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Abstract

This dissertation presents the numerical investigation of the transportation of

thermal and mass exchange by incorporating Casson and Carreau nanofluids

over a radially stretching sheet and bi-directional surface stretched in both the

x and y directions. Heat conduction is modeled using the advanced Cattaneo-

Christov heat flux model, while mass transport is described using a generalized

mass flux model. The study considers the effects of magnetohydrodynamic 3D

flow under a variable magnetic field across a stretching sheet. The boundary layer

theory is applied to present the proposed flow model under specific assumptions.

The remarkable characteristics of the various flows considered in the thesis are

intended to be investigated in the light of heat generation/ absorption, Brownian

motion, thermophoresis and thermal radiation. Additionally, the resulting ordinary

differential equations, derived through appropriate similarity variables, are solved

numerically using the shooting method. The shooting method is used to solved the

BVPs. The convergence criterion is satisfied when the discrepancy between the

computed solution and the prescribed boundary condition falls below 1012. The

accuracy of the computational code is validated through comparative analysis. The

numerical results of every flow problem are illustrated through graphs and tables,

highlighting the impact of key flow parameters on velocity, concentration, and

temperature profiles. Furthermore, the Sherwood number, skin-friction coefficient,

and Nusselt number reveal important physical characteristics of the proposed flow

model. It has been noted that irrespective of the choice of geometry and nanofluid

considered, the temperature profile upsurges significantly for the higher values of

the Brownian motion parameter whereas an opposite trend has been sighted by

taking into account the heat generation or absorption parameter. Furthermore,

for the larger values of the thermal Grashof number, the magnitude of Sherwood

number eascalates significantly.
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Chapter 1

Introduction

Fluids are fundamental to life, and their significance in both natural and technolog-

ical processes has driven extensive scientific exploration into the behavior of fluid

flow. Fluid dynamics, the analysis of the behavior of fluid’s motion and the factors

influencing it, is key to understanding a broad spectrum of phenomena, from the

evolution of stars and weather patterns to ocean currents and blood circulation.

The field traces its origins back to Archimedes, an ancient Greek mathematician

who first investigated the principles of fluid statics and buoyancy, formulating the

renowned Archimedes’ principle. Significant advancements in fluid dynamics began

in earnest in the fifteenth century. Today, fluid dynamics plays a critical role in

various engineering applications, including oil transport pipelines, rocket thrusters,

air conditioning units, and windmills. Over the past few years, prompt research

has been pulled off by disparate scholars on non-Newtonian fluids owing to its

tremendous applications in the scientific and engineering fields. Major applications

of non-Newtonian fluids comprise of chemical solutions, food production, medicines,

paints, detergents and natural substances [1]. The mathematical modeling of such

fluids involves intricate rheological variables with more than one fluid model which

makes their study more complex as compared to other fluids. Casson fluid was

introduced in 1995 as a type of non-Newtonian fluid. The structure version is

characterized by the interrelation of the liquid and solid subject to the availability

of stress. If the viscosity of the fluid is greater than stress, the fluid functions as a

1
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solid whereas, for higher stress and lesser viscosity, the fluid behaves like a liquid.

Casson fluid is a fundamental part of a lot of edibles like fruit juices, jams, raw

honey and tomato paste. Furthermore, it has a wide range of application spectrum

in tumor treatment, blood circulation and refinement of crude oil [2–4]. Kumar

et al. [5] studied the thermal effects of flow of Casson fluid past an exponentially

curved sheet. The study demonstrated that the Casson parameter tends to repress

the magnitude of momentum. The detailed investigation of heat and mass transfer

of Casson fluids using different numerical methods was studied by Verma et al. [6]

with a finding that the shooting method, Keller Box method and Runge–Kutta

technique are more stable among the other numerical techniques used by the

scholars. Moreover, myriad experts have played a vital role in contributing to

the literature by incorporating Casson fluid [7–17]. In the class of non-Newtonian

fluids, lies the power law Carreau fluid model. It has numerous applications in the

chemical industry and is suitable for viscous flows subject to the availability of

higher shear stress. Gayatri et al. [18] examined the slip flow under the influence

of Joule heating by using Carreau fluid past a slendering stretching sheet. They

concluded that the velocity configuration slows down for the higher velocity slip

parameter. Furthermore, Salahuddin et al. [19] explored the variable fluid prop-

erties of Carreau fluid flow near the boundary layer region and revealed that the

concentration distribution magnifies by increasing the activation energy. Since the

Carreau fluid has countless uses in the engineering process, multitudinous scholars

have shed light on its significant features [20–28].

The technological advancement of nanoparticles has gained considerable interest

among various scientists due to their tremendous features. This happens be-

cause nanoparticles manifest astonishingly remarkable conductive and electrical

properties. This is the reason why nanoparticles have a comprehensive range

of applications in tomography, thermolysis, microchip technology, ecological and

medical arena. The setting up of nanoparticles is primarily executed by employing

carbides, oxides, metals and non-metals. Nanofluids are generally processed by

diffusing nanoparticles in the base fluid. In comparison with standard thermal

conductive fluids, nanofluids exhibit a more rapid pace of heat transfer. Under their
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efficacious properties, nanofluids are comprehensively employed in auto production,

refrigerating system, drug industry, atomic power plants and so much more. Ali et

al. [29] investigated the flow characteristics of MHD Casson-Carreau nanofluid in

the presence of activation energy and reached the conclusion that the temperature

escalates by lifting the magnetic force. In addition to this, Shaw et al. [30] studied

the MHD flow of non-linear microrotation of Casson-Carreau nanomaterials us-

ing Thomson and Trion slip conditions and figured out that the velocity profile

diminishes for the higher Weissenberg number and Casson parameter. Due to the

extraordinary behavior of nanofluids in heat transfer, countless scientists have shed

light on the studies incorporating different nanofluids and brought forth fruitful

outcomes [31–37].

The scrutinization of flows involving mass and heat exchange over a stretching

sheet has a critical role to play in the arena of metallurgy and the chemical industry.

In history the analysis of characteristics of heat transfer by Fourier [38] marks the

initial instance. In like manner, modification in his research was done by Cattaneo

[39]. Furthermore, Christov [40] amended the concepts of the later studies. Due to

the colossal significance of the Cattaneo-Christov heat flux model in examining

heat transfer, innumerable researchers have provided insight into the conclusions

in this regard [41–49].

Scholars have focused extensively on exploring the boundary layer flows by using

stretching sheets and incorporating Casson and Carreau fluid due to their wide

ranging applications in the realm of science and technology. The flows past the

shrinking/expanding sheets have a comprehensive application spectrum in the

production of plastic, solar energy generation, glass fabrication, and polymer

chemical engineering facilities [50]. Crane’s initial study focused on the flow

problem involving a stretching sheet [51]. Furthermore, the heat analysis of MHD

Carreau fluid flow past a radially stretching sheet was studied by Qayyum et al.

[52] and concluded that the velocity escalates for the higher Weissenberg number

past the stretching sheet. Moreover, Sobamowo explored the flow characteristics

of Casson-Carreau nanofluid over a stretching sheet by using the effects of MHD

and internal heat [32]. In addition to this, owing to the remarkable and significant
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properties in the field of fluid dynamics, the study of stretching sheet flows has

attracted numerous scholars contributing to the valuable insights [53–60].

Based on the previous findings related to both non-Newtonian and Newtonian

fluids, the research has been carried out on MHD flow at stagnation points using

the Casson and Carreau nanofluids by incorporating the effects of inclined magnetic

field, thermal radiation, chemical reaction and heat generation absorption in the

light of multiple slip boundary conditions. The heat transfer has been studied

using the Cattaneo-Christov heat flux model. Moreover, the flow characteristics

of Brownian motion, thermophoresis and viscous dissipation have been factored

in. The PDEs were transformed into a set of ODEs using appropriate similarity

transformations, and the numerical results obtained using the shooting method

have been presented using the tables and graphs. For this purpose, The MATLAB

version R2017a has been utilized. For the flow problem discussed in Chapter 3, the

MATLAB code was prepared from scratch. However, for the rest of the problems

discussed in the later chapters, the initial code was modified.

Layout of Dissertation:

A brief overview of the dissertation contents is given below.

Chapter 2 includes fundamental definitions and terminology, which will assist in

comprehending the concepts covered later.

Chapter 3 presents the proposed MHD inclined magnetic field stagnation point

flow using the Casson nanofluid over the stretching sheet. The computed outcomes

of the governing flow equations are obtained using the shooting technique.

Chapter 4 expands the suggested flow examined in Chapter 3 by employing the

Carreau nanofluid in place of the Casson fluid.

Chapter 5 extends the proposed flow discussed in Chapter 3 and Chapter 4 by

utilizing the Casson-Carreau nanofluid.
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Chapter 6 modifies the proposed flow discussed in the previous chapters by

studying the three dimensional flow of Casson-Carreau nanofluid.

Chapter 7 delivers the closing comments of the dissertation.

The references cited in the dissertation are listed in the Bibliography.



Chapter 2

Basic Definitions and Governing

Equations

The forthcoming chapter will introduce essential definitions, fundamental laws, and

terminologies that will be referenced in subsequent chapters.

2.1 Important Definitions

Definition 2.1 (Fluid). [61]

“A substance exists in three primary phases: solid, liquid, and gas. (At very high

temperatures, it also exists as plasma.) A substance in the liquid or gas phase is

referred to as a fluid. Distinction between a solid and a fluid is made on the basis of

the substance’s ability to resist an applied shear (or tangential) stress that tends to

change its shape. A solid can resist an applied shear stress by deforming, whereas

a fluid deforms continuously under the influence of shear stress, no matter how

small. In solids stress is proportional to strain, but in fluids stress is proportional

to strain rate. When a constant shear force is applied, a solid eventually stops

deforming, at some fixed strain angle, whereas a fluid never stops deforming and

approaches a certain rate of strain.”

6
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Definition 2.2 (Nanofluid). [62]

“A nanofluid is a fluid containing nanometer-sized particles, called nanoparticles.

These fluids are engineered colloidal suspensions of nanoparticles in a base fluid.

The nanoparticles used in nanofluids are typically made of metals, oxides, carbides,

or carbon nanotubes. Common base fluids include water, ethylene glycol and oil.”

Definition 2.3 (Fluid Mechanics). [61]

“Fluid mechanics is defined as the science that deals with the behavior of fluids at

rest (fluid statics) or in motion (fluid dynamics) and the interaction of fluids with

solid or other fluids at the boundaries.”

Definition 2.4 (Fluid dynamics). [61]

“It is the study of the motion of liquids, gases and plasmas from one place to another.

Fluid dynamics has a wide range of applications like calculating force and moments

on aircraft, mass flow rate of petroleum passing through pipelines, prediction of

weather, etc.”

Definition 2.5 (Hydrodynamics). [62]

“The study of the motion of fluids that are practically incompressible such as liquids,

especially water and gases at low speeds is usually referred to as hydrodynamics.”

Definition 2.6 (Magnetohydrodynamics). [62]

“Magnetohydrodynamics (MHD) is concerned with the flow of electrically conducting

fluids in the presence of magnetic fields, either externally applied or generated

within the fluid by inductive action.”

Definition 2.7 (No-Slip Condition and Boundary Layer). [61]

“Consider the flow of a fluid in a stationary pipe or over a solid surface that is

nonporous (i.e., impermeable to the fluid). All experimental observations indicate

that a fluid in motion comes to a complete stop at the surface and assumes a

zero velocity relative to the surface. That is, a fluid in direct contact with a solid

“sticks” to the surface, and there is no slip. This is known as the no-slip condition.

The fluid property responsible for the no-slip condition and the development of the

boundary layer is viscosity. The no-slip condition is responsible for the development

of the velocity profile. The flow region adjacent to the wall in which the viscous
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effects (and thus the velocity gradients) are significant is called the boundary layer.

Another consequence of the no-slip condition is the surface drag, or skin friction

drag, which is the force a fluid exerts on a surface in the flow direction.”

Figure 2.1: A fluid flowing over a stationary surface comes to a complete stop
at the surface because of the no-slip condition.

2.2 Types of Flow

Definition 2.8 (Compressible and Incompressible Flows). [61]

“A flow is classified as being compressible or incompressible, depending on the level

of variation of density during flow. Incompressibility is an approximation, and a

flow is said to be incompressible if the density remains nearly constant throughout.

Therefore, the volume of every portion of fluid remains unchanged over the course

of its motion when the flow (or the fluid) is incompressible. The densities of liquids

are essentially constant, and thus the flow of liquids is typically incompressible.

Therefore, liquids are usually referred to as incompressible substances. A pressure

of 210 atm, for example, causes the density of liquid water at 1 atm to change by

just 1%. Gases, on the other hand, are highly compressible. A pressure change of
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just 0.01 atm, for example, causes a change of 1% in the density of atmospheric

air.”

Definition 2.9 (Laminar and Turbulent Flow). [61]

“Some flows are smooth and orderly while others are rather chaotic. The highly

ordered fluid motion characterized by smooth layers of fluid is called laminar.

The word laminar comes from the movement of adjacent fluid particles together

in laminates. The flow of high-viscosity fluids such as oils at low velocities is

typically laminar. The highly disordered fluid motion that typically occurs at high

velocities and is characterized by velocity fluctuations is called turbulent. The flow

of low-viscosity fluids such as air at high velocities is typically turbulent. The flow

regime greatly influences the required power for pumping. A flow that alternates

between being laminar and turbulent is called transitional.”

Definition 2.10 (Viscous and Inviscid Flows). [61]

“There is no fluid with zero viscosity, and thus all fluid flows involve viscous effects

to some degree. Flows in which the frictional effects are significant are called

viscous flows. However, in many flows of practical interest, there are regions

(typically regions not close to solid surfaces) where viscous forces are negligibly

small compared to inertial or pressure forces. Neglecting the viscous terms in such

inviscid flow regions greatly simplifies the analysis without much loss in accuracy.”

Definition 2.11 (Steady and Unsteady Flow). [61]

“The terms steady and uniform are used frequently in engineering, and thus it

is important to have a clear understanding of their meanings. The term steady

implies no change at a point with time. The opposite of steady is unsteady. The

term uniform implies no change with location over a specified region. The terms

unsteady and transient are often used interchangeably, but these terms are not

synonyms. In fluid mechanics, unsteady is the most general term that applies to

any flow that is not steady, but transient is typically used for developing flows.”

Definition 2.12 (One-, Two-, and Three-Dimensional Flows). [61]

“A flow field is best characterized by its velocity distribution, and thus a flow is said

to be one-, two-, or three-dimensional if the flow velocity varies in one, two, or three
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primary dimensions, respectively. A typical fluid flow involves a three-dimensional

geometry, and the velocity may vary in all three dimensions, rendering the flow

three-dimensional [V (x, y, z) in rectangular or V (r, θ, z) in cylindrical coordinates].”

2.3 Fluid Properties

Definition 2.13 (Density). [61]

“Density is defined as mass per unit volume, that is,

ρ =
m

v

(
kg/m3

)
.′′ (2.1)

Definition 2.14 (Energy). [61]

“Energy can exist in numerous forms such as thermal, mechanical, kinetic, potential,

electrical, magnetic, chemical, and nuclear and their sum constitutes the total

energy E of a system. The forms of energy related to the molecular structure of a

system and the degree of the molecular activity are referred to as the microscopic

energy. The sum of all microscopic forms of energy is called the internal energy

of a system, and is denoted by U . The macroscopic energy of a system is related

to motion and the influence of some external effects such as gravity, magnetism,

electricity, and surface tension. The energy that a system possesses as a result of

its motion is called kinetic energy. The energy that a system possesses as a result

of its elevation in a gravitational field is called potential energy.”

Definition 2.15 (Stress, Normal Stress, Shear Stress, Pressure). [61]

“Stress is defined as force per unit area and is determined by dividing the

force by the area upon which it acts. The normal component of a force acting

on a surface per unit area is called the normal stress, and the tangential

component of a force acting on a surface per unit area is called shear stress.

In a fluid at rest, the normal stress is called pressure. A fluid at rest is at a

state of zero shear stress. When the walls are removed or a liquid container

is tilted, a shear develops as the liquid moves to re-establish a horizontal

free surface.”
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Figure 2.2: The normal stress and shear stress at the surface of a fluid element
[61].

Definition 2.16 (Viscosity and Drag Force). [61]

“The property that represents the internal resistance of a fluid to motion or the

“fluidity,” is the viscosity. The force a flowing fluid exerts on a body in the flow

direction is called the drag force, and the magnitude of this force depends, in part,

on viscosity. The fluid in contact with the upper plate sticks to the plate surface

and moves with it at the same speed, and the shear stress τ acting on this fluid

layer is:

τ =
F

A

(
N/m2

)
.” (2.2)

Definition 2.17 (Newtonian and Non-Newtonian Fluids). [61]

“Fluids for which the rate of deformation is linearly proportional to the shear

stress are called Newtonian fluids after Sir Isaac Newton, who expressed it first

in 1687. Most common fluids such as water, air, gasoline, and oils are Newtonian

fluids. Blood and liquid plastics are examples of non-Newtonian fluids. In the

one-dimensional shear flow of Newtonian fluids, shear stress can be expressed

by the linear relationship. Fluids for which the rate of deformation is linearly

proportional to the shear stress are called Newtonian fluids after Sir Isaac Newton,

who expressed it first in 1687. Most common fluids such as water, air, gasoline, and

oils are Newtonian fluids. Blood and liquid plastics are examples of non-Newtonian

fluids. In one-dimensional shear flow of Newtonian fluids, shear stress can be

expressed by the linear relationship.



Basic Definitions and Governing Equations 12

τ = µ
du

dy

(
N/m2

)
, (2.3)

where the constant of proportionality µ is called the coefficient of viscosity or the

dynamic (or absolute) viscosity of the fluid.”

2.4 Conservation Laws [61]

2.4.1 Conservation of Mass

“The conservation of mass relation for a closed system undergoing a change is

expressed as msys = constant or dmsys/dt = 0, which is a statement of the obvious

that the mass of the system remains constant during a process. For a control

volume (CV ), mass balance is expressed in the rate form as

min −mout =
dmCV

dt
,

where min and mout are the total rates of mass flow into and out of the control

volume, respectively, and dmCV /dt is the rate of change of mass within the control

volume boundaries. In fluid mechanics, the conservation of mass relation written

for a differential control volume is usually called the continuity equation.”

2.4.2 Conservation of Momentum

“The product of the mass and the velocity of a body is called the linear momentum

or just the momentum of the body, and the momentum of a rigid body of mass m

moving with a velocity
−→
V is m

−→
V . Newton’s second law states that the acceleration

of a body is proportional to the net force acting on it and is inversely proportional

to its mass, and that the rate of change of the momentum of a body is equal to

the net force acting on the body. Therefore, the momentum of a system remains
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constant when the net force acting on it is zero, and thus the momentum of such

systems is conserved. This is known as the conservation of momentum principle.”

2.4.3 Conservation of Energy

“Energy can be transferred to or from a closed system by heat or work, and the

conservation of energy principle requires that the net energy transfer to or from a

system during a process be equal to the change in energy content of the system.

Control volumes involve energy transfer via mass flow also, and the conservation

of energy principle, also called the energy balance, is expressed as

Ein − Eout =
dEcv
dt

,

where Ein and Eout are the total rates of energy transfer into and out of the control

volume, respectively, and dECV /dt is the rate of change of energy within the control

volume boundaries.”

2.5 Dimensional Analysis [61]

Dimensional analysis serves as an essential method for researchers, enabling the

transformation of dimensional and non-dimensional quantities, along with physical

constants, into non-dimensional groups that simplify a problem by minimizing the

number of independent variables involved.

2.5.1 Dimensions and Units

“A dimension is the measure of a physical quantity (without numerical values),

while a unit is a way to assign a number to that dimension. For example, length is

a dimension that is measured in units such as microns (µm), feet (ft), centimeters

(cm), meters (m), kilometers (km), etc. Further, force has the same dimensions
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as mass times acceleration (by Newtons’s second law). Thus, in terms of primary

dimensions, dimensions of force:

2.5.2 Dimensional Homogeneity

“The law of dimensional homogeneity, stated as

Every additive term in an equation must have the same dimensions.

Consider, for example, the change in total energy of a simple compressible closed

system from one state and/or time(1) to another (2). The change in total energy

of the system E is given by

∆E = ∆U + ∆KE + ∆PE, (2.4)

where E has three components: internal energy (U), kinetic energy (KE), and

potential energy (PE). These components can be written in terms of the system

mass (m); measurable quantities and thermodynamic properties at each of the two

states, such as speed (V ), elevation (z), specific internal energy (u) and the known

gravitational acceleration constant (g).

∆U = m(u2 − u1),

∆KE =
1

2
m(V 2

2 − V 2
1 ),

∆PE = mg(Z2 − Z1).

It is straightforward to verify that the left side of Eq. (2.4) and all three additive

terms on the right side of above equations have the same dimensions—energy.

Using the definitions of above equations, we write the primary dimensions of each

term,
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{∆E} = {Energy} = {Force.Length} → {∆E} =

[
mL2

t2

]
,

{∆U} = {Mass
Energy

Mass
} = {Energy} → {∆U} =

[
mL2

t2

]
,

{∆KE} = {Mass
Length2

time2
} → {∆KE} =

[
mL2

t2

]
,

{∆PE} = {Mass
Length

time

2

Length} → {∆PE} =

[
mL2

t2

]
.

In addition to dimensional homogeneity, calculations are valid only when the units

are also homogeneous in each additive term.”

2.5.3 Non-Dimensionalization of Equations

The principle of dimensional consistency requires that all terms combined through

addition possess identical dimensional units.

2.6 Dimensionless Parameters

Definition 2.18 (Skin-Friction Coefficient). [63]

“It is a dimensionless number and is defined as

Cf =
τw

2Qw∞2
,

where τw is the local wall shear stress, ρ is the fluid density and Ue is the free

stream velocity (usually taken outside of the boundary layer or at the inlet). It

expresses the dynamic friction resistance originating in viscous fluid flow around a

fixed wall.”
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Definition 2.19 (Nusselt Number). [63]

“It is a dimensionless number, first introduced by a German engineer Ernst Kraft

Wilhelm Nusselt and is defined as

Nu =
αL

k
,

where where α represents the heat transfer coefficient, L denotes the characteristic

length and k is the thermal conductivity. It expresses the ratio of the total

heat transfer in a system to the heat transfer by conduction. In characterizes

the heat transfer by convection between a fluid and the environment close to

it or, alternatively, the connection between the heat transfer intensity and the

temperature field in a flow boundary layer. It expresses the dimensionless thermal

transference. The physical significance is based on the idea of a fluid boundary

layer in which the heat is transferred by conduction.”

Definition 2.20 (Sherwood Number). [63]

“The Sherwood number was first introduced by an American chemical engineer,

Thomas Kilgore Sherwood and is defined as

Sh =
BL

D
,

where B is the mass transfer coefficient, L denotes the characteristic length and D

stands for molecular diffusivity.It expresses the ratio of the heat transfer to the

molecular diffusion. It characterizes the mass transfer intensity at the interface of

phases.”

Definition 2.21 (Eckert Number). [63]

“The Eckert number (Ec) is a dimensionless number used in the continuum mechan-

ics. It expresses the relationship between a flow’s kinetic energy and enthalpy, and

is used to characterize the dissipation. It is defined as

Ec =
u2

Cp∆T
,
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where u (ms−1) fluid flow velocity far from body, Cp is the constant pressure local

specific heat of continuum, ∆T is temperature difference.

It expresses the ratio of kinetic energy to a thermal energy change.”

Definition 2.22 (Prandtl Number). [63]

“The Prandtl number which is a dimensionless number, named after the German

physicist Ludwig Prandtl, is defined as

Pr =
ν

α
,

where ν stands for the kinematic viscosity and α denotes the thermal diffusivity.

This number expresses the ratio of the momentum diffusivity (viscosity) to the

thermal diffusivity. It characterizes the physical properties of a fluid with con-

vective and diffusive heat transfers. It describes, for example, the phenomena

connected with the energy transfer in a boundary layer. It expresses the degree of

similarity between velocity and diffusive thermal fields or, alternatively, between

hydrodynamic and thermal boundary layers.”

Definition 2.23 (Schmidt Number). [63]

“The Schmidt number is defined as

Sc =
µ

ρDm

=
ν

Dm

,

where ν is the kinematic viscosity, Dm is mass diffusivity, µ is the dynamic viscosity

of the fluid and ρ is the density of the fluid.

This number expresses the ratio of the kinematic viscosity, or momentum transfer

by internal friction, to the molecular diffusivity. It characterizes the relation

between the material and momentum transfers in mass transfer. It provides the

similarity of velocity and concentration fields in mass transfer. For example, molten

materials with an equal Schmidt number have similar velocity and concentration

fields. Higher Sc number values characterize slower mass exchange and higher
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values of dividing coefficients. This leads to higher mixing and a tendency to crack

in a solidified casting. The criterion was first introduced by Schmidt in 1929.”

Definition 2.24 (Weissenberg Number). [63]

“The dimensionless Weissenberg number, formulated by German physicist Karl

Weissenberg, is defined as

We =
ρu2

τ
,

where ρ is the fluid density, u denotes the flow velocity and τ stands for the shear

stress. This number expresses the characteristic material time (relaxation time)

and the shear velocity. It characterizes the velocity and time relations in rheological

processes in viscoelastic shear flow. Furthermore, it also expresses the ratio of the

dynamic viscoelastic force to the viscous force.”

Definition 2.25 (Biot Number). [63]

“The Biot number is defined as

Bi =
hhL

k
,

where hh represents the heat transfer coefficient, L denotes the characteristic length

and k is the thermal conductivity. This number expresses the ratio of the heat

flow transferred by convection on a body surface to the heat flow transferred by

conduction in a body. The criterion was first introduced by French physicist,

Jean-Baptiste Biot.”

Definition 2.26 (Radiation Parameter). [63]

“The dimensionless Radiation parameter is defined as

Rd =
εσ∗T 3Lh

λ
,

where ε is the emissivity of inner channel wall, σ∗ represents the Stefan Boltzmann

constant, Lh stands for the hydraulic diameter, Tf denotes the temperature of the
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fluid and k is the thermal conductivity. This parameter expresses the ratio of the

heat transferred by radiation in a passageway to that transferred by conduction in

a channel wall. It characterizes the relation between the radiation and conduction

heat transfers in passageways. Alternatively, it expresses the influence of the

radiation on the convective transfer.”

Definition 2.27 (Grashof Heat Number). [63]

“The dimensionless Grashof heat number is defined as

Gr =
L3g∆T

ν2T
,

where L is the characteristic length dimension, g is the gravitational acceleration,

∆T is the temperature change, ν is the kinematic viscosity. It expresses the

buoyancy-to-viscous forces ratio and its action on a fluid. It characterizes the free

non-isothermal convection of the fluid due to the density difference caused by the

temperature gradient in the fluid.”

Definition 2.28 (Hartmann Number). [63]

“The dimensionless Hartmann number is defined as

Ha = µHL

√
γ

η
,

where µ is the permeability, H is the magnetic field intensity , L is the characteristic

length, γ is the specific electrical conductance and η is the dynamic viscosity. It is

an important criterion of magneto-hydrodynamics. It expresses the ratio of the

induced electrodynamic (magnetic) force to the hydrodynamic force of the viscosity

or, alternatively, the ratio of the ponderomotive force (the electromagnetic volume

force by means of which the magnetic field acts on a conductor through which

electric current flows, which causes magnetic pressure) to the molecular friction

force. It characterizes the magnetic field influence on the flow of viscous, electrically

conducting fluid. With small Ha values, the motion proceeds as if no magnetic

field were acting. With great Ha values, the viscosity forces act only on a thin
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layer of the electrically conducting fluid (ionized gas) which adheres closely to a

by-passed wall surface.”



Chapter 3

Inclined Magnetically driven

Casson Nanofluid using the

Cattaneo-Christov Heat Flux

Model

3.1 Introduction

A numerical investigation is carried out by taking into consideration a two-dimensio-

nal inclined magnetically driven Casson nanofluid near a stagnation point flowing

past a chemically reacting radially stretching sheet to scrutinize the phenomena

of conduction, heat radiation, thermal emission and absorption in the light of

multiple slips. For the purpose of investigating the characteristics of heat transfer

conscientiously, the frequently cited Cattaneo-Christov heat flux model has been

factored in. The mathematical formulation of the current flow problem has been

described by employing the Buongiorno nanofluid model to explore the impact of

Brownian motion, thermophoresis and thermal and mass slip conditions. A set of

some appropriate similarity transformations has been incorporated for converting

highly non-linear PDEs characterizing the designed flow model to a system of ODEs.

21
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The computational handling of the proposed flow equations utilizes the shooting

method. Tables and graphs are employed to analyze how pertinent flow parameters

affect velocity, concentration, and temperature configurations. The pivotal aspect

of this research validates that the derived numerical outcomes demonstrate strong

concordance with those from existing literature.

3.2 Mathematical Modeling

The present study is centered on exploring the steady, incompressible, laminar flow

of a Casson nanofluid around a radially stretching sheet in close proximity to a

stagnation location. The flow and heat transfer characteristics are investigated

under the thermal radiation and heat generation/absorption conditions. The

coordinate system is established such that the r− axis aligns with the flow direction,

and the z− axis is oriented perpendicular to the flow.

The velocity of the external flow is designated as Ue. Additionally, the uniform

magnetic field’s direction is oriented such that it is perpendicular to the surface

of the fluid flow. The influences of Brownian motion and thermophoresis have

been explained thoroughly. Furthermore, the analysis of the convective surface

conditions has been included in the study.

The following equations represent the constitutive model of the Casson nanofluid

[64, 65]:

∂u

∂r
+
u

r
+
∂w

∂z
= 0, (3.1)

u
∂u

∂r
+ w

∂u

∂z
= νf

(
1 +

1

β

)
∂2u

∂z2
+ Ue

dUe
dr

+ gβT (T − T∞)− νfu

k′

− σB2
0(u− Ue) sin2 α

ρf
+ gβc(C − C∞), (3.2)

u
∂T

∂r
+ w

∂T

∂z
+ λ

[
w2∂

2T

∂z2
+ w

∂w

∂z

∂T

∂z
+ w

∂u

∂z

∂T

∂r
+ u

∂u

∂r

∂T

∂r
+ u2

∂2T

∂r2
+ u

∂w

∂r

∂T

∂z

+ 2uw
∂2T

∂r∂z

]
= αf

∂2T

∂z2
+ τ

[
DB

∂C

∂z

∂T

∂z
+
DT

T∞

(
∂T

∂z

)2
]

+
σB2

0 (u− Ue)2 sin2α

(ρcp)f
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+
νf
cp

(
1 +

1

β

)(
∂u

∂z

)2

+
Q0 (T − T∞)

(ρcp)f
− 1

(ρcp)f

∂qr
∂z

, (3.3)

u
∂C

∂r
+ w

∂C

∂z
= DB

∂2C

∂z2
+
DT

T∞

∂2T

∂z2
− Cr (C − C∞) . (3.4)

Figure 3.1: Schematic physical model

The subsequent explanation delineates the roles of the terms presented in the

preceding equation:

• νf

(
1 + 1

β

)
∂2u
∂z2

: Effect of Casson nanofluid.

• Ue
dUe

dr
: Stretching sheet’s velocity effect.

• gβT (T − T∞): Effect of thermal expansion coefficient.

• σB2
0(u−Ue) sin2 α

ρf
: Effect exerted by inclined magnetic field.

• gβc(C − C∞): Influence of concentration expansion coefficient.

• αf
∂2T
∂z2

: Impact of thermal diffusivity.

• DB
∂C
∂z

∂T
∂z

: Influence of Brownian motion.

• DT

T∞
∂T
∂z

: Thermophoretic effect.
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• Q0(T−T∞)
(ρcp)f

: Impact of heat generation/ absorption.

• 1
(ρcp)f

∂qr
∂z

: Influence of thermal radiation.

• Cr (C − C∞): Chemical raction effect.

The radiative flux in the light of Rosseland approximation for radiation is as follows:

∂qr
∂z

= −16σ∗T 3
∞

3k∗
∂2T

∂z2
. (3.5)

The boundary surface conditions are given by [66]:

w = w0, u = λUw + L
∂u

∂z
, T = Tf + S ′

∂T

∂z
, C = Cf +K ′

∂C

∂z
when z = 0,

u→ Ue = br, C → C∞, T → T∞, as z →∞. (3.6)

The following similarity transformations are successfully used for the conversion of

the governing PDEs to the corresponding ODEs [64, 65]:

u = arf ′ (η) , w = −2
√
aνff (η) , η =

√
a

νf
z,

φ (η) =
C − C∞
Cf − C∞

, θ (η) =
T − T∞
Tf − T∞

. (3.7)

After utilizing the above similarity transformations, the resulting ODEs are:

(
1 +

1

β

)
f ′′′ + 2ff ′′ −Kf ′ − f ′2 +Grθ +Gcφ−M2 (f ′ − A) sin2α + A2 = 0,

(3.8)(
1 +

4

3
Rd− 4Γf 2

)
θ′′ + PrNbθ′φ′ + PrNtθ′2 + 2Prfθ′ +

(
1 +

1

β

)
PrEcf ′′2

+ PrQθ − 4Γff ′θ′ + PrEcM2 (f ′ − A)
2

sin2α = 0, (3.9)

φ′′ + Sc (2fφ′ − γφ) +
Nt

Nb
θ′′ = 0. (3.10)

The corresponding boundary conditions get the following dimensionless form:
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f (0) = S, f ′ (0) = λ+ δf ′′ (0) , θ (0) = 1 + ωθ′ (0) , φ (0) = 1 + χφ′ (0) ,

f ′ → A, φ→ 0, θ → 0 as η →∞. (3.11)

The dimensionless quantities used in the above equations are formulated as:

Nb =
τDB (Cf − C∞)

νf
, P r =

νf
αf
, Nt =

τDT (Tf − T∞)

νfT∞
, M2 =

σB2
0

ρfa
,

Q =
Q0

ρfcpa
, Rd =

4T∞σ
∗

k∗ (αfρfcp)
, Ec =

a2r2

αfcp (Tf − T∞)
, A =

b

a
, Sc =

νf
DB

,

Gr =
gβT (Tf − T∞)

a2r
, Gc =

gβc (Cf − C∞)

a2r
, S = − w0√

aνf
, γ =

Cr
a
,

ω =

√
a

νf
S ′, χ =

√
a

νf
K ′, δ =

√
a

νf
L, K =

νf
k′a

, Γ = λa.

The skin-friction coefficient, Sherwood number and Nusselt number in the original

form are formulated as follows:

Cf =
τw
ρfU2

w

, Nu =
rqw

kf (Tf − T∞)
, Sh =

rqm
DB (Cf − C∞)

. (3.12)

Given below are the formulae for τw, qw and qm.

τw = µ

(
1 +

1

β

)(
∂u

∂z

)
z=0

, qw = −kf
[(

∂T

∂z

)
− qr
kf

]
z=0

,

qm = −DB

(
∂C

∂z

)
z=0

. (3.13)

The dimensionless form of the quantities of physical interest mention in (3.12),

achieved through the similarity transformation, is as follows:

Re
1
2Cf =

(
1 +

1

β

)
f ′′ (0) , Re−

1
2Sh = −φ′ (0) , Re−

1
2Nu = −

(
1 +

4

3
Rd

)
θ′ (0) ,

(3.14)

where Re =
rUw
νf

elucidates the local Reynolds number.
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3.3 Solution Methodology

For solving the system of ODEs (3.8)-(3.11) numerically along with the boundary

conditions, the shooting method has been incorporated. The non-existing initial

conditions f ′′ (0), θ(0) and φ(0) have been represented by s, l and m, respectively.

For the implementation of the shooting technique, the following notations have

been introduced:

f = y1, f
′ = y2, f

′′ = y3, θ = y4, θ
′ = y5, φ = y6, φ

′ = y7,
∂f

∂s
= y8,

∂f ′

∂s
= y9,

∂f ′′

∂s
= y10,

∂θ

∂s
= y11,

∂θ′

∂s
= y12,

∂φ

∂s
= y13,

∂φ′

∂s
= y14,

∂f

∂l
= y15,

∂f ′

∂l
= y16,

∂f ′′

∂l
= y17,

∂θ

∂l
= y18,

∂θ′

∂l
= y19,

∂φ

∂l
= y20,

∂φ′

∂l
= y21,

∂f

∂m
= y22,

∂f ′

∂m
= y23,

∂f ′′

∂m
= y24,

∂θ

∂m
= y25,

∂θ′

∂m
= y26,

∂φ

∂m
= y27,

∂φ′

∂m
= y28. (3.15)

Using the above notations, equations (3.8)-(3.10) yield the following system of

twenty eight ODEs:

y′1 = y2, y1(0) = S,

y′2 = y3, y2(0) = λ+ δs,

y′3 =
y22 +Ky2 +M2sin2α (y2 − A)− 2y1y3 − A2 −Gry4 −Gcy6(

1 + 1
β

) , y3(0) = s,

y′4 = y5, y4(0) = 1 + ωl,

y′5 =
−1(

1 + 4
3
Rd− 4γy21

)+[PrNby5y7 + PrNty25 + 2Pry1y5 + PrQy4

+
(

1 + 1
β

)
PrEcy23 + PrEcM2(y2 − A)2sin2α− 4Γy1y2y5

]
, y5(0) = l,

y′6 = y7, y6(0) = 1 + χm,

y′7 = −
(
Nt
Nb

)
y′5 − Sc (2y1y7 − γy6) , y7(0) = m,

y′8 = y9, y8(0) = 0,

y′9 = y10, y9(0) = δ,

y′10 =

(
2y2 +K +M2sin2α

)
y9 − 2(y3y8 + y1y10)−Gry11 −Gcy13(

1 + 1
β

) , y10(0) = 1,
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y′11 = y12 y11(0) = 0,

y′12 =
−1(

1 + 4
3
Rd− 4Γy21

)2[ (1 + 4
3
Rd− 4Γy21

) ((
PrNby7 + 2PrNty5

+ 2Pry1 − 4Γy1y2
)
y12 + Pr

(
Nby5y14 +Qy11 + 2

(
1 + 1

β

)
Ecy3y10

)
+ 2Pry5y8 +

(
2PrEcM2(y2 − A)sin2α− 4Γy1y5

)
y9 − 4Γy2y5y8

)
+ 8
(

(Γy1y8)
(
PrNby5y7 + PrNty25 + 2Pry1y5 + PrQy4

+
(

1 + 1
β

)
PrEcy23 + PrEcM2(y2 − A)2sin2α− 4Γy1y2y5

))]
, y12(0) = 0,

y′13 = y14, y13(0) = 0,

y′14 = −
(
Nt
Nb

)
y′12 − 2Sc

(
y1y14 + y7y8

)
+ Scγy13, y14(0) = 0,

y′15 = y16, y15(0) = 0,

y′16 = y17, y16(0) = 0,

y′17 =

(
2y2 +K +M2sin2α

)
y16 − 2(y3y15 + y1y17)−Gry17 −Gcy20(

1 + 1
β

) , y17(0) = 0,

y′18 = y19 y18(0) = ω,

y′19 =
−1(

1 + 4
3
Rd− 4Γy21

)2[ (1 + 4
3
Rd− 4Γy21

) ((
PrNby7 + 2PrNty5

+ 2Pry1 − 4Γy1y2
)
y19 + Pr

(
Nby5y21 +Qy18 + 2

(
1 + 1

β

)
Ecy3y17

)
+ 2Pry5y15 +

(
2PrEcM2(y2 − A)sin2α− 4Γy1y5

)
y16 − 4Γy2y5y15

)
+ 8
(

(Γy1y15)
(
PrNby5y7 + PrNty25 + 2Pry1y5 + PrQy4

+
(

1 + 1
β

)
PrEcy23 + PrEcM2(y2 − A)2sin2α− 4Γy1y2y5

))]
, y19(0) = 1,

y′20 = y21, y20(0) = 0,

y′21 = −
(
Nt
Nb

)
y′19 − 2Sc

(
y1y21 + y7y15

)
+ Scγy20, y21(0) = 0,

y′22 = y23, y22(0) = 0,

]y′23 = y24, y23(0) = 0,

y′24 =

(
2y2 +K +M2sin2α

)
y23 − 2(y3y22 + y1y24)−Gry24 −Gcy27(

1 + 1
β

) , y24(0) = 0,

y′25 = y26 y25(0) = 0,

y′26 =
−1(

1 + 4
3
Rd− 4Γy21

)2[ (1 + 4
3
Rd− 4Γy21

) ((
PrNby7 + 2PrNty5
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+ 2Pry1 − 4Γy1y2
)
y26 + Pr

(
Nby5y28 +Qy25 + 2

(
1 + 1

β

)
Ecy3y24

)
+ 2Pry5y22 +

(
2PrEcM2(y2 − A)sin2α− 4Γy1y5

)
y23 − 4Γy2y5y22

)
+ 8
(

(Γy1y22)
(
PrNby5y7 + PrNty25 + 2Pry1y5 + PrQy4

+
(

1 + 1
β

)
PrEcy23 + PrEcM2(y2 − A)2sin2α− 4Γy1y2y5

))]
, y26(0) = 0,

y′27 = y28, y27(0) = χ,

y′28 = −
(
Nt
Nb

)
y′26 − 2Sc

(
y1y28 + y7y22

)
+ Scγy27, y28(0) = 1.

For the sake of solving the above initial value problem, the RK-4 method has been

employed. In pursuance of the numerical results, the problem’s domain is set as

[0, η∞], where η∞ is selected to be a positive real number in a manner that for

η > η∞, no significant variation in the solution is noticed. Moreover, the missing

initial conditions are selected in order to ensure that

y2 (s, l,m) = A, y4(s, l,m) = 0, y6(s, l,m) = 0. (3.16)

The Newton’s iterative scheme has been employed for solving the above algebraic

equations, in the following sense:


s(k+1)

l(k+1)

m(k+1)

 =


s(k)

l(k)

m(k)

−


∂y2
∂s

∂y2
∂l

∂y2
∂m

∂y4
∂s

∂y4
∂l

∂y4
∂m

∂y6
∂s

∂y6
∂l

∂y6
∂m


−1 

y2 − A

y4

y6




(s(k), l(k), m(k))

.

⇒


s(k+1)

l(k+1)

m(k+1)

 =


s(k)

l(k)

m(k)

−


y9 y16 y23

y11 y18 y25

y13 y20 y27


−1 

y2 − A

y4

y6




(s(k), l(k), m(k))

,

where k represents the kth iterations.

In order to terminate the numerical procedure and obtain the numerical solution,

the stopping criteria has been set as:
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max{(|y2(η∞)− A|, |y4(η∞)|, |y6(η∞)|)} < ε, (3.17)

where ε has been chosen as 10−12. For all numerical results presented in the present

model, η∞ = 7 is observed as an appropriate replacement of ∞.

3.4 Results with Discussion

In the said section, the numerical solutions of the described model for various

choices of the values of some important pertinent flow parameters have been

computed and discussed. The significant numerical results of some parameters of

interest are illustrated in the tabular form, as well.

3.4.1 Skin-friction Coefficient, Nusselt and Sherwood Num-

bers

To validate the MATLAB code for the shooting method, the values of −θ′(0) are

replicated for the problem addressed by Khan and Pop [67], Arulmozhi et al. [68]

and Noeiaghdam et al. [69].

Table 3.1: Comparison of the present results of local Nusselt number with
those published in the literature.

−θ′(0) with Pr = 10

Nb Nt Khan and Pop [67] Arulmozhi et al. [68] Noeiaghdam et al. [69] Present

0.1 0.1 2.1294 2.1294 2.1294 2.129346

0.2 0.1 2.2740 2.2740 2.2740 2.273857

0.3 0.1 2.5286 2.5286 2.5286 2.528362

0.4 0.1 2.7952 2.7952 2.7952 2.794799

Table 3.1 reflects a great settlement between the numerical values obtained by the

present code and those already existing in the above mentioned articles.
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Tables 3.2-3.4 disclose the computed values of the skin-friction coefficient, along

with the Nusselt and Sherwood numbers, for the model under consideration by

varying different parameters like β, Pr, M , A, Nb, K, α, Gr, Ec, Gc, λ, S, δ, Rd,

Q, Nt, γ, ω, Γ, Sc and χ. In these tables, c1 and c2 have been used to denote

(1 + 1
β
) and (1 + 4

3
Rd), respectively.

Table 3.2: The computed results of skin-friction coefficient, Nusselt and
Sherwood numbers for Rd = Pr = Q = Ec = Sc = γ = Γ = ω = χ = δ =

0.1, Nb = Nt = 0.5, S = 0.2.

β M A K α Gr Gc λ c1f
′′(0) −c2θ′(0) −φ′(0)

0.5 1 0.1 0.10 0.1 2.0 1.0 1.0 7.137509 -0.049569 0.443023

5.0 3.919429 0.202223 0.203195

10 3.705960 0.208801 0.194452

2 7.143034 -0.048568 0.441440

3 7.153131 -0.046991 0.438882

0.2 7.199230 -0.052690 0.455493

0.3 7.304999 -0.059659 0.472074

0.12 7.170019 -0.117796 0.500933

1.14 7.202880 -0.187092 0.559735

0.2 7.142958 -0.048581 0.441461

0.3 7.152626 -0.047063 0.439002

3.0 9.032205 -0.192861 0.583438

4.0 10.865648 -0.361764 0.740824

2.0 8.773996 -0.175495 0.580361

3.0 10.180833 -0.304880 0.709926

1.5 5.022552 -0.015530 0.378087

2.0 -3.359565 0.061521 -1.130882

It has been remarked that by taking into account the larger values of A, K, Gr,

Gc, S, Pr, ω and Γ, the magnitude of the skin-friction coefficient along with the

mass transfer rate climb marginally whereas a diminution in the heat transfer rate

has been seen.
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It has been sighted that as the values of β, λ, Rd and χ go up, the skin-friction

coefficient and Sherwood number depreciate while the Nusselt number escalates

significantly. An escalation has been observed in the heat and mass transfer rates

as Q and γ assume the higher values, whereas the magnitude of the skin-friction

coefficient declines remarkably.

Table 3.3: The computed results of skin-friction coefficient, Nusselt and
Sherwood numbers for M = Gc = 1, A = K = α = δ = χ = Γ = 0.1, S =

0.2, λ = 1, β = 0.5.

Rd Pr Q Nb Nt Ec Sc γ ω c1f
′′(0) −c2θ′(0) −φ′(0)

0.1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 7.137509 -0.049569 0.443023

0.2 7.011342 1.532161 0.208155

0.3 7.001480 3.135451 0.189926

0.5 7.210993 -0.908215 1.224026

1.0 7.528930 -2.251737 2.412752

0.2 6.938789 -0.003572 0.521921

0.3 6.824714 0.014398 0.586091

5.0 7.173127 -0.080883 0.289679

10 7.292440 -0.148627 0.287447

1.0 7.111343 -0.105493 0.695248

2.0 7.096359 -0.178978 1.270402

0.2 7.123904 -0.034203 0.430949

0.3 7.110563 -0.019112 0.419074

0.2 7.138603 -0.043605 0.434486

0.3 7.138834 -0.038299 0.426577

0.2 7.110128 -0.042745 0.456648

0.3 7.084463 -0.036599 0.469936

0.2 7.154268 -0.049695 0.443887

0.3 7.171101 -0.049826 0.444758

The skin-friction coefficient, Sherwood and Nusselt numbers are magnified for the

higher estimation of M . On the contrary, as Ec and δ attain the larger values, the

skin-friction coefficient, heat and mass transfer rates are observed to fall moderately.
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The skin-friction coefficient shows an increasing behavior whereas an opposite trend

has been observed in the magnitude of Sherwood number with the rise of Nb and

Sc.

Table 3.4: The computed results of skin-friction coefficient, Nusselt and
Sherwood numbers for Rd = Pr = Q = Ec = Sc = γ = Γ = ω = A = K = α =

0.1, Nb = Nt = 0.5, M = Gc = 1, λ = 1, β = 0.5.

S δ Γ χ c1f
′′(0) −c2θ′(0) −φ′(0)

0.2 0.1 0.1 0.1 7.137509 -0.049569 0.443023

1.0 26.724105 -1.968488 2.1641677

1.5 55.542392 -8.772177 8.0310438

0.05 7.071766 -0.025425 0.437019

0.2 5.205177 -0.020618 0.385569

0.2 7.331324 -0.206812 0.553291

0.3 7.527138 -0.350740 0.647269

0.2 7.057073 -0.040312 0.422880

0.3 6.983258 -0.031997 0.404645

3.4.2 The Velocity, Temperature and Concentration Pro-

files

Figures 3.2-3.4 highlight the effect of M on the velocity, temperature and con-

centration profiles. A sudden escalation has been sighted in the concentration

and temperature profiles whereas the velocity drops subsequently by applying a

higher magnetic field. This happens due to the fact that the applied magnetic

field encounters an opposing force generally referred to as the Lorentz force, is

originated consequently which brings down the motion of the fluid leading to a

drastic fall in the momentum boundary layer thickness and a marginal hike in the

thermal and concentration boundary layer thickness.

The impact of A on the velocity and temperature distributions has been presented

in Figures 3.5-3.6. By taking into account the values of A larger than 1, an

increment has been seen in the velocity. Contrariwise, the flow velocity reduces
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for A < 1. Moreover, the temperature profile is noticed to de-escalate for the

higher estimation of A. This stems from the fact that the transfer of thermal

energy from the surface to the fluid tends to decline as the value of A escalates and

therefore, the temperature drops and the related thermal boundary layer thickness

is shrinked.

Figure 3.7 illustrates the influence of Casson parameter on the flow velocity. An

increasing behaviour is observed in the velocity by escalating the values of β.

Moreover, a decrement is experienced by the velocity boundary layer thickness

with a rise in β. The reason for this lies in the fact that for the smaller values of

β, the plasticity of the Casson fluid climbs which results in an enlargement in the

corresponding momentum boundary layer thickness.

The dynamics of the velocity and temperature distributions by incorporating diverse

values of Ec have been illustrated through Figures 3.8-3.9. In the physical sense,

the ratio of the fluid particles’ kinetic energy and enthalpy is characterized by the

Eckert number. An escalation in the kinetic energy of the fluid is observed by

rising the values of Ec. Therefore, the temperature and velocity go up exhibit an

augmentation which results in an enhancement in the thickness of the momentum

and thermal boundary layer.

Figure 3.10 depicts the impact of γ on the concentration configuration. It has

been seen that the higher estimation of γ leads to a depreciation in the chemical

molecular diffusion and thereby the fluid’s concentration drops marginally and a

decrement has been noted in the associated concentration boundary layer thickness.

The effect of the Brownian motion parameter on the temperature and concentration

profiles are displayed through Figures 3.11-3.12. The temperature profile upsurges

significantly by considering higher Nb. This happens due to the fact that the rising

values of Nb cause a notable elevation in the nanoparticles’ motion which catalyzes

the nanoparticles’ kinetic energy. This leads to an increment in the temperature

and the thermal boundary layer thickness. However, the concentration of the fluid

falls down as the values of Nb are allowed to rise up. This cause a natural reduction

in concentration boundary layer thickness.
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Figures 3.13-3.14 are delineated to display the influence of the thermophoresis

parameter on the temperature and concentration configurations. Both the temper-

ature and concentration go up by increasing the magnitude of Nt. On top of that,

an escalation in the associated thermal and concentration boundary layer thickness

has been observed.

Figures 3.15-3.16 are drawn to portray the impact of Pr on the temperature

and concentration configurations. Physically, Pr is defined to be proportionate

between the viscous diffusion rate and thermal diffusivity. As the magnitude of Pr

heightens, the thermal diffusion rate undergoes a curtailment and eventually the

fluid’s temperature depresses considerably. Therefore, a diminution has been noted

in the thermal boundary layer thickness. Meanwhile, for the higher assumption

of Pr, the fluid’s concentration is noticed to escalate. Apart from this, a sudden

upsurge can be noted in the thickness of the concentration boundary layer.

The impact of the heat generation or absorption parameter on the temperature

profile is elucidated in Figure 3.17. The larger the magnitude of Q, the more the

heat is generated, which allows the temperature and the thermal boundary layer

thickness to climb significantly. However, a drop in the magnitude of Q results

in higher heat absorption which cools down the temperature and as a result, the

associated thermal boundary layer thickness undergoes a decrement.

Figures 3.18-3.19 illustrate the effect of Sc and Rd on the concentration fields. The

fluid’s concentration is reduced for taking into account larger Sc. This happens

owing to the fact that the relation between Schmidt number and mass diffusion rate

is inversely proportional, that is why, as Sc rises, the phenomenon of mass diffusion

happens more slowly and hence results in a sudden drop in the concentration and

the thickness of concentration boundary layer is decreased. On the other hand, the

radiation parameter affects the concentration distribution, the other way round.

The larger the values of Rd, the higher the concentration, which further magnifies

the associated concentration boundary layer thickness.

Figure 3.20 is sketched to delineate the influence of M and β on the skin-friction

coefficient. It is remarked from the figure that as the values of β and M escalate,
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the shearing stress of the surface approaches an alleviation. Figure 3.21 represents

the effect of Rd and Ec on the Nusselt number. Notably, the magnitude of the

heat transfer gradient increases marginally by assuming the higher values of Rd

and Ec into account.

The impact of Pr and γ on the Sherwood number is depicted in Figure 3.22.

Evidently, it is apparent that as the values of Pr and γ escalate, the mass transfer

gradient exhibits an increment in magnitude.

Figure 3.2: Effect of M on f ′(η) when K = ω = δ = A = Q = Ec = α =
Γ = χ = Sc = 0.1 β = Nt = Nb = 0.5, Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2

Figure 3.3: Effect of M on θ(η) when K = ω = δ = A = Q = Ec = α = Γ =
χ = Sc = 0.1, β = Nt = Nb = 0.5, Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2
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Figure 3.4: Effect of M on φ(η) when K = ω = δ = A = Q = Ec = α =
Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2

Figure 3.5: Effect of A on f ′(η) when K = ω = δ = Q = Ec = α = Γ = χ =
Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2
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Figure 3.6: Effect of A on θ when K = ω = δ = Q = Ec = α = Γ = χ = Sc =
0.1 β = Nt = Nb = 0.5,M = Rd = Pr = γ = Gc = 1, Gr = 2, λ = −1, S = 0.2

Figure 3.7: Effect of β on f ′(η) when K = ω = δ = A = Q = Ec = α =
Γ = χ = Sc = 0.1 Nt = Nb = 0.5,M = Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2
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Figure 3.8: Effect of Ec on f ′(η) when K = ω = δ = A = Q = α = Γ = χ =
Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2

Figure 3.9: Effect of Ec on θ(η) when K = ω = δ = A = Q = α = Γ = χ =
Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2
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Figure 3.10: Effect of γ on φ(η) when K = ω = δ = A = Q = Ec = α = Γ =
χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = Gc = 1, Gr = 2, λ =

−1, S = 0.2

Figure 3.11: Effect of Nb on θ(η) when K = ω = δ = A = Q = Ec = α =
Γ = χ = Sc = 0.1, β = Nt = 0.5, M = Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2
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Figure 3.12: Effect of Nb on φ(η) when K = ω = δ = A = Q = Ec = α =
Γ = χ = Sc = 0.1, β = Nt = 0.5, M = Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2

Figure 3.13: Effect of Nt on θ(η) when K = ω = δ = A = Q = Ec = α =
Γ = χ = Sc = 0.1, β = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2



Inclined Magnetically driven Casson Nanofluid using... 41

Figure 3.14: Effect of Nt on φ(η) when K = ω = δ = A = Q = Ec = α =
Γ = χ = Sc = 0.1, β = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2

Figure 3.15: Effect of Pr on θ(η) when K = ω = δ = A = Q = Ec = α =
Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2
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Figure 3.16: Effect of Pr on φ(η) when K = ω = δ = A = Q = Ec = α =
Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2

Figure 3.17: Effect of Q on θ(η) K = ω = δ = A = Ec = α = Γ = χ = Sc =
0.1, β = Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr = 2, λ = −1, S =

0.2



Inclined Magnetically driven Casson Nanofluid using... 43

Figure 3.18: Effect of Sc on φ(η) when K = ω = δ = A = Q = Ec = α = Γ =
χ = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2

Figure 3.19: Effect of Rd on φ(η) when K = ω = δ = A = Q = Ec = α =
Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2
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Figure 3.20: Effect of M and β on Re
1
2Cf when K = ω = δ = n = A = Q =

Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1,
Gr = 2, λ = −1, S = 0.2

Figure 3.21: Effect of Rd and Ec on Re−
1
2Nu when when K = ω = δ = n =

A = Q = Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ =
Gc = 1, Gr = 2, λ = −1, S = 0.2
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Figure 3.22: Effect of Pr and γ on Re∧-∧1∧/∧2 Sh when K = ω = δ = n =
A = Q = Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ =

Gc = 1, Gr = 2, λ = −1, S = 0.2



Chapter 4

Inclined Magnetically driven

Carreau Nanofluid using the

Cattaneo-Christov Heat Flux

Model

4.1 Introduction

The numerical study of the flow of Carreau nanofluid subject to the availability

of an inclined magnetic field, using the Cattaneo-Christov heat flux across a

radially stretching sheet in the neighborhood of a stagnation point has been taken

into consideration. Besides this, the impact of Brownian motion and thermal

radiation are also analyzed. Furthermore, the impact of multiple slips and the

permeability of the porous medium is studied in detail. A group of suitable similarity

variables has been brought in for the reformation of non-linear PDEs defining the

proposed flow model into a system of ODEs. For the extraction of the numerical

results of the ODEs describing the proposed flow problem, the advantage of the

efficiency of the shooting method has been taken. The concentration, velocity and

46
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temperature profiles have been investigated against diverse values of the significant

flow parameters.

4.2 Mathematical Modeling

An analysis of a steady and laminar flow using incompressible Carreau nanofluid

in the vicinity of a stagnation point past a chemically reacting radially stretched

surface by incorporating Cattaneo-Christov model has been considered. Considering

an inclined magnetic field and multiple slips, the fundamental characteristics of the

flow will be analyzed. Moreover, the coordinate system is chosen in an appropriate

fashion that the r−axis is taken in the direction of flow while z−axis normal to

the flow. The velocity of the stretching sheet is assumed to be λUw with λ > 0 and

Uw = ar. Furthermore, the influence of Brownian movement and thermophoresis

phenomena has been taken into account.

The problem describing the flow takes the following form[70, 71]:

∂u

∂r
+
u

r
+
∂w

∂z
= 0, (4.1)

u
∂C

∂r
+ w

∂C

∂z
= DB

∂2C

∂z2
+
DT

T∞

∂2T

∂z2
− Cr (C − C∞) , (4.2)

u
∂u

∂r
+ w

∂u

∂z
= νf

∂2u

∂z2

[
1 + Γ2

(
∂u

∂z

)2
]n−1

2

+ Ue
dUe
dr

+ gβT (T − T∞)− νfu

k′

+ νf (n− 1) Γ2∂
2u

∂z2

(
∂u

∂z

)2
[

1 + τ 2
(
∂u

∂z

)2
]n−3

2

+ gβc(C − C∞)

− σB2
0(u− Ue) sin2 α

ρf
, (4.3)

u
∂T

∂r
+ w

∂T

∂z
+ λ

[
u
∂u

∂r

∂T

∂r
+ w

∂w

∂z

∂T

∂z
+ u

∂w

∂r

∂T

∂z
+ w

∂u

∂z

∂T

∂r
+ u2

∂2T

∂r2
+ w2∂

2T

∂z2

+ 2uw
∂2T

∂r∂z

]
= αf

∂2T

∂z2
+ τ

[
DB

∂C

∂z

∂T

∂z
+
DT

T∞

(
∂T

∂z

)2
]

+
σB2

0 (u− Ue)2 sin2 α

(ρcp)f

+
Q0 (T − T∞)

(ρcp)f
− 1

(ρcp)f

∂qr
∂z

. (4.4)
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While several terms correspond to those discussed in the mathematical modeling

section of Chapter 3, the remaining terms are delineated in detail below.

•
[
1 + Γ2

(
∂u
∂z

)2]n−1
2

, Γ2
(
∂u
∂z

)2 [
1 + τ 2

(
∂u
∂z

)2]n−3
2

: Effects of Carreau nanofluid.

The radiative heat flux in the light of the Rosseland approximation can be formu-

lated as

∂qr
∂z

= −16σ∗T 3
∞

3k∗
∂2T

∂z2
. (4.5)

The surface conditions at the boundary are introduced in the following manner

[72].

w = w0, u = λUw + L
∂u

∂z
, T = Tf + S ′

∂T

∂z
, C = Cf + k′

∂C

∂z
when z = 0,

u→ Ue = br, C → C∞, T → T∞ as z →∞. (4.6)

A set of similarity variables is incorporated in the following form [70]:

u = arf ′ (η) , η =

√
a

νf
z, w = −2

√
aνff (η) ,

θ (η) =
T − T∞
Tf − T∞

, φ (η) =
C − C∞
Cf − C∞

. (4.7)

By incorporating the similarity transformations in equations (4.1)-(4.4), the conti-

nuity equation is satisfied and the rest of the PDEs assume the following form.

[
1 + nWe2 (f ′′)

2
] [

1 +We2 (f ′′)
2
]n−3

2
f ′′′ + 2ff ′′ −Kf ′ +Grθ − f ′2 + A2 +Gcφ

−M2 (f ′ − A) sin2α = 0, (4.8)(
1 +

4

3
Rd− 4ζf 2

)
θ′′ + PrNbθ′φ′ + PrNtθ′2 + 2Prfθ′ + PrQθ − 4ζff ′θ′

+ PrEcM2 (f ′ − A)
2
sin2α = 0, (4.9)

φ′′ +
Nt

Nb
θ′′ + Sc (2fφ′ − γφ) = 0. (4.10)
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The corresponding conditions at the boundary are given by

f (0) = S, f ′ (0) = λ+ δf ′′ (0) , f ′ → A, as η →∞,

θ (0) = 1 + ωθ′ (0) , φ (0) = 1 + χφ′ (0) , θ → 0, φ→ 0 as η →∞. (4.11)

The formulae of the dimensionless parameters incorporated in the above equations

are listed below.

Nb =
τDB (Cf − C∞)

νf
, P r =

νf
α
, Nt =

τDT (Tf − T∞)

νfT∞
, M2 =

σB2
0

ρa
,

Q =
Q0

ρcpa
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4T∞σ
∗

k∗ (αρcp)
, Ec =

a2r2

αcp (Tf − T∞)
, A =

b

a
, Sc =

νf
DB

,

Gr =
gβT (Tf − T∞)

a2r
, Gc =

gβc (Cf − C∞)

a2r
, S = − wo√

aνf
, γ =

Cr
a
,

ω =

√
a

ν
S ′, χ =

√
a

ν
K ′, δ =

√
a

ν
L, K =

ν

k′a
, ζ = λa, We2 =

Γ2a3r2

νf
. (4.12)

The skin-friction coefficient, Nusselt number and Sherwood number in the dimen-

sional form are formulated as follows:

Cf =
τw
ρfU2

w

, Nu =
rqw

kf (Tf − T∞)
, Sh =

rqm
DB (Cf − C∞)

. (4.13)

Given below are the formulae for τw, qw and qm.

τw = µ

(
∂u

∂z

)
z=0

[
1 + Γ2

(
∂u

∂z

)2
]n−1

2

z=0

, qw = −kf
[(

∂T

∂z

)
− qr
kf

]
z=0

,

qm = −DB

(
∂C

∂z

)
z=0

. (4.14)

The dimensionless form of skin-friction coefficient, Nusselt number and Sherwood

number achieved through the similarity transformation is as follows.

Re
1
2Cf = f ′′ (0)

[
1 +We2f ′′

2

(0)
]n−1

2
, Re−

1
2Nu = −

[
1 +

4

3
Rd

]
θ′ (0) ,

Re−
1
2Sh = −φ′ (0) , (4.15)
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where Re =
rUw
νf

elucidates the local Reynolds number.

4.3 Method of Solution

For the numerical treatment of ODEs together with the boundary conditions

(4.8)-(4.11), the shooting method has been opted. The missing initial conditions

f ′′ (0), θ(0) and φ(0) have been denoted as s, l and q, respectively. As a procedural

requirement, the following notations have also been introduced.

f = y1, f
′ = y2, f

′′ = y3, θ = y4, θ
′ = y5, φ = y6, φ

′ = y7,
∂f

∂s
= y8,

∂f ′

∂s
= y9,

∂f ′′

∂s
= y10,

∂θ

∂s
= y11,

∂θ′

∂s
= y12,

∂φ

∂s
= y13,

∂φ′

∂s
= y14,

∂f

∂l
= y15,

∂f ′

∂l
= y16,

∂f ′′

∂l
= y17,

∂θ

∂l
= y18,

∂θ′

∂l
= y19,

∂φ

∂l
= y20,

∂φ′

∂l
= y21,

∂f

∂q
= y22,

∂f ′

∂q
= y23,

∂f ′′

∂q
= y24,

∂θ

∂q
= y25,

∂θ′

∂q
= y26,

∂φ

∂q
= y27,

∂φ′

∂q
= y28. (4.16)

Using the above notations, equations (4.8)-(4.10) are transformed into the following

first order ODEs. Furthermore, the differentiation of these first seven ODEs w.r.t

s, l and q, respectively, yields the remaining twenty one ODEs.

y′1 = y2, y1(0) = S,

y′2 = y3, y2(0) = λ+ δs,

y′3 =
y22 +Ky2 +M2sin2α (y2 − A)− 2y1y3 − A2 −Gry4 −Gcy6

(1 + nWe2y23) (1 +We2y23)
n−3
2

, y3(0) = s,

y′4 = y5, y4(0) = 1 + ωl,

y′5 =
−1(

1 + 4
3
Rd− 4ζy21

)[PrNby5y7 + PrNty25 + 2Pry1y5 + PrQy4

+ PrEcM2(y2 − A)2sin2α− 4ζy1y2y5

]
y6(0) = l,

y′6 = y7, y6(0) = 1 + χq,

y′7 = −
(
Nt
Nb

)
y′5 − Sc (2y1y7 − γy6) , y7(0) = q,

y′8 = y9, y8(0) = 0,
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y′9 = y10, y9(0) = δ,

y′10 =
1

(1 + nWe2y23)
2

(1 +We2y23)
n−3[( [

1 + nWe2y23
] [

1 +We2y23
]n−3

2
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2y2 +M2sin2α +K
)
y9

−Gry11 −Gcy13 − 2 (y1y10 + y3y8)
])
−
((
y22 +M2(y2 − A)sin2α

− 2y1y3 − A2 +Ky2 −Gry4 −Gcy6
) [

1 +We2y23
]n−5

2

(2We2y3y10)
(
n−3
2

[
1 + nWe2y23

]
+ n

[
1 +We2y23

]))]
, y10(0) = 1,

y′11 = y12, y11(0) = 0,

y′12 =
−1(

1 + 4
3
Rd− 4ζy21

)2[ (1 + 4
3
Rd− 4ζy21

){(
PrNby7 + 2PrNty5

+ 2Pry1 − 4ζy1y2
)
y12 + Pr (Nby5y14 +Qy11 + 2y5y8)− 4ζy2y5y8

+
(
2PrEcM2(y2 − A)sin2α− 4ζy1y5

)
y9

}
+ 8ζy1y8

(
PrNby5y7

+ PrNty25 + 2Pry1y5 + PrQy4 + PrEcM2(y2 − A)2sin2α

− 4ζy1y2y5
)]

y12(0) = 0,

y′13 = y14, y13(0) = 0,

y′14 = −
(
Nt
Nb

)
y′12 − 2Sc

(
y1y14 + y7y8

)
+ Scγy13, y14(0) = 0,

y′15 = y16, y15(0) = 0,

y′16 = y17, y16(0) = 0,

y′17 =
1

(1 + nWe2y23)
2

(1 +We2y23)
n−3[( [

1 + nWe2y23
] [

1 +We2y23
]n−3

2
[ (

2y2 +M2sin2α +K
)
y16

−Gry18 −Gcy20 − 2 (y1y17 + y3y15)
])
−
((
y22 +M2(y2 − A)sin2α

− 2y1y3 − A2 +Ky2 −Gry4 −Gcy6
) [

1 +We2y23
]n−5

2

(2We2y3y17)
(
n−3
2

[
1 + nWe2y23

]
+ n

[
1 +We2y23

]))]
, y17(0) = 0,

y′18 = y19, y18(0) = ω,
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y′19 =
−1(

1 + 4
3
Rd− 4ζy21

)2[ (1 + 4
3
Rd− 4ζy21

){(
PrNby7 + 2PrNty5

+ 2Pry1 − 4ζy1y2
)
y19 + Pr (Nby5y21 +Qy18 + 2y5y15)− 4ζy2y5y15

+
(
2PrEcM2(y2 − A)sin2α− 4ζy1y5

)
y16

}
+ 8ζy1y15

(
PrNby5y7

+ PrNty25 + 2Pry1y5 + PrQy4 + PrEcM2(y2 − A)2sin2α

− 4ζy1y2y5
)]

y19(0) = 0,

y′20 = y21, y20(0) = 0,

y′21 = −
(
Nt
Nb

)
y′19 − 2Sc

(
y1y21 + y7y15

)
+ Scγy20, y21(0) = 0,

y′22 = y23, y22(0) = 0,

y′23 = y24, y23(0) = 0,

y′24 =
1

(1 + nWe2y23)
2

(1 +We2y23)
n−3[( [

1 + nWe2y23
] [

1 +We2y23
]n−3

2
[ (

2y2 +M2sin2α +K
)
y23

−Gry25 −Gcy27 − 2 (y1y24 + y3y22)
])
−
((
y22 +M2(y2

− A)sin2α− 2y1y3 − A2 +Ky2 −Gry4 −Gcy6
) [

1 +We2y23
]n−5

2

(2We2y3y24)
(
n−3
2

[
1 + nWe2y23

]
+ n

[
1 +We2y23

]))]
, y24(0) = 0,

y′25 = y26 y25(0) = 0,
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+
(
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)
y23

}
+ 8ζy1y22

(
PrNby5y7

+ PrNty25 + 2Pry1y5 + PrQy4 + PrEcM2(y2 − A)2sin2α

− 4ζy1y2y5
)]

y26(0) = 0,

y′27 = y28, y27(0) = χ,

y′28 = −
(−Nt
Nb

)
y′26 − 2Sc

(
y1y28 + y7y22

)
+ Scγy27, y28(0) = 1.
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With the aim of solving the above initial value problem, the RK-4 method has

been employed. For the sake of numerical results, the domain of the problem is

supposed to be bounded and considered as [0, η∞]. The value of η∞ is selected to

be a positive finite real number with the property that the increasing values of η∞

do not cause influensive variations in the solution. For the system of equations

mentioned above, the missing initial conditions are selected in order to ensure that

(y2 (s, l, q))η=η∞ = A, (y4(s, l, q))η=η∞ = 0, (y6(s, l, q))η=η∞ = 0. (4.17)

The Newton’s iterative scheme has been employed for solving the above algebraic

equations.


s(k+1)

l(k+1)

q(k+1)

 =


s(k)

l(k)

q(k)

−


∂y2(s,l,q)

∂s
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∂l
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∂s
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∂l
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∂y6(s,l,q)
∂s

∂y6(s,l,q)
∂l

∂y6(s,l,q)
∂q


−1 

y2 − A

y4

y6




(s(k), l(k), q(k), η∞)

,


s(k+1)

l(k+1)

q(k+1)

 =


s(k)

l(k)

q(k)

−


y9 y16 y23

y11 y18 y25

y13 y20 y27


−1 

y2 − A

y4

y6




(s(k), l(k), q(k), η∞)

,

where k represents the iteration level of the scheme.

For the termination of the numerical procedure and to obtain the numerical solution,

the stopping criteria has been set as:

max{(|y2(η∞)− A|, |y4(η∞)|, |y6(η∞)|)} < ε, (4.18)

where ε has been chosen as 10−12. During this analysis, η∞ is selected as 7.
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4.4 Results with Discussion

The numerical solutions of the proposed model for various choices of the values of

some important pertinent flow parameters have been included in this segment. The

significant numerical results of the skin-friction coefficient, Sherwood and Nusselt

numbers are illustrated in the tabular form.

4.4.1 Skin-friction Coefficient, Nusselt and Sherwood Num-

bers

To validate the MATLAB code for the shooting method, the values of −f ′′(0) are

replicated for the problem addressed by Ramesh et al. [72] and Cortell [73].

Table 4.1: Comparison of the present results of −f ′′(0) with those published
in the literature, in the absence of irrelevant parameters.

−f ′′(0) for various values of M

M Ramesh et. al [72] Cortell [73] Present

0 1.00006 1.000 1.00006253

0.5 1.22475 1.224 1.22474606

1.0 1.41421 1.414 1.41421360

1.5 1.58114 1.581 1.58113883

2.0 1.73205 1.732 1.73205081

On the other hand, an escalation has been seen in the mass transfer rate as χ, Sc,

Ec and Pr assume the higher values whereas the magnitude of the skin-friction

coefficient and heat transfer rate declines remarkably. Furthermore, the skin-friction

coefficient appears to be a decreasing function of S, Q and γ whereas an opposite

trend has been remarked for the heat and mass transfer rates.

Table 4.1 reflects a great settlement between the numerical values obtained by the

present code and those already existing in the mentioned articles. Tables 4.2-4.3
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disclose the numerical results of skin-friction coefficient accompanied by Sherwood

and Nusselt numbers by varying different parameters like We, M , A, K, α, Gr,

Gc, λ, S, ζ, Rd, Pr, Q, Nb, Nt, Ec, Sc, γ, ω and χ, for the proposed model.

Table 4.2: The computed results of skin-friction coefficient, Nusselt and
Sherwood numbers for Rd = Pr = Q = Ec = Sc = γ = ω = χ = 0.1, Nb =

Nt = 0.5, where b1 =
(

1 +We2f ′′
2

(0)
)n−1

2
and b2 =

(
1 + 4

3Rd
)
.

We M A α K Gc S Gr ζ λ b1f
′′(0) −b2θ′(0) −φ′(0)

0.1 1.0 0.1 0.1 0.1 1.0 0.2 2.0 0.1 1.0 0.28187 0.29346 0.21313

0.5 0.28820 0.29349 0.21301

0.9 0.39577 0.29376 0.20772

1.5 0.28107 0.29342 0.21291

2.0 0.27994 0.29335 0.21260

1 0.34508 0.22828 0.37196

2 0.41940 0.11283 0.53137

0.5 0.26627 0.29268 0.20932

0.9 0.22561 0.29126 0.20298

1.1 0.28193 0.29216 0.21414

2.1 0.38008 0.25467 0.15276

1.4 0.30445 0.28659 0.23236

1.8 0.32082 0.27906 0.24986

0.8 0.25771 0.31217 0.24885

1.4 -0.11737 0.34092 0.28098

2.5 0.30582 0.28968 0.22278

3.0 0.32348 0.28545 0.23228

0.5 0.37958 0.28249 0.17039

0.9 0.36975 0.23376 0.14340

2.0 -0.36647 0.28271 0.25416

3.0 -0.51143 0.25391 0.31231

The conclusions deduced from the numerical solutions indicate that the higher

values of We and Rd escalate the magnitude of the skin-friction coefficient and heat

transfer rate whereas a depreciation has been observed in the mass transfer rate.
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Moreover, the magnitude of the skin-friction coefficient, Nusselt and Sherwood

numbers falls off marginally as the values of M , α and ζ go up.

Table 4.3: The computed results of skin-friction coefficient, Nusselt and
Sherwood numbers for λ = M = Gc = 1,We = A = K = α = ζ = 0.1, S =

0.2, Gr = 2, where b1 =
(

1 +We2f ′′
2

(0)
)n−1

2
and b2 =

(
1 + 4

3Rd
)
.

Rd Q Pr Ec Nt Nb γ Sc χ ω b1f
′′(0) −b2θ′(0) −φ′(0)

0.1 0.1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 0.28187 0.29346 0.21313

0.3 0.28192 0.36725 0.21004

0.5 0.28198 0.44099 0.20796

0.4 0.23139 0.37734 0.60041

0.7 0.19676 0.39392 0.88168

1.1 0.21923 1.22344 -0.53731

2.1 0.19262 1.66756 -0.91242

0.3 0.28099 0.31419 0.19662

0.5 0.28014 0.33439 0.18051

1.5 0.30248 0.16737 0.23854

2.5 0.30939 0.11328 0.30629

1.5 0.26973 0.31788 0.28265

2.5 0.26831 0.30672 0.30293

0.4 0.27717 0.30933 0.25797

0.7 0.27291 0.32161 0.29921

0.2 0.27409 0.29466 0.20883

0.3 0.26537 0.29573 0.20472

0.3 0.27923 0.29979 0.19414

0.5 0.27694 0.30506 0.17830

0.4 0.27114 0.27779 0.21484

0.3 0.25969 0.26277 0.21711

In addition to this, it has been sighted that by assuming the larger values of

A, Gc, Gr and Nt into account, the skin-friction coefficient and mass transfer

rate climb significantly while a declining behaviour has been observed in the case

of Nusselt number. Besides, the higher assumption of λ, Nb and ω results in
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a decrement in the skin-friction coefficient and Nusselt number while Sherwood

number escalates substantially. Furthermore, the skin-friction coefficient depicts an

escalating demeanour whereas a declining effect has been observed in the magnitude

of Sherwood and Nusselt numbers with the rise in the values of K.

4.4.2 The Velocity, Temperature and Concentration Pro-

files

Figures 4.2 and 4.3 are delineated to highlight the effect of n and We on the velocity

distribution. It has been remarked that the velocity of the fluid can be observed

to depress as n and We assume the higher values. Moreover, the associated

momentum boundary layer thickness also experiences a significant decrement in

the magnitude.

The impact of M on the velocity, concentration and temperature distributions has

been illustrated through Figures 4.4-4.6. An abrupt growth has been seen in the

concentration and temperature configurations while the velocity of the fluid drops

subsequently in the presence of the higher magnetic field. This stems from the fact

that the applied magnetic field generates an opposing force, commonly described as

Lorentz force, which is the key ingredient behind the dramatic decline in the fluid’s

motion which further results in a decrement in the momentum boundary layer

thickness whereas a substantial increment has been noticed in the concentration

and thermal boundary layer thickness.

Figures 4.7-4.8 are sketched to emphasize the influence of A on the velocity and

temperature profiles. By the inclusion of the values of A greater than 1, a sudden

escalation has been observed in the velocity. Perversely, the flow velocity drops

significantly by taking into account the values of A lesser than 1. Moreover, the

temperature distribution de-escalates for the higher assumption of A. This reflects

the fact that the heat exchange from the surface to the fluid becomes smaller as the

value of A escalates and therefore, the temperature drops and the related thermal
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boundary layer thickness is shrinked.

The effect on the temperature and concentration configurations by incorporating

various values of Pr has been depicted through Figures 4.9-4.10. By definition,

Prandtl number delineates the relationship between the thermal diffusivity and

viscous diffusion rate. For the higher assumption of Pr, the thermal diffusion rate

experiences diminution and ultimately, the fluid’s temperature goes down drastically.

As a consequence, a curtailment has been noted in the thermal boundary layer

thickness. Concurrently, the fluid’s nanoparticle volume fraction reflects a sudden

growth as the magnitude of Pr heightens and an abrupt expansion can be seen in

the thickness of the concentration boundary layer.

The influence of K and ζ on the velocity profile has been outlined through Figures

4.11-4.12. It is worth noticing that the velocity of the fluid accelerates for the

eminent values of K and henceforth, an augmentation in the thickness of the

momentum boundary layer can be observed. On the other hand, quite an opposite

trend has been inspected by taking higher values of ζ into account.

Figures 4.13-4.14 are epitomized to represent the effect of Nt on the temperature

and concentration distributions. It can be seen that the temperature as well as the

concentration of the fluid go up by assuming higher values of Nt and likewise, an

elevation can be noticed in the thickness of thermal and concentration boundary

layer.

The impact of Nb on the concentration and temperature profiles is elucidated

through Figures 4.15-4.16. As the value of Nb goes up, the fluid’s temperature rises

owing to the reason that the motility of the nanoparticles increases considerably,

accelerating the nanoparticles’ kinetic energy which leads to a sudden rise in the

temperature and the associated thermal boundary layer thickness.

Figures 4.17-4.18 manifest the influence of Ec on the velocity and temperature

configurations. In view of the physical meaning, Eckert number intrinsically set

forth the ratio of the enthalpy and kinetic energy of the fluid particles. A prompt
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escalation in the kinetic energy of the fluid is witnessed by rising the values of Ec.

Henceforth, the fluid’s velocity and temperature climb marginally and as a result,

thickness of the momentum and thermal boundary layer are enhanced. The impact

of Gr, Q and Rd on the temperature profile is elucidated through Figures 4.19-4.21.

The larger the values of Q and Rd being considered, the more the heat is produced,

which leads to a sudden rise in the temperature and a significant increment can be

seen in the thermal boundary layer thickness. However, it can be remarked that

Gr has an opposite effect on the temperature distribution.

Figures 4.22-4.24 illustrate the effect of Gc, Sc and γ on the concentration fields.

The fluid’s concentration falls substantially by taking into account the larger values

of Gc, Sc and γ, which further magnifies the associated concentration boundary

layer thickness. Figure 4.25 is sketched to portray the influence of We and M on

the skin-friction coefficient. It can be remarked from the figure that as the values

of M and We climb, the surface’s shear stress experiences an elevation. Figure 4.26

epitomizes the effect of γ and Sc on the Sherwood number. Eminently, the thermal

energy gradient climbs marginally by taking into consideration the higher values of

γ and Sc. Moreover, the impact of Rd and Nb on the Nusselt number is pictured

in Figure 4.27. Undoubtedly it can be observed that as the values of Rd and Nb

rises, the mass transfer gradient observes an augmentation in the magnitude.

K = ω = δ = We = n = A = Q = Ec = α = Γ = χ = Sc = 0.1 Nt = Nb = Bi1 =

Bi2 = 0.5,M = Rd = Pr = γ = Gc = 1, Gr = 2, λ = −1, S = 0.2

Figure 4.1: Effect of n on f ′(η) when K = ω = δ = We = A = Q = Ec = α =
Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2
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Figure 4.2: Effect of We on f ′(η) when K = ω = δ = n = A = Q = Ec = α =
Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2

Figure 4.3: Effect of M on f ′(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2
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Figure 4.4: Effect of M on θ(η) when K = ω = δ = We = n = A = Q = Ec =
α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, Rd = Pr = γ = Gc = 1, Gr = 2, S =

0.2

Figure 4.5: Effect of M on φ(η) K = ω = δ = We = n = A = Q = Ec =
α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2
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Figure 4.6: Effect of A on f ′(η) when K = ω = δ = We = n = Q = Ec = α =
Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2

Figure 4.7: Effect of A on θ(η) when K = ω = δ = We = n = Q = Ec = α =
Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr = 2, λ =

−1, S = 0.2
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Figure 4.8: Effect of Pr on θ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2

Figure 4.9: Effect of Pr on φ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2
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Figure 4.10: Effect of K on f’ (β) when ω = δ = We=n=A=Q=Ec = α = γ
= χ =Sc=0.1, Nt=Nb=0.5, M=Rd=Pr = γ = Gc=1, Gr=2, λ = c-1, S=0.2

Figure 4.11: Effect of Gr on θ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc =

1, λ = −1, S = 0.2
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Figure 4.12: Effect of Gc on φ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = 1, Gr =

2, λ = −1, S = 0.2

Figure 4.13: Effect of ζ on f ′(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc =

1, Gr = 2, λ = −1, S = 0.2
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Figure 4.14: Effect of Nt on θ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2

Figure 4.15: Effect of Nt on φ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2
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Figure 4.16: Effect of Nb on θ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, Nt = 0.5, M = Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2

Figure 4.17: Effect of Nb on φ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, Nt = 0.5, M = Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2
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Figure 4.18: Effect of Ec on f ′(η) when K = ω = δ = We = n = A = Q =
α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2

Figure 4.19: Effect of Ec on θ(η) when K = ω = δ = We = n = A = Q =
α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2
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Figure 4.20: Effect of Rd on θ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2

Figure 4.21: Effect of Q on θ(η) when K = ω = δ = We = n = A = Ec =
α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2
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Figure 4.22: Effect of Sc on φ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2

Figure 4.23: Effect of γ on φ(η) when K = ω = δ = We = n = A = Q = Ec =
α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = Gc = 1, Gr = 2, λ =

−1, S = 0.2
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Figure 4.24: Effect ofWe and M on Re
1
2 Cf when K = ω = δ = n = A = Q =

Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1,
Gr = 2, λ = −1, S = 0.2

Figure 4.25: Effect of Rd and Nb on Re−
1
2 Nu when K = ω = δ = n = A =

Q = Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1,
Gr = 2, λ = −1, S = 0.2
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Figure 4.26: Effect of γ and Sc on Re−
1
2 Sh when K = ω = δ = n = A = Q =

Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1,
Gr = 2, λ = −1, S = 0.2



Chapter 5

Inclined Magnetically driven

Casson Carreau Nanofluid using

the Cattaneo-Christov Heat Flux

Model

5.1 Introduction

The numerical scrutinization of the Casson Carreau nanofluid flow by incorporating

the heat flux model known as the Cattaneo-Christov model and multiple slip

boundary conditions over a chemically reacting radially stretching sheet has been

presented. Besides this, the Brownian movement, stagnation point and thermal

radiation effects are added to the physical modeling. Furthermore, the influence

of heat generation/absorption and inclined magnetic field are examined. A group

of suitable similarity variables has opted for the adaptation of non-linear PDEs

summing up the contemplate flow framework to a system of ODEs. To oversee the

numerical solution of the proposed flow problem, the shooting method has been

employed. The numerical solution has been presented through graphs and tables,

illustrating the influence of relevant flow parameters on non-dimensional velocity,

73
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temperature, and concentration profiles. Additionally, physical characteristics of

the flow model such as the Nusselt number, Sherwood number, and skin-friction

coefficient have been evaluated.

5.2 Mathematical Modeling

Consider a steady and laminar flow of an incompressible Casson Carreau nanofluid

in the neighborhood of a stagnation point past a chemically reacting radially

stretching sheet along with multiple slips boundary conditions. The remarkable

characteristics of the flow are intended to investigate in the light of inclined magnetic

field, heat generation/ absorption and thermal radiation. Furthermore, the radial

coordinates are chosen and frame of reference is selected in such a way that the

flow is confined in the direction of r−axis. In addition to this, the velocity of the

stretching sheet is chosen to be λUw with λ > 0 restricted for the flow due to the

stretching sheet. Moreover, the effect of Brownian motion, thermophoresis and

viscous dissipation have been taken into consideration.

The mathematical form for the considered flow problem is presented by the following

equations [74, 75].

∂u

∂r
+
u

r
+
∂w

∂z
= 0, (5.1)

u
∂u

∂r
+ w

∂u

∂z
= νf

(1 + 1
β

)
+

(
1 + Γ2

(
∂u

∂z

)2
)n−1

2

 ∂2u
∂z2

+ gβT (T − T∞)

+ νf (n− 1) Γ2∂
2u

∂z2

(
∂u

∂z

)2
[

1 + τ 2
(
∂u

∂z

)2
]n−3

2

+ Ue
dUe
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+ gβc(C − C∞)− νfu

k′
− σB2
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ρf
, (5.2)
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+
νf
cp

(
1 + 1

β

)(∂u
∂z

)2

+
Q0 (T − T∞)

(ρcp)f
− 1

(ρcp)f

∂qr
∂z

, (5.3)

u
∂C

∂r
+ w

∂C

∂z
= DB

∂2C

∂z2
+
DT

T∞

∂2T

∂z2
− Cr (C − C∞) . (5.4)

For the heat radiation flux, the advantage of the Rosseland approximation has

been taken.

∂qr
∂z

= −16σ∗T 3
∞

3k∗
∂2T

∂z2
. (5.5)

The boundary conditions described at the surface are introduced in the following

pattern [75].

w = w0, u = λUw + L
∂u

∂z
, T = Tf + S ′

∂T

∂z
, C = Cf +K ′

∂C

∂z
when z = 0,

u→ Ue = br, T → T∞, C → C∞ as z →∞. (5.6)

The following type of transformation variables have been incorporated wisely for

the proposed investigations [75].

η =

√
a

νf
z, u = arf ′ (η) , w = −2

√
aνff (η) ,

θ (η) =
T − T∞
Tf − T∞

, φ (η) =
C − C∞
Cf − C∞

. (5.7)

After the inclusion of the above similarity transformations, the ODEs characterizing

the proposed flow problem assume the following form.

[(
1 + nWe2 (f ′′)

2
)(

1 +We2 (f ′′)
2
)n−3

2
+
(

1 + 1
β

)]
f ′′′ + 2ff ′′ − f ′2 + A2

+Gcφ−M2 (f ′ − A) sin2α−Kf ′ +Grθ = 0, (5.8)(
1 +

4

3
Rd− 4ζf 2

)
θ′′ + PrNbθ′φ′ + PrNtθ′2 + 2Prfθ′ + PrQθ − 4ζff ′θ′

+ PrEcM2 (f ′ − A)
2
sin2α +

(
1 + 1

β

)
PrEcf ′′2 = 0, (5.9)

φ′′ +
Nt

Nb
θ′′ + Sc (2fφ′ − γφ) = 0. (5.10)
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The corresponding conditions prescribed at the boundary are as follow.

f (0) = S, f ′ (0) = λ+ δf ′′ (0) , θ (0) = 1 + ωθ′ (0) , φ (0) = 1 + χφ′ (0) ,

f ′ → A, φ→ 0, θ → 0 as η →∞. (5.11)

The formulation of the non-dimensional quantities incorporated in the above

equations takes the following form.
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νf
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.

Given below are the formulae for the skin-friction coefficient, Nusselt number and

Sherwood number in the original form.

Cf =
τw
ρfU2

w

, Nu =
rqw

kf (Tf − T∞)
, Sh =

rqm
DB (Cf − C∞)

. (5.12)

The formulation of τw, qw and qm are as follows:

τw = µ
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The non-dimensional form of the skin-friction coefficient, Nusselt number and

Sherwood number obtained by incorporating the similarity variables is given by:

Re
1
2Cf =

[(
1 + 1

β

)
+
(

1 +We2f ′′
2

(0)
)n−1

2

]
f ′′ (0) ,

Re−
1
2Nu = −

[
1 +

4

3
Rd

]
θ′ (0) , Re−

1
2Sh = −φ′ (0) , (5.14)
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where Re =
rUw
νf

elucidates the local Reynolds number.

5.3 Solution Methodology

For the sake of extracting the numerical solution of the system of ODEs (5.8)-(5.11)

accompanied by boundary conditions, the benefit of shooting method has been

considered. The missing initial conditions f ′′ (0), θ(0) and φ(0) have been denoted

by s, l and m respectively. Before incorporating the shooting method approach,

the following notations have been taken into consideration.

f = y1, f
′ = y2, f

′′ = y3, θ = z4, θ
′ = y5, φ = y6, φ

′ = y7,
∂f

∂s
= y8,

∂f ′

∂s
= y9,

∂f ′′

∂s
= y10,

∂θ

∂s
= y11,

∂θ′

∂s
= y12,

∂φ

∂s
= y13,

∂φ′

∂s
= y14,

∂f

∂l
= y15,

∂f ′

∂l
= y16,

∂f ′′

∂l
= y17,

∂θ

∂l
= y18,

∂θ′

∂l
= y19,

∂φ

∂l
= y20,

∂φ′

∂l
= y21,

∂f

∂m
= y22,

∂f ′

∂m
= y23,

∂f ′′

∂m
= y24,

∂θ

∂m
= y25,

∂θ′

∂m
= y26,

∂φ

∂m
= y27,

∂φ′

∂m
= y28. (5.15)

Using the above notations, equations (5.8)-(5.10) are transformed into a system of

seven first order ODEs. Furthermore, the differentiation of these first seven ODEs

w.r.t s, l and m, respectively, yields the remaining system of ODEs.

y′1 = y2, y1(0) = S,

y′2 = y3, y2(0) = λ+ δs,

y′3 =
y22 +Ky2 +M2sin2α (y2 − A)− 2y1y3 − A2 −Gry4 −Gcy6[

(1 + nWe2y23) (1 +We2y23)
n−3
2 +

(
1 + 1

β

)] , y3(0) = s,

y′4 = y5, y4(0) = 1 + ωl,

y′5 =
−1(

1 + 4
3
Rd− 4ζy21

)[PrNby5y7 + PrNty25 + 2Pry1y5 + PrQy4

+
(

1 + 1
β

)
PrEcy23 + PrEcM2(y2 − A)2sin2α− 4ζy1y2y5

]
, y5(0) = l,

y′6 = y7, y6(0) = 1 + χm,

y′7 = −
(
Nt
Nb

)
y′5 − Sc (2y1y7 − γy6) , y7(0) = m,
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y′8 = y9, y8(0) = 0,

y′9 = y10, y9(0) = δ,

y′10 =
1[

(1 + nWe2y23) (1 +We2y23)
n−3
2 +

(
1 + 1

β

)]2
[(((

1 + nWe2y23
) (

1 +We2y23
)n−3

2 +
(

1 + 1
β

)) [
(2y2 +M2sin2α

+K)y9 −Gry11 −Gcy13 − 2 (y1y10 + y3y8)
])
−
((
y22 −Gcy6

+M2(y2 − A)sin2α− 2y1y3 − A2 +Ky2 −Gry4
) [

1 +We2y23
]n−5

2

(2We2y3y10)
(
n−3
2

[
1 + nWe2y23

]
+ n

[
1 +We2y23

]))]
, y10(0) = 1,

y′11 = y12, y11(0) = 0,

y′12 =
−1(

1 + 4
3
Rd− 4ζy21

)2[ (1 + 4
3
Rd− 4ζy21

) ((
PrNby7 + 2PrNty5 + 2Pry1

− 4ζy1y2
)
y12 + Pr

(
Nby5y14 +Qy11 + 2

(
1 + 1

β

)
Ecy3y10

)
+ 2Pry5y8

+
(
2PrEcM2(y2 − A)sin2α− 4ζy1y5

)
z9 − 4ζy2y5y8

)
+ 8
(

(ζy1y8)(
PrNby5y7 + PrNty25 + 2Pry1y5 + PrQy4 +

(
1 + 1

β

)
PrEcy23

+ PrEcM2(y2 − A)2sin2α− 4ζy1y2y5
))]

, y12(0) = 0,

y′13 = y14, y13(0) = 0,

y′14 = −
(
Nt
Nb

)
y′12 − 2Sc

(
y1y14 + y7y8

)
+ Scγy13, y14(0) = 0,

y′15 = y16, y15(0) = 0,

y′16 = y17, y16(0) = 0,

y′17 =

(
2y2 +K +M2sin2α

)
y16 − 2(y3y15 + y1y17)−Gry17 −Gcy20(

1 + 1
β

) , y17(0) = 0,

y′18 = y19, y18(0) = ω,

y′19 =
−1(

1 + 4
3
Rd− 4ζy21

)2[ (1 + 4
3
Rd− 4ζy21

) ((
PrNby7 + 2PrNty5 + 2Pry1

− 4ζy1y2
)
y19 + Pr

(
Nby5y21 +Qy18 + 2

(
1 + 1

β

)
Ecy3y17

)
+ 2Pry5y15

+
(
2PrEcM2(y2 − A)sin2α− 4ζy1y5

)
y16 − 4ζy2y5y15

)
+ 8
(

(ζy1y15)(
PrNby5y7 + PrNty25 + 2Pry1y5 + PrQy4 +

(
1 + 1

β

)
PrEcy23
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+ PrEcM2(y2 − A)2sin2α− 4ζy1y2y5
))]

, y19(0) = 0,

y′20 = y21, y20(0) = 0,

y′21 = −
(
Nt
Nb

)
y′19 − 2Sc

(
y1y21 + y7y15

)
+ Scγy20, y21(0) = 0,

y′22 = y23, y22(0) = 0,

y′23 = y24, y23(0) = 0,

y′24 =

(
2y2 +K +M2sin2α

)
y23 − 2(y3y22 + y1y24)−Gry24 −Gcy27(

1 + 1
β

) , y24(0) = 0,

y′25 = y26, y25(0) = 0,

y′26 =
−1(

1 + 4
3
Rd− 4ζy21

)2[ (1 + 4
3
Rd− 4ζy21

) ((
PrNby7 + 2PrNty5 + 2Pry1

− 4ζy1y2
)
y26 + Pr

(
Nby5y28 +Qy25 + 2

(
1 + 1

β

)
Ecy3y24

)
+ 2Pry5y22

+
(
2PrEcM2(y2 − A)sin2α− 4ζy1y5

)
y23 − 4ζy2y5y22

)
+ 8
(

(ζy1y22)(
PrNby5y7 + PrNty25 + 2Pry1y5 + PrQy4 +

(
1 + 1

β

)
PrEcy23

+ PrEcM2(y2 − A)2sin2α− 4ζy1y2y5
))]

, y26(0) = 0,

y′27 = y28, y27(0) = χ,

y′28 = −
(
Nt
Nb

)
y′26 − 2Sc

(
y1y28 + y7y22

)
+ Scγy27, y28(0) = 1.

Rk-4 technique has been utilized in order to get the solution of the above IVP. In

this context, the problem’s domain is selected [0, η∞), where η∞ > 0 is such that

the growing values of η∞ have no influential impact on the solution.

The missing initial conditions for the system of equations mentioned above are

chosen in such a way as to ensure that

y2 (s, l,m) = A, y4(s, l,m) = 0, y6(s, l,m) = 0. (5.16)

The advantage of Newton’s iterative numerical method has been taken for solving

the above algebraic equations.
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s(k+1)

l(k+1)

m(k+1)

 =


s(k)

l(k)

m(k)

−


∂y2
∂s

∂y2
∂l

∂y2
∂m

∂y4
∂s

∂y4
∂l

∂y4
∂m

∂y6
∂s

∂y6
∂l

∂y6
∂m


−1 

y2 − A

y4

y6




(s(k), l(k), m(k))

,

⇒


s(k+1)

l(k+1)

m(k+1)

 =


s(k)

l(k)

m(k)

−


y9 y16 y23

y11 y18 y25

y13 y20 y27


−1 

y2 − A

y4

y6




(s(k), l(k), m(k))

,

where k illustrates the scheme’s iteration level.

With the aim of extracting the numerical solution, the termination criterion has

been selected as

max{(|y2(η∞)− A|, |y4(η∞)|, |6(η∞)|)} < ε, (5.17)

where ε has been chosen as 10−14.

For all numerical results presented in the present article, η∞ = 10 is found an

appropriate choice.

5.4 Results with Discussion

In the present section, the numerical results of the proposed flow model have been

depicted against several choices of the values of some apropos flow parameters.

The remarkable numerical values of skin-friction coefficient, Sherwood and Nusselt

numbers against salient parameters have been delineated in the tabular format.

5.4.1 Skin-friction Coefficient, Nusselt and Sherwood Num-

bers

With the aim of verifying the MATLAB code for the shooting method, the results

for −
(

1 + 1
β

)
f ′′(0) are reproduced for the problem formulated by Nadeem et al.
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[76].

Table 5.1: Comparison of the present results of −
(

1 + 1
β

)
f ′′(0) with those

published in the literature.

−
(

1 + 1
β

)
f ′′(0) with M = λ = 0

β Nadeem et. al [76] Present

1 1.4142 1.4142896

5 1.0954 1.0954345

∞ 1.0042 1.0042235

The findings as seen in Table 5.1 indicate a significant settlement between the

numerical results produced from the present code and already established research.

Tables 5.2-5.4 are delineated to throw light on the numerical values of the skin-

friction coefficient along with the Nusselt and Sherwood numbers for the present

model by fluctuating the values of various dimensionless parameters like n, We, β,

M , A, K, α, Gr, Gc, λ, S, ζ, Rd, Pr, Q, Nb, Nt, Ec, Sc, γ, ω, δ and χ.

The numerical results reflect that the higher values of paramters like n, We, β, M ,

α, Pr, Sc, Ec and χ decrease the magnitude of the skin-friction coefficient and

Sherwood number whereas a marginal magnification has been seen in the values of

the Nusselt number. Moreover, with the rising values of Nb and γ, the heat and

mass transfer rates climb significantly whereas the magnitude of the skin-friction

coefficient goes down.

Table 5.2: The computed results of skin-friction coefficient, Nusselt and
Sherwood numbers for S = 0.2, Nt = 0.5, Gr = 2, ζ = Pr = ω =
Rd = Sc = Q = Ec = γ = δ = χ = 0.1, λ = Nb = 1, where

c1 =

[(
1 + 1

β

)
+
(

1 +We2f ′′
2

(0)
)n−1

2

]
and c2 =

(
1 + 4

3Rd
)
.

n We β K M A Gc α c1f
′′(0) −c2θ′(0) −φ′(0)

0.1 0.1 0.5 0.1 0.1 0.1 1.0 0.1 4.430660 2.129876 0.215984

5.0 4.421344 2.130063 0.215967



Inclined Magnetically driven Casson-Carreau Nanofluid... 82

10 4.412477 2.130244 0.215951

0.7 3.613556 2.135860 0.215424

1.3 2.920442 2.141292 0.214810

2.5 3.459476 2.183406 0.209910

4.5 3.408249 2.189730 0.209252

0.3 4.514544 1.895088 0.241119

0.5 4.601060 1.649113 0.267429

3.1 4.076599 2.147994 0.212089

5.1 3.481249 2.176216 0.205763

0.6 6.690888 1.673092 0.330634

1.1 11.063065 0.800431 0.474012

1.5 6.401721 1.878697 0.261301

2.0 8.174677 1.628146 0.301983

0.7 4.415589 2.130666 0.215816

1.3 4.396495 2.131666 0.215604

It is further observed that the values of the skin-friction coefficient and Sherwood

number boost up whereas the Nusselt number diminishes by considering the larger

values of K, A, Gc, Gr, ζ, Nt and δ into account.

The higher estimation of λ and S escalates the mass transfer rate while the

magnitude of the skin-friction coefficient and Nusselt number fall subsequently.

In addition to this, the heat and mass transfer rates along with the skin-friction

coefficient subside as the value of ω goes up.

Table 5.3: The computed results of skin-friction coefficient, Nusselt and
Sherwood numbers for n = We = K = M = A = α = γ = δ =
χ = 0.1, β = Nb = 0.5, Gc = 1, Gr = 2, Ec=0.2, S=0.8 where

c1 =

[(
1 + 1

β

)
+
(

1 +We2f ′′
2

(0)
)n−1

2

]
and c2 =

(
1 + 4

3Rd
)
.

ζ λ Pr ω Nt Rd Sc Q c1f
′′(0) −c2θ′(0) −φ′(0)

0.1 1.0 0.1 0.1 0.5 0.1 0.1 0.1 4.430660 2.129876 0.215984

0.5 6.345825 -0.107946 0.426874

0.9 6.635122 -0.156728 0.434971
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1.4 -1.504224 2.034308 0.238104

1.8 -8.540752 1.608457 0.297288

1.1 2.204186 9.829911 -0.632756

2.1 1.799772 13.071638 -1.007239

0.4 3.843585 2.063607 0.212256

0.8 3.130832 1.958230 0.210187

2.5 6.264730 0.560167 0.433549

4.5 6.546410 0.402387 0.539571

0.3 4.421392 2.179262 0.210557

0.5 4.415011 2.213382 0.206807

0.4 3.164843 2.238063 0.194086

0.7 2.319665 2.319665 0.175824

0.5 1.934986 3.255504 0.655651

0.9 1.179433 3.411671 0.991044

Table 5.4: The computed results of skin-friction coefficient, Nusselt and
Sherwood numbers for n = We = K = M = A = α = γ = δ = χ = ζ =
Pr = ω = Rd = Sc = Q = Ec = 0.1, β = Nb = Nt = 0.5, Gc = λ = Nb =

1, Gr = 2, Ec=S=0.2, S=0.8 where c1 =

[(
1 + 1

β

)
+
(

1 +We2f ′′
2

(0)
)n−1

2

]
and c2 =

(
1 + 4

3Rd
)
.

Gr Nb Ec S c1f
′′(0) −c2θ′(0) −φ′(0)

2.0 4.430660 2.129876 0.215984

3.0 7.729405 1.852347 0.257134

4.0 10.882892 1.498437 0.305297

1.0 3.837804 2.489934 0.248401

1.5 3.659156 2.528236 0.270574

0.2 4.412897 2.196855 0.208657

0.3 4.395323 2.263217 0.201393

0.8 3.539966 2.109109 0.267938

1.4 -0.759124 2.071294 0.327543
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5.4.2 The Velocity, Temperature and Concentration Pro-

files

The influence of n, We and β on the velocity distribution has been delineated

through figures 5.2-5.4. An increasing behavior is observed in the velocity by

escalating the values of n, We and β. Moreover, a decrement is experienced by

the velocity boundary layer thickness when higher values of n and β are taken into

account whereas an enhancement has been observed in the case of larger We.

Figures 5.5-5.7 are drawn to highlight the effect of M on the velocity, temperature

and concentration profiles. AS mentioned in the previous chapters, An escalation

has been observed in the temperature and concentration profiles whereas the

velocity drops subsequently by applying higher magnetic field.

Moreover, a drastic fall in the momentum boundary layer thickness and a marginal

climb in the thermal and concentration boundary layer thickness has been recorded.

The impact of K, α and ζ on the velocity distribution has been depicted through

figures 5.8-5.10. Clearly, it can be seen that the velocity of the fluid climbs

marginally for the larger values of K, α and ζ. However, a decrement in the

momentum boundary layer thickness has been noticed for the higher K whereas

an opposite trend has been observed for α and ζ.

Figures 5.15-5.16 are drawn to portray the impact of Pr on the temperature

and concentration configurations. Physically, Pr is defined to be proportionate

between the viscous diffusion rate and thermal diffusivity. As the magnitude of

Pr heightens, the thermal diffusion rate undergoes curtailment and eventually the

fluid’s temperature depresses considerably. Therefore, a diminution has been noted

in the thermal boundary layer thickness. Meanwhile, for the higher assumption of

Pr, the fluid’s concentration is remarked to escalate. Apart from this, a sudden

upsurge can be noted in the thickness of the concentration boundary layer.

The effect of Nt and Nb on the temperature distribution has been shown through

figures 5.13-5.14. The temperature profile upsurges significantly by considering the
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higher values of Nb and Nt. Moreover, an increment in the associated thermal

boundary layer thickness has been noticed.

The dynamics of the velocity and temperature profiles by incorporating various

values of Ec have been illustrated through Figures 5.15-5.16. As stated in the

previous chapters, an escalation in the kinetic energy of the fluid is observed by

rising the values of Ec. Therefore, the velocity and temperature go up subsequently

and hence, the thickness of momentum and thermal boundary layer is enhanced.

Figures 5.17-5.19 are sketched to highlight the impact of Gr, Q and Rd on the

temperature distribution. For the larger the values of Q and Rd, the more heat

is generated, which allows the temperature and the associated thermal boundary

layer thickness to climb significantly. However, for the escalating values of Gr,

the temperature suddenly drops and a decrement in the thermal boundary layer

thickness has been seen.

The effect of Gc, Sc and γ on the concentration profile has been portrayed through

figures 5.20-5.22. It has been seen that the higher estimation of γ leads to a depre-

ciation in the chemical molecular diffusion and thereby the fluid’s concentration

drops marginally and a decrement has been noted in the associated concentration

boundary layer thickness. Morever, a smiliar trend has been observed by taking

higher values of Gc and Sc into account.

Figure 5.23 represents the effect of M and We on the Nusselt number. Notably,

the magnitude of the heat transfer gradient increases marginally by assuming the

higher values of M and We into account.

Furthermore, figure 5.24 is drawn to delineate the influence of Rd and Pr on the

skin-friction coefficient. It is remarked from the figure that as the values of Rd and

Pr escalate, the shearing stress of the surface approaches an alleviation.

The impact of γ and Ec on the Sherwood number is depicted through Figure 5.25.

Evidently, it can be seen that as the values of γ and Ec escalate, the mass transfer

gradient observes an increment in the magnitude.
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Figure 5.1: Effect of n on f ′(η) when K = ω = δ = We = A = Q = Ec = α =
Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2

Figure 5.2: Effect of We on f ′(η) when K = ω = δ = n = A = Q = Ec = α =
Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2
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Figure 5.3: Effect of β on f ′(η) when K = ω = δ = We = n = A = Q = Ec =
α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, λ =

−1, S = 0.2

Figure 5.4: Effect of M on f ′(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, Rd = Pr = γ = Gc =

1, Gr = 2, λ = −1, S = 0.2
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Figure 5.5: Effect of M on θ(η) when K = ω = δ = We = n = A = Q = Ec =
α = Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2

Figure 5.6: Effect of M on φ(η) when K = ω = δ = We = n = A = Q = Ec =
α = Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2
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Figure 5.7: Effect of K on f ′(η) when ω = δ = We = n = A = Q = Ec = α =
Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2

Figure 5.8: Effect of α on f ′(η) when K = ω = δ = We = n = A = Q = Ec =
Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2
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Figure 5.9: Effect of ζ on f ′(η) when K = ω = δ = n = A = Q = Ec = α =
Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr = 2,

λ = −1, S = 0.2

Figure 5.10: Effect of Pr on θ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = γ = Gc =

1, Gr = 2, λ = −1, S = 0.2
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Figure 5.11: Effect of Pr on φ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = γ = Gc =

1, Gr = 2, λ = −1, S = 0.2

Figure 5.12: Effect of Nt on θ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, β = Nb = 0.5, M = Rd = Pr = γ = Gc =

1, Gr = 2, λ = −1, S = 0.2
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Figure 5.13: Effect of Nb on θ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, β = Nt = 0.5, M = Rd = Pr = γ = Gc =

1, Gr = 2, λ = −1, S = 0.2

Figure 5.14: Effect of Ec on f ′(η) when K = ω = δ = We = n = A = Q =
α = Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = γ = Gc =

1, Gr = 2, λ = −1, S = 0.2
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Figure 5.15: Effect of Ec on θ(η) when K = ω = δ = We = n = A = Q = α =
Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2

Figure 5.16: Effect of Gr on θ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = γ = Gc =

1, λ = −1, S = 0.2
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Figure 5.17: Effect of Q on θ(η) when K = ω = δ = We = n = A = Ec = α =
Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1, Gr =

2, λ = −1, S = 0.2

Figure 5.18: Effect of Rd on θ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Pr = γ = Gc =

1, Gr = 2, λ = −1, S = 0.2
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Figure 5.19: Effect of Gc on φ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, Gr = 2, λ = −1, S = 0.2

Figure 5.20: Effect of Sc on φ(η) when K = ω = δ = We = n = A = Q =
Ec = α = Γ = χ = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = γ = Gc =

1, Gr = 2, λ = −1, S = 0.2
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Figure 5.21: Effect of γ on φ(η) when K = ω = δ = We = n = A = Q = Ec =
α = Γ = χ = Sc = 0.1, β = Nt = Nb = 0.5, M = Rd = Pr = Gc = 1, Gr =

2, λ = −1, S = 0.2

Figure 5.22: Effect of Rd and Pr on Re
1
2Cf when K = ω = δ = n = A =

Q = Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1,
Gr = 2, λ = −1, S = 0.2
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Figure 5.23: Effect of We and M on Re−
1
2 Nu when K = ω = δ = n = A =

Q = Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1,
Gr = 2, λ = −1, S = 0.2

Figure 5.24: Effect of γ and Ec on Re−
1
2Sh when K = ω = δ = n = A = Q =

Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Rd = Pr = γ = Gc = 1,
Gr = 2, λ = −1, S = 0.2



Chapter 6

Transportation of Thermal and

Mass Fluxes using

Casson-Carreau Nanofluid

6.1 Introduction

The flow of Casson-Carreau nanofluids over a non-linear stretching sheet has been

taken into account. The velocity of the sheet is supposed to be Ue = a (x+ y)m,

Ve = a (x+ y)m, where a, b ≥ 0. The flow is restrained in the neighborhood z ≥ 0.

The following crucial hypotheses have further been considered:

• compressible, steady and non-linear 3D-flow,

• boundary layer approximation,

• Cattaneo-Christov heat flux model,

• variable magnetic field, Brownian motion and thermophoresis.

• single phase nanofluid model.

98
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Figure 6.1: Schematic physical model

The mathematical formulation of the model takes the following form [75]:

∂
∂x

+ ∂
∂z

+ ∂
∂y

= 0, (6.1)

∂
∂x

+ ∂
∂y

+ ∂
∂z

= νf

[(
1 + 1

β

)
+
(

1 + Γ2
(
∂
∂z

)2)n−1
2

]
∂2

∂z2
+ Ue

dUe

dx
− νf

k′

+ νf (n− 1) Γ2 ∂2

∂z2

(
∂
∂z

)2 [
1 + τ 2

(
∂
∂z

)2]n−3
2 − σB2

o(x,y)
ρf

+ gβT (T − T∞) + gβc(C − C∞), (6.2)

∂
∂x

+ ∂
∂y

+ ∂
∂z

= νf

[(
1 + 1

β

)
+
(

1 + Γ2
(
∂
∂z

)2)n−1
2

]
∂2

∂z2
+ Ve

dVe

dy
− νf

k′

+ νf (n− 1) Γ2 ∂2

∂z2

(
∂
∂z

)2 [
1 + τ 2

(
∂
∂z

)2]n−3
2 − σB2

o(x,y)
ρf

+ gβT (T − T∞) + gβc(C − C∞), (6.3)

∂T
∂x

+ ∂T
∂y

+ ∂T
∂z

+ λ∗
[
2 ∂2T
∂x∂y

+ 2 ∂2T
∂x∂z

+ 2 ∂2T
∂y∂z

+ 2 ∂2T
∂x2

+ 2 ∂2T
∂z2

+ v2 ∂
2T
∂y2

+
(
u∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z

)
Tx +

(
u ∂v
∂x

+ v ∂v
∂y

+ w ∂v
∂z

)
Ty +

(
u∂w
∂x

+ v ∂w
∂y

+ ∂
∂z

)
Tz

]
= αf

∂2T
∂z2

+ τ
[
DB

∂C
∂z

∂T
∂z

+ DT

T∞

(
∂T
∂z

)2]
+

σB2
0(x,y)(2+2)
(ρcp)f

+
νf
cp

(
1 + 1

β

) [ (
∂
∂z

)2
+
(
∂v
∂z

)2 ]
+ Q0(T−T∞)

(ρcp)f
, (6.4)

u∂C
∂x

+ v ∂C
∂y

+ w ∂C
∂z

+ λ∗
[
2uv ∂2C

∂x∂y
+ 2uw ∂2C

∂x∂z
+ 2vw ∂2C

∂y∂z
+ u2 ∂

2C
∂x2

+ w2 ∂2C
∂z2
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+ v2 ∂
2C
∂y2

+
(
u∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z

)
Cx +

(
u ∂v
∂x

+ v ∂v
∂y

+W ∂v
∂z

)
Cy +

(
u∂w
∂x

+ v ∂w
∂y

+ w ∂w
∂z

)
Cz

]
= DB

∂2C
∂z2

+ DT

T∞
∂2T
∂z2
− Cr (C − C∞) . (6.5)

Furthermore, for the relevant boundary layers, the following boundary conditions

have been focused:

u = Uw = ax, v = Vw = by, T = Tw, C = Cw, w = 0 at z = 0,

u→ 0, v → 0, T → T∞, C → C∞ as z →∞. (6.6)

For the transformation of the above model into the dimensionless form, the following

similarity transformations have been taken into account:

u = a (x+ y)m f ′ (η) , v = b (x+ y)m g′ (η) , η =
(
a
ν

)1
2 z(x+ y)

n−1
2 ,

w = − (av)
1
2 (x+ y)

m−1
2
[
m+1
2

(f (η) + g (η)) + ηm−1
2

(f ′ (η) + g′ (η))
]
,

θ (η) =
T − T∞
Tf − T∞

, φ (η) =
C − C∞
Cf − C∞

. (6.7)

Upon incorporating the aforementioned similarity transformations, the ODEs

describing the proposed flow problem take on the subsequent structure.

[(
1 + nWe2 (′′)

2
)(

1 +We2 (′′)
2
)n−3

2
+
(

1 + 1
β

)]
′′′ +

(
m+1
2

)
(′ + ′) ′′

−K ′ −m (′ + ′) ′ −M ′ +Grθ +Gcφ = 0, (6.8)[(
1 + nWe2 (′′)

2
)(

1 +We2 (′′)
2
)n−3

2
+
(

1 + 1
β

)]
′′′ +

(
m+1
2

)
(′ + ′) ′′

−K ′ −m (′ + ′) ′ −M ′ +Grθ +Gcφ = 0, (6.9)

1
Pr
θ′′ +Nbθ′φ′ +Ntθ′2 +

(
m+1
2

)
( + ) θ′ +Qθ +

(
1 + 1

β

)
Ec
(′′2 + ′′2)

+ EcM2 (′ + ′)− σa
(
( + )(′ + ′)θ′ + ( + )2θ′′

)
= 0, (6.10)

1
Sc
φ′′ +

Nt

Nb
θ′′ + n+1

2
( + )φ′ − σb

(
( + )(′ + ′)φ′ + ( + )2φ′′

)
+ (2φ′ − γφ) = 0. (6.11)
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The corresponding conditions prescribed at the boundary are as follows.

f (0) = 0, g (0) = 0, f ′ (0) = 1, g′ (0) = Γ, θ′ (0) = −Bi1(1− θ (0)),

φ′ (0) = −Bi2(1− φ (0)),

′ → 0, ′ → 0, φ→ 0, θ → 0 as η →∞. (6.12)

The formulation of the non-dimensional quantities incorporated in the above

equations takes the following form.

Nb =
τDB (Cf − C∞)

νf
, P r =

νf
αf
, Nt =

τDT (Tf − T∞)

νfT∞
, M2 =

σB2
0

ρfa
,

Q =
Q0

ρfcpa
, Ec =

a2(x+ y)2

αfcp (Tf − T∞)
, A =

b

a
, Sc =

νf
DB

, We2 =
Γ2a3(x+ y)2

νf
,

Gr =
gβT (Tf − T∞)

a2(x+ y)
, Gc =

gβc (Cf − C∞)

a2(x+ y)
, γ =

Cr
a
.

Given below are the formulae for the drag coefficient, heat and mass transfer

gradients in the original form.

Cfx =
τxz
ρfU 2

w

, Cfy =
τyz
ρfU 2

w

, Nu =
(x+ y)Nw

kf (Tf − T∞)
, Sh =

(x+ y)Sw
DB (Cf − C∞)

. (6.13)

The formulation of τxz, Nw, Sw and τyz are as follows:

τxz = µ

(
∂

∂z

)
z=0

(1 + 1
β

)
+

[
1 + Γ2

(
∂

∂z

)2
]n−1

2

z=0

 , Nw = −kf
[(

∂T

∂z

)]
z=0

,

Sm = −DB

(
∂C

∂z

)
z=0

, τyz = µ

(
∂

∂z

)
z=0

(1 + 1
β

)
+

[
1 + Γ2

(
∂

∂z

)2
]n−1

2

z=0

 .
(6.14)

The non-dimensional form of the skin-friction coefficient, Nusselt number and

Sherwood number obtained by incorporating the similarity variables is given by:

Re
1
2Cfx =

[(
1 + 1

β

)
+
(

1 +We2′′
2

(0)
)n−1

2

]
′′ (0) , Re−

1
2Nu = −θ′ (0) ,

Re
1
2Cfy =

[(
1 + 1

β

)
+
(

1 +We2′′
2

(0)
)n−1

2

]
′′ (0) , Re−

1
2Sh = −φ′ (0) , (6.15)
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where Re =
(x+ y)Uw

νf
elucidates the local Reynolds number.

6.2 Solution Methodology

In order to acquire numerical results for the system of ODEs (6.8)-(6.11) along with

the specified boundary conditions (6.12), the shooting method has been employed.

The unknown initial conditions F ′′ (0), G′′ (0), θ(0) and φ(0) have been represented

by A, B, C and D, respectively. Prior to introducing the shooting technique, it is

necessary to incorporate the following notations.

= y1,
′ = y2,

′′ = y3, = y4,
′ = y5,

′′ = y6, θ = y7, θ
′ = y8, φ = y9, φ

′ = y10. (6.16)

Incorporating the above notations in equations (6.8)-(6.11) results in yielding the

following first-order ODEs.

y′1 = y2, y1(0) = 0,

y′2 = y3, y2(0) = 1,

y′3 =
−
(
m+1
2

)
(y2 + y5) y3 +Ky2 +m (y2 + y5) y2 +My2 −Gry7 −Gcy9[(

1 + nWe2 (y3)
2) (1 +We2 (y3)

2)n−3
2 +

(
1 + 1

β

)] ,

y3(0) = A,

y′4 = y5, y4(0) = 0,

y′5 = y6, y5(0) = 1,

y′6 =
−
(
m+1
2

)
(y2 + y5) y6 +Ky5 +m (y2 + y5) y5 +My5 −Gry7 −Gcy9[(

1 + nWe2 (y6)
2) (1 +We2 (y6)

2)n−3
2 +

(
1 + 1

β

)] ,

y6(0) = B,

y′7 = y8, y7(0) = C,

y′8 =
−Pr

1− Prσa ((y1 + y4)2)

(
Nby8y10 +Nty28 +

(
m+1
2

)
(y1 + y4) y8 +Qy7

+
(

1 + 1
β

)
Ec
(
y23 + y26

)2
+ EcM2 (y2 + y4)− σa ((y1 + y4)(y2 + y5)y8) ,
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y8(0) = −Bi1(1− y7(0)),

y′9 = y10, y9(0) = D,

y′10 =
−Nt
Nb
y8 − n+1

2
(y1 + y4)y9 + σb(y1 + y4)(y2 + y5)y9 − (2y1y10 − γy9)

1
Sc
− σb(y1 + y4)2

,

y10(0) = −Bi2(1− y9(0)).

In addition to this, the above equations are differentiated w.r.t. the variables A,

B, C and D and the obtained IVP is solved with the aid of RK-4 technique. The

computed values of the boundary conditions obtained at the right endpoint of

the domain are then compared with the given conditions in equation (6.12). The

refinement of the missing conditions is done by using Newton’s method. Moreover,

the step size is chosen to be 0.001 and accuracy to be 10−14 as the convergence

criterion. In the current article, we find that using η∞ = 10 serves as a suitable

approximation for the right end of the domain in all the numerical results presented.

6.3 Results with Discussion

In this section, we have illustrated the numerical outcomes of the proposed flow

model across various selections of relevant flow parameters. The remarkable

numerical values of the skin-friction coefficient, Sherwood and Nusselt numbers

against salient parameters have been delineated in the tabular format.

6.3.1 Skin-friction Coefficient, Nusselt and Sherwood Num-

bers

Table 6.1: Contrasting the current findings of −
(

1 + 1
β

)
f ′′(0) with those

reported in the existing literature.(
1 + 1

β

)
f ′′(0) with β =∞

M Sohail et. al [77] Present
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0 1.998023 1.9980235189

0.5 2.087394 2.0873942814

1.0 2.241731 2.2417316102

The MATLAB code validation process involves reproducing the results for −(1 +

1
β
)f ′′(0) as presented in the problem posed by Sohail et al. [77], using the shooting

technique. As depicted in Table 1, the outcomes reveal a substantial agreement

between the numerical results generated by the current code and the established

ones.

Tables 6.2-6.4 are delineated to throw light on the numerical values of the drag

coefficient coupled with the heat and mass transfer rates by fluctuating the values

of various dimensionless parameters like n, Q, Nb, We, β, M , K, Gr, Gc, Pr, Nt,

Ec, Sc, γ, Bi1 and Bi2.

The numerical results gathered after incorporating the shooting method give

the picture of an increasing behavior of the skin friction coefficients, Nusselt and

Sherwood numbers by assuming higher values of Gc, Ec, γ and Bi1 whereas, an

unlike trend has been seen in the case of We. Moreover, the rising values of n, K,

Gr, Nb, Sc and Bi2 depreciate the magnitude of the skin-friction coefficients and

heat transfer rate and at the same time, the mass transfer rate climbs marginally,

however, for the elevated magnitude of Nt, an opposite fashion is witnessed. More

than that, an increase in the Prandtl number is noticed to escalate the heat and

mass transfer rates and a considerable decay in the skin-friction coefficients.

Table 6.2: The numerical results of drag coefficients, heat and mass transfer
gradients for Nt = Nb = Bi1 = Bi2 = 0.5, Sc = Q = Ec = γ = Pr = 0.1, Gc =

1.

n We β K M Gr Re
1
2Cfx Re

1
2Cfy Re

−1
2 Nu Re

−1
2 Sh

0.1 0.1 0.5 0.1 0.1 2.0 -2.131845 -2.058362 0.485541 -0.089018

4.0 -3.115202 -5.214502 0.436748 0.016130

8.0 -4.041507 -7.086183 0.419741 0.047646
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0.5 -3.673575 -4.235685 0.474825 0.031231

0.9 -3.982583 -4.674567 0.474558 0.030718

10 -2.357785 -4.673451 0.452905 0.052141

20 -9.949806 -7.521892 0.491321 0.628054

1.1 1.366238 0.165423 0.228911 0.244571

2.1 3.809156 5.578923 0.841718 0.203623

3.0 -5.100607 -4.710924 0.560073 0.013248

6.0 -9.381958 -8.178234 0.579562 0.023959

4.0 -7.470140 -5.190235 0.444801 0.030264

6.0 -9.959044 -7.470912 0.419098 0.068842

Table 6.3: The numerical results of drag coefficients, heat and mass transfer
gradients for n = We = K = M = Pr = 0.1, β = Bi1 = Bi2 = 0.5, Gc =

1, Gr = 2.

Q Nb Nt Ec Sc γ Re
1
2Cfx Re

1
2Cfy Re

−1
2 Nu Re

−1
2 Sh

0.1 0.5 0.5 0.1 0.1 0.1 -2.131845 -2.058362 0.485541 -0.089018

0.5 -4.841695 -3.154328 0.504292 -0.051981

0.9 -8.504382 -5.510344 0.507668 -0.028087

1.0 -6.982959 -4.091842 0.484932 0.047658

1.5 -7.030055 -9.102337 0.480047 0.054411

1.5 -1.402637 0.234567 0.495219 -0.054312

2.5 3.359015 2.784563 0.500532 -0.153411

0.4 -1.008789 0.126543 0.498391 0.026510

0.7 0.383623 4.132523 0.502994 0.026668

3.0 -4.803264 -5.678452 0.550842 0.016014

6.0 -6.024954 -7.746423 0.550763 0.040048

0.5 1.520564 -8.465787 0.472800 0.117173

0.9 5.501267 3.507568 0.863134 0.163103
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Table 6.4: The numerical results of drag coefficients, heat and mass transfer
gradients for n = We = K = M = Pr = Sc = Q = Ec = γ = 0.1, β = 0.5, Gc =

1, Gr = 2, Nt = Nb = 0.5.

Gc Pr Bi1 Bi2 Re
1
2Cfx Re

1
2Cfy Re

−1
2 Nu Re

−1
2 Sh

1.0 0.1 0.5 0.5 -2.131845 -2.058362 0.485541 -0.089018

2.0 1.373889 4.023479 0.560031 0.035947

3.0 3.492228 8.409123 0.622090 0.048246

0.3 -4.865814 -5.189023 1.141926 -0.061857

0.5 -9.366462 -7.908653 9.940296 -1.985372

1.5 2.388819 3.458781 0.636757 0.056573

2.5 6.622202 6.986023 0.678925 0.071398

1.5 4.865814 5.127654 0.141926 -0.061857

2.5 8.640263 9.476529 0.093912 0.027374

Figures 6.2-6.7 illustrate the impact of n, We, and β on the velocity distribution.

Increasing the values of these parameters leads to an increase in the velocity. Fur-

thermore, when higher values of We are considered, an enhancement is observed

in the thickness of the velocity boundary layer, while a sudden drop is seen in the

case of larger β. Moreover, for the case of the parameter n, the velocity boundary

layer of f ′(η) is enhanced whereas an unlike behaviour is observed for f ′(η).

Figures 6.8-6.11 are plotted to emphasize the effect of the magnetic parame-

ter M on the velocity, temperature, and concentration profiles. As mentioned

earlier, when a higher magnetic field is applied, an increase in temperature and

concentration profiles is observed while the velocity profile decreases. As a conse-

quence, a significant decrease in the momentum boundary layer thickness and a

slight increase in the thickness of thermal and concentration boundary layers have

been observed.
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Figures 6.12-6.13 depict the influence of Pr on temperature and concentration

profiles. Physically, Pr is defined as the ratio between the viscous diffusion rate

and thermal diffusivity. As Pr increases, the thermal diffusion rate decreases,

leading to a significant reduction in the fluid’s temperature. Consequently, there is

an observed declination in the thermal boundary layer thickness. Conversely, for

the higher values of Pr, the fluid’s concentration shows an increasing behaviour.

Additionally, a sudden rise is observed in the thickness of the concentration bound-

ary layer.

The impact of the thermophoresis parameter on the temperature and concen-

tration gradients is portrayed in Figures 6.14-6.15. It can be remarked that both

the magnitudes of temperature and concentration augment considerably by assum-

ing the higher values of Nt. Moreover, an elevation in the associated thermal and

concentration boundary layer thickness has been seen.

Figures 6.16-6.17 showcase the effect of the Brownian motion parameter on the

temperature and concentration curves. The temperature profile exhibits a marginal

elevation for higher magnitudes of Nb. This phenomenon can be attributed to

the fact mentioned in the earlier chapters. An escalation in temperature and the

thickness of the thermal boundary layer is sighted. Conversely, as Nb assumes

higher values, the fluid concentration diminishes, accompanied by a reduction in

the thickness of the concentration boundary layer.

The progression of the velocity and temperature profiles by amalgamating con-

trasting values of Bi1 and Gr has been displayed in Figures 18-19. The figures

demonstrate that the temperature cools down by accounting for greater magnitudes

of Gr and henceforth, the depletion is observed in the thermal boundary layer

thickness. In contrast, Bi1 has displayed a divergent pattern.

Figures 20-21 are mapped out to spotlight the impact of Sc and Bi2 on the

concentration distribution. When the concentration Biot number increases, it
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results in a corresponding increase in the concentration of the fluid, which subse-

quently leads to an expansion in the thickness of the concentration boundary layer.

Conversely, a contrasting pattern can be observed with the Schmidt number.

Figure 6.22 illustrates the influence of Ec and M on the skin-friction coefficient.

Notably, the drag coefficient increases with the higher values of Ec and M . Ad-

ditionally, Figure 6.23 underscores the significant effect of We and β on the

skin-friction coefficient. As the values of β and We rise, the surface stress increases.

The substantial impact of Pr and Sc on the Nusselt number is portrayed in Figure

6.24. For the larger Pr and Sc, the mass transfer rate diminishes drastically. The

effect of Nb and Q on the Sherwood number is depicted in Figure 6.25. Clearly,

for the higher Nb and Q, the mass transfer gradient experiences an increment in

the magnitude.

Figure 6.2: Effect of β on f ′(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd = Pr = γ =

Gc = 1, Gr = 2
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Figure 6.3: Effect of β on g′(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd = Pr = γ =

Gc = 1, Gr = 2

Figure 6.4: Effect of n on f ′(η) when K = σa = We = A = Q = Ec = α =
Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd = Pr = γ =

Gc = 1, Gr = 2
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Figure 6.5: Effect of n on g′(η) when K = σa = We = A = Q = Ec = α =
Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd = Pr = γ =

Gc = 1, Gr = 2

Figure 6.6: Effect of We on f ′(η) when K = σa = n = A = Q = Ec = α =
Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd = Pr = γ =

Gc = 1, Gr = 2
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Figure 6.7: Effect of We on g′(η) when K = σa = n = A = Q = Ec = α =
Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd = Pr = γ =

Gc = 1, Gr = 2

Figure 6.8: Effect of M on f ′(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, Rd = Pr = γ =

Gc = 1, Gr = 2
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Figure 6.9: Effect of M on g′(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, Rd = Pr = γ =

Gc = 1, Gr = 2

Figure 6.10: Effect of M on θ(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, Rd = Pr = γ =

Gc = 1, Gr = 2
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Figure 6.11: Effect of M on φ(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, Rd = Pr = γ =

Gc = 1, Gr = 2

Figure 6.12: Effect of Pr on θ(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd = γ = Gc =

1, Gr = 2
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Figure 6.13: Effect of Pr on φ(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd = γ = Gc =

1, Gr = 2

Figure 6.14: Effect of Nt on θ(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, β = Nb = Bi1 = Bi2 = 0.5, M = Rd = γ = Gc =

1, Gr = 2
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Figure 6.15: Effect of Nt on φ(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd = γ = Gc =

1, Gr = 2

Figure 6.16: Effect of Nb on θ(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, β = Nt = Bi1 = Bi2 = 0.5, M = Rd = Pr = γ = Gc =

1, Gr = 2
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Figure 6.17: Effect of Nb on φ(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, β = Nt = Bi1 = Bi2 = 0.5, M = Rd = Pr = γ = Gc =

1, Gr = 2

Figure 6.18: Effect of Bi1 on θ(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, β = Nt = Nb = Bi2 = 0.5, M = Rd = Pr = γ = Gc =

1, Gr = 2



Transportation of Thermal and Mass Fluxes using... 117

Figure 6.19: Effect of Gr on θ(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd = Pr = γ =

Gc = 1

Figure 6.20: Effect of Sc on φ(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd = Pr = γ = Gc =

1, Gr = 2
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Figure 6.21: Effect of Bi2 on φ(η) when K = σa = We = n = A = Q = Ec =
α = Γ = σb = Sc = 0.1, β = Nt = Nb = Bi10.5, M = Rd = Pr = γ = Gc =

1, Gr = 2

Figure 6.22: Effect of Ec and M on Re
1
2 Cfx when K = σa = We = n = A =

Q = α = Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd =
Pr = γ = Gc = 1, Gr = 2
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Figure 6.23: Effect of We and β on Re
1
2 Cfy when K = σa = We = n = A =

Q = α = Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd =
Pr = γ = Gc = 1, Gr = 2

Figure 6.24: Effect of Sc and Pr on Re−
1
2 Nu when K = σa = We = n =

A = Q = α = Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd =
Pr = γ = Gc = 1, Gr = 2
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Figure 6.25: Effect of Q and Nb on Re−
1
2 Sh when K = σa = We = n = A =

Q = α = Γ = σb = Sc = 0.1, β = Nt = Nb = Bi1 = Bi2 = 0.5, M = Rd =
Pr = γ = Gc = 1, Gr = 2



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation thoroughly investigates the numerical analysis of the magnetohy-

drodynamic flow near a stagnation point over a stretching sheet by incorporating

Casson and Carreau nanofluids. Irrespective of the choice of the nanofluid consid-

ered, in every study the effects of thermal radiation,inclined magnetic field, heat

generation and absorption, Brownian motion and thermophoresis in the light of

Cattaneo-Christov heat flux model. The conversion of non-linear partial differential

equations describing the proposed flow problem into a set of ordinary differential

equations is achieved through the use of appropriate similarity transformations.

The numerical solution is obtained using the shooting method. The influence

of significant flow parameters on the dimensionless velocity, temperature, and

concentration profiles is demonstrated in both tabular and graphical representa-

tions. Furthermore, the numerical results showing the magnitude of Skin-friction

coefficient, Nusselt and Sherwood numbers have been presented in via graphs and

tables. The combined conclusions drawn from the numerical findings of each study

are summarized as follows.

121



Conclusion and Future Work 122

• An escalation in the magnitude of the thermal thermal Grashof number leads

to the escalation in the mass transfer rate whereas an unlike trend has been

seen for the heat transfer rate.

• The temperature cools down whereas the concentration increases by assuming

the higher values of the Prandtl number.

• It has been noted that the higher the radiation parameter, the greater the

concentration of the fluid.

• For the higher values of the solutal Grashof number, the magnitude of

skin-friction coefficient and Sherwood numbers augments significantly.

• A rise in the temperature is noticed for the larger values of the heat generation

parameter.

• The velocity profile and the skin-friction coefficient show an increasing be-

havior by escalating the Casson parameter.

• The thermopherosis parameter escalates the heat transfer for Carreau nanofluid

by 29.7% whereas upto 31.03% is observed for the Casson nanofluid.

• The rise in the values of the permeability parameter calls forth a diminution

in the heat transfer rate.

• The elevated values of chemical reaction parameter give rise to an increment

in the magnitude of Nusselt and Sherwood numbers.

• The higher the Brownian motion parameter, the lesser the nanoparticle

volume fraction of the fluid.

• The temperature as well as velocity increase significantly by taking into

consideration the higher values of the Eckert number.

• For the Casson-Carreau nanofluids, the skin friction coefficient has an inverse

relation with the Prandtl number, Schmidt number, Weissenberg number

and Brownian motion parameter. However, an opposite behaviour has been

sighted by taking into account the thermophoresis parameter.
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• As the magnitude of the Weissenberg number heightens, the concentration

distribution suddenly falls down.

• The magnetic parameter reduces the velocity while an inverse pattern is

noted for the thermal and concentration fields.

• For the Casson fluid, an increased value of the Casson parameter enhances

the velocity, temperature, and concentration contributions.

• The chemical reaction parameter amplifies the rate of mass transfer by 31.4%

in the Carreau nanofluid, while an improvement reaching 34.06% is recorded

in the Casson nanofluid.

Figure 7.1 demonstrates how the skin-friction coefficient, responds to changes in the

rheological properties of non-Newtonian fluids governed by the Carreau and Casson

models. As seen from the figure, an increase in the Casson parameter results in a

reduction of the skin-friction coefficient. This behavior arises because the higher

Casson parameter tends to make the fluid behave more like a Newtonian fluid,

thereby reducing resistance and allowing smoother flow. Conversely, an increase

in the effects of Carreau nanofluids leads to a rise in the skin-friction coefficient,

particularly when the fluid retains some characteristics of a Casson nanofluid.

Figure 7.2 illustrates the effect of Casson and Carreau fluids on convective heat

transfer. It is noteworthy that the presence of these non-Newtonian fluids con-

tributes to a significant enhancement in heat transfer performance.w

The influence of the mass transfer rate, considering the combined effects of Casson

and Carreau fluids, is illustrated in Figure 7.3. It can be observed from the figure

that an increase in the parameters associated with Casson and Carreau fluids leads

to a decrease in the magnitude of the Sherwood number, thereby indicating a

reduction in the mass transfer rate.
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Figure 7.1: Effect of n and β on Re1/2Cf when K = ω = δ = We = n =
A = Q = Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Pr = γ = Gc =

1, Gr = 2, λ = −1, S = 0.2

Figure 7.2: Effect of n and β on Re−1/2Nu when K = ω = δ = We = n =
A = Q = Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Pr = γ = Gc =

1, Gr = 2, λ = −1, S = 0.2
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Figure 7.3: Effect of n and β on Re−1/2Sh when K = ω = δ = We = n =
A = Q = Ec = α = Γ = χ = Sc = 0.1, Nt = Nb = 0.5, M = Pr = γ = Gc =

1, Gr = 2, λ = −1, S = 0.2

7.2 Future Work

The study of fluids provides an understanding of several everyday phenomena.

The industrial significance of the Newtonian and non-Newtonian fluid models is

discussed in the Introduction. In this dissertation, the primary objective is to

shed light on the characteristics of Newtonian and non-Newtonian models with

different physical effects. The presented study opens up several avenues for further

exploration and can be extended in the following ways.

• The present study focuses on the exploration of the characteristics and heat

and mass transfer of Casson and Carreau nanofluids. Different fluid models

like Maxwell fluid model, hybrid fluid, Williamson fluid, hyperbolic tangent

fluid, Jeffery fluid can also be incorporated to study the flow properties.
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• The effects of Brownian motion, thermopherosis, heat generation/absorption

and inclined magnetic field are studied in detail using the Casson and Careau

nanofluids. Moreover, the impact of viscous dissipation, Hall effects, Joule

heating and Soret and Dufour effects can also be taken into account.

• For examining the flow properties and the heat and mass transfer, the MHD

flow near stagnation point using the Casson and Carreau nanofluids past a

stretching sheet has been taken into account. In addition to this, radially,

non- linearly or exponentially stretching sheet can also be considered.

• The flow characteristics and heat and mass transfer rates can be studied

using the circular cylinder, wedge, microtubes and microchannels. Moreover,

porous plate can also be utilized.
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