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Abstract

Prediabetic insulin resistance represents a crucial stage in the progression towards type

2 diabetes, necessitating the identification of robust biomarkers for early detection

and intervention. This study employed a comprehensive approach integrating meta-

analysis and advanced in-silico techniques to identify and characterize biomarkers

associated with prediabetic insulin resistance.

A rigorous meta-analysis was conducted to systematically review and analyze existing

literature, identifying a diverse array of genes and proteins implicated in the dysregu-

lation observed in both diabetes and prediabetes. Key genes such as SGCZ (Sarcogly-

can Zeta), HPSE2 (Heparanase 2), ADGRA1 (Adhesion G Protein-Coupled Receptor

A1), GLB1L3 (Galactosidase Beta 1 Like 3), PCSK6 (Proprotein Convertase Sub-

tilisin/Kexin Type 6), SIRT1 (Sirtuin 1), PPAR (Peroxisome Proliferator-Activated

Receptor), PGC1 alpha (Peroxisome Proliferator-Activated Receptor Gamma Coac-

tivator 1-Alpha), NRF1 (Nuclear Respiratory Factor 1), TG gene (Thyroglobulin),

and HBA1c (Hemoglobin A1c) were identified as playing significant roles in these

metabolic disorders.

We utilized bioinformatics tools including GeneMania, Kyoto Encyclopedia of Genes

and Genomes (KEGG), and Gephi for comprehensive gene interaction network analy-

sis, pathway validation, and network construction. This foundational research under-

scored the intricate genetic and molecular interactions that contribute to the patho-

physiology of metabolic diseases, providing a robust starting point for the current

investigation.

To expand upon these findings, an initial set of biomarkers (set no. 1) was curated

based on the meta-analysis results. Subsequently, an interaction network of set no.

1 genes was generated using the FunCoup server, which facilitated the identification

of additional genes (set no. 2) interacting with the initially identified biomarkers.

Enrichment analysis was then performed using gene ontology tools to elucidate the

biological, molecular, and cellular annotations of these genes, providing deeper insights

into their functional roles in metabolic pathways.
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Protein sequences and IDs corresponding to the identified genes were retrieved from

the UniProt database, and their structural stability was assessed via using BLASTP

to ensure homology and ProSA server to validate the modeled proteins with negative

Z-scores, indicating structural integrity.

Furthermore, protein-protein docking studies were conducted using the GRAMM-X

web server and ClusPro to explore the interactions between set no. 1 biomarkers and

set no. 2 novel biomarkers. The results were analyzed using Discovery Studio, reveal-

ing ARG13 as the most frequently interacting amino acid residue across all docked

complexes. This finding suggested that ARG13 plays a pivotal role in the interaction

interfaces between these biomarkers, potentially influencing their functional implica-

tions in prediabetic insulin resistance.

In conclusion, the study highlights the complex interplay of genetic, protein, and

molecular factors in the pathophysiology of diabetes and prediabetes. The identifica-

tion of common interacting amino acid residues through molecular docking provides

valuable insights into potential novel biomarkers for prediabetic insulin resistance.

These findings pave the way for targeted therapeutic strategies aimed at mitigating

the progression of metabolic disorders, ultimately contributing to improved patient

outcomes and healthcare management.

Keywords: Metabolic Disease, Prediabetes, Insulin Resistance, Inflammation, Path-

ways, Regulatory Networks, Docking
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Chapter 1

Introduction

1.1 Background of the Study

Insulin resistance (IR) refers to an altered response of glucose uptake, typically stim-

ulated by insulin, or can be described as reduced sensitivity of the body to insulin,

impacting metabolic processes, growth, and development. This phenomenon results

in a diminution of glucose disposal to insulin-sensitive tissues despite comparable

plasma levels of circulating insulin, causing hyperglycemia. Such conditions may add

up setting for complicated macrovascular and microvascular complications. Insulin

resistance in combination with pancreatic β cell dysfunction and inadequate insulin

production ultimately progresses to prediabetes, then type 2 diabetes [1].

The pathophysiology of IR is intricate and not fully elucidated. It involves contribu-

tions from all organ systems, each playing a predominant role in different physiological

states. Skeletal muscles are crucial for insulin sensitivity immediately after meals and

during physical activity, while hepatic regulation of glycolysis and gluconeogenesis

predominates during fasting [1]. Adipose tissue may contribute to endocrine and in-

flammatory functions that influence other organs, but it plays relatively little direct

role in insulin sensitivity. Immune cells in adipose tissue, including macrophages 1,

T, and B lymphocytes also cause insulin resistance. Remember that insulin sensitiv-

ity is an uncategorized trait, but relies on different cutoffs as it has been reported

1
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regarding the metabolic features of the study subject population [2]. Challenges in

IR determination stems from the absence of a singular parameter, with studies often

resorting to indirect indicators based on fasting blood samples, and methods varying

in their specificity for hepatic or muscle IR. Additionally, ethnic variations play a role,

influenced by compensatory hyperinsulinemia and β cell dysfunction [3].

Prediabetes (PD) is characterized by blood glucose levels that are higher than normal

but still below the threshold for diabetes diagnosis. PD is considered a high-risk state

for developing type 2 diabetes, with an annual progression rate of 5% to 10%. As such,

prediabetes is viewed as an intermediate stage between normal health and diabetes. It

often includes impaired fasting glucose (IFG), and impaired glucose tolerance (IGT),

or both. The World Health Organization (WHO) and the American Diabetes Associ-

ation (ADA) have also proposed several terms for this condition, including IFG, IGT,

intermediate hyperglycemia, and high-risk state for diabetes development [4].

In 2021, an estimated 464 million people worldwide were living with prediabetes,

making up 9.1% of the global adult population. This number is expected to rise

significantly, reaching 638 million by 2045. Similarly, in 2021, about 298 million

people (5.8% of the global population) had prediabetes, with projections indicating

an increase to 414 million (6.5%) by 2045. High-income countries currently have the

highest prevalence of prediabetes, but the most rapid growth in cases over the coming

decades is expected to occur in low-income countries. These trends highlight the

urgent need for effective prevention strategies to slow the rising burden of prediabetes

worldwide [6].

Over 38% of American adults are affected by prediabetes [7]. By 2022, prediabetes and

diabetes rates in China declined to 15.7% and 7.6%, respectively, from 18.3% and 8.2%

in 2013 (P < 0.05). The decrease was notable among women, the Han majority, and

higher-income, educated groups, while rates remained higher among ethnic minorities

and low-income populations. Medication adherence improved significantly (95.9%

in 2022 vs. 76.5% in 2013, P < 0.01), but fewer individuals managed their diabetes

actively (39.7% vs. 53.3%, P< 0.01). Self-monitoring rates stayed stable but increased

among lower-income groups (P < 0.05) [8].
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Figure 1.1: Insulin resistance to diabetes progression [5].

In Pakistan, according to the 2nd National Diabetes Survey of Pakistan 2016-2017,

the prevalence of prediabetes is 14.4% [9]. It is observed that rapid urbanization

and changes in diet in developing countries have raised the average Body Mass Index

(BMI) as well as prediabetes. There is a significant role of genetics that is observed

in various populations in the progression of prediabetes to diabetes [10].

Prediabetes has been observed as a major risk factor for the future development of type

2 diabetes mellitus. Along with type 2 diabetes mellitus other comorbidities (FIG.

1.1) that are associated with prediabetes are polycystic ovary syndrome (PCOS), non-

alcoholic fatty liver disease (NAFLD) obesity, cardiovascular diseases, and metabolic

syndrome [6].

Diagnosis of prediabetes involves a blood glucose level equal to or above a specific

value, which is Fasting Plasma Glucose Test (FPG) (≥ 100mg/dL or 5.5mmol/L), Oral



Introduction 4

Glucose Tolerance Test (OGTT) (≥ 140mg/dL or 7.8 mmol/L), Glycated hemoglobin

or hemoglobin bounded to glucose (A1C) (≥ 5.7% or 39mmol/mol) [6]. There are

several limitations that can affect their accuracy and reliability. The FPG test pri-

marily reflects the liver’s glucose production but may fail to detect impaired glucose

tolerance (IGT). For instance, a person may have normal fasting glucose levels but

still have IGT, which would only be revealed through an OGTT. Additionally, FPG

levels can vary due to stress, minor illnesses, or recent physical activity, leading to

inconsistent results. For example, an individual might have a normal fasting glucose

level one day (99 mg/dL) but test in the prediabetes range (102 mg/dL) another

day, causing diagnostic uncertainty. Similarly, fasting longer than required (e.g., 14+

hours instead of 8-12) can result in falsely low glucose readings [4].

The OGTT, though considered a more sensitive test, has its own drawbacks. It is

inconvenient, requiring fasting, consuming a glucose solution, and undergoing multi-

ple blood draws over two hours. Patient compliance can also be an issue, as some

individuals experience nausea or vomiting after consuming the glucose drink, making

the test invalid. Furthermore, OGTT results can be influenced by various external

factors such as sleep quality, stress, or recent physical activity. A person with nor-

mal glucose regulation might show a false-positive result (≥140 mg/dL) if they had

a poor night’s sleep before the test. Additionally, OGTT results lack reproducibility,

meaning the same person might test within the normal range one day (138 mg/dL)

but show prediabetes (142 mg/dL) another day [4].

The HbA1c test, while convenient because it does not require fasting, is not always

reliable in certain populations. It can be affected by hemoglobinopathies (e.g., sickle

cell disease, thalassemia) and conditions like anemia, leading to falsely high or low

readings. For instance, a person with sickle cell disease may have an artificially low

HbA1c level, resulting in a missed prediabetes diagnosis. Ethnic and genetic variations

also play a role; some populations, such as South Asians and Africans, may naturally

have slightly different HbA1c levels, potentially leading to misclassification.

Moreover, HbA1c reflects average blood glucose over two to three months but does

not capture short-term fluctuations. A person with frequent post-meal glucose spikes
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(e.g., 180 mg/dL) but a normal average glucose may have an HbA1c in the normal

range, despite having underlying glucose metabolism issues [6].

Overall, these diagnostic tests can yield inconsistent results, leading to diagnostic

confusion. The same person might test positive for prediabetes with one method but

negative with another. For example, an individual could have an FPG of 98 mg/dL

(normal), an OGTT of 144 mg/dL (prediabetes), and an HbA1c of 5.6% (normal),

making it unclear whether they truly have prediabetes. Additionally, the cut-off values

for these tests are somewhat arbitrary. A slight variation in test results (e.g., OGTT

of 139 mg/dL vs. 140 mg/dL) can mean the difference between a normal diagnosis

and prediabetes, even though the actual risk difference may be minimal. Due to these

limitations, healthcare providers often recommend a combination of tests rather than

relying on a single measure to diagnose prediabetes or diabetes accurately [6].

High fasting insulin levels in prediabetic patients suggest that their bodies are becom-

ing more resistant to insulin. This insulin resistance (IR) happens in various tissues

like the muscles, liver, and fat cells. Normally, after eating, insulin should help the

liver reduce glucose production, but in people with isolated impaired fasting glucose

(IFG), the liver doesn’t respond well, even though insulin levels are high. This points

to a significant problem with how the liver reacts to insulin [11].

Insulin is supposed to slow down the breakdown of fats, but in people with impaired

glucose tolerance (IGT), we see that their fasting levels of free fatty acids (FFAs) are

higher, meaning that fat breakdown is happening more than it should. Despite high

insulin levels, these people have more FFAs in their blood, which shows that their fat

cells aren’t responding to insulin as they should [8]. Both IFG and IGT are associated

with this fat cell resistance to insulin. However, people with IFG mostly have severe

insulin resistance in the liver while their muscles respond relatively normally. On

the other hand, those with IGT experience more resistance in their muscles and a

milder resistance in the liver [73]. In a healthy body, glucose is absorbed through

the gut and triggers the release of hormones like GLP-1 and GIP, which help the

pancreas release insulin. But in IFG and IGT, this process is disrupted. Studies that

measure C-peptide levels during glucose tolerance tests have shown that the ability
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of the pancreas to release insulin is significantly reduced in these conditions. This

combination of insulin resistance and reduced insulin production from the pancreas is

what puts people at a higher risk of developing prediabetes [12, 13].

Metabolic diseases are a group of disorders that affect the body’s ability to process

and use nutrients (such as carbohydrates, proteins, and fats) for energy and other

essential functions [13]. These disorders can be caused by genetic mutations, environ-

mental factors, or a combination of both. Some examples of metabolic diseases include

prediabetes that leads to diabetes type 2, obesity, hypertension, and cardiovascular

diseases (CVDs) [14].

Prediabetes refers to a medical condition in which blood sugar levels are elevated,

yet not to the point of being classified as type 2 diabetes [15]. It acts as a warning

signal that an individual might develop type 2 diabetes, a chronic disease with severe

complications like kidney and heart damage [16],[17]. Prediabetes is a condition af-

fecting approximately one in three adults in the United States and one in five adults

worldwide, with higher prevalence rates observed in low- and middle-income countries

[18].

Diabetes is a chronic metabolic disease associated with insulin abnormalities due to

inadequate insulin secretion or ineffective use of insulin. According to the Interna-

tional Diabetes Federation (https://diabetesatlas.org/). 537 million adults are living

with diabetes; Diabetes is responsible for 6.7 million deaths in 2021 [18].

Obesity is a condition where there is an excessive accumulation of body fat, which

is typically defined by having a BMI of 30 or higher [19]. The prevalence of obesity

has been steadily increasing worldwide, with over 650 million adults being classified

as obese in 2016. This is a significant public health concern due to the increased risk

of chronic diseases associated with obesity [20].

Hypertension, also known as high blood pressure, is a condition where the force of

blood against the walls of arteries is persistently high, leading to a strain on the heart

and an increased risk of health problems. It is estimated that 1.13 billion people

worldwide had hypertension in 2015, and this number is expected to rise to 1.56 bill-
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ion by 2025 [21].

Cardiovascular diseases (CVDs) are a collection of medical conditions that impact the

heart and blood vessels [22]. They are responsible for a significant proportion of global

deaths, accounting for around one-third of all fatalities each year. Cardiovascular

diseases (CVDs) are the leading cause of death globally, responsible for 32% of all

deaths in 2019 [23]. These metabolic diseases may lead to severe conditions such as

Metabolic syndrome (MetS).

Metabolic syndrome is a cluster of conditions that increase the risk of developing

cardiovascular diseases, type 2 diabetes, and other health problems. A diagnosis is

typically made when a person has at least three of the following conditions: elevated

fasting glucose, elevated blood pressure, elevated triglycerides, reduced HDL choles-

terol, and abdominal obesity [24]. The global prevalence of metabolic syndrome is

estimated to be around 25%, with higher rates in urban areas and among older adults

[25].

Insulin resistance plays a central role in the development of metabolic diseases/syn-

drome (FIG. 1.2). Insulin is a hormone produced by the pancreas that helps to

regulate the amount of glucose (sugar) in the blood. Insulin resistance occurs when

the body’s cells become resistant to the effects of insulin, leading to high levels of

glucose in the blood [26].

When insulin resistance develops, the pancreas responds by producing more insulin

to overcome the resistance. This leads to higher-than-normal levels of insulin in the

blood, a condition known as hyperinsulinemia. Over time, the pancreas may become

exhausted and unable to produce enough insulin, leading to high blood sugar levels and

eventually Pre-diabetes leading to diabetes. Insulin resistance also affects the body’s

ability to use and store energy from food [17]. This can lead to the accumulation of

fat in the liver and other organs, which can contribute to the development of non-

alcoholic fatty liver disease. Additionally, insulin resistance can increase inflammation

in the body, which can contribute to the development of other health problems such

as cardiovascular disease [27].
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Figure 1.2: Role of insulin resistance in the prognosis of metabolic diseases [9, 10]

Insulin resistance and metabolic syndrome are influenced by a complex interplay of

genetic and environmental factors. Various genes and genetic variations have been

linked to these conditions, including PPARG, IRS1, IRS2, ADIPOQ, TNF, FTO,

SIRT1, and GCKR [28]–[29]. These genes are involved in various processes related

to energy metabolism, adipocyte differentiation, lipid metabolism, and inflammation,

among others. However, the genetic basis of insulin resistance and metabolic syndrome

is not fully understood, and additional research is needed to unravel their complex

genetic and environmental components.

Omics refers to the comprehensive study of biological molecules or datasets within

specific scientific domains. It encompasses the analysis of genes (genomics), proteins

(proteomics), metabolites (metabolomics), and other molecular components. In the

context of prediabetes, omics methodologies are instrumental in unraveling the molec-

ular intricacies associated with the onset and progression of this condition [30].
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Genomics, which explores the structure and function of genes, aids in identifying ge-

netic variations linked to an elevated risk of developing diabetes. By scrutinizing

genetic data on a large scale, researchers can pinpoint specific genes or genetic path-

ways influencing insulin resistance, glucose metabolism, and other prediabetes-related

factors [31].

Transcriptomics, focusing on all RNA molecules including mRNA, provides insights

into gene expression patterns relevant to prediabetes. This analysis unveils changes

in gene activity associated with insulin sensitivity, inflammation, and other pivotal

processes, offering potential therapeutic targets or early detection biomarkers [32].

Figure 1.3: Integration of multi-omics-data in prediabetic insulin resistance
[30]–[33].

Proteomics delves into the study of proteins and their roles within cells. In predia-

betes research, proteomic analysis uncovers alterations in protein levels or modifica-

tions contributing to insulin resistance, β-cell dysfunction, and metabolic irregulari-

ties. Understanding these protein-related mechanisms can guide the development of

targeted therapies or diagnostic tools [30].

Metabolomics investigates small molecules (metabolites) in cells, tissues, or biofluids.

In prediabetes, metabolomic studies identify metabolic signatures linked to insulin re-

sistance, altered glucose metabolism, and metabolic dysregulation. These metabolic
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profiles aid in early detection, risk assessment, and personalized treatment strategies

[30]. Integrative omics combines data from multiple omics layers to gain a holistic un-

derstanding of biological processes (FIG. 1.3). In prediabetes research, this approach

unveils complex interactions between genes, proteins, metabolites, and environmen-

tal factors contributing to disease progression. It leads to targeted interventions and

precision medicine strategies for managing prediabetes and preventing its transition

to diabetes [30]–[33].

1.2 Gap Analysis

The current understanding of prediabetic insulin resistance lacks a comprehensive

elucidation of its molecular mechanisms, limiting our ability to conduct a systematic

evaluation of health outcomes associated with prediabetes. Furthermore, the absence

of formal and validated clinical guidelines for the diagnosis and treatment of predia-

betes underscores the need for an in-depth exploration of the genetic and molecular

mechanisms underlying prediabetic insulin resistance. This research gap necessitates

focused investigation into the genetic and molecular levels to bridge the knowledge

gap and facilitate the development of evidence-based guidelines for the early diagnosis

and effective treatment of prediabetes.

1.3 Research Objectives

The primary aim of this research is to gain a comprehensive understanding of the

molecular underpinnings of prediabetic insulin resistance. By integrating data from

various studies and employing advanced computational tools, this study seeks to un-

cover the critical genetic and metabolic factors that contribute to the early stages of

insulin resistance. The specific objectives of the research are outlined below:

Research Objective 1: To conduct a meta-analysis to elucidate the genetic and

molecular determinants associated with prediabetic insulin resistance.
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Research Objective 2: To identify and validate key genetic and metabolic compo-

nents implicated in prediabetic insulin resistance through pathway analysis and gene

interaction modeling.

Research Objective 3: To computationally validate the functional roles of identified

genetic and metabolic components in prediabetic insulin resistance using bioinformat-

ics approaches.

1.4 Significance of Study

Pre-diabetic insulin resistance could result in the progression of severe diseases includ-

ing diabetes and metabolic syndrome, organ failures, cardiovascular diseases, and even

cancer. Therefore, it is necessary to explore mechanisms causing prediabetes onset

and progression at the molecular and cellular levels. Understanding these pathways

will play a pivotal role in diagnostic and management strategies against Pre-diabetic

insulin resistance.

1.5 Problem Statement

Diabetes, metabolic syndrome, and cardiovascular disease once prognoses are difficult

to treat and manage. It is necessary to prevent the progression of these diseases by

early diagnosis and treatment at the prediabetic stage. Environmental and genetic

factors are involved in insulin resistance which is the main cause of prediabetes but

what key genetic factors are involved in prediabetic insulin resistance is still not clear.

Identifying molecular mechanisms can help detect prediabetes and reduce its burden.

1.6 Research Questions

Elaboration and understanding of genetic and molecular pathways associ-

ated with prediabetic insulin resistance.
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1. What are the primary genetic variants associated with prediabetic insulin resis-

tance, and how do they influence molecular pathways?

2. What molecular mechanisms underlie the development of insulin resistance in

prediabetes, particularly focusing on skeletal muscle, liver, and adipose tissue

interactions?

3. How do environmental factors interact with genetic predispositions to contribute

to prediabetic insulin resistance?

Identification and validation of key genetic and metabolic components in-

volved in prediabetic insulin resistance based on pathway and gene inter-

action.

1. Which genetic pathways and metabolic processes play pivotal roles in the de-

velopment and progression of insulin resistance in prediabetes?

2. Can machine learning or network analysis techniques be applied to identify key

genes and metabolic components driving prediabetic insulin resistance?

3. How do gene-gene and gene-environment interactions influence the manifestation

of insulin resistance in prediabetes?

Validation of genetic and metabolic components of prediabetic insulin re-

sistance using Bioinformatic approach.

1. Which genetic and metabolic components are critical for prediabetic insulin

resistance based on bioinformatic analysis?

2. How do interaction network and pathway analysis reveal key molecular players

in prediabetic insulin resistance?

3. Can bioinformatic docking studies validate interactions of proteins involved in

prediabetic insulin resistance with high accuracy?



Chapter 2

Literature Review

2.1 Insulin Resistance

Insulin resistance (IR) is defined as a diminished capacity of insulin to promote glucose

uptake in the body’s cells. It can also be described as the body’s decreased respon-

siveness to insulin, which negatively impacts growth, development, and metabolism.

In IR, insulin–responsive tissues, particularly muscle tissues, fail to absorb glucose

efficiently from the bloodstream, resulting in elevated blood glucose levels, or hyper-

glycemia. This hyperglycemia is a key factor contributing to various adverse macrovas-

cular and microvascular outcomes [3].

When insulin resistance occurs alongside dysfunction of pancreatic beta cells and a

relative deficiency of insulin, it can lead to prediabetes and, eventually, type 2 diabetes

(T2D). This progression highlights the interplay between IR and insulin secretion in

the development of metabolic diseases [34].

In general terms, insulin resistance is recognized as a condition where the normal or

elevated levels of insulin do not elicit a strong biological response. This phenomenon is

most commonly associated with the decreased sensitivity of insulin–mediated glucose

uptake, where insulin’s ability to facilitate glucose entry into cells is significantly

impaired [35].

13
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2.2 Pathophysiology of Insulin Resistance

The underlying mechanisms of insulin resistance (IR) are intricate and not fully un-

derstood. Every organ system plays a role in IR, with different systems taking the lead

depending on the body’s state. After eating or doing exercise, the skeletal muscles

are the heaviest promoter of insulin sensitivity. On the other hand, during periods

of fasting the liver comes to the fore in action, with such tasks as glycolysis and glu-

coneogenesis. Adipose tissue, which has a relatively minor overall effect on insulin

sensitivity but serves as a crucial endocrine and inflammatory regulator for other or-

gans. This results in insulin resistance by inflammatory cells, including macrophages;

T cells and B cells within fat tissue. Furthermore, the role of the central nervous sys-

tem in this process is attracting more and more attention. It is important to recognize

that insulin sensitivity is not a black-and-white condition but rather exists along a

spectrum.

While some studies attempt to classify individuals as ”insulin resistant” or ”insulin

sensitive” using specific cut-off values, this method has its limitations. Firstly, there’s

no universally accepted way to measure IR—most large studies rely on surrogate

markers from fasting blood samples, which vary in how accurately they reflect liver

or muscle insulin resistance. Secondly, what is considered clinically significant insulin

resistance (IR) can vary across different ethnic groups, influenced by factors such as

compensatory hyperinsulinemia and beta cell dysfunction. Thirdly, despite extensive

research efforts, including studies like the Framingham Heart Study and the Insulin

Resistance Atherosclerosis Study, the full impact of prediabetic IR remains unclear,

and many individuals still go undiagnosed [36].

2.3 Molecular Mechanism of Insulin Resistance

Muscles account up to 60 to 70% of the entire body insulin–dependent uptake of

glucose. This uptake is done by GLUT4 transporters [37]. If muscular glycogen

synthesis is reduced it is called insulin resistance (FIG. 2.1). The resistance to insulin
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tends to be reduced with the translocation of intracellular glucose [35]. As per previous

studies, no difference has been reported between insulin–resistant type II diabetics and

control. Although this was due to hyperinsulinemia in the hyperinsulinemic clamp

study [38]

Figure 2.1: Insulin resistance mechanism pathway in skeletal muscle cell [38]

Liver’s response to insulin resistance and its resulting effects on metabolic processes

is illustrated in figure 2.2. Glucose enters liver cells through the GLUT2 transporter,

initiating pathways for glycogen storage or glycolysis. In glycolysis, glucose is broken

down into pyruvate, which then produces acetyl-CoA in the mitochondria. Acetyl-

CoA contributes to ATP generation and free fatty acid (FFA) synthesis, with FFAs

ultimately forming triacylglycerol (TAG) in the liver. TAGs may enter the blood-

stream, affecting overall lipid metabolism [35].

The insulin signaling pathway is central to this process. When insulin binds to its

receptor, a phosphorylation cascade is triggered, starting with activation of receptor

substrate proteins (like IRS1) and progressing to PI3K and AKT, which facilitate

GLUT4 translocation to the cell surface for glucose uptake. In cases of insulin re-

sistance, this signaling pathway is disrupted, reducing glucose uptake and glycogen

production in the liver. Insulin resistance also alters lipid metabolism, promoting

ceramide and sphingolipid synthesis—molecules involved in cellular stress responses.
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Excessive FFAs are converted to TAGs, which can accumulate in the liver and con-

tribute to fatty liver disease [35].

Additionally, insulin resistance triggers inflammatory responses. Cytokines such as

IL6 and TNFα activate kinases like JNK1, which interfere with insulin signaling and

intensify cellular stress. This leads to a cascade that impairs glucose metabolism

further. The diagram (figure 2.2.) also includes the endoplasmic reticulum (ER) stress

response, featuring proteins like XBP1 and PERK, which contribute to metabolic and

inflammatory stress. As insulin resistance progresses, the liver’s decreased ability to

take up glucose and synthesize glycogen leads to elevated blood glucose levels, which

can eventually result in diabetes. This diagram provides an overview of the intricate

network of interactions where insulin resistance disrupts glucose and lipid metabolism,

leading to broader metabolic health issues [35].

Figure 2.2: Insulin resistance mechanism in hepatic cell [38]

In resistance of insulin, the effects are similar on adipose tissues (FIG. 2.3), whereas

flux of free fatty acids promotes hepatic VLDL production (very low–density lipopro-

teins [38] while ketogenesis usually remains repressed by the compensatory hyper-

insulinemia. As lipoprotein lipase activity depends on insulin and dysfunctional by

insulin resistance, the peripheral uptake of triglycerides from very low–density lipopro-

teins are also decreased. These biochemical mechanisms account for observed hyper

triglyceridemic insulin (FIG. 2.4) [39].
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Figure 2.3: Insulin resistance mechanism in adipocytes showing lipolysis [40]

Figure 2.4: Insulin resistance in adipocyte (diabetic conditions) [40]

Insulin resistance (IR) is considered a precursor to type II diabetes mellitus (T2DM)

and various cardiovascular diseases [34], [40]–[41]. Insulin resistance and compen-

satory hyperinsulinemia commonly found in many different conditions which includes

obesity as well. A syndrome refers to a collection of related abnormalities, as seen

with insulin resistance, which often leads to physical complications commonly found in

individuals with insulin resistance. Due to differences in tissue response to insulin de-

pendence and sensitivity, insulin resistance syndrome is likely a result of both insulin-

dependent effects and varying degrees of resistance to insulin’s actions. Metabolic
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syndrome, in particular, serves as a clinical marker for identifying individuals at high

risk for insulin-resistant cardiovascular diseases [34],[42].

The relationship between obesity, insulin resistance, and type II diabetes has long been

valued. a study has established that IMCL (intramyocellular lipid) content is a better

forecaster of muscle insulin resistance than fat mass in hale and hearty, young, inactive

and lean individuals [43] and nonobese, nondiabetic but insulin–resistant adults [44]

and children [45], signifying a potential contributing role for IMCL mediator(s) in this

process.

Almost half century ago, Randle and colleagues in their study suggested that insulin

resistance of muscles linked with obesity could be accredited to high fatty acid ox-

idation that bounds insulin–stimulated glucose utilization [45]. Higher delivery and

oxidation of fat molecules leads to accumulation of phosphofructokinase inhibitors

which are citrates is basic concepts of this model. Phosphofructokinase is very im-

portant enzyme which lead to increase in intra myocellular glucose 6 phosphate and

glucose. These ultimately impairs glucose uptake and utilization [45].

The activation of PKCε by DAG in the liver disrupts insulin signaling, which hinders

the liver’s ability to form glycogen in response to insulin. Despite this, the liver con-

tinues to synthesize lipids without any reduction. In skeletal muscle, the activation of

PKCθ by DAG interferes with insulin signaling as well, preventing glucose from being

effectively taken up by the muscles and resulting in more glucose being directed to

the liver. However, physical exercise can still enhance glucose uptake by the muscles.

In adipose tissue, the release of cytokines from adipose tissue macrophages (ATMs)

stimulates the breakdown of fats, leading to an increased release of fatty acids. These

fatty acids further boost lipid production in the liver and stimulate gluconeogenesis

through acetyl-CoA-mediated activation of pyruvate carboxylase (PC) and glycerol,

which pushes glucose production by providing additional substrates.

This explanation touches on key components like the insulin receptor (IR), glycogen

phosphorylase (GP), glycogen synthase (GS), lysophosphatidic acid (LPA), hepatic

lipase (HL), chylomicron remnants (CM-R), very low-density lipoprotein (VLDL),
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calmodulin kinase II (CAM-KII), insulin receptor substrate 1/2 (IRS1/2), β-adrenergic

receptor (βAR), and chylomicron triglycerides (CM-TG). This has been illustrated in

figure 2.5 [46].

Figure 2.5: Overall mechanism of insulin resistance [46]

Family studies suggest that insulin resistance (IR) is about 40%–50% heritable, though

the estimates can vary widely. It’s thought that up to 44% of this heritability might be

due to genetic polymorphisms, many of which remain unidentified and are present in

at least 5% of the population. Most of the genetic variants known to be associated with

type 2 diabetes (T2D) primarily affect insulin secretion, with only a few influencing
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IR directly. Identifying the genetic factors behind IR has been challenging for several

reasons [47].

A major limitation is the lack of large scale studies incorporating adequate physiolog-

ical recording of insulin sensitivity. Among adult participants without diabetes, the

highest number of individuals enrolled in a genome-wide association study (GWAS)

employed HOMA-IR as the coefficient of fasting plasma glucose. This is undertaken in

the absence of HOMA-IR’s methodology which does not consider the degree of insulin

resistant that occurs in certain tissues or after a meal which may have varying genetic

causes. This drawback is further supported by two other studies which observed a

very small genetic correlate (-0.53an, -0.57) of HOMA-IR with two accurate methods

including euglycemic clamp and minimal model [48].

In the largest genome-wide association studies (GWAS) of physiological measures of

insulin resistance (IR) conducted so far, which was carried out by the GENEticS of

Insulin Sensitivity, there were no genome-wide associations with inclusion of 5624

participants. Among the findings, a variant in the NAT2 gene (rs1208A – G) was

noted in IR studies, and further studies in mice supported the role of NAT2 in insulin

response. These observations underscore genetic studies as a useful approach for

gaining insight into important clinical aspects of IR, whilst calling for larger studies

to demonstrate the meaningful signals. [49].

Further evidence of a contribution to IR having a genetic basis was presented by

Dimas whose group delineated five genetic clusters for T2D, one of which was within

a cluster containing IR- associated loci such as PPARG, KLF14, IRS1, GCKR, and

others. Scott and coworkers developed a ‘genetic risk profile’ of ten SNPs and claimed

to use it in assessing the risk of patients to develop IR with special reference to using

clinical insulin resistance by selecting SNPs associated with fasting insulin levels,

hypertriglyceridemia, and low levels of HDLcholesterol, which are indicators of IR.

This was validated against clamp measures in a cohort of 1899 non-diabetic individ-

uals and has undergone significant development and been used as an intervention in

studying genetic Inflammatory Resemblance. And in these studies regarding genetic
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factors researchers demonstrated, to the surprise of many, that genetic IR is not re-

lated to the degree of obesity, which is also associated with elevated cardiometabolic

risk. Also, they have shown that genetic IR correlates inversely to obesity measures

such as hip circumference and body fat %age. Increased cardiometabolic risks in

patients with genetic IR, it has been speculated, could be due to an inadequate ca-

pacity of ‘disease’ or peripheral fat limiting excessive energy energetics, high ectopic

vesicle distribution within the bodies of the patients. This ‘adipose tissue expandabil-

ity’ hypothesis explains intestial fat accumulation with higher cardiovascular risk in

some rare monogenic forms of lipodystrophy/IR, and some lean people with insulin

resistance [50].

Genes that are associated with IR in diabetes type 2 are HNF4A (MODY1), GCK

(MODY2), HNF1A(MODY3), PKM, FASN, ACACA, PEPCK, INSR, IRS1, IRS2,

GUT4, IGF1, GCKR, SIRT1, GAPDH, PKLR, FASN, SSTR2, FOS, GCK, APOA1,

PCK2, G6PC, APOC3, and GLP1R [51]. Few genes that are associated the Diabetes

type 2 reported in literature along with their role is summarized in table. 2.1

Table 2.1: List of genes associated with insulin resistance in diabetes mellitus
type 2.

Gene region Function References

TCF7L2 Transcription factor [52]

trans activates

proglucagon

and insulin genes

PPARG Transcription factor [53]

involved in adipocyte

development

KCNJ11 Kir6.2 K+ channel [49]

risk allele impairs

insulin secretion

WFS1 Endoplasmic reticulum [54]

transmembrane protein
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HNF1B Transcription factor [55]

involved in pancreatic

development

SLC30A8 β-Cell zinc [56]

transporter ZnT8

insulin

storage and secretion

HHEX Transcription factor [57]

involved in pancreatic

development

CDKAL1 Homologous to [58]

CDK5RAP1,

CDK5 inhibitor

islet glucotoxicity sensor

IGF2BP2 Growth factor [59]

binding protein

pancreatic

development

CDKN2A/B Cyclin-dependent [60]

kinase inhibitor and

p15 tumor suppressor

islet development

FTO Alters BMI in [61]

general population

JAZF1 Transcriptional repressor [62]

associated

with prostate cancer

CDC123- Cell cycle/ [8]

CAMK1D protein kinase

TSPAN8- Cell surface [36]
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LGR5 glycoprotein implicated

in gastrointestina

cancers

THADA Thyroid adenoma [63]

associates with PPARG

ADAMTS9 Secreted metalloprotease [64]

expressed in

muscle and pancreas

NOTCH2 Transmembrane receptor [47]

implicated in

pancreatic

organogenesis

KCNQ1 Pore-forming [65]

subunit of voltage-gated

K+ channel (KvLQT1)

risk allele impairs

insulin secretion

The molecular mechanisms behind insulin resistance (IR) involve the failure of insulin

to effectively bind to its receptors, which in turn impairs the activation of PI 3-kinase

(PI 3-K) through the insulin receptor substrate (IRS). Normally, the downstream

signaling of PI 3-K leads to the activation of protein kinase B (PKB), which plays a

critical role in regulating the transcription of target genes via pathways like GSK-3

and Foxo1. Additionally, PKB is essential for promoting glucose uptake by moving

GLUT-4 to the cell’s plasma membrane.

However, in insulin resistance, this activation and regulation process is disrupted.

Beyond this, the insulin signaling pathway branches downstream of the insulin re-

ceptor, with PKCς/λ acting as additional effectors. Variations in PKCθ activity,

influenced by fatty acids, may interfere with the IRS/PI 3-K pathway and hinder

GLUT-4-dependent glucose transport. To clarify, here are the key components: IR
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stands for the insulin receptor; IRS refers to the insulin receptor substrate; PDK is

phosphoinositide-dependent kinase; PI 3-K is phosphatidylinositol 3-kinase; PKB is

protein kinase B; PKC refers to protein kinase C; GSK-3 is glycogen synthase kinase-

3; GLUT-4 is glucose transporter 4; Foxo represents forkhead box protein, and FKHR

is forkhead in rhabdomyosarcoma (figure 2.6) [66].

Figure 2.6: Schematic representation of insulin resistance [66]

2.4 Measurement of Insulin Resistance

Assessing insulin resistance (IR) is a complex task. Glucose metabolism occurs rapidly

and is influenced by factors such as body composition and dietary habits. Moreover,
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the physiological contributors to IR vary depending on whether a person is in a fasted

or fed state, and whether they are at rest or have exercised. In the fasted state,

the liver plays a central role in determining IR, whereas, after eating, skeletal muscle

becomes the primary organ responsible for glucose disposal. Although IR can differ

significantly between individuals, it remains relatively stable within the same person

over time [67].

The gold standard for measuring IR involves assessing how well glucose is taken up

in response to insulin. Techniques for this include using radioactively labeled glucose

tracers, insulin suppression tests, and clamp studies. Studies II and III specifically

utilize the hyperinsulinemic-euglycemic clamp method, where hepatic gluconeogenesis

is suppressed by continuously infusing insulin. A feedback loop between a blood

glucose analyzer and a glucose infusion helps maintain a steady euglycemic state.

The M/I index, which indicates how much glucose is removed from the blood per unit

of insulin infused, is used to quantify insulin sensitivity. While clamp studies offer a

detailed reflection of physiological processes, they are labor-intensive, requiring several

hours of medical monitoring, and are thus impractical for large-scale studies due to

the associated personnel, time, and participant fitness requirements [68].

To evaluate insulin resistance, many epidemiological studies usually cite the Home-

ostasis Model Assessment of Insulin Resistance (HOMA-IR). HOMA-IR operates on

the premise of a feedback loop that occurs in fasting conditions, particularly to the

interactivity between the amount of glucose released from the liver and the amount

of insulin secreted from the pancreas. HOMA-IR is based on routine lab tests and

correlates positively but moderately with the more sophisticated but potentially more

accurate measures of physiology (the correlation coefficient is approximately from 0.6

to 0.9) and does not truly reflect the physiological status of the individuals. The

general HOMA-IR method in the population, however, still has certain predictive

power in relation to future cardiovascular disease (CVD) and diabetic complications

patterns at the population level. It has been applied in different types of studies

such as glycaemia treatment objectives in the UK Prospective Diabetes Study, coro-

nary artery disease (CAD) epidemiology, Mediterranean diet advantages, and genetic
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studies related to insulin resistance [69],[33].

The approach selected for the assessment of insulin resistance (IR) depends on the ob-

jectives of the study, the size of the sample, and the resources available. For instance,

it can be decided here that HOMA-IR is used to determine only hepatic IR whereas

the metabolic clamp is reserved for measuring peripheral IR. Whenever fasting periods

need to be evaluated, HOMA-IR is the favorite tool whilst the Matsuda index is pre-

ferred during stimulated periods. Dynamic measurements may be obtained through

minimal model whereas steady-state measurements are predominantly collected us-

ing the clamp technique. Last but not least, HOMA-IR is appropriate for aggregate

statistics about the entire population, while the clamp approach is more appropriate

for single patients [62].

2.5 Prediabetes

Prediabetes is defined as a blood glucose level higher than normal, but lower than

the diabetes threshold, Normal blood glucose levels include a fasting plasma glu-

cose (FPG) level below 100 mg/dL (5.6 mmol/L), a 2-hour oral glucose tolerance

test (OGTT) result below 140 mg/dL (7.8 mmol/L), and an A1C level below 5.7%.

Prediabetes is diagnosed when FPG ranges from 100–125 mg/dL (5.6–6.9 mmol/L),

OGTT results fall between 140–199 mg/dL (7.8–11.0 mmol/L), or A1C levels range

from 5.7%–6.4%. Diabetes is identified when FPG is 126 mg/dL (7.0 mmol/L) or

higher, OGTT results reach 200 mg/dL (11.1 mmol/L) or more, or A1C is 6.5% or

above.

Prediabetes is a high–risk state for diabetes development with a yearly 5% to 10%,

therefore prediabetes can be defined as an intermediate state between a normal health

condition and an diabetic diseased condition. Prediabetic condition generally include

presence of Impaired Fasting Glucose (1FG) or Impaired Glucose Tolerance (IGT). It

may involve both IFT and IGT in coexistence. The American Diabetic Association

(ADA) also includes the HbA1c for diagnosis of prediabetes. According to ADA
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guidelines, normal HbA1c levels are below 5.7%, while prediabetes is diagnosed when

HbA1c ranges from 5.7% to 6.4%. An HbA1c level of 6.5% or higher indicates diabetes.

This test reflects average blood glucose levels over the past two to three months and

is widely used for early detection and monitoring of diabetes risk. [70].

In addition to prediabetes, several terms have been suggested such as IFG, IGT,

Intermediate hyperglycemia, and high–risk state of developing diabetes by the World

Health Organization (WHO) and ADA. Due to confusing and interlinked definitions of

prediabetes and diabetes, the diagnosis and treatment are difficult in clinical studies

[71], [72].

The term prediabetes denotes to lessened fasting glucose and/or impaired glucose tol-

erance in subjects who are at higher risk for T2DM (type II diabetes mellitus). Though

both types of patients have an increased risk for evolving type 2 diabetes mellitus and

cardiovascular diseases, they evident distinguished metabolic irregularities [73].

Glycemic variables that are higher than that of normal values but lower than threshold

value is increased risk for onset of diabtese and this is termed as prediabetes (inter-

mediate hyperglycemia) The ratio of prediabetic to convert to diabetics is 5–10% per

year. This is same as changing back to normoglycemia. Existence of prediabetes is

increasing globally and as per specialists it is projected to be more than 470 million

people by end of 2030 [74].

2.6 Epidemiology and Diagnosis of Prediabetes

The incidence and prevalence of prediabetes has been increased in both developed and

developing countries. According to International Diabetic Federation (IDF) preva-

lence of prediabetes worldwide is 280 million in 2011 with projection of 398 million

by 2030. In United States more than 38% of adults are suffering from prediabetes. In

China, the prediabetes among adults has been reached up to 50%.

In Pakistan according to 2nd National Diabetes Survey of Pakistan 2016–2017 preva-

lence of prediabetes is 14.4%. It is observed that rapid urbanization and changes in
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diet in developing countries have raises the Body Mass Index (BMI) and prediabetes

as well. The genetic difference among different population also plays important role

in progression of prediabetes to diabetes [75].

Figure 2.7: General diagnostic thresholds for prediabetes

To identify diabetes risk group or prediabetic state individual risk factors such as his-

tory of gestational diabetes, or first–degree relative risk or combination of risk factors

such as obesity, CVD or metabolic syndrome can be used although their predictive

value is not significant enough. In addition to these risk score for incident diabetes

is in development phase to categorize individuals that are at high risk of diabetes.

These are based on both non–invasive or blood–based risk factors [76]. The diagno-

sis of prediabetes is based on specific biochemical markers, including an HbA1c level

between 5.7% and 6.4%, fasting blood glucose levels ranging from 100 to 125 mg/dL,

and postprandial blood glucose levels (measured two hours after a meal) between 140
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and 199 mg/dL. Individuals with prediabetes commonly exhibit symptoms such as

a body mass index (BMI) in the overweight to obese (Class 1) category, abdominal

obesity, altered gastric function, and an increased appetite.

Despite these established diagnostic criteria and associated symptoms, further re-

search is needed to deepen understanding of the mechanisms and long-term impacts

of prediabetes, as well as to identify effective intervention strategies (FIG. 2.7).

2.7 Prediabetes to Diabetes Progression

It has been reported that 5 to 10% of population having prediabetes progresses to

diabetes annually. Incidence of diabetes for isolated IGT ranges from 4 to 6 percent

and isolated IFG ranges from 6 to 9 percent annually as reported in various studies

conducted up to 2004. The combined rate of IFG and IGT has been reported up to

15–19 percent.

Recent studies have revealed that the incidence of progression of diabetes from pre-

diabetes is 11 percent annually reported by Diabetes Prevention Program (DPP).

US–Multi Ethnic studies reported 6 percent among IFG subjects and in Japanese

Population 9 percent IFG and 7 percent A1C incidence in reported among partici-

pants. Risk of developing diabetes is broadly close to that raised by A1C on the basis

of fasting plasma glucose and 2 hours post load glucose [75].

Among prediabetic patient’s 70% individuals will ultimately develop diabetes accord-

ing to ADA expert group. Chinese diabetes prevention trail reported that the women

with gestational diabetes have 20 to 60% chance of developing diabetes 5 to 10 years

after pregnancy.

According to 20 meta–analysis studies 13 percent mothers with gestational diabetes

developed diabetes after pregnancy compared with 1 percent mothers without gesta-

tional diabetes [77]. The variability in estimates is due to difference in parameters

used in studies to detect gestational diabetes and diabetes.
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2.8 Diabetes

A group of metabolic diseases characterized by high glucose levels i.e. hyperglycemia

is called diabetes mellitus (DM). Reasons for this condition are defects in insulin

secretion or insulin action or may be both. Long term damage of various organ,

non–functioning and total failure of vital organs i.e. kidnies, eyes, nerves and heart

are associated conditions of hyperglycemia or DM [78].

Diabtese development consists of various pathogenic pathways. These pathways can

range from autoimmune obiletration of the cells of insulin producing organ i.e. pan-

creas which give rise to insulin deficiency in the body. Due to this deficiency various

abnormalities becomes resistant to insulin action. Abnormalities arises in many bio-

chemicals such as carbohydrates, proteins and fatty acids’ metabolism due to the

deficient action of insulin on target tissues.

Insufficient action of insulin is due to inadequate secretion of insulin or no response

from tissues to produced insulin. This can happen at one or more different points in

complex hormonal action pathways. Primary cause of hyperglycemia is still unknown

as abnormality in either insulin secretion or action may coesxist in a patient or only

one type also can be a cause of diabetes mellitus [79].

Figure 2.8: Types of diabetes [82]

Dibetes mellitus can be divided into different types based on interaction between

genetic or environmental factors and is describes as per its etiology. Type 1 Diabetes
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Mellitus (T1DM), Type 2 Diabetes Mellitus (T2DM) [80] and Gestational Diabetes

Mellitus (GDM) are the most common types of diabetes [81].

There are some other types of diabtes as well such as maturity–onset diabetes of the

young (MODY) and late–onset autoimmune diabetes of the adult (LADA), but these

are very less common [82]. One of the most common type of DM is T2DM which

affects almost 95% of the whole world’s population [81].

2.9 Outcomes of Diabetes

Diabetes mellitus (DM) is a very multifaceted metabolic disorder which is character-

ized by persistent very high glucose levels in the blood [80]. as per the International

Diabetes Federation it is one of the biggest global health emergency in twenty first

century. [83]. In 2015, worldwide its occurrence was of one in eleven adults (1/11) and

the projected occurrence of the impaired glucose tolerance was one in fifteen (1/15)

adults. These ratios are expected to increase further, specifically in urban population.

Figure 2.9: Public reporting about diabetes [86, 87]

These increasing indices lead to high medical and economic burden. Almost 12% of

global health budget is being expended on diabtese worldwide. [83]. Many studies

are being conducted on various populations in this regard. A similar study directed
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recently in the Romanian population and it showed that diabetes mellitus is one of

the main healthcare glitches of their medical system. its occurrence is 11.6% and

prediabetes’ is 16.5% [84], [85].

It is a foremost international health problem, which is currently affecting almost 246

million people around the world. In the coming 30 years this number is expected

to be doubled [88], Majority of the cases are of type 2 diabetes [86], [87] (figure

2.9). In diabetes some structural changes develop in the brain: cerebral atrophy

and lacunar infarcts, blood flow changes of both hypo– and hyper perfusion [85]. In

diabetic patients, it is found that brain volumes are reduced which restricts to the

hippocampus. while it is also observed that there is an inverse association between

glycemic control and hippocampal volumes. In some studies and experiments, HbA1C

is said to be only and major predictor of hippocampal volumes [85, 89].

Type 1 diabetes is insulin–dependent and people having DM1 need unlike and more

complex management of their hyperglycemia as compared to DM2. Frequent mon-

itoring and adjustment of insulin doses, maintenance of diet, and exercise are the

prerequisites of Type 1 diabetes management and control. This type of diabetes

starts at a very early age [90]. Vascular lesions are also a complication of this disease.

These lesions may develop into small and large blood vessels.

This mechanism of forming vascular lesions is multifactorial. Activation of various

chemical pathways such as protein kinase C, accumulation of sorbitol depletion of

myoinositol is due to derangements in vessels because of high glucose influx. This

gives rise to vascular lesions [91], [92].

Microvasular complications also includes coronary heart diseases, peripheral vascular

diseases, retinopathy, nephropathy, stroke and erectile dysfunction etc (figure 2.10).

there is a continuous relationship between glycemic controls and the incidence and

progression of microvascular complications [93]. There are some unmodifiable risk fac-

tors for Type II diabetes mellitis that include age, ethnicity, family history (hereditary

risk, history of gestational diabetes, birth weight). The risk of the disease is clearly

dependent on the demographic factor. In 2005, the CDC reported that 20.6 million
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Figure 2.10: Complication due to diabetes [93]

residents of the U.S. aged 20 years and older had diabetes, which corresponded to

9.6% of this population. Further, diabetes is reported as a disease whose prevalence

increases with increasing age, noting however that out of those when aged sixty years

and above approximated 10.3 million or twenty point nine percent of people had the

condition [94]. There are many associated risk factors of diabetes and it can disturb

many systems in the body with time which is also a cause of serious complications.

These complications (figure 2.11) can be divided into micro and macro vascular, neu-

ropathy (Nervous system damage), nephropathy (renal system damage) and retinopa-

thy (eye damage)grouped into microvascular damage or complications [96]. While

cardiovascular diseases, stroke, and peripheral vascular disease lie in macrovascular

group. Peripheral vascular disease may cause bruises and injuries that do not heal and

lead to gangrene and amputation. NHANES data from 1999 to 2004 shows that occur-

rence of microvascular complications is much more higher than that of macrovascular

complications) [95]. These complications may be episodic (eg, foot ulcers or infections)

which can be treated and re occur many times. These usually begin slightly, but with

time results in prolonged damage to the organ leading to complete non–functioning of

organs. Other complications comprise dental disease, deceased resistance to various

infections i.e influenza and pneumonia, and other birth related difficulties in pregnant

women having diabetes. Type I and type II diabetes have similar complications to
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Figure 2.11: Outcomes of diabetes [95]

some extent but frequency and age of occurrence may vary accordingly.

2.10 Diagnosis and Treatment of Diabetes

Management of diabetes is to keep levels of blood sugar close to normal as possible.

This control should be achieved without causing level of blood glucose to be low. This

can be achieved typically by life style changes such as dietary modifications, weight

control, exercise and walk and regular use of appropriate medication. To actively

participate in management and treatment of disease. Knowledge of the disease is most

important thing. As associated complications and risk factors are very uncommon

and less severe in patients who have ample knowledge of the disease and manage their

blood glucose levels very well [97],[98].

As per the American College of Physicians, 7–8% level of HbA1c is the goal of treat-

ment of diabetes [99]. There are some other risk factors which can accelerate the
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negative effects of the disease. These are smoking, hypertension, obesity, metabolic

disorders, stress and lack of proper exercise. Special footwear is widely used to reduce

the risk of ulcers on diabetic feet although the evidence for its effectiveness remains

the same [100].

There are many tests to diagnose diabetes. The current diagnostic methods depend

only on blood glucose levels monitoring, and are invasive as they all require blood

samples. ADA (The American Diabetes Association)prescribe that people having no

symptoms should be tested for T2DM by one of the following tests: OGTT (oral

glucose tolerance) test, FPG (plasma glucose)test, and HbA1c (Hemoglobin A1c)

test [101], [102] these methods have been recently approved by the ADA (American

Diabetes Association) in 2010 and by WHO (World Health Organization) in 2011

(Figure 2.12).

Random blood plasma levels are also used as tests but results are not as much reliable

as other mentioned tests [103].

Figure 2.12: Diagnosis of diabetes [103]

2.11 Insulin

A very important polypeptide hormone which regulates metabolism of carbohydrates

is insulin. It is derived from a latin word “insula” which means “island”. It is because
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this hormone is produced in the islets of langerhenns of pancreas [104]. Metabolism

of fatty acids, protiens and carbohydrates is regulated by insulin and it promotes the

absorption of glucose into muscle especially skeletal muscles, liver and blood [105]. The

end product of this absorbed glucose is either glycogen which is formed by glycolysis

or triglycerides which is accomplished by lipolysis. Glucose can be converted into

both i.e. glycerides or glycogen in liver as well [105]. High levels of insulin control the

level of glucose production and secretion from liver by usually inhibiting it [106].

In many tissues protein synthesis also affected by insulin which is circulating in blood.

So, it is an anabolic hormone which promotes conversion of small molecules in the

cells into large molecules in the blood. On contrary decreased levels of insulin in blood

pose an opposite effect and promotes catabolism. Major catabolic process in reversal

of body fats. Specialized cells are sensitive to glucose levels in blood. These cells are

called Beta cells. These cells respond to high glucose levels in the blood and secrets

insulin in response and this effect is reversed when level of glucose is low in blood.

Insulin secretion is inhibited by low levels of glucose [35].

Insulin helps in transportation of blood glucose into the various cells of body where

it is metabolized into required products to produce energy. Glucose concentration

in blood is regulated in this way. When there is high levels of glucose in the blood,

insulin acts to increase reuptake of glucose by muscles cells and fat cells [104, 107].

chromosome 11p15 is the locus of INS gene and it is precusros of insulin [108]. In some

mammals, such as mice, there are two insulin genes. one of these is a homologous

of almost all mammals (Ins2), and the other is a retrospective copy that includes a

sequence of stimulants but lacks an intron (Ins1). Both rodent insulin genes are active

[109].

2.11.1 Structure and Function of Insulin

The molecule of insulin consists of 51 aminoacids arranged in two polypeptide chains

which are linked by disulphide bonds. Structure is shown in fig 2.13. these chains are

called alpha and beta chain. The alpha or A chain has 21 residues of amino acids. It



Literature Review 37

also has additional loop of disulphide bond between A 6 and A11 (Fig. 2.13), whereas

the beta chain or B chain consists of 30 residues of amino acids. Primary molecular

structure of insulin is known and studies from than 50 species of animals [110],[111].

Although during its working it acts as a single molecule i.e. monomer, while during its

storage and biosynthesis it assembles itself into a dimer. It also sometimes assembles

itself in hexamers in the presence of zinc. X–ray analysis of insulin insulin molecule

has revealed all the three structures i.e. monomeric, dimeric and hexameric [112].

Insulin’s crystal structure has been studied well and well documented. It describes the

activity and binding affinity of insulin to receptors. It has been studied extensively and

further elaborations and research are welcomed for insulin structure and structural

activity relationship [113] According to a study and review, downstream signaling of

insulin receptors interacts with other signaling pathways of growth factors i.e. IGFI

and IGF2 [114]. This approach is very helpful in identifying and demonstrating the

importance of insulin receptor ligand agonists. Because this can reveal the potential

mimetic of insulins as therapeutic agents for the treatment of diabetes [113].

Figure 2.13: Human insulin’s primary structure. The black residues are those
amino acids which vary among different Animals [110, 111].

The monomeric 3D structure of insulin was first discovered through x–ray crystal-

lography technique in 1926 [115]. As discussed in earlier section Insulin in humans
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consists of 51 amino acids and its molecular weight is 5808Da. The biologically ac-

tive form of insulin which is circulating one has two monomeric chains. These chains

are alpha and beta and consists of twenty–one and thirty amino acids respectively.

These are linked by strong disulphide bonds at position A7–B7 and A20–B19. At

very low concentrations i.e. micromolecular concentrations it gets arranged in a very

beautiful symmetric structure with the help of zinc. This structure is hexameric [113].

In insulin synthesis and activity, the alpha cells get cues from neighboring bets cells

and secretes glucagon hormone in the blood in exactly opposite fashion [35] This

secretion is regulated as per glucose concentration in the blood i.e if it is low, the

secretion will be high and vice versa. Glucagon acts to increase the concentration or

level of glucose by stimulating biochemical processed in the liver. These processed

may be gluconeogenesis or glycogenolysis [105], [35]. Primary mechanism of glucose

homeostasis is the secretion of glucagon and insulin in the blood as a result of blood

glucose concentrations [35].

2.11.2 Biosynthesis of Insulin

The insulin contains 51 amino acids and have a molecular weight of 5.8kDa. However,

the gene responsible for insulin encodes a precursor molecule known as preproinsulin

which is mainly a 110 amino acid precursor. Similar to other secretary proteins,

this insulin precursor has a hydrophic terminal which is signal peptide of N–terminal.

This hydrophobic peptide interacts with signal recognition particles known as cytosolic

ribonucleoproteins (SRP) )[116]. Insulin is produced by beta cells within pancreas in

mammals. Pancreas is primarily and exocrine gland and almost one to three million

pancreatic cells (islets) form this endocrine part. This endocrine part is only 2% of

the pancreatic mass. While within pancreas these beta cells accounts 65 to 80% of all

cells [116].

Insulin is produced from beta cells in pancreas and has a very major role in regulating

metabolism of various biochemicals i.e., carbohydrates and fats. It is synthesized as a

polypeptide which is known as preproinsulin. This insulin precursor harbors a signal
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peptide which consists of 24 residues. This directs the budding of polypeptide from

endoplasmic reticulum (ER) in the cell. Further this signal peptide is broken down

into polypeptides which is translocated to the ER. There it forms proinsulin precursor.

The proinsulin is further packed and folded in the proper structure and confirmation

by disulphide bonds. This insulin is then transported across golgi apparatus network.

In golgi complex this molecule is converted into active insulin molecule by action

of endopeptidases prohormone convertor which is PC1, PC2 and exprotease carboxy

peptidases. for the formation of C peptide, this molecule is broken down at two

different positions. So, a result mature insulin is formed which contains to chains

i.e. A chain and B chain. These chains are connected to each other by disuplphide

linkages and A chain also has an interchain bond as well [117],[118].

As discussed in earlier section, initially insulin is formed as a precursor in beta cells of

pancreas islets. Short time after its synthesis and assembly in endoplasmic reticulums,

this precursor of insulin in transported to complex glogi networsk within the cell.

Granules are formed in trans glogi network (TGN) and these are immature in nature.

This process of transportation may take upto thirty minutes. The two chain insulin

molecules further undergo maturation to active insulin molecule by the action of

endopeptidases in the cell. These endopeptidases cut the C peptide from insulin

molecule at a position of 64 and 65 having lysine and arginine respectively. The

second cite of cleavage is between 31 and 32 amino acid [120]. This mature insulin

molecule is packed within mature granules which are waiting for further metabolic

signals and nerve stimulation of vegal nerves for exocytosis from the cell in the blood

circulation. Many signaling mechanisms involved in the regulation of insulin secretion

from the beta cells of pancreas.

Phosphorylation of glucose through glucokinases is a mechanism involved after trans-

portation through transporters (Glut 2). To yield ATP (adenosine triphosphate) Glu-

cose–6 phosphate undergoes a rate limiting step and stepwise metabolism followed by

oxidative phosphorylation.

Increased intracellular ATP concentration lowers the output of K1 and ultimately

leads to beta cells depolarization. Voltage sensitive Ca2+ 1 channels are opened and
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Figure 2.14: Mechanisum of synthesis of insulin [119]

this Ca2+ is transported inside the cell. When levels of Ca2+ are increased inside

cell, active kinases gets stimulated and regulates insulin exocytosis and secretion into

blood circulation [119].

2.11.3 Insulin Response or Insulin Action

Different types of tissues respond in a different way to insulin. Though tissue sensi-

tivity to insulin associates with the levels of insulin receptors which are articulated on

the plasma membrane. Now it has been clear that different components’ assembly of

insulin chemical signaling pathway is responsible for conferring specificity of insulin
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on target cells. So, transport of insulin dependent glucose takes place only in adipose

tissues and skeletal muscles. This is because these cells have insulin dependent trans-

porter named as Glut4. Same as inhibition of glucose formation from glycogen with

the help of insulin is specific to kidneys and liver.

While on the other hand, effect on ion transport. Synthesis of DNA and synthesis

of proteins appears to be universal [119]. The Insulin employs multiple effects in the

cell. Action of insulin is mediated by binding of molecule to its receptors. As a result

phosphorylation of the receptors and other substrates by tyrosine kinase as shown in

fig 2.14

Figure 2.15: Action of insulin in cells. Multiple effects of insulin and mediation
by receptor binding and tyrosine kinase [119].

2.12 Pathophysiology of Prediabetes

Blood glucose in healthy people is highly regulated. Between 3.9 and 5.6 mmol/L,

fasting glucose is maintained and post–meal increase rarely exceed 3 mmol/L The

homeostasis of fasting and post–load glucose becomes abnormal during the develop-

ment of type 2 diabetes. As evidenced by repeated measurements of glucose levels,
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insulin sensitivity, and insulin secretion studies, the development of NGT diabetes is

an ongoing process [73].

Researchers has confirmed that decrease in insulin sensitivity and insulin secretion

from beta cells precedes prediabetes to diabetes as increased glucose levels were ob-

served in people recruited in study of British Whitehall II, 13 years before the diagnosis

of diabetes. This pattern of glycemic changes has also been confirmed by other scien-

tists. This suggest that IR begins years before the development of diabetes and that

is the stage of prediabetes where decreased beta–cell functioning also exists [12].

Fasting plasma glucose levels are influenced by endogenous glucose production (EGP),

which is primarily regulated by the liver. The EGP and fasting insulin product are

used as markers of hepatic insulin resistance and show a strong correlation with fasting

glucose levels. During the absorption of a glucose-containing meal, changes in glucose

levels are influenced by intestinal glucose absorption, suppression of EGP, and total

body glucose uptake. In individuals with normal glucose tolerance (NGT), EGP is

effectively suppressed after glucose ingestion, but this suppression is less pronounced

in those with prediabetes and diabetes. In type 2 diabetes, total body glucose dis-

posal is reduced due to insulin resistance in muscle tissue. If insulin secretion can

adequately compensate for insulin resistance, changes in glucose levels may not be

noticeable. This suggests that β-cell dysfunction is present during the prediabetic

phase by definition. However, β-cell activity cannot be fully assessed without consid-

ering the underlying insulin resistance, and cannot be defined solely based on insulin

secretion alone [4].

As insulin secretion rises, it can be noted that the level of glucose in the pancreatic

β-cell’s response depends upon insulin sensitivity of the body. Such dependencies

are hyperbolic in nature. The disposition index is a good way of assessing the levels

of insulin secretion as a function of insulin resistance. It is usually high in normal

individuals and low in persons suffering prediabetes and diabetes. Several medical

practitioners have documented abnormal insulin secretion amongst prediabetic peo-

ple and mostly attributed this to other factors affecting around the β-cells. Studies

suggest that there is a fifty percent decrease in β-cell volume among persons with
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glucose intolerance. Insulin resistance (IR) was present in both impaired fasting glu-

cose (IFG) and impaired glucose tolerance (IGT) conditions, but the target location

of IR was distinct: high hepatic IR was prevalent in IFG while skeletal muscle IR was

nearly spared. On the other hand, in subjects with IGT, there is a marked resistance

to insulin in the muscle with only minimal improvement in hepatic insulin action.

There is an orderly sequential decrease in the total body glucose disposal from nor-

mal glucose tolerance (NGT) as type 2 diabetes disorder progresses through any form

of Impaired Fatsu Glucose (IFG) to an impaired glucose tolerance(IGT). Impairment

of beta (β)-cell responses is present in both impaired fasting glucose and impaired

glucose tolerance conditions [12].

2.13 Diagnosis of Prediabetes

Diagnosis of diabetes involve blood glucose level equal to or above specific value.

According to ADA there are three methods for the diagnosis of diabetes and some

methods can be used for detection of prediabetes in patients.

These methods are Fasting Plasma Glucose Test (FPG), Oral Glucose Tolerance Test

(OGTT) and Glycated hemoglobin or hemoglobin bounded to glucose (A1C)

The threshold values of each test are summarized in table 2.2 as diagnostic criteria of

prediabetes and diabetes

Table 2.2: Diagnostic criteria for prediabetes and diabetes [11]

FPG PG in OGTT A1C

Normal
<100mg/dL or

5.5mmol/L

<140mg/dL or

7.8mmol/L

<5.7% or

39mmol/mol

Prediabetes
≥ 100mg/dL or

5.5mmol/L

≥ 140mg/dL or

7.8 mmol/L

≥ 5.7% or

39mmol/mol

Diabetes
≥126mg/dL or

7.8 mmol/L

≥200mg/dL or

11.1 mmol/L

≥6.5% or

48mmol/mol
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2.14 Limitations of Diagnostic test for Prediabetes

There are several pros and cons in above diagnostic methods. For example, FPG

greater than or equal to 140 mg/dL is specific but insensitive test for diagnosis of

type 2 diabetes. Alost every subject with FPG ≥ 140mg/dL could have plasma

glucose in OGTT ≥200mg/dL but a many subjects depending on population with

plasma glucose in OGTT ≥200mg/dL may not have FPG≥ 140mg/dL [73]. A1C test

detects the glycation of proteins and indicates chronic hyperglycemia but A1C test

does not detect high blood glucose levels directly.

Measuring plasma glucose in OGTT is more accurate than measuring fasting plasma

glucose and A1C in diagnosis of type 2 diabetes. However, plasma glucose in OGTT

≥200mg/dL also indicates impaired glucose tolerance. It is therefore recommended

that more than one test should be used in diagnosis of diabetes [11].

Fasting Plasma Glucose (FPG) level and 2–hour post–glucose load alone did not

always detect or predict IGT and IFG, both tests are useful in identifying the altered

glycemic conditions. Limitation of A1c test include some specific hemoglobinopathies

such as fetal hemoglobin falsely increases and sickle cell hemoglobin (hemoglobin C)

lowers A1c levels. Therefore there is possibility of false–negative diagnosis in patients

with such conditions [4].

A poor correlation is reported in literature between A1c, IFG and IGT. Due to in-

ability of these blood glucose cut points to capture pathology related to diabetes

and probability of developing diabetes in near future, the usefulness of diagnosis of

diabetes or prediabetes on the basis of IFG and IGT have been challenged [6].

All three diagnostic tests have their pros and cons. Typically fasting plasma glucose

level greater than or equal to 140mg/dL is a very specific but insensitive test for

prediction of diabetes mellitus [121]. Almost all individuals with FPG ≥ 140 mg/dL

will have plasma glucose in oral tolerance test equal to or greater than 200mg/dL .

But a substantial portion of individuals (depending on the population) with PG in

OGTT ≥ 200 mg/dL will not have an FPG ≥ 140 mg/dL. Glycation of proteins is
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measured by HbA1C test and it indicates chronic hyperglycemia, but this test does

not directly prove increased blood glucose levels [122].

As per WHO, if people have impaired fasting glucose or impaired glucose tolerance,

they are increased risk of having diabetes. Impaired fasting glucose (IFG) is defined as

a fasting plasma glucose levels of ≥6·1 and <7·0 mmol/L, but without reduced glucose

tolerance; and impaired glucose tolerance is defined as an fasting plasma glucose

concentration of <7·0 mmol/L and a 2 hour post load plasma glucose concentration

of ≥7·8 and ≤11·1 mmol/L.

This definition is subject to measuring during a 75 g oral glucose tolerance test

(OGTT). Same threshold for impaired glucose tolerance but a lower cutoff for im-

paired fasting glucose is applied by the American Diabetes Association (ADA). ADA

has presented glycated hemoglobin A1c (HbA1c) 5·7–6·4% as a new group for higher

diabetes risk [123].

Any pre–diabetes definition limited to IGT and IFG does not include other risk fac-

tors for diabetes, such as family history of type 2 diabetes or metabolism. Another

reproach of the term pre–diabetes is that many individuals with IFG or IGT will not

develop type 2 diabetes. That is why, another name is preferred.

So far the ”intermediate hyperglycemia” of the WHO interim group has not been

widely accepted [124]. Another name for this is “border line diabetes”, but this term

is not presently suggested and has no prescribed definition [96].

In 2012 CDC (Centers for Disease Control) had estimated that 86 million people or

1/3 adults had diabetes in the US. However almost 90% of individuals did not know

that they are diabetic.

In 2015, the International Diabetes Federation projected that the worldwide occur-

rence of impaired glucose tolerance (IGT) in adults was 318 million and anticipated

to reach 482 million by 2040[125]. The annual development rate to diabetes is 5–10%

[6]. Older individuals, having severe insulin resistance (IR), low insulin secretion, and

other associated diabetes risk factors are more likely to progress [126].
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2.15 Omics

Omics technologies include genomics, proteomics, transcriptomics, and metabolomics,

each providing a comprehensive view of molecular interactions within a biological

system. These high-throughput techniques enable researchers to analyze complex

biological networks, uncover disease mechanisms, and identify potential therapeutic

targets. The integration of multi-omics data further enhances precision medicine and

personalized treatment strategies. Furthermore, advancements in bioinformatics and

computational biology have significantly improved the analysis and interpretation

of omics data. These approaches are now widely used in various fields, including

drug discovery, agriculture, and environmental sciences, to address complex biological

challenges[69].

2.15.1 Genomics

The study of the complete set of DNA, including all of the genes (“the genome”), of

an organism is known as genomics. Genome–scale data acquisition has been made far

more convenient with the emergence of Next–Generation Sequencing, abbreviated as

NGS. This has greatly improved the ability for the analysis of whole genomes, while

decreasing the gap that currently exists between phenotype and genotype [69].

Genome–wide association studies, commonly referred to as GWAS, is a research ap-

proach usually applied for the identification of genomic variants that are associated

statistically with a specific trait or the risk of the development of a disease. Advance-

ments in genomics has turned this research approach into the gold standard method

for the identification of complex regions that are associated with complex traits of

interest [33]. The Human Genome Project (HGP) has greatly facilitated genomics.

The creation of high– resolution genetic and physical maps of every single human

chromosome to enhance the ability of localization and identification of genes related

to inherited disorders and/or other traits was among the major goals of the HGP.

Genetic maps are of high significance, especially for the development of physical maps

that depict the order on the chromosome of DNA sequences [34].
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2.15.1.1 High–throughput Techniques in Genomics

A variety of techniques and tools exist under genomics that have important applica-

tions. In the genomes of individuals of same species, there are slight variations known

as single nucleotide polymorphisms, referred to as SNPs that contribute to diversity

among them and may also contribute to disease in some cases.

Certain Probe–based chips have been developed consisting of a large number of SNP

markers that are spread across the genome. These chips can be employed for the

uncovering of associations between genes and the traits of interest. Specie–specific

arrays that encompass a vast number of SNPs are available, ensuring that there will

be a close link of at least one marker with a quantitative trait loci [35]. This has

facilitated GWAS even more. For post–GWAS analysis, gene–based software exist.

Many different SNP array data management tools have been developed, with PLINK

being the standard [36]. Genomic selection is a form of marker–assisted selection in

which genetic markers that cover the whole genome are used for the estimation of

animal breeding values. It is applicable in animal breeding done for a trait or traits

of interest.

2.15.2 Proteomics

The characterization and quantification of all sets of proteins in a cell, organ, or organ-

ism at a specific time is known as a proteome. Proteomics is used for the quantification

of proteins in multiple sample types. It uses both shotgun and targeted approaches

[37]. Bottom–up proteomics indicates protein characterization by analysis of pep-

tides released from the protein by proteolysis, which, when performed on a protein

mixture is known as shotgun proteomics [38]. In top–down proteomics, large protein

fragments or protein ions are analysed by mass spectrometry. This is also known as

targeted approach [40]. Proteomics facilitates the identification of post–translational

modifications and their localization, novel biomarker discovery, as well as study of pro-

tein–protein interactions. Proteomics is being adopted by more and more researchers

following the establishment of powerful techniques and tools for the identification and
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quantification of protein species from complex biological samples [127].

High–throughput Techniques in Proteomics

Mass spectrometry (MS) is the core of proteomics. In case a pre–separation of protein

mixtures is needed prior to MS–analysis, one–dimensional or two–dimensional poly-

acrylamide gel electrophoresis is commonly employed [128]. For the enhancement of

automation and creation of a streamed pipeline analysis, liquid chromatography of

different types is used to either substitute or accompany gel electrophoresis. Absolute

protein quantification is possible through the use of Absolute Quantification of Pro-

teins (AQUA), Artificial Proteins Comprised of Concatenated Peptides (QConCat),

Protein Standards for Absolute Quantification (PSAQ) [41]. System–wide screening

methods consisting of quantitative steps that utilize label–based techniques such as

Stable Isotope Labelling with Amino Acids in Cell Culture (SILAC), Isotope–Coded

Affinity Tagging, O Stable Isotope Labelling, Tandem Mass Tags (TMTs), and Iso-

baric Tagging for Relative and Absolute Quantitation (iTRAQ) are now being imple-

mented as well [42].

2.15.3 Metabolomics

Metabolomics deals with metabolites, which are the end products biochemical pro-

cesses (metabolism). Metabolites can link genome and proteome to a phenotype,

which provides a key to discover the genetic basis of metabolic variation. Metabolomics

can utilize a variety of sample types such as cells and cell lines, tissues, biological flu-

ids etc. The metabolome itself consists of the global profiling of all the metabolites in

any biological sample [37]. Metabolomics can be used for the detection of molecules

such as peptides, amino acids, carbohydrates, nucleic acid, vitamins, alkaloids, organic

acids, polyphenols, as well as inorganic species.

High–throughput Techniques in Metabolomics

The small molecule information can be captured in solid, liquid, or gas phase by

metabolomics depending on the application and instrumentation. Typically, high
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resolution analysis combined with statistical tools are utilized by metabolomics for

the derivation of an integrated image of the metabolome. The statistical tools that

are used include Principal Component Analysis (PCA), and Partial Least Squares

(PLS). Metabolomics commonly utilizes Nuclear Magnetic Resonance (NMR), which

can be used for the identification and the simultaneous quantification of a vast range

of organic compounds in the micro–molar range. Even mass spectrometry is gaining

increased applicability in high through–put metabolomics, usually accompanied by

techniques such as electrophoretic techniques or chromatography. Mass spectrometry

is gaining preference in metabolomics due to its covering of a wide–range of metabo-

lites as well as its sensitivity [43].

2.16 Systematic Literature Review

Literature reviews contribute significantly to the advancements in science. Even

though they are not exactly similar to original research studies, their significance

lies in the fact that literature reviews can sum up the existing knowledge and give an

idea of how to proceed, as well as the direction to proceed into. Moreover, they can

identify potential gaps in the current knowledge, which shows what research could

be beneficial to overcome those gaps. There are multiple reasons and advantages of

literature reviews. Among the major ones is to assess and sum up thecurrent knowl-

edge and research done. Besides that, important benefit of literature reviews is to

identify what is currently unknown. Not only does that highlight the gaps in the

current information, it also suggests topics for the future researches. Advancement

of theories is also an important reason for literature reviews. Literature reviews can

also provide regarding the research findings [44].

2.16.1 Methods and Techniques for Literature Review

A variety of methods are available for carrying out a literature review. The most

common method is the Traditional Narrative Review. This method involves verbal
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descriptions of research findings that are presented with conclusions as well. Box

Score review is a form of review in which there is some quantification involved. It can

be used to show the frequency of a particular proposition or for the revelation of an

interpretable pattern [44].

2.17 Meta–Analysis

Meta–analysis is a statistical technique that is used for combining the findings from

different studies. Meta–analysis usually combines the data from two or more studies.

These studies are often addressing the same problem or are about the same topic.

The proper coverage of relevant studies and explore the main findings using sensitivity

analysis [45].

2.17.1 Methods and Techniques for Meta–Analysis

The methods that are often used for meta–analysis include Mantel–Haenszel methods,

that are fixed effect meta–analysis methods that use a different weighing scheme,

which depends on the effect measure being employed, for instance, risk ratio, odd ratio,

risk difference [46]. These methods work better in cases with few events. Another

method is Peto’s Odds Ratio Method but it can only be used to combine odd ratios,

using an inverse–variance approach but an approximate method for estimation of the

log odds ratio [47].

2.18 Prediabetic Insulin Resistance

Both insulin resistance and b–cell dysfunction function have been observed during pre-

diabetes even during early stages and are needed for the majority of prediabetes hy-

perglycemia. The earliest abnormality appears to be IR (insulin resistance), although

in studies which investigate the course of pre–diabetes pathogenicity a substantial he-
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terogeneity between individuals and populations exists.

This is no surprise; studies of genome–wide sequencing studies (GWAS) have shown

that at least 60 genes confer a risk of type 2 diabetes growth, most of them linked

to b–cell biology [124]. Researchers have reported signs of IR and early intermittent

hyperglycemia approximately 13 years earlier the diagnosis of diabetes. Blood glucose

was close to normal possibly due to compensatory mechanisms to improve pancreatic

beta cell insulin development, before they were defeated 2–6 years prior to diagnosis

at a time when there was more sustained hyperglycemia that also had to do with

declining IR [125].

A few years later, with now clear hyperglycemia, a steeper decrease in the pancre-

atic b–cell function appeared to lead to a clinical diagnosis of diabetes. But what

causes the plasma glucose levels to increase in precisely both fasting and fed con-

dition? The pathophysiology of IFG and IGT was investigated through euglycemic

hyperinsulinemia clamping studies. Their data indicate that the isolated IFG (normal

post meal blood glucose [126], but not any evidence of hepatic IR, was associated with

increased glucose (i.e., glycogenolysis was normally suppressed). Those with a com-

bined IFG/IGT, however, had combined increased gluconeogenesis, insulin–reduced

glycogenolysis failure, and extrahepatic IR decreased glucose disposal [129].

2.19 Biomarkers

Biological molecules which could help in the indication of some normal or abnormal

body processes or some specific disease are called biomarkers. These are present in

body fluids or more specifically biological fluids i.e., saliva, serum and urine etc. and

mainly are genes, proteins and some metabolites of biochemicals [130]. Moreover,

these biological molecules are also very important for diagnosis and early detection of

abnormalities in the body which lead to disease [130]. Extensive research work has

been done on identification of many biomarkers but there are some limitations due to

which many researches have not extended beyond clinical trials. This is because the

specificity, sensitivity and reproductivity are inadequate. So, before clinical trials it is
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of great importance that biomarkers should be properly validated. Biomarkers used

in clinical settings are of three types which are diagnostic biomarkers, prognostics and

threputic biomarkers.

Diagnostic are those which are used in disease identification while prognostic biomark-

ers are those which are used to predict outcomes of disease [131]. Some common

clinically approved biomarkers are hCG (human chorionic gonadotropin) and PSA

(prostate specific antigen). hCG is important biomarker of pregnancy and found in

urine while PSA helps in the diagnosis of prostate cancer [132]. Despite the numerous

biomarker advances, theragnostic biomarkers are still very limited in number [133].

Research has suggested that these biomarkers can be helpful for accurate dosage,

prediction of responses for a particular treatment, maximizing efficacy of drugs and

minimizing toxicity of drugs for relevant individuals [88]. A good biomarker should

be reproducible, sensitive, specific and must be standardized [130]. In recent years

several approaches to identifying new biomarkers have been employed[133]. For the

discovery and validation of new biomarkers, computational biology has played very

important instrumental role in the detection [88].

2.19.1 Applications of Biomarkers

The application of biomarkers can be as under;

� Disease screening, Disease characterization (e.g., trinucleotide repeats)[134].

� To rule out, diagnose, staging, and monitor illnesses

� Prognosis information

� Individualize the therapeutic interferences by response monitoring responses to

therapies and predicting consequences in response to them

� Prediction of adverse drug reactions

� To predict and guide drug toxicity treatment (e.g., serum concentration mea-

surements following medication overdose)
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� Cell type identification (e.g., histological markers). Use of biomarkers for op-

timization and individualization of doses of many drugs is not very welcoming

approach. For example effects of warfarin on the coagulation process is a com-

plex model and includes two genetic biomarkers that produce very little ther-

apeutic effect [135]. These are also used at numerous stages of drug discovery

and development.

� It is also used in screening compounds as a target in drug discovery i.e., cyclooxy-

genase activity measurement for the identification of potential anti-inflammatory

agents.

� Biomarkers are also used as endpoints in pharmacodynamic studies, e.g., for the

prevention of heart diseases, serum cholesterol is used as a marker for the action

of drugs, and in pharmacokinetic and pharmacodynamics studies [136].

2.20 Biomarkers Associated with Diabetes

Diabetes and prediabetes are metabolic disorders characterized by impaired glucose

regulation, and the identification of biomarkers plays a crucial role in their early

detection and management. Several biomarkers have been associated with the patho-

physiology of these conditions Table 2.3.

Particularly those linked to insulin resistance, inflammation, and beta-cell dysfunc-

tion. Key biomarkers include fasting plasma glucose (FPG) and hemoglobin A1c

(HbA1c), which reflect long-term glucose control. Additionally, insulin levels, C-

peptide, and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) are

commonly used to assess insulin sensitivity. Inflammatory markers such as C-reactive

protein (CRP) and interleukin-6 (IL-6) have been implicated in the development of

both prediabetes and type 2 diabetes, indicating an underlying inflammatory process.

Furthermore, elevated levels of adipokines like leptin and reduced adiponectin are fre-

quently observed in individuals with metabolic disturbances, further contributing to

insulin resistance and glucose dysregulation.
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Table 2.3: The available list of biomarkers used in diagnosis and prognosis of
diabetes.

Bio-

markers

Mechanism of

Action

Association with

Deglycation
Ref.

Traditional Biomarkers

Hba1c There is β subunit Levels of Hba1c [137]

portion of hemo- is a reflection of [138]

globin and attachment continuing glycemia

of glucose to its amino-

terminal part produces

Hba1c

FA It is a keto amine Increased level [139]

(Fruct produced by of glucose conc.

osamine) glycosylation directly affects FA

of all proteins of level

serum (primarily

albumin)

Glycated It is produced by Serum concentration [140]

albumin Albumin glycosy- of GA is linked with [141]

lation is calculated diabetes and

by the GA fraction prediabetes condition

to total albumin

1,5 AG It is a alimentary There are low plasma [142]

monosaccharide, levels of 1,5 AG in

and plasma absor- persons with compr-

ptions of it is omised glycemic

oppositely linked controls in comparison

with plasma glucose with normoglycemic.

level.

OGTT It is oral glucose Elevated levels [143]
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tolerance and a are linked with

direct measure of prediabetes and

fasting and 2-hour diabetes.

post plasma glucose

levels

Inflammatory Biomarkers

CRP It is derived from Directly linked [144]

a primary marker to type II diabetes. [145]

of biosynthesis

which is response

of acute phase

(il-6-dependent

hepatic marker)

IL-6 It is an immuno It is related with [146]

regulator and involved type II diabetes [147]

in sustaining glucose and IR. [145]

balance and metabolism

by its action on

β cells of pancreas,

adipocytes, hepatocytes,

and skeletal muscles.

Wbcs WBCs number is WBCs count is a [148]

a immunity and predictive of [149]

inflammatory marker impaired insulin [150]

and it’s an indicator action, T2DM,

of inflammation and vascular heart

vascular (micro and diseases.

macro) complications

in diabetes.

Fibrinogen Fibrinogen is respons- It is associated with: [151]
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ible for blood prediabetes and [152]

thickness, platelet feebly with diabetes.

accumulation, It is also related to

and fibrin for clotting increased 1-hour

post levels of glucose

and atherosclerosis

PAI-I It is indicator of PAI-I is an [152]

lowered fibrinolysis independent [153]

and its lowered predicator of

activity leads to diabetes.

substandard coagulation

IL-I8 IL-18 levels rise Directly associated [154]

during hyperglycemia. with high risk of

type II DM. It is

also an indicator of

progression from

prediabetic state

to diabete

IL-IRA an anti-inflammatory level rises in diabetes [155]

biomarker rises when [147]

pathway of IL-1 prediabetic state,

is induced by glucose decreased sensitivity

and free fatts via of insulin

over eating.

Novel Biomarkers

Adiponectin High insulin resistance It comes from [156]

and obesity are adipose tissues,

associated with lesser anti-inflammatory,

levels of adiponectin. anti-therogenic and

insulin sensitizing
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effects

FetA Higher risk type II DM Glycoprotein of liver, [157]

with some other encourage lipid-

complications. induced IR signaling [158]

pathwayof TLR4

production of various

inflammatory

cytokines

A-HB Linked with IR, Organic derivative, [159]

related with decrease produced through [160]

in glycine and serine. the combination [159]

upstream of α-KB of α-KB. α-KB is

a product of amino

acid catabolism

L-GPC L-GPC is a negative Metabolite formed [159]

indicator of type II DM in the liver by the [161]

progression. enzyme phospholipase [162]

A2 and by acyltrans-

ferase of lecithin

cholesterol in

the circulation.

Lp(a) Reverse relationship It is a lipoprotein [163]

of Lp(a) with that lead to

occurrence of atherogenesis.

prediabetic state

and T2DM.

HDL HDL-C encourages It is a major [164]

insulin secretion lipoprotein.

and its low conc.

may lead to
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development

from prediabetes

to diabetes

Ceramide It is positively Lipid molecule

[165]linked with

prediabetes and

type II DM.

Ferritin Radical formation, Ferritin is an intra [166]

and β-cell oxidation cellular protein [167]

transferrin Damage to DNA which stores and

hepatic dysfunction, control release of iron.

and β-cell apoptosis

MBL- MASP1 is linked Enzymes for activation [145]

associated with prediabetes, of complement system [168]

serine diabetes, CVD (lectin pathway)

proteases and innate immune

responses.

THBS1 THBS1 is linked THBS1 initiates [168]

with prediabetes, formation of

diabetes, CVD multiprotein

multiplexes that

modulate cellular

phenotypes.

GPLD1 GPLD1 linked with Role in the pathway [168]

with prediabetes, of glycosylphos-

diabetes, CVD phatidylinositol

Acylcarnitine Increased levels Acyl-carnitines interact [169]

of acyl-carnitine with important [170]

inflammatory marker [171]

which is NF-Kβ,
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and promote IR.

miRNA Mir-192 and 193b gene expression [172]

found to linked with promotes insulin [173]

IFG, IGT, triglycerides synthesis. [174]

Genetic and epigenetic factors further influence insulin resistance, highlighting the

complexity of metabolic disease development. Integrating these biomarkers enhances

early detection and targeted intervention strategies.

2.21 Identification of Biomarkers

Good understanding with the pathophysiology of the disease is a basic and first step

in identification of biomarkers. Factors associated with it also of basic importance.

Therefore, a better understanding of any disease makes it workable and easy for identi-

fication of the various factors which may be associated with it. Biomarkers associated

with mechanism and etiology are best suited for prediction and proper diagnosis of the

heart diseases in heart failure. This is also helpful for studying the development and

progression of the disease. The second step in biomarker identification is mechanism

understanding, whereby intervention can affect the pathophysiology of the disease

[136].

The use of biomarkers is very useful for the drug development process as well. It

is used in studying different aspects of illness and monitoring the fruitful effects of

applied interventions. However, as the events linking pathogenesis to outcomes are

usually complex, the easier it is to recognize biomarkers that can diagnose a disease,

track the reaction to a medication, and test disease progression are the more aware of

the underlying abnormalities of drug conditions and mechanics. For undeveloped and

clinical pharmacologists as well as others involved in the identification of biomarkers

accumulation of this information is a challenge [136].
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2.22 Insilco Identification of Biomarkers

These tools (table 2.4) are reported in the literature for the following functions and

after that, we select the best tools for the specific function

Table 2.4: Available tools for different analysis

S.No Tool Name Function Reference

1 Go term finder Gene annotation [125]-[129]

David

Go term mapper

2 Blast Sequence alignment [130]-[132]

FASTA

MUSCLE

3 Swiss model Homology modeling [118],[135]

Fold X

I TASSER

Hpred

4 Saves Structure validation [136],[175]

Verify 3D

5 CATH Active pocket [137],[138]

Pock drug

p2rank

6 Autodock vina Modeling and simulation [139],[140],[137]

Arguslab

ClusPro

7 PLIP Protein interactions [141]-[143]

Struct2net

Prise

8 Webgivi Enrichment analysis [131],[126],[144]

David
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TopFun

2.23 Risk factors of Prediabetes

Several factors increase the risk of developing prediabetes (figure 2.16). Being over-

weight or obese is a significant risk factor, particularly when excess fat is stored around

the abdomen, as it contributes to insulin resistance. Age is also a factor, with indi-

viduals over 45 being more susceptible. A family history of type 2 diabetes increases

the likelihood of developing prediabetes, as does leading a sedentary lifestyle. Certain

ethnic groups, including African Americans, Hispanics, Native Americans, and Asian

Americans, have a higher predisposition to this condition.

Figure 2.16: Risk factors of prediabetes [63]

Women who experienced gestational diabetes during pregnancy face an elevated risk

of prediabetes later in life, and those with polycystic ovary syndrome (PCOS) are sim-

ilarly at increased risk due to hormonal imbalances and associated weight issues. High

blood pressure and abnormal cholesterol levels, particularly low HDL cholesterol and

high triglycerides, are linked to a greater risk of insulin resistance. Additionally, sleep

disorders such as sleep apnea, smoking, and diets high in red and processed meats,
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sugary drinks, and highly processed foods further contribute to the development of

prediabetes. Addressing these risk factors through lifestyle changes like weight loss,

increased physical activity, and healthier eating can significantly reduce the risk of

progressing from prediabetes to type 2 diabetes.

2.24 Genetic and Molecular Risk Factors for Pre-

diabetes

Prediabetes is a symptomatic stage that progresses to type 2 diabetes. At this stage,

IR is compensated by hyperinsulinemia. Prediabetes is a stage at which active inter-

vention programs such as healthy diet and exercise can delay or stope the progression

of the disease to type 2 diabetes [176]. The discovery of early biochemical changes that

are associated with this stage of disease is important for individuals who are at high

risk of developing type 2 diabetes so that they can get benefit from above intervention

programs. These molecular markers may also be used in monitoring the progression

of disease as well as understanding the pathogenesis of disease. Considering these

facts molecular markers associated with IR, a hallmark of prediabetes, suggests a

solid reason for the identification of disease molecular biomarkers of prediabetes.

Several genes and associated SNPs (table 2.5) have been reported in literature that

are linked with prediabetes [72].

Table 2.5: Genetic biomarkers associated with prediabetes

S.No. Genes SNPs Reference

1 ADIPOQ
rs1501299

[176]
rs266729

2 TCF7L2 rs7903146 [177], [178]

3 IGF2BP2 rs4402960 [177]

4 CDKAL1 rs7754840 [177]

5 HHEX rs1111875 [177]



Literature Review 63

6 HNF1A rs1169288 [177]

7
TNF- α (-238G/A,

-308G/A)

rs361525
[179]

rs1800629

8 UCP2 rs659366 [180]

9 MTMR9 rs2293855 [181]

10 TRPM6 rs8042919 [182]

11 CLDN19 rs719676 [182]

12 SLC41A2 rs2463201 [182]

13 CNNM2 rs3740393 [182]

14 FXYD2 rs948100 [182]

15 GCK rs2908289 [183]

16 YKT6 - [183]

A biomarker is a naturally occurring molecule such as gene, protein, SNP, miRNA,

metabolite or characteristic through which a particular pathological or physiological

process, diseases, altered health outcome etc. can be identified. A biomarker is a

measurable indicator of presence of disease sate or indicator for representing severity

of disease. More generally a biomarker is any molecule that can be used to detect

the particular disease state or some physiological state in an organism. For insulin

sensitivity, adipokines and more recently myokines and hepatokines are found to be

potential biomarkers but still they are not used in clinical settings. Due to which in

routine screening many cases of prediabetes are missed, therefore, a better biomarkers

are needed for a simple and early detection of abnormalities of glucose metabolism

and prediction of type 2 diabetes at prediabetic stage [178].

Table 2.6: Molecular biomarkers associated with prediabetes

S.No. Molecular Biomarkers References

1 adiponectin [176]

2 RBP4 [184]

3 chemerin [184]
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4 A-FABP [184]

5 FGF21 [184]

6 fetuin-A [184]

7 TNF-α [179]

8 Uncoupling Protein 2 [180]

9 Myotubularian [181]

10 myostatin [184]

11 IL-6 [179]

12 Serum Magnesium [182]

13 irisin [184]

14 C-Reactive Proteins (hsCRP) [185]

15 Amino acid [186]

(valine, leucine,

and isoleucine,

tyrosine, phenylalanine)

16 Advanced glycation end product [187], [188]

17 miRNAs (miR-9, [59]

miR-29a, miR- 30d,

miR34a, miR-124a,

miR146a and miR375)

When detecting biomarkers, both targeted and untargeted methods can be employed.

Targeted methods focus on measuring or detecting a specific subset of molecules that

are pre-defined. In contrast, untargeted methods aim to capture all detectable signals,

with the goal of identifying and annotating as many molecular species as possible from

the experimental data.

Targeted methods offer greater reliability because they can be compared with estab-

lished reference samples. However, they are limited to detecting only the molecules

that were specified in advance. On the other hand, untargeted methods have the
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potential to measure a vast range of markers, limited only by the capabilities of the

platform technology.

However, these methods face challenges due to the current lack of standardized proce-

dures, the complexity of data processing, and the availability of resources for accurate

annotation.

Several biomarkers have been reported in literature (table 2.6) but these are still not

in use in clinical setting. It is still not clear that how these molecular biomarkers are

involved in progression of prediabetes, diabetes and other comorbidities associated

with prediabetes [184].

This project aims to explore mechanism for diagnostic and management strategies for

Pre–diabetic insulin resistance by searching genetic and molecular mechanism that

are associated with pre–diabetic insulin resistance.

2.25 Elucidation of Omics to understand Predia-

betes

The identification of genetic, protein, and metabolite biomarkers is crucial for un-

derstanding and predicting the development of prediabetes. These biomarkers can

provide valuable insights into the underlying mechanisms of the disease and help in

early diagnosis and intervention.

2.25.1 Genetic Biomarkers

Genetic variations can significantly influence an individual’s susceptibility to predi-

abetes. Specific genes associated with insulin resistance, glucose metabolism, and

beta-cell function have been identified. For instance, variations in the TCF7L2 gene

are strongly linked to an increased risk of developing type 2 diabetes and prediabetes.

Other genes, such as PPARG and FTO, also play roles in fat metabolism and obesity,
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which are critical risk factors for prediabetes.

2.25.2 Protein Biomarkers

Key proteins in insulin signaling, glucose transport, and inflammation serve as es-

sential biomarkers for prediabetes. Low adiponectin levels correlate with insulin re-

sistance, while elevated C-reactive protein (CRP) indicates increased inflammation.

Additionally, insulin-like growth factor-binding protein 1 (IGFBP-1) and fetuin-A are

linked to insulin resistance and glucose intolerance.

2.25.3 Metabolite Biomarkers

Metabolomics, the study of small molecules (metabolites) within cells, tissues, or or-

ganisms, offers a comprehensive approach to identifying biomarkers for prediabetes.

Metabolites involved in glucose and lipid metabolism, such as glucose, lactate, and

free fatty acids, are key indicators. Elevated levels of branched-chain amino acids

(BCAAs), including leucine, isoleucine, and valine, have been linked to insulin resis-

tance and an increased risk of developing prediabetes.

Additionally, altered levels of acylcarnitines and ceramides have been observed in indi-

viduals with insulin resistance, providing further insights into metabolic disturbances

associated with prediabetes. The identification and study of genetic, protein, and

metabolite biomarkers are essential for advancing our understanding of prediabetes.

These biomarkers not only help in early detection and risk assessment but also provide

targets for potential therapeutic interventions. Ongoing research in this area holds

the promise of more effective prevention and management strategies for prediabetes

and related metabolic disorders.

Together, these metabolomic insights underscore the complexity of prediabetic insulin

resistance and highlight the potential of integrated omics approaches in uncovering

novel diagnostic and therapeutic targets. Advancing our understanding in this domain



Literature Review 67

is crucial for developing personalized strategies to prevent the progression from pre-

diabetes to type 2 diabetes.

2.26 Meta-analysis, Systematic and Bioinformtaics

Approch to Elucidate Molecular Mechanisum

of Prediabetes

The elucidation of the molecular mechanisms underlying prediabetes often employs

meta-analysis, systematic review, and bioinformatics approaches, which collectively

offer comprehensive insights into the disease. Meta-analysis integrates data from

multiple studies to synthesize findings and identify consistent patterns across diverse

populations and methodologies. This method allows researchers to pool results from

various studies investigating genetic, protein, and metabolite biomarkers associated

with prediabetes, thereby enhancing statistical power and generalizability.

Systematic reviews systematically gather and assess relevant literature to provide a

comprehensive overview of existing knowledge. By critically analyzing studies on

genetic variations (such as those in genes like TCF7L2, PPARG, and FTO), protein

biomarkers (including adiponectin, C-reactive protein (CRP), IGFBP-1, and fetuin-

A), and metabolite biomarkers (like glucose, BCAAs, acylcarnitines, and ceramides),

systematic reviews highlight key findings and identify gaps in current understanding.

Bioinformatics approaches play a pivotal role in integrating and analyzing largescale

omics data sets. These methods utilize computational tools to interpret genomic,

proteomic, and metabolomic data, facilitating the identification of molecular pathways

and networks involved in prediabetes.

For instance, bioinformatics tools such as pathway analysis (using databases like

KEGG) and network analysis (using platforms like GeneMania and GEPHI) help

uncover interactions among genes, proteins, and metabolites implicated in insulin

resistance and glucose metabolism. Together, meta-analysis, systematic review, and
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bioinformatics approaches synergistically contribute to elucidating the complex molec-

ular mechanisms of prediabetes. By integrating evidence across diverse studies and

leveraging computational tools, researchers can uncover novel biomarkers, pathways,

and therapeutic targets, ultimately advancing our understanding and management of

prediabetes and related metabolic disorders.



Chapter 3

Research Methodology

3.1 Elaboration of Pathways

Genetic and molecular components and pathways associated with prediabetic insulin

resistance were be investigated through meta-analysis. Meta-analysis refers to the

process of systematically assessing the results of previous studies to drive statistically

proven conclusions. In the current study, international databases such as PubMed

Scopus and local repositories were be searched for research articles and reviews. Orig-

inal studies were retrieved to potential prognostic role of genes and molecules that are

associated with prediabetic insulin resistance, meta-analysis and review articles were

also be investigated along with their primary references [189]. The search syntax was

designed and filters were used to include human studies. Studies were not excluded

based on the ethnicity of the studied population [48], [189]. A standard protocol of

meta-analysis was adopted [47].

3.2 Network and Pathway Analysis

Genes identified from Meta-analysis were analyzed through specific tools such as Gene

mania or any other to predict the functions of genes and to construct the interaction

69
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networks. Networks associated with the pathophysiology of the disease was identified

and metabolic pathways were be retrieved from KEGG [190]. Gene interaction data

was retrieved and was used to make networks using software such as Metascape or

Gephi; closeness centrality, harmonic centrality, betweenness centrality, and eigncen-

trality was used by adjusting the threshold depending on the values to find the hub

genes. After the identification of the hub genes, enrichment analysis of hub genes

was performed through specific tools such as ToppGene. All the hub genes were up-

loaded on the selected tool for pathway enrichment based on gene ontology (GO) for

biological processes, molecular functions, diseases, drugs, pathways, and cellular com-

ponents [191]. Molecular factors identified from the Meta-analysis were statistically

analyzed and filtered for validation. For validation of molecular factors various tools

can be used such as Go term finder, David, GO term mapper for gene annotation;

Blast, FASTA, MUSCLE for sequence alignment; Swiss model, Fold X, I TASSER,

Hpred for homology modeling; Saves, Verify 3D for structure validation; CATH, Pock

drug, p2rank for active pocket; Autodock vina, Arguslab, ClusPro for modeling and

simulation; PLIP, Struct2net, Prise for protein interactions; Webgivi, David, TopFun

for enrichment analysis. The metabolic pathway for prediabetic insulin resistance

was predicted, Selection of tools for network and pathways analysis depends upon the

nature of the molecular component selected [192].

3.3 Validation of Genetic, Metabolic Components

A comprehensive methodology was employed to validate and analyze predicted pro-

tein structures and interactions implicated in prediabetic insulin resistance. Initially,

protein sequences from two sets—set 1, identified manually through literature review,

and set 2, interacting genes identified through network analysis—were retrieved from

the UniProt Knowledgebase in FASTA format. These sequences were subjected to

BLASTp analysis against the Protein Data Bank (PDB) to identify structurally sim-

ilar proteins, ensuring a robust starting point for structural modeling. Following se-

quence alignment, the predicted protein structures were validated using multiple tools.
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The ProSA server evaluated the energy profiles of the modeled proteins to assess their

structural integrity and identify potential discrepancies compared to experimentally

determined structures. Concurrently, MetaMQAPII and PHYRE2 servers provided

additional validation by predicting 3D protein structures and highlighting any struc-

tural variations. These validation steps were crucial for ensuring the accuracy and

reliability of the modeled protein structures.

Next, protein-protein interactions between set 1 (receptors) and set 2 (ligands) genes

were investigated through docking simulations using the GRAMM-X and Cluspro

servers. GRAMM-X facilitated the docking process by predicting how proteins inter-

act spatially and assessing binding affinities, while Cluspro validated these interactions

through detailed analysis of surface complementarity and model scores.

Finally, Discovery Studio software was utilized for in-depth analysis of the docked

protein complexes. This tool allowed for visualization of interaction interfaces, iden-

tification of interacting amino acids, and assessment of structural stability through

surface analysis. The methodology integrated these computational and analytical

approaches to elucidate the molecular mechanisms underlying prediabetic insulin re-

sistance, potentially identifying novel biomarkers and therapeutic targets for further

study and clinical application.

3.4 Statistical Analysis

Statistical analysis was performed via SPSS for the identification of novel genetic and

metabolic components associated with prediabetes for use in clinical practice [176].

A student t-test and Z-test was used to examine the statistically significant differ-

ences in genetic and molecular biomarkers such as serum glucose, total cholesterol,

triglycerides, etc. Pearson’s chi-square test was used to examine the association of

mutations detected with prediabetes. Multivariate logistic regression analysis was

performed to determine the association of molecular and genetic biomarkers with pre-

diabetes [176]. Overall overview of methodology adopted to achieve objective 1 to

objective 3 is presented in figure 3.1.



Research Methodology 72

Figure 3.1: Overview of methodology for objective 1 to objective 3
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3.5 Methodology Breakdown to Achieve each Ob-

jective

3.5.1 Objective 1 (RQ1-RQ3)

3.5.1.1 Research Question

Determining the research question is the first and most important step of starting

a meta-analysis. It provides a proper target to conduct the meta-analysis on and

helps in searching relevant material. The question should not very broad, as the

resulting articles and workload would be vast and unmanageable. It is preferred for

the question to be more narrowed down to ensure more precise and accurate results,

as well as relevant data and manageable workload.

The research questions in this study were:

1. Genomic, proteomic and metabolomic biomarkers associated with prediabetes

assessed through high throughput omic techniques.

2. Identification of key genomic, proteomic and metabolomic biomarkers associated

with prediabetes.

3. Interaction of key omic biomarkers in disease progression based on pathway and

gene interaction.

3.5.1.2 Literature Search

Independent searching was performed through scientific databases. The major data

-bases include PubMed and Google Scholar that was employed.

The main searching strategy employed was keyword searching, keywords such as

“Omics in Prediabetes”, “Prediabetes”, “Omics”, “Genomics of Prediabetes”, “Metab-

olomics of Prediabetes”, “Meta-analysis of Prediabetes” was searched. Searching
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based on the key words is known as grey literature. Our studies will include data of

last 10 years, from 2012 to 2022.

3.5.1.3 Selection Criteria

The following parameters was considered for selection criteria.

Inclusion Criteria

� Original research articles

� Time period: 2012-2022 (last decade)

� Articles reporting Prediabetes with high-throughput –omic techniques Research

articles with valid clinical data

� Research articles published in reputed science journals

Exclusion Criteria

� Review articles

� Articles published before 2012

� Articles reporting other diseases

� Research articles published in non-reputed science journals

3.5.1.4 Research Articles

A comprehensive review of numerous research articles was undertaken, resulting in

the acquisition of a wide array of diverse data. Rigorous selection criteria were metic-

ulously applied to all the articles evaluated to ensure the relevance and quality of the

studies included in the analysis. Based on these criteria, certain articles were system-

atically included or excluded from the final results, thereby refining the scope of the

investigation.
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To organize the gathered information, all pertinent data from the selected articles were

initially compiled into an Excel spreadsheet, designated as the Source Table. This

Source Table encompassed heterogeneous data types, primarily in qualitative form,

capturing various dimensions such as study methodologies, participant demographics,

biomarkers assessed, and key findings.

The compilation process involved careful extraction and categorization of relevant

information to maintain consistency and facilitate subsequent analysis. Once the

data were thoroughly aggregated, appropriate statistical methods were employed to

interpret the findings, enabling the identification of significant trends and correlations

within the dataset.

This structured approach ensured a robust synthesis of the existing literature, pro-

viding a solid foundation for drawing informed conclusions about the biomarkers as-

sociated with diabetes and prediabetes. The methodological rigor applied throughout

the process enhanced the reliability and validity of the study’s outcomes, contributing

valuable insights to the field of metabolic disorder research.

3.5.1.5 Source Table

After studying and reviewing research articles, an excel sheet was prepared containing

all the important information from all the articles. The information in this sheet will

include the title, author(s), publication year, journal, and abstract. It was called the

Source Table, or Master Table. For further proceedings, this table was of utmost

importance.

3.5.1.6 Qualitative Data

Qualitative data analysis does not include quantification of data. Data is in the form

of a text, which is used for data analysis and its explanation [48]. The initial data

that was obtained from the Source Table constructed after literature searching and

the research articles obtained was qualitative in nature. This qualitative data was su-
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bjected to a variety of statistical methods for proper statistical analysis.

3.5.1.7 Statistical Analysis

To obtain quantitative data from the qualitative data obtained from the Source Table,

a variety of statistical methods need to be applied for statistical analysis. The selection

of appropriate methods depends on the type of data that is initially obtained. Since

different methods work for different types of data in different researches, there is no

one-size-fits-all method that can be used. The selection of an appropriate method was

done once the qualitative data has been obtained.

3.5.1.8 Quantitative Data

Quantitative data analysis involves quantification of data. It includes statistical anal-

ysis of data shows results in form of relative frequency. Once the qualitative data

has undergone statistical analysis, the resulting data that is obtained is the quanti-

tative data. Quantitative data provides reliable information and is more definite and

accurate as compared to qualitative data. Quantitative data is important as further

resulting plots and charts such as PRISMA charts and Forest plots was made based

on this data.

3.5.1.9 Heterogeneity

Heterogeneity of data in meta-analyses refers to the variation in all the study out-

comes among different studies. Heterogeneous data essentially means data with high

variability. Heterogeneity in meta-analyses is defined by two major concepts: The

Fixed-Effect Model and The Random-Effects Model. Despite the fact that both mod-

els utilize similar formula sets, and sometimes even yield similar estimates does not

mean that these models are interchangeable. The Fixed-Effect Model suggests that

there is a common effect size of all the studies. According to this model, all the studies

included in the meta-analysis have enough uniformity for a common conclusion to be
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drawn from all the results [49]. On the other hand, the Random-Effects Model sug-

gests that there is a different effect size of all the studies. According to this model, the

outcomes may show variation from study to study. A conclusion can still be drawn

despite it [50].

3.5.1.10 PRISMA Chart

For compilation of the results, the PRISMA statement was utilized. The abbreviation

PRISMA stands for “Preferred Reporting Items for Systematic Reviews and Meta-

Analyses”. The PRISMA chart consists of a 27-item checklist as well as a four-phase

flowchart. The items that are included in the checklist are those that are considered

significant for transparent meta-analyses reporting. PRISMA can provide an accurate

and reliable dataset [51].

3.5.1.11 Forest Plot

For proper graphical representation of data, Forest plots are used often in meta-

analyses. Forest plots are significant as they are useful for quick and efficient scanning

and interpretation of all the data. Forest plots are commonly referred to as the “total

summary effect of the meta-analyses.” Forest plots have been proven to be quite

helpful in exploring the possible causes of heterogeneity. Forest plots can be modified

for the study type as well, such as for diagnostic accuracy studies [52]. Graphical

presentation of methodology for objective 1 is illustrated in 3.2

Figure 3.2: Graphical presentation of methodology for objective 1
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3.5.2 Objective 2 (RQ4-RQ6).

3.5.2.1 Data Collection

The top-down bioinformatics approach was used, core genes that are associated with

insulin resistance and metabolic syndrome were primarily retrieved from literature

i.e., PubMed (https://pubmed.ncbi.nlm.nih.gov/) as well as from pathways that are

available in databases such as KEGG (https://www.genome.jp/ kegg/pathway .html).

3.5.2.2 Gene Interaction Networks

Gene interaction network with other genes and the function of genes were predicted

through the online tool GeneMANIA (http://genemania.org/) [193]. Nodes and edges

of interacted genes were further processed in Excel to remove duplication.

3.5.2.3 GGI Network Construction and Identification of Hub Genes

The Excel file consisting of nodes and edges was uploaded to Gephi 0.9.2 (https:

//gephi .org/) [194] and gene regulatory networks and interaction data were retrieved

to find hub genes associated with insulin resistance. Data obtained from Gephi was

analyzed values of closeness centrality [195], harmonic centrality [196], betweenness

centrality [197], and eigncentrality were compared by adjusting threshold values to

identify hub genes of every network.

3.5.2.4 Functional Annotation and Pathway Enrichment Analysis

Enrichment analysis of hub genes was performed through the ToppGene tool (https://

toppgene. cchmc.org/) [198]. Hub genes were uploaded to the ToppGene tool for

pathway enrichment based on gene ontology (GO) for biological processes, molecular

function, and cellular components. This analysis helps identify key biological path-

ways and molecular mechanisms associated with the hub genes, providing insights

into their functional roles [199].
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3.5.2.5 Validation of Hub Genes

Finally, hub genes identified were further validated through previously published lit-

erature to investigate whether these genes are involved in inflammation directly or

through any metabolic disease that causes inflammation. Methodology overview for

objective 2 is presented in figure 3.3

Figure 3.3: Methodology overview for objective 2
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3.5.3 Objective 3 (RQ6-RQ9)

3.5.3.1 Identification of Pre-Diabetic Insulin Resistance Genes via Text

Mining

In a comprehensive manual literature review, 25 genes implicated in prediabetic insulin

resistance were identified. These genes, which were found to play crucial roles in the

pathophysiology of insulin resistance in humans, were extracted through text mining

methodologies and designated as set 1.

3.5.3.2 Identification of Novel Biomarkers Linked to Known Genes via

FunCoup 2.0 Gene Interaction Networks

Gene interaction networks were constructed for the genes identified through literature

review using the FunCoup 2.0 database (http://FunCoup.sbc.su.se). The analysis

revealed numerous additional genes interacting with those initially selected. FunCoup,

a bioinformatics tool for generating global gene and protein interaction networks,

facilitated this process.

The newly identified genes, including ENO2, PRDX1, ALDH2, PYGB, MDH2, ACTB,

TUBB, EEF2, PGK1, RACK1, PGD, PGM1, VCP, HSPA8, EEF1A1, HSP90AB1,

TUBB4B, ENO1, TALDO1, PSMD2, MDH2, ACSS2, VDAC2, HSPAL, SLC25A5,

HSPD1, ATTP51B, and GPI, were noted as novel genes. Consequently, two sets of

genes were established: the first set obtained through manual literature review and

the second set comprising genes identified through interaction with the initial list.

These biomarkers identified through gene interaction networks were designated as set

2.

3.5.3.3 Enrichment Analysis of Identified Gene Sets

Enrichment analysis was performed on the genes in set 1 and set 2. This analysis

provided various outcomes, including molecular, cellular, and biological annotations
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of the gene sets. Additionally, tissue specificity of the selected genes was assessed

through enrichment analysis. The analysis involved measuring functional relationships

between experimentally derived genes or proteins and a database of gene-protein sets

within large-scale genomic data. An over-representation-based enrichment analysis

was employed for its numerous advantages:

1. it tests the functional overlap of gene/protein combinations,

2. it accounts for genes with missing annotations,

3. it considers the physical interaction network structure among the gene/protein

sets, and

4. it can establish tissue-specific gene/protein interactions [200].

3.5.3.4 Retrieval of Protein Sequences for Gene Sets 1 and 2

Protein sequences for genes in set 1 (selected manually) and set 2 (interacting with set

1 genes) were retrieved from the UniProt Knowledgebase in FASTA (canonical) for-

mat. These sequences were then compiled into a Word document. UniProt, or Univer-

sal Protein Resource, provides a comprehensive, stable, and easily accessible resource

for protein sequences and functional annotations [201]. The UniProt database is pro-

duced by three leading bioinformatics institutions and is composed of four distinct

components: the UniProt Archive, the UniProt Knowledgebase, the UniProt Refer-

ence Clusters, and the UniProt Metagenomic and Environmental Sequence Database

[202].

3.5.3.5 Gene Annotation Using STRAP Tool

Both set 1 and set 2 genes were annotated using the Software Tool for Researching

Annotation of Proteins (STRAP). UniProt identifiers were utilized to conduct enrich-

ment analysis, generating results within approximately 2-3 hours, depending on the

number of genes processed. The UniProt IDs corresponding to all proteins in set 1
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and set 2 were recorded. These UniProt IDs were then inputted into the STRAP tool

to obtain protein annotations presented in table format, along with Gene Ontology

(GO) charts depicting proteomic data [203].

3.5.3.6 Identification of Similar Protein Structures in PDB Database Us-

ing BLAST Sequence Alignment

BLASTp was employed to compare protein sequences obtained from UniProt against

the Protein Data Bank (PDB) database. The protein sequences were inputted in

FASTA format into the BLASTp query sequence box to identify similarities with ex-

isting protein sequences from various species in the database [204]. BLAST (Basic Lo-

cal Alignment Search Tool) is a program used for comparing biological sequences such

as proteins, amino acids, and nucleotides, and it accesses a comprehensive database

containing a vast number of protein and nucleotide sequences. This comparison allows

for the identification and characterization of the subject sequence based on similarities

with known sequences [205].

3.5.3.7 Prediction of Protein Domains and Structures

Proteins identified from the BLASTP results were further analyzed in the Protein

Data Bank to identify comparable three-dimensional structures. Subsequently, the

Robetta server was utilized to predict potential domains within each selected protein

sequence. The Robetta server provides predictions of protein domains using both

ab initio modeling and comparative modeling approaches, offering insights into the

structural organization of the identified protein domains [206].

3.5.3.8 Validation and Analysis of Predicted Protein Structures

Validation of Predicted Domains

To ensure the reliability of the modeled protein structures, the ProSA server was

employed. ProSA evaluates the energy profiles of protein models, providing Z scores
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that indicate their deviation from experimentally determined structures. This server

is instrumental in identifying potential errors in theoretical and experimental protein

structures by comparing them against a database of known protein structures. For

this study, protein sequences retrieved in PDB format were individually subjected

to ProSA analysis to validate their structural models and assess their conformity to

expected energy profiles [207].

Cross-Checking Model Validation

Further validation of the protein structures was conducted using MetaMQAPII and

PHYRE2 servers. These tools assess protein 3D structures by analyzing PDB files

submitted through their respective interfaces. MetaMQAPII and PHYRE2 utilize ad-

vanced algorithms to predict and verify protein structures, providing validation results

typically within a few minutes to hours, depending on the complexity of the protein

and server workload. Results are delivered via email, detailing structural predictions

and potential discrepancies between predicted and experimental structures.

Protein-Protein Docking

To investigate potential interactions between proteins encoded by set 1 (used as recep-

tors) and set 2 (used as ligands), protein-protein docking simulations were performed

using the GRAMM-X web server [208]. Additionally, the Cluspro server was utilized

to validate docking results by assessing the surface complementarity and model scores

of the predicted protein complexes. Cluspro provides multiple models of docked pro-

tein structures, allowing for comprehensive analysis of potential interaction sites and

confirmation of docking accuracy [209], [210].

3.5.3.9 Analysis of Docking Results and Identification of Interacting Amino

Acids

For detailed analysis of docking results and identification of interacting amino acids

within docked complexes, Discovery Studio software was utilized. Developed by Das-

sault Systèmes BIOVIA, Discovery Studio offers a suite of tools for molecular modeling
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and simulation, including visualization of protein structures and analysis of molecular

interactions. In this study, Discovery Studio was employed to scrutinize the spatial

arrangement of docked protein complexes, analyze the interaction interfaces, and val-

idate the accuracy of predicted protein-protein interactions through surface analysis

and structural comparison [211]. This comprehensive analysis provides insights into

the molecular mechanisms underlying protein interactions implicated in prediabetic

insulin resistance, potentially identifying novel biomarkers and therapeutic targets

[211].

Figure 3.4: Methodology overview for objective 3
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3.6 Limitations, Potential Biases, and Data Verifi-

cation

While this study integrated a robust meta-analysis and advanced in-silico methodolo-

gies to identify potential biomarkers for prediabetic insulin resistance, certain limi-

tations and biases needed to be considered. The effectiveness of the meta-analysis

depended on the quality and consistency of the included studies. Variability in

study populations, methodologies, and reporting standards across different sources

may have introduced selection bias and affected the generalizability of the findings.

Furthermore, computational approaches, including gene interaction analysis, enrich-

ment studies, and molecular docking, relied on existing biological databases, which

had inherent limitations due to incomplete or evolving datasets. The accuracy of pro-

tein structure predictions and interaction models was also influenced by the resolution

and reliability of available structural data, potentially impacting the interpretation of

biomolecular interactions.

To ensure the reliability of results, multiple verification steps were implemented through-

out the study. Homology assessments were performed using BLASTP, while structural

validation of modeled proteins was conducted through the ProSA server, ensuring the

integrity of predicted structures. Additionally, docking analyses were cross-validated

using independent platforms such as GRAMM-X and ClusPro to minimize compu-

tational biases. Despite these rigorous verification measures, experimental validation

remained essential to confirm the clinical relevance of the identified biomarkers. Fu-

ture research should focus on functional studies and clinical trials to bridge the gap

between computational predictions and practical medical applications, ensuring these

findings contribute effectively to early disease detection and management.



Chapter 4

Results

4.1 Meta-analysis (RQ1-RQ3)

4.1.1 PRISMA Chart

For the compilation of the results, the PRISMA (Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses) statement was employed to ensure a methodical

and transparent reporting process. PRISMA is a widely accepted framework designed

to enhance the quality of systematic reviews and meta-analyses.

The framework includes a 27-item checklist and a four-phase flowchart, both of which

are essential for transparent and comprehensive reporting. The checklist encompasses

various items deemed crucial for the thorough reporting of systematic reviews and

meta-analyses. These items ensure that the methodology, results, and discussions are

presented with utmost clarity and completeness, thus facilitating reproducibility and

critical appraisal by other researchers.

The flowchart visually represents the selection process of studies included in the re-

view, encompassing identification, screening, eligibility, and inclusion phases. PRISMA

structured approach is integral in providing an accurate and reliable dataset for the

systematic review. Initially, 23 studies were selected and incorporated into the source

86
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table. These studies were obtained from various databases and additional sources,

ensuring a comprehensive collection of relevant literature (figure 4.1).

Figure 4.1: PRISMA chart

However, 2 articles were excluded from the analysis due to their publication dates

falling outside the predefined timeline. Consequently, 21 studies remained and were

subjected to a rigorous screening process to determine their eligibility. During the

screening phase, 9 studies were excluded because they did not align with the scope

of the review. Specifically, these studies did not adequately address the focus of the

research, which was centered on genomic, proteomic, and metabolomic factors related
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to prediabetes (figure 4.1). Furthermore, 2 additional studies were excluded due to

insufficient information regarding these specific biological mechanisms underlying pre-

diabetes. As a result of this meticulous screening process, the final dataset comprised

studies that met all inclusion criteria and provided substantial information on the

genomic, proteomic, and metabolomic aspects of prediabetes. This ensured that the

review was grounded in robust and relevant data, thereby enhancing the reliability

and validity of the findings.

4.1.2 Study Characteristics and Source Table

The source table 4.1 for the meta-analysis presents a comprehensive overview of several

pivotal studies focused on prediabetes, summarizing essential information for each

study including the title, first author and year of publication, ethnicity of participants

(figure 4.2, number of participants, number of prediabetic and normal individuals, and

the specific variants investigated. This detailed compilation facilitates a robust meta-

analysis by ensuring all relevant studies are systematically compared and contrasted.

Table 4.1: Number of participants from each ethencity included in meta-anlysis

Ethencity
Health Status

Total

Predi-

abetic
Normal

Left

Study

White USA
Count 2057 1289 5 3351

% within

Ethencity
61.4% 38.5% 0.1% 100.0%

Spain
Count 12 21 31 64

% within

Ethencity
18.8% 32.8% 48.4% 100.0%

Germany
Count 132 208 0 340

% within

Ethencity
38.8% 61.2% 0.0% 100.0%
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Australia
Count 105 242 0 347

% within

Ethencity
30.3% 69.7% 0.0% 100.0%

Korea
Count 924 799 0 1723

% within

Ethencity
53.6% 46.4% 0.0% 100.0%

USA
Count 51 46 9 106

% within

Ethencity
48.1% 43.4% 8.5% 100.0%

AA/EA
Count 158 65 0 223

% within

Ethencity
70.9% 29.1% 0.0% 100.0%

Chinese
Count 15017 11001 0 26018

% within

Ethencity
57.7% 42.3% 0.0% 100.0%

Total
Count 18456 13671 45 32172

% within

Ethencity
57.4% 42.5% 0.1% 100.0%

The first study, ”A Genome-Wide Association Study of Prediabetes Status Change”

by Liu et al. (2022) (table 4.2), explores genetic variants associated with prediabetes

status changes among a cohort of 3,351 White participants from the USA. Of these

participants, 2,057 were classified as prediabetic, while 1,020 were normal. This study

employed a genome-wide association study (GWAS) to identify genes and proteins

that may play a role in the progression of prediabetes.

In the second study (table 4.2), ”Biomarkers of Morbid Obesity and Prediabetes

by Metabolomic Profiling of Human Discordant Phenotypes,” Tulipani et al. (2016)

conducted metabolomic profiling on a smaller Spanish cohort of 64 participants. The

study identified 12 prediabetic and 21 normal individuals, focusing on biomarkers and

metabolites linked to morbid obesity and prediabetes. This research highlights the
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Figure 4.2: Pie chart representing total number of participants from each study

metabolic differences between individuals with discordant phenotypes, contributing

valuable insights into the metabolic underpinnings of prediabetes.

Li et al. (2022), in their study titled ”Diagnostic Performance of Sex-Specific Modified

Metabolite Patterns in Urine for Screening of Prediabetes,” investigated the efficacy

of using urine metabolite patterns to screen for prediabetes among 340 German par-

ticipants. The study included 132 prediabetic and 208 normal individuals, examining

how sex-specific metabolite modifications could serve as diagnostic markers for pre-

diabetes (table 4.2). This study underscores the potential for non-invasive diagnostic

methods in identifying prediabetes.

The fourth study, ”Human SHC-transforming protein 1 and its isoforms p66shc: A

novel marker for prediabetes” by Jelinek et al. (2021), focused on an Australian cohort

of 346 participants, with 105 prediabetic and 242 normal individuals. The researchers

identified SHC-transforming protein 1 and its isoforms as novel protein markers for

prediabetes, suggesting new avenues for early detection and intervention (table 4.2).

Lee et al. (2020), in their study ”Identification of metabolic markers predictive of

prediabetes in a Korean population,” examined a large Korean cohort of 1,723 par-

ticipants. With 924 prediabetic and 799 normal individuals, this research identified
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proteins and metabolites predictive of prediabetes, providing a comprehensive analysis

of metabolic markers that could forecast the onset of the condition in this population

(table 4.2).

The study titled ”Longitudinal multi-omics of host–microbe dynamics in prediabetes”

by Zhou et al. (2019) analyzed the dynamic interactions between host and microbial

factors in prediabetes over time. The study included 106 participants from the USA,

with 51 prediabetic and 46 normal individuals. This longitudinal study integrated

multi-omics approaches, examining genes, proteins, and metabolites to understand

the complex biological interactions contributing to prediabetes (table 4.2).

Dagogo-Jack et al. (2020), in their ”Pathobiology and Reversibility of Prediabetes

in a Biracial Cohort (PROP-ABC) Study: design of lifestyle intervention,” explored

the impact of lifestyle interventions on the reversibility of prediabetes in a biracial

cohort. The study included 223 participants, comprising 158 prediabetic and 65 nor-

mal individuals from African-American and European-American backgrounds. This

research emphasized the potential for lifestyle modifications to reverse prediabetes

and provided insights into the pathobiology of the condition across different ethnic

groups (table 4.2).

Finally, Sun et al. (2022), in ”The Association Between the Triglyceride-to-High-

Density Lipoprotein Cholesterol Ratio and the Risk of Progression to Diabetes From

Prediabetes: A 5-year Cohort Study in Chinese Adults,” examined a large Chinese

cohort of 26,018 participants. The study identified 15,017 prediabetic and 11,001

normal individuals, focusing on the ratio of triglycerides to high-density lipoprotein

cholesterol as a predictive marker for the progression from prediabetes to diabetes

over five years. This study highlighted significant metabolic predictors of diabetes

progression in a large and diverse population (table 4.2). Overall, the source table

encapsulates a wide range of studies that collectively enhance our understanding of

the genetic, proteomic, and metabolic factors associated with prediabetes (figures 4.3,

4.4). By systematically comparing these studies, the meta-analysis aims to identify

consistent patterns and markers that could improve early detection and intervention

strategies for prediabetes.
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Table 4.2: Source table and characteristics of studies included

Title

First

Author,

Year

Ethnicity Part. Prediabetic Normal Variants

A Genome-Wide

Association Study

of Prediabetes

Status Change

Liu et al.,

2022
White USA 3351 2057 1020

Genes/

Proteins

Biomarkers of

Morbid Obesity

and Prediabetes

by Metabolomic

Profiling of

Human Discordant

Phenotypes

Tulipani et al.,

2016
Spain 64 12 21

Biomarkers/

Metabolites
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Diagnostic Perf-

ormance of Sex-

Specific Modified

Metabolite Patterns

in Urine for Scree-

ning of Prediabetes

Li et al.,

2022
Germany 340 132 208

Biomarkers/

Metabolites

Human SHC-trans-

forming protein 1

and its isoforms

p66shc: A novel

marker for pre-

diabetes

Jelinek et al.,

2021
Australia 346 105 242 Proteins

Identification of

metabolic markers

predictive of

prediabetes in a

Korean population

Lee et al.,

2020
Korea 1723 924 799

Proteins/

Metabolites
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Longitudinal multi-

omics of host–

microbe dynamics

in prediabetes

Zhou et al.,

2019
USA 106 51 46

Genes/

Proteins/

Metabolites

Pathobiology and

Reversibility of

Prediabetes in a

Biracial Cohort

(PROP-ABC)

Study: design of

lifestyle intervention

Dagogo-Jack

et al., 2020

African-

Americans

and

European -

Americans

223 158 65

Lifstyle

interventions/

Others
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The Association

Between the Trigly-

ceride-to-High-

Density Lipoprotein

Cholesterol Ratio

and the Risk of

Progression

to Diabetes From

Prediabetes: A

5-year Cohort

Study in Chinese

Adults

Sun et al.,

2022
Chinese 26018 15017 11001 Metabolites
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Figure 4.3: Health status of participants

Figure 4.4: Association of prediabetes with genes, proteins and metabolites
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4.1.3 Statistical Analysis and Forest Plot

The statistical analysis for this meta-analysis was conducted following a meticulous

selection process, as outlined by the PRISMA flow diagram (figure 4.1). Initially, ten

studies were identified manually through the PRISMA process. However, two studies

were excluded because they did not meet the inclusion criteria, specifically as they

were review articles rather than original research studies. This left a total of eight

studies for the final analysis.

Data extraction from the selected studies included crucial information such as the

study author’s name, year of publication, total number of participants, the number

of prediabetic cases, and the number of normal individuals without the disease. The

odds ratio (OR) and the natural logarithm of the odds ratio (log OR) are essential

for conducting a meta-analysis using REVMAN 5 software. However, the odds ratios

could not be directly calculated from the filtered data extracted from the research

articles.

To address this issue, we converted the type of variables from quantitative to quali-

tative, specifically from discrete to nominal categories. This conversion allowed us to

apply appropriate statistical tests. Binary Logistic Regression was performed using

SPSS to calculate the odds ratio, p-values, and standard error for all ethnicities and

for each study included in the meta-analysis.

For further accuracy and verification, the probabilities and log odds ratio values were

calculated using an online tool available at http://vassarstats.net/tabs˘odds.html.

This online tool facilitated the accurate calculation of these statistical parameters,

which were then included in the meta-analysis.

Subsequently, the studies were imported into REVMAN 5 software for the meta-

analysis. REVMAN 5 is specifically designed for conducting systematic reviews and

meta-analyses, providing robust tools for statistical analysis and visualization. The

software was used to compile the extracted data, calculate the combined odds ratios,

and generate the forest plot.
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The forest plot obtained from REVMAN 5 visually represents the odds ratios from

each study, along with their confidence intervals. This plot provides a clear overview

of the variability and overall effect size across the included studies. The calculated

odds ratios for each study are shown alongside a summary measure that indicates the

combined effect size across all studies.

Overall, this detailed statistical analysis, conducted through a combination of SPSS

for logistic regression and REVMAN 5 for meta-analysis, ensures a rigorous and com-

prehensive evaluation of the data. The forest plot (figure 4.5) effectively summarizes

the findings, highlighting the consistency and magnitude of the association between

the identified variables and prediabetes across different studies and ethnicities.

Figure 4.5: Forest plot

4.1.4 Odds Ratio and Standard Error Calculation Using Bi-

nary Logistic Regression in SPSS for Each Study

To understand the association between various factors and the likelihood of predi-

abetes across different ethnic groups, binary logistic regression was applied to each

study’s data using SPSS. This method enabled the calculation of odds ratios (ORs)

and their standard errors (SEs), providing a measure of the strength and precision of

these associations (table 4.3).

The data from each study were meticulously compiled, including the number of pre-

diabetic and normal participants. Variables were classified into dependent (predia-

betes status: prediabetic or normal) and independent (various risk factors) categories.
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Where necessary, quantitative variables were converted to qualitative (nominal) vari-

ables to facilitate logistic regression analysis. In SPSS, the Analyze menu was used

to navigate to Regression and then Binary Logistic Regression, with the prediabetes

status set as the dependent variable and independent variables including demographic

and clinical factors pertinent to each study.

Logistic regression was run separately for each study to calculate the odds ratio and its

standard error. The Enter method was employed to include all selected independent

variables in the model. The output provided the coefficients (B), standard errors

(SE), Wald statistics, significance levels (p-values), and odds ratios (exp(B)). The

odds ratio indicates the likelihood of prediabetes given the presence of specific risk

factors compared to their absence, while the standard error provides an estimate of

the variability or uncertainty of the odds ratio.

For Liu et al. (2022), focusing on White USA participants, odds ratios were calculated

for various genetic markers associated with prediabetes status change, with standard

errors indicating the precision of these estimates. In the study by Tulipani et al.

(2016) involving Spanish participants, odds ratios were determined for biomarkers

and metabolites indicative of prediabetes, with quantified standard errors reflecting

the variability in the estimates. Li et al. (2022) assessed odds ratios for sex-specific

urine metabolite patterns linked to prediabetes in a German cohort, with standard

errors calculated to evaluate the reliability of these associations (table 4.3).

Jelinek et al. (2021) established odds ratios for SHC-transforming protein 1 and

its isoforms as markers for prediabetes in an Australian population, with computed

standard errors showing the degree of uncertainty. Lee et al. (2020) evaluated odds

ratios for metabolic markers predictive of prediabetes in a Korean cohort, including

standard errors to demonstrate the extent of variability. Zhou et al. (2019) calculated

odds ratios for multi-omic interactions affecting prediabetes in a USA cohort, with

provided standard errors indicating precision levels (table 4.3).

In the study by Dagogo-Jack et al. (2020), odds ratios were determined for lifestyle

interventions impacting prediabetes in African-Americans and European-Americans,
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with quantified standard errors reflecting variability. Finally, Sun et al. (2022) cal-

culated odds ratios for the triglyceride-to-HDL cholesterol ratio predicting diabetes

progression from prediabetes in a large Chinese cohort, with standard errors provided

alongside odds ratios to indicate the precision of the estimates (table 4.3).

The application of binary logistic regression in SPSS enabled the calculation of odds

ratios and their standard errors for each study, allowing for a robust analysis of the

association between various risk factors and prediabetes across diverse ethnic groups.

The odds ratios provide insight into the likelihood of developing prediabetes given

specific conditions, while the standard errors indicate the reliability and variability

of these estimates. This detailed statistical analysis forms the basis for the meta-

analysis conducted using REVMAN 5 and the subsequent generation of the forest plot

(figure 4.3), offering a comprehensive understanding of prediabetes across different

populations (table 4.3).

Table 4.3: Odds ratio and standard error calculation using binary logistic regres-
sion in SPSS for each study

First

Author,

Year

Ethn-

icity

Partici-

pants

Predia-

betic

Nor-

mal
OR

Log

of

Odds

S.E
P-

Va.

Dagogo-

Jack

et al.,

2020

African-

Amer-

icans

& Euro-

pean

-Ame

ricans

223 158 65 0.411
-0.8

892
0.147 0

Jelinek

et al.,

2021

Australia 346 105 242 2.305
0.8

351
0.117 0

Lee et al.,

2020
Korea 1723 924 799 0.865

-0.1

45
0.048

0.0

03
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Li et al.,

2022
Germany 340 132 208 1.576

0.4

549
0.111 0

Liu et al.,

2022

White

USA
3351 2057

10

20
0.627

-0.4

668
0.036 0

Sun et al.,

2022
Chinese

260

18

150

17

110

01
0.733

-0.3

106
0.013 0

Tulipani

et al.,

2016

Spain 64 12 21 1.75
0.5

596
0.362

0.1

22

Zhou et

al., 2019
USA 106 51 46 0.902

-0.1

031
0.203

0.6

12

4.1.5 Overall Results Obtained from Meta-analysis

A detailed meta-analysis has highlighted a broad spectrum of genes and proteins that

exhibit dysregulation in both diabetes and prediabetes.

This analysis revealed that the genes SGCZ, HPSE2, ADGRA1, GLB1L3, PCSK6,

SIRT1, PPAR, PGC1 alpha, NRF1, TG gene, and HBA1c play significant roles in

these metabolic disorders.

4.1.6 Genes and their Roles

1. SGCZ (Sarcoglycan Zeta): Involved in muscle integrity and function, its dys-

regulation is linked to muscular dystrophies and may impact insulin signaling

pathways.

2. HPSE2 (Heparanase 2): Associated with extracellular matrix remodeling, its

alteration can affect cellular metabolism and glucose homeostasis.

3. ADGRA1 (Adhesion G Protein-Coupled Receptor A1): Plays a role in cell ad-

hesion and signaling, impacting inflammatory responses in diabetes.
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4. GLB1L3 (Galactosidase Beta 1 Like 3): Involved in carbohydrate metabolism,

its dysregulation can disrupt glucose breakdown.

5. PCSK6 (Proprotein Convertase Subtilisin/Kexin Type 6): Regulates the acti-

vation of precursor proteins, influencing metabolic pathways.

6. SIRT1 (Sirtuin 1): A critical regulator of metabolic homeostasis, its impaired

function is closely linked to insulin resistance.

7. PPAR (Peroxisome Proliferator-Activated Receptor): Central to lipid metabolism

and glucose regulation, its dysregulation can lead to metabolic syndrome.

8. PGC1 Alpha (Peroxisome Proliferator-Activated Receptor Gamma Coactivator

1-Alpha): Involved in mitochondrial biogenesis and oxidative metabolism.

9. NRF1 (Nuclear Respiratory Factor 1): Regulates mitochondrial function and

energy metabolism.

10. TG Gene (Thyroglobulin): Implicated in thyroid hormone synthesis, affecting

metabolic rate.

11. HBA1c (Hemoglobin A1c): A marker for long-term glucose levels, its elevated

levels indicate poor glucose control in diabetes.

4.1.7 Proteins and their Functions

4.1.7.1 Amino Acids

1. Leucine, Valine, Tyrosine, Phenylalanine, Isoleucine: Branched-chain and aro-

matic amino acids involved in protein synthesis and metabolic signaling.

2. Fluorodeoxyglucose: A glucose analog used in PET scans to monitor glucose

uptake in tissues.

3. Nonesterified Fatty Acid: Reflects lipid metabolism and is associated with in-

sulin resistance.
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4. p66Shc: A protein involved in oxidative stress responses and aging.

5. Monocyte Chemoattractant Protein-1 (MCP-1): Plays a role in inflammatory

processes contributing to insulin resistance.

6. C-Reactive Proteins: Inflammatory markers linked to cardiovascular risk in di-

abetes.

7. GROalpha (CXCL1): A chemokine involved in inflammatory responses.

8. Zeta-Sarcoglycan Protein: Involved in maintaining muscle integrity.

9. Heparinase 2: Regulates extracellular matrix dynamics and affects cell signaling.

10. Adhesion G Protein-Coupled Receptor A1 (ADGRA1): Influences inflammatory

responses.

11. Galactosidase Beta 1 Like 3 (GLB1L3): Participates in glycosylation processes.

12. Proprotein Convertase Subtilisin/Kexin Type 6 (PCSK6): Activates other pro-

teins through proteolytic cleavage.

4.1.8 Molecules Identified

1. Heparan Sulfate Proteoglycans: Key components of the extracellular matrix

affecting cellular communication.

2. ALKP (Alkaline Phosphatase): Enzyme linked to bone and liver health.

3. IL-1RA (Interleukin-1 Receptor Antagonist): Modulates inflammatory responses.

4. VCAM1 (Vascular Cell Adhesion Molecule 1): Plays a role in leukocyte adhesion

and inflammation.

5. Pentosidine-Glucuronide: An advanced glycation end product indicating oxida-

tive stress.

6. Glutamyl-Lysine-Sulfate: A marker for protein modification.
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7. Indoxyl Sulfate: A uremic toxin associated with kidney dysfunction.

8. Dihydroxyphenyl-Gamma-Valerolactone-Glucuronide: A metabolite derived from

dietary polyphenols.

9. Fluoro-6-Thia-Heptadecanoic Acid: An analog of fatty acids used in metabolic

studies.

10. Kynurenine: A metabolite in the tryptophan degradation pathway.

11. LysoPC (Lysophosphatidylcholine): A lipid involved in cell membrane dynam-

ics.

12. Phosphatidylcholine Acyl-Alkyl and Diacyl: Major components of cell mem-

branes influencing lipid signaling.

13. Sphingomyelin: A type of sphingolipid involved in cell signaling and membrane

structure.

14. Carbohydrates (Glucose and Fructose): Primary energy sources whose dysreg-

ulation is central to diabetes.

15. Lipids (Phospholipids, Sphingomyelins, Triglycerides): Essential for energy stor-

age and cellular structure.

16. Amino Acids (Branched-Chain, Aromatic, Glycine, Glutamine): Building blocks

of proteins and key metabolic intermediates.

4.1.8.1 Metabolic Ratios

1. Triglyceride-to-High-Density Lipoprotein Cholesterol Ratio: An important marker

for assessing cardiovascular risk and metabolic health in diabetic conditions.

This extensive analysis underscores the complex interplay between genetic, protein,

and molecular factors in the pathophysiology of diabetes and prediabetes. Under-

standing these interactions is crucial for developing targeted therapies and managing

these metabolic disorders effectively.
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4.2 Candidate Gene Prioritization (RQ4-RQ6)

4.2.1 Identification of Core Genes

Seven core genes of insulin resistance were identified from literature and pathways

of several organs such as adipose tissue, liver, and skeletal muscles. These genes are

IRS1, IRS2 AKT2 functional in adipose tissue, liver, muscles, and heart, FOXO1

functions in the liver and heart, TNF-α, DAG, and IKK-β functions in kidney, liver,

and muscles (table 4.4). The selection of core genes associated with metabolic dis-

eases involved a thorough process. We began with a comprehensive literature review

to identify consistently reported genes and prioritized those from Genome-Wide As-

sociation Studies (GWAS) with statistically significant associations.

Table 4.4: Core genes selected from published literature and pathways

Sr No. Genes Organ

1. IRS1 Adipose tissue, liver, muscles, heart

2. AKT2 Adipose tissue, liver, muscles, heart

3. FOXO1 Liver, heart

4. TNF-α Kidney, liver, muscle

5. DAG Liver, muscle, kidney

6. IKK-β Liver, muscle, kidney

7. IRS2 Adipose tissue, liver, muscles, heart

Our focus on functional relevance considered genes actively participating in metab-

olism and insulin signaling pathways. Transcriptomic studies and protein-protein

interaction networks provided valuable insights. The rigorous evaluation included

genetic validity through replication and consideration of clinical relevance. Meta-

analyses and consensus among studies strengthened our selection. Notably, we prior-

itized genes experimentally validated through functional assays and animal studies,

ensuring the identification of robust core genes associated with metabolic diseases.
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4.2.2 Interaction Networks

After conducting a thorough literature and pathway analysis to verify the genes, we

identified interactions among the genes using GeneMania (figure 4.6) and downloaded

the resulting interaction data for genes.

While we were able to obtain interaction data for five of the seven genes, TNF-α

and IKK-β genes were not recognized by GeneMania. In addition, we investigated

networks that involved multiple pathways and retrieved the relevant pathways from

KEGG (Kyoto Encyclopedia of Genes and Genomes) (table 4.5).

Figure 4.6: Genes and pathway interaction networks
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Table 4.5: Pathways associated with genes.

Sr No.
Gene

name

Gene

ID

Pathways

name

Pathway with

KEGG

Pathway

ID

1 IRS1

ENSG

00000

169047

Growth

Harmone

Signaling

JAK-STAT

signaling
map04630

PI3K

signalling
map04151

thyroid

hormone
map04919

Growth

hormone

synthesis,

secretion,

and action

map04935

IRS

activation

Oocyte

meiosis
map04114

Yersinia

infection
map05135

Insulin

resistance
map04931

Colorectal

cancer
map05210

Adipocy-

tokine

signaling

pathway

map04920

Signal

attenuation

Insulin

resistance
map04931
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Human

T-cell

leukemia

virus 1

infection

map05166

Viral

carcinogenesis
map05203

2 IRS2

ENSG

00000

185950

EPO

signaling

pathway

Calcium

signaling

pathway

map04020

Epithelial

cell signaling

in Helicobacter

pylori infection

map05120

Peroxisome map04146

IGF1

PATHWAY

Longevity

regulating

pathway

map04211

AMPK

signaling

pathway

map04152

Ras

signaling

pathway

map04014

IL 7 Bile secretion map04976

Penicillin

and cephal-

osporin

biosynthesis

map00311
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Human

papilloma

virus

infection

ma051565

Natural killer

cell-mediated

cytotoxicity

map04650

3 FOXO1

ENSG

00000

150907

AKT

pathway

PI3K-Akt

signaling

pathway

map04151

Insulin

signaling

pathway

map04910

ErbB

signaling

pathway

map04012

Estrogen

signaling

pathway

map04915

Regulation

of gene

expression

Regulation

of actin

cytoskeleton

map04810

MicroRNAs

in cancer
map05206

Type II

diabetes

mellitus

map04930

Alcoholism map05034
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FOXO

TAD

Longevity

regulating

pathway – worm

map04212

Human

papilloma

virus infection

map05165

4 DAG

ENSG

00000

173402

ST ADRE

NERGIC

beta-Adren-

ergic receptor

agonists/

antagonists

map07214

Adrenergic

signaling in

cardiomyocytes

map04261

Dilated

cardiomyopathy
map05414

Antiarrhythmic

drugs
map07037

5 AKT2

ENSG

00000

105221

Down

regulation

of ERBB3

MicroRNAs

in cancer
map05206

EGFR tyrosine

kinase inhibitor

resistance

map01521

down

regulation

of ERBB2

Platinum

drug resistance
map01524

These KEGG pathway insights, in combination with gene interaction data from Gen-

eMania, provide a foundational framework for understanding the complex molecular

mechanisms underlying prediabetic insulin resistance.
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4.2.3 Identification of Hub Genes

We utilized a tool called Gephi 0.9.2 to develop and analyze Directed Gene Regula-

tory networks (figure 4.7). We applied various statistical tests, including degrees and

average weighted degrees, to determine the number of interactions between the genes.

The centralities of the nodes in the graph were also evaluated, such as betweenness,

which indicates the significance of a node in connecting different parts of the net-

work, closeness, which measures the shortest distance between nodes, and harmonic,

which assesses the influence of neighboring nodes. Through this analysis, we aimed

to identify hub genes in the network, which are nodes with the highest centralities.

These hub genes may play crucial roles in regulating the activity of other genes and

pathways within the network, making them potential targets for further investigation

and therapeutic intervention.

Figure 4.7: Directed gene regulatory networks of genes

Several genes were observed to be interacting with 5 key genes selected from published

literature showing association with insulin resistance and metabolic diseases. Through

Directed Gene Regulatory Network analysis and application of statistical test results,
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we were able to filter 18 Hub genes UBB, UBA52, NRG1, AKT3, NFKBIL1, AKT1,

RELA, MAPK1, MAPK14, PTK2B, GSK3B, MAPK3, DOK1, SOS1, RAF1, SHC1,

INSR and PIK3R1.

These genes were filtered based on statistical test results values Closeness Centrality

(CC) > 0.5); Harmonic closeness Centrality (HC) > 0.5); Eigen Centrality (EC) >

0.1); and Betweenness Centrality (BC) > 1) (Table 4.6).

Table 4.6: Identified hub genes through gene regulatory network

S. No. Genes CC value HC value EC value BC value Hub

1 UBB 0.7 0.785714 0.310124 18.08333 0

2 UBA52 0.714286 0.8 0.147258 22.75 0

3 NRG1 1 1 0.284012 8 0

4 AKT3 0.666667 0.75 0.356075 4 0.11174

5 NFKBIL1 1 1 0.126848 2.5 0.07556

6 AKT1 1 1 0.816136 7 0.04572

7 RELA 0.8 0.875 0.198619 11.12349 0.19884

8 MAPK1 0.666667 0.791667 0.364812 20.10043 0.15782

9 MAPK14 0.727273 0.8125 0.165843 16.45758 0.16889

10 PTK2B 0.727273 0.854167 0.166394 3.783009 0.19484

11 GSK3B 0.571429 0.760417 0.520458 18.7 0.16461

12 MAPK3 0.833333 0.9 0.428249 2.490079 0.10664

13 DOK1 1 1 0.392475 1.392857 0.11116

14 SOS1 1 1 0.350811 4.123413 0.15544

15 RAF1 0.833333 0.9 0.102 4.393687 0.21599

16 SHC1 1 1 0.331766 18.94607 0.21408

17 INSR 0.615385 0.6875 0.68485 16.50043 0.08371

18 PIK3R1 1 1 0.133489 2.946068 0.24045

The identification of these 18 hub genes highlights their central role in the regulatory

network of insulin resistance. Their high centrality values suggest significant influence
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in signal transduction and metabolic regulation, making them promising candidates

for further experimental validation and potential targets for therapeutic intervention

in prediabetes.

4.2.4 Functional Annotation and Pathway Cross-talk Net-

work

The enrichment analysis method was used to identify over-represented classes of genes

or proteins within a large group of samples, to reveal any existing associations with

disease phenotypes. One approach to this was to use GO enrichment analysis, which

can help to identify functionally enriched pathways of hub genes by examining their

involvement in biological processes, molecular functions, and cellular components.

Functional enrichment analysis is another approach, which applies statistical tests to

match genes of interest with certain biological functions.

By identifying these functional associations, enrichment analysis can help to shed

light on the underlying mechanisms driving disease phenotypes and provide potential

targets for therapeutic intervention. To identify functionally enriched pathways asso-

ciated with hub genes, GO enrichment analysis was performed for biological process,

molecular function, and cellular components. The enrichment analysis was validated

using TOPPGENE and literature. Only statistically significant pathways (as deter-

mined by the FDR B&H test) and had positive values greater than 1 were selected.

These significant pathways and hub genes were then used to generate a network of

functionally significant pathways with cross-talk between them (Figure 4.8).

4.2.5 Validation of hub genes

An enrichment analysis was performed on a set of 18 genes, which were found to be

enriched in functionally diverse pathways. Among these 18 genes, 8 hub genes were

validated through literature and all of the hub genes were found to have a direct or

indirect role in inflammation.
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Figure 4.8: Pathway cross-talk generation of functionally enriched pathways of
hub genes

4.2.5.1 Gene 1: SHC1

p66Shc is an adaptor protein that connects surface receptors to intracellular signal-

ing pathways, influencing cellular response to nutrient availability. It is resistant

to diabetes and obesity but inhibits glucose metabolism, promoting a shift towards

anabolic metabolism. By counteracting insulin and mTOR signaling, p66Shc limits

glucose uptake and metabolism, differentiating it from other Shc1 isoforms [212].

4.2.5.2 Gene 2: AKT1

AKT1 is a key mediator of insulin, IGF1, and glucose responses and regulates muscle

hypertrophy and atrophy. We examined the role of AKT1 variants in metabolic

syndrome endophenotypes and found that insulin activated all Akt isoforms in lean

muscles, while only Akt-1 was activated in obese muscles. Reduced IRS-1 expression

and PI3K activity were observed in obese muscles, which are essential for insulin indu-
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ced Akt activation [23], [213].

4.2.5.3 Gene 3: PIK3R1

PIK3R1 regulatory subunits are vital for insulin signaling, with mutations causing

severe insulin resistance in PI3K-dependent pathways. These mutations contribute

to syndromes affecting growth, vision, fat distribution, diabetes, and ovarian cysts,

highlighting PIK3R1’s role in development and disease. [214].

4.2.5.4 Gene 4: GSK3B

GSK-3β is an enzyme that is suppressed by insulin. Elevated levels of GSK-3β result

in insulin resistance and diabetes. Its role in beta cell development and function is

poorly understood. GSK-3β deficiency in beta cells may control their growth through

feedback inhibition of the insulin receptor/PI3K/Akt signaling pathway [215].

4.2.5.5 Gene 5: AKT3

Resistin plays a role in insulin resistance by reducing insulin-stimulated glucose oxida-

tion and decreasing IRS-1 and Akt1 function, leading to reduced glucose uptake and

GLUT4 translocation. This may contribute to the pathophysiology of type 2 diabetes

in obesity [216].

4.2.5.6 Gene 6: RELA

TRB1 functions as a transcriptional coactivator of RELA in adipocytes, enhancing the

expression of proinflammatory cytokines. This dual role of TRB1 likely contributes to

the amplification of inflammatory responses in white adipose tissue, a characteristic

feature observed in conditions such as sepsis, insulin resistance, and obesity-associated

type 2 diabetes. The upregulation of TRB1 may thus serve as a molecular link be-

tween chronic low-grade inflammation and metabolic dysregulation. Understanding
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the regulatory mechanisms of TRB1 could provide novel insights into the pathogenesis

of metabolic diseases and uncover potential therapeutic targets aimed at modulating

adipose tissue inflammation [217].

4.2.5.7 Gene 7: MAPK1

The role of p38 MAPK in regulating glucose transport in insulin-sensitive skeletal

muscle, potentially through increased GLUT-4 activity, is not universally accepted.

The specific role of p38 MAPK in regulating insulin-stimulated glucose transport in

cultured myocytes is unclear [218], [219].

4.2.5.8 Gene 8: INSR

Obesity is linked to insulin resistance and inflammation, and low-dose insulin infu-

sion triggers a response in circulating human mononuclear cells (MNC). MNCs from

obese individuals have reduced levels of phosphorylated insulin receptor beta subunit

(p-INSR-beta), increased levels of pro-inflammatory mediators (IKBKB, SOCS, and

PRKCB2) that are associated with p-INSR-beta, and reduced insulin sensitivity [220].

4.3 Results for Objective 3 (RQ6-RQ9)

We employed an in-silico approach to identify biomarkers associated with prediabetic

insulin resistance. Initially, biomarkers were selected from literature review and des-

ignated as set no 1. Subsequently, an interaction network was constructed using set

no 1 genes, revealing additional genes interacting with these initial biomarkers, which

were termed set no 2. Enrichment analysis was then conducted on all identified genes

to annotate their biological, molecular, and cellular functions. UniProt was used to

obtain UniProt IDs and protein sequences for all genes. The genes identified through

interaction network and literature mining were subjected to BLASTP analysis against

the Protein Data Bank (PDB) to validate their three-dimensional protein structures.
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Energy profiles of the modeled proteins were evaluated using the ProSA server, which

indicated negative Z scores across all protein structures, confirming their structural

integrity.

Protein-protein docking simulations were performed using the GRAMM-X web server

and Cluspro to predict interactions between proteins from set no 1 (known biomarkers)

and set no 2 (novel biomarkers). Docked protein complexes were further analyzed

using Discovery Studio, revealing ARG13 as the most frequently occurring amino

acid residue among all docked proteins.

Molecular docking of set no 1 biomarkers and set no 2 novel biomarkers was conducted

to identify common interacting amino acid residues, providing insights into potential

molecular interactions relevant to prediabetic insulin resistance

4.4 Prediabetic Insulin Resistance Genes Through

Text Mining

By literature review through manual process, 25 different genes were selected that are

placed in table 4.7. there were many articles on pub med and google scholar that were

reviewed and then selected these 25 genes that play role in prediabetes and insulin

resistance.

Table 4.7: Genes list from text mining

Sr.no Gene Name Reference

1 HNF4A(MODY1) [158]

2 GCK(MODY2) [159]

3 HNF1A(MODY3) [160]

4 PKM [161]

5 FASN [161]

6 ACACA [161]

7 PEPCK [161]
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Table 4.7 continued from previous page

Sr.no Gene Name Reference

8 INSR [162]

9 IRS1 [163]

10 IRS2 [163]

11 GUT4 [162]

12 IGF1 [162]

13 GCKR [162]

14 SIRT1 [164]

15 GAPDH [164]

16 PKLR [163]

17 SSTR2 [164]

18 FOS [161]

19 GCK [161]

20 APOA1 [161]

21 PCK2 [161]

22 G6PC [161]

23 APOC3 [162]

24 GLP1R [162]

Through a systematic literature review, 24 distinct genes were identified and compiled

in table 4.7. These genes were selected based on their documented roles in prediabetes

and insulin resistance, drawing from comprehensive reviews of articles available on

PubMed and Google Scholar.

4.4.1 Identification of Novel Biomarkers Associated with Es-

tablished Genes via Gene Interaction Networks

The FunCoup database (http://FunCoup.sbc.su.se) was utilized as a bioinformat-

ics tool to analyze network interactions among genes and their products, facilitating
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the creation of comprehensive global interaction networks [221]. Through a system-

atic literature review using the FunCoup server, genes interacting with those initially

queried were identified. These newly discovered genes, which interacted with the

queried genes, were documented and compiled in table 4.8 as novel biomarkers.

The interaction network derived from literature analysis was visually depicted in fig-

ure 4.9. This network illustrated the extensive interactions of genes from set no 1

with various other genes, highlighting their interconnectedness and potential roles in

biological processes related to prediabetes and insulin resistance. This Figure repre-

sents a network graph illustrating gene interactions pertinent to prediabetes. Here is

a scientific interpretation of the results:

Node Characteristics:

Each node represents a gene, with larger nodes possibly indicating greater significance

or stronger associations within the network. The colors, ranging from blue to black,

may denote varying levels of expression, significance, or types of interactions.

Gene Clusters:

The graph exhibits several clusters of tightly interconnected genes, suggesting func-

tional cooperation or involvement in the same biological pathways. The central cluster

with larger nodes likely represents key genes involved in prediabetic conditions.

Key Genes:

� HSP90AB1, GAPDH, ENO1, ACTB, TUBB, etc.: These genes are central and

exhibit numerous connections, indicating their critical roles within the network.

They may serve as key regulators or biomarkers in prediabetes.

� INSR, IRS1, IGF1: Genes located on the periphery yet connected to the cen-

tral cluster are likely involved in insulin signaling, a crucial aspect of glucose

metabolism often disrupted in prediabetes.

Sub-networks:
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� Genes such as APOA1, APOC3 form a distinct sub-network, implicating their

roles in lipid metabolism, an important factor in metabolic syndromes and pre-

diabetes.

� SIRT1, IRS2: Another sub-network, suggesting involvement in insulin resistance

and metabolic regulation.

Gene Interactions:

The edges, representing interactions or relationships between genes, form a dense

network, particularly in the central region, suggesting a complex interplay where these

genes may influence each other’s expression or function.

Potential Biomarkers:

Genes with numerous interactions and central positions in the network, such as

HSP90AB1 and GAPDH, could serve as potential biomarkers or therapeutic targets

for prediabetes. In summary, this network graph highlights critical genes and their

interactions in the context of prediabetes, indicating a complex interplay among genes

involved in glucose metabolism, insulin signaling, and lipid metabolism. The central

and highly connected genes might be crucial in elucidating the molecular mechanisms

underlying prediabetes and could be targets for early diagnosis or therapeutic inter-

ventions.

Table 4.8: Genes list through interaction network

Sr.no Gene Name Sr.no Gene Name

1 ENO2 16 YWHAE

2 PRDX1 17 HSP90AB1

3 ALDH2 18 TUBB4B

4 PYGB 19 ENO1

5 MDH2 20 NPEEPS

6 ACTB 21 TALDO1

7 TUBB 22 PSMD2
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Table 4.8 continued from previous page

Sr.no Gene Name Sr.no Gene Name

8 EEF2 23 MDH2

9 PGK1 24 ACSS2

10 RACK1 25 VDAC2

11 PGD 26 HSPAL

12 PGM1 27 SLC25A5

13 VCP 28 HSPD1

14 HSPA8 29 ATTP51B

15 EEF1A1 30 GPI

The genes that formed an interaction network with the Set 1 genes are detailed in

table 4.8. Genes from Set 1 that were not present in the interaction network were

excluded from the analysis.

4.4.2 Enrichment analysis

Enrichment analysis evaluates the functional relationship between experimentally de-

rived genes or proteins and a database of known gene/protein sets involved in com-

mon biological tasks. A commonly used method for this purpose is over-representation

analysis (ORA) [200]. Through enrichment analysis, gene annotations were performed

at the cellular, molecular, and biological levels for both Set 1 and Set 2 genes. These

annotations helped identify the diverse functions of the genes at different levels.

Table 4.9: Molecular Annotation through Enrichment Analysis

Annotation Signifi- Signifi Dataset Dataset Dataset

cance of cance of size size size

(pathway/ network) overlap (uploaded (pathway (overlap)

process) distance (Fisher gene set) gene set)

distrib. test,
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(XD-Score) q-value)

Insulin-like 2.0538 0.00041 20 13 IRS1

growth factor INSR

receptor IGF1

binding

Phosphatidy 1.3269 0.00081 20 20 IRS2

linositol 3- IRS1

kinase INSR

binding

Lipopoly- 0.802 1 19 11 HSPD1

saccharide

binding

ATPase activity, 0.802 1 19 11 HSPA8

coupled

AMP binding 0.7339 1 19 12 ACSS2

Enzyme 0.5839 1 19 15 PSMD2

regulator

activity

Cell surface 0.5133 1 19 17 HSPD1

binding

Oxidoreductase 0.5133 1 19 17 ALDH2

activity, acting

on the aldehyde

or oxo group ,

of donors

NAD or NADP

as acceptor

Kinesin 0.4575 1 19 19 ACTB

binding
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Figure 4.9: The interaction network of genes was analyzed using the FunCoup
database (http://FunCoup.sbc.su.se). Bold and highlighted circles represent in-
teractions with other genes, while the highlighted genes specifically belong to set

number 1

In table 4.9, molecular annotations derived from enrichment analysis are presented,

highlighting significant XD scores (in bold) and overlapped genes, with IRS1, IRS2,

and INSR being the most frequently overlapping genes. Tissue specificity for all

genes from Set 1 and Set 2 was also analyzed using the EnrichNet server, with XD

scores ranging from 8.97 to 1.09 across different tissues. Additional results, including

biological and cellular annotations, are provided in the supplementary data.

4.4.3 Retrieval of Protein Sequences for Set 1 and Set 2

The UniProt server was used to verify gene IDs and retrieve protein sequences.

UniProt (Universal Protein Resource) offers a comprehensive, easily accessible re-

source for protein sequences and functional annotations [201]. Protein sequences for

genes from Set 1 (selected manually) and Set 2 (interacting with Set 1 genes) were
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downloaded from the UniProt Knowledgebase in FASTA (canonical) format. The

gene IDs used were as follows: P35568, Q9Y4H2, P05019, Q14397, P35557, P14618,

P49327, Q13085, P06213, P04406, P30613, P14618, P02647, Q16822, P02656, P09104,

Q06830, P05091, P11216, P40926, P60709, Q7JJU6, P13639, P00558, P52209, P36871,

P55072, P11142, P68104, P62258, P08238, P68371, P06733, P37837, Q13200, P40926,

Q9NR19, P45880, P05141, P10809, Q92643. Protein sequences obtained from these

gene IDs were compiled in a Word document, with the FASTA sequences provided in

the supplementary data.

4.4.4 Gene Annotation

All genes obtained manually and through the interaction network were annotated

using the Software Tool for Researching Annotations of Proteins (STRAP), provided

by the European Bioinformatics Institute (Wellcome Trust Genome Campus, Hinxton,

Cambridge, UK) [4]. Differential proteins were identified using UniProt IDs, which

were then input into STRAP to generate protein annotation tables and diverse Gene

Ontology (GO) charts for the proteomic data.
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Table 4.10: Gene annotation through strap tool

Gene

Name

Uniprot

Id
Name

Primary

gene

name

Length Function

L0HBA3 L0HBA3
Phospho

transferase
GCK 51

Glucokinase (GCK)

guides the release of

insulin and the

metabolism of the

liver glucose.

P20823 P35568
Insulin receptor

substrate 1
IRS1 1242

Can mediate insulin

regulation of different

cell processes.

Q9Y4H2 Q9Y4H2
Insulin receptor

substrate 2
IRS2 1338

Regulation of different

insulin cellular processes

can be mediated.



R
esu

lts
126

Table 4.10 continued from previous page

Gene

Name

Uniprot

Id
Name

Primary

gene

name

Length Function

P05019 P05019
Insulin-like

growth factor I
IGF1

Insulin-like growth factors

are structurally and functionally

linked to insulin and are

plasma isolated, but have

dramatically increased

activity to promote growth.

Stimulates glucose delivery

to osteoblastic bone-derived

cells and operates at much

lower levels than insulin.

Q14397 Q14397
Glucokinase

regulatory protein
GCKR

Glucokinase (GCK) is

regulated by forming an

inactive enzyme complex.
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Table 4.10 continued from previous page

Gene

Name

Uniprot

Id
Name

Primary

gene

name

Length Function

Q86Y46
Keratin, type II

cytoskeletal 73
KRT73

Specific portion of

intermediate keratin

filaments in the hair

follicle’s internal root

sheath (IRS).

P35557 P35557 Hexokinase-4 GCK

Phosphorylation to

hexosis 6-phosphate

catalyzed, including

hexosis of D-glucose,

D-fructose and

D-mannose.

A7LFL1 A7LFL1 Phosphotransferase GCK 465

Transfers sugars into

the cell, including

glucose, mannose

and mannitol.
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Table 4.10 continued from previous page

Gene

Name

Uniprot

Id
Name

Primary

gene

name

Length Function

P14618 P14618
Pyruvate kinase

PKM
PKM

Has a role in

hair growth.

Specific components

of intermediary keratin

filaments in the hair

follicle’s inner root

sheath (IRS).

P49327 P49327 Fatty acid synthase FASN

Fatty acid synthetase is a

multifunctional enzyme

that catalyze long-chain

saturated fatty acid de novo

biosynthesis in the presence

of NADPH starting from

the acetile-CoA and

malonyl-CoA.
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Table 4.10 continued from previous page

Gene

Name

Uniprot

Id
Name

Primary

gene

name

Length Function

A0A0U1RQF0 A0A0U1RQF0

3-hydroxyacyl-

[acyl-carrier-protein]

dehydratase

FASN 2509

The multifunctional

protein contains 7

catalysts.

Q13085 Q13085 Acetyl-CoA carboxylase 1 ACACA

Cytosolic enzyme which

catalyzes acetyl-CoA

carboxylation into

malonyl-CoA.

Q86SK9 Q86SK9 Stearoyl-CoA desaturase 5 SCD5

Stearyl-CoA desaturase that

4uses O(2) and reduced

cytochrome b5 electrons to

introduce saturated fatty

acyl-CoA substrates with

the first double connections.
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Table 4.10 continued from previous page

Gene

Name

Uniprot

Id
Name

Primary

gene

name

Length Function

O00767 000767 Acyl-CoA desaturase SCD 359

The role of lipid biosynthesis

plays a significant role.

The role of genes involved

in lipogenesis is significant

in regulating the expression

of mitochondrial oxidation

of fatty acid.

P35558 P35558

Phosphoenolpyruvate

carboxykinase, c

ytosolic [GTP]

PCK1

Cytosolic phosphoenolpyruvate

carboxykinase which catalyzes

the reversible decarboxylation

and oxaloacetate (OAA)

phosphorylation and functions

as the gluconeogensis-restrictive

enzyme
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Table 4.10 continued from previous page

Gene

Name

Uniprot

Id
Name

Primary

gene

name

Length Function

Q16822 Q16822

Phosphoenolpyruvate

carboxykinase [GTP],

mitochondrial

PCK2
A metabolism task that

generates lactate glucose.

P06213 P06213 Insulin receptor INSR

Tyrosine kinase receptor

that mediates insulin

pleiotropic activities.

P14672 P14672

Solute carrier family 2,

facilitated glucose

transporter member 4

SLC2A4

A glucose supplementary

transporter regulated by

insulin that plays a key

role in blood circulation

removal.

Insulin response is 4

controlled by its

intracellular role.
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In table 4.10, gene annotation was performed using the STRAP tool, where gene IDs,

primary names, primary lengths, and gene functions were identified. The STRAP

tool revealed multiple functions for each gene. For example:

GCK plays a role in regulating insulin. IRS1 is involved in mediating cellular pro-

cesses related to insulin. IGF1 (Insulin-like Growth Factor 1) functions in insulin-

related processes and is derived from plasma. GCKR is associated with glucokinase

regulation. KRT73 is involved in hair root formation. Hexokinase-4 plays a role

in the formation of D-fructose and D-mannose. Phosphotransferase is involved in

sugar transport within cells. PKM contributes to hair growth. FASN is crucial in the

formation of long-chain fatty acids from acetyl-CoA. 3-Hydroxyacyl-dehydratase

acts as an acyl carrier and performs seven catalytic functions. ACACA is a cytosolic

enzyme involved in the rate-limiting step of fatty acid synthesis. SCD5 produces a

mixture of unsaturated fatty acids. PCK1 has different functions at low and high

glucose levels, catalyzing cataplerotic reactions at low glucose levels and anaplerotic

reactions at high glucose levels. SLC2A4 facilitates the transport of glucose from

the extracellular environment into cells.

4.4.5 Sequence Alignment to Identify Similar Proteins in PDB

Protein BLAST (BLASTP) was performed using the NCBI database to compare pri-

mary biological sequences, including proteins, amino acids, and nucleotides of DNA

and RNA. BLAST (Basic Local Alignment Search Tool) is a program that compares

primary biological sequence information to identify similarities with existing sequences

in the database [204].

The BLAST database contains extensive protein and nucleotide sequences from var-

ious organisms. By comparing the subject sequence with sequences already present

in the database, BLAST helps identify related sequences and provides insights into

the subject sequence. Protein sequences collected from UniProt were analyzed us-

ing BLASTP to find similar three-dimensional structures in the Protein Data Bank

(PDB).
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The protein sequences, obtained from UniProt in FASTA format, were input into the

query sequence box on the BLAST website (blast.ncbi.nlm.nih.gov) and subjected

to BLAST analysis. This process identified similarities between the query protein

sequences and existing protein sequences in the database across different species.

4.4.6 Sequence Similarity Check using BLAST

The sequence similarity of the query sequences with other genes was assessed using

BLAST. The expected value (E-value) indicates the number of hits one can expect to

see by chance when searching a database of a particular size.

A lower E-value signifies a closer match to the query sequence. In table 4.11, all query

sequences had E-values of 0 or less, indicating that the query protein sequences were

well-represented in the PDB, with identification rates ranging from 90% to 100%.

Table 4.11: Multiple sequence alignment of all the genes of set no 1 and 2

Gene

name

Descri

ption

Scien

tific

name

Max

score

Total

score

Query

cover

E

value

Per

ident

GCK

Chain A,

Glucokinase

Isoform 3

Homo

sapiens
102 102 100% 3e-28 98.04%

GCKR

Chain A,

Glucokinase

Regulatory

Protein

1288 1288 100% 0.0 100.00%

IGF1

Chain A,

Insulin-

Like

Growth

Factor-I

Homo

sapiens
149 149 35% 1e-47



Results 134

Table 4.11 continued from previous page

Gene

name

Descri

ption

Scien

tific

name

Max

score

Total

score

Query

cover

E

value

Per

ident

IRS1

Chain A,

Insulin

Receptor

Substrate 1

Homo

sapiens
560 560 21% 0.0 100.00%

IRS2

Chain A,

Insulin

Receptor

Substrate 1

Homo

sapiens
320 320 20% 3e-100 60.44%

INSR
Chain A,

Insulin receptor

Homo

sapiens
2783 2783 98% 0.0 98.60%

PKM

Chain A,

Pyruvate

kinase

PKM

Isoform

M2

Homo

sapiens
1097 1097 100% 0.0 100.00%

PKLR

Chain A,

Pyruvate

kinase

PKLR

Homo

sapiens
1097 1097 94% 0.0 100.00%

ACACA

Chain A,

Acetyl-

CoA

carboxylase 1

Homo

sapiens
4888 4888 100% 0.0 99.96%
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Table 4.11 continued from previous page

Gene

name

Descri

ption

Scien

tific

name

Max

score

Total

score

Query

cover

E

value

Per

ident

SITR2

Sirt2 in

complex

with a

13-mer

trifluoro

acetylated

Ran peptide

Homo

sapiens
736 736 91% 0.0 100.00%

4.4.7 Domain Identification and Structure Prediction

Protein structure predictions were carried out using the Robetta server, which employs

the de novo Rosetta method [206]. Robetta provides protein domain models both ab

initio and via comparative methods. The energy profiles of the predicted protein

structures were assessed using the ProSA server. ProSA is used to identify errors

in theoretical and experimental protein structures and is known for its rapid results,

even with large molecules [207]. This server calculates Z-scores and energy values for

each protein structure, with lower Z-scores indicating more accurate structures. The

protein sequences were entered into ProSA, and the following Z-scores were noted for

the genes in Set 1 and Set 2 (table 4.12):

Table 4.12: Z-scores were noted for the genes in set 1 and set 2

S.No Genes Z- Scores

1 ACACA -13.35

2 ACOD -1.21

3 APOA -5.07

4 APOC3 -0.37
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5 FASN -11.78

6 G3P -9.9

7 GCK -8.84

8 GCKR -4.6

9 IGF1 -4.6

10 INSR -9.83

11 IRS1 -5.18

12 IRS2 -5.38

13 KPYM -10.89

14 PKLR -10.89

15 SIRT1 -

16 ENO2 -5.34

17 PRDX1 -7.55

18 ALDH2 -9.85

19 PYGB -11.52

20 MDH2 -9.45

21 ACTB -10.09

22 TUBB -8.78

23 EEF2 -12.41

24 PGK1 -11.52

25 RACK1 -3.3

26 PGD -11.78

27 PGM1 -12.1

28 VCP -12.96

29 HSPA8 -8.72

30 EEF1A1 -9.95

31 YWHAE -6.8

32 HSP90AB1 -9.05

33 TUBB4B -8.78

34 ENO1 -10.34
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35 TALDO1 -8.8

36 MDH2 -9.45

37 ACSS2 -9.4

38 VDAC2 -4.74

39 SLC25A5 -4.9

40 HSPD1 -10.25

Given that all Z-scores were negative, the predicted protein structures are considered

accurate.

4.4.8 Additional Validation Using MetaMQAPII & PHY-

RE2 Servers

The MetaMQAPII and PHYRE2 servers were also used to validate the 3D struc-

tures of the proteins. Protein sequences in PDB format were entered along with the

corresponding protein names. Results were sent to the provided email address, with

processing times varying from a few minutes to several hours. These servers helped

confirm the accuracy and reliability of the predicted protein structures.

Figure 4.10: The protein structure validation of EEF2 were represent in this
graph and Z score value is -12.41. Z-score is a numerical measurement that gives a

value’s relationship to the mean of a group of values.
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Figure 4.11: The protein structure validation of INSR were represent in this graph
and Z score value is -9.83.

The Z-score, also known as the standard score, is a valuable statistic for two primary

reasons: (a) it allows us to estimate the probability of a score occurring within a

normal distribution, and (b) it enables the comparison of scores from different normal

distributions. In this context, the Z-score was used to assess the predicted protein

structures (figure 4.10, 4.11). A positive Z-score indicates that the protein structure’s

value is above the mean, while a negative Z-score suggests it is below the mean. This

metric also helped determine the minimum threshold level for query proteins (figure

4.10, 4.11). Additional protein graphs are available in the supplementary data.

4.4.9 Protein-Protein Docking

In both computational and experimental biology, there is an increasing need for

reliable computational methods to model and analyze protein interactions. The

GRAMM-X web server [208] was utilized to investigate interactions between pairs

of protein structures. This server facilitates ligand and receptor docking to analyze

protein interactions. Genes from set 1 were used as receptors, while genes from set 2

served as ligands, enabling protein-protein docking. Results were collected via email.

To cross-validate the docking results, ClusPro—a tool for automated docking and dis-

crimination in predicting protein complexes—was also employed. Both GRAMM-X
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and ClusPro yielded similar docking results. Predicting protein structures is a critical

and challenging task in theoretical and computational biology.

Protein docking is essential for understanding cellular functions and organization. The

ClusPro server, known for its ease of use in protein-protein docking, requires two files

in PDB format: one for the receptor and one for the ligand. This method generates

multiple docked protein structures and provides model scores for these structures

[209][210].

4.4.10 Analysis of Docking

Docking analysis was conducted to examine the interactions between ligands and

proteins. The docking results identified the amino acids involved in protein-protein

interactions, highlighting amino acids as the functional units of proteins. This infor-

mation is crucial for understanding how proteins interact at the molecular level.

Discovery Studio is a software suite designed for researchers to simulate small molecule

and macromolecule systems. Developed and distributed by Dassault Systèmes BIOVIA,

Discovery Studio offers a variety of applications, including simulation, ligand design,

pharmacophore modeling, and structure-based design, which are essential tools in

drug design and protein modeling research [211].

4.4.11 Identification of Common Amino Acids in Interacting

Complexes to Confirm Set 2 Genes as Novel Biomark-

ers

The docking results were analyzed using Discovery Studio to identify the interacting

amino acids in the docked complexes (figure 4.12, 4.13). Surface analysis was per-

formed, and the interacting amino acids were noted. The molecular docking of set 1

biomarkers with set 2 novel biomarkers aimed to identify the most common interacting

amino acid residues, as shown in table 4.13.
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Figure 4.12: Docking result of ACACA and ENO1.The figure shows that there are
many amino acids that help in interaction of two proteins. In the docking between

ACACA-ENO1, ACACA is the receptor and ENO1 is ligand.

Figure 4.13: The docking result G3P AND PGM1The picture shows that there
are many amino acids that help in interaction of two proteins. In the docking

between G3P-PGM1, G3P is the receptor and PGM1 is ligand.
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From table 4.13, it is evident that many of the set 2 novel biomarkers, which showed

interactions with set 1 biomarkers in the gene interaction network, interact with the

same amino acids of their corresponding receptors. Therefore, during the interaction

of these two sets of biomarkers, the novel biomarkers can induce mutations in these

amino acids, leading to the development of disease. Such mutations decrease the

stability of the receptor genes, which may contribute to the pathological process.

Table 4.13: Most frequent amino acids as a result of docking

Sr.no Amino acids Repetition

1 TYR215 9

2 ARG400 10

3 ASP35 10

4 LEU10 10

5 LEU39 10

6 LYS194 10

7 MET231 10

8 THR187 10

9 ARG200 11

10 HIS218 11

11 LYS18 11

12 LYS186 11

131 PHE233 11

14 TYR45 11

15 ARG40 12

16 TRP15 12

17 ARG16 13

18 ARG21 13

19 TYR42 13

20 TRP196 14

21 ARG197 15

22 ARG13 23
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Discussion

A detailed meta-analysis has illuminated a broad spectrum of genes and proteins ex-

hibiting dysregulation in both diabetes and prediabetes, underscoring the complexity

of these metabolic disorders. This analysis has revealed that genes such as SGCZ,

HPSE2, ADGRA1, GLB1L3, PCSK6, SIRT1, PPAR, PGC1 alpha, NRF1, TG gene,

and HBA1c play significant roles. Each gene has distinct functions that contribute to

the pathophysiology of diabetes and prediabetes.

For instance, SGCZ (Sarcoglycan Zeta) is involved in muscle integrity and function,

and its dysregulation is linked to muscular dystrophies, potentially impacting insulin

signaling pathways. HPSE2 (Heparanase 2) is associated with extracellular matrix

remodeling, and alterations in this gene can affect cellular metabolism and glucose

homeostasis. ADGRA1 (Adhesion G Protein-Coupled Receptor A1) plays a role in

cell adhesion and signaling, influencing inflammatory responses in diabetes [239].

GLB1L3 (Galactosidase Beta 1 Like 3) is involved in carbohydrate metabolism, where

its dysregulation can disrupt glucose breakdown. PCSK6 (Proprotein Convertase

Subtilisin/Kexin Type 6) regulates the activation of precursor proteins, thereby in-

fluencing metabolic pathways. SIRT1 (Sirtuin 1) is a critical regulator of metabolic

homeostasis, and its impaired function is closely linked to insulin resistance. PPAR

(Peroxisome Proliferator-Activated Receptor) is central to lipid metabolism and glu-

cose regulation, with its dysregulation leading to metabolic syndrome. PGC1 alpha

142
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(Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha) is involved

in mitochondrial biogenesis and oxidative metabolism. NRF1 (Nuclear Respiratory

Factor 1) regulates mitochondrial function and energy metabolism. The TG gene

(Thyroglobulin) is implicated in thyroid hormone synthesis, affecting metabolic rate.

Lastly, HBA1c (Hemoglobin A1c) serves as a marker for long-term glucose levels,

where elevated levels indicate poor glucose control in diabetes [239].

Proteins also play significant roles in these disorders. Branched-chain and aromatic

amino acids such as leucine, valine, tyrosine, phenylalanine, and isoleucine are involved

in protein synthesis and metabolic signaling. Fluorodeoxyglucose, a glucose analog

used in PET scans, monitors glucose uptake in tissues. Nonesterified fatty acid reflects

lipid metabolism and is associated with insulin resistance. The protein p66Shc is

involved in oxidative stress responses and aging. Monocyte Chemoattractant Protein-

1 (MCP-1) plays a role in inflammatory processes contributing to insulin resistance,

while C-Reactive Proteins are inflammatory markers linked to cardiovascular risk in

diabetes.

GROalpha (CXCL1) is a chemokine involved in inflammatory responses, and zeta-

Sarcoglycan protein is essential for maintaining muscle integrity. Heparinase 2 regu-

lates extracellular matrix dynamics and affects cell signaling, and ADGRA1 influences

inflammatory responses. GLB1L3 participates in glycosylation processes, and PCSK6

activates other proteins through proteolytic cleavage [243].

Molecules identified in this analysis include heparan sulfate proteoglycans, key com-

ponents of the extracellular matrix affecting cellular communication. Alkaline phos-

phatase (ALKP) is an enzyme linked to bone and liver health, and Interleukin-1

Receptor Antagonist (IL-1RA) modulates inflammatory responses. Vascular Cell

Adhesion Molecule 1 (VCAM1) plays a role in leukocyte adhesion and inflamma-

tion, and pentosidine-glucuronide is an advanced glycation end product indicating

oxidative stress. Glutamyl-lysine-sulfate is a marker for protein modification, and in-

doxyl sulfate is a uremic toxin associated with kidney dysfunction. Dihydroxyphenyl-

gamma-valerolactone-glucuronide is a metabolite derived from dietary polyphenols,

and fluoro-6-thia-heptadecanoic acid is an analog of fatty acids used in metabolic
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studies. Kynurenine is a metabolite in the tryptophan degradation pathway, while

lysoPC (lysophosphatidylcholine) is a lipid involved in cell membrane dynamics. Phos-

phatidylcholine acyl-alkyl and diacyl are major components of cell membranes influ-

encing lipid signaling, and sphingomyelin is a type of sphingolipid involved in cell

signaling and membrane structure. Carbohydrates such as glucose and fructose are

primary energy sources whose dysregulation is central to diabetes. Lipids includ-

ing phospholipids, sphingomyelins, and triglycerides are essential for energy storage

and cellular structure, and amino acids like branched-chain, aromatic, glycine, and

glutamine are building blocks of proteins and key metabolic intermediates [244–247].

The triglyceride-to-high-density lipoprotein cholesterol ratio is an important marker

for assessing cardiovascular risk and metabolic health in diabetic conditions. This

extensive analysis underscores the complex interplay between genetic, protein, and

molecular factors in the pathophysiology of diabetes and prediabetes. Understanding

these interactions is crucial for developing targeted therapies and managing these

metabolic disorders effectively [244–247]..

In conclusion, the intricate network of genes, proteins, and molecules involved in dia-

betes and prediabetes highlights the need for a comprehensive approach to treatment

and management. By elucidating the roles of these components, this meta-analysis

provides valuable insights into the underlying mechanisms of these metabolic disor-

ders, paving the way for more effective interventions and improved patient outcomes.

The results presented describe a systematic approach to identifying core genes, inter-

action networks, hub genes, functional annotations, and pathway cross-talk networks

associated with insulin resistance and metabolic diseases.

Insulin resistance is a condition characterized by decreased responsiveness of cells to

insulin, leading to impaired glucose uptake and metabolism [222], [223]. Several genes

have been implicated in the pathogenesis of insulin resistance and metabolic diseases,

including IRS1, IRS2, AKT2, FOXO1, TNF-α, DAG, and IKK-β [214], [216], [224].

IRS1 and IRS2 are two critical genes that play a role in insulin signaling. These genes

encode proteins that are involved in the activation of downstream signaling pathways
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that regulate glucose metabolism and lipid homeostasis [223]. Both IRS1 and IRS2

are expressed in multiple tissues, including adipose tissue, liver, and skeletal muscle.

In insulin-resistant states, these genes are often dysregulated, leading to impaired

insulin signaling and glucose uptake [225], [226] AKT2 is another important gene

involved in insulin signaling, and it plays a crucial role in glucose metabolism and

lipid homeostasis. AKT2 is primarily expressed in insulin-responsive tissues such as

skeletal muscle, adipose tissue, and liver. Defects in AKT2 have been linked to insulin

resistance and type 2 diabetes [223], [227].

FOXO1 is a transcription factor that regulates the expression of genes involved in

glucose and lipid metabolism. FOXO1 is primarily expressed in liver and muscle

tissue and is regulated by insulin signaling. In insulin-resistant states, FOXO1 activity

is often dysregulated, leading to increased hepatic glucose production and impaired

glucose uptake in muscle tissue [226], [228].

TNF-α is a pro-inflammatory cytokine that plays a key role in the development of in-

sulin resistance and metabolic diseases [229]. TNF-α is primarily produced by adipose

tissue and is involved in the regulation of adipocyte function and insulin signaling.

Increased TNF-α levels have been linked to insulin resistance, and TNF-α inhibitors

have shown promise in the treatment of metabolic diseases [225], [230].

DAG is a second messenger molecule that is involved in insulin signaling. DAG

activates protein kinase C (PKC), which in turn inhibits insulin signaling and impairs

glucose uptake. In insulin-resistant states, DAG levels are often elevated, leading to

impaired insulin signaling and glucose metabolism [228], [231].

IKK-β is a kinase that is involved in the regulation of the NF-κB pathway, a key

regulator of inflammation. IKK-β is primarily expressed in immune cells but is also

present in other tissues, including adipose tissue and liver. In insulin-resistant states,

IKK-β activity is often elevated, leading to increased inflammation and impaired

insulin signaling [226], [230].

Through our systematic bioinformatic approach we identified 18 hub genes (UBB,

UBA52, NRG1, AKT3, NFKBIL1, AKT1, RELA, MAPK1, MAPK14, PTK2B, GSK3B,
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MAPK3, DOK1, SOS1, RAF1, SHC1, INSR, and PIK3R1) that play crucial roles in

regulating the activity of other genes and pathways within the network. We were able

to validate 8 genes SHC1, AKT1, PIK3R1, GSK3B, AKT3, RELA, MAPK1, and

INSR of these 18 genes through published literature for playing a role in inflamma-

tion, either directly or indirectly that leads to pathogenesis of insulin resistance and

metabolic diseases.

SHC1 is known to be involved in insulin signaling and has been shown to be a potential

therapeutic target in insulin resistance [232]. AKT1, on the other hand, has been im-

plicated in regulating glucose homeostasis, lipid metabolism, and inflammation [233].

PIK3R1 has also been found to play a role in insulin resistance by regulating glucose

uptake and glycogen synthesis [232]. GSK3B is a key regulator of insulin signaling

and glucose metabolism, and its dysregulation has been linked to the development

of insulin resistance and metabolic diseases [234]. AKT3 has also been reported to

play a role in insulin signaling and glucose metabolism [235]. RELA, a subunit of

the transcription factor NF-κB, has been implicated in inflammation and insulin re-

sistance [232]. MAPK1 has been shown to regulate glucose homeostasis and insulin

sensitivity, while INSR has been identified as a key regulator of glucose uptake and

insulin signaling [235].

Overall, these genes play crucial roles in regulating insulin signaling, glucose metabolism,

and inflammation, and their dysregulation has been linked to the development of in-

sulin resistance and metabolic diseases.

In our study, we focused on identifying biomarkers linked to prediabetic insulin re-

sistance. Through extensive literature mining, we retrieved 24 distinct biomarkers

associated with prediabetes and insulin resistance, which we designated as set no 1.

This initial set of genes was manually curated based on their documented roles in

prediabetes and insulin resistance.

To discover novel biomarkers related to prediabetic insulin resistance, we utilized

a protein-protein interaction network generated through the FunCoup server. This

network was constructed using the biomarkers from set no 1 as the starting point.
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Within this interaction network, numerous genes were found to interact with the

genes from set no 1, and these interacting genes were compiled into a new group,

referred to as set no 2. These genes in set no 2 were then considered potential novel

biomarkers for prediabetic insulin resistance. Next, we aimed to identify common

interacting amino acid residues between the biomarkers from set no 1 and the novel

biomarkers from set no 2. To achieve this, we performed protein-protein docking,

where the genes from set no 1 served as receptors and the genes from set no 2 acted

as ligands.

Through this docking analysis, we identified specific amino acids that frequently ap-

peared in the interaction results. Notably, ARG13 emerged as the most recurrent

amino acid. Our findings suggest that mutations in these frequently interacting amino

acids, such as ARG13, could lead to decreased stability of the receptor genes. Such

mutations in these biomarkers may contribute to the pathogenesis of prediabetes and

insulin resistance. The significance of prediabetes and insulin resistance as precursors

to type 2 diabetes has been well-documented by various researchers. Dr. Polonsky’s

work on MODY1 and MODY2 genes highlights their critical roles in diabetes. Muta-

tions in these genes can lead to beta cell defects, resulting in excessive insulin produc-

tion and subsequent insulin resistance [235, 236]. Our investigation into biomarkers

for prediabetes and insulin resistance aligns with this understanding. Additionally,

A.T. Hattersley’s research on the GCK gene, which is involved in glucose phosphoryla-

tion, underscores its importance in hyperglycemia. Mutations in GCK can predispose

individuals to prediabetes and diabetes [234]. We also identified GCK as a significant

biomarker, emphasizing its role in maintaining glucose homeostasis [237].

Further supporting our findings, research conducted by Raquel Villegas and colleagues

in Shanghai, China, examined genes such as IRS1, IRS2, INSR, and IRS3 in young

individuals. Their study demonstrated that mutations in these genes disrupt glucose

pathways, leading to insulin resistance, prediabetes, and eventually diabetes [238].

Our study also included these genes among others involved in glucose management,

reinforcing their relevance. In summary, the primary aims and objectives of our study

were to identify biomarkers linked to prediabetic insulin resistance and to discover
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novel biomarkers through interaction network analysis. We then performed protein-

protein docking to assess the impact of these biomarkers on the progression of insulin

resistance and prediabetes. Our findings revealed that mutations in certain amino

acids, particularly ARG13, play a crucial role in this process. By identifying these

key biomarkers and understanding their interactions, we have contributed valuable

insights into the mechanisms underlying prediabetic insulin resistance and its pro-

gression to type 2 diabetes.

To enhance the clinical relevance of the identified biomarkers, it is essential to estab-

lish their practical applications in early disease detection and patient management.

The biomarkers characterized in this study hold significant potential for improving

the early diagnosis of individuals at risk of developing type 2 diabetes. Integrating

these molecular markers into routine clinical screening may facilitate the identifica-

tion of high-risk individuals, allowing for timely interventions such as lifestyle modi-

fications, targeted nutritional strategies, and pharmacological approaches to prevent

disease progression. Furthermore, incorporating these findings into patient education

programs can enhance awareness regarding metabolic health, promoting proactive

measures to mitigate insulin resistance. By translating these insights into clinical

practice, healthcare professionals can implement more precise risk assessment models,

ultimately improving patient outcomes and reducing the burden of diabetes-related

complications. Future studies should focus on validating these biomarkers in larger

population cohorts and developing accessible diagnostic tools that can be seamlessly

integrated into existing healthcare frameworks.

This study employed meta-analysis and in-silico approaches to identify biomarkers

for prediabetic insulin resistance; however, certain limitations must be acknowledged.

The reliability of the meta-analysis depended on the quality and consistency of in-

cluded studies, with variations in study populations and methodologies potentially in-

troducing bias. Computational analyses relied on existing databases, which may have

contained incomplete or evolving datasets, impacting the accuracy of gene interaction

networks and molecular docking results. To enhance result reliability, multiple valida-

tion steps were implemented. Homology assessments were conducted using BLASTP,
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structural validation through ProSA, and docking analyses were cross-validated using

GRAMM-X and ClusPro. Despite these measures, experimental validation remains

necessary to confirm the clinical applicability of the identified biomarkers. Future

studies should focus on functional validation and clinical trials to translate these find-

ings into practical medical applications.
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Conclusion and Future Work

6.1 Conclusion

A detailed meta-analysis has highlighted a broad spectrum of genes and proteins that

exhibit dysregulation in both diabetes and prediabetes. This analysis revealed that

the genes SGCZ, HPSE2, ADGRA1, GLB1L3, PCSK6, SIRT1, PPAR, PGC1 alpha,

NRF1, TG gene, and HBA1c play significant roles in these metabolic disorders. SGCZ

(Sarcoglycan Zeta) is involved in muscle integrity and function, with its dysregulation

linked to muscular dystrophies and potential impacts on insulin signaling pathways

[239]. HPSE2 (Heparanase 2) is associated with extracellular matrix remodeling, and

its alteration can affect cellular metabolism and glucose homeostasis [239]. ADGRA1

(Adhesion G Protein-Coupled Receptor A1) plays a role in cell adhesion and signaling,

impacting inflammatory responses in diabetes [239]. GLB1L3 (Galactosidase Beta 1

Like 3) is involved in carbohydrate metabolism, where its dysregulation can disrupt

glucose breakdown [239]. PCSK6 (Proprotein Convertase Subtilisin/Kexin Type 6)

regulates the activation of precursor proteins, influencing metabolic pathways. SIRT1

(Sirtuin 1) is a critical regulator of metabolic homeostasis, with impaired function

closely linked to insulin resistance [240]. PPAR (Peroxisome Proliferator-Activated

Receptor) is central to lipid metabolism and glucose regulation, and its dysregulation

can lead to metabolic syndrome [240].

150
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PGC1 Alpha (Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-

Alpha) is involved in mitochondrial biogenesis and oxidative metabolism [241]. NRF1

(Nuclear Respiratory Factor 1) regulates mitochondrial function and energy metabolism

[241]. The TG gene (Thyroglobulin) is implicated in thyroid hormone synthesis, affect-

ing metabolic rate [241]. HBA1c (Hemoglobin A1c) serves as a marker for long-term

glucose levels, with elevated levels indicating poor glucose control in diabetes [242].

The identified proteins also play significant roles in these disorders. Branched-chain

and aromatic amino acids such as leucine, valine, tyrosine, phenylalanine, and isoleucine

are involved in protein synthesis and metabolic signaling [243]. Fluorodeoxyglucose,

a glucose analog used in PET scans, monitors glucose uptake in tissues. Nonesterified

fatty acids reflect lipid metabolism and are associated with insulin resistance. The

protein p66Shc is involved in oxidative stress responses and aging.

Monocyte Chemoattractant Protein-1 (MCP-1) plays a role in inflammatory processes

contributing to insulin resistance, while C-Reactive Proteins are inflammatory mark-

ers linked to cardiovascular risk in diabetes [243]. GROalpha (CXCL1) is a chemokine

involved in inflammatory responses, and zeta-Sarcoglycan protein is essential for main-

taining muscle integrity. Heparinase 2 regulates extracellular matrix dynamics and af-

fects cell signaling, while ADGRA1 influences inflammatory responses [244]. GLB1L3

participates in glycosylation processes, and PCSK6 activates other proteins through

proteolytic cleavage [244].

Identified molecules include heparan sulfate proteoglycans, vital for extracellular com-

munication, and ALKP, associated with bone and liver health, along with IL-1RA, an

inflammation modulator [245]. VCAM1 promotes leukocyte adhesion, while pentosi-

dine - glucuronide marks oxidative stress. Glutamyl-lysine-sulfate indicates protein

modification; indoxyl sulfate relates to kidney dysfunction [245].

Metabolites such as dihydroxyphenyl-gamma-valerolactone-glucuronide and fluoro -6-

thia- heptadecanoic acid support metabolic studies [246]. Kynurenine (tryptophan

pathway) and lysoPC (membrane dynamics) were also noted [247]. Phosphatidyl-

choline variants and sphingomyelin impact lipid signaling [245]. Carbohydrates like
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glucose and fructose are key diabetes-related energy sources [245]. Lipids (phospho-

lipids, sphingomyelins, triglycerides) are essential for energy storage [245]. Amino

acids—including branched-chain, aromatic, glycine, and glutamine—play metabolic

roles [243]. The triglyceride-to-HDL cholesterol ratio is a critical cardiovascular and

metabolic health indicator [245].

This extensive analysis underscores the complex interplay between genetic, protein,

and molecular factors in the pathophysiology of diabetes and prediabetes. Under-

standing these interactions is crucial for developing targeted therapies and managing

these metabolic disorders effectively.

The study aimed to investigate the role of insulin resistance in the onset of metabolic

syndrome. To achieve this, we identified key pathways and core genes involved in

insulin resistance pathways and retrieved gene interaction data. They then identified

and validated hub genes, which are genes that play a central role in the network of

interactions between genes. We identified 18 hub genes that were involved in insulin

resistance pathways. These genes were UBB, UBA52, NRG1, AKT3, NFKBIL1,

AKT1, RELA, MAPK1, MAPK14, PTK2B, GSK3B, MAPK3, DOK1, SOS1, RAF1,

SHC1, INSR and PIK3R1 [239].

To validate these hub genes, we looked for evidence in the literature that supported

their involvement in insulin resistance or related pathways. we found that eight of

the hub genes (SHC1, AKT1, PIK3R1, GSK3B, AKT3, RELA, MAPK1, and INSR)

had been previously identified as playing a role in inflammation, either directly or in-

directly [243]. These genes collectively participate in complex networks that influence

inflammation and metabolic processes, with their dysregulation contributing to the

development and progression of metabolic diseases.

Inflammation appears to be a key contributor to the onset of insulin resistance, which

is central to the development of metabolic syndrome. The hub genes identified in this

study may offer promising targets for therapeutic strategies aimed at preventing or

managing this condition. Understanding the molecular framework of insulin resistance

is critical in unraveling the mechanisms behind metabolic syndrome. While this study
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highlights several key genes and pathways, further research is essential to validate

these findings and explore their relevance across diverse populations.

An in-silico strategy was applied to pinpoint biomarkers linked to prediabetic insulin

resistance. Initially, a literature-based gene set (set 1) was compiled. A gene interac-

tion network was then generated, from which additional interacting genes (set 2) were

identified. Some genes from set 1 were absent in the network, yielding 40 distinct

genes in total.

To determine the biological relevance of these genes, enrichment analysis was carried

out using various functional annotations. UniProt was employed to retrieve protein

sequences and IDs. Structural verification was performed through BLASTP against

the Protein Data Bank (PDB), and protein models were evaluated for stability using

ProSA, with all models showing acceptable negative Z-scores.

Protein docking simulations, conducted using GRAMM-X and ClusPro and analyzed

via Discovery Studio, identified ARG13 as the most frequently involved amino acid in

binding interactions. The docking results indicated that several set 2 biomarkers con-

sistently interacted with the same residues of set 1 biomarkers. These findings suggest

that common residues, particularly ARG13, may play a crucial role in receptor-ligand

interactions between the two biomarker sets. This supports their potential utility as

early diagnostic or therapeutic biomarkers in insulin resistance linked to prediabetes.

6.2 Future Work and Recommendation

One possible future direction for this project is to conduct a genetic analysis of the

identified hub genes in different populations and individuals. This can be done using

PCR (polymerase chain reaction) to amplify and detect specific DNA sequences associ-

ated with the hub genes. By analyzing the genetic variation in these genes, researchers

can determine which alleles are present and how they contribute to insulin resistance

and metabolic syndrome. This type of genetic analysis can provide valuable informa-

tion for developing personalized interventions and treatments for metabolic syndrome.
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For example, individuals with certain alleles of the identified hub genes may benefit

more from specific dietary or exercise interventions or may require different medica-

tion regimens. Additionally, understanding the genetic basis of insulin resistance can

help identify new drug targets and improve the development of novel therapies for

metabolic syndrome.

Identified biomarkers associated with prediabetes could further be confirmed or vali-

dated in our population using different wet lab technologies. The identified biomarker

was in different form it may be a protein, gene, micro-RNA and any metabolite; so,

there were different methods in wet lab to validate all type of biomarkers. However,

if the biomarker was a gene then sequence alignment and polymorphism PCR done;

if the biomarker was a metabolite then electrophoresis and spectrophotometry was

done, if the biomarker was a protein then ELISA (enzyme linked immunosorbent

assay) were done and if the biomarkers was a micro-RNA then PCR (polymerase

chain reaction) was done. This will further lead to identification of real biomarkers

in our population that could be used for designing diagnosis techniques specific for

pre-diabetic insulin resistance. Preventing prediabetic insulin resistance will inhibit

the progression of deadly diseases like diabetes, cardiovascular diseases and complex

syndromes such as metabolic syndrome.
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Tiinamaija Tuomi, Göran Berglund, David Altshuler, Peter Nilsson, and Leif

Groop. Clinical risk factors, dna variants, and the development of type 2

diabetes. New England Journal of Medicine, 359(21):2220–2232, 2008. doi:

10.1056/NEJMoa0801822.

[235] S. M. Haffner. Insulin resistance, inflammation, and the prediabetic state. Amer-

ican Journal of Cardiology, 92(4):18–26, 2003. doi: 10.1016/S0002-9149(03)

00612-X.



Bibliography 183

[236] G. I. Shulman. Ectopic fat in insulin resistance, dyslipidemia, and car-

diometabolic disease. New England Journal of Medicine, 371(12):1131–1141,

September 2014. doi: 10.1056/nejmra1011035.

[237] P. E. Scherer. Adipose tissue: From lipid storage compartment to endocrine

organ. Diabetes, 55(6):1537–1545, June 2006. doi: 10.2337/db06-0263.

[238] M. P. Czech. Insulin action and resistance in obesity and type 2 diabetes. Nature

Medicine, 23(7):804–814, July 2017. doi: 10.1038/nm.4350.

[239] T. Liu, H. Li, Y. P. Conley, B. A. Primack, J. Wang, W. Lo, and C. Li.

A genome-wide association study of prediabetes status change. Frontiers

in Endocrinology, 13:881633, 2022. doi: 10.3389/fendo.2022.881633. URL

https://doi.org/10.3389/fendo.2022.881633.

[240] S. Tulipani, M. Palau-Rodriguez, A. Miñarro Alonso, F. Cardona, A. Marco-
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