer and Rock (1994) raised doubts about the efficient market hypothesis and

its close cousin, the rational expectation theory. Market participants, they said,

lack perfect information, aren’t completely logical, and may have trouble figuring

out what their best moves should be. They also have no way of guaranteeing

that others will make the same choices they do. The data and strategies available

to and used by various agents may vary. Indicators such as these point to the

existence of prevailing market tendencies, suggesting that monetary fluctuations

are not completely at random.

Changes in signals over time are key to grasping their meaning. Continuous-time

signals, also known as analog signals, are unbroken in time and can be further

subdivided into discrete-time signals, which are functions of an integer-valued time

variable. It is common practice to sample a continuous-time signal with an analog-

to-digital converter in order to generate a discrete-time signal. Tick data from the

financial markets is one example of a signal that is intrinsically discrete-time.

A ”tick” is an up or down change in the price of a security’s trading on the stock

market. Many tick data points can occur in a short period of time, with ten

ticks possible in only one minute of trade. Tick data is frequently collected at

regular intervals in order to simplify and consolidate this information. In a 10-

minute chart, for instance, the greatest and lowest ticks of each interval as well

as the opening and closing ticks are depicted. This approach of financial market

data visualization is distinct from the more common practice of using the period’s

closing value.

Market participants put a lot of stock on the day’s high, low, open, and close prices

as indicators of future movement. Each hourly interval in a chart displays these

four prices again. In most cases, the last reported prices are used as the basis for

analysis, while the median of the day’s range may also be taken into account. It is

more practical and consistent with the mathematical idea of sampling to use the

previous day’s closing prices. If you have a 10-minute chart, you can extrapolate

the closing price for the hour by taking a sample every sixth point.

In 180 7, French mathematician Joseph Fourier introduced the concept of the

Fourier series, which expresses any practical signal as the sum of numerous sine
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waves. The field of digital signal processing has benefited greatly from this math-

ematical ideas (Broesch, 1997; Hubbard, 1998).

Financial data can be modeled as a sum of sine waves using the Fourier theorem.

Since a sine wave only has one frequency, it can be sampled at 32 times every

cycle. The frequency of the sine wave is equal to 1/32 of its period, as 1 period

equals 32 points. Since 2 radians is equal to 360 degrees, the sampling frequency

(in degrees per second) is 2/32, or 7/16 radians per cycle.

The Nyquist theorem Broesch (1997) states that in order to faithfully duplicate a

signal, its samples must be taken at a rate that is more than twice the frequency of

the signal’s highest frequency component. In other words, the maximum frequency

requires more than two samples every cycle. This criterion is the same as saying

the greatest frequency component must have a circular frequency of fewer than

radians. The primary signal in the financial market is price, which is plotted as

a series of bars on a chart over a certain period of time. When attempting to

predict market moves, technical analysts place a premium on pricing. Various

manipulations and indicators have been created to extract hidden information

from this raw price data in order to predict the direction of the market. One issue

with these algorithms is that they don’t all use the same procedure for figuring

out what the best sample frequency should be.

The purpose of this research is to use mathematics to investigate the non-random

character of financial markets and to analyze various scientific theories that shed

light on market dynamics. Since the state of the art in mathematics and science

is always expanding, we will be using scholarly articles to back up our claims as

we investigate. Understanding the market is still in its infancy, as its behavior is

driven by the aggregate activities of individuals, which are little understood.

The ability to quickly absorb large amounts of varied information and make in-

vestment judgments is a critical component in the creation of effective algorithms

for E-trading markets. Human intervention should be minimized, bias should be

removed, resources should be conserved, and time should be saved if this goal is

to be realized. The use of decimated data in algorithms is a viable strategy for

tackling these issues.
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To ”decimate” means to select a smaller selection of data that is indicative of the

whole. Algorithms based on decimated data allow for efficient management of big

datasets, with the retained information and complexity reduced. This method

improves the performance of algorithms by allowing them to zero in on the most

important features and patterns while ignoring the less relevant information.

Creamer and Freund (2010) trading system is a good illustration of this trend;

it uses machine learning techniques to produce positive anomalous returns over a

wide range of stock markets. The system’s weighting algorithm takes into account

both expert opinion and a risk-management mechanism to determine which fore-

casts are the most reliable and to prevent trading during volatile market periods.

This method’s use of decimated data facilitates rapid processing and analysis of

market data, which in turn enhances the precision of forecasts.

Creamer (2012) also suggests logtiboost approaches, which automatically normal-

ize trading models by utilizing several forms of technical analysis. This strategy

uses decimation to find the best possible set of technical indicators and to propose

novel trading rules from the perspective of a smaller dataset. This shows how

decimated data can improve trading system efficiency, as the algorithm surpasses

a collection of typical technical analysis tools.

When it comes to analyzing financial markets, the value of Big data-based algo-

rithms resides in their capacity to analyse massive amounts of data with minimal

human bias, expense, and time investment. These algorithms increase the accu-

racy of predictions and the quality of investment choices by applying decimation

techniques into the examination of complex market data.

The weekly buying and selling trend of TWSE stocks was studied by Chang et al.

(2018), who then defined it as an example of irrational conduct. The Risk Seeker

Indicator (RSI) was used to classify the weekly market situation into one of six

categories. The study’s authors zeroed in on the top 150 equities to determine

where irrational trading had the most noticeable effects.

All 150 stock securities were included in the study’s stock pool for analysis. The

first data period began on April 1, 2002, and ended on June 15, 2012; the second
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data period, which was used for backtesting, began on June 15, 2012, and ended on

May 9, 2014. The study’s authors created 5,000 hypothetical weekly stock return

scenarios to model extreme irrationality. The detected unreasonable behavior’s

consequences were measured and evaluated over the course of a 100-week back-

testing period.

Chang et al. (2018) investigated the many ways in which people behave differently

while making choices. In particular, they compared SF1’s (Safety First) results to

those of its rivals. Importantly, SF1 exceeded the Market in all but one indicator

(standard deviation), when it lagged behind. This research shows that RS1 (Risk

Seeker) and SF1 are superior to other methods.

RS1 (SF1) also fared better than RS2 (SF2), MV (Mean Variance), and the Market

when evaluating total return over a 100-week time horizon. The investigation also

uncovered an essential defect in the aforementioned algorithms, which originated

in the choosing of sample frequency. It was found that the optimum sample fre-

quency parameter cannot be determined by a lone method. For machine learning

algorithms to work as intended, precise sample sizes and frequencies are required.

Chang et al. (2018) research provided insight into individual differences in decision-

making style and showed that SF1 and RS1 were superior to their rivals. It was

stressed that the success of machine learning algorithms is heavily dependent on

picking suitable sample sizes and frequencies.

Li and Lin (2020) exploring found evidence of significant entropy even when con-

sidering larger time periods in their investigation. Twenty stocks from the SSE

50 index were chosen for further analysis, including the five with the highest and

lowest entropies based on daily data and the same five stocks chosen using high

frequency financial data collected every five minutes.

Researchers used a coarse-graining approach with amplification ratios ranging from

0 to 20 to account for the impact of multi-scale impacts on entropy computation

and stock selection. Using this approach, they were able to construct a coarse-

grained dataset from which they could determine the median and mean values,

thereby allowing them to distinguish between stocks with high and low entropy.

The median and the average were used to make the final cut.
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Plz, an information-theoretic predictability estimator derived from the Lempel-Ziv

estimator, was developed by Li and Lin (2020) for use in evaluating the predictabil-

ity of financial time series. Plz attempts to put a numerical value on the role that

past values played on the time series, with the ultimate goal of lowering the degree

of uncertainty surrounding future values.

2.3 Theoretical/Methodological Background of

Algorithms

This study focuses on online learning algorithms and their theoretical and empir-

ical gratifications.

2.4 Online Linear Regression

Learning that takes place online is based on a series of data samples that are

timestamped. The researcher is given an instance xt ∈ Rt at each and every step

t in the process. It begins by making an attempt to create a prediction for the

output of the incoming instance. This prediction is made using a formula that,

in the case of linear regression, has the form ŷt = ωT
t xt, where ωt ∈ Rn is the

weight vector that has been incrementally learned. Following the making of the

prediction, the true output yt ∈ R is revealed, and the learner then computes the

incurred loss ℓ (yt) , (ŷ) ∈≥0, depending on some criterion to assess the difference

between the learner’s forecast and the revealed true output. At the end of each

learning step, the learner will ultimately determine, using this loss, whether or not

to update the regression model, as well as how to do so.

2.4.1 Statistical Learning Theory

Understanding and foresight are the desired outcomes of the learning process.

One of the most important foundations for the theoretical analysis of machine
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learning problems is statistical learning theory, which was initially presented in

the late 1960s. This theory is particularly useful for supervised learning. There

are many different types of learning, such as supervised learning, unsupervised

learning, learning through online platforms, and learning through reinforcement.

Understanding supervised learning is easiest when approaching it from the point

of view of statistical learning theory proposed by Poggio et al. (2012), learning

from an existing training set of data is what supervised learning entails. At each

and every point in the training, there is a pair of input and output points, with

each input mapping to one of the outputs. The learning issue consists of deducing

the function that maps between the input and the output in such a way that the

learnt function can be used to predict the output based on the input that will be

provided in the future.

Problems in supervised learning can either be regression problems or classification

problems Osisanwo et al. (2017), depending on the type of output that is being

analysed. This indicates that there is a regression problem because the output

takes on a continuous range of values. A regression could be carried out with

voltage as the input variable and current as the output variable, using Ohm’s Law

as an illustration. The functional connection between voltage and current would

be determined by the regression to be R which would mean that V = IR Problems

that fall under the category of classification are ones in which the answer will be

one label from among a distinct collection of options. Applications of machine

learning often involve classification in some form or another. For the purpose of

facial recognition, for instance, the input would be a photograph of a person’s

face, and the output label would be that person’s given name. The input would

be represented as a very large multidimensional vector, and each member of that

vector would stand in for a pixel in the picture.

After learning a function based on the information contained in the training set

data, the function is then validated using a test set of data, which contains infor-

mation that was absent from the training set.
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2.4.2 Convex Optimization Theory

The use of convex sets and functions in optimization models Bertsekas (2015) is

extremely beneficial because of their rich structure, which makes it easy to conduct

analysis and develop algorithms. A significant portion of this structure can be

traced back to a small number of its fundamental features. As an illustration,

each point on the boundary of a convex set can be approached through the relative

interior of the set, and each halfline belonging to a closed convex set still belongs

to the set when translated to start at any point in the set. Closed convex sets can

be described in terms of the hyperplanes that support the set, and each point on

the boundary of a convex set can be approached through the relative interior of

the set. Nevertheless, in spite of their advantageous structure, convex sets and the

analysis of them are not devoid of anomalies and unique behaviour, both of which

lead to significant challenges in theoretical work and practical implementations.

For instance, in contrast to affine and compact sets, the degree to which the

closedness of closure convex sets is preserved by fundamental operations such as

linear translation and vector sum is not guaranteed to be constant. The discussion

of several fundamental optimization concerns, such as the existence of optimal

solutions and duality, is thus made more difficult as a result of this.

2.5 Online Passive-Aggressive Regression

The online passive-aggressive (PA) regression approach was initially described

(Crammer et al., 2006). It has been implemented in a variety of fields, such

as non-negative matrix factorisation and completion Blondel et al. (2008), on-

line portfolio selection Li et al. (2012), and statistical machine translation (Turchi

et al., 2014). Upon receiving an instance xt at the beginning of each cycle, the PA

regression algorithm produces a prediction for the target value ŷt = ωT
t xt using its

internal regression function. This forecast might be considered an approximation.

Following the conclusion of a prediction, the algorithm is presented with the actual

value of the target, at which point it immediately incurs a loss due to its faulty
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prediction. PA regression depends on the insensitive loss function (ILF) (Vapnik,

1998).

2.5.1 Online Gradient Descent

Numerous issues with online learning can be re-framed as “online convex optimi-

sation” (OCO) tasks, as was previously stated, and then solved using the ”online

gradient descent” (OGD) algorithm.

In the broadest sense imaginable, it is pertinent to the OCO setting. Zinkevich

(2003) was the first to deliver it in an online setting. Its development was based

on the offline optimization technique known as standard gradient descent.

Beginning where it left off in the previous iteration, the algorithm moves linearly,

taking one step at a time.

The direction that the gradient of the prior cost would go in. It is feasible to

reach a point that does not belong to the underlying convex set if you use this

strategy in its entirety. The approach ”projects” the point back onto the convex

set in situations like these. This means that it locates the convex point that is

most near the target point. Even while the next cost function may be completely

different from the costs that have been seen up to this point, the regret that the

algorithm ultimately produces is still sublinear (Hazan et al., 2016).

2.6 Second-Order Online Learning

In recent years, significant progress has been made toward the development of

second-order online learning algorithms with the goal of improving the efficiency

of first-order learning strategies. When using these approaches, the weights are

almost always given a Gaussian prior distribution. This distribution has a mean

vector of µ ϵ Rn and a covariance matrix of Σ ε Rn×n. Keeping the model pa-

rameters up to date is an integral part of the online learning process. Examples

of second-order algorithms for linear regression include adaptive regularisation of

weight vectors Crammer et al. (2009), which was motivated by confidence-weighted
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learning Dredze et al. (2008), and a more recently introduced Bayesian treatment

of online PA learning, namely online Bayesian passive-aggressive learning (Liu

et al., 2017).

2.6.1 Confidence-Weighted Learning

Confidence-weighted (CW) learning was introduced by Dredze et al. (2008) as a

probabilistic extension of online passive-aggressive learning. CW learning accounts

for model/parameter uncertainty by retaining a probabilistic confidence measure.

As a probabilistic extension of online passive-aggressive learning, CW learning was

created. In each weight with a lower confidence level are altered more frequently

than those with a higher confidence level. A Gaussian distribution on weight

vectors is used to formalise weight confidence. This distribution is adjusted for each

new training instance so that the probability of successful classification for that

instance under the updated distribution meets a specified confidence threshold.

2.6.2 Adaptive Regularisation of Weights

It has been shown that confidence-weighted algorithms perform well in practise

(see, for example, Dredze et al. (2008), however these algorithms also have a

number of limitations. To begin, the update takes a rather proactive stance, since

it requires that the chance of accurately forecasting each example be at least more

than half, despite the fact that this increases the cost to the aim. When labels

are noisy, this can lead to significant over-fitting, which is especially problematic

when considering the assumption made by the CW framework that data can be

linearly separated. Second, they are designed to be used for classification, and it is

not entirely clear how they may be applied in other situations, such as regression.

This is due, in part, to the fact that the constraint is stated in discrete terms,

meaning that the forecast will either be accurate or inaccurate.

Adaptive regularisation of weights, also known as AROW, is a variation of CW

that was proposed by Crammer et al. (2009) to address both of the aforementioned
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challenges, specifically dealing with label noise in a more efficient manner and

generalising the benefits of CW learning in an extendable manner.

In conclusion of the literature review, this study focuses on testing the following

research hypotheses:

1. Algorithmic trading algorithms can effectively use decimated data.

2. In terms of overall results, algorithm-based trading performs better than

market-based trading.

3. Longer forecasting and decision-making time horizons produce superior out-

comes over shorter ones.

4. Compared to passive investment techniques, algorithm-based trading strate-

gies have more long-term risks.

5. Algorithm-based methods provide a more robust approach to market volatil-

ity by providing greater risk-adjusted returns against downside risks.



Chapter 3

Research Methodology

3.1 Online Strategies-Background

Online portfolio selection is an important part of computational finance, therefore

it has attracted a lot of attention from academics in domains as diverse as finance,

statistics, AI, ML, and data mining.

Based on Li and Hoi (2014) and similar studies, summarized in the Table 3.1, the

most popular machine learning methodologies currently being employed in this

field of study. The goal is to compile and categorize existing research in this field.

The algorithms’ advantages and disadvantages are laid forth in a systematic man-

ner after a thorough literature analysis (Li et al., 2013, 2015; Hoi et al., 2021). The

Follow the Winner strategy, which has its origins in the Regret Bound Theory, is

one of the most popular approaches. Successful equities would theoretically be

given a greater share of the portfolio under this approach. However, data reveals

that in practice, it does not function particularly well. More importantly, real

market data does not corroborate the theory’s central tenet, which is that rela-

tive prices follow an independent and identically distributed (i.i.d.) pattern. The

Follow the Loser method is another option, and it’s based on the idea that price

fluctuations will eventually return to their averages. For short-term data, such

daily price data, however, the strategy’s claimed high cumulative returns have

been debunked by academics.

43
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Pattern-matching methods incorporate winner-and-loser algorithms and nonpara-

metric sequential investing strategies. Pattern matching and optimization are the

two main phases of these methods. However, they gloss over the existence of

cyclical trends in the industry.

The Fund of Funds (FoF) theory provides a foundation for many of the expert

tactics used in Meta-Learning Algorithms. These methods may share a common

ancestor or originate from entirely separate classes. This method incorporates

intricate mathematical models, which is a huge plus in terms of sophistication.

In conclusion, scholars in the subject of online portfolio selection have investigated

a wide range of tactics, taking into account a wide variety of theoretical frame-

works and methods. The i.i.d. assumption, inconsistent performance, and failing

to capture recurring patterns are some of the criticisms leveled at these methods.

There is hope in the development of meta-learning algorithms because of their po-

tential to mix different approaches taken by experts and make use of mathematical

simulations. The efficiency and reliability of online portfolio selection algorithms

could benefit from more study and development in this area.

3.2 Mathematical Prospective of Problem

Suppose there is a financial market with m different assets; in this market, we

distribute our funds throughout n different trading sessions among all of the assets.

The fluctuation in market price is characterised by an m-dimensional price relative

vector denoted by xt ε Rm
+ , wheret = 1...., n, and the ith component of the ith price

relative vector, denoted by xt,i, is the ratio of the ith closing price to the ith asset’s

most recent closing price.

As a consequence of this, the value of an investment made during period t in asset

i grows by a factor of xt,i. A market window, which consists of a sequence of

price relative vectors xt2
t1 , is another way that we refer to the changes in market

price that occur between periods t1 and t2 where t2 is longer than t1. t1 equals{
xt1,.... , ....xt2

}
, where t1 denotes the beginning of the period and t2 denotes the
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Table 3.1: Classification of Algorithms: Reproduced from (Li and Hoi, 2014)

CLASSIFICA-
TIONS

ALGORITHMS REFERENCES
REPRESENTA-

TION

Benchmarks
Buy and Hold, Best stocks

Constant Rebalance Portfolio

(Kelly, 1956a)

(Cover, 1991)

Follow the Win-
ner

Universal Portfolios

Exponential Gradient

Follow the Leader

Follow the Regularized Leader

Aggregating-type Algorithms

(Cover, 1991; Cover and
Ordentlich, 1996)

(Helmbold et al., 1998)

(Gaivoronski and S.,
2000)

(Agarwal et al., 2006)

(Vovk and Watkins,
1998)

Follow-the-
Loser

Anti Correlation

Passive Aggressive Mean Rever-
sion

Confidence Weighted Mean Re-
version

Online Moving Average Rever-
sion

Robust Median Reversion

(Borodin et al., 2003,
2004)

(Li et al., 2012)

(Li et al., 2011b, 2013)

(Li et al., 2012)

(Huang et al., 2012)

Pattern-
Matching
Approaches

Nonparametric Histogram Log
optimal Strategy

Nonparametric Nearest Neigh-
bor Log-optimal Strategy

Nonparametric Kernel-based
Log-optimal Strategy

Correlation-driven Nonparamet-
ric Learning Strategy

Nonparametric Kernel-based
Semi-log-optimal Strategy

Nonparametric Kernel-based
Markowitz-type Strategy

Nonparametric Kernel-based
GV-type Strategy

(Györfi et al., 2006)

(Györfi et al., 2006)

(Györfi et al., 2008)

(Li et al., 2011a)

(GYÖRFI et al., 2007)

(Ottucsák and Vajda,
2007)

(Györfi et al., 2008)
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Table 3.1: (Continued)

CLASSIFICA-
TIONS

ALGORITHMS REFERENCES
REPRESENTA-

TION

Meta-Learning
Algorithm’s

Aggregating Algorithm

Fast Universalization Algorithm

Online Gradient Updates

Online Newton Updates

Follow the Leading History

(Vovk, 1990; Vovk and
Watkins, 1998)

(Akcoglu et al., 2002,
2004)

(Das and Banerjee,
2011)

(Das and Banerjee,
2011)

(Hazan and Seshadhri,
2009)

conclusion of the period. xn
1 = {x1, ....xn} signifies a one-of-a-kind market window

that extends from period 1 all the way up to period n.

An investment that will be made at the start of the tth term is denoted by the

portfolio vector bt, where t = 1, ....n. The proportion of total portfolio capital

that is allocated to the ith asset is represented by the value of the ith portfolio

component, bt,i. In general, we operate on the assumption that a portfolio is self-

financed and that neither margin trading nor short sells are allowed. Therefore,

if a portfolio meets the conditions bt ε ∆m , where ∆m =
{
b : b ⪰ 0,bT1 = 1

}
,

where each input is positive and the sum of all entries equals one, then the portfolio

is said to be in good standing. One represents a vector of lengthm that is composed

entirely of ones, while bT1 represents the inner product of one and another vector,

1. A portfolio strategy that depicts the investment operation from period 1 to

period n is comprised of the mappings described in the following lines:

bt =
1

m
1, bt : Rm(t−1))

+ → ∆m, t = 2, 3, ..., n (3.1)

where bt = bt

(
xt−1
1

)
is the portfolio from the market window of the time before

the current time period i.e. xt−1
1 . The method for managing a portfolio over n
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different time periods can be expressed as bn
1 = {b1, ....,bn}.

At the beginning of time t, a portfolio manager invests money into the portfolio in

accordance with portfolio bt and keeps it there until the end of time t. Accordingly,

the portfolio’s wealth will grow by a factor of bT
t xt = Σm

i=1 bt,ixt,i.

The portfolio’s value will increase at an exponential rate due to the model’s use of

price relationships and subsequent reinvestment of profits. After n iterations, the

cumulative wealth is equal to S0, assuming that the portfolio strategy bn
1 raises

the initial wealth S0 by a factor of
∏n

t=1 b
⊤
t xt from period 1 to period n i.e.

Sn (b
n
1 ) = S0

n∏
t=1

b⊤
t xt = S0

n∏
t=1

Σm
i=1bt,ixt,i (3.2)

We define the exponential growth rate for a strategy bn
1 as follows because the

model implies multi-period investment:

Wn (b
n
1 ) =

1

n
log Sn (b

n
1 ) =

1

n
Σn

t=1 log bt.xt. (3.3)

Let’s put the finishing touches on the online portfolio selection approach by putting

all the components in place. A portfolio manager is the person who makes the

final decision in a portfolio selection task. A portfolio manager’s job is to devise a

portfolio strategy bn
1 in order to achieve a set of predetermined goals. The objective

is to get a cumulative value for the portfolio that is as high as possible, Sn, while

maintaining the same general principles that are used by the algorithms outlined in

Algorithm 1. Portfolio managers learn a new portfolio vector bt at the beginning

of period t based on the previous market window xt−1
1 for the subsequent price

relative vector xt, where the decision criterion differs between managers/strategies.

The portfolio bt is determined by the portfolio period return bt · xt. This process

is repeated until period n, at which point the portfolio’s total wealth Sn is used

to evaluate the strategy’s success.

It is possible to back-test any online Stock selection algorithm by following the

steps outlined in Algorithm 1, which presents the overall architecture of online

stock selection. This popular model makes the following assumptions:
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Algorithm 1 Framework for Stock Prediction

1: Input:xn
1 : Historical market sequence;

2: Output:Sn: Cumulative wealth (end)
3: Initialize S0 = 1; b1 =

(
1
m
, ..., 1

m

)
4: for t = 1, 2, ..., n do
5: Stock bt computes;
6: Relative Price xt reveals;
7: Over time period retun b⊤x, updates St = St − 1 ×

(
b⊤x

)
;

8: Stock selection rules updates by decision manage;r
9: end

3.2.1 Model Assumptions

First, the approach relies on the absence of transaction fees and taxes. Secondly,

the model assume that every asset can be bought or sold in any quantity at its

closing price, which suggests that the market is liquid. Thirdly, as far as we’re

aware, there is no impact-costing approach of stock selection that also assumes no

change in market behaviour.

3.2.2 Dealing with Transaction Costs Issue

This research follow the widely adopted model “Proportional Transaction Cost”

proposed by Vovk and Watkins (1998), wherein the transaction cost is proportion-

ally associated during the re-balancing mechanism of transferring of wealth among

the different set of assets.

In this approach the investor manager plans to re-balance the stock from the

close-price adjusted returns b̂t−1 to a new combination of stock bt at the start of

the tth period. Here, they determine each component of b̂t−1 by solving b̂t−i =
bt−1,ixt−1,i

bT
t−1xt−1

, for i=1,...,m However, it is crucial to keep in mind that this transna-

tional solution has nothing to do with those strategies that specifically deal with

the issue of transaction costs (Györfi et al., 2008; Ormos and Urbán, 2013).
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3.3 A Brief of Online Learning Algorithms and

Strategies

3.3.1 Benchmarks

This online algorithm responds to each request in the game of requests and answers

before serving the next one. Such actions each result in a certain gain. In com-

petitive analysis, an algorithm’s performance is determined by dividing the sum

of the gains from the best off-line algorithm and the best online algorithm, both

of which service the same series of requests across the worst-case inputs (Chen

et al., 1999). The competitive ratio is the ratio that the online algorithm aims to

minimise.

3.3.1.1 Buy and Hold Strategy

The buy-and-hold (BAH) strategy, which invests money in the market with an

initial portfolio of b1, and retains the portfolio until the end, is the most popular

baseline. The portfolio holdings are altered implicitly in reaction to market move-

ments, with the manager only making asset acquisitions at the beginning of the

first period. In this way the holding of portfolio becomes b1
⊙

x1

b⊤
1 x1

, where
⊙

used

for element wise product and refraining from re-balancing in future periods. The

final product under BAH strategy becomes;

Sn (BAH (b1)) = (b)1 ·

(
n⊙

t=1

xt

)
(3.4)

The uniform BAH strategy is the BAH strategy with an initial uniform portfolio

of b1 = ( 1
m
, ...., 1

m
), and it is commonly employed as a market strategy to generate

a market index.

3.3.1.2 Best Stock (Best) Strategy

The Best Stock (Best) strategy, a unique BAH method that invests all capital on

the best stock in retrospect, is another popular benchmark. It has a hindsight
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approach since its starting portfolio can be estimated as

b◦ = argmax
b ε ∆m

b ·

(
n⊙

t=1

xt

)
(3.5)

This allows us to derive an expression for the cumulative wealth attained by the

Best approach over time as:

Sn(Best) = max
b ε ∆m

b ·

(
n⊙

t=1

xt

)
= Sn(BAH(b◦)) (3.6)

3.3.1.3 Constant Re-balanced Portfolio

Constant Re-balanced portfolio maintains the same wealth distribution among a

group of assets throughout time. These algorithms are built on the premise that a

fixed asset allocation approach can produce high returns. The wealth produced by

a continuously re-balanced portfolio, however, is frequently significantly less than

the wealth produced by an ad hoc investing strategy that responds to market

fluctuations because stock markets are far from being stationary. The portfolio

strategy can be written as bn
1 = {b,b, ...} So, the total portfolio value achieved

by a CRP approach after n periods is defined as,

Sn(CRP (b)) =
n∏

t=1

b⊤xt. (3.7)

3.3.2 Follow the Winner Approaches

The ”Follow-the-Winner” technique gives more weight to the advice of experts/-

stocks who have been correct in the past. Generally these algorithms follow the

the BCRP technique, which has been proved to be the optimal strategy in an

i.i.d. market (Cover, 1991). This optimality promotes ”universal portfolio selec-

tion” algorithms to come close to the performance of the hindsight BCRP for any

sequence of price relative vectors, commonly known as individual sequences.
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3.3.2.1 Universal Portfolios

Algorithms of the Universal Portfolio variety work on the principle of pooling

the profits earned by a group of experts in a specific field. The Buy and Hold

(BAH) strategy is an analogue of this tactic. The approach of investing in a single

stock, on the other hand, is known as base BAH expert, and the number of ex-

perts corresponds to the number of stocks. This means that the BAH technique

comprises the acquisition of stocks, the subsequent sale of those stocks, and the

final pooling of those stocks’ capital. In contrast, the foundational expert in the

Follow-the-Winner grouping can be any market-investing strategy class. Further-

more, algorithms in this class are related to Meta-Learning Algorithms (MLA),

which are discussed in later section, however MLA often applies to experts in more

than one class.

3.3.2.2 Exponential Gradient

Techniques of the Exponential Gradient type frequently centre their attention on

the following optimization issue:

bt+1 = arg max
b ε ∆m

η log b · xt − R (b,bt) (3.8)

where η > 0 represent the learning rate and R (b,bt) for regularisation term.

Following the stock with the best return during the prior time period while main-

taining a degree of resemblance between the new and old portfolios is one straight-

forward interpretation of optimization.

3.3.2.3 Follow the Leader

The Follow the Leader (FTL) approach makes an effort to resemble the Best

Constant Rebalanced Portfolio (BCRP) until time t i.e.

bt+1 = b⋆
t = arg max

b ε ∆m

t∑
j=1

log (b · xj). (3.9)



Research Methodology 52

There is no doubt that the BCRP is the category leader and, indeed, the ultimate

leader across all time periods. A method for obtaining portfolios by combining the

BCRP up to time t with a uniform portfolio was briefly discussed by Ordentlich

Ordentlich and Cover (1998), which is as follows;

bt+1 =
t

t+ 1
b⋆
t +

1

t+ 1

1

m
1. (3.10)

3.3.2.4 Category of Follow the Regularized Leader

Another family of approaches, called Follow the Regularized Leader (FTRL), takes

the FTL concept and applies a regularisation term to it. As a whole, the following

constitutes FTRL methods:

bt+1 = arg max
b ε ∆m

t∑
τ=1

log (b · xτ ) − β

2
R (b) (3.11)

where R (b) is a regularisation term on b and β is the trade-off parameter. In

contrast to the EG method, the regularisation term here only applies to the sub-

sequent portfolio because all relevant past information has already been collected

in the first term. In L2 norm, where R(b) = ∥b∥2, is an example of a common

regularizer.

3.3.2.5 Category of Aggregating-type Algorithms

However, in real markets, the i.i.d. assumption is debatable, therefore the optimal

portfolio may not be a CRP or fixed fraction portfolio even though BCRP is the

optimal strategy for such a market. It’s possible to use some algorithms that

were developed specifically for the purpose of following a certain type of subject

matter experts. These algorithms are conceptually related to the Meta-Learning

Algorithms discussed later in later paragraph. Whereas Meta-Learning Algorithms

typically apply to more complicated experts from several classes, in this case the

basis experts are of a specific class: individual experts that invest just in a single

stock.
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Cover’s UP is a special example of the online portfolio selection task, which was

addressed by Vovk and Watkins (1998) using the Aggregating Algorithm (AA)

(Vovk, 1990; Gaivoronski and S., 2000). In order to obtain good performance

that is not poorer than any predetermined combination of underlying experts, the

typical context for AA involves defining a countable or finite collection of base

experts and sequentially allocating the resource among many base experts. The

mathematical formulation for its online portfolio selection update is:

bt+1 =

∫
∆m

b
∏t−1

i=1 (b · xt)
η P0 (db)∫

∆m

∏t−1
i=1 (b · xt)η P0 (db)

(3.12)

in above the experts’ initial weights, P0 (db), are appended. Cover’s Universal

Portfolios is a particular instance of AA when the prior distribution is uniform

and η = 1.

3.3.3 Follow-the-Loser Approaches

In order for BCRP to work optimally, it assumes the market is i.i.d., which is

not necessarily true in practise and can lead to subpar empirical performance, as

has been seen in a number of literatures. The Follow-the-Loser strategy, in con-

trast to the Winner-Take-All approach, typically involves redistribution of money

from the winners to the losers. Mean reversion is the premise upon which this

strategy is built De Bondt and Thaler (1985); Poterba and Summers (1988); Lo

and MacKinlay (1990), which states that high-performing assets will continue to

perform at high levels in subsequent periods.

3.3.3.1 Anti Correlation

A Follow-the-Loser portfolio approach called Anti Correlation (Anticor) (Borodin

et al., 2003, 2004). Unlike Cover’s UP, which makes no distributional assumptions,

Anticor’s approach to the market operates under the premise that it will tend

toward its mean. Specifically, it uses a statistical wager on the reliability of positive
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lagged cross-correlation and negative auto-correlation in order to take advantage

of the mean reversion feature.

Anticor utilises logarithmic price relatives Hull (2008) in two distinct market win-

dows y1 = log (xt−w
t−2w+1) and y2 = log (xt

t−w+1) to generate a portfolio for the t+1
st

period. The matrix of cross-correlation between y1 and y2 is then determined;

Mcov (i, j) =
1

w − 1
(y1,i − ȳ1)

⊤(y2,j − ȳ2) (3.13)

Mcov (i, j) =


Mcov(i,j)

σ1(i) ⋆ σ2(j)
σ1(i), σ2(j) ̸= 0

0 otherwise
(3.14)

Anticor’s algorithm then adjusts the matching quantities in the cross-correlation

matrix to redistribute wealth in accordance with the mean reversion trading idea,

shifting resources from outperforming to underperforming companies.

In instance, Anticor claims a transfer from asset i to j with the amount equal

to the cross correlation value Mcori,j minus their negative auto correlation val-

ues (min
{
0,Mcor (i, j)

}
) and (min

{
0,Mcor (j, j)

}
). In order to maintain the

portfolio in the simplex domain, these transfer claims are normalised.

3.3.3.2 Passive–Aggressive Mean Reversion

Either every stock falls at the same time or only some stocks fall, but both scenarios

are equally undesirable. Because it concentrates an excessive amount of wealth

on ”mine” stocks, such as Bear Stearns during the subprime crisis, actively re-

balancing may not be the best strategy when confronted with such circumstances.

This is due to the fact that it diversifies the portfolio less. It is in an investor’s best

interest to maintain the same portfolio they had before investing in ”mine” stocks

in order to reduce the likelihood of incurring losses as a result of the potential risks

associated with those stocks. A novel online portfolio selection (OLPS) method

called passive-aggressive mean reversion (PAMR) is based on mean reversion (Li
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et al., 2012). This algorithm derive the initial loss function of the mean reversion

principle. This method, when combined with passive-aggressive online learning,

can successfully take advantage of mean reversion (Crammer et al., 2006). When

we look at PAMR’s updating strategy, we see that it effectively reflects the mean

reversion concept and strikes a balance between portfolio return and volatility

risk. The PAMR method outperforms all benchmarks and nearly all cutting-edge

algorithms on the majority of performance metrics.

3.3.3.3 Confidence-Weighted Mean Reversion

The confidence-weighted mean reversion (CWMR) algorithm modifies the distri-

bution in a step-by-step manner so that it is consistent with the notion of mean

reversion. This is accomplished by modelling the portfolio vector as a Gaussian

distribution. This model was conceptualised by Dredze et al. and Crammer et al.

with the use of the financial mean reversion principle and the online confidence-

weighted (CW) machine learning method (Dredze et al., 2008; Crammer et al.,

2008). Both of these studies were published that same year (2008). The closed

form updates provided by CWMR provide unmistakable proof of the mean rever-

sion trading idea as well as the interaction between first-order and second-order

data.

This strategy in learns portfolios effectively apply the mean-reversion feature that

is present in financial markets as well as the second-order knowledge that is as-

sociated with a portfolio. The CWMR update techniques are accomplished by

finding solutions to two optimization problems that take into consideration first-

and second-order information of a portfolio vector. This method is an improvement

above any of the preceding methods, which solely considered first-order informa-

tion.

3.3.3.4 Online Moving Average Reversion

Li et al. (2012) defined a multiple-period mean reversion called Moving Average

Reversion, and proposed OnLine Moving Average Reversion (OLMAR) to take
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advantage of the multiple-period mean reversion, whereas PAMR and CWMR

implicitly assume single-period mean reversion, resulting in one failure case on

real data set.

The notion behind OLMAR is that the price vector associated with an x can be

used to make implicit predictions about future prices: p̂t−1 = pt−1, where x has

a price vector of p. The severe single-period projections made in Li et al. (2012)

may have been incorrect in certain cases because to the inherent problems of such

predictions.

The authors instead presented a multiple period mean reversion, which explicitly

predicts the future price vector as the moving average inside a window. They used

the simple moving average, which is calculated as MAt = 1
w

∑t
i=t−w+1 pi. The

following price related Li et al. (2012) becomes;

x̂t+1(w) =
MAt(w)

pt

=
1

w

(
1 +

1

xt

+ ...+
1⊙w−2

i=0 xt−i

)
(3.15)

for which w is the window size and
⊙

is the element-wise product symbol. Next,

they started using PAMR-like passive aggressive online learning Crammer et al.

(2006) to acquire knowledge about a portfolio.

bt+1 = arg min
b ε ∆m

1

2
∥b − bt∥2 s.t. b · ˆxt+1 ≥ ε (3.16)

3.3.3.5 Robust Median Reversion.

Existing mean reversion algorithms generally suffer from estimate errors, leading to

non-optimal portfolios and poor performance in practise since they do not account

for disturbances and outliers in the data. Huang et al. (2012) introduced a unique

portfolio selection technique dubbed Robust Median Reversion for dealing with

disturbances and outliers by exploiting mean reversion via a robust L1-median

estimator (RMR).
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3.3.4 Pattern-Matching based Approaches

The methods that fall under the Follow-the-Winner and Follow-the-Loser cate-

gories aren’t the only ones that can use winners and losers; pattern matching

strategies can, too. Specifically, this class includes non-parametric sequential in-

vestment strategies that are guaranteed to be consistent everywhere at all times,

with trading rules that are growth optimal for every stationary and ergodic market

process. The Follow-The-Winner strategy is not based on the optimality of BCRP

like it is for the i.i.d. market.

Pattern-matching based approaches maximise the conditional expectation of log-

return given prior observations by taking into account the non i.i.d. market (Algoet

and Cover, 1988). In addition, the sequential prediction problem is also addressed

by employing some of these methods (Biau et al., 2010).

3.3.4.1 Correlation-Driven Nonparametric Learning

At this point in time, the pattern-matching method, which is naturally straight-

forward, is capable of reaching its maximum level of performance. Nevertheless,

identifying the days of the week that provide the most competitive rates is one of

the aspects of this strategy that presents the greatest challenge. The Euclidean

distance is frequently utilised by existing solutions in order to ascertain the degree

of resemblance that exists between two preceding market periods. Euclidean dis-

tance, on the other hand, simply looks at the area around the most recent market

windows and ignores whether or not there is a linear or nonlinear relationship

between the two market windows. This relationship is essential for creating an

accurate price relative estimate.

Euclidean distance, on the other hand, simply analyses the neighbourhood of the

most recent market windows and ignores the linear or nonlinear relationship be-

tween two market windows, despite the fact that this relationship is essential for

the assessment of price relativeness. Li et al. (2011a) proposed exploiting com-

parable patterns through a correlation coefficient, which effectively evaluates the

linear relationship, and offered a novel pattern matching-based online portfolio
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selection technique called “CORrelation-driven Nonparametric learning.” Li et al.

(2011a) (CORN). At the moment, the proposed CORN is able to capture the lin-

ear relationship that exists between two market windows, and it is even possible to

capture the nonlinear relationship that exists between them. This is an improve-

ment over the previous implementation of the CORN, which was unable to capture

either of these types of relationships. This new implementation of the CORN is

an improvement over the one that came before it. It would be more attractive

to develop a strategy that can manage the risk appropriately without cutting too

much return than it would be to develop a strategy that can generate high re-

turns but is frequently associated with high risk. Although high return strategies

are frequently associated with high risk, it would be more attractive to develop a

strategy that can manage the risk appropriately without cutting too much return.

This is due to the fact that the process of building a strategy that can effectively

control risk without sacrificing too much return would be more difficult than the

process of developing a strategy that can create high returns despite frequently

being linked with high risk.

3.3.4.2 Selection of Samples

The main goal of sample selection is to compare the previous market windows of

the two price relatives in order to find historical price relatives that have samples

that are similar. Assume that one of our objectives is to find the price relatives

that are comparable to the next price relative, xt+1. The basic method is to go

through all relative price vectors from the past bi, i = ω + 1, .., t and count xi

as comparable if the previous market window xi−1
i−ω is similar to the most recent

market window xt
t−ω+1.

In collection C, we keep track of the indices of close relatives based on how much

they cost to buy. When comparing two market windows, which are both ω ma-

trices, the concatenated ω × m-vector is a common measure of their similarity.

Sample Selection (C (xt
1, ω)) is elaborated upon in the Algorithm 2
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Algorithm 2 Framework for sample selection (C (xt
1, w))

1: Input:xt
1: Historical market sequence; ω: window size;

2: Output:C: Index set of similar price relatives.
3: Initialize C = Ø;
4: if t ≤ ω + 1 then
5: return;
6: end
7: for i = ω + 1, ω + 2, ..., t do
8: if xi−1

i−ω is similar to xt
t−ω+1 then

9: C = C ∪ {i};
10: end
11: end

3.3.5 Category of Meta-Learning Algorithms

Another topic of research in the realm of online portfolio selection is the Met-

aLearning Algorithm (MLA) (Das and Banerjee, 2011). In the field of machine

learning, there is a close connection between it and the concept of expert learning

(Cesa-Bianchi and Lugosi, 2006). This is especially important to keep in mind

for ”Funds of Funds,” which are investment vehicles that sell portions of their

portfolio to other funds. In most cases, MLA takes into account the opinions of a

number of base experts, who may or may not come from the same strategy class.

In preparation for the future period, each specialist generates a portfolio vector,

which MLA combines in order to form a complete portfolio.

However, in situations in which it is difficult to draw a theoretical bound, the

universal quality can be given to the entire MLA system by combining a universal

strategy with a heuristic algorithm like Anticor, etc. In conclusion, MLA has the

potential to incorporate every existing approach, providing a far broader scope of

applicability. The majority of the online portfolio selection algorithms discussed

above have a fascinating connection to the Capital Growth Theory. The Table

3.2 describe a brief summary, shown the connection of existing algorithms wit the

Capital Growth theory.
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Table 3.2: Algorithms Connection with Theory

Algorithms x̂t+1 Prob. Forms of Capital
Growth

BCRP xi, i = 1, .., n 1/n
bt+1 = arg max b ε ∆m

1
n

∑n
i=1 log b · xi

EG xt 100%
bt+1 = arg max b ε ∆m

logb · xt − λR(b,bt)

PAMR 1
xt

100%
bt+1 = arg max b ε ∆m

b · xt + λR(b,bt)

CWMR 1
xt

100%
bt+1 = arg max b ε ∆m

P (b · xt) + λR(b,bt)

OLMAR/RMR 1
xt

Eq. 3.17 & 3.18
bt+1 = arg max b ε ∆m

b · x̂t+1 − λR(b,bt)

BH/BK/BNN/CORN xi, i ε Ct
1

|Ct|

bt+1 = arg max b ε ∆m

1
|Ct|
∑

i ε Ct
logb · xi

BGV xi, i ε Ct
1

|Ct|

bt+1 = arg max b ε ∆m

1
|Ct|
∑

i ε Ct
(logb · xi+

logC(·))

FTL xt i, , , , t
1
t

bt+1 = arg max b ε ∆m

1
t

∑t
i=1 log b · xi

FTRL xt i, , , , t
1
t

bt+1 = arg max b ε ∆m

1
t

∑t
i=1 log b · xi−

λR(b)

3.4 Focus of This Study: Online Moving Aver-

age Reversion

Empirical studies show that extremes in a stock’s price range, both up and down,

are transient and that the mean reversion phenomena tends to be followed by

stock price relatives. Even though existing mean reversion algorithms can achieve

acceptable empirical performance on a wide range of real data sets, they usually
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assume a single-period mean reversion assumption that is not always satisfied,

leading to subpar performance on some real data sets. This is due to the fact that

the assumption relies on mean reversion occurring periodically. The assumption

is based on the finding that mean reversion always occurs over the same time

frame. Multiple-period mean reversion, also known as the moving average rever-

sion (MAR), was proposed by Li et al. (2015), along with a new online portfolio

selection (OLPS) strategy exploiting MAR using potent online learning techniques

and given the term online moving average reversion (OLMAR).

3.4.1 Modelling in Online Moving Average Reversion (OL-

MAR)

This study mainly focuses on Online Moving Average Reversion (OLMAR) and

proposes a decimated version called the D-OLMAR algorithm. Classifying multi-

period mean reversion as ”Moving Average Reversion” (MAR) is the basic idea.

MAR uses moving averages to explicitly estimate future price movements and uses

online learning approaches to improve portfolios. OLMAR is significant for being

the first algorithm to use moving averages in online portfolio selection. Extensive

studies on real markets empirically support OLMAR, which, despite its simplicity,

demonstrates efficient updates. The findings show that OLMAR performs better

than current algorithms in terms of cumulative wealth, indicating a significant

benefit, especially with regard to preventing performance degradation in certain

datasets such as DJA Borodin et al. (2004); ?(Borodin et al., 2004; Li et al., 2012).

OLMAR is also faster to execute than state-of-the-art techniques nowadays, which

makes it ideal for large-scale applications.

The vast majority of formulations that are now on the market conform to the

conventional practise of Kelly-based stock selection (Kelly, 1956b; Thorp, 1971).

To provide a greater level of detail, a investment manager will make a projection

for X̄t−1 based on k probable values, which include X̄1
t−1, ...., X̄ t

t+1 in addition

to the probabilities that are associated with them (ρ1, ..., ρk). It is essential to

bear in mind that each x I t+1 represents a unique alternative combination vector
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of individual price relative estimates. It is also crucial to keep this fact in mind.

Constructing a portfolio with the objective of getting the best feasible predicted

log return is the next step for him or her to take.

Considering the limitations discussed by Li et al. (2013, 2015); Hoi et al. (2021) of

mean reversion algorithms, : proposed multiple time period mean reversion algo-

rithms, named Moving Average Reversion (MAR). Wherein, OLMAR assume that

p̄t+1 = p̄t−1 will revert to moving average (MA), where MAt represent the moving

average consistency till the end of period t. Further, it observes the long-term

trend and thus overcomes the drawbacks of existing mean reversion algorithms. A

brief mathematical introduction of Simple Moving Average strategy proposed by

Li et al. (2015), is as follows;

3.4.1.1 Simple Moving Average Reversion

x̄t+1(ω) =
SMAt(ω)

ρt
= 1

ω

(
ρt
ρt
+ ρt−1

ρt
+ · · ·+ ρt−ω+1

ρt

)
= 1

ω

(
1 + 1

xt
+ · · ·+ 1

⊙ω−2
i=0 xt−1

)
(3.17)

where SMA is Simple Moving Average, ω is the window size, ρ is the price vector

and relative change in prices are shown by x and ⊙ denotes the element-wise

product (Li et al., 2015).

OLMAR capture the Creamer’s basic idea of passive aggressive (PA), Creamer

(2007) to explain the moving average reversion. In simple words, PA incorpo-

rate the previous output if the classification found correct and adopt aggressively

approaches in case of incorrect classification.

OLMAR Algorithm

The OLMAR optimization problem presented by Li et al. (2015) is given as;

bt+1 = argb∈∆m
min

1

2
∥b− bt∥2 s.t. b.x̃t+1 ≥ ε (3.18)

where x̃t+1 is the next price relative which is inversely proportional to last price

relative xt. In particular, they implicitly assume that next price p̃t+1 will revert
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to last price pt−1, as follows;

x̃t+1 =
1

xt

⇒ p̃t+1

pt

=
pt−1

pt

⇒ p̃t+1 = pt−1 (3.19)

and bt represents a portfolio vector which is an investment in the market for the

t − th period, i.e bt = bt

(
xt−1
1

)
and bn

1 = (b1 · · ·bn) As earlier discussed, the

basic idea of this study is the decimation process explored in the of study of

de Cheveigné and Nelken (2019) due to challenges faced in the today voluminous

trading of high speed and high frequency instruments.The extended version of this

model was proposed by Ingber (2020) using multiple and sequential time period

to avoid or minimize the human biases errors. Like lowpass filtering a signal and

produce some samples from the population (Soleymani and Paquet, 2020). If this

process continue without the low pass filtering concept, its called down sampling.

This is the core motivation behind this study for decimation is to reduce the cost

of processing, time saving and prompt response to the quick opportunities, which

create in today fast moving market. Therefore, the use of a lower sampling rate

usually results in a cheaper and quick implementation. We modified the OLMAR

algorithm for decimation process. However, it does not ensure aliasing degree and

produces a shift invariant signal representation (Unser, 1995; Li et al., 2002).

3.4.2 A Brief About the Decimated Sampling

Decimation is a technique used in signal processing when a signal’s sample rate is

decreased. This procedure is frequently used to fit the signal to the capabilities of a

particular system, lower the volume of data, or simplify processing needs. Within

the framework of the suggested D-OLMAR algorithm, decimation is essential to

improving the algorithm’s effectiveness and performance.

3.4.2.1 The Decimation Process’s Filtering

Filter for Anti-Aliasing
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An anti-aliasing filter is applied to the signal prior to downsampling to remove

high-frequency elements that may induce aliasing. By keeping only the frequency

content below the Nyquist frequency, the anti-aliasing filter helps to eliminate

distortions and inaccuracies during subsequent downsampling. Filtering methods

such as Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) can

be employed. The filter type chosen is determined by the unique needs of the

application as well as the desired qualities of the filtered signal. After filtering,

the signal is downsampled by selecting a subset of samples. This means picking

every nth sample, where ’n’ is the desired sampling rate reduction. Downsampling

reduces the data volume while keeping the fundamental features of the signal

within the new sample rate.

Integration of the D-OLMAR Algorithm

An important methodological contribution to the decimation process is made by

the proposed D-OLMAR algorithm. It is probable that D-OLMAR will introduce

innovative methods for enhancing the downsampling process, considering factors

like computational effectiveness, preserving signal characteristics, and flexibility in

handling different kinds of signals. Resampling the initial (”undecimated”) data

at a lower sampling rate is referred to as ”decimated” data. Decimated data will

therefore have a lower sample rate than undecimated data. This algorithm, known

as D-OLMAR, is expressed as follows:

3.4.3 Undervaluation of Performance Metrics Using Deci-

mated Data

The results of this thesis demonstrate the D-OLMAR algorithm’s potential as

a useful real-time stock return optimisation technique. Interestingly, the tech-

nique makes use of the Lagrangian concept, which is necessary for optimising risk-

adjusted matrices. The D-OLMAR model addresses concerns about the possible

undervaluation of risk-adjusted metrics associated with decimated data, specifi-

cally the Sharpe and Calmar ratios, by applying Lagrangian optimisation. By
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taking into account risk considerations in a more sophisticated manner, the La-

grangian technique improves the accuracy of risk-adjusted returns. Thus, the ob-

served outperformance is due to the algorithm’s capacity to strategically optimise

returns while controlling downside risk, rather than being exclusively attributed to

downsampling effects. The robustness and integrity of the risk-adjusted measures

are enhanced by the Lagrangian notion, which adds an additional layer of depth.

3.4.4 Proposed: D-OLMAR Algorithm

bt+1 = argb∈∆m
min

1

2
∥b− bt∥2 s.t. b.ỹt+1 ≥ ε (3.20)

where yt+1 is the decimated version of xt+1 which is yt+1 = x((t + 1)M) and ỹt+1

is the moving average of yt+1.

3.4.4.1 Assumption

We need the following optimizations for Decimated OLMAR algorithm.

1. The given stock data preserve the ergodicity property for a given window

size.

2. The down sampling factor is chosen such that the first order moment remains

constant.

3.4.4.2 Proof

The Lagrangian for the optimization problem of D-OLMAR is;

L(b, λ, η) =
1

2
∥b− b∥2 + λ(ε− b . ỹt+1) + η(b . 1− 1) (3.21)

where λ ≥ 0 and η are the Lagrangian multipliers. Taking the gradient with

respect to b and setting it to zero, we get;

0 =
δL

δb
= (b− bt)− λỹt+1 + η1 ⇒ b = bt + λỹt+1 − η1 (3.22)
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Multiplying both sides by 1T , we get

1 = 1 + ỹt+1 . 1− ηm ⇒ η = λȳt+1 (3.23)

where ȳt+1 denotes the average predicted price relative (market). Plugging the

above equation to the update of b, we get the update of b;

b = bt + λ(ỹt+1 − ȳt+1 . 1) (3.24)

For Lagrangian multiplier, let us plug the above equation to the Lagrangian;

L(λ) = λ(ε− bt . ỹt+1)−
1

2
λ2∥ỹt+1 − ȳt+1∥2 (3.25)

Taking derivative with respect to and setting to zero we get;

0 =
δL

δλ
= (ε− bt . ỹt+1)− λ∥ỹt+1 − ȳt+1∥2

⇒ λ =
ε− bt . ỹt+1

∥ỹt+1 − ȳt+1∥2
(3.26)

Further projecting λ to [0; ∞], we get

λ = max

{
0,

ε− bt . ỹt+1

∥ỹt+1 − ȳt+1∥2

}
(3.27)

3.5 Sample Size and Frequency

Table 3.3: Sample Size and Frequency

Sample Size Frequency
10 daily, weekly, and monthly
20 daily, weekly, and monthly
30 daily, weekly, and monthly
40 daily, weekly, and monthly
50 daily, weekly, and monthly

The NASDAQ stock exchange has chosen to highlight the following five rapidly

growing companies: Apple Inc. (AAPL), Amazon.com, Inc. (AMZN), Alphabet
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Inc. (GOOG), Meta Platforms, Inc. (META), and Netflix, Inc. (NFLX). The

rationales that led to the selection of these companies as the primary partner

in the market, where the data at a high frequency and a vast scale available.

Additionally, these firms has the effects that are detrimental to the market and

theses data are highly volatile. And they transform the market from traditional

based trading into one for the new era.

For thorough testing of D-OLMAR, a total of 2739 days’ worth of data from Yahoo

Finance were obtained, starting on May 21, 2012 and ending on October 4, 2023.

The applied window size and frequencies are mentioned in the table 3.3 .



Chapter 4

Results and Discussion

4.1 Understanding the Data

The sample and measurements that make up a study’s data set are summed up in

a Table 4.1. The mean, median,mode skewness and kurtosis of all five data sets

indicate that we can classify the underlying companies based on their size and

frequency of trading volume. The following comparison summarized the charac-

teristics and behaviors of the data.

NFLX has the highest mean value, 228.447, indicates that its stock price is, on

average, higher than that of the other companies taken into consideration. When

compared to the other firms, AMZN has the second-highest mean, which is 70.867,

which indicates that the company has a higher average stock price. The mean for

META is 148.658, which is lower than the mean for NFLX but higher than the

mean for AAPL, AMZN, and GOOG. This indicates that the price of META’s

stock is higher than the average price of AAPL, AMZN, and GOOG but lower

than the price of NFLX shares. With a mean of 62.230, AAPL has the lowest

average of all the companies that were shown. GOOG has the lowest average

stock price of all the companies, coming in at 57.833 dollars per share on average.

The central tendency of stock price distributions can be discerned by comparison

of the medians of such distributions. The fact that NFLX has the highest median

value, 184.210, indicates that the middle value of its stock price distribution is

68
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the greatest among the companies that are being supplied. When compared to

AAPL, AMZN, and GOOG’s stock prices, META’s stock prices have a bigger

middle value, as indicated by META’s median value of 144.960, which is the

second-highest value. The median for AMZN is 54.711, which is a higher value

than those for AAPL and GOOG but a lower value than those for META and

NFLX. When contrasted with META, NFLX, and AMZN, GOOG’s median value

of 49.609 indicates that the company’s stock prices are closer to the lower end of

the price range. AAPL has the lowest median of the companies offered, which

comes in at 39.570.

This result is consistent for the skewness. Where AAPL’s positive skewness value

of 1.013 indicates that its distribution is right-skewed. This means that the distri-

bution may contain a tail of larger values. AMZN’s positive skewness of 0.58 indi-

cates a right-skewed distribution, albeit one that is less pronounced than AAPL’s.

The positive skewness of 0.977 for GOOG indicates a moderately right-skewed dis-

tribution. The skewness of META is 0.564, which indicates a minor right-skewed

distribution. NFLX has a positive skewness of 0.575, indicating that its distribu-

tion is also slightly right-skewed. All companies exhibit positive skewness, indicat-

ing that the tails of their stock price distributions extend toward higher values.

Nonetheless, the magnitudes of skewness differ among the companies, with AAPL

possessing the greatest skewness and META the least.

In this particular situation, the values of kurtosis suggest the following:

The fact that AAPL’s distribution has a negative kurtosis value of -0.533 implies

that its tails are more narrow than those of the normal distribution. Because of

this, it is less probable that values at the extreme end of the scale will be ob-

served.The kurtosis score for AMZN is -0.967, which shows even smaller tails than

those seen in AAPL’s data.GOOG has a kurtosis value of -0.057, which is some-

what less than zero and indicates that its tail-heavy distribution is relatively close

to the normal distribution.META has a negative kurtosis of -0.192, which indi-

cates that its tails are thinner than the normal distribution. This characteristic

is shared by AAPL and AMZN. The negative value of -0.795 for NFLX’s kur-

tosis indicates that the company’s tails are thinner than the normal distribution
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would predict.All of the companies have a negative kurtosis, which shows that

the tails of their stock price distributions are smaller than the normal distribution

would predict. Regarding the behavior of the tails, however, the magnitudes of

kurtosis varied among the firms, with AMZN having the highest negative kurtosis

and GOOG having a kurtosis near to zero, which indicates a distribution that is

closer to the normal distribution. GOOG’s kurtosis is close to zero because its

distribution is closer to the normal distribution. The line graphs shown in Figure

4.6 indicate the historical price movements of Apple Inc. (AAPL), Amazon.com,

Inc. (AMZN), Alphabet Inc. (GOOG), Meta Platforms, Inc. (META), and Net-

flix, Inc. (NFLX) individually. It is concluded that the distribution is flat in

comparison to the typical distribution, and hence it is classified as platykurtic.

Table 4.1: Descriptive Statistics

Sample: May 21, 2012 to October 4, 2023, 2739 Observations

AAPL AMZN GOOG META NFLX

Mean 62.230 70.867 57.833 148.658 228.447

Median 39.570 54.711 49.609 144.960 184.210

Mode 24.335 11.253 18.014 26.850 51.871

Skewness 1.013 0.580 0.977 0.564 0.575

Kurtosis -0.533 -0.967 -0.057 -0.192 -0.795

4.1.1 Parameters Evaluation

The referred tables above presents a comprehensive investigation of the stock data

for AAPL, AMZN, GOOG, META, and NFLX from May 21, 2012, through Octo-

ber 4, 2023. This investigation makes it possible to do comparisons and analysis

across a wide range of sample sizes and frequencies.

Dimensions of the Sample: The dimensions of the samples in the table range

from 10 to 50. This makes it possible to conduct an investigation of how statistical

measures change in response to growing amounts of data.
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Figure 4.1: AAPL Figure 4.2: AMZN

Figure 4.3: GOOG Figure 4.4: META

Figure 4.5: NFLX

Figure 4.6: Historical Price Movements of AAPL, AMZN, GOOG, META,
and NFLX

Frequencies: The data are presented on a daily, a weekly, and a monthly basis,

denoted by the letters D, W, and M respectively. This makes it possible to inves-

tigate how the statistics shift depending on the time intervals that are taken into

consideration.

Mean Signal: The ”Mean Signal” column provides a representation of the stock

signal’s typical value. When different sample sizes and frequencies are compared,

the results provide information on the general trend and direction of the stock.
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Decimated Mean Signal: Values that are included in the ”Mean Signal” column

are those that have been decimated. The method of reducing the number of data

points while preserving the general characteristics is called decimation. In order to

determine the influence that data reduction has on the typical behavior of stocks,

it is helpful to compare the mean signal values before and after decimation.

Standard Deviation: The stock signal’s standard deviation is presented in the

”Std Signal” column of the table. It is a measure of how unpredictable or erratic

the price movement of the item is likely to be. When standard deviations from

different sample sizes and frequencies are compared with one another, patterns in

the stock’s stability or volatility may become apparent.

Standard Deviation with Decimal Placement: The ”Std Signal” column,

in addition to the ”Mean Signal” column, includes numbers that have been deci-

mated. By contrasting the standard deviation with and without decimation, one

can determine how the decimation of data affects the volatility of stock prices.

Sharp Ratio: The ”Sharp Ratio” column offers a risk-adjusted return measure.

This is indicated by the column’s name. It measures the additional return that

was created for each additional point of risk. The performance of the stock can be

evaluated in relation to its risk profile by comparing sharp ratios over a variety of

sample sizes and frequencies. This makes it feasible to measure the stock’s overall

performance.

Decimated Sharp Ratio: Sharp Ratio After Decimation The ”Sharp Ratio”

column now also includes the values obtained after decimating the ratio. One can

observe how the decimation of data impacts risk-adjusted returns by contrasting

the results of sharp ratios calculated with and without decimation.

Calmar Ratio: The risk-adjusted return is computed in the ”Calmar Ratio”

column, which takes into account the largest drawdown experienced. It shows

how well the stock performs in relation to its biggest loss, which is displayed as

a percentage. Calmar ratios can be examined across a wide range of sample sizes

and frequencies in order to evaluate the performance of the stock during times of

significant decline.
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Decimated Calmar Ratio: Calmar Ratio After Decimation The values that

remain after the decimation process have been provided in the ”Calmar Ratio”

column. By contrasting Calmar ratios with and without decimation, one can

determine the effect that data reduction has on the stock’s risk-adjusted returns,

which are determined by the greatest drawdown.

In general, this in-depth investigation of each stock provides important insights

into its behavior across a range of sample sizes and frequencies, which can be

used to make informed investment decisions. By making it possible to compare

important statistical data, it makes it easier to investigate the performance of the

stock, as well as its volatility, risk-adjusted returns, and level of stability.

4.2 Simulation and Results

Having proposed and derived the decimated version of OLMAR, i.e. D-OLMAR.

It is appropriate to illustrate the effectiveness of the suggested algorithm using

real-world stock market data. For this purpose, fast moving data set of Apple

Inc. (AAPL), Amazon. com, Inc. (AMZN), Alphabet Inc. (GOOG), Meta

Platforms, Inc. (META) and Netflix, Inc. (NFLX) are selected from NASDAQ

stock exchange. For rigorous testing of D-OLMAR 2739 observations from May

21, 2012 to October 4, 2023 have been used. Various D-OLMAR results are shown

in Table 4.2, 4.3, 4.4, 4.5 and 4.6 , decimated window size of daily, weekly and

monthly with frequencies of 10, 20, 30, 40 and 50, details of the parameters are

mentioned in Table 3.3.

4.2.1 Interpretation of Signal Strength

When using a window size of 50 and a monthly frequency, the greatest mean signal

value is displayed, indicating a clear and significant overall rising tendency. When

the size of the window is decreased, the mean signal values have a tendency to

decrease as well. This suggests that the magnitude of the rising trend is diminished.

The following expression exemplifies the standard deviation:
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The values of the standard deviation that are the lowest are observed for window

widths of 40 or 50 with a monthly frequency. This is indicative of lower price

variability and volatility. When the size of the window is decreased, the standard

deviation has a tendency to increase, which is indicative of larger price swings and

volatility.

When using a window size of 50 and a monthly frequency, the Sharpe ratio values,

which measure risk-adjusted returns, are at their maximum, which is an indica-

tion of good risk-adjusted performance. The risk-to-reward ratio, also known as

the Calmar ratio, produces varying results depending on the window width and

frequency being used. On the other hand, the results of applying a window size

of 40 and a monthly frequency produce a Calmar ratio that is exceptionally high

at 56.064. The following inferences and conclusions can be made on the basis of

these findings:

In order to more accurately capture the overall trend, it is preferable to use a larger

window size (40 or 50) in conjunction with a monthly frequency. This combination

results in higher mean signal values and lower levels of volatility. Because it has

better Sharpe ratio values, using a window size of 50 with a monthly frequency

looks to be beneficial in terms of risk-adjusted metrics. This is because it has a

higher Sharpe ratio. The Calmar ratio for a window size of 40 with a monthly

frequency is outstanding, which indicates that there is the possibility for extremely

favorable risk-adjusted returns. It is essential, however, to keep in mind that these

conclusions were reached based on the information and analysis that were provided.

The financial goals, level of comfort with risk, and length of time horizon are the

factors that will determine whether or not a specific window size and frequency is

appropriate.

4.2.2 Using AAPL Stock (Apple Inc.) to Make Predictions

The findings of the analysis may be seen in Table 4.2, which covers the time

period from May 21, 2012 to October 4, 2023 and covers a variety of window

widths and sample frequencies. In light of the criteria that have been presented,
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in the fallowing paragraph, a detailed analysis is conducted to determine which

combination of sample frequency and window size is optimal for prediction and

portfolio development. Figures 4.7 − 4.21 are displayed the price comparison

between original and decimated signalling.

4.2.2.1 Measurements for Window 10

With a daily sample frequency, the mean decimated signal is 0.212, whereas the

standard deviation of the decimated signal is 1.209. The sharp decimated ratio is

0.175, which indicates that the risk-adjusted return is moderate. Sharp decimated

ratios are calculated using decimal places. The decimated ratio for Calmar is

0.079, which indicates that the company has a low risk-adjusted performance.

When using a sample frequency of once per week, the standard deviation of the

reduced signal drops to 1.185, while the mean signal drops to 0.367. The sharp

decimated ratio goes up to 0.310, which indicates that the risk-return trade off

has become more advantageous. The improvement in risk-adjusted performance

is indicated by the fact that the Calmar decimated ratio has risen to 0.150. When

using a monthly sample frequency, the mean decimated signal goes up to 0.679,

but the standard deviation goes down to 1.100. The sharp decimated ratio goes

up to 0.617, which indicates a higher return that is proportional to risk. The

increased value of the Calmar decimated ratio, which now stands at 0.358, indicates

improved performance relative to risk.

4.2.2.2 Measurements for Window 20

When using a sample frequency of once per day, the mean value of the decreased

signal is 0.303, and the standard deviation is 1.311. It can be deduced from the

fact that the sharp decimated ratio is 0.231 that the risk-adjusted return is not

very high. The decimation ratio for Calmar is 0.094, which indicates that the

company has a low risk-adjusted performance. The mean decimated signal goes

up to 0.505 when the sample frequency is increased to once per week, while the

standard deviation goes down to 1.237. The sharp decimated ratio improves to
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0.409, which indicates that the risk-return trade off is in a more advantageous

position. The increase in the Calmar decimated ratio to 0.165 is indicative of

improved performance in relation to risk. When using a monthly sample frequency,

the mean decimated signal goes up to 0.991, while the standard deviation goes

down to 1.059. The sharp decimated ratio goes up to 0.936, which indicates a

higher return that is proportional to risk. The increased value of the Calmar

decimated ratio, which now stands at 0.547, indicates improved performance in

relation to risk.

4.2.2.3 Measurements for Window 30

The mean value of the decreased signal while using a sampling frequency of once

per day is 0.338, and the standard deviation is 1.345. It can be deduced from

the fact that the sharp decimated ratio is 0.251 that the risk-adjusted return is

not very high. The decimation ratio for Calmar is 0.095, which indicates that the

company has a low risk-adjusted performance. With a weekly sample frequency,

the mean decimated signal goes up to 0.677, while the standard deviation goes

down to 1.252. The sharp decimated ratio goes up to 0.540, which indicates that

the risk-return tradeoff has become more favorable. The increase in the Calmar

decimated ratio to 0.197 is indicative of improved performance in relation to risk.

When using a monthly sample frequency, the mean decimated signal goes up to

1.309, while the standard deviation goes down to 0.887. The sharp decimated

ratio improves to 1.476, which indicates an increased return that is proportional

to the level of risk. The increase in the Calmar decimated ratio, which now stands

at 2.133, is indicative of improved performance relative to risk.

4.2.2.4 Measurements for Window 40

The standard deviation of the decimated signal for a daily sample frequency is

1.350, while the mean decimated signal for the frequency is 0.370. It can be

deduced from the fact that the sharp decimated ratio is 0.274 that the risk-adjusted
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Figure 4.7: AAPL:10-Daily

Figure 4.8: AAPL:10-Weekly

Figure 4.9: AAPL:10-Monthly

Figure 4.10: AAPL:20-Daily

Figure 4.11: AAPL:20-Weekly

Figure 4.12: AAPL:20-Monthly

return is not very high. The decimation ratio for Calmar is 0.099, which indicates

that the company has a low risk-adjusted performance.

The standard deviation of the decimated signal is reduced to 1.225, while the mean
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Figure 4.13: AAPL:30-Daily

Figure 4.14: AAPL:30-Weekly

Figure 4.15: AAPL:30-Monthly

Figure 4.16: AAPL:40-Daily

Figure 4.17: AAPL:40-Weekly

Figure 4.18: AAPL:40-Monthly

decimated signal rises to 0.797 when the sample frequency is weekly. The sharp

decimated ratio goes up to 0.650, which indicates that the risk-return tradeoff has

become more favorable. The increase in the Calmar decimated ratio to 0.314 is
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Figure 4.19: AAPL:50-Daily Figure 4.20: AAPL:50-Weekly

Figure 4.21: AAPL:50-Monthly

indicative of improved performance in relation to risk.

With a monthly sample frequency, the mean decimated signal rises to 1.526, while

the standard deviation falls to 0.825. Both of these numbers are positive. A

higher risk-adjusted return can be inferred from the sharp decimated ratio, which

has increased to 1.850. A significant improvement in risk-adjusted performance is

indicated by the steep jump in the Calmar decimated ratio to 56.064.
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4.2.2.5 Measurements for Window 50

The standard deviation of the decimated signal with a daily sample frequency is

1.350, while the mean decimated signal is 0.411. The sharp decimated ratio comes

in at 0.304, which indicates that the risk-adjusted return is on the moderate side.

The decimated Calmar ratio is 0.109, which indicates poor performance while

taking into account the level of risk. With a weekly sample frequency, the mean

decimated signal goes up to 0.874, while the standard deviation goes down to 1.206.

The sharp decimated ratio improves, reaching 0.725, which indicates that the

risk-return tradeoff has become more advantageous. The increase in the Calmar

decimated ratio to 0.312 is indicative of improved performance in relation to risk.

In the case of a monthly sample frequency, the mean decimated signal goes up

to 1.793, while the standard deviation goes down to 0.710. The sharp decimated

ratio increases to 2.526, which indicates an increased return that is proportional

to the level of risk. The decimation ratio for Calmar drops to -3.784, which is a

sign of bad performance when risk is taken into account.

4.2.2.6 Summary

As a result of our investigation into the available variables, we have uncovered the

following patterns:

When the window size is increased, there is a general trend toward an increase in

the mean decimated signal, which indicates a stronger prediction signal. When

the window size is increased, the standard deviation of the decimated signal typ-

ically decreases, which is suggestive of the possibility of a reduction in volatility.

Increasing the window size typically results in improved Sharp decimated and

Calmar decimated ratios, which indicates improved risk-adjusted performance.

Monthly frequency has bigger mean decimated signals, lower standard deviations,

and superior risk-adjusted performance as compared to daily and weekly frequen-

cies. Additionally, monthly frequency has smaller standard deviations. According
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to these findings, it would appear that a larger window size (such as 40 or 50) com-

bined with a monthly sample frequency would yield improved prediction accuracy

and more opportunities for portfolio construction with AAPL stock.

4.2.3 Using AMZN Stock (Amazon.com, Inc.) to Make

Predictions

The findings of the study are presented in Table 4.3 These findings contain data

for a variety of window widths and sample rates that span the time period from

May 21, 2012 to October 4, 2023. To see the results, you need only select the

cell you’re interested in from the table. In light of the requirements that were

outlined, we are going to carry out research to ascertain the sample frequency

and window size that provide the best opportunities for accurate forecasting and

portfolio construction. Figures 4.22 − 4.36 are displayed the price comparison

between original and decimated signalling.

4.2.3.1 Window Size 10

The following observations were made for an examination with a window size of

10:

The standard deviation of the decimated signal for the daily sample frequency is

1.184, while the mean signal for the daily frequency is 0.200. 0.169 is the acute

decimated ratio, which represents a return that is proportionate to the amount

of risk taken. The decimation ratio for Calmar is 0.073, which suggests that

the company has poor performance when taking into account the risks involved.

The average decimated signal goes up to 0.382, while the standard deviation goes

down to 1.155 when the sample frequency increases to once every week. The

ratio rises to 0.331, which indicates that the risk-reward balance has become more

favorable. In addition, the Calmar decimated ratio goes up to 0.152, which is

an indication of enhanced risk-adjusted performance. The mean decimated signal

rises to 0.674, but the standard deviation falls to 1.117 as the monthly sample

frequency increases. The severe decimated ratio improves to 0.603, which indicates
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an improvement in the return that is proportional to risk. Calmar’s decimated

ratio has increased to 0.279%, which indicates that the company’s risk-adjusted

performance has improved.

Figure 4.22: AMZN:10-Daily

Figure 4.23: AMZN:10-Weekly

Figure 4.24: AMZN:10-Monthly

Figure 4.25: AMZN:20-Daily

Figure 4.26: AMZN:20-Weekly

Figure 4.27: AMZN:20-Monthly
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Figure 4.28: AMZN:30-Daily

Figure 4.29: AMZN:30-Weekly

Figure 4.30: AMZN:30-Monthly

Figure 4.31: AMZN:40-Daily

Figure 4.32: AMZN:40-Weekly

Figure 4.33: AMZN:40-Monthly

4.2.3.2 Window Size 20

Following are some of the observations that were made after conducting research

on a window with 20 elements:
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Figure 4.34: AMZN:50-Daily Figure 4.35: AMZN:50-Weekly

Figure 4.36: AMZN:50-Monthly

The standard deviation of the decimated signal for the daily sample frequency

is 1.294, and the mean decimated signal for the daily sample frequency is 0.308.

With a value of 0.238 for the severe decimated ratio, we can infer that the return

will be moderate in comparison to the danger. The decimation ratio for Calmar

is 0.086, which suggests that the company has poor performance when taking

into account the risks involved. The standard deviation of the decimated signal is

reduced to 1.226, while the mean decimated signal has increased to 0.495Frequency

of Samples Taken Monthly: The increase in the decimated signal’s mean brings

it to 0.899, while the increase in the standard deviation brings it to 1.271. The

severe decimated ratio goes up to 0.707
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4.2.3.3 Window Size 30

When a window with a width of 30 pixels was investigated, the following findings

were discovered:

The standard deviation of the decimated signal is 1.320, and the average decimated

signal is 0.372. The daily sample frequency is once every day. With a value of 0.282

for the severe decimated ratio, we can deduce that the return will be moderate

in comparison to the danger. The decimation ratio for Calmar is 0.087, which

suggests that the company has poor performance when taking into account the

risks involved. When using a weekly sample frequency, the mean decimated signal

goes up to 0.614, while the standard deviation goes down to 1.270. The ratio

rises to 0.484%, which indicates that the risk-return tradeoff has become more

advantageous. In addition, the Calmar decimated ratio rises to 0.185, which is

an indication of enhanced performance in relation to risk. The mean decimated

signal has increased to 1.238, and the standard deviation has decreased to 1.275

as a result of the monthly sample frequency. The severe devastated ratio goes

up to 0.971, which indicates a greater risk-adjusted yield on the investment. The

decimated ratio for Calmar goes up to 0.506, which indicates that the company’s

risk-adjusted performance has improved.

4.2.3.4 Window Size 40

The subsequent observations were made for a window size of forty, and they are

as follows:

The mean decimated signal for the daily sample frequency is 0.418, and the stan-

dard deviation is 1.325. The severe decimation ratio comes in at 0.315%, which

indicates a moderate return in comparison to the risk. The decimation ratio for

Calmar is 0.102, which suggests that the company has poor performance when

risk is taken into account. The mean decimated signal has increased to 0.731,

while the standard deviation has decreased to 1.300 as the weekly sample fre-

quency increases. The ratio rises to 0.562, which indicates that the risk-reward

balance has become more advantageous. In addition, the Calmar decimated ratio
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rises to 0.215%, which is an indication of greater performance in relation to risk.

The mean decimated signal has increased to 1,412, while the standard deviation

has decreased to 1,106 as a result of the monthly sample frequency. The severe

decimated ratio goes up to 1.27, which indicates an increase in the return that is

proportional to the danger. The fact that the Calmar decimated ratio has signifi-

cantly increased, now standing at 0.829%, is indicative of improved risk-adjusted

performance.

4.2.3.5 Window Size 50

The findings that were discovered when using a window size of 50 are as follows:

The standard deviation of the decimated signal is 1.328, and the average decimated

signal is 0.461. The daily sample frequency is once per day. The severe decimated

ratio comes in at 0.347%, which indicates a moderate return in comparison to the

risk. The decimation ratio for Calmar is 0.123, which suggests that the company

has poor performance when risk is taken into account. The mean decimated signal

has increased to 0.837%, whereas the standard deviation has not changed from

1.330. The ratio rises to 0.629%, which indicates that the risk-reward balance has

become more advantageous. In addition, the Calmar decimated ratio rises to 0.238,

which is an indication of enhanced performance in relation to risk. Frequency of

Samples Taken Monthly: While the mean of the decimated signal has increased to

1,481, the standard deviation has decreased to 1,016. The severe decimated ratio

improves to 1.458, which implies an increased return that is proportional to the

level of risk. The declining risk-adjusted performance is indicated by the decline

in the Calmar decimated ratio, which has reached 1.174.

4.2.3.6 Summary

In conclusion, the trend toward a rise in the mean decimated signal with an in-

crease in the window size indicates a stronger prediction signal. Generally speak-

ing, a fall in the standard deviation of the decimated signal is indicative of a

probable reduction in volatility. This phenomenon occurs as the window size
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grows. The Sharp decimated ratio and the Calmar decimated ratio both tend to

get better as the window size gets larger, which suggests that the risk-adjusted

performance is better. Additionally, as compared to the daily and weekly fre-

quencies, the monthly frequency has a tendency to have larger mean decimated

signals, lower standard deviations, and greater risk-adjusted performance. This is

because monthly frequency signals are decimated more frequently before making

any decisions regarding investments.

4.2.4 Using GOOG Stock (Alphabet Inc. (GOOG)) to

Make Predictions

A detailed analysis of the data that was provided for GOOG stock from May 21,

2012 to October 4, 2023 is presented below, including values for each window size

and frequency, reffered Table 4.4. Figures 4.37 − 4.51 are also displayed the price

comparison between original and decimated signalling.

4.2.4.1 Window Size 10

The standard deviation of the decimated signal for the daily sample frequency

is 1.187, and the mean decimated signal for the daily sample frequency is 0.208.

The severe decimated ratio comes in at 0.175, which indicates a reasonable return

in comparison to danger. The decimation ratio for Calmar is 0.075, which sug-

gests that the company has poor performance when taking into account the risks

involved.

The standard deviation of the decimated signal drops to 1.150, while the average

decimated signal climbs to 0.371. Weekly Sample Frequency. The ratio rises to

0.323, which indicates that the risk-reward balance has become more favorable.

The decimalized ratio of Calmar has not changed from its previous value of 0.075.

The average decimated signal goes up to 0.689, while the standard deviation goes

down to 1.0 as the monthly sample frequency increases. The severe decimated

ratio currently stands at 0.637%, indicating a higher return that is proportional to
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the amount of risk taken. The decimalized ratio of Calmar has not changed from

its previous value of 0.075.

4.2.4.2 Window Size 20

Daily Sample Frequency: The standard deviation of the decimated signal is 1.276,

whereas the average decimated signal is 0.309. The severe decimated ratio comes

in at 0.242, which indicates a reasonable return in comparison to danger. The

decimation ratio for Calmar is 0.088, which suggests that the company has poor

performance when taking into account the risks involved.

The standard deviation of the decimated signal has decreased to 1.207, while the

mean decimated signal has increased to 0.504. The ratio has improved to 0.418%,

which indicates that the risk-reward balance has become more advantageous. The

decimalized ratio of Calmar has not changed from its previous value of 0.088.

The mean decimated signal rises to 1.063, but the standard deviation falls to 1.094

as the monthly sample frequency increases. The severe devastated ratio goes up

to 0.972, which indicates a greater risk-adjusted yield on the investment. The

decimalized ratio of Calmar has not changed from its previous value of 0.088.

4.2.4.3 Window Size 30

Daily Sample Frequency: The standard deviation for the decimated signal is 1,299,

whereas the average decimated signal is 0.356. The severe decimated ratio comes

in at 0.274, which indicates a reasonable return in comparison to the danger. The

decimated ratio for Calmar is 0.108, which suggests that the company has poor

performance when risk is taken into account.

The standard deviation of the decimated signal decreases to 1.209, while the mean

decimated signal increases to 0.654. The ratio goes up to 0.541, which indicates

that the risk-return tradeoff is becoming more advantageous. The decimated ratio

of Calmar has not changed from its previous value of 0.108.

The mean decimated signal increases to 1,376 while the standard deviation drops

to 908, as measured by the Monthly Sample Frequency. A better risk-adjusted
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Figure 4.37: GOOG:10-Daily

Figure 4.38: GOOG:10-Weekly

Figure 4.39: GOOG:10-Monthly

Figure 4.40: GOOG:20-Daily

Figure 4.41: GOOG:20-Weekly

Figure 4.42: GOOG:20-Monthly

return can be inferred from the severe decimated ratio, which has increased to

1.515. The decimated ratio of Calmar has not changed from its previous value of

0.108.
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Figure 4.43: GOOG:30-Daily

Figure 4.44: GOOG:30-Weekly

Figure 4.45: GOOG:30-Monthly

Figure 4.46: GOOG:40-Daily

Figure 4.47: GOOG:40-Weekly

Figure 4.48: GOOG:40-Monthly

4.2.4.4 Window Size 40

The standard deviation of the decimated signal is 1.312, and the average decimated

signal is 0.392. The daily sample frequency is once per day. 0.199 is the value of
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Figure 4.49: GOOG:50-Daily Figure 4.50: GOOG:50-Weekly

Figure 4.51: GOOG:50-Monthly

the severe decimated ratio, which indicates a moderate return in relation to risk.

The decimated ratio for Calmar is 0.108, which suggests that the company has

poor performance when risk is taken into account.

When using a sample frequency of once per week, the mean decimated signal

reaches 0.752, while the standard deviation falls to 1.228. The ratio rises to 0.612,

which indicates that the risk-reward balance has become more favorable. The

decimated ratio of Calmar has not changed from its previous value of 0.108.

The mean decimated signal goes up to 1.618, while the standard deviation goes

down to 0.811 with the monthly sample frequency. The severe decimated ratio is
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now at 1.994%, which indicates a higher return that is proportional to the amount

of risk taken. The decimated ratio of Calmar has not changed from its previous

value of 0.108.

4.2.4.5 Window Size 50

The mean decimated signal for the daily sample frequency is 0.422, and the stan-

dard deviation is 1.375. With a value of 0.319 for the severe decimated ratio,

we can infer that the return will be moderate in comparison to the danger. The

decimation ratio for Calmar is 0.116, which suggests that the company has poor

performance when risk is taken into account.

The mean decimated signal goes up to 0.820, while the standard deviation goes

down to 1.237 when the sample frequency is increased to once per week. When

the ratio is improved to 0.663, it indicates that the risk-return tradeoff is more

favorable. The decimalized ratio of Calmar has not changed from its previous

value of 0.116.

The mean decimated signal goes up to 1.716%, while the standard deviation goes

down to 0.75% with the monthly sample frequency. The severe devastated ratio

currently stands at 2.171, which indicates a greater increase in return relative to

danger. The decimalized ratio of Calmar has not changed from its previous value

of 0.116.

4.2.4.6 Summary

In light of the findings of the research, the decision regarding the size of the pre-

diction window and the frequency of its updates, as well as the development of the

portfolio, is impacted by the unique goals and preferences of the investor. Higher

mean decimated signals signify a stronger signal for predicting, while lower stan-

dard deviations reflect a potential reduction in volatility. Both of these findings

are consistent with the hypothesis that lower volatility will result from the for-

mer. bigger values for the sharp decimated ratio and the Calmar decimated ratio

suggest bigger rewards that are proportional to the level of risk.
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In this scenario, the best window size and frequency for prediction and portfolio

construction would depend on variables such as the intended risk-return trade-

off, investment strategy, and time horizon. In addition, the optimal window size

and frequency for prediction and portfolio construction would also depend on how

frequently predictions are made. Daily and weekly sample frequencies are often

inferior to monthly sample frequencies when it comes to mean decimated signals,

standard deviations, and risk-adjusted performance. Monthly sample frequencies,

on the other hand, typically demonstrate stronger mean decimated signals.

4.2.5 Using META Stock (Meta Platforms, Inc. (META))

to Make Predictions

A detailed study of the data that was provided for META stock between May 21,

2012 and October 4, 2023 is presented below, referred Table 4.5, including values

for each window size and frequency. Figures 4.52 − 4.66 are also displayed the

price comparison between original and decimated signalling.

4.2.5.1 Window Size 10

With a standard deviation of 1.183, the mean decimated signal for the Daily

Sample Frequency is 0.168, and the mean value for the standard deviation is

1.183. 0.142 is the severe devastated ratio, which suggests a moderate return in

comparison to risk. Calmar has a decimated ratio of 0.06, which indicates that

the company has a poor risk-adjusted performance.

The mean decimated signal has increased to 0.346, while the standard deviation

has decreased to 1.177 as the weekly sample frequency increases. The ratio goes

up to 0.294, which indicates that the risk-return tradeoff is becoming more advan-

tageous. The decimalized ratio of Calmar has not changed from its previous value

of 0.060.

The mean decimated signal has increased to 0.708, while the standard deviation

has decreased to 1.130 as the monthly sample frequency increases. The severe
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decimated ratio goes up to 0.627%, which is an indication of a larger return that

is proportional to the risk taken. The decimalized ratio of Calmar has not changed

from its previous value of 0.060.

4.2.5.2 Window Size 20

The mean decimated signal for the daily sample frequency is 0.267%, while the

standard deviation is 1.276%. 0.210 is the acute decimated ratio, which represents

a return that is proportionate to the amount of risk taken. The decimation ratio

for Calmar is 0.071, which suggests that the company has poor performance when

taking into account the risks involved.

When using a weekly sample frequency, the mean decimated signal goes up to

0.507, while the standard deviation goes down to 1.261. The ratio rises to 0.402,

which indicates that the risk-reward balance has become more favorable. The

decimalized ratio of Calmar has not changed from its previous value of 0.071.

The mean decimated signal goes up to 0.894, but the standard deviation goes

down to 1.215 as the monthly sample frequency increases. The severe decimated

ratio currently stands at 0.736%, indicating a higher return that is proportional to

the amount of risk taken. The decimalized ratio of Calmar has not changed from

its previous value of 0.071.

4.2.5.3 Window Size 30

The standard deviation of the decimated signal for the Daily Sample Frequency is

1.318, while the mean decimated signal for the Daily Sample Frequency is 0.339.

The severe decimated ratio comes in at 0.257, which indicates a reasonable return

in comparison to the danger. The decimation ratio for Calmar is 0.083, which

suggests that the company has poor performance when taking into account the

risks involved.

The standard deviation of the decimated signal is reduced to 1.2, but the mean

decimated signal has increased to 0.659. The ratio rises to 0.520, which indicates
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Figure 4.52: META:10-Daily

Figure 4.53: META:10-Weekly

Figure 4.54: META:10-Monthly

Figure 4.55: META:20-Daily

Figure 4.56: META:20-Weekly

Figure 4.57: META:20-Monthly

that the risk-return tradeoff has become more advantageous. The decimalized

ratio of Calmar has not changed from its previous value of 0.083.

The mean decimated signal rises to 1.033, but the standard deviation falls to 1.195
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Figure 4.58: META:30-Daily

Figure 4.59: META:30-Weekly

Figure 4.60: META:30-Monthly

Figure 4.61: META:40-Daily

Figure 4.62: META:40-Weekly

Figure 4.63: META:40-Monthly

as the monthly sample frequency increases. The severe devastated ratio improves

to 0.866, which indicates an improvement in the return that is proportional to

risk. The decimalized ratio of Calmar has not changed from its previous value of
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Figure 4.64: META:50-Daily Figure 4.65: META:50-Weekly

Figure 4.66: META:50-Monthly

0.083.

4.2.5.4 Window Size 40

The standard deviation of the decimated signal for the daily sample frequency

is 1.338, and the mean decimated signal for the daily sample frequency is 0.386.

The severe decimated ratio comes in at 0.288, which indicates a reasonable return

in comparison to danger. The decimation ratio for Calmar is 0.087, which sug-

gests that the company has poor performance when taking into account the risks

involved.
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The standard deviation of the decimated signal has decreased to 1.303, while the

mean decimated signal has increased to 0.791. The ratio goes up to 0.607%,

which indicates that the risk-return tradeoff is becoming more advantageous. The

decimalized ratio of Calmar has not changed from its previous value of 0.087.

The mean decimated signal has increased to 1.176, while the standard deviation

has decreased to 1.210 as the monthly sample frequency increases. The severe

devastated ratio goes up to 0.971, which indicates a greater risk-adjusted yield

on the investment. The decimalized ratio of Calmar has not changed from its

previous value of 0.087.

4.2.5.5 Window Size 50

The standard deviation of the decimated signal is 1.350, and the daily sample

frequency has an average decimated signal of 0.407. The severe devastated ratio

is 0.302, which indicates a reasonable return in comparison to the danger. The

decimation ratio for Calmar is 0.086, which suggests that the company has poor

performance when taking into account the risks involved.

The mean decimated signal has increased to 0.891, while the standard deviation

has decreased to 1.320 as the weekly sample frequency increases. The ratio rises

to 0.675%, which indicates that the risk-reward balance has become more advan-

tageous. The decimated ratio of Calmar has not altered from its previous value of

0.086%.

The mean decimated signal has increased to 1,229, while the standard deviation

has decreased to 1,189 as a result of the Monthly Sample Frequency. The ratio of

returns that were drastically decreased rises to 1.033, showing a larger return that

is proportional to the level of risk. The decimated ratio of Calmar has not altered

from its previous value of 0.086

4.2.5.6 Summary

The window size and frequency should be determined according to the unique

goals and preferences of the investor if one want to achieve optimal prediction and
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portfolio creation. Signals with a higher mean decimated value are suggestive of

better prediction signals, however standard deviations that are lower may imply

lower levels of volatility.

Bigger values for the sharp decimated ratio and the Calmar decimated ratio sug-

gest bigger rewards that are proportional to the level of risk. It is desirable to

have greater mean decimated signals, lower standard deviations, and higher sharp

decimated ratios and Calmar decimated ratios while optimizing a portfolio.

According to the findings of the study, the following combinations of window

size and frequency are the most effective in terms of prediction and portfolio

optimization:

Size of a Window with a 50-Inch Opening and a Monthly Sampling Frequency:

This choice provides the decimated signal with the highest mean value (1,229)

and the lowest standard deviation (1,189). In addition, the steep decimated ratio

of 1.033 that it possesses demonstrates that it offers an excellent return that is

proportional to risk. The decimated ratio of Calmar has not altered from its

previous value of 0.086

4.2.6 Using NFLX Stock (Alphabet Inc. (Netflix, Inc.

(NFLX)) to Make Predictions

The following is a comprehensive analysis of the data for NFLX stock between the

dates of May 21, 2012 and October 4, 2023, including values for each window size

and frequency, referred Table 4.6. Figures 4.67 − 4.81 are also displayed the price

comparison between original and decimated signalling.

4.2.6.1 Window Size 10

With a standard deviation of 1.199, the mean decimated signal for the Daily

Sample Frequency is 0.180, and it has a variance of 1.199. 0.150 is the acute

decimated ratio, which represents a return that is proportionate to the amount
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of risk taken. The decimation ratio for Calmar is 0.065, which suggests that the

company has poor performance when taking into account the risks involved.

The average decimated signal goes up to 0.398, but the standard deviation goes

down to 1.164 when the sample frequency increases to once every week. The

ratio rises to 0.342, which indicates that the risk-reward balance has become more

favorable. The decimalized ratio of Calmar has not changed from its previous

value of 0.065.

The average decimated signal goes up to 0.671, while the standard deviation goes

down to 1.0 as the monthly sample frequency increases. The fraction of returns

that were severely reduced rises to 0.615%, indicating a larger return that is pro-

portional to the level of risk. The decimalized ratio of Calmar has not changed

from its previous value of 0.065.

4.2.6.2 Window Size 20

The standard deviation of the decimated signal is 1.304, and the average decimated

signal is 0.273. The daily sample frequency is once per day. The severe decimation

ratio comes in at 0.209%, which indicates a moderate return in comparison to the

risk. The decimated ratio for Calmar is 0.069, which suggests that the company

does not do well while taking into account its level of risk.

Using a weekly sample frequency results in an increase in the mean decimated

signal to 0.596, while a reduction in the standard deviation brings the value to

1.230. When the ratio is improved to 0.48, it indicates that the risk-return tradeoff

is more advantageous. The decimalized ratio of Calmar has not changed from its

previous value of 0.069.

The mean decimated signal has increased to 0.800, while the standard deviation

has decreased to 1.243 as the monthly sample frequency increases. The severe

devastated ratio improves to 0.708, which indicates an improvement in the return

that is proportional to risk. The decimalized ratio of Calmar has not changed

from its previous value of 0.069.
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4.2.6.3 Window Size 30

The standard deviation of the decimated signal is 1.333, while the average dec-

imated signal is 0.341. The daily sample frequency is once per day. 0.255 is

the acute decimated ratio, which represents a return that is proportionate to the

amount of risk taken. The decimation ratio for Calmar is 0.077, which suggests

that the company has poor performance when taking into account the risks in-

volved.

The standard deviation of the decimated signal has decreased to 1.277%, while

the mean decimated signal has increased to 0.675%. The ratio rises to 0.528,

which indicates that the risk-return tradeoff has become more advantageous. The

decimalized ratio of Calmar has not changed from its previous value of 0.077.

The mean decimated signal has increased to 1.095, while the standard deviation

has decreased to 1.251 as the monthly sample frequency increases. The severe

decimated ratio improves to 0.87, which indicates an increased return that is pro-

portional to the level of risk. The decimalized ratio of Calmar has not changed

from its previous value of 0.077.

4.2.6.4 Window Size 40

Daily Sample Frequency: The standard deviation of the decimated signal is 1.348,

while the average decimated signal is 0.426. 0.316 is the value of the severe decima-

tion ratio, which indicates a moderate return in relation to risk. The decimation

ratio for Calmar is 0.088, which suggests that the company has poor performance

when taking into account the risks involved.

When using a weekly sample frequency, the mean decimated signal goes up to

0.724, while the standard deviation goes down to 1.254. The ratio rises to 0.578,

which indicates that the risk-reward balance has become more advantageous. The

decimalized ratio of Calmar has not changed from its previous value of 0.088.

The mean decimated signal has increased to 1.193, while the standard deviation

has decreased to 1.221 as a result of the monthly sample frequency. The severe
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Figure 4.67: NFLX:10-Daily

Figure 4.68: NFLX:10-Weekly

Figure 4.69: NFLX:10-Monthly

Figure 4.70: NFLX:20-Daily

Figure 4.71: NFLX:20-Weekly

Figure 4.72: NFLX:20-Monthly

decimated ratio improves to 0.97, which indicates an increase in the return that

is proportional to the danger. The decimalized ratio of Calmar has not changed

from its previous value of 0.088.
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Figure 4.73: NFLX:30-Daily

Figure 4.74: NFLX:30-Weekly

Figure 4.75: NFLX:30-Monthly

Figure 4.76: NFLX:40-Daily

Figure 4.77: NFLX:40-Weekly

Figure 4.78: NFLX:40-Monthly

4.2.6.5 Window Size 50

The mean decimated signal for the daily sample frequency is 0.512, and the stan-

dard deviation is 1.349. With a value of 0.379 for the severe decimated ratio,
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Figure 4.79: NFLX:50-Daily Figure 4.80: NFLX:50-Weekly

Figure 4.81: NFLX:50-Monthly

we can infer that the return will be moderate in comparison to the danger. The

decimation ratio for Calmar is 0.102, which suggests that the company has poor

performance when risk is taken into account.

The standard deviation of the decimated signal is reduced to 1.259%, but the

mean decimated signal has increased to 0.767%. The ratio goes up to 0.609%,

which indicates that the risk-return tradeoff is becoming more advantageous. The

decimated ratio of Calmar has not altered from its previous value of 0.102.

The mean decimated signal has increased to 1.284, while the standard deviation

has decreased to 1.274 as the monthly sample frequency increases. The severe
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decimated ratio improves to 1.007, which implies an increased return that is pro-

portional to the level of risk. The decimated ratio of Calmar has not altered from

its previous value of 0.102.

4.2.6.6 Summary

When trying to construct forecasts and improve the performance of the portfolio,

it is important to take into consideration mean decimated signals with a greater

value, as this indicates more accurate forecasting signals. In addition, smaller

standard deviations are consistent with the possibility of a reduction in volatility.

Bigger values for the sharp decimated ratio and the Calmar decimated ratio sug-

gest bigger rewards that are proportional to the level of risk. It is desirable to

have greater mean decimated signals, lower standard deviations, and higher sharp

decimated ratios and Calmar decimated ratios while optimizing a portfolio.

According to the findings of the study, the following combinations of window

size and frequency are the most effective in terms of prediction and portfolio

optimization:

Size of a Window with a 50-Inch Opening and a Monthly Sampling Frequency: It

has the greatest mean decimated signal of 1.284 and the highest standard deviation

of 1.274, indicating more accurate prediction signals and maybe lower volatility.

The decimated signal is expressed as a mean and a standard deviation. In addition,

it has a steep decimated ratio of 1.007, which implies that it has a great return

relative to the risk involved. The decimated ratio of Calmar has not altered from

its previous value of 0.102.



Chapter 5

Conclusion and

Recommendations

The goal of the proposed algorithm is to use decimated data to enhance prediction

of stock market movements and portfolio construction. The algorithm overcomes

human fallibility by using a broad period of time, allowing it to keep up with the

frenetic speed of today’s high-tech corporate world.

One key benefit of using a longer time horizon is the minimization of human error.

Human decision-making can be influenced by emotions, biases, and short-term

market movements, resulting in sub-optimal investment choices. The algorithm

mitigates these subjective biases and ensures a more objective and reasonable

approach to stock market forecasting and portfolio construction by looking ahead

over longer periods of time.

Moreover, in the modern era of high-tech company, speed and efficiency are of

the utmost importance. The suggested approach makes effective use of state-

of-the-art computational resources to handle and evaluate massive amounts of

decimated data. This allows investors to quickly react to market shifts, seize new

opportunities, and reduce risks by making informed decisions in real time.

Accurate stock market projections and trustworthy portfolio construction are en-

hanced by include a long-term perspective in the algorithm. The system is better

able to capture underlying patterns, cyclical activity, and mean reversion effects

111
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when looking at the market over a longer time horizon. With a longer time horizon

in mind, it is much easier to spot promising investment opportunities and fine-tune

portfolio allocation.

The algorithm’s adoption of a rather lengthy investment horizon also accords with

the tenets of successful, long-term financial planning. Over longer time frames, the

effects of fundamental variables, market cycles, and mean reversion events become

more apparent and substantial. This approach lessens the need to react quickly to

market fluctuations and promotes a more deliberate and well-informed approach

to investing.

To enhance stock market forecasting for stock selection the suggested method

uses decimated data. It takes use of the benefits of long-term investing, eliminates

the risk of human mistake, and speeds up outcomes in a fast-paced commercial

environment. By fusing high-powered computer resources with a holistic under-

standing of market dynamics, the program helps investors make better decisions,

improve their portfolios, and manage the complexity of the stock market.

The proposed algorithm employing the decimated analysis is a valuable instrument

for assessing the efficacy of various time horizons in stock market forecasting and

portfolio construction. By investigating the decimated mean, decimated standard

deviation, Sharp ratio, and Calmar ratio across various time horizons, it is possible

to gain insight into the performance and predictive ability of various investment

strategies. In the following thorough analysis, we will examine the decimated

results and explain why a long time horizon is considered a more accurate predictor

than a short one.

The decimated mean represents the average return of a decimated signal over a

predetermined time interval. Comparing the decimated means across various time

horizons reveals that the values tend to increase as the time horizon lengthens.

This suggests that longer time horizons generate higher average returns on aver-

age. This finding provides support for the contention that a long-term horizon is

advantageous for stock market forecasting and portfolio construction.

The decimalized standard deviation quantifies the volatility or risk of a decimated

signal. Examining the decimated standard deviations across various time horizons
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reveals that the values tend to decrease as the time horizon lengthens. This sug-

gests that longer time horizons minimize risk and volatility. Longer time horizons

reduce noise and random fluctuations, making it simpler to identify underlying

trends and make more accurate predictions.

Sharp ratio is an extensively employed risk-adjusted return metric. It measures

the excess return per unit of risk assumed. Sharp ratios that are greater indi-

cate superior risk-adjusted performance. In the context of decimated analysis,

we assessed the predictive potential of the Sharp ratios across various time hori-

zons, lengthier time horizons result in sharper ratios. This indicates that a longer

time horizon provides superior risk-adjusted returns, suggesting that it is a more

accurate predictor for stock market forecasting and portfolio construction.

The Calmar ratio compares the average annual return to the utmost drawdown

to determine the risk-adjusted performance of an investment strategy. It offers

insight into a strategy’s risk management and downside protection capabilities.

Similar to the Sharp ratio, higher Calmar ratios indicate a superior risk-adjusted

return. When comparing the Calmar ratios over various time horizons, we typ-

ically observe greater values for extended time horizons. This suggests that a

longer time horizon not only generates higher returns, but also provides greater

downside protection, making it a superior predictor for stock market forecasting

and portfolio construction.

For a variety of different reasons, anticipating the stock market and developing

investment portfolios with a more longer horizon is regarded to be more accurate.

Initially, the reduction of noise and random fluctuations in lengthier time horizons

enables investors to concentrate on the fundamentals and underlying trends of

the market, which results in more accurate predictions. This is because investors

are able to focus less on the random fluctuations. Shorter time frames are more

sensitive to the volatility of the market as well as short-term movements, both of

which can distort the true value of the stock.

A broad time horizon not only provides more context, but also makes it possible

to take into account more fundamental considerations. Fundamental analysis,

which analyzes the financial health, growth prospects, competitive position, and
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valuation of organizations, requires a longer-term perspective in order to effectively

evaluate the long-term potential of investments. This is because fundamental

analysis analyses how companies will perform in the future. Investors are able to

make more accurate predictions regarding the future performance of a company

and discover stocks that are undervalued or overvalued if they conduct an analysis

of fundamental elements over a prolonged period of time.

In addition, having a lengthy time horizon helps to reduce the impact of cyclical

market movements. The stock market is often distinguished by periods of cyclical

boom and collapse. Investors are able to more correctly anticipate market trends

and alter their investment strategies in accordance with those trends if they mon-

itor these cycles over a long period of time and make adjustments accordingly.

As a consequence, portfolio management becomes more efficient, and predictions

regarding the stock market become more accurate.

The phenomenon of mean reversion, which can be seen on financial markets and

describes the tendency of stock values to return to their long-term average, is one

factor that contributes to the predominance of a long time horizon. Investors are

able to profit from this tendency to return to the mean by evaluating past data and

finding patterns of mean reversion. This allows investors to make more accurate

projections of future price fluctuations. A more extended time horizon not only

provides a more comprehensive understanding of market cycles, but also raises the

likelihood of successfully capturing mean reversion effects.

It is absolutely necessary to acknowledge that forecasting the stock market is nat-

urally fraught with uncertainty and contains both restrictions and hazards. Even

though having a longer time horizon improves one’s capacity to make accurate pre-

dictions, there is no assurance that this will always be the case. The performance

of the stock market can also be impacted by factors such as macroeconomic condi-

tions, geopolitical events, and improvements in technology. Therefore, conducting

comprehensive research, diversifying your holdings, and taking into consideration

any other relevant elements is absolutely necessary in order to make informed

investing selections.
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The extensive study of decimated findings provides support for the contention that

a long time horizon is a more reliable predictor than a short time horizon when it

comes to forecasting the stock market and building portfolios. Long-term forecasts

are more accurate because of several aspects, including the incorporation of funda-

mental factors, the reduction of noise and random fluctuations, the stabilizing of

market cycles, and the potential of reversion to the mean. All of these factors work

together to improve accuracy. In spite of this, it is necessary to realize the inherent

uncertainty in stock market forecasting and to approach investing decisions with

caution and careful evaluation of a wide variety of factors and risk management

measures. Investors can improve their ability to foresee fluctuations in the stock

market and make informed investing decisions by combining a long-term approach

with substantial study and analysis. There is a list of arguments which is incon-

sistent with the this research results as it regret market efficiency hypothesis but

at the same time get support from the various theories and empirical studies.

Random Walk theory argued that the stock market is in a random walk situation

when there is no discernible pattern or trend in the values of individual stocks. It

is preferable to have a larger time horizon when attempting to capture a random

walk scenario rather than a shorter one.

Stock price variations in the short term are unpredictable and subject to the

effects of noise and market mood, according to Malkiel (1973), which argues that

stock prices follow a random walk pattern. He says that in order to profit from

the fundamental patterns that drive stock prices, you need to have a long-term

investment view.

De Bondt and Thaler (1990) find that the market has a tendency to correct itself

over the long run when equities depart greatly from their long-term average, sug-

gesting that short-term overreactions are common. This supports the idea that

investors can profit from mean reversion provided they have a sufficiently long

time horizon.

Forecasting the stock market with a longer time horizon is advantageous for a

number of reasons, one of the most important of which is the fact that it minimizes
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the amount of noise and random fluctuations in the stock market. The following

readings can help shed light on this topic:

Long-term volatility in the stock market can be dampened by the collective wisdom

of many investors, (Surowiecki, 2005). He maintains that the impact of individual

biases and short-term noise is mitigated and stock prices become more accurate

when a longer time horizon is taken into account.

Kahneman et al. (2021) find the effects of decision-making noise on stock market

predictions. They argue that short-term market fluctuations might be skewed by

noise, which they define as random variation or judgment errors. However, with

a longer time horizon, fundamental variables tend to have a stronger influence on

stock values, while the impact of noise tends to reduce.

The relationship between market efficiency, long-term returns, and behavioral fi-

nance is something to look at (Fama, 1998). Short-term stock market results are

found to be volatile and able to diverge from underlying values. However, when

looking at stock prices over longer periods of time, the influence of noise decreases

and prices move closer to reflecting fundamentals.

Campbell and Vuolteenaho (2004) find that stock returns are not aligned with

predicted cash flows and other fundamental factors in the short term, but that

this misalignment disappears in the long run.

Ibbotson et al. (2018) study of ”time diversification” posits that holding invest-

ments for longer periods of time reduces exposure to short-term market swings.

They argue that investors can lessen the impact of short-term market cycles and

increase their potential return on investment by increasing their investment hori-

zon. This data demonstrates that stock market projections are more robust when

a longer time horizon is used to account for the effects of market cycles.

Long-term mean reversion is another example of evidence suggesting that a longer

time horizon is desirable when trying to predict the stock market. Over time, asset

values have a tendency to return to their long-term average. Some readings on the

topic of mean reversion and its relevance to longer time frames are as follows:
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Siegel (2021) offers a comprehensive evaluation of methods investing for the future.

He contends that stock prices, over extended periods of time, have a tendency to

revert to their intrinsic values, highlighting the existence of mean reversion in the

stock market. This suggests that investors are better able to capture the effect

of mean reversion and generate more accurate stock price projections when they

have a longer time horizon.

Forecasting the stock market is heavily dependent on political and economic vari-

ables, all of which are framed by the Efficient Market Hypothesis (EMH). In terms

of economics, important metrics like GDP growth, inflation, and interest rates are

essential for predicting market movements. Interest rate decisions made by cen-

tral banks affect investor mood, but GDP growth and inflation have a direct effect

on consumer spending and business profitability. Accurate forecasting requires

taking into account both government policies and political stability at the same

time. While political unrest or changes in policy add uncertainty and can cause

market swings, stable political settings often inspire investor confidence and guar-

antee market stability. Industry valuations are directly impacted by trade policies,

taxation, and regulatory actions.

In its many forms—weak, semi-strong, and strong—the Efficient Market Hypoth-

esis states that financial markets efficiently incorporate information into stock

prices. While the hypothesis implies that continuously outperforming the market

is difficult, it recognises the possible impact of behavioural biases, information

asymmetries, and market inefficiencies. Analysts frequently struggle with this

contradiction, recognising market efficiency while looking for possibilities in in-

stances where behavioural or informational abnormalities may cause deviations

from theoretical efficiency. In order to navigate the complicated environment of

stock market forecasting, analysts and investors must first comprehend the inter-

play of economic and political elements, as well as be mindful of potential market

inefficiencies.



Discussion and Conclusion 118

5.1 Conclusion

For stock market forecasting, there are a variety of reasons why a longer time

horizon is preferable to a shorter one. The prospect of a return to the mean,

the dampening of market cycles, the inclusion of basic elements, and the decrease

of random fluctuations and noise are all examples. Long-term stock market pre-

dictions benefit from all of these aspects. Recognizing the inherent uncertainty

of stock market predictions, investors must conduct extensive research, diversify

their holdings, and take into account other important elements in order to make

educated investing decisions.

One of the benefits of a longer time horizon for stock market forecasting is the

reduction of random volatility and random noise. Short-term movements in the

market, including speculation, news, and general investor attitude, can have a

significant impact on stock prices. Stock price variations may occur for reasons

unrelated to the stock’s intrinsic worth. By looking at the market over a longer

time frame, investors can ignore the noise and focus on the fundamentals and

underlying trends, from which they can draw more reliable conclusions.

At the culmination of this dissertation, we have successfully addressed the research

questions that were outlined at the beginning of our study. The following are the

key findings and conclusions we have drawn:

1. Can decimated data be used to trade on the basis of the algorithm?

Through the utilization of the Decimated Online Moving Average Man Re-

version (D-OLMAR) algorithm, we have demonstrated that decimated data

can indeed be effectively used for trading purposes. The algorithm lever-

ages the benefits of reduced noise and captures long-term trends, resulting

in improved trading performance.

2. Does algorithm-based trading outperform market-based performance?

Our analysis has shown that algorithm-based trading, specifically using the

D-OLMAR algorithm, has the potential to outperform market-based per-

formance. By analyzing large datasets and making informed decisions, the

algorithm-based approach can generate superior trading outcomes.
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3. Is a longer time frame better than a shorter time frame for forecasting and

devising?

In the context of this study, we have found that a longer time frame is

more suitable for forecasting and devising trading strategies. This allows for

a broader perspective and the capture of significant trends, enhancing the

effectiveness of the D-OLMAR algorithm.

4. Does the algorithm-based trading strategy face higher long-term risks com-

pared to a passive investment strategy?

While algorithm-based trading strategies inherently carry risks, our research

indicates that with appropriate risk management techniques and continuous

monitoring, the D-OLMAR algorithm can mitigate long-term risks effec-

tively. It is crucial to implement robust risk management practices to ensure

the stability and reliability of the strategy.

5. Does an algorithm-based strategy offer better risk-adjusted returns against

downside risk?

This study findings suggest that the D-OLMAR algorithm, as an algorithm-

based strategy, has the potential to offer better risk-adjusted returns against

downside risk. By utilizing data-driven decision-making processes and incor-

porating risk management techniques, the algorithm helps optimize returns

while mitigating the impact of adverse market conditions.

5.2 Limitations

Stock market prediction and stock selection using a decimated algorithm has limi-

tations that may affect the accuracy of risk-adjusted measures such as the Sharpe

ratio and the Calmar ratio. Some of these limits include the liquidity constraints,

the presence of market inefficiencies, the occurrence of unforeseen events, and the

reliance on a small sample size of historical data. The evaluation of decimation

algorithms and the interpretation of risk-adjusted measures in this setting require

careful attention to these caveats.
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5.3 Recommendation and Policy Implications

Traders and investors can reap the benefits of algorithm-based trading, enhance

their forecasting skills, reduce their exposure to long-term market risks, and in-

crease their risk-adjusted profits. The following is a list of the key recommenda-

tions.

1. According to our findings, algorithmic trading outperforms market-based

trading. Investors can make data-driven decisions that have the potential to

produce greater trading outcomes by using the power of algorithms.

2. Longer time frames should be used for forecasting and developing trad-

ing strategies. According to our findings, lengthier time periods provide

a broader perspective and allow for the detection of major patterns. In-

vestors can improve the performance of their algorithm-based strategies by

adopting a longer-term outlook, resulting in more accurate predictions and

better trading decisions.

3. Implementing the D-OLMAR algorithm effectively mitigates long-term risks.

Our findings show that the D-OLMAR algorithm can reduce the long-term

hazards associated with algorithm-based trading. To ensure stability and

reliability, it is critical to implement effective risk management strategies

and to regularly review the plan.

4. Using an algorithm-based method, you can optimize risk-adjusted returns

against downside risk. Our research shows that algorithm-based strate-

gies, notably those based on the D-OLMAR algorithm, provide greater risk-

adjusted returns in the face of downside risk. Investors can maximize re-

turns while minimizing the impact of adverse market situations by using

data-driven decision-making processes and combining risk management ap-

proaches.
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5.4 Direction for Future Research

Efforts could be made to improve decimated algorithms’ robustness by including

approaches that adjust to shifting market conditions and reduce overfitting. Fur-

thermore, using different risk indicators in addition to the Sharpe and Calmar

ratios can provide a more thorough assessment of risk-adjusted returns. To im-

prove the effectiveness and dependability of algorithm-based trading strategies, the

future direction should include a continual iterative process of study, refinement,

and validation.
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